
NAVAL

POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release. Distribution is unlimited.

INVESTIGATING THE DETECTION OF MULTI-

HOMED DEVICES INDEPENDENT OF OPERATING

SYSTEMS

by

Javan A. Rhinehart

September 2017

Co-Advisor: Murali Tummala

Co-Advisor: John C. McEachen

Second Reader: Bryan Martin

THIS PAGE INTENTIONALLY LEFT BLANK

 i

REPORT DOCUMENTATION PAGE Form Approved OMB
No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection
of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215
Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork
Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY
(Leave blank)

2. REPORT DATE
September 2017

3. REPORT TYPE AND DATES COVERED
Master’s thesis

4. TITLE AND SUBTITLE
INVESTIGATING THE DETECTION OF MULTI-HOMED DEVICES
INDEPENDENT OF OPERATING SYSTEMS

5. FUNDING NUMBERS

6. AUTHOR(S) Javan A. Rhinehart

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND
ADDRESS(ES)

N/A

10. SPONSORING /
MONITORING AGENCY
REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government. IRB number ____N/A____.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release. Distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

Networks protected by firewalls and physical separation schemes are threatened by multi-homed
devices. The purpose of this study is to detect multi-homed devices on a computer network. More
specifically, the goal is to evaluate passive detection of multi-homed devices running various operating
systems while communicating on a network. TCP timestamp data was used to estimate clock skews using
linear regression and linear optimization methods. Analysis revealed that detection depends on the
consistency of the estimated clock skew. Through vertical testing, it was also shown that clock skew
consistency depends on the installed operating system. The linear programming and linear regression
methods agree with one another when clock skews are consistent, indicating that linear regression is
sufficient to identify multi-homed hosts in networks with low network delay. Further analysis showed
inconsistencies of clock skew estimation on newer versions of OS X and freeBSD 12.0; the clock skews
from these operating systems prevented multi-homed fingerprinting using the proposed detection scheme.

14. SUBJECT TERMS
software-defined network, multi-homed host, network monitoring, fingerprinting, clock skew

15. NUMBER OF
PAGES

83

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UU

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release. Distribution is unlimited.

INVESTIGATING THE DETECTION OF MULTI-HOMED DEVICES

INDEPENDENT OF OPERATING SYSTEMS

Javan A. Rhinehart

Lieutenant Commander, United States Navy

B.S., University of Washington, 2005

Submitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL

September 2017

Approved by: Murali Tummala

Co-Advisor

 John C. McEachen

Co-Advisor

Bryan J. Martin

Second Reader

R. Clark Robertson

Chair, Department of Electrical and Computer Engineering

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

Networks protected by firewalls and physical separation schemes are threatened

by multi-homed devices. The purpose of this study is to detect multi-homed devices on a

computer network. More specifically, the goal is to evaluate passive detection of multi-

homed devices running various operating systems while communicating on a network.

TCP timestamp data was used to estimate clock skews using linear regression and linear

optimization methods. Analysis revealed that detection depends on the consistency of the

estimated clock skew. Through vertical testing, it was also shown that clock skew

consistency depends on the installed operating system. The linear programming and

linear regression methods agree with one another when clock skews are consistent,

indicating that linear regression is sufficient to identify multi-homed hosts in networks

with low network delay. Further analysis showed inconsistencies of clock skew

estimation on newer versions of OS X and freeBSD 12.0; the clock skews from these

operating systems prevented multi-homed fingerprinting using the proposed detection

scheme.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1

A. MOTIVATION ..1

B. OBJECTIVE ..2

C. RELATED WORK ..2

D. THESIS ORGANIZATION ..3

II. BACKGROUND ..5

A. SOFTWARE DEFINED NETWORKS ...5

B. MULTI-HOMED HOSTS ...6

C. TCP TIMESTAMPS ..7

D. CLOCK SKEW ..8

E. CONFIDENCE INTERVALS ..10

III. MULTI-HOMED MULTI-OS DEVICE DETECTION USING CLOCK

SKEW..13

A. PROPOSED SCHEME ...13

B. TRAFFIC COLLECTION ..14

C. CLOCK SKEW DETERMINATION ..15

1. Linear Programming ...16

2. Linear Regression ..17

D. DETECTION OF MULTI-HOMED HOSTS17

IV. DUAL-HOMED TESTING AND RESULTS ..19

A. TEST BED ..19

1. Network Setup for Dual-Homed Testing19

2. Host Preparation ..21

B. TRAFFIC GENERATION AND COLLECTION22

C. DUAL-HOMED CLOCK SKEW RESULTS22

D. DETECTION OF DUAL-HOMED HOSTS ...29

V. TRIPLE–HOMED TESTING AND RESULTS ...35

A. TRIPLE–HOMED TEST BED ...35

B. TRIPLE-HOMED CLOCK SKEW RESULTS37

1. Phase One and Phase Two Results ...37

2. Phase Three Results ...41

C. DETECTION OF TRIPLE-HOMED HOSTS43

 viii

D. VERTICAL TESTING RESULTS ..47

VI. CONCLUSION ..51

A. SIGNIFICANT RESULTS ..51

B. RECOMMENDATIONS AND FUTURE WORK52

APPENDIX A. MATLAB CODE FOR CALCULATING CLOCK SKEW55

APPENDIX B. MATLAB CODE FOR CALCULATING CONFIDENCE

INTERVALS ..59

LIST OF REFERENCES ..63

INITIAL DISTRIBUTION LIST ...65

ix

LIST OF FIGURES

Figure 1. Functional Planes in a Software-Defined Network. Adapted from

[10]. ..6

Figure 2. Physically Separated Networks Where a Multi-Homed Device

Bypasses Security Measures ..7

Figure 3. TCP Timestamp Option Field. Source: [13]. ...8

Figure 4. Estimated Clock Skew and Actual Clock Skew. Source: [7].10

Figure 5. The Bounds LC and UC of the Confidence Intervals for a Given

Density Function with a True Mean and Acceptable Error .

Source: [5]. ...11

Figure 6. General Diagram of Proposed Scheme. Adapted from [5].14

Figure 7. Generic Network Configuration. Adapted from [5].15

Figure 8. Detection Flow Chart. Source: [5]. ..18

Figure 9. SDN Test Bed for Dual-Homed Testing ..20

Figure 10. Upper-Bound Clock Skew Solution for Host 7 (10.10.8.11) over a

Single Trial...23

Figure 11. Clock Skews of All Hosts for a Single Trial ..24

Figure 12. Zoomed-in View of All Clock Skews from Figure 11 over a Single

Trial ..25

Figure 13. Histogram of the Estimated Clock Skews for Host 3 (10.10.8.3) after

174 Trials ...27

Figure 14. Histogram of the Estimated Clock Skews for Host 11 (10.10.8.19)

Running OS X 10.11.3 Displaying Non-Gaussian Shape after 174

Trials ..28

Figure 15. Histogram of Estimated Clock Skews for Host 13 (10.10.8.24)

Running OS X 10.6.3 Displaying a Gaussian Shape after 174 Trials29

Figure 16. 95% Confidence Interval for the Estimated Clock Skews of All

Hosts after 174 Trials ...32

x

Figure 17. Confidence Interval of Host 7 (10.10.8.10) Compared to the Mean

Values of All Clock Skews Calculated ..33

Figure 18. Confidence Interval of Host 11 (10.10.8.18) Compared to the Mean

Values of All Clock Skews Calculated ..34

Figure 19. SDN Test Bed for Triple-Homed Testing ..36

Figure 20. Upper-Bound Clock Skew Solution for Triple-Homed Host 103

(10.10.8.11) Running Linux Mint 18.1 for a Single Trial during

Phase One Testing..38

Figure 21. Triple-Homed Clock Skews of All Hosts from Phase One Testing38

Figure 22. Histogram of Estimated Clock Skews for Host 101 (10.10.8.33)

Running Windows 10 Displaying a Gaussian Shape after 150 Trials40

Figure 23. Upper-Bound Solution for Host 102 (10.10.8.38) Running freeBSD

12.0 over a Single Trial ..41

Figure 24. Non-parallel Clock Skews from a Single Trial during Phase Three

Testing..42

Figure 25. Confidence Interval of Host 101 (10.10.8.31) Compared to the Mean

Values of All Clock Skews Calculated ..46

Figure 26. Mean Clock Skews and Confidence Interval Bounds of All Hosts

during Phase Three Testing ..47

 xi

LIST OF TABLES

Table 1. Summary of Hosts for Dual-Homed Testing ...20

Table 2. Mean Clock Skews for All Hosts Using Linear Programming and

Linear Regression (in ppm) ...26

Table 3. Linear Programming: Upper and Lower Bounds of the 95%

Confidence Interval for the Clock Skews of All Hosts..............................30

Table 4. Linear Regression: Upper and Lower Bounds of the 95% Confidence

Interval for the Clock Skews of All Hosts ...31

Table 5. Summary of Hosts and Operating Systems for Triple-Homed and

Vertical Testing ..36

Table 6. Phase One: Mean Clock Skews for All Hosts Using Linear

Programming and Linear Regression (in ppm) ..39

Table 7. Phase Two: Mean Clock Skew for All Hosts Using Linear

Programming and Linear Regression (in ppm) ..40

Table 8. Phase Three: Mean Clock Skews for All Hosts Using Linear

Programming and Linear Regression (in ppm) ..43

Table 9. Phase One: Upper and Lower Bounds of the 95% Confidence

Interval for the Clock Skews of All Hosts ...44

Table 10. Phase Two: Upper and Lower Bounds of the 95% Confidence

Interval for the Clock Skews of All Hosts ...44

Table 11. Phase Three: Upper and Lower Bounds of the 95% Confidence

Interval for the Clock Skews of All Hosts ...45

Table 12. Mean Linear Programming and Linear Regression Clock Skews for

Host 101 – Lenovo IdeaPad U430 Running Various Operating

Systems ..48

Table 13. Mean Linear Programming and Linear Regression Clock Skews for

Host 102 – Dell Latitude E6430 Running Various Operating

Systems ..49

Table 14. Mean Linear Programming and Linear Regression Clock Skews for

Host 103 – Dell Latitude E6540 Running Various Operating

Systems ..49

 xii

 THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

LIST OF ACRONYMS AND ABBREVIATIONS

DOD Department of Defense

ICMP Internet control message protocol

IP Internet protocol

ISP Internet service provider

MAC media access control

NAT network address translation

NIC network interface card

NTP network time protocol

OS operating system

RTO retransmission timeout

RTT round trip time

RTTM round trip time measurement

SDN software-defined network

SSH secure shell

TCP transmission control protocol

TSecr timestamp echo response

TSval timestamp value

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

ACKNOWLEDGMENTS

Thank you to my professors, advisors, and mentors, whose guidance, wisdom, and

encouragement made it possible for me to complete this thesis. Most importantly, to my

wife and family: your love, support, and understanding gave me the endurance to cross

the finish line.

 xvi

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

As industry shifts from traditional network infrastructure toward software-defined

networks (SDN), network security continues to be a primary concern for network

managers at all levels. Likewise, as customer demand for services from networks rises, it

is increasingly difficult to manage policies, handle dynamic internet loads, and respond

quickly to faults and changes [1]. SDN is a new paradigm that changes the way networks

are designed, managed, and secured [2]; such networks have the potential to increase

network performance and security while reducing costs [3]. SDNs completely change the

way in which network managers think about their network and security within the

network.

A. MOTIVATION

Similar to the commercial sector, the United States military recognizes the

benefits of implementing SDN and is actively exploring the best methods to use SDN on

its networks. Any new technology involves many unknowns, so the military must explore

all possible security threats in SDNs prior to wide-scale adoption.

Many concerns surround network security, and the segregation of classified

networks is one area affecting U.S. military network operations. The Committee on the

National Security System Advisory Memorandum requires that all unclassified networks

be physically separated from classified networks by at least three meters [4]. This

distance ensures that there is no path for data from the classified network to interfere with

the unclassified network.

