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1. Introduction
In many real-world systems, the most interesting behavior emerges from complex
interactions between the constituent elements.1 These systems arise in applications
as varied as neuroimaging, transportation networks, and social media use. In these,
and many other applications, the relationship between elements of the network (or
nodes) can be described by connections (or edges) that capture similarity, coher-
ence, or functionality.2 In order to understand these emergent behaviors, we require
analytical approaches that respect the relational information between elements of
these interacting systems.3

Over the last 6 years, developing novel methods to analyze time-evolving network
dynamics of brain activity has been a strong component of the US Army Research
Laboratory’s (ARL’s) ongoing research in translational neuroscience.4 This empha-
sis reflects a theoretical movement from traditional neuroimaging approaches that
focused on the computational processing of segregated areas of the brain to a set
of innovative network science approaches to investigate the dynamic communica-
tion among brain regions.5,6 Across the 84 billion neurons in the brain,7 networks
are dynamically forming and dissolving to connect the localized neural ensembles
that perform specialized computational processing as global networks that integrate
across regions in support of time-evolving task activity to enable human behav-
ior.8,9 Thus, to understand the complex dynamics of neural processing, methods
must preserve the spatio-temporal properties that embody what brain regions are
communicating and when in intricately timed interaction. The burgeoning field of
network neuroscience leverages a graph theoretic approach from network science,
where the component parts of a system (nodes) are connected based on their pair-
wise interactions (edges) in a graph.10 We will leverage this formalism here since
it facilitates the study of brain activity by preserving the underlying geometry of
the data. However, since we are interested in time-evolving network dynamics, we
cannot rely on traditional approaches that capture scalar signals supported on the
nodes of a graph; instead, we consider time-series functions supported on the nodes
of a graph.

Graph signal processing has been proposed as a method to analyze functions with an
irregular domain that can be described by a weighted graph.11,12 These approaches
consider scalar functions supported on the vertices of a graph and adapt tools from

1
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classical signal processing such as filtering to account for the graph domain. This
work essentially divides into 2 basic approaches: graph Laplcian-based filtering
and weighted adjacency matrix-based filtering. In Shuman et al.,11 and elaborated
in Bronstein et al.,13 filtering operators are polynomials of the graph Laplacian of
the graph domain, while in Sandryhaila and Moura,12 filtering operators are poly-
nomials of the weighted adjacency matrix of the graph domain. At the time of this
project, graph Laplacian-based methods have elicited greater use and adoption in
the scientific literature and have recently been successfully applied in various deep
learning frameworks.13

In this report, we assess the possibility of extending the techniques of Shuman et
al.11 to the more general problem of time-series functions on the vertices of a fixed
weighted undirected graph (see Fig. 1). The rest of the report is outlined as follows.
In Section 2, we review the mathematical background necessary for graph signal
processing, namely Hilbert spaces, Fourier analysis, and spectral graph theory. In
Section 3, we present the graph signal processing approach from Shuman et al.11

In Section 4, we present our original work, extending the approach of Shuman et
al.11 to time-series functions on a fixed graph. In Section 5, we discuss the results of
this effort. We find that a direct extension of the approach will not generalize to the
problem of time-series functions on a graph. Rather, the temporal information that
we hope to retain is instead lost because the graph Fourier basis does not form an
orthonormal basis for the space of functions in which we are interested. In Section 6,
we discuss alternative approaches to address this failure by extending the approach
of Sandryhaila and Moura12 or deliberately constructing an orthonormal basis for
the functions.

Fig. 1 Time-series function on a fixed graph
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2. Mathematical Background
Graph signal processing leverages spectral graph theory to extend classical signal
processing operations such as filtering to functions that have irregular domains that
can be described by graphs. These methods depend heavily on theory from Hilbert
spaces, Fourier analysis, and spectral graph theory. We present here the necessary
mathematical background.

2.1 Hilbert Spaces
Hilbert spaces provide the abstract vector space in which functions exist, and it is in
this space that the tools of signal processing act on functions. We define some basic
definitions relating to Hilbert spaces and provide motivating examples.

Definition 2.1. A Hilbert space is a real vector spaceHwith an inner product 〈f, g〉
such thatH is complete in the induced norm, ‖f‖ =

√
〈f, f〉.

