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ABSTRACT

TheDepartment ofDefense struggles to develop andmaintain cutting-edge software through
the Defense Acquisition System. The pace of improvements in machine learning algorithms
and software suggests the organization will fail to rapidly develop systems incorporating
the latest innovations to meet its intelligence-related media analysis needs. In contrast,
the trend of industry and academia releasing algorithms and software under permissive
licenses bestows defense organizations with an opportunity. These groups can potentially
overcome resource shortfalls and long acquisition timelines by implementing machine
learning solutions with open-source software. We test this hypothesis by employing an
open-source software library to evaluate publicly available deep learning algorithms on
three prior defense-related datasets. We then compare performance of deep convolutional
neural networks to past methods for detecting AK-47s, ships, and screenshots in images.
Applying proven algorithms through the software framework, we test three object detectors
that exceed or match classification performance for all three experiments in a third of the
development time available to designers of the previous algorithms. We relate these tests
to defense scenarios in order to provide a logical argument and empirical measure of the
utility of open-source machine learning frameworks to meet the Department of Defense’s
intelligence-related media analysis needs.
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CHAPTER 1:
Introduction

Today, thorough media analysis for the purpose of gathering intelligence proves time con-
suming and expensive. Human fascination with capturing and sharing experiences, the
arm’s reach availability of modern cameras, and the increasing amount of data posted to
social media daily, feed a boundless flow of new images and videos. “Clara,” a notional
intelligence analyst, must wade through this flow of information searching for the critical
imagery that will give her team the necessary tip to prevent the next homegrown terror
attack. She sorts through her photographs and video stills diligently, fast enough to get
through her minimum for the day, yet methodically enough to be sure to tag all relevant
objects in an image for further analysis. Just one of many, Clara’s efforts aggregate with
thousands of others who stand watch over their nation hoping to find actionable intelligence
in the day’s social media postings. Without accurate and efficient computer algorithms to
help, organizations within the U.S. Department of Defense (DOD) are left training human
beings to complete repetitive and headache-inspiring image-tagging tasks. Fortunately, re-
cent improvements in modern computer algorithms for complex image classification tasks
elevate computer performance to a level comparable with humans; Russakovsky et al. [1]
find that their best expert annotator outperforms modern algorithms by only 1.7%. For
the DOD, this suggests computers can assist with, or take over, many of the organization’s
intelligence-related media analysis tasks today.

1.1 Current Image Classification Environment
To support the claim that computers stand ready to assist in these tasks, we explore recent
developments in the image classification research environment in terms of the available
algorithms, hardware, and software. For this thesis, image classification will refer to
the automated process of labeling an image with single or multiple labels to describe
what objects appear in that image. In the past decade, computer algorithms have gone
from achieving noteworthy performance on simple image classification tasks to competing
with human performance on complex tasks, such as labeling objects in an image into
1,000 possible categories for the ImageNet Large Scale Visual Recognition Challenge

1



(ILSVRC) [1]. Specifically, recent breakthroughs in the field of deep learning neural
networks reduced the error rates of state-of-the-art systems by 30% to 50% [2] when
completing tasks like those included in the ILSVRC. The most successful models harness
deep convolutional neural networks (CNNs) for their architectures. They also take advantage
of graphics processing units (GPUs) to speed up computations for training the networks by
one or two orders of magnitude [2]. While the code and intricate algorithm architectures of
such cutting-edge tools is beyond what an inexperienced programmer typically can achieve,
the recent trend of industry and academia making machine learning software available via
open-source licenses brings access to this technology to even novice programmers. Further,
well-known companies like Google andMicrosoft have already open sourced their machine-
learning tools, TensorFlowandMicrosoft CognitiveToolkit (CNTK), respectively. Table 1.1
is a list of some of the major frameworks currently offered as open-source software (OSS).
The progress in research and the availability of the source code for powerful frameworks
should inspire reflection for large government organizations like the DOD. Is the DOD
successfully developing similar technology to provide capabilities like autonomous image
analysis and should the organization pursue available OSS solutions?

Table 1.1. Sample of open-source deep learning software frameworks
Organization Framework First Released

Online Community Torch [3] Oct 2002
Academic Community scikit-learn [4] Feb 2010

University of Montreal LISA Lab Theano [5] Mar 2010
Berkley Vision and Learning Center Caffe [6] Oct 2013

Google TensorFlow [7] Nov 2015
Academic Community MXNet [8] Dec 2015

Microsoft CNTK [9] Jan 2016

1.2 Using an Open-Source Deep Learning Software
Library in the DOD

With the volume and variety of available machine learning algorithms that are continually
improving, compounded with the challenges large government groups face in maintaining
their software, organizations within the DOD seem unlikely to rapidly develop and employ
cutting-edge machine learning systems through the Defense Acquisition System. While
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the U.S. Government is certainly capable of undertaking complex software projects, they
are often costly and software development continues to prove problematic [10]. Potentially
limiting factors come to mind when considering government software acquisition. To name
a few:

• Budget and contract constraints
• Complexity of the Defense Acquisition System
• Inability to modify source code behind a vendor produced system [11]
• Long contractual and acquisition timelines
• Limited machine learning talent pools

These limitations inspire the sentiment that software contracted for independent develop-
ment by a DOD organization is more likely second rate, quickly obsolete, and too inflexible
to take advantage of new breakthroughs in the field of deep learning.

On a positive note, current DOD policies towards OSS acknowledge the aforementioned
limitations and encourage the consideration and application of open-source solutions when-
ever they are available. Specifically, the DOD Chief Information Officer (CIO) published a
memorandum providing guidance to encourage market research of OSS solutions to meet
mission needs in 2009 [11]. This and other policies facilitate the DOD employing state-
of-the-art deep learning software through OSS frameworks. Given the current machine
learning environment and a supportive stance by the DOD on OSS, we propose an eval-
uation of Google’s TensorFlow as a viable solution to meet the DOD’s machine learning
needs for automated image classification tasks.

1.3 Why TensorFlow?
After a simple comparison of capabilities, we chose Google’s TensorFlow to conduct an
evaluation of a single framework through several experiments instead of comparing available
frameworks across a single task. With numerous deep learning software frameworks
to choose from and a desire to avoid benchmark testing, we select TensorFlow for our
experiments and leave the evaluation of other frameworks for future work.

The decision to evaluate TensorFlow requires a brief discussion of the software’s background
and the factors supporting its selection. In November of 2015, Google released TensorFlow,
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“an interface for expressingmachine learning algorithms, and an implementation for execut-
ing such algorithms” [7] under the Apache 2.0 open-source license. Google developed its
GoogLeNet neural network utilizing TensorFlow, winning the ILSVRC 2014 [7], the current
image classification benchmark competition. The company also continued to make more
accurate iterations of this trained network, codenamed Inception [12], [13], easily available
for testing through the software framework. Above offering effective models, TensorFlow
carries with it the financial support and technical talent of Google to keep the software im-
proving. A confidence in Google’s ability to push the limits of artificial intelligence through
machine learning quickly inspired an online community, through GitHub [14], to partner
with the company to improve TensorFlow. Figure 1.1 depicts the number of updates made
to the software by Google employees and this online community over TensorFlow’s first
year as an open-source project. In summary, TensorFlow’s implementation of cutting-edge
machine learning algorithms, documented state-of-the-art performance in image classifica-
tion tasks, and its swift adoption by the open-source community indicate that TensorFlow
will stay relevant and state-of-the-art for the foreseeable future.