The physical barrier between a classified and unclassified network can be

bypassed by a multi-homed device having multiple network connections: originating at

the multi-homed device and terminating at the segregated networks. Multi-homing a

device can also be used to bypass a firewall in a similar way. Therefore, a method to

detect when a device is multi-homed needs to be developed. Preventing circumvention of

firewalls and physical network segregation is essential to network separation security.

 2

B. OBJECTIVE

A plethora of operating systems support multi-homed connections, which can be

installed on virtually any modern computer. A hostile user can connect a multi-homed

device to a network to bypass firewalls or physically isolated security schemes. The

bypassing of security protocols presents a real threat to any sensitive network, so Martin

[5] originally proposed a scheme to detect multi-homed devices on a network by

determining and comparing clock skews of all devices connected to the network.

Martin [5] determined the clock skews by passively collecting Transmission

Control Protocol (TCP) timestamp data, which has been shown to reliably reveal the

clock skew of a Network Interface Card (NIC) [5], [6]. The ability to calculate clock

skews in [5] was limited to Raspberry Pis with Raspbian as the installed operating

system. Because of the limitations of Raspberry Pis, it remains to be demonstrated that

the detection methods Martin employed can be expanded to other devices and operating

systems capable of connecting to a computer network and potentially an SDN.

The objective of this thesis is to validate the detection method used in [5] when

applied to a larger set of devices and operating systems. Specifically, to validate the

multi-homed detection methods, we will determine whether a fingerprinter can passively

collect TCP timestamp information and, in doing so, detect multi-homed devices with

various operating systems installed while communicating on a computer network. The

detection of multi-homed devices will assist in thwarting security threats to firewalls and

physical separation schemes, ultimately making commercial- and military-grade

networks more secure.

C. RELATED WORK

In their research, Khono et al. [6] introduced the idea of using the estimated clock

skew of a host to identify a physical device on a network. They fingerprinted a given host

CPU by exploiting microscopic deviations created during the manufacturing process. By

using these deviations, they extrapolated a unique clock skew for each host. To determine

the estimated clock skew of a CPU, they used the TCP timestamp option introduced in

 3

RFC 1323 by determining timestamp offsets and then taking the first derivative of the

offsets. They then compared the resulting clock skews with one another to show that they

were unique and that the same device consistently produced the same clock skew [6].

Polcak [7] further explored clock skew identification and successfully

demonstrating that various operating systems could be fingerprinted by TCP and Internet

Control Message Protocol (ICMP) data. They also showed that the majority of clock

skews fall between -50 to 100 parts per million (ppm), reducing the ability to fingerprint

networks with a large number of hosts due to the increased number of false positives [7].

Finally, they showed that the estimated clock skew did not change with network time

protocol (NTP) updates [7].

Martin [5] demonstrated that multi-homed devices could be detected using a

fingerprinter by comparing the estimated clock skews of Raspberry Pis. With a large set

of clock skews from multiple trials, Martin showed that the clock skews approached a

Gaussian distribution, from which a confidence interval could be determined. To detect

the presence of a multi-homed device, Martin compared a given clock skew to the

confidence interval; if the clock skew fell between the upper and lower bounds of the

calculated confidence interval, then it represents a 95% certainty that the two hosts

originated from the same device.

D. THESIS ORGANIZATION

The remainder of this thesis is organized as follows. Chapter II discusses how

SDNs are organized and the security threat posed by multi-homed devices. The

discussion then shifts to how operating systems generate TCP timestamp information, as

well as how the clock skew is generated from the TCP timestamp. The proposed scheme

to detect multi-homed devices is then discussed in Chapter III, and the results from the

SDN dual-homed test bed are reported in Chapter IV. Triple-homed test bed results are

presented in Chapter V. Significant findings from the results, along with potential future

work are discussed in Chapter VI. Appendix A and B contain the MATLAB code used to

calculate the estimated clock skews and the confidence intervals, respectively.

 4

THIS PAGE INTENTIONALLY LEFT BLANK

 5

II. BACKGROUND

The Department of Defense (DOD) goes to great lengths to segregate networks

based on the classification of information on the network, as required by [4]. The DOD

has determined that a physical separation scheme is the only acceptable method to ensure

that data cannot cross between classified and unclassified networks. The ability of a user

to circumvent such security measures by using a multi-homed device and connecting it to

multiple networks concerns for network administrators and represents a prime

opportunity by the hacking community [8]. The related goal of this thesis is to determine

methods to mitigate multi-homed threats that may potentially be implemented on an

SDN. This chapter focuses on relevant background information that will set up the

detection scheme outlined in Chapter III. This chapter first discusses SDNs, then explains

how a multi-homed host can bypass security measures. The discussion continues with

TCP timestamps and how they are generated. The chapter concludes with an explanation

of how a clock skew is determined and a discussion of confidence intervals.

A. SOFTWARE DEFINED NETWORKS

Although legacy internet protocol (IP) networks have been adopted worldwide,

they are complex, difficult to manage, and expensive to establish [9]. SDNs have the

potential to alleviate many of the difficulties and high costs of traditional IP networks by

separating the control logic (the control plane) from the physical traffic (the data plane)

[1], [7], [10], [11]. With the implementation of SDNs, proprietary routing protocols

previously implemented in hardware can now be implemented in software. This

separation allows for complex switches and routers used in legacy networks to be

downgraded to cost-effective simple switches and routers that receive routing flow rules

from a centralized controlling device [7].

SDNs also introduce an application plane, which consists of services provided by

the network operator and perform tasks as specified [10]. A simple representation of the

SDN planes is shown in Figure 1. Here, the application plane installs programs and

 6

services onto the control plane via the northbound application programming interface

(API). The control plane monitors traffic on the data plane and pushes flow rules from the

control plane to the data plane via the southbound API [10]. Together, the northbound

and southbound API control all services and flow rules within the SDN. Although not

shown in Figure 1, this simplified network can be expanded by connecting multiple data

planes to a single control plane or multiple control planes to multiple data planes, such

that each data plane will have a dedicated southbound API to its assigned controller to

handle flow-rule traffic.

Application Plane

Control Plane

Data Plane

Northbound API

Southbound API

Figure 1. Functional Planes in a Software-Defined Network.

Adapted from [10].

B. MULTI-HOMED HOSTS

A multi-homed host is a device that establishes multiple connections to a single

network or to multiple networks by using multiple NICs. Each NIC will have a unique

MAC address and IP address assigned. Generally, multi-connection hosts create

redundancy in a network by connecting the host to separate network nodes [8]. For

example, to increase network reliability, a multi-homed host will have multiple

connections to the Internet service providers (ISP). In this example, if one of the nodes

becomes unavailable, the host will recognize the break in the connection and stop

transmitting via the affected NIC. The host will then direct all future traffic to the NIC

with the viable connection. This redundancy produced by multi-homed connections

 7

ensures that single point node failures do not prevent communication within the network

[5], [12].

A multi-homed connection has the potential to become a security threat to a

protected network if it is connected to two networks, one of which is separated by a

firewall or physical air gap. Protecting a network is vitally important to many commercial

industries and the DOD. Denying or limiting access to a network is normally

accomplished by either employing a firewall or physically separating a network from

other networks. In this instance, the multi-homed connection serves as a bridge between

the two networks, and a hostile actor can take advantage of this situation by bypassing the

security measures to gain access to the denied network. In Figure 2, we show how the

physically separated network can be bridged by a multi-homed device and remove the

physical separation of the two networks.

Network A Network B

P
h

y
si

c
al

 S
e
p

ar
a
ti

o
n

Hosts
Multi-Homed

Host
Hosts

Figure 2. Physically Separated Networks Where a Multi-Homed Device

Bypasses Security Measures

C. TCP TIMESTAMPS

The TCP timestamp option was introduced in RFC 1323 to meet the high

throughput demand of high-speed fiber optics. RFC 1323 was implemented to protect

against wrapped sequence (PAWS) numbers and to improve round trip time

measurements (RTTM) [13]. RTTM is the time interval between sending a TCP package

and receiving an acknowledgement from the destination; it is essential in the calculation

 8

of the retransmission timeout (RTO) used in TCP [13]. Because of the high speeds and

large bandwidth capabilities of fiber optic connections, TCP needed protection against

receiving duplicate sequence numbers from the same device. PAWS used TCP timestamp

data to identify instances in which duplicate sequence numbers are detected [13]. The

timestamp option is 10 bytes long, as shown in Figure 3.

Kind=8 10 TS Value (TSval) TS Echo Reply (TSecr)

1 1 4 4

Figure 3. TCP Timestamp Option Field. Source: [13].

The timestamp value (TSval) field is 4 bytes long and is obtained from an internal

clock, referred to as the “timestamp clock.” According to RFC 1323, the time values

must be proportional to real time. The timestamp echo reply (TSecr) is valid only if the

ACK bit is set in the TCP header. When the bit is set, it will echo the timestamp value of

the remote TCP connection [13].

According to RFC 1323, to generate TCP timestamps, the installed operating

system employs either a virtual clock or a hardware clock. RFC 1323 only requires that

the time TSval values are approximately proportional to real time to allow for RTTM.

For example, within the Linux Kernel, the function SOF_TIMESTAMPING_TX_ACK is

called when a TCP timestamp is requested by the user or an application [14]. Upon

verification of send buffer acknowledgement, the function reports the hardware time via a

recvmsg() [14]. According to kernel.org [14], the recvmsg() is a control message struct

and is passed to the TCP timestamp option field. These timestamps are essential in the

clock skew calculations used for multi-homed detection.

D. CLOCK SKEW

All network devices have an internal clock, made up of hardware and software

components that synchronize operations within the device [15]. This internal clock uses a

crystal oscillator, which oscillates at a design-specified resolution and precision. The

 9

resolution is the smallest interval in which time can be incremented and precision is how

close the measurement is to the real measurement. In computer clocks, precision is

determined automatically and is expressed as a power of two [16]. Because of

microscopic deviations resulting from the manufacturing process, each oscillator in a

CPU will tick with miniscule differences [6], [15], [17]. These differences in the tick of

the clock can be collected remotely to calculate a clock skew by first using the

timestamps of the target clock and then measuring the offset of a local clock [3], [15],

[17].

The use of clock skews to identify network devices by passively monitoring

timestamps was first introduced by Kohno et al. [6]. To calculate the estimated clock

skew for a target, we use the notation of a time reported by a clock C at a given time t

as ()CR t . For the remainder of this analysis, clock C will be referred to as the

fingerprinter and clock D as the fingerprintee. The time offset between clock C and

clock D is

 , () () ()C D C DO t R t R t . (1)

Assuming that , ()C DO t is a differentiable function of t , then the clock skew for a given

host is [7]

 , ,() ()C D C D

d
S t O t

dt
 . (2)

Due to the fact that the fingerprintee clock ()DR t is not directly observable by the

fingerprinter, we must use an indirect approach to determine the fingerprintee clock. The

observed TCP timestamp packets from the fingerprintee are represented as offset points

1 2((), ())t t where
1()t is the observation time of the fingerprinter and 2 ()t is the

timestamp value sent by the fingerprintee. Using 2 ()t , the fingerprintee clock ()DR t can

now be determined as

 2() () ()DR t t t (3)

 10

where ()t is the network delay to transmit a packet from the fingerprintee to the

fingerprinter [7]. Substituting (3) into (1), we get

, 2() () () ()C D C tt R tO t . (4)

We can now calculate
, ()C DS t as we have all of the values in (4). The estimated

clock skew and the actual clock skew for a device are parallel lines that have the same

angle and shifted in the vertical direction by a constant as shown in Figure 4 [7].

The red hashed line is the true clock skew of the target host and the solid green line is the

upper bound solution of the estimated clock skew. The constant is a direct result from

taking calculating , ()C D

d
O t

dt
 in (4) [7].

Figure 4. Estimated Clock Skew and Actual Clock Skew. Source: [7].

