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1. Introduction………………………………………………………….

Breast cancer brain metastasis contributed to about 30% of breast cancer-associated fatalities. 
Patients with brain metastatic relapse have a median survival of less than one year. Most of FDA 
approved therapies have limited blood-brain-barrier (BBB) penetration. As a consequence, 
metastatic brain environment becomes a sanctuary site for metastatic tumors. In this proposal, we 
hypothesize that interactions between colonized tumor cell with brain tissue microenvironment 
constituents, e.g. reactive brain astrocytes, reprograms the transcriptome profile of tumor cells. 
Key features of this reprogramming (adaptation) could be exploited for novel brain metastasis 
treatment. We propose to take of state-of-the-art whole tissue imaging approaches to study the 
interaction between the tumor cell and metastatic brain environment. We will also determine the 
functional importance of critical neuronal-like changes during metastatic adaptation and target 
metastatic colonization of the brain with BBB-permeable neurological drugs.  In this project, we 
propose two specific aims to explore the functional importance of the early metastatic evolution 
and the feasibility of targeting metastatic evolution by repurposing neurological drugs. Aim 1: 
Study the spatial and temporal interactions between brain astrocytes and metastatic tumor cells in 
situ. Aim 2: Pre-clinically investigates the therapeutic efficacy of co-targeting glutamate 
receptors signaling and breast cancer driver genes. 

2. Keywords…………………………………………………………….

Breast cancer, brain metastasis, metastatic outgrowth, brain intravital imaging, brain tissue 
clearing, glutamate signaling.  

3. Accomplishments………..…………………………………………...

What were the major goals of the project? What was accomplished under these goals? 
Based on our original SOW, during the previous two funding years, we aim to conduct research 
as proposed in the original Aim 1. For your easy reference, the original milestones in SOW 
proposed for year 2 (13-24 months) are listed below as font italics 11pt.  

Aim 1.1. Visualize the dynamic interactions between astrocytes and disseminated tumor cells.
Progresses: We have expanded FVB/N-Tg(GFAP.GFP)14Mes/J colonies for intravital imaging. One 
of the pre-requisite for intravital imaging of brain metastasis is the tumor cell has to seed at brain 
cortex and with the reach of multiphoton imaging depth (~200 µm). The tumors developed deep
inside the brain parenchyma cannot be detected by current technique of intravital imaging.  
Although we have successful imaged early tumor dissemination and colonization at the brain (as 
we have reported in Year 1 progress report), we have encountered technical challenges to detect 
enough tumors that form and outgrow underneath our cranial imaging window. As the 
anatomical location is completely random, this observation is not completely unexpected. After 
multiple attempts and careful consider the risk and potential benefits, we decided to use intravital 
imaging technique to focus on early stage colonization only. The late stage metastatic 
development will be better addressed using our tissue clearing based imaging approaches (see 
below).  

Aim 1.2: Multiplexed molecular phenotyping of the metabolic and survival signaling of metastatic tumor 
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cells in situ. 
Aim 1.3: Exploring the functional importance of glutamate signaling in early colonization.   
 

1) Collect brain metastasis samples from multiple animal cohorts 
2) Clear tissue specimen 
3) Major markers are IF stained  
4) 2-photon deep tissue imaging are performed  
5) Reconstruction of multiplexed 3D brain metastasis and data analyses 

 
Progresses: In the first year for funding period, we were able to establish cutting-edge imaging 
approaches the obtain multiplex immunofluorescence stained brain tissue. After staining and 
whole tissue imaging, we were able to 3D co-registration of multiple metastatic landscape 
components with high spatial resolution on a global scale of dimensions up to approximately 
4000µm x 4000µm x 3000µm. In the past funding year, we continue collaborate with Danny 
Chen's group at Department of Computer Science and Engineering to further develop the 
imaging analysis algorithm to unbiasely analysis the large imaging dataset. We have successfully 
developed new algorithms and discovered previously underappreciated angiogenesis events 
during the brain metastasis progression. The fruitful interdisciplinary collaboration has resulted 
in three publications and three patents disclosures.  

1) Yang, L. , Zhang, Y., Guldner, I.H. g, Zhang, S., and Chen, D.Z. (2015). Fast 
Background Removal in 3D Fluorescence Microscopy Images Using One-Class 
Learning. In Medical Image Computing and Computer-Assisted Intervention – MICCAI 
2015, N. Navab, J. Hornegger, W.M. Wells, and A.F. Frangi, eds. (Springer International 
Publishing), pp. 292–299. 

2) Yang, L., Zhang, Y., Guldner, I.H., Zhang, S., Chen, D.Z. (2016). 3D Segmentation of 
Glial Cells Using Fully Convolutional Networks and k-Terminal Cut. To be published in 
Proc. of the 19th International Conference on Medical Image Computing and Computer-
Assisted Intervention – MICCAI, October 17-21, 2016. 

3) Guldner, I.H., Yang, L., Cowdrick, K.R., Wang, Q., Alvarez Barrios, W.V. g, Zellmer, 
V.R., Zhang, Y., Host, M., Liu, F., Chen, D.Z., Zhang, S. (2016). An Integrative 
Platform for Three-dimensional Quantitative Analysis of Spatially Heterogeneous 
Metastasis Landscapes. Sci Rep. Apr 12;6:24201.  

 
Aim 1.3: Exploring the functional importance of glutamate signaling in early colonization.   
Aim 2.1.  Investigate the preclinical efficacy of Talampanel plus Lapatinib combinatorial therapy in the 
treatment of breast cancer brain metastasis in vitro. 

1) Establish the optimal in vitro combination dose  
2) Perform multiple round of in vitro cell proliferation assays  
3) Reveal the major molecular mechanism of combinatory treatment 

 
Progresses:  
Our preliminary observation suggested that an up-regulation of glutamate receptor on tumor cells 
metastasized to the brain. Based on this observation, in the original proposal, we hypothesized 
that targeting glutamate receptor using brain permeable drug might potentially prevent brain 
metastasis. In the past funding year, we first conducted systematic bioinformatics analysis by 
comparing the transcriptome profile brain metastasis and its primary tumor counterpart. 
Considering the up-regulation of glutamate receptor we observed, we first focused on curated 
metabolism related genes using a publically available cDNA microarray dataset (GSE19184), 
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containing gene expression data generated from either primary xenograft tumors or brain 
metastases counterpart. Interestingly, we observed a global down-regulation of the majority of 
metabolism-related genes in brain metastatic tissues compared with respective primary tumors. 
In contrast, only a small set of metabolism related genes were up-regulated in brain metastases, 
suggesting that brain metastases engage a specific metabolic program that is vital for sustaining 
their energy needs. We performed GSEA to further determine the functional implications of the 
tumor metabolic shift. Interestingly, despite the majority of metabolism related gene sets were 
negatively enriched in the brain metastatic tumors, only one gene set (REACTOME: GABA 
synthesis, release, reuptake, and degradation) was significantly enriched in the brain metastatic 
tumors (Fig. 1a). γ-aminobutyric acid (GABA) is an inhibitory neurotransmitter primarily found 
in GABAergic neurons. The enrichment of GABA signaling in brain metastatic tumor cells 
suggests that the metastatic tumor cells might adapt and shift to more neuronal-like signaling to 
thrive in the brain microenvironment. Examining the "REACTOME: GABA synthesis, release, 
reuptake, and degradation" gene set further revealed glutamate decarboxylase 1 (GAD1) as 
among the only three significantly up-regulated genes in brain metastases (Fig. 1b). GAD1 
catalyzes the production of 
GABA from L-glutamic acid and 
is primarily found in the cytosol 
in order to provide an intracellular 
source of GABA for cell 
metabolism. We reasoned that the 
GAD1-mediated GABA pathway, 
downstream of the glutamate 
receptor, could be the primary 
method for utilizing glutamine, as 
an energy source in metastatic 
tumor cells. To test this 
hypothesis, we performed GAD1 
knockdown experiments under the 
co-culture of brain 
microenvironmental cells 
(primary brain glia cells). 
Knocking GAD1 significantly 
decreased tumor cell's survival 
advantage under glia cell co-
culture (Fig. 1c).    
 