Figure 1.1. Number of commits made to the TensorFlow software library
during its first year as an open-source library. A commit includes any in-
stance of additions or subtractions to the code base accepted by the project’s
administrators. For TensorFlow, this includes addition of new models, inter-
faces, and tools for the software. TensorFlow had 15 versions released in its
first year, marking several significant and rapid improvements [14]. Adapted
from [14].
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1.4 A Vision for TensorFlow-Based Intelligence-Related
Media Analysis across the DOD

This section develops our vision for the applications of TensorFlow (or another OSS frame-
work from Table 1.1) with respect to the challenges of modern intelligence-related media
analysis in the DOD. Starting at the tactical level, a team of intelligence analysts at a battal-
ion or squadron could benefit from a software solution like TensorFlow. Current methods
require personnel to manually sort through thousands of images and hours of video to pull
out applicable information from confiscated hard drives or collected intelligence, surveil-
lance, and reconnaissance (ISR) [15]. What if analysts instead simply searched through
images or stills from video, first tagged by a TensorFlow-based algorithm, that were specific
to the threat they were looking for, like weapons that could indicate the militarization of an
owner of a hard drive? Beyond a single unit, all four service branches would have some-
thing to gain from an intelligent unmanned autonomous system (UAS) that implements
TensorFlow solutions. Most modern UASs simply broadcast ISR imagery back to a central
location, consuming large amounts of resources in a constrained bandwidth environment
in the process, and then require a human-in-the-loop for analysis. What if a surface-based
UAS, far in front of a carrier strike group, passively conducted video surveillance and only
broadcast imagery back across a satellite link when it determined that collected imagery
contained a threat? Finally, recall the hypothetical analyst Clara, who works at a national
level intelligence organization: a single analyst cannot possibly examine enough images
from a day’s typical posting to allow her agency to manage the flood of media created daily.
Thus, the risk of missing warnings of terrorism, and threats against the citizens the agency
supports, remains high. What if her department instead fed this flow of imagery through
compute resources, efficiently implementing cutting-edge machine learning algorithms in
TensorFlow, and pulled out images of interest as determined by current threat profiles. An-
alysts like Clara could then carefully examine these manageable streams of vetted images
to pull out actionable information. This vision only touches upon a handful of use cases
for TensorFlow in the DOD in a single problem domain. Even still, the potential benefit
for successfully implementing the software in the organization sufficiently motivates our
research to determine whether such use cases are feasible.

5



1.5 Problem Statement
As illustrated above, training humans to examine the intimidating number of images avail-
able for DOD intelligence analysis—quickly enough to ensure the information remains
relevant—requires resources that many groups in the organization simply do not possess.
These groups, from strategic-level national intelligence agencies to tactical-level military
units, continually face time and manpower constraints in tackling media analysis challenges.
In contrast to manpower, through the selection of cloud-based services offered commer-
cially, the cost of compute resources continues to decline. Their affordability, coupled with
the trend of commercial and academic researchers open-sourcing cutting-edge algorithms
and software libraries, presents groups throughout the DOD with an opportunity: combine
cheap compute resources with powerful state-of-the-art software to overcome time and
personnel shortfalls. Before the DOD can exploit this opportunity, preliminary research is
necessary to explore the merits of open-source machine learning software and algorithms
when applied to specific DOD media analysis challenges. Through this thesis we set out to
provide a starting point for future research and a baseline of support for the application of
these open-source solutions in the Department of Defense.

1.6 Research Questions
To further describe the goals of our research and offer specifics of what we set out to
accomplish, we present six research questions below. We will answer these questions
through comparing the performance of algorithms implemented in TensorFlow to three
previous Naval Postgraduate School (NPS) theses for identifying AK-47s [15], ships [16],
and screenshots [17] in image databases.

1. Compared to previous methods, do TensorFlow-based deep CNNs: improve classifi-
cation error rate; reduce training time and the size of datasets required for training;
provide versatility and ease of use in different problem domains; and scale to enable
deployment of trained networks for classification of images in resource-constrained
environments?

2. Do TensorFlow’s pretrained Inception models offer higher out-of-the-box recall and
lower false positive rate (FPR) than previous methods to detect AK-47s and can they
perform classification rapidly in a resource-constrained environment?
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3. How does TensorFlow’s pretrained Inception-v3 model perform in detecting ships in
images when retrained with transfer learning methods compared to the error rate of
previous methods?

4. How does a deep CNN, built and trained through TensorFlow with images acquired
from an internet database, perform in identifying screenshots in an image in compar-
ison to previous methods in terms of recall and FPR?

5. What are the potential benefits and risks of the DOD employing an open-source,
continually updated, and public platform for its machine learning needs?

6. How are the results of this analysis relevant to the DOD and future-related research
utilizing TensorFlow or other open-source frameworks?

1.7 The Way Ahead
Having introduced the problem and the motivation of our research, establishing the way-
points for answering our research questions seems helpful. In Chapter 2, we will discuss
acquiring open-source software through the Defense Acquisition System, three previous
NPS theses that will serve as our baseline for performance comparison, and modern al-
gorithms and techniques we will implement in our research. Chapter 3 establishes the
methodology for our three experiments and Chapter 4 provides their implementation details
and the processes followed to conduct the experiments. With our tests complete, we present
and discuss our results in Chapter 5. Finally, in Chapter 6 we draw conclusions from our
results and specifically answer our research questions. The end state of this thesis is to
present TensorFlow for employment by the DOD through introducing supporting policies,
discussing the software’s key terminology and capabilities, and exploring three potential
use cases by comparing performance to previous methods. In accomplishing these three
objectives, we hope to provide a logical and empirical argument for further application of
open-source machine learning software in intelligence-related media analysis.
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CHAPTER 2:
Background

This chapter establishes the necessary background for our research by surveying four areas.
First, Section 2.1 describes the Defense Acquisition System (DAS), along with software
development and commercial software acquisition in this system, to garner support for
applying OSS in the DOD. Next, Section 2.2 presents previously conducted experiments at
NPS relating to computer-based object detection in images. These experiments serve as a
starting point for performance comparison and potential applications of TensorFlow within
the DOD. Section 2.3 provides a brief overview of CNNs and three modern algorithms that
implement them in order to achieve state-of-the-art performance on complex classification
problems. A final section explores some of the methods available to train these algorithms
on new or organization specific image classification tasks. Through these sections, we
demonstrate that an environment exists that encourages the acquisition of open-source
solutions, like TensorFlow, to meet the DOD’s needs for object detection in images.