E. CONFIDENCE INTERVALS

Due to the uncertainties in the estimated clock skews from the randomness of

collected data, the true mean value of the clock skew cannot be directly measured or

 11

known [5]. The estimated clock skews are a continuous random variable x and assumed

to be Gaussian with a density function ()Xf x [5]. A confidence interval gives a range

[,]L UC C in which the true mean value of the clock skew falls within a specified

probability of 1 [5]. The range of said interval is defined as

 [] 1L UP C z C , (5)

where is the acceptable error for 0 1 [18]. The bounds of a confidence interval

for a given density function ()Xf x , true mean , and acceptable error are shown in

Figure 5.

Figure 5. The Bounds LC and UC of the Confidence Intervals for a Given

Density Function with a True Mean and Acceptable Error .

Source: [5].

The bounds UC and LC are determined by solving [18]

 ()
2

U

X

C

f x dx

 (6)

and

 12

 ()
2

LC

Xf x dx

 . (7)

If a given clock skew falls within the bounds of the confidence interval from an IP

address, it can then be argued that the given clock skew originated from the same device

with the probability of 1 .

 To summarize, in this chapter we introduced SDN and the various planes and

APIs that make up the network. We then defined multi-homed hosts and examined how

they can be used to bypass security separation protocols. We also discussed TCP

timestamp options, their purpose, and how they are generated in a Linux Kernel. The

chapter defined clock skew and described confidence intervals. The next chapter will

look at the methodology to remotely detect a multi-homed device on a SDN.

 13

III. MULTI-HOMED MULTI-OS DEVICE DETECTION USING

CLOCK SKEW

The overall objective of this research is to validate multi-homed detection

methods when applied to a larger set of devices and operating systems as compared to the

devices used in [5]. A multi-homed host has multiple NICs installed and can be

connected to one or more networks with each NIC having a unique IP address. TCP

timestamps will be passively collected at the fingerprinter. Once the data is collected, it

will be used to determine a clock skew for each IP address on the network. The resultant

clock skews will then be compared to one another to determine which IP addresses are

multi-homed.

The remainder of the chapter is organized as follows; first, we propose the general

scheme for multi-homed device detection based on the estimated clock skew for a given

IP address. We then discuss the clock skew estimation from data collected from both the

fingerprinter and fingerprintee. Next, we describe how linear programming and linear

regression methods can be used to estimate the clock skew. Finally, we examine the

confidence interval for 95% confidence based on a Gaussian distribution.

A. PROPOSED SCHEME

A graphical representation of the proposed scheme is depicted in Figure 6 and is

similar in approach to the one taken in Martin’s work [5]. First, we will passively collect

TCP timestamp data. With this data, we can determine the estimated clock skew for a

given IP address as it has been shown that the clock skew is consistent and unique

enough to identify physical devices remotely [6]. Then the estimated clock skew will be

used to fingerprint a host by calculating confidence intervals and determining which

clock skews fall within the bounds of the intervals. The hosts whose IP addresses fall

within the confidence interval will be examined further to determine if the host is multi-

homed. Individual details with regards to the steps of Figure 6 are described in further

detail in the following sections.

 14

Collect network

traffic

Extract timestamps

from TCP packets

Calculate clock

skew

Compare clock

skew results

Identify possible

multi-homed

connections

Figure 6. General Diagram of Proposed Scheme. Adapted from [5].

B. TRAFFIC COLLECTION

A general SDN is given in Figure 7. In this general network, a controller is

connected to one or more switches that form the base of the data plane. The connections

between the controller and the switches make up the southbound API as discussed in

Chapter II. The northbound API is not shown in the diagram as the application layer lies

within the controller and application commands are pushed to the controller via software

running on the controller. The hosts are connected to the switches as prescribed by the

testing setup. The hosts are a combination of a diverse mixture of hardware

configurations with various operating systems installed based on the type of testing

required. The number of dual-homed and triple-homed connections from the hosts also

depends on the testing parameters that will need to be established prior to testing. The

fingerprinter will passively collect traffic as shown in Figure 7.

Three general steps are required to ensure that TCP timestamp data is received at

the fingerprinter. First, the operating system must have the TCP timestamp option

enabled as some operating systems do not enable TCP timestamp option by default [7].

Second, the operating system must then have an available TCP port upon which the TCP

connection will be established. If the TCP port is not listening for traffic, then the host

device will not allow the data to be processed. Finally, the host operating system must

have proper firewall rules established to ensure that TCP connections are not blocked.

 15

. . .

Controller

Switch Switch

Host 1

OS A

Host 2

OS B

Multi-Homed

Host 3

OS C

Host 4

OS D

Host n

OS n

Fingerprinter

Figure 7. Generic Network Configuration. Adapted from [5].

For the purposes of this research, the term multi-homed will cover both dual and

triple-homed devices. For triple-homed devices, we will also conduct vertical testing.

Vertical testing is defined as maintaining the device hardware constant while changing

the installed operating system to determine the clock skew of the hardware. By keeping

the hardware constant and varying the operating system, we can examine any differences

in estimated clock skews.

C. CLOCK SKEW DETERMINATION

Clock skew calculation is an essential step in multi-homed detection and is the

third block of the proposed scheme in Figure 6. The network traffic analyzed must

contain TCP timestamp information for clock skew estimation as discussed in Chapter II.

After a trace of TCP timestamp data has been collected from all target IP addresses on

the network, clock skews can be calculated using the procedure outlined in [5], [6]. Let it

be the time that the fingerprinter observed the
t hi packet in and let i be the TCP

timestamp within the
t hi packet. The observed time offset is calculated by

 1i ix t t , (8)

 16

where ix is the observed time difference between the
t hi packet and the observed time of

the first packet in . The timestamp offset iw is given by

 1i
i

T T
w

f

 , (9)

where i is the timestamp of the
t hi packet, 1 is the first timestamp in , and f is the

operating frequency of the fingerprintee clock. After the observed time offset and

timestamp offset are known, the observed offset iy of the
t hi packet is calculated by

 i i iy w x . (10)

Let us now define O as a set of offsets corresponding to the trace and is

represented by the following notation

 {(,) : {1,..., }}i iO x y i N , (11)

where N is the number of packets in and (,)i ix y is determined in (8) and (10),

respectively. We assume that O is differentiable in time, thus we can model the data as

a line with the following form

 i ix y . (12)

The estimated clock skew is the slope of the line in (12). To determine the slope, we will

use linear programming and linear regression methods as described in the following

sections.

1. Linear Programming

One method to calculate the estimated clock skew for a given set of offsets O is

to use linear programming. The solution to linear programming minimizes the objective

function [6]

1

1
()

N

i

i

ixJ
N

y

 . (13)

The solution in Equation (13) yields the slope of the clock skew [6]. Linear

programming solutions contain both an upper bound and a lower bound solution. Only

 17

the upper-bound line solution is used since all of the timestamps are positive valued and

progress forward in time [6]. The clock skew is calculated by evaluating Equation (13)

for each IP address on the network.

2. Linear Regression

A second method to calculate clock skew estimations is to use linear regression

where a best fit line is applied to a set of offsets O . The solution for linear regression is

in the form of x y . Similar to linear programming, the clock skew is the slope of

the output line. Linear regression presents several advantages over linear programming: it

is less computationally intensive and less complex to implement. The disadvantage of

linear regression is that variable network delays may cause inaccuracies to clock skew

values [6]. For linear regression method to be used, network delays must be smaller than

the resolution of the host system clock to generate the timestamp clock. The clock skews

from linear regression will be compared to the clock skews from the linear programming

to provide a comparison between the two methods.

D. DETECTION OF MULTI-HOMED HOSTS

Multi-homed detection is the last step of the proposed scheme in Figure 6. After

clock skew estimations are completed, we must compare the estimated clock skews to

determine which IP addresses belong to potential multi-homed devices. As discussed in

Section E, Chapter II, the clock skews are random variables, which are assumed to have a

Gaussian distribution [5], [18].

Using a distribution of clock skews from multiple trials, we calculate the mean

clock skew and a confidence interval for each IP address. The sample mean for the
thi

host is determined by

1

1
i

n

i

i

m
n

 (14)

where i is the estimated clock skew for the
thi host and n is the number of trials [18].

 18

We then determine if the sample mean im falls within
t hj host confidence interval

 , ,L j i U jC m C . (15)

If im falls within the bounds of
t hj hosts confidence interval, then it can be

assumed that the
t hi and

t hj originated from the same device with a confidence of 1 .

Conversely, if im does not fall within the bounds of (9), it can be assumed that
t hi and

t hj did not originate from the same device. The detection flow chart is summarized in

Figure 8.

Clock Skew

Data

Determine the sample

mean of the clock skew
Multi-Homed Host

Normal Host

No

Yes

Figure 8. Detection Flow Chart. Source: [5].

To summarize, this chapter laid out a detailed description of the proposed scheme

to support the objective of this thesis. The scheme requires timestamped responses within

the TCP header options field. From the observed timestamps, clock skews between the

fingerprinter and target host are calculated using linear programming and linear

regression methods. The clock skew is a unique value for a given device for which a

confidence interval can be determined. The confidence interval provides a means to

detect a multi-homed device on a network. The next two chapters will discuss the

specifics of the test bed and results from such testing.

 19

IV. DUAL-HOMED TESTING AND RESULTS

The proposed scheme for remote collection and calculation of clock skews and

detecting multi-homed devices from TCP timestamps was introduced in Chapter III. This

chapter is an extension of those ideas, beginning with a description of the network

configuration to remotely identify dual-homed devices in an SDN environment. Specific

methods used to passively capture traffic are also presented in this chapter. After the TCP

traffic is captured, we calculated the clock skews for all host IP addresses on the network

by using linear programming and linear regression methods. Once all of the clock skews

have been determined, we applied confidence interval analysis to identify multi-homed

hosts. This chapter will focus on dual-homed testing while Chapter V will discuss triple-

homed testing and results.

A. TEST BED

The test bed laid out in this chapter describes the actual SDN network and

components used to validate the proposed scheme. These components are used for

generating TCP timestamps, passively collecting said timestamps, and calculating clock

skew estimations. After the clock skews are calculated for each IP address, a confidence

interval is used to determine whether an IP address belongs to a given host.

1. Network Setup for Dual-Homed Testing

The components, configuration of installed operating systems, and the associated

static IP address, which formed the test bed for dual-homed testing, are listed in Table 1

and shown in Figure 9. The switch was a HP 3800 used to connect all of the hosts within

the network with a subnet mask of 255.255.255.0. There were seven Raspberry Pi 3

Model Bs on the network corresponding to hosts 1–7. All of the Raspberry Pis had

Ubuntu MATE 16.04 LTS installed for the operating system. Hosts 1–6 were single-

homed devices and added to the network to show that these devices did not interfere with

 20

the data collection of the dual-homed devices. Host 7 was the only dual-homed Raspberry

Pi on the network.