The reliance on brain 
microenvironment-dependent GAD1 upregulation to drive glutamine metabolism and cell 
proliferation represent a novel therapeutic opportunity for brain metastasis treatment. Modulation 
of GAD1-mediated GABA metabolism has been clinically exploited previously as an anti-
seizure therapy. One such drug, vigabatrin, targets GABA metabolism by inhibiting GABA 
transaminase (GABA-T), an enzyme directly downstream of GAD1. Vigabatrin thus functions to 
block GABA flux into the TCA cycle. Due to the essential role of GAD1-mediated GABA 
signaling in metastatic outgrowth, we plan to test vigabatrin, instead of Talampanel, as a 
potential therapy for decreasing metastatic outgrowth. Preliminary in vitro testing showed that 
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treatment of vigabatrin reduces tumor cell proliferation in vitro (Fig. 1d). Above observations 
gave a strong rationale to test vigabatrin in vivo. We are currently in a process of revising 
IACUC/ACRUO protocols.     
 
What opportunities for training and professional development has the project provided? 
This project provides a unique multidisciplinary training opportunity for my trainees who 
traditionally trained as classic cell/cancer biologists. In the past funding year, the whole tissue 
imaging aspects this project continued to provide unprecedented opportunities for my graduate 
students to interact with Computer Engineer to develop novel ways to analyze large imaging 
data. On the biology side, my trainees have learned modern bioinformatics tools in order to 
analyze microarray/RNA-seq data (both publically available and generated by our lab). The new 
direction as reported above is a direct results of creative exploration by the talented trainees in 
my lab. 
 
How were the results disseminated to communities of interest? 
The research products generated from this project has been presented at the national conferences, 
including 19th International Conference on Medical Image Computing and Computer-Assisted 
Intervention, Society of Neuroscience Annual Meeting 2016. An abstract has also been 
submitted to 2017 AACR meeting. In addition, we continue to participate community outreach 
activities, such as Notre Dame Day, to disseminate some of our exciting results to lay public. We 
have collaborated with local high school (Penn High School) to use our tissue clearing and 3D 
imaging as powerful tools to engage high school students who are interested in STEM career 
path. 
 
What do you plan to do during the next reporting period to accomplish the goals? 
 
In the next funding year, we will continue develop our imaging platform to obtain insight on 
molecular mechanisms of metabolic shifting. We aim to achieve the following goals:  

1) Start to explore the functional importance of metabolic genes (GAD1) in regulating brain 
metastasis success.  

2) Investigate the mechanisms of GAD1 up-regulation at brain microenvironment.  
3) In vivo testing the therapeutic efficacy of vigabatrin in treatment or preventing breast 

cancer brain metastasis.  
 

4. Impact…………………………...…………………………………… 
 

What was the impact on the development of the principal discipline(s) of the project? 
As we have reported last year, in this project we are taking highly innovative imaging approach 
to study brain metastasis. We are the first group that applies this whole tissue imaging 
methodology to study cancer metastasis. From clinical translational perspective, identify GAD1 
is significant. Because repurposing FDA approved BBB-permeable vigabatrin (targeting GAD1 
pathway) is a relatively safe metastasis prevention drug and highly clinically translatable. If 
proven to be successful, similar concepts can be explored for fast clinical repurposing of other 
FDA approved drugs for cancer therapy.  
 
What was the impact on other disciplines? 
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To analyze the big 3D imaging dataset effectively, we are collaborating with our collaborators in 
the computational engineering department who are specialized in imaging progressing to develop 
robust image segmentation/analysis methods. This collaborative effort will lead to more 
powerful tools for traditional biologist in cancer biology and related field. As a direct result of 
this project, we have filed two patent disclosure related to medical image analysis (see below).  
 
What was the impact on technology transfer? 
Base on the work from this project, we have file three patent disclosures via Notre Dame 
Technology Transfer Office:  

1) Repurposing Current Neurological Drugs for Anti-Metastatic Brain Tumor therapy 
2) A method for fast and accurate removal of background noise in 3D microscopy images  
3) A new method for segmentation of glial cells in 3D microscopy images 

 
What was the impact on society beyond science and technology? 
Nothing to report 

 
5. Changes/Problems...….……………………………………………… 

 
Nothing to report 
 

6. Products…………………………………….……….….……………. 
 
This project has led to three publications:  
1) Yang, L. , Zhang, Y., Guldner, I.H. g, Zhang, S., and Chen, D.Z. (2015). Fast Background 
Removal in 3D Fluorescence Microscopy Images Using One-Class Learning. In Medical Image 
Computing and Computer-Assisted Intervention – MICCAI 2015, N. Navab, J. Hornegger, W.M. 
Wells, and A.F. Frangi, eds. (Springer International Publishing), pp. 292–299. 
2) Yang, L., Zhang, Y., Guldner, I.H., Zhang, S., Chen, D.Z. (2016). 3D Segmentation of Glial 
Cells Using Fully Convolutional Networks and k-Terminal Cut. To be published in Proc. of the 
19th International Conference on Medical Image Computing and Computer-Assisted 
Intervention – MICCAI, October 17-21, 2016. 
3) Guldner, I.H., Yang, L., Cowdrick, K.R., Wang, Q., Alvarez Barrios, W.V. g, Zellmer, V.R., 
Zhang, Y., Host, M., Liu, F., Chen, D.Z., Zhang, S. (2016). An Integrative Platform for Three-
dimensional Quantitative Analysis of Spatially Heterogeneous Metastasis Landscapes. Sci Rep. 
Apr 12;6:24201.  
 
We are in the process of summarizing our findings related to GAD1 into a manuscript entitled: 
“GAD1 Upregulation Programs Aggressive Features of Cancer Cell Metabolism in the Brain 
Metastatic Microenvironment”. This award is acknowledged.  
 

7. Participants & Other Collaborating Organizations…………… 
 
What individuals have worked on the project? 
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Has there been a change in the active other support of the PD/PI(s) or senior/key personnel 
since the last reporting period? 
 
Nothing to report 

Name: Siyuan Zhang 
Project Role: PI 
Researcher Identifier (e.g. ORCID ID): A-1276-2014 
Nearest person month worked: 3 
Contribution to Project: As the PI of this project, Dr. Zhang oversees the 

project design and data interpretation.  
Funding Support: DoD (this award) 
 
Name: Patricia Schnepp 
Project Role: Graduate student 
Researcher Identifier (e.g. ORCID ID): NA 
Nearest person month worked: 12 
Contribution to Project: Patricia’s thesis work primarily focuses on this 

project. She plays a major role in conducting in 
vitro and in vivo biology experiments and 
bioinformatics analysis.  