2.1 Software Development and Commercial Software
Acquisition in the DAS

The Department of Defense has a system in place to develop and deploy new products,
including software, to its members. The system is known as the Defense Acquisition System
or DAS. This section introduces the DAS as it would relate to the DOD’s procurement and
the contractor development of a proprietary equivalent to TensorFlow. We aim to show that
developing such software through the system proves less efficient than simply incorporating
an open-source offering. Understanding the challenges associated with developing cutting-
edge software through the DAS requires an overview of the system and its past performance
in completing complex projects. These challenges are well known and inspired the DOD
to develop a preference for finding commercially available solutions to meet capability
requirements. Moreover, recent defense-policy shifts that rebrand OSS as commercial
software encourage pursuit of OSS products to meet the Department of Defense’s needs.
Finally, an analysis of the benefits and risks of incorporating OSS in defense systems gives
confidence in the merit of considering such software before other options.
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2.1.1 Overview of the DAS
To start, we present a definition of the DAS from its defining directive: “the management
process by which the Department of Defense provides effective, affordable, and timely
systems to the users” [18, p. 4]. The DAS is one of three components that make up
the overarching system known as “Big A” acquisition [19, Ch. 1-3.2], which guides the
incorporation of new products into the DOD. Since the other two components focus
on top-level policy and budgeting, our remaining discussion will focus on the DAS, the
process by which a software system progresses from need identification to delivery to DOD
users [20]. Figure 2.1 provides the highest level overview of the DAS. It consists of
a series of required documents that drive three milestone decisions for moving a system
towards production and deployment. The current DAS is a product of numerous rules and
regulations, added between 1947 and the present by congressional reform [21]. While the
system provides structure and order to a challenging and fluid development process for
complex weapon systems, the volume and variety of requirements can prove overwhelming.
An overarching purpose behind the DAS, and its many reforms, is to minimize the loss
of taxpayer dollars in developing DOD systems. The process achieves this goal through
increased accountability and risk mitigation. These characteristics, coupled with over-
regulation, stifle rapid innovation. Although well intentioned, and even necessary, the
system of complex regulations that make up the DAS becomes an added source of friction
in an already complex product-development process.

2.1.2 Frustrations in Software Development through the DAS
The attributes described in Section 2.1.1 contribute to a negative sentiment towards pursuing
software intensive projects through the DAS. Speaking of the numerous studies conducted
to identify problems and suggest reform to acquisition processes, Linda Levine and Bill
Novak of the Software Engineering Institute at Carnegie Mellon University summarize
these frustrations well: “It is disturbing, however, that many problems associated with the
development and acquisition of software-intensive systems remain unresolved–and growing
in magnitude–while proposed solutions remain either untried or not sustained” [10, p. 1].
Others suggest that the system, conceptualized and established during World War II, is
simply too outdated for the demands of 21st Century development projects, regardless
of reforms [22]. Such sentiments have led to policy shifts that encourage acquisition of
commercially produced systems, including commercial software, before development of
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Figure 2.1. Overview of the Defense Acquisition System process.
Source: [20].

new systems through the DAS. For example, the latest version of Department of De-
fense Directive (DODD) 5000.01, which “provides management principles and mandatory
policies and procedures for managing all acquisition programs” [18], explicitly states that
DOD Components shall consider commercially available products prior to other acquisi-
tion options [18]. With supportive policy in place to acquire commercial software, the
determination of whether or not such policies apply to OSS remains.

2.1.3 Using OSS in the DOD
This section shows that the DOD considers OSS a commercial product for purposes of
acquisition and also discusses the benefits and risks of implementing OSS in defense
systems. For the average DOD user or program manager, deciphering the differences
among the types of software available (i.e., commercial, freeware, shareware, open-source,
closed-source) and what variants they can use with government systems proves perplexing.
Fortunately, policy exists that clears up this confusion for the defense professional hoping
to incorporate an OSS solution into an acquisition project. In 2009 the CIO of the DOD
characterized OSS as equivalent to commercial computer software and directed that defense
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programs include it in the mandated market research of commercially available solutions
discussed in Section 2.1.2 [11, p. 4, par 2.b]. This policy grants permission for the
acquisition professional to implement OSS in defense programs using the same regulations
that govern closed-source software.

With permission established, we will now weigh some benefits and risks of OSS. Specif-
ically, we examine the software support available and cost, the speed of updates and
improvements, and the security and long-term use of such software. Open-source is not
synonymous with free. Often successful OSS projects, like Linux Red Hat, offer support
contracts that enterprise level users can purchase, even though the source code for the
software is available publicly. A significant risk for the DOD implementing OSS is that
many projects do not provide this purchasable support package. While a responsive online
community, thorough documentation, and hirable third party support can remedy this risk,
the level of support may fall short of the what companies like Microsoft offer to the DOD
for closed-source software. In cases that deem a maximum level of support essential, it is
possible to hire a third-party who is familiar with the OSS code base and applications. The
risk associated with reduced support is acceptable in many cases due to the prospect for cost
savings. As current DOD policy states: “Since OSS typically does not have a per-seat li-
censing cost, it can provide a cost advantage in situations where many copies of the software
may be required, and can mitigate risk of cost growth due to licensing in situations where
the total number of users may not be known in advance” [11, p. 4]. Also, once the DOD
establishes guidance for employing an OSS project, other components of the organization
can quickly adopt the software, since the acquisition of per-instance licenses is no longer
a concern. Despite support concerns, the cost savings and speed at which organizations
across the DOD can share software solutions makes OSS an attractive alternative to other
forms of commercial software.

The DOD desires innovation but struggles to acquire innovative systems. OSS can help with
faster update cycles and the ability to tailor source code for specific needs and mission types.
As illustrated by the fifteen releases of TensorFlow in its first year, see Figure 1.1, popular
OSS projects attain release cycles measurable in terms of weeks or months compared to
the annual or bi-annual releases of other types of commercial software. The short update
cycle of OSS, coupled with the fact that new versions do not require purchase of updated
licenses, affords the defense sector an opportunity for rapid and cost efficient prototyping
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of new software solutions [11]. Further, the varying missions and threats faced by DOD
Components demand software that users or support personnel can modify swiftly and
apply to new problems or adapting enemies. The DOD CIO summarized this benefit
well in his 2009 memorandum: “The unrestricted ability to modify software source code
enables the Department to respondmore rapidly to changing situations, missions, and future
threats” [11, p. 4]. But what are the risks? With a community of users producing rapid
updates, the potential for the introduction of code breaking bugs exists. Fortunately, modern
software testing techniques and issue reporting services offered through websites hosting
open-source projects, like GitHub [14], largely alleviate this risk. These techniques, the
number of reviewers and testers of popular projects, and the ability to delay implementing
the new releases of software for critical defense systems, allow an organization to manage
the unique uncertainties of relying on OSS. With benefits of faster updates and the ability
to directly modify source code outweighing other concerns, OSS provides the DOD with
an opportunity to maintain state-of-the-art software solutions across its many mission sets.

We must also weigh benefits and risks in terms of security and the prospect for long-
term use of OSS products. One unique concern of OSS is that an adversary, hoping
to find a vulnerability to attack a defense system, has access to the source code that
drives the system. While the dangers of such access seem obvious, perhaps it is most
surprising that some experts argue that OSS leads to improved security over closed-source
software. This argument’s merit stems from the fact that benevolent users, such as DOD
security professionals, also have access to the source code, instead of only the private
firms developing the software. This access promotes efficient discovery of security flaws,
which an open-source community or a DOD organization can quickly patch and release. In
contrast, the license agreement of closed-source software would make such modification
and distribution illegal [23]. Moving on to long-term use, some opponents may argue that a
groupmaintaining an open-source project can stop updating the source code at anytime, thus
introducing risk in relying on such software. To counter this argument, first consider the
repercussions of a vendor owning legal rights to the source code of a defense system going
out of business. Next, think of a community dropping support for an open-source project,
of which the DOD maintains legal access to any copy of the source code it possesses [23].
In the former scenario, the DOD holds few options beyond running the current version of
the software until paying a new vendor to develop a comparable product from scratch. In
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the latter circumstance, DOD users can assess their need for further updates of the OSS
before deciding whether or not to internally maintain a version of the software or contract
out a vendor to pick-up where the open-source community left off. This right to update and
modify the source code frees the DOD from vendor lock and provides greater opportunity
for long-term use and improvement of OSS products.