Table 1. Summary of Hosts for Dual-Homed Testing

Host Device/Hardware Operating System IP Address 1 IP Address 2

1 Raspberry Pi 3 Model B Ubuntu MATE 16.04 10.10.8.1 -

2 Raspberry Pi 3 Model B Ubuntu MATE 16.04 10.10.8.2 -

3 Raspberry Pi 3 Model B Ubuntu MATE 16.04 10.10.8.3 -

4 Raspberry Pi 3 Model B Ubuntu MATE 16.04 10.10.8.4 -

5 Raspberry Pi 3 Model B Ubuntu MATE 16.04 10.10.8.5 -

6 Raspberry Pi 3 Model B Ubuntu MATE 16.04 10.10.8.6 -

7 Raspberry Pi 3 Model B Ubuntu MATE 16.04 10.10.8.10 10.10.8.11

8 Dell Latitude E6430 Windows 7 10.10.8.12 10.10.8.13

9 Dell Latitude E5420 Fedora 26 10.10.8.14 10.10.8.15

10 Dell Latitude E6540 Linux Mint 18.1 10.10.8.16 10.10.8.17

11 MacBook Pro OSX 10.11.3 El Capitan 10.10.8.18 10.10.8.19

12 Lenovo IdeaPad U430 Windows 10 10.10.8.20 10.10.8.21

13 MacBook Pro OSX 10.6.3 Snow Leopard 10.10.8.24 10.10.8.25

Switch

HP 3800

Controller

Host 1

Linux Mate

10.10.8.1

Host 2

Linux Mate

10.10.8.2

Host 3

Linux Mate

10.10.8.3

Host 7

Linux Mate

10.10.8.10

10.10.8.11

Host 4

Linux Mate

10.10.8.4

Host 5

Linux Mate

10.10.8.5

Host 6

Linux Mate

10.10.8.6

Host 8

Windows 7

10.10.8.12

10.10.8.13

Host 9

Fedora 11.0

10.10.8.14

10.10.8.15

Host 10

Linux Mint

10.10.8.16

10.10.8.17

Host 11

OS X 10.11

10.10.8.18

10.10.8.19

Host 12

Windows 10

10.10.8.20

10.10.8.21

Host 13

OS X 10.6

10.10.8.24

10.10.8.25

Fingerprinter

10.10.8.99

Figure 9. SDN Test Bed for Dual-Homed Testing

 21

Hosts 8–13 were laptops with operating systems configured in accordance with

Table 1 and shown in Figure 9. The operating systems selected for testing represent a

wide range of the common operating systems available at the time. With the exception of

OS X 10.6.3 Snow Leopard, operating systems that are no longer supported by the

vendor were not selected due to lack of support. The laptops were dual-homed devices

with two static IP addresses. To establish dual connections, the first connection used the

devices built-in Ethernet port. The second connection was established by using a USB

Ethernet adapter. The fingerprinter was a Dell T1600 running Ubuntu 14.04 LTS and

directly connected to the HP 3800. The devices had to be configured after being

connected to the network.

2. Host Preparation

Each host had to be independently setup and verified to ensure it would

communicate properly within the SDN network. The devices required several steps to

properly handle TCP timestamp requests and subsequently respond to said request. To

ensure that a device was configured properly to communicate within the network, all

hosts required the following steps to be taken:

1. Static assignment of IP address

2. Firewall rules to allow inbound and outbound TCP traffic

3. TCP port activation

The test bed did not have a DHCP server installed on the network, thus IP

addresses were statically assigned. This served to minimize confusion in the event a new

IP address was automatically assigned to a NIC. To prevent the automatic blocking of

TCP timestamp requests, the rules within the firewalls were adjusted such that TCP

requests were not blocked. The ports on the target device must also be active and

listening for traffic. If the ports are not activated, a given device will ignore the request

and no data will be transmitted.

 22

There may be cases where an operating system does not enable RFC 1323 TCP

timestamp by default [7]. In those cases, TCP timestamp reporting must be manually

enabled using instructions specified by the operating systems vendors.

B. TRAFFIC GENERATION AND COLLECTION

Hping3 was used to generate traffic between the fingerprinter and fingerprintee. It

is a command-line TCP/IP packet assembler and analyzer written by Salvatore Sanfilippo

and distributed to Kali Linux [19]. Hping3 establishes a TCP connection with the target

host and enables the TCP timestamp option field. Traffic was established at the default

rate of one request per second and allows for network traffic to be observed by

Wireshark.

The responses from the hosts were captured and filtered using Wireshark. Filters

in Wireshark were set to show only TCP traffic that contained TSVal and TSecr values. If

a host TSVal and TSecr were blank in the TCP options segment of the TCP return, then

the host network configuration needed to be set in accordance with the steps stated in

Section A.2 of this chapter.

C. DUAL-HOMED CLOCK SKEW RESULTS

Once the test traffic was collected via Wireshark, the data then had to be imported

into MATLAB. The traffic generator, hping3, sends a TCP timestamp request every

second to a specified IP address and port. During an experimental trial, at least 3600

samples per IP address were collected, which is approximately 60 minutes of data

collection. The 3600-sample minimum ensured that the collection had enough data points

to provide for stable estimation and minimized any network jitter that could potentially

affect clock skew estimations.

To determine the clock skews using linear programming for each host, the

MATLAB function linprog was applied to the clock offset values as given in (11).

Likewise, to determine clock skews with linear regression, the MATLAB function fit was

used with a linear polynomial as the fit type object. The output of both clock skew

 23

calculation methods yielded a solution in the form yx , where is the clock

skew and is the y-intercept. The MATLAB code for clock skew determination is in

Appendix A. The built-in MATLAB functions tic and toc were used to compute the

computational times for linear programming and linear regression. For the 3600-sample

trial, the linear regression method was 2-3 times faster than the linear programming

method.

The clock skew for each host was calculated for each 3600-sample trial. Only the

upper-bound solution was considered, as all of the delays between the network hosts and

the fingerprinter were positive and progressed forward in time as discussed in Section D,

Chapter III. The upper-bound solution for a dual-homed Raspberry Pi 3 running Ubuntu

Mate 16.04 LTS corresponding to IP address 10.10.8.11 is shown in Figure 8. The linear

programming slope was 13.9614 ppm and the linear regression method yielded similar

results with an estimated clock skew of 13.9712 ppm. The red dots, in Figure 8, are the

individual time offsets between the host and fingerprinter, and the blue line is the clock

skew solution for the slope as calculated by the fingerprinter using the linear

programming method.

Figure 10. Upper-Bound Clock Skew Solution for Host 7 (10.10.8.11) over a

Single Trial

 24

Comparing the slopes of all hosts in a single trial shows the variation of clock

skews present within the network. Each host has an independent slope that is unique to

the host [6], [7]. A plot of all of the dual-homed hosts clock skews from a single trial is

shown in Figure 11.

Figure 11. Clock Skews of All Hosts for a Single Trial

By zooming into Figure 11, we can observe more detail associated with the dual-

homed hosts. The IP addresses that originate from the same host have the same slope but

not necessarily the same y-intercept as shown in Figure 12. The difference in the location

of the y-intercept is due to timestamp delay ()t as discussed in Section D, Chapter III.

The solid lines in Figure 12 are single-homed and the hashed or dotted lines are those that

are dual-homed. For ease of comparison, IP addresses originating from the same host are

 25

colored with the same color. For example, the orange arrow on the graph points to two

parallel lines that correspond to host 9 (IP addresses 10.10.8.14 and 10.10.8.15). The two

lines share similar clock skews (slopes) at 7.1764 and 7.1761 ppm, respectively. They are

only shifted in the y-direction due to differences in timestamp delays ()t .

Figure 12. Zoomed-in View of All Clock Skews from Figure 11 over a Single

Trial

The mean clock skew from both linear programming and linear regression for

each IP address is listed in Table 2. It can be seen in Table 2 that the estimated clock

skews from both the linear programming and linear regression appear to agree with one

another with the exception of host 11. A deeper examination of host 11 is conducted later

in this chapter.

Host 9

 26

Table 2. Mean Clock Skews for All Hosts Using Linear Programming and

Linear Regression (in ppm)

Host Device/Hardware Operating System IP Address
Linear

Programming

Clock Skew

Linear

Regression

Clock Skew

1 Raspberry Pi 3 Model B Ubuntu MATE 16.04 10.10.8.1 13.0434 13.0408

2 Raspberry Pi 3 Model B Ubuntu MATE 16.04 10.10.8.2 9.6767 9.5989

3 Raspberry Pi 3 Model B Ubuntu MATE 16.04 10.10.8.3 15.0640 15.0653

4 Raspberry Pi 3 Model B Ubuntu MATE 16.04 10.10.8.4 14.4238 14.4148

5 Raspberry Pi 3 Model B Ubuntu MATE 16.04 10.10.8.5 10.8369 10.5269

6 Raspberry Pi 3 Model B Ubuntu MATE 16.04 10.10.8.6 15.9289 15.9306

7 Raspberry Pi 3 Model B Ubuntu MATE 16.04
10.10.8.10 13.9486 13.9480

10.10.8.11 13.9493 13.9493

8 Dell Latitude E6430 Windows 7
10.10.8.12 -4.6413 -4.6403

10.10.8.13 -4.6411 -4.6384

9 Dell Latitude E5420 Fedora 26
10.10.8.14 7.1764 7.1760

10.10.8.15 7.1761 7.1715

10 Dell Latitude E6540 Linux Mint 18.1
10.10.8.16 6.5648 6.5479

10.10.8.17 6.5657 6.5481

11 MacBook Pro
OSX 10.11.3 El

Capitan

10.10.8.18 85.4578 90.8211

10.10.8.19 85.4482 96.1752

12 Lenovo IdeaPad U430 Windows 10
10.10.8.20 18.2444 18.2516

10.10.8.21 18.2450 18.3122

13 MacBook Pro
OSX 10.6.3 Snow

Leopard

10.10.8.24 -1227.6546 -1230.4099

10.10.8.25 -1227.6477 -1230.3975

 27

The calculated clock skews are random variables and as such approach a Gaussian

distribution when a large number of trials are conducted [5]. In this experiment, we

conducted 174 trials for dual-homed devices. A histogram of host 3 clock skews is shown

in Figure 13. It can be seen in Figure 13 that the clock skews reasonably resemble the

Gaussian shape. Host 3 histogram is representative of all of the hosts tested with the

exception of host 11.

Figure 13. Histogram of the Estimated Clock Skews for Host 3 (10.10.8.3)

after 174 Trials

The histogram of the clock skews of host 11 did not have a Gaussian shape,

unlike the other hosts tested on the network. The two IP addresses assigned to host 11

were 10.10.8.18 and 10.10.8.19, and both yielded similar bi-modal histograms. The

histogram from 10.10.8.19 is shown in Figure 14. This device was a MacBook Pro

running OS X 10.11.3 El Capitan, which was released in 2015. Due to the instability of

calculated clock skews, we were unable to fingerprint OS X 10.11.3 El Capitan. The

instability of OS X is consistent with the findings from [7] where they observed clock

skew changes on unknown occasions.

 28

Figure 14. Histogram of the Estimated Clock Skews for Host 11 (10.10.8.19)

Running OS X 10.11.3 Displaying Non-Gaussian Shape after

174 Trials

Comparatively, host 13 was a different MacBook Pro running OS X 10.6.3 Snow

Leopard released in 2009. The histogram for the MacBook Pro running Snow Leopard is

shown in Figure 15. Here, host 13 returned consistent clock skews whose histogram

displayed a Gaussian shape similar to the non-Mac hosts. It did not have a bi-modal

distribution as the El Capitan device presented in Figure 14. Based on the results,

sometime between the release of Snow Leopard in 2009 and El Capitan in 2015, Apple

altered the way timestamps are reported. Unfortunately, OS X is a proprietary operating

system, and it was not possible to examine the kernel to determine how TCP timestamps

are generated.

 29

Figure 15. Histogram of Estimated Clock Skews for Host 13 (10.10.8.24)

Running OS X 10.6.3 Displaying a Gaussian Shape after 174

Trials

After the clock skews of all IP addresses have been calculated, a confidence

interval is determined for each IP address. We will use this interval to detect which IP

addresses are dual-homed.

D. DETECTION OF DUAL-HOMED HOSTS

In Section E, Chapter III, we discussed the detection of multi-homed hosts using

the estimated clock skews and a confidence interval of 1 . For detection purposes,

was selected to be 0.05 or 5%. The 95% confidence interval represents two standard

deviations if the clock skews were a Gaussian distribution and is consistent with the

confidence intervals used in [5]. After 174 trials were conducted and clock skews were

calculated for each trial, a mean clock skew and confidence interval were calculated for

each IP address. The upper and lower bounds of the confidence interval were determined

using the paramci function in MATLAB. The code for this computation is included in

 30

Appendix B. If the mean clock skew falls within the range of the bands, the IP addresses

can be identified as coming from that host with a 95% percent confidence.

The results for the confidence interval testing are listed in Table 3. From the table,

it can be shown that the single-homed devices had estimated clock skews that did not

correspond to another device, indicating that they were not multi-homed. Also from the

table, six of the seven dual-homed hosts had two clock skews that fell within the range of

the 95% confidence interval of their two IP addresses, which indicate that they were

multi-homed. The large width of the confidence interval for host 11 is a direct result of

the instability of clock skews shown in Figure 14. For confidence interval detection, we

assumed that the resultant clock skews were Gaussian in nature. Host 11 histogram was

bi-modal and did not resemble a bell curve, thus we were unable to apply our proposed

scheme for multi-homed detection.