Example 2.2. L2(R) = {f : R → R|‖f‖ < ∞}, with inner product 〈f, g〉 =∫∞
−∞ f(x)g(x)dx is an infinite-dimensional Hilbert space.

Definition 2.3. An orthonormal basis of a Hilbert spaceH is a sequence {xn}Nn=1,
N ∈ N, with 〈xn, xm〉 = δnm (δnm = 1 if n = m and 0 otherwise), ∀n,m ∈ N such
that x ∈ H has a unique representation x =

∑N
n=1〈x, xn〉xn, where xn are distinct

elements.

Example 2.4. The set of functions {eiwt : w ∈ R} is an orthonormal basis for
L2(R) called the standard Fourier basis.

Hilbert spaces make analysis of complicated mathematical objects more intuitive.
In a vector space such as Rn, the canonical basis (i.e., e1 = [1, 0, . . . , 0]T , . . . , en =

[0, . . . , 0, 1]T where ·T is the usual matrix transpose) forms an orthonormal basis.
This construction allows all vectors in the vector space to be represented as linear
combinations of a fixed set of canonical vectors. Similarly, the Euclidean distance
(i.e., ‖x−y‖2 =

∑n
i=1 xiyi) allows us to measure distance between any 2 vectors in

the vector space. Together, these 2 concepts simplify the analysis of vectors. Hilbert
spaces generalize these concepts to spaces of functions and other abstract objects.
Fourier analysis depends heavily on these concepts to provide an orthonormal basis
for arbitrary functions.

3



Approved for public release; distribution is unlimited.

2.2 Fourier Analysis
Classical signal processing leverages the results of Fourier analysis to deconstruct
functions into simpler trigonometric functions for processing steps such as filtering.
We present the definition of the Fourier transform, inverse Fourier transform, and
convolution along with the convolution theorem.

A Fourier transform represents a time-series as a linear combination of complex
exponential functions in the frequency domain, and the inverse Fourier transform
reassembles the frequency components into a time-series. The Fourier transform
and inverse Fourier transform provide invertible mappings between the time repre-
sentation of a signal and the frequency representation of a signal.

Definition 2.5. The Fourier transform of a function f ∈ L1(R) is defined as

F(f(t)) = f̂(ω) =

∫ ∞
−∞

f(t)e−iωtdt, for ω ∈ R. (1)

Definition 2.6. The inverse Fourier transform is defined by

F−1(f̂(ω)) = f(t) =
1

2π

∫ ∞
−∞

f̂(ω)eiωtdω, for t ∈ R. (2)

Implicit in the definition of the Fourier transform is the inner product from L2(R)

and the basis function eiωt. The Fourier transform is the projection of f onto basis
functions indexed by frequency.

The convolution operation provides another basic building block for classical signal
processing.

Definition 2.7. A convolution operation ∗ : L2(R)×L2(R)→ L2(R) is defined by

(f ∗ g)(x) =

∫ ∞
−∞

f(y)g(x− y)dy, for x ∈ R. (3)

An important property of the convolution is captured in the following, a standard
result of Fourier analysis14 :

Theorem 2.8. (Convolution Theorem) Convolution of two functions in the time do-

4
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main is equivalent to multiplication in the frequency domain

F [f(t) ∗ g(t)] = F(f)(w) · F(g)(w) = f̂(w) · ĝ(w). (4)

This is a helpful tool in frequency filtering where we choose filter functions (i.e., g
in the definition of the convolution) to either amplify or attenuate contributions from
the frequency components of a signal (i.e., f in the definition of the convolution).
Often, ĝ(·) is referred to as the transfer function of the filter, and when combined
with the Convolution theorem, filtering can be performed by the following:

fout(t) := (fin ∗ g)(t) = F−1(f̂in(w) · ĝ(w)). (5)

2.3 Spectral Graph Theory
Graphs provide the topology for arbitrary objects through pair-wise similarity. These
relationships build a discrete geometry for data that does not necessarily conform to
Euclidean geometry. Spectral graph theory concerns the spectral content (eigenval-
ues and eigenvectors) of these graphs. Here, we define a graph, review some basic
properties, and derive the graph Laplacian and its spectral properties.