With updated policy in the DAS and from DOD leadership in support of the pursuit of
OSS, defense professionals have the necessary permission to implement OSS solutions to
meet their operational needs. The frustrations of developing complex software through
the DAS provides the motivation to seek OSS solutions prior to software development
with the system. Finally, an analysis of top-level benefits and risks of engaging OSS in
defense suggests its suitability for many defense systems. Overall, this assessment inspires
confidence in the DOD’s ability to acquire, implement, maintain, and benefit from an OSS
library like TensorFlow.

2.2 Previous NPS Image Classification Experiments
In addition toweighing the benefits ofOSS and presenting the ability of theDOD to employ a
solution like TensorFlow, we aspire to display empirical evidence that the software performs
in realistic DOD use cases. Following the AK-47, ship, and screenshot detector scenarios
developed in Section 1.4, we introduce three previous experiments at NPS which evaluate
machine learning algorithms on datasets related to our scenarios. We eventually incorporate
these datasets into our experiments and employ the results from the prior tests to serve as
a baseline for comparing TensorFlow’s performance on the same image sets. These three
experiments all rely on human-engineered feature extractors specific to each object detection
problem. While their three algorithms contain some similarities, the methods are mostly
unique to each experiment. The discussion of this varying methodology in this section
stands in contrast to the single algorithm type, a deep CNN, and a single software library
that we apply across all three datasets for our experiments. Finally, we also include any
training or evaluation time metrics reported in the previous theses to compare to our tests.
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2.2.1 Detection of AK-47s by Justin Jones
The first experiment we reference simulates the potential use case for an intelligence analyst
at a battalion or squadron level discussed in Section 1.4. Justin Jones [15] published the
results of this experiment at NPS in September of 2010. Starting with 18 videos containing
AK-47s, Jones [15] developed a training set and test set of images by capturing stills from
these videos. His training set consisted of 1,146 stills containing AK-47s from 13 of the
videos and 5,660 negative training images from the internet. His test set contains 687
stills of AK-47s from five videos and 7,045 images containing people and other objects
without AK-47s present. To conduct his experiment, Jones [15] implemented both whole
AK-47 and left and right parts-based classifiers with three algorithms. First, he trained
several iterations of a Viola-Jones Classifier to pull out features from small portions of
the images with the Haar training utility from OpenCV [24], an open-source computer
vision software library. He then fed the extracted features from an image segment into a
support vector machine (SVM) and a simple artificial neural network, known as a multilayer
perceptron (MLP), to determine if an AK-47 existed in the segment. Repeating this process
for over 300,000 unique windows across an image, he produced an AK-47 count for each
video still. Table 2.1 contains training resources available and time required for each
algorithm Jones [15] tested.

Table 2.1. Training time statistics from Jones’ [15] thesis.
Algorithm Processor RAM Training Time
Viola-Jones Classifiers Intel Core 2, 2.4 GHz 2GB 48 hours
SVM Intel Core 2, 2.0 GHz 4GB 2 seconds
MLP Intel Core 2, 2.0 GHz 4GB 2 seconds

Jones [15] provided the times in this table for training the components of his
algorithms on his 6,806 total positive and negative training images.

Jones [15] measured the performance of his algorithms through a comparison of recall and
FPR on the test image set described above. He presented this information in the form of a
receiver operating characteristic (ROC) curve and Figure 2.2 displays his overall results for
his algorithms. This curve will serve as the basis for our performance comparison.
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Figure 2.2. Jones’ [15] AK-47 detector performance. Notably, Jones’ [15]
scale for his FPR is at 10−4. His algorithm produced a classification at over
300,000 window positions across each frame to predict how many AK-47s
existed in an image. The importance of limiting false positives with such
a large number of classifications per image led Jones’ [15] to only display
results with an extremely low FPR. Source: [15, Figure 5.8].

2.2.2 Detection of Ships by David Camp
The second experiment we reference simulates the use case for intelligent UASs discussed
in Section 1.4. David Camp published the results of this experiment at NPS in December
of 2013 [16]. Camp’s archived training image set from this experiment consists of 110
instances of ships and 97 instances of sky, sea, and coastline with and without buildings that
do not contain ships. These numbers vary slightly from his reported 105 images for both
categories. His test set possesses 405 images containing ships and 100 images not containing
ships, similar to the training set. Camp scaled all test images at eight levels, from full scale to
five percent scale, to simulate classification at different distances from a sensor. He applied
several feature extractors and methods for classification to determine which provided the
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strongest performance, but for the sake of brevity we only discuss his top two classifiers.
The first is what Camp labeled a HYBRID detector, combining histogram of oriented
gradients (HOG) and bag-of-words (BOW) algorithms into one classifier. The second was
a deformable parts model (DPM). Like Jones, Camp also employed the OpenCV software
library for all of his experiments. To measure performance, Camp calculated recall and
FPR to produce a ROC curve. Table 2.2 presents information about runtime performance
of the algorithms while Figure 2.3 presents his ROC curves for comparison of classification
performance.

Table 2.2. Evaluation runtime statistics from Camp’s [16] thesis for a single
image.

Algorithm GPU (RAM) Evaluation Time
HYBRID NVIDIA Quadro 2000 (1GB) 0.5 seconds
DPM 2 seconds

(a) HYBRID ROC curve (b) DPM ROC curve

Figure 2.3. Camp’s [16] best ROC curves at varying scales for performance
comparison. We include both ROC curves as the HYBRID algorithm per-
forms best across all scales, but the DPM algorithm achieves the best perfor-
mance at larger scales. While Camp labeled the x-axis with 1 − Precision,
from his paper he describes this value as equivalent to the FPR. Both
algorithms show a significant decrease in performance on smaller scales.
Source: [16, Figure 55, Figure 18].
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2.2.3 Detection of Screenshots by Lauren Sharpe
The final experiment for comparison autonomously detects whether or not an image is a
screenshot. This experiment simulates the use case for a national level agency that must sort
through volumes of images to identify those that meet a specific threat profile or criteria. In
this case, the images soughtmay be from a terrorist group hiding instructions for itsmembers
in posts of a screenshot. A group might do this versus posting via traditional methods if
they believe the U.S. Government is searching text posts autonomously. Separately, if this
agency was scanning collected hard drives, screenshots could require human inspection
to determine if a drive’s owner was producing manuals or instructions sets for nefarious
purposes, like bomb making. In contrast to marking a screenshot for review, this tool
could also serve to filter out screenshots from further analysis by humans if an agency
considered them noise. Lauren Sharpe [17] first published the results in this section in her
NPS thesis in June of 2013. For her work, Sharpe [17] collected screenshot images from
the Wikimedia Commons’ user-tagged Screenshots category [25]. This source produced
a positive image set of 2,423 images. For negative examples, Sharpe [17] utilized the 13
Natural Scene Categories dataset [26], containing scenes of furniture in homes, highways,
buildings, coastlines and more. The total non-screenshot examples, or other category,
amounted to 3,694 images. Her negative example set only contains grayscale images while
her screenshot examples contain color images. Sharpe [17] deployed OpenCV, the Python
Image Library (PIL) [27], and Orange [28] software libraries to implement her algorithms.
She extracted multiple feature sets with OpenCV and PIL and fed them into an a Naïve
Bayes Classifier from the Orange library. She implemented ten-fold cross-validation across
2,400 positive and 2,400 negative example images to evaluate her algorithm. Table 2.3
depicts both the training and evaluation runtime statistics of Sharpe’s [17] best performing
algorithm. She combines these times due to her cross-validation method. The four feature
sets she manually selected and tested are: Line Segment Percentages (1), Line Segments
Binned by Length (2), Intensity Entropy (3), and Intensity-Based Histograms (4). Table 2.4
depicts the performance of Sharpe’s [17] algorithm testing 11 combinations of these feature
sets. Also, Figure 2.4 depicts a ROC curve to display performance of the first feature set
only. These are the metrics that will serve as a baseline for comparing performance to our
algorithm implemented in TensorFlow.
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Table 2.3. Training and evaluation runtime statistics from Sharpe’s [17]
thesis.
Algorithm Images VM Resources Train & Test Time