Funding Support: Partially funded by DoD (this award) and 
Walther Foundation for Cancer Research (pre-
doctoral  fellowship) 

  
Name: Ian Guldner 
Project Role: Graduate student 
Researcher Identifier (e.g. ORCID ID): NA 
Nearest person month worked: 3 
Contribution to Project: Ian primarily focuses on developing tissue 

imaging pipeline and perform imaging data 
analysis. 

Funding Support: Partially funded by DoD (this award) and 
departmental teaching assistantship.  

Name: Qingfei Wang 
Project Role: Postdoctal Fellow 
Researcher Identifier (e.g. ORCID ID): NA 
Nearest person month worked: 6 
Contribution to Project: Qingfei is responsible for bioinformatics 

analysis, co-culture experiment, in vivo mouse 
work.  

Funding Support: Partially funded by DoD (this award) and 
departmental funds.   
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What other organizations were involved as partners? 
 
Nothing to report 
  

8.  Special Reporting Requirements…………………………………… 
 
Nothing to report 
 

9.  Appendices…………………………………………………………… 
 
Manuscript summarizing the research findings of brain metastasis landscape:  
 
Guldner, I.H., Yang, L., Cowdrick, K.R., Wang, Q., Alvarez Barrios, W.V. g, Zellmer, V.R., 
Zhang, Y., Host, M., Liu, F., Chen, D.Z., Zhang, S. (2016). An Integrative Platform for Three-
dimensional Quantitative Analysis of Spatially Heterogeneous Metastasis Landscapes. Sci Rep. 
Apr 12;6:24201. 
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An Integrative Platform for Three-
dimensional Quantitative Analysis 
of Spatially Heterogeneous 
Metastasis Landscapes
Ian H. Guldner1,2,*, Lin Yang3,*, Kyle R. Cowdrick1,2, Qingfei Wang1,2, 
Wendy V. Alvarez  Barrios1,2, Victoria R. Zellmer1,2, Yizhe Zhang3, Misha Host1,2, Fang Liu2,4, 
Danny Z. Chen2,3 & Siyuan Zhang1,2

Metastatic microenvironments are spatially and compositionally heterogeneous. This seemingly 
stochastic heterogeneity provides researchers great challenges in elucidating factors that determine 
metastatic outgrowth. Herein, we develop and implement an integrative platform that will enable 
researchers to obtain novel insights from intricate metastatic landscapes. Our two-segment platform 
begins with whole tissue clearing, staining, and imaging to globally delineate metastatic landscape 
heterogeneity with spatial and molecular resolution. The second segment of our platform applies our 
custom-developed SMART 3D (Spatial filtering-based background removal and Multi-chAnnel forest 
classifiers-based 3D ReconsTruction), a multi-faceted image analysis pipeline, permitting quantitative 
interrogation of functional implications of heterogeneous metastatic landscape constituents, from 
subcellular features to multicellular structures, within our large three-dimensional (3D) image datasets. 
Coupling whole tissue imaging of brain metastasis animal models with SMART 3D, we demonstrate 
the capability of our integrative pipeline to reveal and quantify volumetric and spatial aspects of brain 
metastasis landscapes, including diverse tumor morphology, heterogeneous proliferative indices, 
metastasis-associated astrogliosis, and vasculature spatial distribution. Collectively, our study 
demonstrates the utility of our novel integrative platform to reveal and quantify the global spatial and 
volumetric characteristics of the 3D metastatic landscape with unparalleled accuracy, opening new 
opportunities for unbiased investigation of novel biological phenomena in situ.

Tumor metastasis is orchestrated by the interplay between genetically heterogeneous cancer cells and a spatially 
and compositionally heterogeneous tumor microenvironment (TME, also referred to as the metastatic niche)1–5. 
Metastatic cells and the metastatic TME – together, termed the metastatic landscape – are composed of several 
different cell types that display an ever-evolving heterogeneity throughout metastatic progression6–8. It has been 
envisioned that spatially compartmentalized metastatic niches differentially regulate metastatic progression6–8. 
For example, the role of astrogliosis during brain metastasis formation has been debated for decades9,10. Limited 
by two-dimensional (2D) in vitro culture and histology methods, previous studies were unable to fully describe 
the spatial heterogeneity of astrogliosis or deduce the functional implications of astrogliosis during brain metas-
tasis progression in situ within large, intact tissue samples. Similarly, angiogenesis, a hallmark of cancer, is crucial 
to maintain brain tumor outgrowth, such as in gliomas1,11. Yet, the requirement and characterization of angio-
genesis during brain metastasis progression remain largely controversial10. Because only a small fraction of the 
total vasculature can be captured in a single standard histological slice, even the most concrete brain metasta-
sis vascularisation data draw speculative conclusions. Despite the significance of examining spatial aspects of 
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heterogeneous metastases in their metastatic niche, technical barriers have impeded efforts to dissect the contri-
bution of diverse spatial components of the metastatic landscape in situ on a global three-dimensional (3D) scale 
with molecular-level resolution12.

The recent boom of whole tissue clearing techniques presents us with an unprecedented opportunity to dis-
sect metastatic heterogeneity in situ13. Tissue clearing permits a holistic, 3D view of tissue, which is particularly 
useful to image two metastatic landscape components – astrocytes and vasculature – that cannot be captured in 
a single plane and have diverse or highly speculated roles in metastatic progression9,10,14–16. Furthermore, the 3D 
perspective provided by tissue clearing allows spatial analysis, which can provide novel insights into biological 
phenomena. While tissue clearing provides an unmatched opportunity to explore the metastatic landscape, the 
massive volumetric datasets derived from whole tissue imaging impose new challenges on the image analysis 
of multiple genetic events with statistically significant biological implications. In this study, we developed and 
applied an integrative platform including a 3D whole brain imaging approach, consisting of whole tissue clearing, 
staining, and imaging, followed by customized computer-assisted quantifications. We developed SMART 3D 
(Spatial filtering-based background removal and Multi-chAnnel forest classifiers-based 3D ReconsTruction), 
a multi-faceted image analysis pipeline, to observe and quantify phenotypic metastatic landscape heterogeneity  
in situ with spatial and molecular resolution. Our implementation of our integrative platform to globally analyze 
the heterogeneous metastasis landscape of brain metastases demonstrates the feasibility of quantitative, multi-
plexed 3D analysis in situ from the molecular level to the whole organ scale. Furthermore, our study asserts the 
promise of such analysis in revealing unique spatial patterns of metastasis that will lead to novel functional and 
molecular insights into the dynamic nature of metastasis.