Table 3. Linear Programming: Upper and Lower Bounds of the 95%

Confidence Interval for the Clock Skews of All Hosts

Host IP Address
UpperC

Mean Clock

Skew LowerC

1 10.10.8.1 13.0581 13.0439 13.0297

2 10.10.8.2 9.7448 9.6775 9.6103

3 10.10.8.3 15.0749 15.0641 15.0532

4 10.10.8.4 14.4429 14.4241 14.4052

5 10.10.8.5 11.0082 10.8393 10.6704

6 10.10.8.6 15.9405 15.9291 15.9177

7
10.10.8.10 13.9569 13.9489 13.9409

10.10.8.11 13.9575 13.9496 13.9418

8
10.10.8.12 -4.6216 -4.6416 -4.6615

10.10.8.13 -4.622 -4.6413 -4.6607

9
10.10.8.14 7.1852 7.1768 7.1685

10.10.8.15 7.1849 7.1765 7.1681

10
10.10.8.16 6.5822 6.5643 6.5464

10.10.8.17 6.5831 6.5651 6.5472

11
10.10.8.18 148.7956 83.5445 18.2935

10.10.8.19 148.786 83.5335 18.2809

12
10.10.8.20 18.2564 18.2447 18.2331

10.10.8.21 18.2571 18.2456 18.234

13
10.10.8.24 -1235.0783 -1239.7471 -1244.4159

10.10.8.25 -1235.077 -1239.7429 -1244.4089

 31

For the clock skews that were determined using the linear regression method, the

results for the upper and lower bounds for the 95% confidence interval are shown in

Table 5. Similar to the linear programming results, the single-homed devices all had

estimated clock skews that did not correspond to another device. From Table 5, we can

also see that six of the seven dual-homed devices were multi-homed. Host 11 confidence

interval spans more than 130 ppm due to the bi-modal shape and is too wide for useful

detection. Like the linear programming method, linear regression clock skew calculation

did not allow us to fingerprint host 11.

Table 4. Linear Regression: Upper and Lower Bounds of the 95% Confidence

Interval for the Clock Skews of All Hosts

Host IP Address
UpperC

Mean Clock

Skew LowerC

1 10.10.8.1 13.0596 13.0449 13.0302

2 10.10.8.2 9.6086 9.5989 9.5893

3 10.10.8.3 15.0766 15.0654 15.0542

4 10.10.8.4 14.4274 14.4149 14.4025

5 10.10.8.5 10.5404 10.5273 10.5142

6 10.10.8.6 15.9427 15.9311 15.9194

7
10.10.8.10 13.9563 13.9483 13.9402

10.10.8.11 13.9575 13.9495 13.9415

8
10.10.8.12 -4.6205 -4.6404 -4.6603

10.10.8.13 -4.6178 -4.6387 -4.6597

9
10.10.8.14 7.1844 7.1763 7.1683

10.10.8.15 7.1821 7.1719 7.1617

10
10.10.8.16 6.6142 6.5445 6.4748

10.10.8.17 6.617 6.5449 6.4728

11
10.10.8.18 153.948 88.965 23.982

10.10.8.19 159.1458 94.3519 29.5579

12
10.10.8.20 18.2666 18.2521 18.2375

10.10.8.21 18.4375 18.3131 18.1888

13
10.10.8.24 -1238.0777 -1242.5625 -1247.0473

10.10.8.25 -1238.0667 -1242.55 -1247.0333

 32

Upon closer inspection of Table 3 and Table 4, it appears that the linear

programming and the linear regression clock skew mean, upper, and lower confidence

interval bounds are very similar. Due to these similarities, we will only discuss the

graphical portion of the linear programming results in the following.

We plotted the mean clock skews and the confidence intervals for all IP addresses

and displayed that data in Figure 16. Notably, the upper and lower confidence interval

bounds for host 11 (IP address 10.10.8.18 and 10.10.8.19) cover a range of approximately

130 ppm. Due to the scale of Figure 16, the calculated confidence intervals appear as

points rather than intervals.

Figure 16. 95% Confidence Interval for the Estimated Clock Skews of All

Hosts after 174 Trials

 33

In Figure 17, we zoomed in on Figure 16 to focus on host 7 (IP addresses

10.10.8.10 and 10.10.8.11). The blue horizontal line is the confidence interval. Although

it appears to be a single line, there are in fact two. The inset displayed further zooms in

on the clock skews of host 7 showing the upper and lower bounds of the 95% confidence

interval. Host 7 confidence interval only overlaps with its dual-homed counterpart and

does not overlap with the other IP addresses.

Figure 17. Confidence Interval of Host 7 (10.10.8.10) Compared to the Mean

Values of All Clock Skews Calculated

A zoomed-in view of the confidence interval of host 11 (IP addresses 10.10.8.18

and 10.10.8.19) running OS X El Capitan is shown in Figure 18. The upper and lower

bounds, which are represented by the blue horizontal lines, span approximately 140 ppm

Dual-homed

C
o

n
fid

en
ce

In
terv

al

 34

and do not provide a reliable confidence interval for detection. The other hosts had

intervals that generally spanned less than 0.3 ppm with the second largest span of 9 ppm

for host 13. With the exception of host 11, the estimated clock skews calculated from

linear programming and linear optimization provided reliable results that allowed us to

successfully detect all multi-homed devices within the network.

Figure 18. Confidence Interval of Host 11 (10.10.8.18) Compared to the

Mean Values of All Clock Skews Calculated

This chapter focused on detecting dual-homed devices using calculated clock

skews. A detailed description of the test bed, testing, and results was presented. The

testing and analysis revealed that remote multi-homed detection is possible if the target

clock skews result in a Gaussian shape. When the host histogram does not approach a

Gaussian shape, the confidence interval detection method proposed in Chapter III is not

sufficient. The next chapter focuses on expanding discussed detection methods to triple-

homed devices and vertical testing.

Dual-homed

Upper Limit

Lower Limit

C
o

n
fid

en
ce In

terv
al

 35

V. TRIPLE–HOMED TESTING AND RESULTS

The dual-homed test bed was altered for triple-home and vertical testing. The

chapter begins with a description of the triple-homed test bed. A triple-homed device

consists of three separate Ethernet connections that are made using a combination of the

built-in Ethernet port and two additional USB Ethernet NICs. Vertical testing is

completed by maintaining constant hardware configuration on a device and varying the

operating system.

The triple-homed testing was divided into three phases. In each phase, a different

set of operating systems is tested while keeping the hardware configuration the same.

Triple-homed vertical testing is conducted to determine the effects the operating system

has on the clock skew and subsequent confidence interval based detection.

A. TRIPLE–HOMED TEST BED

In this network, we removed all single and dual-homed devices and tested three

triple-homed devices. The testing was done in three phases. In each phase, a different

operating system was installed on the host device. The first phase consisted of Windows

10, Windows 7, and Linux Mint 18.1. The second phase tested three versions of Ubuntu

with various Linux kernels. The third phase consisted of freeBSD 12.0 installed on all

devices. The setup for the network is summarized in Table 5, listing the host number, the

various operating systems installed, and the IP addresses assigned to that device. To

avoid confusion with the host numbers used in Chapter IV, the host numbers for testing

in this chapter begin with 101.

A general network diagram for the triple-homed testing is shown in Figure 19,

which lists the devices used, host number, and the IP addresses that were assigned. The

switch and fingerprinter used for TCP traffic generation and traffic collection are the

same as the ones used in Chapter IV.

 36

Table 5. Summary of Hosts and Operating Systems for Triple-Homed and

Vertical Testing

Host Device/Hardware Phase 1 Phase 2 Phase 3 IP Addresses

101
Lenovo IdeaPad

U430
Windows 10 Ubuntu 16.04 freeBSD 12.0

10.10.8.31

10.10.8.32

10.10.8.33

102
Dell Latitude

E6430
Windows 7 Ubuntu 14.04 freeBSD 12.0

10.10.8.34

10.10.8.35

10.10.8.36

103
Dell Latitude

E6540
Linux Mint 18.1 Ubuntu 12.04 freeBSD 12.0

10.10.8.37

10.10.8.38

10.10.8.39

Host 101

Lenovo IdeaPad

10.10.8.31

10.10.8.32

10.10.8.33

Host 102

Dell Lattitude E6430

10.10.8.34

10.10.8.35

10.10.8.36

Switch

HP 3800

Controller

Host 103

Dell Lattitude E6540

10.10.8.37

10.10.8.38

10.10.8.39

Fingerprinter

10.10.8.99

Figure 19. SDN Test Bed for Triple-Homed Testing

37

B. TRIPLE-HOMED CLOCK SKEW RESULTS

TCP timestamp data was generated, collected, and processed in the same manner

as the dual-homed case. Each trial had a minimum of 3600 samples per IP address, which

was approximately 60 minutes of data collection in a given trial. Using linear

programming and linear regression methods, clock skews were calculated. The results

from each IP address were compared to one another to determine which device the

estimated clock skews originated from. The same linear programming and linear

regression methods used for dual-homed testing were also used for the triple-homed case.

For consistency between the results, only the upper solution was considered. The results

from phase one and phase two will be presented together as they had similar results.

1. Phase One and Phase Two Results

The estimated clock skews for all IP addresses in the first two phases behaved

similarly to the dual-homed cases. An example of the output from host 103 (IP address

10.10.8.38), running Linux Mint 18.1, is shown in Figure 20. The blue line is the upper

bound solution of linear programming, and the red dots are the individual observed

offsets.

Clock skews originating from the same device will have the same slope [5]. All

hosts clock skews from phase one testing are shown in Figure 21. Due to the similarities

and consistent results between phase one and two, we will only discuss the results of

phase one testing. Each of the lines represents an IP address and similar colored lines

originate from the same device. Graphically, it can be seen that the parallel clock skews

for the triple-homed hosts have the same slope. Looking at host 101, the three blue lines

all had a slope of about 16.0 ppm. Hosts 102 (green) and 103 (magenta) had negative

slopes of 8.1 and 10.9 , respectively. Similar to the dual-homed case, the difference in

the location of the y-intercept is due to the measured timestamp delay ()t .

38

Figure 20. Upper-Bound Clock Skew Solution for Triple-Homed Host 103

(10.10.8.11) Running Linux Mint 18.1 for a Single Trial during

Phase One Testing

Figure 21. Triple-Homed Clock Skews of All Hosts from Phase One Testing

H
o

st 1
0

1

H
o

st 1
0

2
 H

o
st 1

0
3

39

The mean clock skew values for all hosts in phase one and phase two testing are

listed in Table 6 and Table 7, respectively. The clock skews for hosts 102 and 103 were

negative values in phase one testing and switch to positive values for phase two testing as

shown in Tables 6 and 7. The hardware configuration remained the same for all triple-

homed hosts, thus the change in slope can be attributed to a change in the operating

system. As expected, the IP addresses that share a host all had similar clock skews to one

another. It can be noted that in these two phases, the estimated clock skews from both the

linear programming and linear regression methods agree with one another.

The MATLAB functions tic and toc were used to calculate the computational time

to execute the linear programming and linear regression methods. Similar to the dual-

homed case, the linear regression computation time was 2-3 times faster than the linear

programming method. This time difference is attributed to the differences in complexity

of the two methods. Before we move onto triple-homed detection using confidence

intervals, we will discuss the clock skew histograms of phase one and phase two results

after 150 trials.