All Features 4800 32-bit VM with 1GB RAM 14 minutes
All Features 1 32-bit VM with 1GB RAM 0.18 seconds

Sharpe [17] ran her algorithms in a virtual machine running on a Windows 7 system
with 8GB RAM and an Intel Core i7-2600 processor. She did not provide further
details than those listed in this table as to the total resources this virtual machine
had access to from its hosted system. (i.e., number of processor cores)

Table 2.4. Sharpe’s [17] screenshot detector results for combinations of four
feature sets. Source: [17, Table 4.9].

Sharpe [17] conducted experiments for the 11 combinations of her four feature
sets in this table. For each combination containing the feature set Line Segments
Binned by Length (2) or Intensity-Based Histograms (4) she varied the number of
Line Bins and Color Bins, respectively. She tested five bin sizes (10, 50, 100, 500,
and 1000) for each. The line bins grouped line segments by their length and the
color bins grouped pixels in bins by pixel-value intensity. Sharpe [17] depicts only
the best performing number of bins for each feature set combination in the table.
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Figure 2.4. ROC curve for Sharpe’s [17] first feature set. This is the only
ROC curve that Sharpe [17] provided in her report. Even though it is not
for the best performing algorithm, which combined all four feature sets, we
include it for comparison to our ROC curves. Each line in the plot represents
results for one of ten iterations of the ten-fold cross-validation Sharpe [17]
conducted for each algorithm. Source: [17, Figure 4.16].

2.3 Overview of CNNs and Modern Models
This section describes the key ideas that make our experiments possible and the underlying
technology behind the models we apply with TensorFlow. First, we present a swift intro-
duction to the convolution operation, the convolutional layer, and the pooling layer as the
building blocks for the CNNs from our experiments. The next section explores the concept
of deep learning and its benefits when combined with convolutions in deep convolutional
neural networks. A third section covers the importance of quality training data and some
of the large modern datasets available. Fourth, Section 2.3.4 introduces and describes the
specific models, already configured and available in TensorFlow, that we evaluate in the
experiments detailed in Chapter 4. Finally, we discuss transfer learning and some of the
key techniques available to improve performance of these models during training. A note
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to the reader: we will interchange the common terms network, model, and architecture to
describe the algorithms. These sections serve as the academic foundation for our research,
which for the most part TensorFlow’s application program interface (API) abstracts away,
but these concepts remain essential to understanding what the software does.

2.3.1 Convolutional Neural Networks
The academic community has thoroughly documented artificial neural networks (ANNs)
and their usefulness across a spectrum of data science problems and we will forgo an
introduction in this paper. Instead, we focus on a specific type of ANN, known as a deep
convolutional neural network, which sit at the core of most of the recent breakthroughs
in computer vision related tasks [12]. The academic competition inspired by challenges
like ImageNet, introduced in Chapter 1 and discussed later, fueled improved versions of
CNNs [13], [29]–[31] with near human-level performance on complex image classification
tasks [1]. Before we dive into details of these algorithms, we discuss the fundamental
building block that makes a neural network convolutional; the convolution itself. We then
give, a brief summary of other CNN components before moving on to a discussion of more
complex modern CNNs.

The simple example in Figure 2.5 provides an intuition for the inner workings of a convo-
lutional layer. Consider a vision algorithm designed to provide an autonomous system the
ability to “see” a printed tic-tac-toe board. This ability will serve as a first step in building
a complete system to compete with a human being. In our example image from the figure,
each block in the image represents a pixel with a value of zero for white and one for black.
Our algorithm will engage two convolutional kernels, or filters, that contain the patterns
to match in portions of our image. By matching, we hope to identify key locations in the
tic-tac-toe board. Through the convolution operation, which mathematically executes a
dot product, a single output value gets produced for each window location in the image.
Logically, we determine the spacing of the evaluation locations by starting in the upper left
hand corner and repeatedly sliding the center of the window right by two pixels, a stride of
two. Wemove the corner-detection filter (highlighted in blue) across the top three rows until
reaching the right edge of the image and then start over again on the left side but two rows
lower. This process continues until reaching the bottom right edge of the image. The space-
detection filter at the bottom of the image (highlighted in red) mirrors the corner-detection
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filter for this illustration. Typically, convolutional layers calculate the outputs for all filters
across an entire image simultaneously. They do so through efficient matrix multiplication
and addition. The gold boxes in the second row of the figure show the calculations that
take place at each location to determine the output. We omit multiplications resulting in
zero because of an image or filter value of zero and thus only the pixels in the yellow boxes
affect the output of the convolution at this window position. The final row of the figure
depicts the locations where our two filters produce their maximal output. These locations
correspond to the corners defining the board for the corner-detection filter and the possible
play locations for the space-detection filter. Figure 2.5 presents only the basic principles of
the convolution for a two dimension, one channel example. An inquisitive reader can find
an explanation of concepts like padding, convolution of multiple channel filters across the
red, green, and blue channels of an image, and weight initialization in resources such as
Stanford’s online course on CNNs [32].
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Figure 2.5. Simple example to introduce the convolution.
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A few key concepts remain to complete an overview of CNNs (see Nielsen’s online textbook
for a more thorough discussion [33]). First, the filter values, also known as weights, are one
component a CNN updates during training. These networks essentially learn, by labeled
example images, to recognize patterns from raw pixel values that indicate a certain type
of object exists in the image. The initial convolutional layers possess multiple filters with
learned weights that draw out meaningful features from groups of pixels across an image;
edges, color patterns, corners and more. Modern CNNs learn hundreds of different filters
across their many layers, the first filters applied to the raw pixel input and later filters
applied to the output values of previous convolutional layers. Each convolutional-layer
output summarizes how strongly a learned pattern exists in a group of pixels or previous
layer outputs. In our example from Figure 2.5, a single output value for each filter represents
nine pixels at each evaluation location. The outputs of the convolution are run through an
activation function which makes a determination if a pattern is prevalent enough to pass to
the next layers. Second, the pooling layer is another key layer in CNNs [32]. These layers
follow convolutional layers and reduce the output values passed to later layers. Max-pooling
is a common pooling layer function and it simply takes a max of adjacent outputs from the
convolutional layer, perhaps reducing four adjacent outputs to the largest output of the four.
Convolutional and pooling layers then get repeated with several other innovative techniques,
such as dropout [34], employed at certain layers. In this manner a CNN pushes only the
most strongly detected feature information to later layers [2] to drive the algorithm towards
a set of output neurons, each corresponding to a specific classification. Now that we have
established a description of the convolution and the general construction of a CNN, we
will proceed to an examination of what makes such networks “deep” and how this depth
provides additional expressive capacity.

