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ABSTRACT 

Networks protected by firewalls and physical separation schemes are threatened 

by multi-homed devices. The purpose of this study is to detect multi-homed devices on a 

computer network. More specifically, the goal is to evaluate passive detection of multi-

homed devices running various operating systems while communicating on a network. 

TCP timestamp data was used to estimate clock skews using linear regression and linear 

optimization methods. Analysis revealed that detection depends on the consistency of the 

estimated clock skew. Through vertical testing, it was also shown that clock skew 

consistency depends on the installed operating system. The linear programming and 

linear regression methods agree with one another when clock skews are consistent, 

indicating that linear regression is sufficient to identify multi-homed hosts in networks 

with low network delay. Further analysis showed inconsistencies of clock skew 

estimation on newer versions of OS X and freeBSD 12.0; the clock skews from these 

operating systems prevented multi-homed fingerprinting using the proposed detection 

scheme. 
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I. INTRODUCTION 

As industry shifts from traditional network infrastructure toward software-defined 

networks (SDN), network security continues to be a primary concern for network 

managers at all levels. Likewise, as customer demand for services from networks rises, it 

is increasingly difficult to manage policies, handle dynamic internet loads, and respond 

quickly to faults and changes [1]. SDN is a new paradigm that changes the way networks 

are designed, managed, and secured [2]; such networks have the potential to increase 

network performance and security while reducing costs [3]. SDNs completely change the 

way in which network managers think about their network and security within the 

network.  

A. MOTIVATION 

Similar to the commercial sector, the United States military recognizes the 

benefits of implementing SDN and is actively exploring the best methods to use SDN on 

its networks. Any new technology involves many unknowns, so the military must explore 

all possible security threats in SDNs prior to wide-scale adoption.  

Many concerns surround network security, and the segregation of classified 

networks is one area affecting U.S. military network operations. The Committee on the 

National Security System Advisory Memorandum requires that all unclassified networks 

be physically separated from classified networks by at least three meters [4]. This 

distance ensures that there is no path for data from the classified network to interfere with 

the unclassified network.  

The physical barrier between a classified and unclassified network can be 

bypassed by a multi-homed device having multiple network connections: originating at 

the multi-homed device and terminating at the segregated networks. Multi-homing a 

device can also be used to bypass a firewall in a similar way. Therefore, a method to 

detect when a device is multi-homed needs to be developed. Preventing circumvention of 

firewalls and physical network segregation is essential to network separation security.  
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B. OBJECTIVE 

A plethora of operating systems support multi-homed connections, which can be 

installed on virtually any modern computer. A hostile user can connect a multi-homed 

device to a network to bypass firewalls or physically isolated security schemes. The 

bypassing of security protocols presents a real threat to any sensitive network, so Martin 

[5] originally proposed a scheme to detect multi-homed devices on a network by 

determining and comparing clock skews of all devices connected to the network.  

Martin [5] determined the clock skews by passively collecting Transmission 

Control Protocol (TCP) timestamp data, which has been shown to reliably reveal the 

clock skew of a Network Interface Card (NIC) [5], [6]. The ability to calculate clock 

skews in [5] was limited to Raspberry Pis with Raspbian as the installed operating 

system. Because of the limitations of Raspberry Pis, it remains to be demonstrated that 

the detection methods Martin employed can be expanded to other devices and operating 

systems capable of connecting to a computer network and potentially an SDN.  

The objective of this thesis is to validate the detection method used in [5] when 

applied to a larger set of devices and operating systems. Specifically, to validate the 

multi-homed detection methods, we will determine whether a fingerprinter can passively 

collect TCP timestamp information and, in doing so, detect multi-homed devices with 

various operating systems installed while communicating on a computer network. The 

detection of multi-homed devices will assist in thwarting security threats to firewalls and 

physical separation schemes, ultimately making commercial- and military-grade 

networks more secure.  

C. RELATED WORK 

In their research, Khono et al. [6] introduced the idea of using the estimated clock 

skew of a host to identify a physical device on a network. They fingerprinted a given host 

CPU by exploiting microscopic deviations created during the manufacturing process. By 

using these deviations, they extrapolated a unique clock skew for each host. To determine 

the estimated clock skew of a CPU, they used the TCP timestamp option introduced in 
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RFC 1323 by determining timestamp offsets and then taking the first derivative of the 

offsets. They then compared the resulting clock skews with one another to show that they 

were unique and that the same device consistently produced the same clock skew [6].  

Polcak [7] further explored clock skew identification and successfully 

demonstrating that various operating systems could be fingerprinted by TCP and Internet 

Control Message Protocol (ICMP) data. They also showed that the majority of clock 

skews fall between -50 to 100 parts per million (ppm), reducing the ability to fingerprint 

networks with a large number of hosts due to the increased number of false positives [7]. 

Finally, they showed that the estimated clock skew did not change with network time 

protocol (NTP) updates [7].  

Martin [5] demonstrated that multi-homed devices could be detected using a 

fingerprinter by comparing the estimated clock skews of Raspberry Pis. With a large set 

of clock skews from multiple trials, Martin showed that the clock skews approached a 

Gaussian distribution, from which a confidence interval could be determined. To detect 

the presence of a multi-homed device, Martin compared a given clock skew to the 

confidence interval; if the clock skew fell between the upper and lower bounds of the 

calculated confidence interval, then it represents a 95% certainty that the two hosts 

originated from the same device. 

D. THESIS ORGANIZATION 

The remainder of this thesis is organized as follows. Chapter II discusses how 

SDNs are organized and the security threat posed by multi-homed devices. The 

discussion then shifts to how operating systems generate TCP timestamp information, as 

well as how the clock skew is generated from the TCP timestamp. The proposed scheme 

to detect multi-homed devices is then discussed in Chapter III, and the results from the 

SDN dual-homed test bed are reported in Chapter IV. Triple-homed test bed results are 

presented in Chapter V. Significant findings from the results, along with potential future 

work are discussed in Chapter VI. Appendix A and B contain the MATLAB code used to 

calculate the estimated clock skews and the confidence intervals, respectively.  
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II. BACKGROUND 

The Department of Defense (DOD) goes to great lengths to segregate networks 

based on the classification of information on the network, as required by [4]. The  DOD 

has determined that a physical separation scheme is the only acceptable method to ensure 

that data cannot cross between classified and unclassified networks. The ability of a user 

to circumvent such security measures by using a multi-homed device and connecting it to 

multiple networks concerns for network administrators and represents a prime 

opportunity by the hacking community [8]. The related goal of this thesis is to determine 

methods to mitigate multi-homed threats that may potentially be implemented on an 

SDN. This chapter focuses on relevant background information that will set up the 

detection scheme outlined in Chapter III. This chapter first discusses SDNs, then explains 

how a multi-homed host can bypass security measures. The discussion continues with 

TCP timestamps and how they are generated. The chapter concludes with an explanation 

of how a clock skew is determined and a discussion of confidence intervals.  

A. SOFTWARE DEFINED NETWORKS 

Although legacy internet protocol (IP) networks have been adopted worldwide, 

they are complex, difficult to manage, and expensive to establish [9]. SDNs have the 

potential to alleviate many of the difficulties and high costs of traditional IP networks by 

separating the control logic (the control plane) from the physical traffic (the data plane) 

[1], [7], [10], [11]. With the implementation of SDNs, proprietary routing protocols 

previously implemented in hardware can now be implemented in software. This 

separation allows for complex switches and routers used in legacy networks to be 

downgraded to cost-effective simple switches and routers that receive routing flow rules 

from a centralized controlling device [7].  

SDNs also introduce an application plane, which consists of services provided by 

the network operator and perform tasks as specified [10]. A simple representation of the 

SDN planes is shown in Figure 1. Here, the application plane installs programs and 
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services onto the control plane via the northbound application programming interface 

(API). The control plane monitors traffic on the data plane and pushes flow rules from the 

control plane to the data plane via the southbound API [10]. Together, the northbound 

and southbound API control all services and flow rules within the SDN. Although not 

shown in Figure 1, this simplified network can be expanded by connecting multiple data 

planes to a single control plane or multiple control planes to multiple data planes, such 

that each data plane will have a dedicated southbound API to its assigned controller to 

handle flow-rule traffic. 

Application Plane

Control Plane

Data Plane

Northbound API

Southbound API

 

Figure 1.  Functional Planes in a Software-Defined Network. 

Adapted from [10]. 

B. MULTI-HOMED HOSTS 

A multi-homed host is a device that establishes multiple connections to a single 

network or to multiple networks by using multiple NICs. Each NIC will have a unique 

MAC address and IP address assigned. Generally, multi-connection hosts create 

redundancy in a network by connecting the host to separate network nodes [8]. For 

example, to increase network reliability, a multi-homed host will have multiple 

connections to the Internet service providers (ISP). In this example, if one of the nodes 

becomes unavailable, the host will recognize the break in the connection and stop 

transmitting via the affected NIC. The host will then direct all future traffic to the NIC 

with the viable connection. This redundancy produced by multi-homed connections 
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ensures that single point node failures do not prevent communication within the network 

[5], [12]. 

A multi-homed connection has the potential to become a security threat to a 

protected network if it is connected to two networks, one of which is separated by a 

firewall or physical air gap. Protecting a network is vitally important to many commercial 

industries and the DOD. Denying or limiting access to a network is normally 

accomplished by either employing a firewall or physically separating a network from 

other networks. In this instance, the multi-homed connection serves as a bridge between 

the two networks, and a hostile actor can take advantage of this situation by bypassing the 

security measures to gain access to the denied network. In Figure 2, we show how the 

physically separated network can be bridged by a multi-homed device and remove the 

physical separation of the two networks. 

Network A Network B

P
h

y
si

c
al

 S
e
p

ar
a
ti

o
n

Hosts
Multi-Homed

Host
Hosts

 

Figure 2.  Physically Separated Networks Where a Multi-Homed Device 

Bypasses Security Measures 

C. TCP TIMESTAMPS 

The TCP timestamp option was introduced in RFC 1323 to meet the high 

throughput demand of high-speed fiber optics. RFC 1323 was implemented to protect 

against wrapped sequence (PAWS) numbers and to improve round trip time 

measurements (RTTM) [13]. RTTM is the time interval between sending a TCP package 

and receiving an acknowledgement from the destination; it is essential in the calculation 
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of the retransmission timeout (RTO) used in TCP [13]. Because of the high speeds and 

large bandwidth capabilities of fiber optic connections, TCP needed protection against 

receiving duplicate sequence numbers from the same device. PAWS used TCP timestamp 

data to identify instances in which duplicate sequence numbers are detected [13]. The 

timestamp option is 10 bytes long, as shown in Figure 3. 