Table 6. Phase One: Mean Clock Skews for All Hosts Using Linear

Programming and Linear Regression (in ppm)

Phase One

Host Device Operating System IP Address

Linear

Programming

Clock Skews

Linear

Regression

Clock Skews

101
Lenovo IdeaPad

U430
Windows 10

10.10.8.31 16.0558 16.0680

10.10.8.32 16.0573 16.0687

10.10.8.33 16.0571 16.0684

102
Dell Latitude

E6430
Windows 7

10.10.8.34 -8.1262 -8.1360

10.10.8.35 -8.1252 -8.1582

10.10.8.36 -8.1231 -8.1275

103
Dell Latitude

E6540
Linux Mint 18.1

10.10.8.37 -10.9307 -10.9795

10.10.8.38 -10.9333 -10.9730

10.10.8.39 -10.9352 -10.9724

 40

Table 7. Phase Two: Mean Clock Skew for All Hosts Using Linear

Programming and Linear Regression (in ppm)

Phase Two

Host Device Operating System IP Address
Linear Programming

Clock Skews

Linear Regression

Clock Skews

101
Lenovo IdeaPad

U430
Ubuntu 16.04

10.10.8.31 17.1122 17.1429

10.10.8.32 17.1114 17.1468

10.10.8.33 17.1133 17.2005

102
Dell Latitude

E6430
Ubuntu 14.04

10.10.8.34 13.7592 13.6835

10.10.8.35 13.7600 13.6574

10.10.8.36 13.7587 13.6665

103
Dell Latitude

E6540
Ubuntu 12.04

10.10.8.37 10.3061 10.3024

10.10.8.38 10.3077 10.3023

10.10.8.39 10.3061 10.3043

After 150 trials were conducted for each phase, a histogram for each IP address

was reviewed. Histograms of all of the hosts had a Gaussian-like shape and are similar to

those of the dual-homed hosts. A representative histogram generated is presented in

Figure 22 from host 101 (IP address 10.10.8.33) running Windows 10. Before we move

to confidence interval based detection, we will review the results of phase three testing.

Figure 22. Histogram of Estimated Clock Skews for Host 101 (10.10.8.33)

Running Windows 10 Displaying a Gaussian Shape after 150

Trials

41

2. Phase Three Results

FreeBSD 12.0 was installed on all three triple-homed devices for phase three

testing. TCP timestamp data was collected in the same manner as in the previous two

phases. The estimated clock skews varied on the order of
610 ppm, unlike the triple-

homed clock skews from phases one and two, which presented stable and consistent

clock skews. The upper-bound solution for host 103 (IP address 10.10.8.38) with

timestamp offsets varied between
64 10 and

61.6 10 seconds and is shown in Figure

23. All IP addresses produced similar upper-bound clock skew solutions as the one in

Figure 24.

To generate TCP traffic, hping3 is called once per second. Each time it is called, it

creates a TCP connection with the host, sends one packet to retrieve a TCP timestamp,

and immediately closes the connection. It appears that freeBSD 12.0 is randomly

assigning a timestamp value each time a TCP connection is made to the host causing

large variations in the offset. Randomized TCP timestamps explains the extreme

variations of timestamp offsets observed in Figure 23.

Figure 23. Upper-Bound Solution for Host 102 (10.10.8.38) Running

freeBSD 12.0 over a Single Trial

 42

The instability of the clock skews for freeBSD 12.0 is apparent when we plot all

of the estimated clock skews from a single trial as shown in Figure 24. Similar to the

color scheme used in Figure 21, each color represents a different host. Looking at host

103 (magenta lines), they clearly are not parallel as the clock skews cross one another

between 3 and 4 seconds. Host 101 only has two lines plotted as the third line had a y-

intercept below
43 10 . Unlike the clock skews from phase one and phase two, the clock

skews originating from the same host are not parallel. Due to the instability of the clock

skews, the current method of confidence interval detection is not sufficient to fingerprint

devices running freeBSD 12.0.

Figure 24. Non-parallel Clock Skews from a Single Trial during

Phase Three Testing

The results are summarized in Table 8. It can be seen that the clock skews from

the same host are not similar. For example, looking at host 101, the mean clock skews

from linear programming ranges from a high of 1234354.91 ppm to a low of

2167570.96 ppm. For the same host, the linear regression mean clock skews range

between 75923751.99 ppm and 32972297.96 ppm. Hosts 102 and 103 also had a wide

43

variation in the mean clock skews from both linear programming and linear regression.

Now that we have calculated mean clock skew data from all of the phases, we can apply

them to our detection scheme to determine which IP addresses are triple-homed.

Table 8. Phase Three: Mean Clock Skews for All Hosts Using Linear

Programming and Linear Regression (in ppm)

Phase Three

Host Device Operating System IP Address
Linear

Programming Clock

Skews

Linear Regression

Clock Skews

101
Lenovo IdeaPad

U430
FreeBSD 12.0

10.10.8.31 1234354.91 75923751.99

10.10.8.32 -867187.70 -32972297.96

10.10.8.33 -2167570.96 7362498.01

102
Dell Latitude

E6430
FreeBSD 12.0

10.10.8.34 -598920.03 1667652.00

10.10.8.35 -1985387.07 7238501.11

10.10.8.36 -519820.73 26827071.88

103
Dell Latitude

E6540
FreeBSD 12.0

10.10.8.37 -816815.26 -53436558.43

10.10.8.38 -1878372.71 -22952129.85

10.10.8.39 -927646.91 7604539.66

C. DETECTION OF TRIPLE-HOMED HOSTS

In the previous chapter, we looked at detecting dual-homed devices by

determining the upper and lower bounds of the confidence interval from multiple trials.

We apply the same method to detect triple-homed hosts. The confidence intervals were

calculated for both the linear programming and linear regression methods, and like the

dual-homed confidence interval results, both methodologies produced similar results for

phases one and two. Due to the similarities in interval values, only the linear

programming results will be shown here. The upper and lower confidence interval

bounds from both methods are summarized in Tables 9–11.

Looking at Tables 9 and 10, the mean clock skews from phase one and phase two

testing are stable and consistent within a host. For example, in phase two testing, host 103

mean clock skew was 10.3061, 10.3077, and 10.3061 ppm across different interfaces.

These clock skews are within 0.002 ppm with one another. The other hosts within phase

 44

one and phase two shared consistent results within the same host. The upper and lower

confidence bounds were also consistent within a host from phase one and phase two.

Looking at Tables 9 and 10, we can see that the upper and lower confidence intervals are

all within 0.4% of their associated mean clock skew. As discussed in the previous

section, the phase three results (shown in Table 11) were not as consistent as the phase

one and phase two results.

Table 9. Phase One: Upper and Lower Bounds of the 95% Confidence

Interval for the Clock Skews of All Hosts

Phase One

Host Device
Operating

System
IP Address UpperC

Mean Clock

Skew
 LowerC

101
Lenovo

IdeaPad U430

Windows

10

10.10.8.31 16.0631 16.0558 16.0485

10.10.8.32 16.0653 16.0573 16.0493

10.10.8.33 16.0648 16.0571 16.0493

102
Dell Latitude

E6430

Windows

7

10.10.8.34 -8.1139 -8.1262 -8.1384

10.10.8.35 -8.1125 -8.1252 -8.1379

10.10.8.36 -8.1103 -8.1231 -8.1360

103
Dell Latitude

E6540

Linux

Mint 18.1

10.10.8.37 -10.9110 -10.9307 -10.9505

10.10.8.38 -10.9141 -10.9333 -10.9525

10.10.8.39 -10.9159 -10.9352 -10.9546

Table 10. Phase Two: Upper and Lower Bounds of the 95% Confidence

Interval for the Clock Skews of All Hosts

Phase Two

Host Device
Operating

System
IP Address

UpperC
Mean Clock

Skew
 LowerC

101
Lenovo

IdeaPad U430

Ubuntu

16.04

10.10.8.31 17.1208 17.1122 17.1036

10.10.8.32 17.1202 17.1114 17.1027

10.10.8.33 17.1219 17.1133 17.1048

102
Dell Latitude

E6430

Ubuntu

14.04

10.10.8.34 13.7732 13.7592 13.7452

10.10.8.35 13.7737 13.7600 13.7462

10.10.8.36 13.7724 13.7587 13.7450

103
Dell Latitude

E6540

Ubuntu

12.04

10.10.8.37 10.3250 10.3061 10.2873

10.10.8.38 10.3268 10.3077 10.2887

10.10.8.39 10.3252 10.3061 10.2870

45

Table 11. Phase Three: Upper and Lower Bounds of the 95% Confidence

Interval for the Clock Skews of All Hosts

Phase Three

Host Device
Operating

System
IP Address UpperC Mean Clock

Skew LowerC

101
Lenovo

IdeaPad U430

FreeBSD

12.0

10.10.8.31 4537083.91 1234354.91 -2068374.10

10.10.8.32 250934.89 -867187.70 -1985310.30

10.10.8.33 971101.31 -2167570.96 -5306243.23

102
Dell Latitude

E6430

FreeBSD

12.0

10.10.8.34 -256229.61 -598920.03 -941610.45

10.10.8.35 -638958.50 -1985387.07 -3331815.63

10.10.8.36 2918937.35 -519820.73 3958578.82

103
Dell Latitude

E6540

FreeBSD

12.0

10.10.8.37 754059.84 -816815.26 -2387690.36

10.10.8.38 -57932.72 -1878372.71 -3698812.70

10.10.8.39 -383871.51 -927646.91 -1471422.30

The phase three mean clock skew did not produce consistent results. Due to the

inconsistent clock skews, the upper and lower bounds of the confidence intervals varied

widely within a host. As shown in Table 11 for host 102, the upper bounds ranged from

2918937.35 ppm to 638958.50 ppm and the lower bounds ranged from 941610.45

ppm to 3958578.82 ppm. With these extreme ranges, it is not possible to fingerprint a

device, which will be further shown in the confidence interval plots.

A plot of the 95% confidence interval is shown in Figure 25 for host 101 (IP

address 10.10.8.31) during phase one testing. Here, we can see that the confidence

intervals for the triple-homed case suggest that the IP addresses 10.10.8.31, 10.10.8.32,

and 10.10.8.33 originated from host 101. It can also be seen that 10.10.8.34, 10.10.8.35,

and 10.10.8.36 originated from host 102. And finally, 10.10.8.37, 10.10.8.38, and

10.10.8.39 originated from host 103. This is consistent with the network configuration in

Figure 19.

The blue horizontal line is the confidence interval. Although it appears to be a

single line, there are in fact two. The inset box displayed further zooms in on the clock

skews of host 101 showing the upper and lower bounds of the 95% confidence interval.

Host 101 confidence interval only overlaps with its triple-homed counterpart and does not

overlap with the other IP addresses. The scheme for multi-homed detection works for

 46

phase one and phase two testing; however, the same scheme does not work for the

freeBSD devices in phase three.

Figure 25. Confidence Interval of Host 101 (10.10.8.31) Compared to the

Mean Values of All Clock Skews Calculated

When looking at the same 95% confidence interval for phase three, the upper and

lower bounds of the confidence intervals cover a wide clock skew range that is not useful

for discriminating instances of multi-homed connections. The mean estimated clock

skews and 95% confidence intervals for all hosts in phase three testing were plotted in

Figure 26. In the figure, the blue boxes and red stars are the mean clock skews. The

whiskers are the upper and lower bands of the 95% confidence intervals centered about

the mean clock skew. The IP addresses in Figure 26 correspond to the hosts listed in

Table 11.

C
o

n
fid

en
ce

In
terv

al

47

From Figure 26, we see that IP address 10.10.8.34 (host 102) has the smallest

95% confidence interval of 685381 ppm. Compare this to the average interval size from

phase one and phase two testing of 0.027 ppm. The largest confidence interval, in Figure

26, originates from host 101 (IP address 10.10.8.31) with a value of
66.605 10 ppm. As

shown, all hosts running freeBSD 12.0 experienced inconsistent clock skews, which

resulted in a wide range of confidence interval values.

Figure 26. Mean Clock Skews and Confidence Interval Bounds of All Hosts

during Phase Three Testing

D. VERTICAL TESTING RESULTS

The results of the vertical tests for host 101 (Lenovo IdeaPad) are listed in Table

12. When a device is rebooted to a new operating system, the clock skews change for that

Host 101 Host 102 Host 103

48

host. In Table 12, host 101 has three separate clock skews for each of the operating

systems that are installed. This supports the idea that the estimated clock skew depends

on both the imprecisions of the CPU (in manufacturing) and the operating system that is

running on the device.