Results
Global imaging of multiple metastatic landscape features with molecular resolution. We 
streamlined a whole tissue clearing, staining, imaging, and computation analysis17,18 pipeline to quantitatively 
analyze and thereby enable the elucidation of the functional impact of phenotypic heterogeneity of the metastatic 
landscape on metastatic outgrowth (Fig. 1a, Supplementary Fig. S1a). The first segment of our pipeline (Fig. 1a, 
top), consisting of whole tissue clearing, staining, and imaging, ultimately conquers the long-standing challenge 
of capturing multiple genetic events in their native 3D context in situ to allow a holistic view of the tissue and its 
compositional and spatial heterogeneity. Tissue clearing and refractive index matching rendered the brain lipid-
free and optically transparent, allowing for thorough multiplexed molecular phenotyping of large tissue sections 
(Supplementary Fig. S1b,c and Supplementary Video S1). Further, cleared brain tissue permitted an approximate 
five-fold increase in imaging depth from ~500 μm (Fig. 1b, left) to ~3000 μm (Fig. 1b, right). Distinguished from 
previous tissue clearing-based studies, which primarily relied on transgenic mice that express fluorescent pro-
teins, our approach relied on multiplexed staining for proliferative nuclei, metastatic tumor cells, and TME com-
ponents (e.g., astrocytes), allowing 3D co-registration of multiple metastatic landscape components with high 
spatial resolution on a global scale of dimensions up to approximately 4000 μm ×  4000 μm ×  3000 μm (Fig. 1c and 
Supplementary Video S2). This exponential increase of data content enabled us to reconstruct the brain metasta-
sis landscape in 3D, providing new, exceptionally accurate perspectives on phenotypic heterogeneity, such as the 
highly irregular tumor morphology that is masked in two-dimensional images (Fig. 1d). We were able to glean 
detailed information from large, continuous tissue structures, such as blood vessels (Supplementary Fig. S1d), 
while maintaining high 3D resolution at the cellular level, such as one single extravasated metastatic cell (Fig. 1e), 
and subcellular details, such as dividing nuclei (Fig. 1f).

Spatial background removal and forest classifiers-based multi-channel 3D reconstruction 
(SMART 3D: Spatial Multi-chAnnel ReconstrucTion 3D). Accurate image segmentation is a prereq-
uisite for quantitative analysis of the spatial relationship between metastatic cells and the metastatic niche. The 
second and third segments of our integrative pipeline (Fig. 1a, bottom) tackle both the extensive problems (e.g., 
background removal, multi-channel reconstruction) faced in processing large 3D datasets with multiple channels 
as discussed in detail below. Despite a significant increase of 3D imaging depth enabled by tissue clearing, strong 
auto-fluorescence background (noise signal) and inhomogeneous fluorescent staining across the whole tissue 
significantly limit the applicability of existing 2D computational algorithms for accurate segmentation and visu-
alization of large, multi-channel volumetric 3D datasets. Thus, the first step of our image analysis aimed to remove 
the background noise in the 3D datasets.

We developed a new approach that combines the spatial filtering method and optimization-based methods for 
this background removal problem on 3D images19. Due to wide variations in the sizes of foreground objects in 3D 
datasets, it is very difficult to select one single appropriate window size or ball size for the spatial filtering method 
and the rolling ball algorithm20. We applied percentile filtering with a window size that is slightly larger than the 
size of the smallest object (e.g., the size of a cell) in the image to estimate a rough background. Subsequently, we 
used unsupervised one-class learning21 to detect errors in this rough estimation (Fig. 2a). Finally, these errors 
were corrected in the re-estimation process and the refined background estimation was obtained for generating 
a noise-reduced image. The processing speed of our new background removal method19 is comparable to the 
rolling ball algorithm20 (~30 hours on a Xenon CPU E5-2660v3 for processing a 512 ×  512 dataset). This novel 
algorithm yields the unprecedented efficiency in removing background while preserving fine structural details 
(e.g., fine processes of astrocytes) (Fig. 2a, bottom panel).

To compute voxel-level image segmentation with high tolerance of inhomogeneous fluorescent staining, we 
extracted feature vectors representing each voxel’s appearance and texture from multiple channels and concate-
nated the feature vectors from different channels into a multi-channel feature vector (MFV) (Fig. 2b). Next, we 
formulated the voxel-level segmentation problem as a classification problem (Fig. 2c). Several classifiers were 
trained to determine whether a voxel belongs to a specific type of foreground (e.g., tumor cells, astrocytes, blood 
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Figure 1. 3D Whole Tissue Imaging of the Brain Metastasis Landscape with Molecular Resolution.  
(a) Schematic of our integrative platform consisting of whole tissue clearing, staining, and imaging and 
SMART 3D (image processing and quantification). (b) Comparison of multiphoton-imaging depth without 
(left) or with (right) optical tissue clearing. 2D slices are extracted from indicated depths in the tissue-cleared 
z-stack to demonstrate image quality at various imaging depths. (c) Multiphoton image of 3D global view 
(2500 μm ×  3500 μm ×  3000 μm) of optically cleared mouse brain with multiple MDA-MB-231.Br-derived 
metastases. Red: anti-GFAP; blue: DAPI. (d) 2D multiphoton image (top) and 3D surface generated image 
(bottom) of PNA.Met1 brain metastases stained with anti-cytokeratin 8 (K8). (e) 3D multiphoton image 
of astrocytes (GFAP, red) of the blood brain barrier (left) and astrocyte interaction with MDA-MD-231.Br 
metastatic cells (right). Blue arrows point to astrocytes, and yellow arrows point to metastatic cells. (f) 3D 
multiphoton image of PNA.Met1 brain metastasis (K8, green) and EdU-tagged nuclei (orange) (top) and 
enlarged view of dividing nuclei (bottom).



www.nature.com/scientificreports/

4Scientific RepoRts | 6:24201 | DOI: 10.1038/srep24201

Figure 2. Spatial Filtering-Based Background Removal and Multi-Channel Forest Classifiers-Based 3D 
(SMART 3D) Reconstruction of Metastatic Heterogeneity. (a) Schematic of the background removal process. 
Arrow points to fine astrocyte processes preserved by this method. (b) Schematic of multi-channel feature 
extraction. (c) Schematic of the process of voxel-level segmentation based on random forest classification. 
(d) Image of DAPI stained MDA-MB-231.Br brain metastases sample before (top left) and after (top right) 
DAPI cluster-based tumor segmentation and surface generation. Color codes represent individually identified 
tumors. Bottom panel: whole spectrum of individual morphologically heterogeneous tumors. (e) Image of 
DAPI (blue) and K8 (green) stained PNA.Met1 brain metastases before (top left) and after (top right) K8/DAPI-
based segmentation and surface generation. Bottom panel: whole spectrum of individual morphologically 
heterogeneous tumors.
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vessels, etc.) or the background based on MFV. These classifiers (200 trees and 2 candidate features in each node) 
were then applied to every voxel in the 3D volumetric datasets to generate the segmentation of desired features 
(Fig. 2c). To test the accuracy of the classifier, we manually labeled 10 slices for each different component (e.g., 
tumor, astrocyte, EdU proliferation marker, and blood vessel) and used labeled features as the ground truth. The 
accuracy was then measured by the F1 score of 10-fold cross validation. F1 score is the harmonic mean of preci-
sion and recall, and it is a widely used measure to evaluate the performance of the classifier22. According to the F1 
score evaluation, volume quantification errors are approximately − 3.35%, − 0.03%, + 8.51%,+ 1.86% for tumors, 
astrocytes, proliferating cells, and blood vessels, respectively (Supplementary Table S1). Finally, we applied the 
SMART 3D pipeline to a series of 3D multi-channel datasets to reconstruct and quantify the metastasis landscape 
(Figs 2d and 3–5).