Kind=8 10 TS Value (TSval) TS Echo Reply (TSecr)

1 1 4 4  

Figure 3.  TCP Timestamp Option Field. Source: [13]. 

The timestamp value (TSval) field is 4 bytes long and is obtained from an internal 

clock, referred to as the “timestamp clock.” According to RFC 1323, the time values 

must be proportional to real time. The timestamp echo reply (TSecr) is valid only if the 

ACK bit is set in the TCP header. When the bit is set, it will echo the timestamp value of 

the remote TCP connection [13]. 

According to RFC 1323, to generate TCP timestamps, the installed operating 

system employs either a virtual clock or a hardware clock. RFC 1323 only requires that 

the time TSval values are approximately proportional to real time to allow for RTTM. 

For example, within the Linux Kernel, the function SOF_TIMESTAMPING_TX_ACK is 

called when a TCP timestamp is requested by the user or an application [14]. Upon 

verification of send buffer acknowledgement, the function reports the hardware time via a 

recvmsg() [14]. According to kernel.org [14], the recvmsg() is a control message struct 

and is passed to the TCP timestamp option field. These timestamps are essential in the 

clock skew calculations used for multi-homed detection.  

D. CLOCK SKEW  

All network devices have an internal clock, made up of hardware and software 

components that synchronize operations within the device [15]. This internal clock uses a 

crystal oscillator, which oscillates at a design-specified resolution and precision. The 
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resolution is the smallest interval in which time can be incremented and precision is how 

close the measurement is to the real measurement. In computer clocks, precision is 

determined automatically and is expressed as a power of two [16]. Because of 

microscopic deviations resulting from the manufacturing process, each oscillator in a 

CPU will tick with miniscule differences [6], [15], [17]. These differences in the tick of 

the clock can be collected remotely to calculate a clock skew by first using the 

timestamps of the target clock and then measuring the offset of a local clock [3], [15], 

[17]. 

The use of clock skews to identify network devices by passively monitoring 

timestamps was first introduced by Kohno et al. [6]. To calculate the estimated clock 

skew for a target, we use the notation of a time reported by a clock C  at a given time t  

as ( )CR t . For the remainder of this analysis, clock C will be referred to as the 

fingerprinter and clock D as the fingerprintee. The time offset between clock C  and 

clock D  is  

 , ( ) ( ) ( )C D C DO t R t R t  .  (1) 

Assuming that , ( )C DO t  is a differentiable function of t , then the clock skew for a given 

host is [7] 

 , ,( ) ( )C D C D

d
S t O t

dt
 . (2) 

Due to the fact that the fingerprintee clock ( )DR t  is not directly observable by the 

fingerprinter, we must use an indirect approach to determine the fingerprintee clock. The 

observed TCP timestamp packets from the fingerprintee are represented as offset points 

1 2( ( ), ( ))t t   where 
1( )t  is the observation time of the fingerprinter and 2 ( )t  is the 

timestamp value sent by the fingerprintee. Using 2 ( )t , the fingerprintee clock ( )DR t can 

now be determined as 

 2( ) ( ) ( )DR t t t    (3) 



 10 

where ( )t  is the network delay to transmit a packet from the fingerprintee to the 

fingerprinter [7]. Substituting (3) into (1), we get 

 
, 2( ) ( ) ( ) ( )C D C tt R tO t    .  (4) 

We can now calculate 
, ( )C DS t  as we have all of the values in (4). The estimated 

clock skew and the actual clock skew for a device are parallel lines that have the same 

angle   and shifted in the vertical direction by a constant  as shown in Figure 4 [7]. 

The red hashed line is the true clock skew of the target host and the solid green line is the 

upper bound solution of the estimated clock skew. The constant  is a direct result from 

taking calculating , ( )C D

d
O t

dt
 in (4) [7].  

 

Figure 4.  Estimated Clock Skew and Actual Clock Skew. Source: [7]. 

E. CONFIDENCE INTERVALS 

Due to the uncertainties in the estimated clock skews from the randomness of 

collected data, the true mean value of the clock skew   cannot be directly measured or 
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known [5]. The estimated clock skews are a continuous random variable x  and assumed 

to be Gaussian with a density function ( )Xf x  [5]. A confidence interval gives a range 

[ , ]L UC C  in which the true mean value of the clock skew falls within a specified 

probability of 1   [5]. The range of said interval is defined as 

 [ ] 1L UP C z C     , (5) 

where   is the acceptable error for 0 1   [18]. The bounds of a confidence interval 

for a given density function ( )Xf x , true mean  , and acceptable error   are shown in 

Figure 5.  

 

Figure 5.  The Bounds LC  and UC  of the Confidence Intervals for a Given 

Density Function with a True Mean   and Acceptable Error  . 

Source: [5]. 

The bounds UC  and LC  are determined by solving [18] 

 ( )
2

U

X

C

f x dx




    (6) 

and 
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 ( )
2

LC

Xf x dx




  .  (7) 

If a given clock skew falls within the bounds of the confidence interval from an IP 

address, it can then be argued that the given clock skew originated from the same device 

with the probability of 1  .  

 To summarize, in this chapter we introduced SDN and the various planes and 

APIs that make up the network. We then defined multi-homed hosts and examined how 

they can be used to bypass security separation protocols. We also discussed TCP 

timestamp options, their purpose, and how they are generated in a Linux Kernel. The 

chapter defined clock skew and described confidence intervals. The next chapter will 

look at the methodology to remotely detect a multi-homed device on a SDN. 
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III. MULTI-HOMED MULTI-OS DEVICE DETECTION USING 

CLOCK SKEW 

The overall objective of this research is to validate multi-homed detection 

methods when applied to a larger set of devices and operating systems as compared to the 

devices used in [5]. A multi-homed host has multiple NICs installed and can be 

connected to one or more networks with each NIC having a unique IP address. TCP 

timestamps will be passively collected at the fingerprinter. Once the data is collected, it 

will be used to determine a clock skew for each IP address on the network. The resultant 

clock skews will then be compared to one another to determine which IP addresses are 

multi-homed.  

The remainder of the chapter is organized as follows; first, we propose the general 

scheme for multi-homed device detection based on the estimated clock skew for a given 

IP address. We then discuss the clock skew estimation from data collected from both the 

fingerprinter and fingerprintee. Next, we describe how linear programming and linear 

regression methods can be used to estimate the clock skew. Finally, we examine the 

confidence interval for 95% confidence based on a Gaussian distribution. 

A. PROPOSED SCHEME 

A graphical representation of the proposed scheme is depicted in Figure 6 and is 

similar in approach to the one taken in Martin’s work [5]. First, we will passively collect 

TCP timestamp data. With this data, we can determine the estimated clock skew for a 

given IP address as it has been shown that the clock skew is consistent and unique 

enough to identify physical devices remotely [6]. Then the estimated clock skew will be 

used to fingerprint a host by calculating confidence intervals and determining which 

clock skews fall within the bounds of the intervals. The hosts whose IP addresses fall 

within the confidence interval will be examined further to determine if the host is multi-

homed. Individual details with regards to the steps of Figure 6 are described in further 

detail in the following sections.  
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Figure 6.  General Diagram of Proposed Scheme. Adapted from [5]. 

B. TRAFFIC COLLECTION 

A general SDN is given in Figure 7. In this general network, a controller is 

connected to one or more switches that form the base of the data plane. The connections 

between the controller and the switches make up the southbound API as discussed in 

Chapter II. The northbound API is not shown in the diagram as the application layer lies 

within the controller and application commands are pushed to the controller via software 

running on the controller. The hosts are connected to the switches as prescribed by the 

testing setup. The hosts are a combination of a diverse mixture of hardware 

configurations with various operating systems installed based on the type of testing 

required. The number of dual-homed and triple-homed connections from the hosts also 

depends on the testing parameters that will need to be established prior to testing. The 

fingerprinter will passively collect traffic as shown in Figure 7.  

Three general steps are required to ensure that TCP timestamp data is received at 

the fingerprinter. First, the operating system must have the TCP timestamp option 

enabled as some operating systems do not enable TCP timestamp option by default [7]. 

Second, the operating system must then have an available TCP port upon which the TCP 

connection will be established. If the TCP port is not listening for traffic, then the host 

device will not allow the data to be processed. Finally, the host operating system must 

have proper firewall rules established to ensure that TCP connections are not blocked.  
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Figure 7.  Generic Network Configuration. Adapted from [5]. 

For the purposes of this research, the term multi-homed will cover both dual and 

triple-homed devices. For triple-homed devices, we will also conduct vertical testing. 

Vertical testing is defined as maintaining the device hardware constant while changing 

the installed operating system to determine the clock skew of the hardware. By keeping 

the hardware constant and varying the operating system, we can examine any differences 

in estimated clock skews.  

C. CLOCK SKEW DETERMINATION 

Clock skew calculation is an essential step in multi-homed detection and is the 

third block of the proposed scheme in Figure 6. The network traffic analyzed must 

contain TCP timestamp information for clock skew estimation as discussed in Chapter II. 

After a trace   of TCP timestamp data has been collected from all target IP addresses on 

the network, clock skews can be calculated using the procedure outlined in [5], [6]. Let it  

be the time that the fingerprinter observed the 
t hi  packet in   and let i  be the TCP 

timestamp within the 
t hi packet. The observed time offset is calculated by 

 1i ix t t  ,  (8) 
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where ix  is the observed time difference between the 
t hi  packet and the observed time of 

the first packet in  . The timestamp offset iw  is given by 

 1i
i

T T
w

f


 ,  (9) 

where i  is the timestamp of the 
t hi  packet, 1  is the first timestamp in  , and f  is the 

operating frequency of the fingerprintee clock. After the observed time offset and 

timestamp offset are known, the observed offset iy  of the 
t hi  packet is calculated by  

 i i iy w x  .  (10) 

Let us now define O  as a set of offsets corresponding to the trace   and is 

represented by the following notation 

 {( , ) : {1,..., }}i iO x y i N   ,  (11) 

where N  is the number of packets in   and ( , )i ix y  is determined in (8) and (10), 

respectively. We assume that O  is differentiable in time, thus we can model the data as 

a line with the following form  

 i ix y   .  (12) 

The estimated clock skew is the slope of the line in (12). To determine the slope, we will 

use linear programming and linear regression methods as described in the following 

sections.  