Table 12. Mean Linear Programming and Linear Regression Clock Skews for

Host 101 – Lenovo IdeaPad U430 Running Various Operating

Systems

Operating System IP address

Linear

Programming Clock

Skews

Linear Regression

Clock Skews

Windows 10

10.10.8.31 16.0558 16.0680

10.10.8.32 16.0573 16.0687

10.10.8.33 16.0571 16.0684

Ubuntu 16.04

10.10.8.34 17.1122 17.1429

10.10.8.35 17.1114 17.1468

10.10.8.36 17.1133 17.2005

freeBSD 12.0

10.10.8.37 1234354.91 75923751.99

10.10.8.38 -867187.70 -32972297.96

10.10.8.39 -2167570.96 7362498.01

 Both host 102 (Dell Latitude E6430) and host 103 (Dell Latitude E6540) yielded

similar results in that they showed an analogous trend when the device was rebooted to a

different operating system; the estimated clock skews differed from operating system to

operating system while on the same device. The results for host 102 and 103 are in

Tables 13 and Table 14, respectively. From Table 13, we can see the stability of clock

skews when the host 102 was running Windows 7 or Ubuntu 14.04. The three clock

skews within the same operating system are consistent with one another. When host 102

was running freeBSD 12.0, the clock skews become erratic. The results from host 102

show that the device displayed different clock skews when a new operating system was

installed on the device.

The results in Table 14 show a similar trend that Table 12 and 13 held. The clock

skews for host 103 also changed when a new operating system was booted onto the

device. All three hosts shared similar results when booted to a new operating system. The

49

results of vertical testing is consistent with the findings from [7] where they observed

differences in the clock skews of computers when booted from a different operating

system.

Table 13. Mean Linear Programming and Linear Regression Clock Skews for

Host 102 – Dell Latitude E6430 Running Various Operating

Systems

Operating System IP address

Linear

Programming Clock

Skews

Linear Regression

Clock Skews

Windows 7

10.10.8.31 -8.1262 -8.1360

10.10.8.32 -8.1252 -8.1582

10.10.8.33 -8.1231 -8.1275

Ubuntu 14.04

10.10.8.34 13.7592 13.6835

10.10.8.35 13.7600 13.6574

10.10.8.36 13.7587 13.6665

freeBSD 12.0

10.10.8.37 -598920.03 1667652.00

10.10.8.38 -1985387.07 7238501.11

10.10.8.39 -519820.73 26827071.88

Table 14. Mean Linear Programming and Linear Regression Clock Skews for

Host 103 – Dell Latitude E6540 Running Various Operating

Systems

Operating System IP address

Linear

Programming Clock

Skews

Linear Regression

Clock Skews

Linux Mint 18.1

10.10.8.31 -10.9307 -10.9795

10.10.8.32 -10.9333 -10.9730

10.10.8.33 -10.9352 -10.9724

Ubuntu 12.04

10.10.8.34 10.3061 10.3024

10.10.8.35 10.3077 10.3023

10.10.8.36 10.3061 10.3043

freeBSD 12.0

10.10.8.37 -816815.26 -53436558.43

10.10.8.38 -1878372.71 -22952129.85

10.10.8.39 -927646.91 7604539.66

In summary, this chapter focused on multi-homed detection of triple-homed

devices. A detailed description of triple-homed test bed, testing, and results was

discussed. The testing and analysis of this chapter further confirmed that the remote

50

multi-homed detection method outlined in Chapter III is feasible if the target clock skews

are consistent and have a Gaussian shape. When the timestamp offset values of the host

do not produce a Gaussian shape, the confidence interval detection method proposed is

not sufficient to identify which IP addresses originated from a given host. This chapter

also showed that the clock skew from a device depends on the hardware and the

operating system that is installed. The next chapter summarizes the findings and proposes

possible future work.

51

VI. CONCLUSION

Multi-homed devices pose a threat to networks protected by firewalls and

physical separation schemes. The primary motivation for this research was to identify

hosts that are capable of bypassing firewalls and physical separation security measures by

employing multi-homed connections. The idea of using clock skews to detect multi-

homed devices was first presented in [5] as the clock skews were shown to be unique and

remained relatively constant over long periods of time. Continuing this work, we

validated the detection scheme proposed in [5] and applied it to a larger set of devices

and operating systems.

To expand the applicability of the detection scheme, we built an SDN and

connected 13 multi-homed devices running 11 different operating systems. We

performed dual-homed testing by passively collecting TCP timestamps and calculating an

estimated clock skew using linear programming and linear regression methods. The clock

skews were then used to calculate a mean clock skew and a confidence interval. The

confidence interval detection was used to determine which IP addresses were multi-

homed.

For completeness, we tested the detection scheme on triple-homed devices by

altering the dual-homed test bed to support triple-homed testing and vertical testing.

Vertical testing was conducted to determine the effects the operating system has on the

clock skew and subsequent confidence interval based detection. The operating systems

that were selected represented a wide range of what was available at the time of testing.

A. SIGNIFICANT RESULTS

We were able to remotely collect traffic and determine the clock skews for

devices using both linear programming and linear regression methods. To determine

computation times for clock skew calculations, we used the built-in tic and toc functions

in MATLAB. The linear regression method was 2–3 times faster at calculating clock

skews when compared to linear programming. As long as network delays are minimized,

52

the use of linear regression may prove beneficial, as it was less computationally intensive

and less complex to implement than linear programming. When clock skews were stable

and consistent, the results from linear programming and linear regression were consistent

with one another.

We were able to identify dual and triple-homed hosts when running various

operating systems as long as the calculated clock skews from a host were consistent.

Through vertical testing, we determined that clock skew consistency depends on the

operating system installed and not on the hardware. Our results showed that a device can

exhibit consistent clock skews under one operating system and erratic and inconsistent

clock skews under a different operating system while keeping the hardware configuration

the same.

All multi-homed devices were detected with clock skews, with the exception

being OS X 10.11 El Capitan and freeBSD 12.0. In an older release of OS X 10.6, the

clock skew was consistent and able to be fingerprinted. This led to the conclusion that

Apple changed the way timestamp data is handled following the release of Snow Leopard

in 2009. All attempts to fingerprint freeBSD 12.0 were unsuccessful as the resultant clock

skews were inconsistent. Ultimately we were able to show that multi-homed detection

proposed in [5] depends on the operating system installed and the consistency within the

generation of clock skews.

B. RECOMMENDATIONS AND FUTURE WORK

We tested the proposed detection scheme on an SDN that was on the same subnet

being controlled from one controller. The methodology used in this research requires the

user to use a fingerprinter on each subnet installed on a network. The ultimate goal of this

work would be to move the fingerprinting process to the controller and remove the need

of using a stand-alone fingerprinting device. Moving the fingerprinting and detection to

the controller has many benefits, which includes the capability to fingerprint all devices

on a network regardless of the subnet.

53

The proposed scheme to identify if a host is connected to two physically separated

networks simultaneously, as depicted in Figure 2, requires the use of two fingerprinters.

The concern of using different fingerprinters is that the estimated clock skews depend on

the target device and the fingerprinter. Since the two fingerprinters have independent

clocks, a method must be determined in order for the results to be directly compared.

Future effort would be to create a detection scheme that can be used between two

fingerprinters to detect hosts connected to different networks.

We were unsuccessful in detecting multi-homed connections when the device was

running newer versions of OS X and freeBSD 12.0. These two operating systems are

BSD-based, however, another BSD-based operating system (Snow Leopard) did not

exhibit these issues. Further investigation into the way in which TCP timestamps are

generated within these operating systems will prove useful when designing a more robust

detection scheme.

54

THIS PAGE INTENTIONALLY LEFT BLANK

55

APPENDIX A. MATLAB CODE FOR CALCULATING

CLOCK SKEW

The MATLAB code to calculate clock skews (see Section D, Chapter III) is

contained below. The script imports an excel file that contains the observed times and

raw timestamp data. From this data, the observed time offset ix and the timestamp offset

iw are used to determine the observed offset iy . The MATLAB function linprog is used

to calculate linear programming clock skews, and the MATLAB function fit is used to

calculate linear regression clock skews. The output data is a matrix of estimated clock

skews for each IP address for one trial. The clock skews are then collected and saved in

an EXCEL data table for confidence interval calculations.

%% Thesis Clock Skew Calculation Test Runs

close all

clear all

clc

format compact

format long

% Change default axes fonts to Times New Roman

set(0,'DefaultAxesFontName', 'Times New Roman')

set(0,'DefaultAxesFontSize', 12)

% Change default text fonts to Times New Roman

set(0,'DefaultTextFontname', 'Times New Roman')

set(0,'DefaultTextFontSize', 12)

% Determine the time to execute the calculations

tic

%% Load the data from a single test run

run_name = 'z_Run_072.xlsm';

Data = xlsread(run_name);

% List of the host's last IP address, 10.10.8.*

hosts = [1,2,3,4,5,6,10,11,12,13,14,15,16,17,18,19,20,21,24,25];

L = length(hosts);

%% Calculate the Clock Skew and plot the data

for n = 1:L

 % Prints the current calcuation for the host and debugging

 fprintf('****************** %d ******************\n',hosts(n));

 % Checks the entire row for the the hosts IP address

 [row,~] = find(Data == hosts(n));

 % Extract data for a given IP address

 Hosts = Data(row,:);

 % Create a matrix for that data

 for k = 1:length(Hosts)

x(k) = Hosts(k,1) - Hosts(1,1);

% Calculate the time offset relative to the initial point listed

v(k) = Hosts(k,3) - Hosts(1,3);

56

% Calculate the timestamp offset relative to the initial point listed

 end

 b = ones(length(x),1);

 a = [x' b];

 f = [sum(x)/length(x) 1];

 I = linprog(f, -a, -v);

 % Solve the linear programing solution for frequency (Hz)

 for k = 1:length(Hosts)

w(k) = v(k)/round(I(1));

% Adjust v based on frequency the difference between observed and

% actual time

y(k) = w(k) - x(k);

 end

 z = linprog(f, -a, -y);

 % Linear programming solution for which reports the slope of O,

 % which is the clock skew

 Z(n) = z(1);

 B(n) = z(2);

 % plot of the reflines

 figure

 hold on

 plot(x,y,'r.')

 %plotting the upper bound limit of O

 h = refline(z(1),z(2));

 get(h, 'linewidth');

 set(h, 'linewidth', 2.5);

 title(['Clock Skew for host 10.10.8.' num2str(hosts(n)) ' '])

 xlabel('Time offset (seconds)','FontName','Times New Roman')

 ylabel('Timestamp offset (seconds)','FontName','Times New Roman')

 f = fittype('poly1');

 [fit1, gof, fitinfo] = fit(x',10^6*y','poly1');

 fit1

 % clear variables

 clear Hosts row x v b a f I w y z h

end

% Converts Z into ppm

Z = Z*1000000';

B = B';

% Output the clock skew values

format long

fprintf('Clock Skew \n')

fprintf('%8.10f\n' ,[Z']')

%% Compare Clock Skews between hosts

figure

axis([0 length(Data) 0 0.02])

axis([0 2000 0 0.02])

hold on

%% Compare Clock Skews between hosts – The example shown is only for 1 IP

address. The remaining code was omitted for brevity.

C1 = refline(Z(1),B(1));

57

get(C1, 'color');

set(C1, 'color', 'm');

% Plot all of the clock skews from a given run on single plot

legend('10.10.8.1 ','10.10.8.2 ','10.10.8.3 ','10.10.8.4 ','10.10.8.5 ',...

 '10.10.8.6 ','10.10.8.10','10.10.8.11','10.10.8.12','10.10.8.13',...

 '10.10.8.14','10.10.8.15','10.10.8.16','10.10.8.17','10.10.8.18',...

 '10.10.8.19','10.10.8.20','10.10.8.21','10.10.8.24','10.10.8.25',...