2.3.2 Deep Learning
We start with a definition from an expert in the field of deep learning, Yoshua Bengio:
“A deep learning algorithm is a particular kind of representation learning procedure that
discovers multiple levels of representation, with higher-level features representing more
abstract aspects of the data” [2]. By simply repeating combinations of the layers discussed
in the previous section, a CNN becomes deep. Compared to previous machine learning
algorithms, deep learning allows an automated discovery of higher-level features and ab-
stractions from raw input data. Deep CNNs do not require manual extraction of features
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prior to feeding inputs into a neural network, as seen in the previous methods discussed
in Section 2.2. These algorithms first learn low-level features, which typically look like
simple edge and pattern detectors tailored to the training data [35]. These first features,
closer to individual pixels than humans can inspect or identify efficiently, allow a neural
network to then learn larger abstractions through combinations of the features. Referring
back to Figure 2.5 and our tic-tac-toe example, a next convolutional layer may combine the
abstractions of a playable space identified by the space-detection filter, surrounded at all four
corners by intersecting lines identified from the corner-detection filter, as a new abstrac-
tion of the center playable space of the tic-tac-toe board. Expanding this simple concept
of combination across many more layers, certain types of deep learning neural networks
become surprisingly efficient at classification requiring a high level of abstraction [2]. For
this reason, deep learning algorithms serve as the base for the significant improvements of
artificial intelligence applications in the field of computer vision occurring rapidly in only
the past few years [2].

With a brief introduction behind us, we will explore the unique benefits and challenges
of employing deep architectures. The benefit, as cited in Chapter 1, is the reduction of
state-of-the-art error rates by 30% to 50% on complex benchmark competitions [2], like
ImageNet. Through this competition, the importance of network depth emerges as all recent
top performingmodels possessed depths between sixteen to thirty layers [31]. The challenge
lies in the fact that as networks get deeper they are more difficult to train [31]. More layers
mandate more trainable parameters. As a result, deep CNNs depend upon thousands of
labeled examples to train to convergencewithout overfitting [29]. Alongwith a need formore
data, deep networks take longer to train and require specialized hardware to do so efficiently.
Specifically, a programmer can now train deep learning algorithms across multiple GPUs,
instead of a single GPU or many traditional CPUs, to speed up training by several orders of
magnitude [2]. These hardware advances enable researchers to train hundreds of iterations
of their algorithms, adjusting key hyperparameters like learning rate, to achieve optimal
performance and reap the benefits of higher levels of abstraction [29]. Still, the complexity
of modern architectures can lead to training times measured in days to weeks [30] to obtain
the performance of the algorithms winning classification competitions. In summary, while
the performance benefits impress, training deep algorithms proves difficult and limitations
exist to simply continuing to increase the depth to further improve performance [31].
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2.3.3 The Importance of Data and Publicly Available Image Sets
With increases in the complexity of deep CNN architectures, the importance of quantity
and quality of training examples for learning also increases. Some experts even go as far
as making the argument: “As a rule of thumb, a dumb algorithm with lots and lots of data
beats a clever one with modest amounts of it” [36]. This section introduces techniques
for augmenting smaller datasets and some publicly available image sets to serve as a
starting point for training and testing algorithms. Several methods exist that reduce the
number of ground truth examples necessary for convergence: smarter weight initialization;
training first with artificial data [37]; and transfer learning [38], a method for repurposing
already trained networks. Of these methods we specifically benefit from transfer learning,
which we will examine in Section 2.3.4. Still, there remains a need for a large number
of quality training examples when implementing deep CNNs. There must be enough
labeled data to first train reliable low-level feature extractors and also build the mid-to-high
levels of abstractions necessary to benefit from deep architectures. Furthermore, it can be
difficult [39], but not impossible [35], to know what features a trained neural network is
learning in order to classify an image. With too few examples, all training images could
possess a similar trait (like the same background), unrelated to the object for detection,
that an algorithm learns as an indicator of the object. Thus, if we want to be sure that the
network learns the object we intend, our datasets must possess sufficient quality examples:
that is, enough instances of an object in a variety of realistic settings. We must show an
algorithm examples of that object in different lighting conditions, from different angles, and
in the type of scenes in which we want to be sure our algorithm works. Fortunately, there
are large and diverse datasets available to help overcome this challenge. Table 2.5 presents
some of the largest available to aid the DOD in machine learning and image classification
related research; our research specifically benefited from ImageNet.

A final dataset-related concept is the trend of complex networks to perform image prepro-
cessing during training to artificially increase the size of the datasets in hopes of reducing
overfitting [29]. Since the networks usually require a constant input size, some combination
of scaling and cropping is necessary to make images fit in each network due to the variety
of sizes and resolutions present throughout datasets [29]. Further, to ensure brightness
invariance, networks may normalize pixel brightness across a batch of images or randomly
adjust it to ensure that illumination of an object in an image does not affect its classification.
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Table 2.5. A sample of online image sets for training deep networks.
dataset # Categories Images DOD Related Labels
ImageNet [1] 1,000 1,331,167 rifle, assault rifle, tank, bulletproof

vest, and more
COCO [40] 80 300,000 airplane, car, truck, person
Open Images [41] 6,000 9 Million warship, tarmac, rifle, and more

This table lists some of the labels from each set that apply to the DOD. ImageNet
is the most recognized and organized of the datasets, however it does not provide
licenses for republishing the images. The Microsoft sponsored COCO is the most
unique. It offers five captions for each of its images that attempt to explain how
objects in the image are interacting. Open Images, created by Google, is a library
of URLs to labeled image data that strives to contain only creative commons
license images, lifting restriction on republishing and reusing the images.

Other techniques involving random distortions of the training images, like cropping, flip-
ping from left to right, or scaling, can artificially increase the number of training examples
by creating multiple unique observations from a single image [42]. Preprocessing methods
vary by model and TensorFlow implements those prescribed by the model’s designers while
allowing a user to adjust the preprocessing steps as desired.

2.3.4 Modern Models and Performance Improvements
The trend of researchers to open source their image classification algorithms [13], [29]–
[31] makes them available for others to apply to new problems with little effort. Even
more convenient, a number of software libraries quickly implement the newest algorithms.
This section introduces three successful deep CNNs, provides a brief summary of their key
contributions, and performs a high level comparison of the algorithms. Experts apply many
innovative techniques across the field of deep CNNs that the creators of these algorithms
cover in cited papers but we omit from our discussion for the sake of brevity.