1. Linear Programming 

One method to calculate the estimated clock skew for a given set of offsets O  is 

to use linear programming. The solution to linear programming minimizes the objective 

function [6] 

 
1

1
( )

N

i

i

ixJ
N

y 


   . (13) 

The solution in Equation (13) yields the slope of the clock skew   [6]. Linear 

programming solutions contain both an upper bound and a lower bound solution. Only 
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the upper-bound line solution is used since all of the timestamps are positive valued and 

progress forward in time [6]. The clock skew is calculated by evaluating Equation (13) 

for each IP address on the network. 

2. Linear Regression 

A second method to calculate clock skew estimations is to use linear regression 

where a best fit line is applied to a set of offsets O . The solution for linear regression is 

in the form of x y   . Similar to linear programming, the clock skew is the slope of 

the output line. Linear regression presents several advantages over linear programming: it 

is less computationally intensive and less complex to implement. The disadvantage of 

linear regression is that variable network delays may cause inaccuracies to clock skew 

values [6]. For linear regression method to be used, network delays must be smaller than 

the resolution of the host system clock to generate the timestamp clock. The clock skews 

from linear regression will be compared to the clock skews from the linear programming 

to provide a comparison between the two methods.  

D. DETECTION OF MULTI-HOMED HOSTS 

Multi-homed detection is the last step of the proposed scheme in Figure 6. After 

clock skew estimations are completed, we must compare the estimated clock skews to 

determine which IP addresses belong to potential multi-homed devices. As discussed in 

Section E, Chapter II, the clock skews are random variables, which are assumed to have a 

Gaussian distribution [5], [18]. 

Using a distribution of clock skews from multiple trials, we calculate the mean 

clock skew and a confidence interval for each IP address. The sample mean for the 
thi  

host is determined by 

 
1

1
i

n

i

i

m
n




    (14) 

where i  is the estimated clock skew for the 
thi  host and n  is the number of trials [18].  
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We then determine if the sample mean im  falls within 
t hj  host confidence interval  

 , ,L j i U jC m C  .  (15) 

If im  falls within the bounds of 
t hj  hosts confidence interval, then it can be 

assumed that the 
t hi  and 

t hj  originated from the same device with a confidence of 1  . 

Conversely, if im  does not fall within the bounds of (9), it can be assumed that 
t hi  and 

t hj  did not originate from the same device. The detection flow chart is summarized in 

Figure 8.  

Clock Skew

Data

Determine the sample 

mean of the clock skew 
Multi-Homed Host

Normal Host

No

Yes

 

Figure 8.  Detection Flow Chart. Source: [5]. 

To summarize, this chapter laid out a detailed description of the proposed scheme 

to support the objective of this thesis. The scheme requires timestamped responses within 

the TCP header options field. From the observed timestamps, clock skews between the 

fingerprinter and target host are calculated using linear programming and linear 

regression methods. The clock skew is a unique value for a given device for which a 

confidence interval can be determined. The confidence interval provides a means to 

detect a multi-homed device on a network. The next two chapters will discuss the 

specifics of the test bed and results from such testing. 
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IV. DUAL-HOMED TESTING AND RESULTS 

The proposed scheme for remote collection and calculation of clock skews and 

detecting multi-homed devices from TCP timestamps was introduced in Chapter III. This 

chapter is an extension of those ideas, beginning with a description of the network 

configuration to remotely identify dual-homed devices in an SDN environment. Specific 

methods used to passively capture traffic are also presented in this chapter. After the TCP 

traffic is captured, we calculated the clock skews for all host IP addresses on the network 

by using linear programming and linear regression methods. Once all of the clock skews 

have been determined, we applied confidence interval analysis to identify multi-homed 

hosts. This chapter will focus on dual-homed testing while Chapter V will discuss triple-

homed testing and results. 

A. TEST BED 

The test bed laid out in this chapter describes the actual SDN network and 

components used to validate the proposed scheme. These components are used for 

generating TCP timestamps, passively collecting said timestamps, and calculating clock 

skew estimations. After the clock skews are calculated for each IP address, a confidence 

interval is used to determine whether an IP address belongs to a given host.  

1. Network Setup for Dual-Homed Testing 

The components, configuration of installed operating systems, and the associated 

static IP address, which formed the test bed for dual-homed testing, are listed in Table 1 

and shown in Figure 9. The switch was a HP 3800 used to connect all of the hosts within 

the network with a subnet mask of 255.255.255.0. There were seven Raspberry Pi 3 

Model Bs on the network corresponding to hosts 1–7. All of the Raspberry Pis had 

Ubuntu MATE 16.04 LTS installed for the operating system. Hosts 1–6 were single-

homed devices and added to the network to show that these devices did not interfere with 
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the data collection of the dual-homed devices. Host 7 was the only dual-homed Raspberry 

Pi on the network.  

Table 1.   Summary of Hosts for Dual-Homed Testing 

Host Device/Hardware Operating System IP Address 1 IP Address 2 

1 Raspberry Pi 3 Model B Ubuntu MATE 16.04 10.10.8.1 - 

2 Raspberry Pi 3 Model B Ubuntu MATE 16.04 10.10.8.2 - 

3 Raspberry Pi 3 Model B Ubuntu MATE 16.04 10.10.8.3 - 

4 Raspberry Pi 3 Model B Ubuntu MATE 16.04 10.10.8.4 - 

5 Raspberry Pi 3 Model B Ubuntu MATE 16.04 10.10.8.5 - 

6 Raspberry Pi 3 Model B Ubuntu MATE 16.04 10.10.8.6 - 

7 Raspberry Pi 3 Model B Ubuntu MATE 16.04 10.10.8.10 10.10.8.11 

8 Dell Latitude E6430 Windows 7 10.10.8.12 10.10.8.13 

9 Dell Latitude E5420 Fedora 26 10.10.8.14 10.10.8.15 

10 Dell Latitude E6540 Linux Mint 18.1 10.10.8.16 10.10.8.17 

11 MacBook Pro OSX 10.11.3 El Capitan 10.10.8.18 10.10.8.19 

12 Lenovo IdeaPad U430 Windows 10 10.10.8.20 10.10.8.21 

13 MacBook Pro OSX 10.6.3 Snow Leopard 10.10.8.24 10.10.8.25 
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Figure 9.  SDN Test Bed for Dual-Homed Testing 
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Hosts 8–13 were laptops with operating systems configured in accordance with 

Table 1 and shown in Figure 9. The operating systems selected for testing represent a 

wide range of the common operating systems available at the time. With the exception of 

OS X 10.6.3 Snow Leopard, operating systems that are no longer supported by the 

vendor were not selected due to lack of support. The laptops were dual-homed devices 

with two static IP addresses. To establish dual connections, the first connection used the 

devices built-in Ethernet port. The second connection was established by using a USB 

Ethernet adapter. The fingerprinter was a Dell T1600 running Ubuntu 14.04 LTS and 

directly connected to the HP 3800. The devices had to be configured after being 

connected to the network. 

2. Host Preparation 

Each host had to be independently setup and verified to ensure it would 

communicate properly within the SDN network. The devices required several steps to 

properly handle TCP timestamp requests and subsequently respond to said request. To 

ensure that a device was configured properly to communicate within the network, all 

hosts required the following steps to be taken: 

1. Static assignment of IP address 

2. Firewall rules to allow inbound and outbound TCP traffic 

3. TCP port activation 

The test bed did not have a DHCP server installed on the network, thus IP 

addresses were statically assigned. This served to minimize confusion in the event a new 

IP address was automatically assigned to a NIC. To prevent the automatic blocking of 

TCP timestamp requests, the rules within the firewalls were adjusted such that TCP 

requests were not blocked. The ports on the target device must also be active and 

listening for traffic. If the ports are not activated, a given device will ignore the request 

and no data will be transmitted.  
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There may be cases where an operating system does not enable RFC 1323 TCP 

timestamp by default [7]. In those cases, TCP timestamp reporting must be manually 

enabled using instructions specified by the operating systems vendors.  

B. TRAFFIC GENERATION AND COLLECTION 

Hping3 was used to generate traffic between the fingerprinter and fingerprintee. It 

is a command-line TCP/IP packet assembler and analyzer written by Salvatore Sanfilippo 

and distributed to Kali Linux [19]. Hping3 establishes a TCP connection with the target 

host and enables the TCP timestamp option field. Traffic was established at the default 

rate of one request per second and allows for network traffic to be observed by 

Wireshark. 

The responses from the hosts were captured and filtered using Wireshark. Filters 

in Wireshark were set to show only TCP traffic that contained TSVal and TSecr values. If 

a host TSVal and TSecr were blank in the TCP options segment of the TCP return, then 

the host network configuration needed to be set in accordance with the steps stated in 

Section A.2 of this chapter.  

C. DUAL-HOMED CLOCK SKEW RESULTS 

Once the test traffic was collected via Wireshark, the data then had to be imported 

into MATLAB. The traffic generator, hping3, sends a TCP timestamp request every 

second to a specified IP address and port. During an experimental trial, at least 3600 

samples per IP address were collected, which is approximately 60 minutes of data 

collection. The 3600-sample minimum ensured that the collection had enough data points 

to provide for stable estimation and minimized any network jitter that could potentially 

affect clock skew estimations.  

To determine the clock skews using linear programming for each host, the 

MATLAB function linprog was applied to the clock offset values as given in (11). 

Likewise, to determine clock skews with linear regression, the MATLAB function fit was 

used with a linear polynomial as the fit type object. The output of both clock skew 
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calculation methods yielded a solution in the form yx   , where   is the clock 

skew and   is the y-intercept. The MATLAB code for clock skew determination is in 

Appendix A. The built-in MATLAB functions tic and toc were used to compute the 

computational times for linear programming and linear regression. For the 3600-sample 

trial, the linear regression method was 2-3 times faster than the linear programming 

method. 

The clock skew for each host was calculated for each 3600-sample trial. Only the 

upper-bound solution was considered, as all of the delays between the network hosts and 

the fingerprinter were positive and progressed forward in time as discussed in Section D, 

Chapter III. The upper-bound solution for a dual-homed Raspberry Pi 3 running Ubuntu 

Mate 16.04 LTS corresponding to IP address 10.10.8.11 is shown in Figure 8. The linear 

programming slope was 13.9614 ppm and the linear regression method yielded similar 

results with an estimated clock skew of 13.9712 ppm. The red dots, in Figure 8, are the 

individual time offsets between the host and fingerprinter, and the blue line is the clock 

skew solution for the slope as calculated by the fingerprinter using the linear 

programming method. 