 'Location','best');

title('Comparison of clock skews for all hosts')

xlabel('Time offset (seconds)','FontName','Times New Roman')

ylabel('Timestamp offset (seconds)','FontName','Times New Roman')

fprintf(run_name);

fprintf('\n');

% End timing function

toc

 58

THIS PAGE INTENTIONALLY LEFT BLANK

 59

APPENDIX B. MATLAB CODE FOR CALCULATING

CONFIDENCE INTERVALS

The MATLAB code to calculate the mean, upper bound, and lower bound of a

confidence interval for a given IP address (see Section E, Chapter III) is listed below. The

script imports an excel file that contains all of the estimated clock skews from each trial.

The MATLAB function paramci is used to calculate the confidence intervals. The output

data is a matrix of the mean, upper bound, and lower bound for each IP address. The

histograms and confidence interval graphs, for each IP address, are also produced within

the code.

%% Confidence Interval Calculation

close all

clear all

clc

format compact

format long

% Change default axes fonts.

set(0,'DefaultAxesFontName', 'Times New Roman')

set(0,'DefaultAxesFontSize', 12)

% Change default text fonts.

set(0,'DefaultTextFontname', 'Times New Roman')

set(0,'DefaultTextFontSize', 12)

%% Load the data from trials

data_name = 'ConfInt_linprog_data.xlsx';

data_name = 'ConfInt_regress_data.xlsx';

TrialData = xlsread(data_name)';

% List of the host's last IP address, 10.10.8.*

hosts = [1,2,3,4,5,6,10,11,12,13,14,15,16,17,18,19,20,21,24,25];

%% Caclulate the CI – only the first 2 IP address calculations are shown

here for brevity

pd1 = fitdist(TrialData(:,1),'Normal');

ci1 = paramci(pd1);

pd2 = fitdist(TrialData(:,2),'Normal');

ci2 = paramci(pd2);

%% Plots

%

mu = [pd1.mu; pd2.mu; pd3.mu; pd4.mu; pd5.mu; pd6.mu; pd10.mu; pd11.mu;...

 pd12.mu; pd13.mu; pd14.mu; pd15.mu; pd16.mu; pd17.mu; pd18.mu;...

 pd19.mu; pd20.mu; pd21.mu; pd24.mu; pd25.mu];

e = [pd1.mu-ci1(1,1); pd2.mu-ci2(1,1); pd3.mu-ci3(1,1); pd4.mu-ci4(1,1);...

 pd5.mu-ci5(1,1); pd6.mu-ci6(1,1); pd10.mu-ci10(1,1); pd11.mu-

ci11(1,1);...

 pd12.mu-ci12(1,1); pd13.mu-ci13(1,1); pd14.mu-ci14(1,1);...

 pd15.mu-ci15(1,1); pd16.mu-ci16(1,1); pd17.mu-ci17(1,1);...

 pd18.mu-ci18(1,1); pd19.mu-ci19(1,1); pd20.mu-ci20(1,1);...

 60

 pd21.mu-ci21(1,1); pd24.mu-ci24(1,1); pd25.mu-ci25(1,1)];

hold on

bar(mu)

errorbar(mu,e,'r*')

set(gca,'XTickLabel',{'' '10.10.8.1' '10.10.8.2' '10.10.8.3' '10.10.8.4'...

 '10.10.8.5' '10.10.8.6' '10.10.8.10' '10.10.8.11' '10.10.8.12' ...

 '10.10.8.13' '10.10.8.14' '10.10.8.15' '10.10.8.16' '10.10.8.17' ...

 '10.10.8.18' '10.10.8.19' '10.10.8.20' '10.10.8.21' '10.10.8.24' ...

 '10.10.8.25'});

set(gca,'XTick',1:20,'XTickLabel','')

lab=[{'10.10.8.1'}; {'10.10.8.2'}; {'10.10.8.3'}; {'10.10.8.4'};

{'10.10.8.5'};...

 {'10.10.8.6'}; {'10.10.8.10'}; {'10.10.8.11'}; {'10.10.8.12'};...

 {'10.10.8.13'}; {'10.10.8.14'}; {'10.10.8.15'}; {'10.10.8.16'};...

 {'10.10.8.17'}; {'10.10.8.18'}; {'10.10.8.19'}; {'10.10.8.20'};...

 {'10.10.8.21'}; {'10.10.8.24'}; {'10.10.8.25'}];

hx = get(gca,'XLabel');

set(hx,'Units','data');

pos = get(hx,'Position');

y = pos(2);

X=1:20;

for i = 1:size(lab,1)

 t(i) = text(X(i),y,lab(i,:));

end

set(t,'Rotation',45,'HorizontalAlignment','right')

xlabel({'','','','','Host IP'});

ylabel('Clock Skew (ppm)')

%% Table of all hosts and their confidence interval

D=[mu+e,mu,mu-e]'

%% Display means of clock skews

fprintf('Clock Skew Mean\n')

fprintf('%8.10f\n' ,[mu]')

%% Dual Homed Detection

for i=1:length(mu)

 for N=1:length(mu)

 if mu(i)-e(i)<=mu(N) && mu(i)+e(i)>=mu(N)

 x(i,N)=1;

 x(N,N)=0;

 end

 end

end

%display(x)

%% Comparing Clock Skews

for i=1:length(mu)

 for N=1:length(mu)

 Y(i,N)=abs(mu(i)-mu(N));

 end

end

%% Graphic Depiction

 61

x=1:20;

% plot 10.8.8.* – The code for

figure

plot(x,mu,'r*')

set(gca,'XTickLabel',{'' '10.10.8.1' '10.10.8.2' '10.10.8.3' '10.10.8.4'...

 '10.10.8.5' '10.10.8.6' '10.10.8.10' '10.10.8.11' '10.10.8.12' ...

 '10.10.8.13' '10.10.8.14' '10.10.8.15' '10.10.8.16' '10.10.8.17' ...

 '10.10.8.18' '10.10.8.19' '10.10.8.20' '10.10.8.21' '10.10.8.24' ...

 '10.10.8.25'});

set(gca,'XTick',1:20,'XTickLabel','')

lab=[{'10.10.8.1'}; {'10.10.8.2'}; {'10.10.8.3'}; {'10.10.8.4'};

{'10.10.8.5'};...

 {'10.10.8.6'}; {'10.10.8.10'}; {'10.10.8.11'}; {'10.10.8.12'};...

 {'10.10.8.13'}; {'10.10.8.14'}; {'10.10.8.15'}; {'10.10.8.16'};...

 {'10.10.8.17'}; {'10.10.8.18'}; {'10.10.8.19'}; {'10.10.8.20'};...

 {'10.10.8.21'}; {'10.10.8.24'}; {'10.10.8.25'}];

hx = get(gca,'XLabel');

set(hx,'Units','data');

pos = get(hx,'Position');

y = pos(2);

X=1:20;

for i = 1:size(lab,1)

 t(i) = text(X(i),y,lab(i,:));

end

set(t,'Rotation',45,'HorizontalAlignment','right')

xlabel({'','','','','Host IP'});

ylabel('Clock Skew (ppm)')

title(['Confidence Interval for Host 10.10.8.1'])

refline(0,ci1(1,1))

refline(0,ci1(2,1))

%% Histfit

for i=1:20

 d=TrialData(:,i);

 figure

 h=histfit(d,10);

 xlabel('Clock Skew (ppm)')

 ylabel('Trials')

 %title(['Trial Histogram for host 10.10.8.' num2str(hosts(i)) ' '])

end

 62

THIS PAGE INTENTIONALLY LEFT BLANK

 63

LIST OF REFERENCES

[1] D. Kreutz, F. Ramos, P. E. Verissimo, C. Rothenberg, and S. Azodolmolky,

“Software-defined networking a comprehensive survey,” Proceedings of the IEEE,

vol. 103, no. 1, pp. 14–76, Jan. 2015.

[2] N. Feamster, J. Rexford, and E. Zegura, “The road to SDN: an intellectual history of

programmable networks,” ACM SIGCOMM Computer Communication Review, vol.

44, no. 2, pp. 87–98, April 2014.

[3] T. Parker, J. Jones, J. Mayberry, G. Chanman, Z. Staples, M. Tummala, and J.

McEachen, “Defensive cyber operations in a software-defined network,” in 49th

Hawaii International Conference on Cyber Systems, Koloa, HI, USA, 2016,

pp. 5561–5568.

[4] (U)RED/BLACK Installation Guidance, CNSSAM TEMPEST/01-13, National

Security Agency, Ft. Meade, MD, 2014, pp. 1–13.

[5] B. J. Martin, “Detecting a multi-homed device using clock skew,” M.S. thesis, Dept.

Elec. Eng., Naval Postgraduate School, Monterey, 2016.

[6] T. Khono, A. Broido, and K. Claffy, “Remote physical device fingerprinting,” IEEE

Transactions on Dependable and Secure Computing, vol. 2, no. 2, pp. 93–108,

Jun. 2005.

[7] L. Polcak and B. Frankova, “On reliability of clock-skew-based remote computer

identification,” in Security and Cryptography (SECRYPT), 2014 11th International

Conference, Vienna, Austria, 2014, pp. 18.

[8] E. Byres, “Dual homed machines are the juiciest targets,” Tofino Security, 2010.

https://www.tofinosecurity.com/blog/dual-homed-machines-are-juiciest-targets

[9] T. Benson, A. Aella, and D. Maltz, “Unraveling the complexity of network

management”" in Proceedings of the 6th USENIX symposium on Networked Systems

Design and Implementation, Berkeley, CA, 2009, pp. 335–348.

[10] S. Sezer, S. Scott-Hayward, P. Chouhan, B. Fraser, D. Lake, J. Finnegan, N. Viljoen,

M. Miller, and N. Rao, “Are we ready for SDN? Implementation challenges for

software-defined networks,” IEEE Communications Magazine, vol. 51, pp. 36–43,

July 2013.

 64

[11] K. Bakshi, “Considerations for software defined networks (SDN): approaches and

use cases,” in Aerospace Conference, Big Sky, MT, USA, 2013, pp. 1–8.

[12] J. Wang, W. M. Vokkarane, R. Jothi, X. Qi, B. Raghavachari, and J. P. Jue, "Dual-

homing protection in IP-over-WDM networks," Journal of Lightwave Technology,

vol. 23, no. 10, pp. 3111–3124, October 2005.

[13] Jacobson, V., Braden, R., and D. Borman, “TCP extensions for high performance,”

RFC 1323, DOI 10.17487/RFC1323, May 1992,

http://www.rfceditor.org/info/rfc1323.

[14] Kernel.org. (2017, Aug. 1). Timestamping. [Online]. Available:

https://www.kernel.org/ doc/Documentation/networking/timestamping.txt

[15] S. Zander and S. J. Murdoch, “An improved clock-skew measurement technique for

revealing hidden services,” in SS'08 Proceedings of the 17th Conference on Security

Symposium, San Jose, CA, 2008, pp. 211–225.

[16] NTP.Org. (2017, June). Network time protocol. [Online]. Available:

http://www.ntp.org/ntpfaq/NTP-s-sw-clocks-quality.htm

[17] F. Lanze, A. Panchenko, B. Braatz, and A. Zinnen, “Clock skew based remote

device fingerprinting demystified,” in Global Communications Conference, 2012

IEEE, Anahiem, CA, USA, 2012, pp. 813–819.

[18] M. Tummala and C. Therrien, Probability and Random Processes for Electricaland

Computer Engineers. Boca Raton, FL: CRC Press, 2012.

[19] D. Kreutz et al., “Software-defined networking a comprehensive survey,”

Proceedings of the IEEE, vol. 103, no. 1, pp. 14-76, Jan. 2015.

[20] L. Polcak, J. Jirasek, and P. Matousek, “Comment on remote physical device

fingerprinting,” IEEE Transactions on Dependable and Secure Communications,

vol. 11, no. 5, pp. 494–496, Sep. 2014.

 65

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center

 Ft. Belvoir, Virginia

2. Dudley Knox Library

 Naval Postgraduate School

 Monterey, California