Definition 2.9. A weighted undirected graph G is defined as the triple (V , E ,W),
where V = {1, . . . , n} is the set of vertices, E = {{i, j} : i, j ∈ V} is the set of
edges, andW is the n×n symmetric adjacency matrix of the edge weights wij ≥ 0

for {i, j} ∈ E .

A graph is principally made up of vertices, which represent the objects of interest.
We capture relationships between objects by connecting them with edges, where
the strength of each edge (the weight) represents the similarity of the connected
objects. The pair-wise similarity (or near-ness) of objects induces a unique geom-
etry on the domain. Other common properties of graphs are the degree matrix and
neighborhood.

Definition 2.10. The degree matrix is defined as D = diag(d1, . . . , dn) where di =∑
j:j 6=iwij .

Definition 2.11. The neighborhood of a vertex is the set of vertices connected to
vertex i by an edge, Ni = {j ∈ V|i 6= j, {i, j} ∈ E}.

5
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The neighborhood definition given is general. For our purposes, the neighborhood
of a node includes all other nodes in the graph. We can also weight vertices to
convey the relative importance of vertices. These weights also become important in
developing either the un-normalized or normalized graph Laplacian.

Definition 2.12. The vertex weight matrix is defined by A = diag(a1, . . . , an)

where ai ≥ 0 ∈ R for all i ∈ V .

Next, we build spectral graph theory by considering functions defined on a graph.
We begin with defining a Hilbert space for these functions.

Definition 2.13. Let `2(V) = {f : V → R : ‖f‖`2(V) < ∞} be the Hilbert space
with the following inner product:

〈f, g〉`2(V) =
∑
i∈V

aifigi (6)

and induced norm ‖f‖`2(V) =
√
〈f, f〉`2(V).

Definition 2.14. Let `2(E) = {F : E → R : ‖f‖`2(E) < ∞} be the Hilbert space
with the following inner product:

〈F,G〉`2(E) =
∑
{i,j}∈E

wijFijGij (7)

and induced norm ‖F‖`2(E) =
√
〈F, F 〉`2(E).

Then, we use concepts from discrete calculus to define a difference operator that
acts on these functions.

Definition 2.15. Let f ∈ `2(V). The graph gradient operator ∇ : `2(V) → `2(E)

is defined as
(∇f)ij = fj − fi. (8)

Together with the Hilbert space on the edges of the graph, the graph gradient allows
us to examine the Dirichlet energy of a function on the graph.

Definition 2.16. The Dirichlet energy of f ∈ `2(V) is defined as

S(f) =
1

2
‖∇f‖2

`2(E). (9)

6
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The Dirichlet energy measures the smoothness of functions by summing the gra-
dient (or tendency of the function to change) over the entire domain. This idea is
borrowed from statistical physics in which low-energy states are more likely (and
more stable) than high-energy states. Importantly, if we define the adjoint of the
gradient (∇∗), we can write the Dirichlet energy as a quadratic function of f .

S(f) =
1

2
‖∇f‖2

`2(E)

=
1

2
〈∇f,∇f〉2`2(E)

=
1

2
〈f,∇∗∇f〉2`2(E)

=
1

2
〈f,∆f〉2`2(E)

where ∆ = D −W is known as the un-normalized graph Laplacian. We note that
S(f) = 0 if and only if f is constant across all vertices, and S(f) is small when f
has similar values at neighboring vertices connected by an edge with a large weight
(i.e., when it is smooth).

We may be interested in finding smooth functions f ∈ `2(V). We know that the
subspace of constant functions minimizes the Dirichlet energy, but what about non-
trivial functions that minimize the Dirichlet energy? One procedure for finding such
functions would be to constrain the subspace of functions to be orthogonal to the
subspace of constant functions and minimize the Dirichlet energy within this sub-
space. We could further ask for another subspace of functions orthogonal to that
subspace that minimizes the Dirichlet energy, and repeat this process until we have
|V| orthogonal functions. This procedure can be posed concisely in the following
optimization problem:

min
Φ∈Rn×n

tr(ΦT ∆̃Φ) s.t. ΦTΦ = I (10)

where ∆̃ = A−1(D −W) is the un-normalized graph Laplacian if A = I and the
normalized graph Laplacian if A = D.13 This optimization problem is solved by an
eigendecomposition of the normalized graph Laplacian, ∆̃ = ΦΛΦT .