  

Figure 10.  Upper-Bound Clock Skew Solution for Host 7 (10.10.8.11) over a 

Single Trial 
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Comparing the slopes of all hosts in a single trial shows the variation of clock 

skews present within the network. Each host has an independent slope that is unique to 

the host [6], [7]. A plot of all of the dual-homed hosts clock skews from a single trial is 

shown in Figure 11. 

 

Figure 11.  Clock Skews of All Hosts for a Single Trial 

By zooming into Figure 11, we can observe more detail associated with the dual-

homed hosts. The IP addresses that originate from the same host have the same slope but 

not necessarily the same y-intercept as shown in Figure 12. The difference in the location 

of the y-intercept is due to timestamp delay ( )t  as discussed in Section D, Chapter III. 

The solid lines in Figure 12 are single-homed and the hashed or dotted lines are those that 

are dual-homed. For ease of comparison, IP addresses originating from the same host are 
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colored with the same color. For example, the orange arrow on the graph points to two 

parallel lines that correspond to host 9 (IP addresses 10.10.8.14 and 10.10.8.15). The two 

lines share similar clock skews (slopes) at 7.1764 and 7.1761 ppm, respectively. They are 

only shifted in the y-direction due to differences in timestamp delays ( )t . 

 

Figure 12.  Zoomed-in View of All Clock Skews from Figure 11 over a Single 

Trial 

The mean clock skew from both linear programming and linear regression for 

each IP address is listed in Table 2. It can be seen in Table 2 that the estimated clock 

skews from both the linear programming and linear regression appear to agree with one 

another with the exception of host 11. A deeper examination of host 11 is conducted later 

in this chapter. 

  

Host 9 
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Table 2.   Mean Clock Skews for All Hosts Using Linear Programming and 

Linear Regression (in ppm) 

Host Device/Hardware Operating System IP Address 
Linear 

Programming 

Clock Skew 

Linear 

Regression 

Clock Skew 

1 Raspberry Pi 3 Model B Ubuntu MATE 16.04 10.10.8.1 13.0434 13.0408 

2 Raspberry Pi 3 Model B Ubuntu MATE 16.04 10.10.8.2 9.6767 9.5989 

3 Raspberry Pi 3 Model B Ubuntu MATE 16.04 10.10.8.3 15.0640 15.0653 

4 Raspberry Pi 3 Model B Ubuntu MATE 16.04 10.10.8.4 14.4238 14.4148 

5 Raspberry Pi 3 Model B Ubuntu MATE 16.04 10.10.8.5 10.8369 10.5269 

6 Raspberry Pi 3 Model B Ubuntu MATE 16.04 10.10.8.6 15.9289 15.9306 

7 Raspberry Pi 3 Model B Ubuntu MATE 16.04 
10.10.8.10 13.9486 13.9480 

10.10.8.11 13.9493 13.9493 

8 Dell Latitude E6430 Windows 7 
10.10.8.12 -4.6413 -4.6403 

10.10.8.13 -4.6411 -4.6384 

9 Dell Latitude E5420 Fedora 26 
10.10.8.14 7.1764 7.1760 

10.10.8.15 7.1761 7.1715 

10 Dell Latitude E6540 Linux Mint 18.1 
10.10.8.16 6.5648 6.5479 

10.10.8.17 6.5657 6.5481 

11 MacBook Pro 
OSX 10.11.3 El 

Capitan 

10.10.8.18 85.4578 90.8211 

10.10.8.19 85.4482 96.1752 

12 Lenovo IdeaPad U430 Windows 10 
10.10.8.20 18.2444 18.2516 

10.10.8.21 18.2450 18.3122 

13 MacBook Pro 
OSX 10.6.3 Snow 

Leopard 

10.10.8.24 -1227.6546 -1230.4099 

10.10.8.25 -1227.6477 -1230.3975 
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The calculated clock skews are random variables and as such approach a Gaussian 

distribution when a large number of trials are conducted [5]. In this experiment, we 

conducted 174 trials for dual-homed devices. A histogram of host 3 clock skews is shown 

in Figure 13. It can be seen in Figure 13 that the clock skews reasonably resemble the 

Gaussian shape. Host 3 histogram is representative of all of the hosts tested with the 

exception of host 11.  

  

Figure 13.  Histogram of the Estimated Clock Skews for Host 3 (10.10.8.3) 

after 174 Trials 

The histogram of the clock skews of host 11 did not have a Gaussian shape, 

unlike the other hosts tested on the network. The two IP addresses assigned to host 11 

were 10.10.8.18 and 10.10.8.19, and both yielded similar bi-modal histograms. The 

histogram from 10.10.8.19 is shown in Figure 14. This device was a MacBook Pro 

running OS X 10.11.3 El Capitan, which was released in 2015. Due to the instability of 

calculated clock skews, we were unable to fingerprint OS X 10.11.3 El Capitan. The 

instability of OS X is consistent with the findings from [7] where they observed clock 

skew changes on unknown occasions. 
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Figure 14.  Histogram of the Estimated Clock Skews for Host 11 (10.10.8.19) 

Running OS X 10.11.3 Displaying Non-Gaussian Shape after 

174 Trials 

Comparatively, host 13 was a different MacBook Pro running OS X 10.6.3 Snow 

Leopard released in 2009. The histogram for the MacBook Pro running Snow Leopard is 

shown in Figure 15. Here, host 13 returned consistent clock skews whose histogram 

displayed a Gaussian shape similar to the non-Mac hosts. It did not have a bi-modal 

distribution as the El Capitan device presented in Figure 14. Based on the results, 

sometime between the release of Snow Leopard in 2009 and El Capitan in 2015, Apple 

altered the way timestamps are reported. Unfortunately, OS X is a proprietary operating 

system, and it was not possible to examine the kernel to determine how TCP timestamps 

are generated. 
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Figure 15.  Histogram of Estimated Clock Skews for Host 13 (10.10.8.24) 

Running OS X 10.6.3 Displaying a Gaussian Shape after 174 

Trials 

After the clock skews of all IP addresses have been calculated, a confidence 

interval is determined for each IP address. We will use this interval to detect which IP 

addresses are dual-homed. 

D. DETECTION OF DUAL-HOMED HOSTS 

In Section E, Chapter III, we discussed the detection of multi-homed hosts using 

the estimated clock skews and a confidence interval of 1  . For detection purposes,   

was selected to be 0.05 or 5%. The 95% confidence interval represents two standard 

deviations if the clock skews were a Gaussian distribution and is consistent with the 

confidence intervals used in [5]. After 174 trials were conducted and clock skews were 

calculated for each trial, a mean clock skew and confidence interval were calculated for 

each IP address. The upper and lower bounds of the confidence interval were determined 

using the paramci function in MATLAB. The code for this computation is included in 
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Appendix B. If the mean clock skew falls within the range of the bands, the IP addresses 

can be identified as coming from that host with a 95% percent confidence. 

The results for the confidence interval testing are listed in Table 3. From the table, 

it can be shown that the single-homed devices had estimated clock skews that did not 

correspond to another device, indicating that they were not multi-homed. Also from the 

table, six of the seven dual-homed hosts had two clock skews that fell within the range of 

the 95% confidence interval of their two IP addresses, which indicate that they were 

multi-homed. The large width of the confidence interval for host 11 is a direct result of 

the instability of clock skews shown in Figure 14. For confidence interval detection, we 

assumed that the resultant clock skews were Gaussian in nature. Host 11 histogram was 

bi-modal and did not resemble a bell curve, thus we were unable to apply our proposed 

scheme for multi-homed detection.  

Table 3.   Linear Programming: Upper and Lower Bounds of the 95% 

Confidence Interval for the Clock Skews of All Hosts 

Host IP Address 
UpperC  

Mean Clock 

Skew  LowerC  

1 10.10.8.1 13.0581 13.0439 13.0297 

2 10.10.8.2 9.7448 9.6775 9.6103 

3 10.10.8.3 15.0749 15.0641 15.0532 

4 10.10.8.4 14.4429 14.4241 14.4052 

5 10.10.8.5 11.0082 10.8393 10.6704 

6 10.10.8.6 15.9405 15.9291 15.9177 

7 
10.10.8.10 13.9569 13.9489 13.9409 

10.10.8.11 13.9575 13.9496 13.9418 

8 
10.10.8.12 -4.6216 -4.6416 -4.6615 

10.10.8.13 -4.622 -4.6413 -4.6607 

9 
10.10.8.14 7.1852 7.1768 7.1685 

10.10.8.15 7.1849 7.1765 7.1681 

10 
10.10.8.16 6.5822 6.5643 6.5464 

10.10.8.17 6.5831 6.5651 6.5472 

11 
10.10.8.18 148.7956 83.5445 18.2935 

10.10.8.19 148.786 83.5335 18.2809 

12 
10.10.8.20 18.2564 18.2447 18.2331 

10.10.8.21 18.2571 18.2456 18.234 

13 
10.10.8.24 -1235.0783 -1239.7471 -1244.4159 

10.10.8.25 -1235.077 -1239.7429 -1244.4089 
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For the clock skews that were determined using the linear regression method, the 

results for the upper and lower bounds for the 95% confidence interval are shown in 

Table 5. Similar to the linear programming results, the single-homed devices all had 

estimated clock skews that did not correspond to another device. From Table 5, we can 

also see that six of the seven dual-homed devices were multi-homed. Host 11 confidence 

interval spans more than 130 ppm due to the bi-modal shape and is too wide for useful 

detection. Like the linear programming method, linear regression clock skew calculation 

did not allow us to fingerprint host 11.  

Table 4.   Linear Regression: Upper and Lower Bounds of the 95% Confidence 

Interval for the Clock Skews of All Hosts 

Host IP Address 
UpperC  

Mean Clock 

Skew  LowerC  

1 10.10.8.1 13.0596 13.0449 13.0302 

2 10.10.8.2 9.6086 9.5989 9.5893 

3 10.10.8.3 15.0766 15.0654 15.0542 

4 10.10.8.4 14.4274 14.4149 14.4025 

5 10.10.8.5 10.5404 10.5273 10.5142 

6 10.10.8.6 15.9427 15.9311 15.9194 

7 
10.10.8.10 13.9563 13.9483 13.9402 

10.10.8.11 13.9575 13.9495 13.9415 

8 
10.10.8.12 -4.6205 -4.6404 -4.6603 

10.10.8.13 -4.6178 -4.6387 -4.6597 

9 
10.10.8.14 7.1844 7.1763 7.1683 

10.10.8.15 7.1821 7.1719 7.1617 

10 
10.10.8.16 6.6142 6.5445 6.4748 

10.10.8.17 6.617 6.5449 6.4728 

11 
10.10.8.18 153.948 88.965 23.982 

10.10.8.19 159.1458 94.3519 29.5579 

12 
10.10.8.20 18.2666 18.2521 18.2375 

10.10.8.21 18.4375 18.3131 18.1888 

13 
10.10.8.24 -1238.0777 -1242.5625 -1247.0473 

10.10.8.25 -1238.0667 -1242.55 -1247.0333 
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Upon closer inspection of Table 3 and Table 4, it appears that the linear 

programming and the linear regression clock skew mean, upper, and lower confidence 

interval bounds are very similar. Due to these similarities, we will only discuss the 

graphical portion of the linear programming results in the following.  