The first algorithm, trained by Oxford’s Visual Geometry Group (VGG) and thus known
as VGG Network (VGGNet) [30], secured a first and second place position in the ILSVRC
2014. There are three different versions of this network available for testing in many open-
source libraries, varying the number of convolutional layers to provide network depths of
11, 16, and 19 while keeping other parameters the same. VGGNet’s contribution came by
showing that a network with very small convolution filters, three by three pixels as compared
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to other networks with larger five by five or seven by seven filters [42], could achieve state of
the art performance by simply increasing network depth. This depth increase was possible
in the network due to the decreased number of trainable parameters required by the smaller
convolutions [30]. Figure 2.6 depicts the largest VGGNet architecture in a side-by-side
comparison with Microsoft’s ResNet model and Table 2.6 presents a high level comparison
of the network to another recent model.
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Figure 2.6. VGGNet and ResNet architectures. We recreate this figure from
He et al. [31, Figure 3].
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Microsoft’s ResNet [31], which took first place in the 2015 competitions for both ILSVRC
and COCO, is a second algorithm of interest. ResNet introduced the latest significant
improvement for state-of-the-art CNNs [32] through its employment of residual layers. In
seeking to develop deeper networks, and overcome some of the challenges mentioned in
Section 2.3.2, Microsoft’s research team sought to simplify the training process. The team
created residual layers which they discuss in detail in their paper [31]. Here, we will only
attempt to establish an intuition of the benefit from the residual layers. These layers simply
forward the inputs of previous layers ahead two layers, as depicted by the arrows on the right
of Figure 2.6, along with new information pulled out from the previous convolutional layers.
In this manner a convolutional layer has all of the information provided to previous layers
available to it and only has to extract additional information, or a residual mapping, if it
improves classification performance. This affords a network architect the ability to increase
the number of layers and know that a networkwill converge on the optimal number. Residual
layers ensure this by allowing a layer to forgo extracting additional information and to simply
pass the output of previous layers forward [31]. This method introduces efficiencies that
lead to significantly shorter training times [13], [31]. Table 2.6 includes details of two
ResNet models for comparison.

Google’s Inception networks are the final model we introduce. The first version of the
network, also known as GoogLeNet, won one of the ILSVRC 2014 challenges [42]. Since
this competition, Google released several iterations of the network; we will focus on two.
First, Inception-v3 [12], for its computational efficiency, making it suitable for use in
resource-constrained environments, coupled with its state-of-the-art performance. Next,
Google’s latest iteration of the network, Inception-ResNet-v2 [13], which incorporates
Microsoft’s residual layers to further reduce classification error rates. Figs. 2.7 and 2.8
depict the architectures for these networks and Table 2.6 provides their key performance
specifications.
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Figure 2.7. Illustration of the Inception-v3 architecture. From the left side
of the figure, the Inception-v3 combines convolutions and max-pooling lay-
ers to quickly pull out relevant patterns from the pixel values to reduce the
299x299x3 input images to a 35x35x192 output after the second max-pooling
layer. This smaller output represents the low-level features pulled from the
image. The Inception-v3 model then feeds the smaller output through mul-
tiple paths of what Szegedy et al. [12] call Inception modules, to detect
higher level abstractions from the features. The salmon-colored concatena-
tion nodes in the diagram represent a stacking of the outputs from all of
the Inception module paths to provide them to the next Inception module.
Repeating several variants of these modules, finally the Inception-v3 model
feeds the output to a fully-connected layer (second node from the right)
with 1,001 neurons representing the 1,000 ImageNet categories along with
a background category. Source: [43].
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Figure 2.8. Illustration of the Inception-ResNet-v2 architecture. The
Inception-ResNet-v2 model contains a similar architecture to the Inception-
v3 model discussed in Figure 2.7. Two key differences are the fewer con-
volutions in each Inception module (defined in Figure 2.7) but significantly
more repetitions of these modules to allow a greater network depth. This
figure depicts the residual layer connections (introduced by He et al. [31])
as purple circles after three variants of Inception modules. These residual
connections facilitate the blocks of 10 or 20 repetitions (depicted in the
color boxes) for the three modules. The first six and last five nodes of the
Inception-ResNet-v2 architecture match Inception-v3. Source: [43].

The models presented in this section are complex, but their success at solving challenging
image classification tasks makes them worth studying. Teams of experts in the field of
machine learning developed each of these algorithms. Few individuals, or even teams,
could independently create and employ the architectures and methods necessary to achieve
similar cutting-edge performance. Fortunately, since these architectures are made available
publicly by their creators, and then implemented in software through open-source libraries,
groups that could not produce them independently have the ability to employ them.

2.3.5 Training Methods
With a discussion of state-of-the-art CNNs’s performance on the ImageNet dataset com-
pleted, in this section we will look to applying them to organization-specific image classifi-
cation tasks. As discussed earlier, these networks require large amounts of quality training
data to be successful. If an organization has enough labeled training data available, it
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Table 2.6. A top-level overview of three deep CNNs.
Algorithm Top-1 Err. (%) Top-5 Err. (%) Parameters FLOPs
VGGNet 19 24.7 7.1 144M 19.6G [31]
ResNet 34 21.53 5.6 ~50M 3.6G
ResNet 152 19.38 4.49 – 11.3G
Inception-v3 19.47 4.48 25M 5.0G
Inception-ResNet-v2 18.7 4.1 – –

All comparisons are for a single model for top-1 and top-5 classification error
rates from the ImageNet 2012 validation dataset. FLOPs refer to the number
of multiply-add operations for evaluating an image in the network. All numbers
are from the papers [12], [13], [30], [31] released in conjunction with the ILSVRC
challenge, or later upon updates of the architectures, unless otherwise cited. Mi-
crosoft did not provide the parameter counts for its ResNet 34 and ResNet 152
networks. The ResNet 34 parameter count is an estimate we calculate from Fig-
ure 2.6. VGGNet’s three fully-connected layers at the end of its network account
for about 100M of its parameters. The other networks only apply a single fully-
connected layer; thus, they contain significantly fewer parameters. VGGNet and
ResNet implemented an average of ten different crops across an image during
evaluation whereas the Inception networks average twelve. Empty locations in the
table are for figures not provided by model creators and not easily calculated due
to model complexity.

is possible to train models from scratch on new classification categories. Realistically,
acquiring and labeling a sufficient volume of training data for each new problem proves
inefficient and severely limits the tasks for which users can apply these powerful models.
Thankfully, another training method called transfer learning [38] exists. This method cap-
italizes on the models’ several levels of abstraction, as discussed in Section 2.3.2. Since
the lowest-level-convolutional layers learn to extract features like edges and color patterns
that apply to any category of classification, users do not need to retrain these layers for each
new task. Similarly, as noted in [38], the middle and higher levels of abstractions also prove
useful in most tasks for networks trained on diverse classification problems like ILSVRC.
Thus, it is possible to simply replace the last level of abstraction, the categories themselves.
Starting with a network trained on a large image set like ImageNet, one can simply retrain
the last fully-connected layer of network. See the darker purple oval second from the right
of Figure 2.8 to gain an appreciation for all of the layers to the left of this purple oval that
we reuse with transfer learning. With this method, it is possible to reduce training time
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from days to minutes, and the number of images required from tens of thousands to only
hundreds, while still achieving state-of-the-art performance.

With an understanding of supportive policy for acquiring TensorFlow in the DOD, previous
NPS experiments and image sets that serve as potential application areas, and state-of-the-
art models and training methods available through the software library, it is now possible
to develop experiments to provide empirical evidence of TensorFlow’s suitability for DOD
specific applications.
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CHAPTER 3:
Methodology

This chapter presents the logic behind our experimental design as we pursue answers to our
research questions. Through our experiments we explore Google’s TensorFlow software
framework and evaluate its usefulness across the DOD. To accomplish this, we compare
the performance of algorithms implemented with the software to three previously employed
machine learning methods and experiments conducted at NPS. Here, we first provide
the scope of our research since we do not test every potential application of TensorFlow.
Then we discuss the reasoning behind our design of three experiments within our scope.
Overall, this chapter justifies our experimental design and our selection of applications of
the software we test.