Heterogeneous morphology of breast cancer brain metastases. To test the robustness of SMART 
3D, we generated experimental brain metastases using two breast cancer brain metastasis models with dis-
tinct morphologies: MDA-MB-231.brain-seeking (Br) human breast cancer cells in an immunocompromised 
(Rag1− /− ) mouse and PNA.Met1 murine breast carcinoma cells in an FVB host. We stained metastasis-burdened 
samples with the epithelial cell-specific marker cytokeratin 8 (K8) antibody to identify breast cancer brain metas-
tases, as K8 is absent in normal cerebral cortex (Supplementary Fig. S2a). In addition, tumor cell nuclei displayed 
unique pleomorphism distinct from neural tissue nuclei, allowing for further nuclear-based tumor cell identifi-
cation. Our SMART 3D algorithm was adaptive to diverse tumor morphologies in 2D and 3D (Supplementary 
Fig. S2b,c) and proved to be robust as indicated by the overlap between the original 3D images and the computa-
tionally segmented voxels (Supplementary Fig. S2d). Surface renderings of the SMART 3D-segmented metastases 
within the same metastatic niche revealed a previously underappreciated array of morphological heterogeneity 
(Fig. 2d,e). The MDA-MB-231.Br metastases are highly branched, reflecting their exclusive growth along brain 
vasculature (vessel co-option)23, whereas PNA.Met1 metastases form irregularly shaped clusters (Supplementary 
Video S3), reflecting the morphology of brain metastases observed in the clinic. Within the same metastatic 
niche, the volumes of metastatic tumors are extremely diverse, ranging from 9.6–857.7 ×  103 μm3 to 155.3–
8074.0 ×  103 μm3 for MDA-MB-231.Br and PNA.Met1 tumors, respectively. This broad spectrum of metastasis 
volumes suggested a wide range of developmental stages of metastatic lesions within the same TME.

Metastasis developmental stage shapes a non-linear proliferative heterogeneity. Taking 
advantage of the multi-channel spatial segmentation and quantification capacities of SMART 3D, we next sur-
veyed the proliferation status of every tumor cell in each metastasis by 5-ethynyl-2′ -deoxyuridine (EdU) detec-
tion24. Both metastasis models displayed a wide spectrum of proliferative indices, from less than 1% to as much 
as 56%. Interestingly, metastases of similar sizes had very disparate proliferative indices (Fig. 3a,b). Kernel density 
estimation (KDE, “Gaussian”) for MDA-MB-231.Br metastases showed that small and medium metastases had 
a wide range of proliferation scattered across proliferative indices (0–0.3) and large metastases had a relatively 
uniform level of proliferation concentrated between 0.1 and 0.2 proliferative indices. The difference between the 
variance of proliferation between large metastases (Log10 tumor volume > 5.0) and small and medium metastases 
are statistically significant (p =  0.012, F-test) (Fig. 3c). KDE (“Gaussian”) for PNA.Met1 metastases revealed a 
different pattern of proliferation, with a wide range of heterogeneity for small and large metastases, but a narrower 
range of proliferation for medium metastases primarily concentrated at 0.2 proliferative index (Fig. 3d, left). 
Interestingly, a parabola-shaped trend (p =  0.003, quadratic regression) fit the data of tumor proliferative index 
versus metastasis volume, in which the vertex of the parabola was within the medium-sized metastasis range and 
approached a proliferative index of 0.15. Notably, two tumors (i.e., tumors 14 and 19) fell below the vertex and 
had negligible proliferation (Fig. 3d, right).

Leveraging the spatial aspect of our 3D imaging approach, we next probed the spatial distribution of prolifera-
tive cells within metastases. We did so by performing concentric zone analysis in which we analyzed the prolifera-
tive indices of concentric 10 μm-thick volumetric zones from the tumor surface to the tumor core (Fig. 3e). Linear 
regression analysis demonstrated distinct proliferative kinetics in which small tumors have a sharp proliferative 
index drop-off approaching the tumor core (proliferative index drops from ~0.5 to 0.12, p <  0.001), while the 
tumor core remains proliferative in medium and large sized tumors (Fig. 3f). Notably, there is extensive prolifer-
ative heterogeneity both among individual metastases and the zones within individual metastases (Fig. 3g). Even 
similarly sized tumors have dramatically different maximum proliferative indices (e.g., tumors 18 and 19) and 
proliferative patterns among zones from the surface to the core (e.g., tumors 16–18).

Metastasis-induced astrogliosis influences proliferative heterogeneity of tumors. In his “seed 
and soil” hypothesis, Stephen Paget first proposed that the tumor microenvironment is both essential and impor-
tant in metastatic seeding and outgrowth25. To explore microenvironmental factors that potentially influence 
metastatic outgrowth while taking advantage of the holistic view provided by 3D imaging, we first examined the 
astroglial response to brain metastases, a response that 2D imaging insufficiently captures in terms of astrocyte 
morphology and spatial distribution (Supplementary Fig. S3). Previous studies have suggested that the astro-
glial response promotes metastatic outgrowth26–33. To accurately characterize the astrocyte response to brain 
metastases, we imaged the astroglial response in 3D to obtain complete astrocyte morphology in exquisite detail 
(Supplementary Fig. S3) and further applied SMART 3D to clearly distinguish anti-GFAP staining from back-
ground noise in 2D and 3D (Supplementary Fig. S3). This enabled us to reconstruct and quantitatively analyze 
spatial astrogliosis patterns on a global scale (Fig. 4a). Qualitative analysis of astrogliosis revealed that astrocyte 
coverage of tumors was not spatially uniform around metastases and the volume of astrogliosis was variable among 
metastases in both the PNA.Met1 model (Fig. 4b) and the MDA-MB-231.Br model (Supplementary Fig. S4).  
Notably, the early astroglial response (gliosis index) appeared to be negatively correlated with metastasis 
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proliferation (r =  0.648) (Fig. 4d). When metastatic outgrowth progressed, the level of astrogliosis was positively 
correlated with the proliferation indices of metastases in both medium (r =  0.700) and large (r =  0.656) tumor 
groups (Fig. 4d,e). Interestingly, two medium to large-sized metastases (i.e., tumors 14 and 19) have negligi-
ble gliosis, and also have extremely low proliferative indices. Importantly, tumor 19, which had no associated 

Figure 3. Proliferative Heterogeneity in PNA.Met1 and MDA-MB-231.Br Breast Cancer Brain Metastases. 
(a) Global 3D surface rendering of multiphoton images of MDA-MB-231.Br brain metastases (green) and 
EdU-tagged nuclei (orange) demonstrating proliferative heterogeneity within the same anatomical region 
(left) from low proliferation (top right) to high proliferation (bottom right). (b) 3D multiphoton images (top) 
and associated surface generated images (bottom) focusing on EdU-tagged nuclei (orange) in representative 
less proliferative (left) and more proliferative (right) PNA.Met1 metastases (K8, green). (c) Kernel density 
estimation (KDE) plot of the proliferative indices of small, medium, and large MDA-MB-231.Br metastases 
(left) and plot of the relationship between the proliferative index and the log10 of the tumor volume of each 
MDA-MB-231.Br metastasis (right). Proliferative index =  Total EdU voxel volume/Total tumor voxel volume. 
(d) Kernel density estimation plot of the proliferative indices of small, medium, and large PNA.Met1 metastases 
(left) and quadratic regression plot of the relationship between the proliferative index and the log10 of the 
tumor volume of each PNA.Met1 metastasis (right). Proliferative index is defined as panel C. (e) Schematic 
representation of concentric zone analysis to analyze spatial characteristics of metastatic proliferation. Zone 
depth =  10 μm. (f) Regression analyses of the proliferative indices among zones of small (top), medium 
(middle), and large (bottom) PNA.Met1 brain metastases. Red diamond =  mean of each group. P value is based 
on linear regression model. (g) Bar graphs of the proliferative index within each 10 μm zone for each PNA.Met1 
brain metastasis.
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astrogliosis, was not proliferative, whereas similarly sized tumors (i.e., tumors 17, 20, and 21) within the same 
metastatic niche as tumor 19 were surrounded with reactive astrocytes and thrived with active proliferation 
(Fig. 4f), suggesting a role of astrogliosis in sustaining metastasis growth. Unlike PNA.Met1 metastases, global 
analyses of MDA-MB-231.Br metastases showed no clear correlation between gliosis index, proliferation index, 
or metastasis size (Supplementary Fig. S4), indicating a non-essential role of astrogliosis in MDA-MB-231.Br 