7
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3. Graph Signal Processing
Now that we have established the mathematical tools, we review the approach of
Shuman et al.11 to extend classical signal processing tools to functions with a graph
domain. We begin with generalizing the Fourier transform and inverse Fourier trans-
form. Then, we use the convolution theorem to define the convolution.

As described in Eq. 1, the Fourier transform is a projection onto an orthonormal ba-
sis. This leads us to seek an orthonormal basis for `2(V). We note that the normal-
ized graph Laplacian ∆̃ is a symmetric matrix, so it has real nonnegative eigenval-
ues and a complete set of orthonormal eigenvectors that span Rn. Further, we can
associate these eigenvectors with a notion of frequency (or smoothness) because
smaller eigenvalues are associated with eigenvectors, or modes, of lower Dirichlet
energy. Thus, the eigendecomposition of the graph Laplacian provides us an or-
thonormal basis for `2(V) that can be partially ordered with respect to frequency
(or smoothness). In Shuman et al.,11 associating the Fourier basis with the graph
Laplacian eigenbasis provides the means by which we extend signal processing
techniques to functions which occur on graphs.

Let Φ = [φ0, . . . , φn−1] be the graph Fourier (eigen) basis of the graph Laplacian.

Definition 3.1. The graph Fourier transform of a discrete signal f ∈ `2(V) is
defined as

f̂i = 〈f, φi〉L2(V). (11)

Definition 3.2. The graph inverse Fourier transform is defined as

f =
n−1∑
i=0

f̂iφi. (12)

Now, we address the convolution. A direct extension is impossible because the def-
inition of the convolution requires a translation operator and such an operation is
meaningless on an unordered set of vertices. Therefore, Shuman et al.11 proposes
to use the convolution theorem as a definition for the convolution. This bypasses
the translation hurdle by using the previously defined Fourier and inverse Fourier
transform.

8
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Definition 3.3. The graph convolution ∗g : L2(V)× L2(V)→ L2(V) is defined as

f ∗g g :=
n−1∑
i=0

(〈f, φi〉L2(V)〈g, φi〉L2(V))φi (13)

or equivalently,
f ∗g g = Gf := Φdiag(ĝ)ΦTf, (14)

where ĝ = (ĝ(λ1), . . . , ĝ(λn)) is the spectral representation of g.

4. Results
Our problem is such: we want to process signals {fi ∈ L2(R)}i∈V that occur on the
vertices of a fixed graph G. We imagine distinct functions with a fixed spatial topol-
ogy captured by the graph. Shuman et al.11 considers scalar functions on the vertices
of the graph, but here we follow their approach and extend it as necessary to define
filtering and convolution operations. We begin with defining the Hilbert space and
difference operators for such functions. Then, we compute an orthonormal basis,
with which we generalize the Fourier and inverse Fourier transform.

4.1 Hilbert Spaces of Time-Series Signals
Functions on a bounded time domain, T = [0, τ ], have a natural Hilbert space.

Definition 4.1. Let L2(T ) = {f : T → R : ‖f‖ < ∞} be the Hilbert space with
the following inner product:

〈f, g〉 =

∫
T
f(t)g(t)dt. (15)

Here, we consider a set of time-series functions f = {fi ∈ L2(T ) : i ∈ V}. We
use the inner product from the Hilbert space for the time domain within the inner
product from the graph domain. This provides the following Hilbert spaces:

Definition 4.2. Let L2(V ×T ) = {f : V ×T → R|‖f‖ <∞} be the Hilbert space
with the following inner product:

〈f, g〉L2(V×T ) =
∑
i∈V

(
ai
τ

∫
T
fi(t)gi(t)dt

)
. (16)

9
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Definition 4.3. Let L2(E ×T ) = {f : E ×T → R|‖f‖ <∞} be the Hilbert space
with the following inner product:

〈F,G〉L2(E×T ) =
∑
{i,j}∈E

(
wij
τ

∫
T
Fij(t)Gij(t)dt

)
. (17)

4.2 Graph Differential Operators of Time-Series Signals
We follow Bronstein et al.13 to define the graph differential operators on the Hilbert
spaces L2(V × T ) and L2(E × T ).