We plotted the mean clock skews and the confidence intervals for all IP addresses 

and displayed that data in Figure 16. Notably, the upper and lower confidence interval 

bounds for host 11 (IP address 10.10.8.18 and 10.10.8.19) cover a range of approximately 

130 ppm. Due to the scale of Figure 16, the calculated confidence intervals appear as 

points rather than intervals.  

 

Figure 16.  95% Confidence Interval for the Estimated Clock Skews of All 

Hosts after 174 Trials 
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In Figure 17, we zoomed in on Figure 16 to focus on host 7 (IP addresses 

10.10.8.10 and 10.10.8.11). The blue horizontal line is the confidence interval. Although 

it appears to be a single line, there are in fact two. The inset displayed further zooms in 

on the clock skews of host 7 showing the upper and lower bounds of the 95% confidence 

interval. Host 7 confidence interval only overlaps with its dual-homed counterpart and 

does not overlap with the other IP addresses.  

Figure 17.  Confidence Interval of Host 7 (10.10.8.10) Compared to the Mean 

Values of All Clock Skews Calculated 

A zoomed-in view of the confidence interval of host 11 (IP addresses 10.10.8.18 

and 10.10.8.19) running OS X El Capitan is shown in Figure 18. The upper and lower 

bounds, which are represented by the blue horizontal lines, span approximately 140 ppm 
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and do not provide a reliable confidence interval for detection. The other hosts had 

intervals that generally spanned less than 0.3 ppm with the second largest span of 9 ppm 

for host 13. With the exception of host 11, the estimated clock skews calculated from 

linear programming and linear optimization provided reliable results that allowed us to 

successfully detect all multi-homed devices within the network. 

 

Figure 18.  Confidence Interval of Host 11 (10.10.8.18) Compared to the 

Mean Values of All Clock Skews Calculated 

This chapter focused on detecting dual-homed devices using calculated clock 

skews. A detailed description of the test bed, testing, and results was presented. The 

testing and analysis revealed that remote multi-homed detection is possible if the target 

clock skews result in a Gaussian shape. When the host histogram does not approach a 

Gaussian shape, the confidence interval detection method proposed in Chapter III is not 

sufficient. The next chapter focuses on expanding discussed detection methods to triple-

homed devices and vertical testing.   
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V. TRIPLE–HOMED TESTING AND RESULTS 

The dual-homed test bed was altered for triple-home and vertical testing. The 

chapter begins with a description of the triple-homed test bed. A triple-homed device 

consists of three separate Ethernet connections that are made using a combination of the 

built-in Ethernet port and two additional USB Ethernet NICs. Vertical testing is 

completed by maintaining constant hardware configuration on a device and varying the 

operating system.  

The triple-homed testing was divided into three phases. In each phase, a different 

set of operating systems is tested while keeping the hardware configuration the same. 

Triple-homed vertical testing is conducted to determine the effects the operating system 

has on the clock skew and subsequent confidence interval based detection.  

A. TRIPLE–HOMED TEST BED 

In this network, we removed all single and dual-homed devices and tested three 

triple-homed devices. The testing was done in three phases. In each phase, a different 

operating system was installed on the host device. The first phase consisted of Windows 

10, Windows 7, and Linux Mint 18.1. The second phase tested three versions of Ubuntu 

with various Linux kernels. The third phase consisted of freeBSD 12.0 installed on all 

devices. The setup for the network is summarized in Table 5, listing the host number, the 

various operating systems installed, and the IP addresses assigned to that device. To 

avoid confusion with the host numbers used in Chapter IV, the host numbers for testing 

in this chapter begin with 101.  

A general network diagram for the triple-homed testing is shown in Figure 19, 

which lists the devices used, host number, and the IP addresses that were assigned. The 

switch and fingerprinter used for TCP traffic generation and traffic collection are the 

same as the ones used in Chapter IV.  
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Table 5.   Summary of Hosts and Operating Systems for Triple-Homed and 

Vertical Testing 

Host Device/Hardware Phase 1 Phase 2 Phase 3 IP Addresses 

101 
Lenovo IdeaPad 

U430 
Windows 10 Ubuntu 16.04 freeBSD 12.0 

10.10.8.31 

10.10.8.32 

10.10.8.33 

102 
Dell Latitude 

E6430 
Windows 7 Ubuntu 14.04 freeBSD 12.0 

10.10.8.34 

10.10.8.35 

10.10.8.36 

103 
Dell Latitude 

E6540 
Linux Mint 18.1 Ubuntu 12.04 freeBSD 12.0 

10.10.8.37 

10.10.8.38 

10.10.8.39 

 

Host 101

Lenovo IdeaPad

10.10.8.31

10.10.8.32

10.10.8.33

Host 102

Dell Lattitude E6430

10.10.8.34

10.10.8.35

10.10.8.36

Switch

HP 3800

Controller

Host 103

Dell Lattitude E6540

10.10.8.37

10.10.8.38

10.10.8.39

Fingerprinter

10.10.8.99

 

Figure 19.  SDN Test Bed for Triple-Homed Testing 
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B. TRIPLE-HOMED CLOCK SKEW RESULTS 

TCP timestamp data was generated, collected, and processed in the same manner 

as the dual-homed case. Each trial had a minimum of 3600 samples per IP address, which 

was approximately 60 minutes of data collection in a given trial. Using linear 

programming and linear regression methods, clock skews were calculated. The results 

from each IP address were compared to one another to determine which device the 

estimated clock skews originated from. The same linear programming and linear 

regression methods used for dual-homed testing were also used for the triple-homed case. 

For consistency between the results, only the upper solution was considered. The results 

from phase one and phase two will be presented together as they had similar results.  

1. Phase One and Phase Two Results

The estimated clock skews for all IP addresses in the first two phases behaved 

similarly to the dual-homed cases. An example of the output from host 103 (IP address 

10.10.8.38), running Linux Mint 18.1, is shown in Figure 20. The blue line is the upper 

bound solution of linear programming, and the red dots are the individual observed 

offsets. 

Clock skews originating from the same device will have the same slope [5]. All 

hosts clock skews from phase one testing are shown in Figure 21. Due to the similarities 

and consistent results between phase one and two, we will only discuss the results of 

phase one testing. Each of the lines represents an IP address and similar colored lines 

originate from the same device. Graphically, it can be seen that the parallel clock skews 

for the triple-homed hosts have the same slope. Looking at host 101, the three blue lines 

all had a slope of about 16.0 ppm. Hosts 102 (green) and 103 (magenta) had negative 

slopes of 8.1  and 10.9 , respectively. Similar to the dual-homed case, the difference in 

the location of the y-intercept is due to the measured timestamp delay ( )t .  
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Figure 20.  Upper-Bound Clock Skew Solution for Triple-Homed Host 103 

(10.10.8.11) Running Linux Mint 18.1 for a Single Trial during 

Phase One Testing 

Figure 21.  Triple-Homed Clock Skews of All Hosts from Phase One Testing 
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The mean clock skew values for all hosts in phase one and phase two testing are 

listed in Table 6 and Table 7, respectively. The clock skews for hosts 102 and 103 were 

negative values in phase one testing and switch to positive values for phase two testing as 

shown in Tables 6 and 7. The hardware configuration remained the same for all triple-

homed hosts, thus the change in slope can be attributed to a change in the operating 

system. As expected, the IP addresses that share a host all had similar clock skews to one 

another. It can be noted that in these two phases, the estimated clock skews from both the 

linear programming and linear regression methods agree with one another.  

The MATLAB functions tic and toc were used to calculate the computational time 

to execute the linear programming and linear regression methods. Similar to the dual-

homed case, the linear regression computation time was 2-3 times faster than the linear 

programming method. This time difference is attributed to the differences in complexity 

of the two methods. Before we move onto triple-homed detection using confidence 

intervals, we will discuss the clock skew histograms of phase one and phase two results 

after 150 trials. 

Table 6.   Phase One: Mean Clock Skews for All Hosts Using Linear 

Programming and Linear Regression (in ppm) 

Phase One 

Host Device Operating System IP Address 

Linear 

Programming 

Clock Skews 

Linear 

Regression 

Clock Skews 

101 
Lenovo IdeaPad 

U430 
Windows 10 

10.10.8.31 16.0558 16.0680 

10.10.8.32 16.0573 16.0687 

10.10.8.33 16.0571 16.0684 

102 
Dell Latitude 

E6430 
Windows 7 

10.10.8.34 -8.1262 -8.1360 

10.10.8.35 -8.1252 -8.1582 

10.10.8.36 -8.1231 -8.1275 

103 
Dell Latitude 

E6540 
Linux Mint 18.1 

10.10.8.37 -10.9307 -10.9795 

10.10.8.38 -10.9333 -10.9730 

10.10.8.39 -10.9352 -10.9724 
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Table 7.   Phase Two: Mean Clock Skew for All Hosts Using Linear 

Programming and Linear Regression (in ppm) 

Phase Two 

Host Device Operating System IP Address 
Linear Programming 

Clock Skews 

Linear Regression 

Clock Skews 

101 
Lenovo IdeaPad 

U430 
Ubuntu 16.04 

10.10.8.31 17.1122 17.1429 

10.10.8.32 17.1114 17.1468 

10.10.8.33 17.1133 17.2005 

102 
Dell Latitude 

E6430 
Ubuntu 14.04 

10.10.8.34 13.7592 13.6835 

10.10.8.35 13.7600 13.6574 

10.10.8.36 13.7587 13.6665 

103 
Dell Latitude 

E6540 
Ubuntu 12.04 

10.10.8.37 10.3061 10.3024 

10.10.8.38 10.3077 10.3023 

10.10.8.39 10.3061 10.3043 

 

After 150 trials were conducted for each phase, a histogram for each IP address 

was reviewed. Histograms of all of the hosts had a Gaussian-like shape and are similar to 

those of the dual-homed hosts. A representative histogram generated is presented in 

Figure 22 from host 101 (IP address 10.10.8.33) running Windows 10. Before we move 

to confidence interval based detection, we will review the results of phase three testing. 