Figure 4. Heterogeneous Astrocyte Response to and Influence on PNA.Met1 Brain Metastases. (a) 3D 
multiphoton image of astrocytes (GFAP+ , red) associated with PNA.Met1 brain metastases (K8, green) (left), 
and corresponding 3D segmentation of the astrocytes (right). (b) Representative surface generated images 
of PNA.Met1 tumors (green) and various levels of associated astrocytes (red). (c) Schematic representation 
of the gliosis zone. Zone depth =  24 μm, the maximum spatial size of one astrocyte. (d) Regression plot of 
the relationship between the proliferative index and the square root (sqrt) of the gliosis index for small (left), 
medium (middle), and large (right) PNA.Met1 brain metastases. Gliosis index =  Total astrocyte voxel volume/
Total zone voxel volume. (e) Representative surface generated images of PNA.Met1 metastases (green) and 
EdU-tagged nuclei (orange) (left column) and the metastases and the associated astrocytes (red) (right column). 
(f) Surface generated image of global view of PNA.Met1 metastases (various colors) and associated astrocytes 
(red), highlighting tumors extremely low gliosis (blue; #14 and #19).
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brain metastases. It is likely that the exclusive growth of these metastases along blood vessels (Supplementary Fig. 
S4a) provides these metastases with a direct nutrient supply that is the ultimate determinant of their outgrowth.

Heterogeneous spatiotemporal angiogenic response to brain metastases. Patterns of brain 
tumor and brain metastasis angiogenesis are highly debated34–36 primarily due to a lack of approaches that can 
capture blood vessels in their entirety in situ. By taking advantage of our tissue clearing-based imaging approach 
and SMART 3D analysis pipeline, we explored the global intratumoral and peritumoral angiogenesis patterns in 
3D (Fig. 5a). Qualitative analyses showed extensive, tortuous tumor-associated vasculature comparable to pre-
vious experimental and clinical observations37–39. We also observed highly branched vessels covering the tumor 
surfaces and few but large infiltrating blood vessels inside the tumors, which were previously underappreciated 
features (Fig. 5b, Supplementary Fig. S5a, Supplementary Video S4). To reveal the global spatial relationship of 
each tumor cell to the surrounding blood vessels, we further quantified the spatial distance from each tumor 
cell voxel to the nearest blood vessel (Fig. 5c). Although metastatic tumors analyzed contain different numbers 
of tumor cells (n =  264 for tumor D and n =  1136 for tumor A), as measured by the mode frequency of density 
curve, most tumor cells were located less than 40 μm away from the nearest blood vessel, a pattern consistent 
among all metastasis sizes, which is significantly closer than the previously documented limit (100 μm) derived 
from 2D histology studies40.

To further examine the spatial patterns of angiogenesis, we performed concentric zone analysis covering zones 
from the core of metastases to the closest vessel outside the metastases (Supplementary Fig. 5b,c). Despite dif-
ferent tumor sizes, the maximum relative vascularisation index inside each tumor is approximately 0.02. The 
vascularisation index of smallest tumor (Tumor D) progressively declined from the tumor surface to the core. 
Tumor C had an increase of relative vasculature volume approaching the middle zone, after which point the 
relative vasculature volume sharply decreased, producing an inverted parabola, implying de novo angiogenesis 
inside the tumor.

Finally, to test the whether the SMART 3D-based angiogenesis analysis could potentially be used to evaluate 
anti-angiogenic therapies, we treated brain metastasis-bearing mice with multi-kinase inhibitor Sorafenib, a FDA 
approved small molecule inhibitor which has been shown to be blood brain permeable and enter the brain41 
and exhibit encouraging efficacy in treating brain metastases derived from renal cell carcinoma42. Surprisingly, 
despite a discernable decline of peritumoral angiogenesis, the intratumoral mean vascular density (MVD) did not 
significantly decrease (Fig. 5d).

Discussion
Metastatic colonization and outgrowth are believed to be spatially heterogeneous and temporally dynamic. While 
current state-of-the-art single-cell sequencing technologies have made strides toward understanding the genetic 
basis of tumor heterogeneity, deciphering the spatial and compositional heterogeneity of metastasis remains 
heavily reliant on conventional 2D histology. It is imperative to develop and integrate novel techniques from mul-
tiple disciplines to explore metastasis from spatial perspectives. In this study, we sought to do so by further devel-
oping and integrating cutting-edge technologies from the fields of both neuroscience and computational science. 
Our unique, integrative approach combining whole tissue clearing, staining, and imaging, with computer-assisted 
segmentation and quantifications (SMART 3D) provided us leverage in studying the metastatic landscape with 
unparalleled accuracy. Specifically, we have demonstrated the power of whole tissue imaging in delineating aston-
ishing morphological diversity of metastatic tumors. More importantly, we demonstrated the feasibility of using 
multiplexed immunostaining to molecularly characterize the spatially heterogeneous metastasis landscape. With 
further refinement of whole tissue staining procedures and validation of antibodies for cleared tissue, we expect 
multiplexed molecular staining will produce unprecedented mechanistic insight into many biological phenomena 
in the near future.

With the maturation of tissue clearing techniques, using this whole tissue imaging approach to explore tissue 
structure or tumor heterogeneity becomes highly desirable for many laboratories. However, quantitative analysis 
of 3D volumetric datasets that are terabytes in size imposes new, significant challenges. Our study provides one 
possible solution (SMART 3D) for quantitative analysis of 3D, multi-channel volumetric data. First, by develop-
ing and applying a spatial background removal algorithm, we effectively removed inhomogeneous fluorescent 
background present in most biological samples and further induced by immunostaining. Effective background 
removal in 3D images forms the foundation for downstream segmentation and quantification. Second, we con-
structed a machine learning (forest classifiers) based multi-channel 3D reconstruction pipeline by integrating 
biologically meaningful factors annotated by biologists and computational features intrinsic to 3D volumetric 
datasets. In our experience, applying this machine-learning pipeline is critical to more effectively extract and 
recover structural information from large 3D volumetric data that inevitably varies significantly within the same 
dataset. Lastly, our study demonstrated how our integrative whole tissue imaging and analysis platform could 
help biologists generate statistically significant correlations and discern previously unknown patterns that imply 
novel hypotheses of molecular mechanisms to be formulated and further explored.