Definition 4.4. The graph gradient operator ∇T : L2(V × T ) → L2(E × T ) of a
signal f ∈ L2(V × T ) is defined as

(∇T f)ij(t) := fj(t)− fi(t). (18)

Definition 4.5. The graph divergence operator divT : L2(E ×T )→ L2(V ×T ) of
a function F ∈ L2(E × T ) is defined as

(divT F )i(t) =
1

ai

∑
j:{i,j}∈E

wijFij(t). (19)

We verify that the graph gradient is the adjoint of the graph divergence.

Theorem 4.6. The graph gradient is the adjoint of the graph divergence.

10
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Proof.

〈F,∇T f〉L2(E×T ) =
∑
{i,j}∈E

wij
τ

∫ τ

0

Fij(t)(∇f)ij(t)dt

=
∑
{i,j}∈E

wij
τ

∫ τ

0

Fij(t)[fj(t)− fi(t)]dt

=
∑
{i,j}∈E

wij
τ

∫ τ

0

Fij(t)fj(t)dt−
∑
{i,j}∈E

wij
τ

∫ τ

0

Fij(t)fi(t)dt

=
∑
{i,j}∈E

wji
τ

∫ τ

0

(−Fji(t))fj(t)dt−
∑
{i,j}∈E

wij
τ

∫ τ

0

Fij(t)fi(t)dt

=
∑
{i,j}∈E

wij
τ

∫ τ

0

(−Fij(t))fi(t)dt

=
∑
i∈V

1

τ

∫ τ

0

∑
j:{i,j}∈E

wij(−Fij(t))fi(t)dt

=
∑
i∈V

1

τ

∫ τ

0

1

ai

∑
j:{i,j}∈E

aiwij(−Fij(t))fi(t)dt

= 〈−divT F, f〉L2(V×T )

We have assumed that F is conservative (i.e., Fij = −Fji), as it is in the case of a
gradient, and used the symmetry ofW (i.e., wij = wji).

4.3 Constructing the Graph Fourier Transform
As in spectral graph theory, we can seek the functions that minimize the Dirichlet
energy:

ST (f) =
1

2
‖∇f‖2

L2(E×T ) (20)

=
1

2

∑
{i,j}∈E

wij
τ

∫
T

(∇f)ij(t)(∇f)ij(t)dt (21)

=
1

2τ

∫
T

∑
{i,j}∈E

wij(∇f)ij(t)(∇f)ij(t)dt (22)

=
1

τ

∫
T

1

2
‖(∇f)(t)‖2

`2(E)dt (23)

=
1

τ

∫
T
S[f(t)]dt (24)

11
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The Dirichlet energy for the time-series function is the integral of the instantaneous
energy. A similar result is obtained from the orthogonality constraint. Let Φ =

[φ0, . . . , φn−1] where φi ∈ L2(V × T ) for all i ∈ V .

〈φi, φj〉L2(V×T ) =
∑
k∈V

ak
τ

∫
T

(φi(t))k(φj(t))kdt (25)

=
1

τ

∫
T

∑
k∈V

ak(φi(t))k(φj(t))kdt (26)

=
1

τ

∫
T
〈φi(t), φj(t)〉`2(V)dt (27)

We see that if 2 functions are orthogonal in `2(V) at each time instance, then they
are orthogonal in L2(V × T ).

In both the objective and constraints of the optimization problem, there is inde-
pendence over time. The minimum is achieved by instantaneously minimizing the
Dirichet energy with respect to the orthogonality constraint. We observe that the
graph Fourier basis is obtained by continuously solving an eigenproblem over time.

min
Φ(t)∈Rn×n

tr(Φ(t)T ∆̃Φ(t)) s.t. Φ(t)TΦ(t) = I (28)

Furthermore, since G is not time-varying, Φ(t) = Φ is a constant with respect to
time.

We can now define our graph Fourier transform:

Definition 4.7. The graph Fourier transform of a time-series signal f ∈ L2(V×T )

is defined as

f̂i(t) = 〈f, φi〉L2(V×T ) (29)

=
∑
j∈V

aj
τ

∫
T
fj(t)(φi)jdt (30)

=
∑
j∈V

aj

(
1

τ

∫
T
fj(t)dt

)
(φi)j (31)

=
∑
j∈V

aj f̄j(φi)j (32)

= 〈f̄ , φi〉`2(V) (33)

12
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where we use φi(t) = φi for all i ∈ V and t ∈ T and f̄ is the average of f over T .