 

Figure 22.  Histogram of Estimated Clock Skews for Host 101 (10.10.8.33) 

Running Windows 10 Displaying a Gaussian Shape after 150 

Trials 
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2. Phase Three Results

FreeBSD 12.0 was installed on all three triple-homed devices for phase three 

testing. TCP timestamp data was collected in the same manner as in the previous two 

phases. The estimated clock skews varied on the order of 
610 ppm, unlike the triple-

homed clock skews from phases one and two, which presented stable and consistent 

clock skews. The upper-bound solution for host 103 (IP address 10.10.8.38) with 

timestamp offsets varied between 
64 10   and 

61.6 10  seconds and is shown in Figure 

23. All IP addresses produced similar upper-bound clock skew solutions as the one in

Figure 24. 

To generate TCP traffic, hping3 is called once per second. Each time it is called, it 

creates a TCP connection with the host, sends one packet to retrieve a TCP timestamp, 

and immediately closes the connection. It appears that freeBSD 12.0 is randomly 

assigning a timestamp value each time a TCP connection is made to the host causing 

large variations in the offset. Randomized TCP timestamps explains the extreme 

variations of timestamp offsets observed in Figure 23. 

Figure 23.  Upper-Bound Solution for Host 102 (10.10.8.38) Running 

freeBSD 12.0 over a Single Trial 
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The instability of the clock skews for freeBSD 12.0 is apparent when we plot all 

of the estimated clock skews from a single trial as shown in Figure 24. Similar to the 

color scheme used in Figure 21, each color represents a different host. Looking at host 

103 (magenta lines), they clearly are not parallel as the clock skews cross one another 

between 3 and 4 seconds. Host 101 only has two lines plotted as the third line had a y-

intercept below
43 10  . Unlike the clock skews from phase one and phase two, the clock 

skews originating from the same host are not parallel. Due to the instability of the clock 

skews, the current method of confidence interval detection is not sufficient to fingerprint 

devices running freeBSD 12.0.  

 

Figure 24.  Non-parallel Clock Skews from a Single Trial during 

Phase Three Testing 

The results are summarized in Table 8. It can be seen that the clock skews from 

the same host are not similar. For example, looking at host 101, the mean clock skews 

from linear programming ranges from a high of 1234354.91 ppm to a low of 

2167570.96  ppm. For the same host, the linear regression mean clock skews range 

between 75923751.99  ppm and 32972297.96  ppm. Hosts 102 and 103 also had a wide 
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variation in the mean clock skews from both linear programming and linear regression. 

Now that we have calculated mean clock skew data from all of the phases, we can apply 

them to our detection scheme to determine which IP addresses are triple-homed.  

Table 8.   Phase Three: Mean Clock Skews for All Hosts Using Linear 

Programming and Linear Regression (in ppm) 

Phase Three 

Host Device Operating System IP Address 
Linear 

Programming Clock 

Skews 

Linear Regression 

Clock Skews 

101 
Lenovo IdeaPad 

U430 
FreeBSD 12.0 

10.10.8.31 1234354.91 75923751.99 

10.10.8.32 -867187.70 -32972297.96 

10.10.8.33 -2167570.96 7362498.01 

102 
Dell Latitude 

E6430 
FreeBSD 12.0 

10.10.8.34 -598920.03 1667652.00 

10.10.8.35 -1985387.07 7238501.11 

10.10.8.36 -519820.73 26827071.88 

103 
Dell Latitude 

E6540 
FreeBSD 12.0 

10.10.8.37 -816815.26 -53436558.43 

10.10.8.38 -1878372.71 -22952129.85 

10.10.8.39 -927646.91 7604539.66 

C. DETECTION OF TRIPLE-HOMED HOSTS 

In the previous chapter, we looked at detecting dual-homed devices by 

determining the upper and lower bounds of the confidence interval from multiple trials. 

We apply the same method to detect triple-homed hosts. The confidence intervals were 

calculated for both the linear programming and linear regression methods, and like the 

dual-homed confidence interval results, both methodologies produced similar results for 

phases one and two. Due to the similarities in interval values, only the linear 

programming results will be shown here. The upper and lower confidence interval 

bounds from both methods are summarized in Tables 9–11. 

Looking at Tables 9 and 10, the mean clock skews from phase one and phase two 

testing are stable and consistent within a host. For example, in phase two testing, host 103 

mean clock skew was 10.3061, 10.3077, and 10.3061 ppm across different interfaces. 

These clock skews are within 0.002 ppm with one another. The other hosts within phase 
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one and phase two shared consistent results within the same host. The upper and lower 

confidence bounds were also consistent within a host from phase one and phase two. 

Looking at Tables 9 and 10, we can see that the upper and lower confidence intervals are 

all within 0.4% of their associated mean clock skew. As discussed in the previous 

section, the phase three results (shown in Table 11) were not as consistent as the phase 

one and phase two results. 

Table 9.   Phase One: Upper and Lower Bounds of the 95% Confidence 

Interval for the Clock Skews of All Hosts 

Phase One 

Host Device 
Operating 

System 
IP Address UpperC  

Mean Clock 

Skew 
 LowerC  

101 
Lenovo 

IdeaPad U430 

Windows 

10 

10.10.8.31 16.0631 16.0558 16.0485 

10.10.8.32 16.0653 16.0573 16.0493 

10.10.8.33 16.0648 16.0571 16.0493 

102 
Dell Latitude 

E6430 

Windows 

7 

10.10.8.34 -8.1139 -8.1262 -8.1384 

10.10.8.35 -8.1125 -8.1252 -8.1379 

10.10.8.36 -8.1103 -8.1231 -8.1360 

103 
Dell Latitude 

E6540 

Linux 

Mint 18.1 

10.10.8.37 -10.9110 -10.9307 -10.9505 

10.10.8.38 -10.9141 -10.9333 -10.9525 

10.10.8.39 -10.9159 -10.9352 -10.9546 

Table 10.   Phase Two: Upper and Lower Bounds of the 95% Confidence 

Interval for the Clock Skews of All Hosts 

Phase Two 

Host Device 
Operating 

System 
IP Address  

UpperC  
Mean Clock 

Skew 
 LowerC  

101 
Lenovo 

IdeaPad U430 

Ubuntu 

16.04 

10.10.8.31 17.1208 17.1122 17.1036 

10.10.8.32 17.1202 17.1114 17.1027 

10.10.8.33 17.1219 17.1133 17.1048 

102 
Dell Latitude 

E6430 

Ubuntu 

14.04 

10.10.8.34 13.7732 13.7592 13.7452 

10.10.8.35 13.7737 13.7600 13.7462 

10.10.8.36 13.7724 13.7587 13.7450 

103 
Dell Latitude 

E6540 

Ubuntu 

12.04 

10.10.8.37 10.3250 10.3061 10.2873 

10.10.8.38 10.3268 10.3077 10.2887 

10.10.8.39 10.3252 10.3061 10.2870 
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Table 11.   Phase Three: Upper and Lower Bounds of the 95% Confidence 

Interval for the Clock Skews of All Hosts 

Phase Three 

Host Device 
Operating 

System 
IP Address UpperC Mean Clock 

Skew LowerC

101 
Lenovo 

IdeaPad U430 

FreeBSD 

12.0 

10.10.8.31 4537083.91 1234354.91 -2068374.10 

10.10.8.32 250934.89 -867187.70 -1985310.30 

10.10.8.33 971101.31 -2167570.96 -5306243.23 

102 
Dell Latitude 

E6430 

FreeBSD 

12.0 

10.10.8.34 -256229.61 -598920.03 -941610.45 

10.10.8.35 -638958.50 -1985387.07 -3331815.63 

10.10.8.36 2918937.35 -519820.73 3958578.82 

103 
Dell Latitude 

E6540 

FreeBSD 

12.0 

10.10.8.37 754059.84 -816815.26 -2387690.36 

10.10.8.38 -57932.72 -1878372.71 -3698812.70 

10.10.8.39 -383871.51 -927646.91 -1471422.30 

The phase three mean clock skew did not produce consistent results. Due to the 

inconsistent clock skews, the upper and lower bounds of the confidence intervals varied 

widely within a host. As shown in Table 11 for host 102, the upper bounds ranged from 

2918937.35  ppm to 638958.50  ppm and the lower bounds ranged from 941610.45  

ppm to 3958578.82  ppm. With these extreme ranges, it is not possible to fingerprint a 

device, which will be further shown in the confidence interval plots.  

A plot of the 95% confidence interval is shown in Figure 25 for host 101 (IP 

address 10.10.8.31) during phase one testing. Here, we can see that the confidence 

intervals for the triple-homed case suggest that the IP addresses 10.10.8.31, 10.10.8.32, 

and 10.10.8.33 originated from host 101. It can also be seen that 10.10.8.34, 10.10.8.35, 

and 10.10.8.36 originated from host 102. And finally, 10.10.8.37, 10.10.8.38, and 

10.10.8.39 originated from host 103. This is consistent with the network configuration in 

Figure 19. 

The blue horizontal line is the confidence interval. Although it appears to be a 

single line, there are in fact two. The inset box displayed further zooms in on the clock 

skews of host 101 showing the upper and lower bounds of the 95% confidence interval. 

Host 101 confidence interval only overlaps with its triple-homed counterpart and does not 

overlap with the other IP addresses. The scheme for multi-homed detection works for 
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phase one and phase two testing; however, the same scheme does not work for the 

freeBSD devices in phase three. 

 

 

Figure 25.  Confidence Interval of Host 101 (10.10.8.31) Compared to the 

Mean Values of All Clock Skews Calculated 

When looking at the same 95% confidence interval for phase three, the upper and 

lower bounds of the confidence intervals cover a wide clock skew range that is not useful 

for discriminating instances of multi-homed connections. The mean estimated clock 

skews and 95% confidence intervals for all hosts in phase three testing were plotted in 

Figure 26. In the figure, the blue boxes and red stars are the mean clock skews. The 

whiskers are the upper and lower bands of the 95% confidence intervals centered about 

the mean clock skew. The IP addresses in Figure 26 correspond to the hosts listed in 

Table 11.  
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From Figure 26, we see that IP address 10.10.8.34 (host 102) has the smallest 

95% confidence interval of 685381 ppm. Compare this to the average interval size from 

phase one and phase two testing of 0.027 ppm. The largest confidence interval, in Figure 

26, originates from host 101 (IP address 10.10.8.31) with a value of 
66.605 10  ppm. As 

shown, all hosts running freeBSD 12.0 experienced inconsistent clock skews, which 

resulted in a wide range of confidence interval values. 