Our study applying our integrative pipeline revealed a previously underappreciated heterogeneity in the met-
astatic landscape, and our spatial analysis of the metastasis landscape also shed light on how the TME impacts 
metastatic outgrowth. Two examples of such microenvironmental factors/processes we investigated in our study 
are astrocytes (in the process of astrogliosis) and vasculature. Through cross-referencing metastasis proliferation, 
tumor developmental stage, and astrogliosis, we revealed a dual, stage-dependent role of astrocytes on metastatic 
outgrowth (Fig. 4). Through global proliferation analysis coupled with spatially defined blood vessel density, we 
noted that the majority of cells in metastatic tumors are located in close proximity (between 10–20 μm) to blood 
vessels (Fig. 5c). More interestingly, the anti-angiogenic treatments led to a divergent spatial pattern of blood 
vessel distribution, which should be closely examined in the future studies. Collectively, results from our unbiased 
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Figure 5. Heterogeneous Spatial and Temporal Vasculature Response to PNA.Met1 Metastases. (a) 3D 
multiphoton image of metastasis-associated vasculature (top) and associated 3D segmentation image (bottom). 
(b) 3D images of metastasis-associated vasculature (red) before (top left) and after (top right) surface generation 
of vasculature, with a focus on vasculature on metastasis surface (bottom left) and infiltrating vasculature 
(bottom right). (c) Kernel density estimation (KDE) plot for the distance of each tumor cell voxel to the nearest 
blood vessel for tumors A, B, C, and D. n: number of tumor cells. (e) Surface generated image of a PNA.Met1 
brain metastasis (transparent green) and associated vasculature (red) treated with Sorafenib (left) and plots 
of the mean vasculature density within the tumor (intratumoral) and outside the tumor (peritumoral) for 
Sorafenib and control-treated mice. Peritumoral zone =  spatial distance within 100 μm from tumor surface.
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global approach further underscore a critical role of metastatic niche environmental factors and their potential 
role in sustaining metastatic outgrowth or metastatic dormancy. These observations will lead to new avenues for 
further functional investigations of novel mechanisms of metastasis.

With the continuous development of new, better tissue clearing methods and optics technology, our platform 
and SMART 3D will only grow in relevance. Our platform is designed to be able to integrate any given tissue clear-
ing method, and SMART 3D is capable of processing and analyzing image data sets derived from a variety of 3D, 
multi-channel high content imaging strategies. In this study, we demonstrated the ability of SMART 3D to adapt 
to analyzing datasets derived from the most recently developed tissue clearing methods, including CUBIC 2,  
PACT, and ScaleAB43–45. Furthermore, our platform will become even more vital for researchers applying new 
tissue clearing methods, which are increasingly compatible with multiple antibodies (Supplementary Table S2). 
Increasing ability to simultaneously stain for multiple markers will dictate the use of several channels during 
image acquisition, necessitating the multi-channel processing and analysis of which our platform is uniquely 
capable. Advanced optics systems for imaging will decrease image acquisition time while increasing the data 
content obtained, which SMART 3D will be able to process and analyze. Our integrative pipeline, unlike most 
methods and technologies, promises to become increasingly relevant with time and provide a scaffold by which 
researchers can tackle complex biological questions.

Taken together, we developed an integrative platform for 3D quantitative analysis of the spatially and compo-
sitionally heterogeneous metastasis landscape. Using whole tissue multiplexed staining and fluorescence imaging 
coupled with our SMART 3D image analysis pipeline, we demonstrated intriguing patterns of spatial hetero-
geneity of the metastatic landscape. By integrating multidisciplinary expertise, our proof-of-concept study, the 
first of this type, further demonstrates the necessity of examining metastases in 3D in situ, the practicality of this 
approach, and the novel concepts and discoveries that may be derived from 3D quantitative image analysis.

Methods
Cell Culture. The parental MDA-MB-231 cells were purchased from ATCC. MDA-MB-231.Br cell line was 
developed by in vivo selection of brain tropic derivatives for a minimum of three rounds through intra-cardic 
injection. PNA.Met1 cell lines were established from spontaneous primary murine mammary tumors from 
MMTV-PyMT transgenic mouse (FVB background). MDA-MB-231.Br cell line was cultured in DMEM F12 
medium supplemented with 10% fetal bovine serum (FBS) and 1% penicillin streptomycin (Pen-Strep). PNA.
Met1 cells were cultured in DMEM high glucose medium supplemented with 10% FBS and 1% Pen-Strep. Both 
cell lines were maintained at 37 °C in a 5% CO2 humidified environment and subcultured upon reaching approx-
imately 85% confluence. Immediately prior to injection, cells were rinsed three times with 1 ×  PBS, trypsinized, 
and pelleted twice and resuspended in serum-free RPMI medium to a concentration of approximately two mil-
lion cells/mL.

Brain Metastasis Mouse Models and In Vivo Experiments. All animal experiments were performed 
ethically and in accordance with IACUC protocol approved by the University of Notre Dame IACUC committee. 
FVB and congenic Rag1− /−  (C.129S7(B6)-Rag1tm1Mom/J) mice were purchased from The Jackson Laboratory 
(Bar Harbor, ME). All mice were eight weeks or older prior to experimental procedures. In vivo brain metastases 
were formed by either injection of 100 μL (~200,000 cells) cell suspension via the right internal carotid artery or 
intra-cranial injection of 690 nL of ~70,000 cells (drug treatment experiments). Prior to and during injection of 
cancer cells, mice were anesthetized with isoflurane. Following surgery, mice received 100 μL subcutaneous injec-
tions of Baytril®  (2.27%, Bayer HealthCare LLC, Animal Health Division), Ketoprofen®  (1 mg/mL) and 1mL of 
0.9% NaCl. FVB mice injected with PNA.Met1 cells were sacrificed after two weeks following cell injection, while 
the Rag1− /−  mice injected with MDA-MB-231Br cells were sacrificed between three to four weeks after injec-
tion. Two hours prior to sacrifice, mice were injected with 100 μL of 100 mg/mL 5-ethynyl-2′ -deoxyuridine (EdU, 
Life Technologies, Cat. No. 10639) via tail vein. For labeling blood vasculature, animals were injected with 100 μL 
10,000 MW Dextran, Alexa Fluor®  488 or Alexa Fluor®  594 (Life Technologies™ , Cat. No. D-22910 or D-22913) 
via tail vein five minutes prior to sacrifice when the brain was intended to be put through PACT or CUBIC tis-
sue clearing. In instances when the brain was intended to be cleared by the ScaleAB protocol, cardiac perfusion 
with 10mL or DiR (Sigma, Cat. No. 43608) was performed as described previously46. Immediately prior to and 
during sacrificing, mice were anesthetized with isoflurane. Mice that did not receive a Dextran injection or were 
not perfused with DiR were perfused transcardially with 10 mL chilled 1×  PBS immediately followed by 10 mL 
chilled 4% paraformaldehyde (PFA). Mice that did receive a Dextran injection were not perfused. Brains were 
extracted, cut in half sagittally, and placed in 4% PFA for 24 hours at 4 °C with gentle rocking. For anti-angiogenic 
treatment experiments, Sorafenib (LC Laboratories, Woburn, MA) was administered to mice at a concentration 
of 50 mg/kg by intra-peritoneal injection once daily 10 days following metastasis induction. Sorafinib was diluted 
in Cremophore EL (Sigma