Definition 4.8. The graph inverse Fourier transform of a time-series signal f̂ is
defined as

f(t) =
n−1∑
i=0

1

τ

∫
t∈T

f̂i(t)φidt. (34)

4.4 Graph Convolution for Time-Series Signals
Finally, we can construct the convolution as done in Shuman et al.11

Definition 4.9. The graph convolution ∗T : L2(V×T )×L2(V×T )→ L2(V×T )

is defined as:

f ∗T g :=
n−1∑
i=0

(〈f, φi〉L2(V×T ) � 〈g, φi〉L2(V×T ))φi. (35)

5. Discussion
There is a fundamental problem in this construction of the convolution. The convo-
lution theorem depends on the invertibility of the Fourier transform by the inverse
Fourier transform. However, we observe a loss of information through the proposed
graph Fourier transform. Let us consider a function f ∈ L2(V ×T ). Given its spec-
tral representation f̂ , we should be able to recover f exactly by the inverse graph
Fourier transform.

f(t)
?
=

n−1∑
i=0

1

τ

∫
t∈T

f̂i(t)φidt (36)

?
=

n−1∑
i=0

1

τ

∫
t∈T

(
〈f, φi〉L2(V×T )

)
φidt (37)

?
=

n−1∑
i=0

1

τ

∫
t∈T

(
〈f̄ , φi〉`2(V)

)
φidt (38)

?
=

n−1∑
i=0

〈f̄ , φi〉`2(V)φi (39)

6= f̄ (40)

Instead, we simply recover the average of f over time.

13
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This result is not only unsatisfying but also wholly insufficient. We set out to treat
the time domain simultaneously with the irregular spatial domain, but in doing so,
we ultimately still lost all but first-order information in the time domain. We can
now recognize that this straight-forward extension of the approach in Shuman et
al.11 did not result in the construction of an orthonormal basis as in the case of
scalar functions on a fixed graph. {φi}i∈V does not span L2(V × T ), a necessary
condition for the Fourier transform to be invertible.

6. Conclusion
We have evaluated the possibility of extending the approach proposed in Shuman
et al.11 for signal processing of scalar functions supported on a fixed graph domain
to the case of time-series functions supported on a fixed graph domain. Following
a similar construction of the Fourier and inverse Fourier transform and convolu-
tion operations, the result is insufficient. All but first-order information from the
temporal domain is lost within the convolution. A straight-forward extension of the
approach failed to yield an orthonormal basis, but this points to a path forward.

Our future work will investigate 2 alternative approaches. In the first, we will in-
vestigate extending the approach proposed in Sandryhaila and Moura12 where time-
series signals (discretely sampled functions) can be considered directed graphs in
which time samples can be represented by nodes that are connected only to adja-
cent time samples in a directed (causal) manner. In the second, we will consider
methods that yield an orthonormal basis by design. We recognize that these time-
series functions exist in a Hilbert space that is itself the composition of Hilbert
spaces with known orthonormal bases. We want to use Fourier basis functions to
represent the temporal information in our functions while retaining the spatial ba-
sis functions that capture the geometry of our domain. Thus, we could use con-
structive techniques to deliberately assemble an orthonormal basis for this Hilbert
space of time-series functions on graphs by considering functions from either a
direct sum (i.e., L2(V × T ) = L2(T ) ⊕ . . . ⊕ L2(T )) or tensor product (i.e.,
L2(V × T ) = `2(V)⊗ L2(T )) of Hilbert spaces.

Immediate future applications will focus on the analysis of neuroimaging data using
these graph signal processing approaches. This approach provides an opportunity
to identify novel spatio-temporal features of the data that provide insight about the
underlying brain network dynamics. While these features in and of themselves may

14
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have interesting interpretation within the field of network neuroscience, they can
also be used in conjunction with machine learning approaches to identify brain dy-
namics that can predict fluctuations in performance, providing an opportunity to
advance the state-of-the-art from previous ARL research.15–18 More generally, this
approach is not limited to applications on neuroimaging data, and it can also pro-
vide important contributions to understanding time-evolving network across a host
of additional Army-relevant domains, including diverse domains such as communi-
cation networks, sensor networks, and social networks.
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