Figure 26.  Mean Clock Skews and Confidence Interval Bounds of All Hosts 

during Phase Three Testing 

D. VERTICAL TESTING RESULTS 

The results of the vertical tests for host 101 (Lenovo IdeaPad) are listed in Table 

12. When a device is rebooted to a new operating system, the clock skews change for that

Host 101 Host 102 Host 103 
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host. In Table 12, host 101 has three separate clock skews for each of the operating 

systems that are installed. This supports the idea that the estimated clock skew depends 

on both the imprecisions of the CPU (in manufacturing) and the operating system that is 

running on the device. 

Table 12.   Mean Linear Programming and Linear Regression Clock Skews for 

Host 101 – Lenovo IdeaPad U430 Running Various Operating 

Systems 

Operating System IP address 

Linear 

Programming Clock 

Skews 

Linear Regression 

Clock Skews 

Windows 10 

10.10.8.31 16.0558 16.0680 

10.10.8.32 16.0573 16.0687 

10.10.8.33 16.0571 16.0684 

Ubuntu 16.04 

10.10.8.34 17.1122 17.1429 

10.10.8.35 17.1114 17.1468 

10.10.8.36 17.1133 17.2005 

freeBSD 12.0 

10.10.8.37 1234354.91 75923751.99 

10.10.8.38 -867187.70 -32972297.96 

10.10.8.39 -2167570.96 7362498.01 

 Both host 102 (Dell Latitude E6430) and host 103 (Dell Latitude E6540) yielded 

similar results in that they showed an analogous trend when the device was rebooted to a 

different operating system; the estimated clock skews differed from operating system to 

operating system while on the same device. The results for host 102 and 103 are in 

Tables 13 and Table 14, respectively. From Table 13, we can see the stability of clock 

skews when the host 102 was running Windows 7 or Ubuntu 14.04. The three clock 

skews within the same operating system are consistent with one another. When host 102 

was running freeBSD 12.0, the clock skews become erratic. The results from host 102 

show that the device displayed different clock skews when a new operating system was 

installed on the device. 

The results in Table 14 show a similar trend that Table 12 and 13 held. The clock 

skews for host 103 also changed when a new operating system was booted onto the 

device. All three hosts shared similar results when booted to a new operating system. The 
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results of vertical testing is consistent with the findings from [7] where they observed 

differences in the clock skews of computers when booted from a different operating 

system.  

Table 13.   Mean Linear Programming and Linear Regression Clock Skews for 

Host 102 – Dell Latitude E6430 Running Various Operating 

Systems 

Operating System IP address 

Linear 

Programming Clock 

Skews 

Linear Regression 

Clock Skews 

Windows 7 

10.10.8.31 -8.1262 -8.1360 

10.10.8.32 -8.1252 -8.1582 

10.10.8.33 -8.1231 -8.1275 

Ubuntu 14.04 

10.10.8.34 13.7592 13.6835 

10.10.8.35 13.7600 13.6574 

10.10.8.36 13.7587 13.6665 

freeBSD 12.0 

10.10.8.37 -598920.03 1667652.00 

10.10.8.38 -1985387.07 7238501.11 

10.10.8.39 -519820.73 26827071.88 

Table 14.   Mean Linear Programming and Linear Regression Clock Skews for 

Host 103 – Dell Latitude E6540 Running Various Operating 

Systems 

Operating System IP address 

Linear 

Programming Clock 

Skews 

Linear Regression 

Clock Skews 

Linux Mint 18.1 

10.10.8.31 -10.9307 -10.9795 

10.10.8.32 -10.9333 -10.9730 

10.10.8.33 -10.9352 -10.9724 

Ubuntu 12.04 

10.10.8.34 10.3061 10.3024 

10.10.8.35 10.3077 10.3023 

10.10.8.36 10.3061 10.3043 

freeBSD 12.0 

10.10.8.37 -816815.26 -53436558.43 

10.10.8.38 -1878372.71 -22952129.85 

10.10.8.39 -927646.91 7604539.66 

In summary, this chapter focused on multi-homed detection of triple-homed 

devices. A detailed description of triple-homed test bed, testing, and results was 

discussed. The testing and analysis of this chapter further confirmed that the remote 
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multi-homed detection method outlined in Chapter III is feasible if the target clock skews 

are consistent and have a Gaussian shape. When the timestamp offset values of the host 

do not produce a Gaussian shape, the confidence interval detection method proposed is 

not sufficient to identify which IP addresses originated from a given host. This chapter 

also showed that the clock skew from a device depends on the hardware and the 

operating system that is installed. The next chapter summarizes the findings and proposes 

possible future work. 



51 

VI. CONCLUSION

Multi-homed devices pose a threat to networks protected by firewalls and 

physical separation schemes. The primary motivation for this research was to identify 

hosts that are capable of bypassing firewalls and physical separation security measures by 

employing multi-homed connections. The idea of using clock skews to detect multi-

homed devices was first presented in [5] as the clock skews were shown to be unique and 

remained relatively constant over long periods of time. Continuing this work, we 

validated the detection scheme proposed in [5] and applied it to a larger set of devices 

and operating systems.  

To expand the applicability of the detection scheme, we built an SDN and 

connected 13 multi-homed devices running 11 different operating systems. We 

performed dual-homed testing by passively collecting TCP timestamps and calculating an 

estimated clock skew using linear programming and linear regression methods. The clock 

skews were then used to calculate a mean clock skew and a confidence interval. The 

confidence interval detection was used to determine which IP addresses were multi-

homed.  

For completeness, we tested the detection scheme on triple-homed devices by 

altering the dual-homed test bed to support triple-homed testing and vertical testing. 

Vertical testing was conducted to determine the effects the operating system has on the 

clock skew and subsequent confidence interval based detection. The operating systems 

that were selected represented a wide range of what was available at the time of testing.   

A. SIGNIFICANT RESULTS 

We were able to remotely collect traffic and determine the clock skews for 

devices using both linear programming and linear regression methods. To determine 

computation times for clock skew calculations, we used the built-in tic and toc functions 

in MATLAB. The linear regression method was 2–3 times faster at calculating clock 

skews when compared to linear programming. As long as network delays are minimized, 
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the use of linear regression may prove beneficial, as it was less computationally intensive 

and less complex to implement than linear programming. When clock skews were stable 

and consistent, the results from linear programming and linear regression were consistent 

with one another. 

We were able to identify dual and triple-homed hosts when running various 

operating systems as long as the calculated clock skews from a host were consistent. 

Through vertical testing, we determined that clock skew consistency depends on the 

operating system installed and not on the hardware. Our results showed that a device can 

exhibit consistent clock skews under one operating system and erratic and inconsistent 

clock skews under a different operating system while keeping the hardware configuration 

the same.  

All multi-homed devices were detected with clock skews, with the exception 

being OS X 10.11 El Capitan and freeBSD 12.0. In an older release of OS X 10.6, the 

clock skew was consistent and able to be fingerprinted. This led to the conclusion that 

Apple changed the way timestamp data is handled following the release of Snow Leopard 

in 2009. All attempts to fingerprint freeBSD 12.0 were unsuccessful as the resultant clock 

skews were inconsistent. Ultimately we were able to show that multi-homed detection 

proposed in [5] depends on the operating system installed and the consistency within the 

generation of clock skews.  

B. RECOMMENDATIONS AND FUTURE WORK 

We tested the proposed detection scheme on an SDN that was on the same subnet 

being controlled from one controller. The methodology used in this research requires the 

user to use a fingerprinter on each subnet installed on a network. The ultimate goal of this 

work would be to move the fingerprinting process to the controller and remove the need 

of using a stand-alone fingerprinting device. Moving the fingerprinting and detection to 

the controller has many benefits, which includes the capability to fingerprint all devices 

on a network regardless of the subnet.  
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The proposed scheme to identify if a host is connected to two physically separated 

networks simultaneously, as depicted in Figure 2, requires the use of two fingerprinters. 

The concern of using different fingerprinters is that the estimated clock skews depend on 

the target device and the fingerprinter. Since the two fingerprinters have independent 

clocks, a method must be determined in order for the results to be directly compared. 

Future effort would be to create a detection scheme that can be used between two 

fingerprinters to detect hosts connected to different networks. 

We were unsuccessful in detecting multi-homed connections when the device was 

running newer versions of OS X and freeBSD 12.0. These two operating systems are 

BSD-based, however, another BSD-based operating system (Snow Leopard) did not 

exhibit these issues. Further investigation into the way in which TCP timestamps are 

generated within these operating systems will prove useful when designing a more robust 

detection scheme. 
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APPENDIX A. MATLAB CODE FOR CALCULATING 

CLOCK SKEW 

The MATLAB code to calculate clock skews (see Section D, Chapter III) is 

contained below. The script imports an excel file that contains the observed times and 

raw timestamp data. From this data, the observed time offset ix  and the timestamp offset 

iw  are used to determine the observed offset iy . The MATLAB function linprog is used 

to calculate linear programming clock skews, and the MATLAB function fit is used to 

calculate linear regression clock skews. The output data is a matrix of estimated clock 

skews for each IP address for one trial. The clock skews are then collected and saved in 

an EXCEL data table for confidence interval calculations. 

%% Thesis Clock Skew Calculation Test Runs 

close all 

clear all 

clc 

format compact 

format long 

% Change default axes fonts to Times New Roman 

set(0,'DefaultAxesFontName', 'Times New Roman') 

set(0,'DefaultAxesFontSize', 12) 

% Change default text fonts to Times New Roman 

set(0,'DefaultTextFontname', 'Times New Roman') 

set(0,'DefaultTextFontSize', 12) 

% Determine the time to execute the calculations 

tic 

%% Load the data from a single test run 

run_name = 'z_Run_072.xlsm'; 

Data = xlsread(run_name); 

% List of the host's last IP address, 10.10.8.* 

hosts = [1,2,3,4,5,6,10,11,12,13,14,15,16,17,18,19,20,21,24,25]; 

L = length(hosts); 

%% Calculate the Clock Skew and plot the data 

for n = 1:L 

  % Prints the current calcuation for the host and debugging 

  fprintf('****************** %d ******************\n',hosts(n)); 

  % Checks the entire row for the the hosts IP address 

  [row,~] = find(Data == hosts(n));  

  % Extract data for a given IP address 

  Hosts = Data(row,:);

  % Create a matrix for that data 

  for k = 1:length(Hosts) 

x(k) = Hosts(k,1) - Hosts(1,1);  

% Calculate the time offset relative to the initial point listed 

v(k) = Hosts(k,3) - Hosts(1,3);  
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% Calculate the timestamp offset relative to the initial point listed 

  end 

  b = ones(length(x),1); 

  a = [x' b]; 

  f = [sum(x)/length(x) 1]; 

  I = linprog(f, -a, -v);

  % Solve the linear programing solution for frequency (Hz) 

  for k = 1:length(Hosts) 

w(k) = v(k)/round(I(1));  

% Adjust v based on frequency the difference between observed and 

% actual time 

y(k) = w(k) - x(k);

  end 

  z = linprog(f, -a, -y);

  % Linear programming solution for which reports the slope of O, 

  % which is the clock skew 

  Z(n) = z(1); 

  B(n) = z(2); 

  % plot of the reflines 

  figure 

  hold on 

  plot(x,y,'r.')