Tissue Clearing and Staining. Slightly modified CUBIC and PACT tissue clearing protocols43,47 were used 
as follows for brain tissue clearing, with the exception of the Sorafinib treated brains. Following 24 hours fixation, 
brains were rinsed twice with 1 ×  PBS, sliced into 2 mm sagittal sections, and incubated in a hydrogel formulation 
(2 or 4% acrylamide in 1x PBS with 0.25% photoinitiator VA044 [Wako Chemicals]) at 4 °C gently rocking for 
three days. Prior to hydrogel polymerization, samples were degassed using a desiccation chamber, alternating 
between three 10-minute cycles of vacuum and nitrogen gas. Samples were polymerized by incubation at 37 °C for 
3–4 hours. Polymerized hydrogel was decanted and samples were rinsed twice with 1 ×  PBS. Lipid removal from 
samples was then performed using either 8% SDS in 1 ×  PBS. Once samples became optically transparent after 
approximately 4–7 days, samples were washed for 24 hours in 1 ×  PBS before whole tissue staining (molecular 
phenotyping). For molecular phenotyping, all samples were first incubated in a 1:50 primary antibody dilution 
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(anti-Ms mAb GFAP (GA5), Cell Signaling Technology Technologies® , Cat. No. 3670s; anti-Rb mAb Cytokeratin 
8 (EP1928Y), Abcam®, Cat. No. ab53280) in 0.1% Triton X-100 for 3 to 7 days with gentle rotating. Following 
primary antibody incubation, samples were washed for 24 hours in 0.1% Triton X-100 with minimum three 
rounds of buffer changes. All samples were then incubated in a 1:50 secondary antibody (goat anti-Rb or goat 
anti-Ms Alexa Fluor®  488, 594, or 647) dilution in 0.1% Triton X-100 for 3 to 7 days with gentle rotating. After 
secondary antibody incubation, EdU was detected per Click-iT EdU Alexa Fluor®  488 or 594 imaging kit (Life 
Technologies™ , Cat. No. 10639) protocol with a 3–4 hour detection incubation period. Some samples were incu-
bated in DAPI (0.025 mg/mL) for 12 hours with gentle rotating. Samples were washed one last time in 0.1% Triton 
X-100 for 24 hours with multiple buffer changes and then made optically transparent by incubation in CUBIC 
2 reagent prepared as described previously43 for at least 2 hours prior to imaging. The brains of Sorafinib treated 
mice were cleared using ScaleAB methodology as previously described44.

Confocal and Two-Photon Microscopy. All images were acquired using either the confocal or two pho-
ton setting on a commercial multiphoton laser scanning inverted microscope (Olympus FV1000) equipped with 
filter set (460–500, 520–560, 525–625, 650–700 nm) and a mode-locked Ti:sapphire laser (Mai Tai DeepSee 
690–1040 nm, Spectra-Physics). Optical cleared and stained samples were immersed in CUBIC 2 reagent in a 
custom-made sample holder when imaged using a 10×  ScaleView objective (XLPLN10XSVMP, Olympus USA; 
NA =  0.6 and WD =  8 mm) or placed on a coverslip when imaged using the 25×  objective (XLSLPLN25XGMP, 
Olympus USA; NA =  1.0 and WD =  8 mm). Use of confocal versus multiphoton was dictated by which method 
better excited the Alexa fluorophores, which depended on fluorophore vendor and imaging depth. When acquir-
ing images to be stitched, MATL was used in the Olympus software to program 10% overlap between imaging 
stacks.

Image Processing and Segmentation. Background removal. Auto-fluorescence in mouse brains results 
in a strong and inhomogeneous background in the acquired 3D images. Such inhomogeneous background (noise) 
causes difficulties to segmentation and visualization of the 3D images. We developed a new approach19 that com-
bines the spatial filtering method and optimization-based methods for this background removal problem. First, 
we applied percentile filtering with a window size that is slightly bigger than the size of the smallest object (e.g., 
the size of a cell) in the image, to estimate a rough background. Then, we used unsupervised one-class learning21 
to detect errors in this rough estimation. Finally, these errors were corrected in the re-estimation process and the 
refined background estimation was obtained for generating a noise-free image. The processing speed of our new 
background removal method19 is comparable to the rolling ball algorithm20 and yields the state-of-the-art accu-
racy. More details and validations can be found in19.

Voxel-level segmentation. We utilized information from multiple channels (e.g. K8, DAPI, GFAP, and EdU) for 
segmentation. For this purpose, we formulated the voxel-level segmentation problem as a classification problem. 
Several classifiers were trained to determine whether a voxel belongs to a specific type of foreground (tumor cells, 
astrocytes, blood vessels, etc) or the background based on multi-channel features. These classifiers were then 
applied to every voxel in the 3D image to generate the segmentation.

(1) Multi-channel feature extraction: The classification accuracy relies heavily on the quality of the extracted 
features. In order to utilize multi-channel information, our multi-channel feature extraction procedure for the 
voxels consists of two main steps. (i) Extracting a feature vector in each channel. As in48, the following features are 
extracted for every voxel in each channel to represent its appearance and texture: Intensity, gradient magnitude, 
eigenvalues of the Hessian matrix, and eigenvalues of structure tensor; (ii) concatenating together feature vectors 
from different channels to form a multi-channel feature vector. (2) Voxel classification: After the feature extraction 
process, training data were labeled by human experts and used to train four random forest classifiers49 that were 
designed to classify tumor cells, astrocytes, proliferating cells, and blood vessels. Each classifier has 200 trees and 
2 candidate features in each node. These classifiers are then applied to every voxel in the 3D image to generate 
segmentation results.

Structural-level segmentation. Since tumor cells tend to form dense clusters, to eliminate false-positives, cell 
clusters whose volumes are larger than a threshold in the voxel-level segmentation of tumor cells were identified 
as tumor clusters. The volume of each cell cluster was approximated by the volume of its connected component in 
the voxel-level segmentation. The threshold for large clusters was selected by a human expert for each 3D image. 
When K8 staining was used, each cell cluster that contains K8 signal was immediately identified as a tumor cluster 
regardless of its size.

Image Quantification. Based on the structural-level segmentation and voxel-level segmentation, we per-
formed the following quantifications. (1) Proliferation ratio: By assuming that every cell of a specific type has an 
average volume, the proliferation ratio of each tumor cluster can be determined approximately as the ratio of the 
volume of proliferating cells inside the tumor to the volume of the tumor cluster. The volume of proliferating cells 
was computed based on their voxel-level segmentation and the volume of the tumor cluster was computed as 
describe above. (2) Volume of surrounding astrocytes (astrogliosis): For each tumor cluster, we define its surround-
ing space as consisting of all the voxels that satisfy the following two conditions: (a) It is outside the tumor cluster, 
and (b) its closest distance to the tumor surface is smaller than a chosen value dis (the average diameter of an 
astrocyte is 24 μm. Therefore we set dis =  24 μm to survey the single layer of astrocytes surrounding the tumor for 
astrocytes). The surrounding space was calculated in two steps: (i) dilate the cluster region in the original image 
in a spherical manner with a radius dis; (ii) subtract the original cluster region from the dilated region. Then the 
volume of the surrounding astrocytes can be easily calculated. (3) Zone analysis: Zone analysis was performed in 
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a similar manner. Each zone was calculated using image morphological or logical operations. (4) Distribution of 
the closest distances from tumor cells to blood vessels: We computed approximately the distribution of the closest 
distances from tumor cells to blood vessels by computing the distribution of the closest distances from tumor cell 
voxels to blood vessel voxels, which was carried out by using the k-nearest neighbor search function in MATLAB.

3D Volumetric Data Presentation. 3D images were obtained by stacking up and aligning 2D image slices 
based on minimizing the mean squared error (MSE) between aligned regions in consecutive slices using a custom 
MATLAB code and XUVStitch (http://www.xuvtools.org). All surface generated images and videos of original 
data or surface generated data were created using IMARIS software (Bitplane).

Raw quantification data were extracted by using MATLAB, and statistical analysis was performed in R studio. 
P <  0.05 (two-tailed) was considered statistically significant.
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