  %plotting the upper bound limit of O 

  h = refline(z(1),z(2)); 

  get(h, 'linewidth'); 

  set(h, 'linewidth', 2.5); 

  title(['Clock Skew for host 10.10.8.' num2str(hosts(n)) ' ']) 

  xlabel('Time offset (seconds)','FontName','Times New Roman') 

  ylabel('Timestamp offset (seconds)','FontName','Times New Roman') 

  f = fittype('poly1'); 

  [fit1, gof, fitinfo] = fit(x',10^6*y','poly1'); 

  fit1 

  % clear variables 

  clear Hosts row x v b a f I w y z h 

end 

% Converts Z into ppm 

Z = Z*1000000'; 

B = B'; 

% Output the clock skew values 

format long 

fprintf('Clock Skew \n') 

fprintf('%8.10f\n' ,[Z']') 

%% Compare Clock Skews between hosts 

figure 

axis([0 length(Data) 0 0.02]) 

axis([0 2000 0 0.02]) 

hold on 

%% Compare Clock Skews between hosts – The example shown is only for 1 IP 

address. The remaining code was omitted for brevity. 

C1 = refline(Z(1),B(1)); 
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get(C1, 'color'); 

set(C1, 'color', 'm'); 

% Plot all of the clock skews from a given run on single plot 

legend('10.10.8.1 ','10.10.8.2 ','10.10.8.3 ','10.10.8.4 ','10.10.8.5 ',... 

 '10.10.8.6 ','10.10.8.10','10.10.8.11','10.10.8.12','10.10.8.13',... 

 '10.10.8.14','10.10.8.15','10.10.8.16','10.10.8.17','10.10.8.18',... 

 '10.10.8.19','10.10.8.20','10.10.8.21','10.10.8.24','10.10.8.25',... 

 'Location','best');  

title('Comparison of clock skews for all hosts')  

xlabel('Time offset (seconds)','FontName','Times New Roman')  

ylabel('Timestamp offset (seconds)','FontName','Times New Roman') 

fprintf(run_name); 

fprintf('\n'); 

% End timing function 

toc 
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APPENDIX B. MATLAB CODE FOR CALCULATING 

CONFIDENCE INTERVALS 

The MATLAB code to calculate the mean, upper bound, and lower bound of a 

confidence interval for a given IP address (see Section E, Chapter III) is listed below. The 

script imports an excel file that contains all of the estimated clock skews from each trial. 

The MATLAB function paramci is used to calculate the confidence intervals. The output 

data is a matrix of the mean, upper bound, and lower bound for each IP address. The 

histograms and confidence interval graphs, for each IP address, are also produced within 

the code. 

 

%% Confidence Interval Calculation 

close all 

clear all 

clc 

format compact 

format long 

% Change default axes fonts. 

set(0,'DefaultAxesFontName', 'Times New Roman') 

set(0,'DefaultAxesFontSize', 12) 

% Change default text fonts. 

set(0,'DefaultTextFontname', 'Times New Roman') 

set(0,'DefaultTextFontSize', 12) 

%% Load the data from trials 

data_name = 'ConfInt_linprog_data.xlsx'; 

data_name = 'ConfInt_regress_data.xlsx'; 

TrialData = xlsread(data_name)'; 

% List of the host's last IP address, 10.10.8.* 

hosts = [1,2,3,4,5,6,10,11,12,13,14,15,16,17,18,19,20,21,24,25];  

%% Caclulate the CI – only the first 2 IP address calculations are shown 

here for brevity 

pd1 = fitdist(TrialData(:,1),'Normal'); 

ci1 = paramci(pd1); 

pd2 = fitdist(TrialData(:,2),'Normal'); 

ci2 = paramci(pd2); 

 

%% Plots 

%  

mu = [pd1.mu; pd2.mu; pd3.mu; pd4.mu; pd5.mu; pd6.mu; pd10.mu; pd11.mu;... 

  pd12.mu; pd13.mu; pd14.mu; pd15.mu; pd16.mu; pd17.mu; pd18.mu;... 

  pd19.mu; pd20.mu; pd21.mu; pd24.mu; pd25.mu]; 

e = [pd1.mu-ci1(1,1); pd2.mu-ci2(1,1); pd3.mu-ci3(1,1); pd4.mu-ci4(1,1);... 

  pd5.mu-ci5(1,1); pd6.mu-ci6(1,1); pd10.mu-ci10(1,1); pd11.mu-

ci11(1,1);... 

  pd12.mu-ci12(1,1); pd13.mu-ci13(1,1); pd14.mu-ci14(1,1);... 

  pd15.mu-ci15(1,1); pd16.mu-ci16(1,1); pd17.mu-ci17(1,1);... 

  pd18.mu-ci18(1,1); pd19.mu-ci19(1,1); pd20.mu-ci20(1,1);... 
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  pd21.mu-ci21(1,1); pd24.mu-ci24(1,1); pd25.mu-ci25(1,1)]; 

  

  

hold on 

bar(mu) 

errorbar(mu,e,'r*') 

set(gca,'XTickLabel',{'' '10.10.8.1' '10.10.8.2' '10.10.8.3' '10.10.8.4'... 

  '10.10.8.5' '10.10.8.6' '10.10.8.10' '10.10.8.11' '10.10.8.12' ... 

  '10.10.8.13' '10.10.8.14' '10.10.8.15' '10.10.8.16' '10.10.8.17' ... 

  '10.10.8.18' '10.10.8.19' '10.10.8.20' '10.10.8.21' '10.10.8.24' ... 

  '10.10.8.25'}); 

set(gca,'XTick',1:20,'XTickLabel','')  

lab=[{'10.10.8.1'}; {'10.10.8.2'}; {'10.10.8.3'}; {'10.10.8.4'}; 

{'10.10.8.5'};... 

  {'10.10.8.6'}; {'10.10.8.10'}; {'10.10.8.11'}; {'10.10.8.12'};... 

  {'10.10.8.13'}; {'10.10.8.14'}; {'10.10.8.15'}; {'10.10.8.16'};... 

  {'10.10.8.17'}; {'10.10.8.18'}; {'10.10.8.19'}; {'10.10.8.20'};... 

  {'10.10.8.21'}; {'10.10.8.24'}; {'10.10.8.25'}]; 

  

hx = get(gca,'XLabel'); 

set(hx,'Units','data');  

pos = get(hx,'Position');  

y = pos(2);  

X=1:20; 

for i = 1:size(lab,1)  

 t(i) = text(X(i),y,lab(i,:));  

end  

  

set(t,'Rotation',45,'HorizontalAlignment','right')  

xlabel({'','','','','Host IP'}); 

ylabel('Clock Skew (ppm)') 

  

%% Table of all hosts and their confidence interval  

D=[mu+e,mu,mu-e]' 

  

%% Display means of clock skews 

fprintf('Clock Skew Mean\n') 

fprintf('%8.10f\n' ,[mu]') 

  

%% Dual Homed Detection 

for i=1:length(mu) 

  for N=1:length(mu) 

    if mu(i)-e(i)<=mu(N) && mu(i)+e(i)>=mu(N) 

      x(i,N)=1; 

      x(N,N)=0; 

    end 

  end 

end 

%display(x) 

  

%% Comparing Clock Skews 

for i=1:length(mu) 

  for N=1:length(mu) 

    Y(i,N)=abs(mu(i)-mu(N)); 

  end 

end 

  

%% Graphic Depiction 
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x=1:20; 

  

% plot 10.8.8.* – The code for  

figure 

plot(x,mu,'r*') 

set(gca,'XTickLabel',{'' '10.10.8.1' '10.10.8.2' '10.10.8.3' '10.10.8.4'... 

  '10.10.8.5' '10.10.8.6' '10.10.8.10' '10.10.8.11' '10.10.8.12' ... 

  '10.10.8.13' '10.10.8.14' '10.10.8.15' '10.10.8.16' '10.10.8.17' ... 

  '10.10.8.18' '10.10.8.19' '10.10.8.20' '10.10.8.21' '10.10.8.24' ... 

  '10.10.8.25'}); 

set(gca,'XTick',1:20,'XTickLabel','')  

lab=[{'10.10.8.1'}; {'10.10.8.2'}; {'10.10.8.3'}; {'10.10.8.4'}; 

{'10.10.8.5'};... 

  {'10.10.8.6'}; {'10.10.8.10'}; {'10.10.8.11'}; {'10.10.8.12'};... 

  {'10.10.8.13'}; {'10.10.8.14'}; {'10.10.8.15'}; {'10.10.8.16'};... 

  {'10.10.8.17'}; {'10.10.8.18'}; {'10.10.8.19'}; {'10.10.8.20'};... 

  {'10.10.8.21'}; {'10.10.8.24'}; {'10.10.8.25'}]; 

hx = get(gca,'XLabel'); 

set(hx,'Units','data');  

pos = get(hx,'Position');  

y = pos(2);  

X=1:20; 

for i = 1:size(lab,1)  

 t(i) = text(X(i),y,lab(i,:));  

end  

set(t,'Rotation',45,'HorizontalAlignment','right')  

xlabel({'','','','','Host IP'}); 

ylabel('Clock Skew (ppm)') 

title(['Confidence Interval for Host 10.10.8.1']) 

refline(0,ci1(1,1)) 

refline(0,ci1(2,1)) 

 

%% Histfit 

for i=1:20 

  d=TrialData(:,i); 

  figure 

  h=histfit(d,10); 

  xlabel('Clock Skew (ppm)') 

  ylabel('Trials') 

  %title(['Trial Histogram for host 10.10.8.' num2str(hosts(i)) ' ']) 

end 
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