3.1 Scope
TensorFlow is a significant software library with more functions and applications than we
are able to test. Our evaluation of TensorFlow focuses on object detection as a starting
point to make recommendations for future DOD research towards the implementation of
open-source software for other machine learning tasks. To further scope the problem, this
study will not:

• Conduct an analysis of the other available open-source frameworks
• Implement new algorithms for image classification
• Complete testing of these algorithms in operational environments
• Test all TensorFlow use cases (i.e., speech and text recognition and prediction)

The purpose remains to provide a logical and empirically based recommendation for the
DOD to pursue open-source deep learning software solutions in the future. In setting out
to achieve this end and answer our research questions, three lines of effort for applying
TensorFlow arise within our scope: employing TensorFlow-based algorithms without mod-
ification when an existing category applies to a current object; repurposing such algorithms
for DOD-specific use cases through transfer learning when 50 or more training images
exist for an object; and training proven algorithms from scratch to build new object de-
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tectors when many thousand training examples are available. We select these applications
of TensorFlow to provide a sufficient survey of the software’s utility with respect to DOD
requirements. Described in detail in upcoming sections, we find reasons for applying one of
these lines of efforts to each image set from the three NPS theses introduced in Chapter 2.

3.2 Employing TensorFlow-Based Algorithms without
Modification

The trained Inception models available through TensorFlow already afford cutting-edge
classification performance on the 1,000 categories from ILSVRC 2012. We sought to apply
these algorithms without modification to a DOD media analysis problem. Jones’ [15] AK-
47 image set met the necessary criteria as two categories from the ILSVRC 2012 training
set appeared useful for detecting these weapons in images: the rifle and the assault rifle,
assault gun (AR) categories. The presence of these relevant categories allows us to simply
run Jones’ [15] test set images through the algorithms to establish their ability to identify
weapons, like AK-47s, in intelligence-related images. Since TensorFlow provides access
to multiple Inception models, each one reportedly improving performance on the ILSVRC
2012 validation set [12], [13], we choose to repeat the evaluation for each version. This
repetition captures a snapshot of Google’s improvement of the algorithm as an AK-47
detector over the five iterations. After seeing high performance on Jones’ [15] test set,
we then decided to conduct tests of the best performing model on a collection of more
difficult AK-47 images and negative examples to further stretch the algorithm. Finally,
one of our research questions asks how deep CNNs implemented in TensorFlow perform
in resource-constrained environments. In pursuit of this answer we chose to evaluate the
five Inception models with an ideal allocation of compute resources and also with limited
resources comparable to those available in military-deployed environments. The overall
purpose of this experiment is to prove the power of open-source algorithms available through
TensorFlow without requiring modification and to show the promise of future performance
improvements based on past revisions.
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3.3 Repurposing Available Algorithms with Transfer
Learning

For a second image set, the collection of ship images from Camp [16], we repurpose a
single Inception model using transfer learning to build a binary classifier for ship detection.
The major factor driving our decision to apply transfer learning to Camp’s [16] image set
was the limited number of training examples in the dataset. Also, ship-related categories
in the ILSVRC 2012 image set produce a confidence that the previous-learned features
are relevant for distinguishing Camp’s [16] ship or no ship categories. We elect to retrain
a single Inception model for the sake of simplicity. For this experiment, we select the
Inception-v3 model due to its balance of performance and also computational efficiency
(see Table 4.3). Since the related operational scenario for a ship detector in a surface-based
UAS would likely mandate constrained compute resources, the selection of Inception-v3
is logical. Further, Google provides a tutorial and script, cited later in Section 4.2.4, that
simplifies the process of conducting the experiment. In completing this second experiment,
we strive to prove the applicability of TensorFlow-based object detectors for problems with
limited training examples and in resource-constrained systems.

3.4 Training a Deep CNN from Scratch
The third and final experiment trains three publicly released deep CNNs from scratch and
tests their performance in identifying screenshots from Sharpe’s [17] image set. Since deep
algorithms contain significantly more learnable parameters than other machine learning
algorithms, we understood that our three previous image sets did not contain enough
examples for both training and evaluation. Hence, Sharpe’s [17] image set is the focus of
the third test of TensorFlow as her subject, screenshots, proves the simplest of the three
to acquire. We had to assemble a new training set for this experiment. By doing so, we
explore TensorFlow’s utility in applying a model tailored down to the lowest-level-feature
extractors to meet defense-specific media analysis needs. The goal of our final experiment
is to prove that when an organization in the DOD possesses a substantial labeled image set,
they can train a deep CNN from scratch with open-source software and algorithms.

This concludes the logic behind our experimental design. Chapter 4 focuses on providing
specific details and processes we execute to perform these three experiments.
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CHAPTER 4:
Experiments

This chapter presents the details and processes for employing deep CNNs in TensorFlow
on the three previous image sets introduced in Chapter 2. For each experiment, we discuss
the image sets and steps for training and evaluating the models along with the performance
measures applied to produce our results for Chapter 5. Throughout this chapter, it is
worth remembering the goal of our experiments: to provide an empirical assessment
of TensorFlow’s applicability in the DOD through completing experiments that simulate
potential use cases.

4.1 AK-47 Detection
This section describes our experiment applying the five Inception models available in
TensorFlow to Jones’ [15] and other AK-47 test sets. We first describe details for all of
the image sets tested. Then, we cover the training of the Inception models conducted
by Google researchers and describe our process for evaluating the models. Finally, we
introduce our performance metrics for all of our experiments and compare them to specific
metrics developed by Jones [15].

4.1.1 AK-47 Related Image Sets
As a starting point, we introduce the images employed for training and evaluating the
Inception models (see Table 4.1). Google trains these algorithms to classify images into
1,000 categories from the ILSVRC 2012 training set. In order to determine if an AK-
47 exists in an image we reference the AR category and the rifle category. The table
combines the remaining 998 other categories Google employed to train the Inception
models. We evaluate the models’ performance on three sources of test images. The first
is from Jones’ [15] experiment. The second, AK-47 Internet Images, is a collection of
AK-47 images from the NPS Vision Lab database in dynamic settings, like urban combat
environments. The other category from this set possess images with groups of people in
congested environments: in living rooms, large groups posing for photographs, and crowds.
In the third test set Rifle-Like Images, we gathered 100 images from the internet with people
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carrying objects like paintball guns, lawn and power tools, and sports equipment. We chose
these images to ensure the algorithm did not show bias towards depictions of people holding
everyday objects. We include the last two image sets for testing in an attempt to stretch the
algorithm further than the more generic video stills provided by Jones [15].

Table 4.1. Training and test sets for the AK-47 experiment.
Training Sets Category Number of Images

ImageNet [1]
assault rifle, assault gun (AR) 1,172

rifle 1,475
other categories 1,278,520

Test Sets

Jones [15] AK-47 687
other 7,045

AK-47 Internet Images AK-47 107
other 143

Rifle-Like Images other 100

4.1.2 Inception Training
For this experiment we rely on training conducted and documented by Google researchers
for the following Inception models: v1 [42]; v2 and v3 [12]; and v4 and ResNet v2 [13]. We
conduct no further training or manipulation of these models for reasons stated previously.
The trained models, implemented in the TensorFlow-Slim [44] library, are available for
download [45].

4.1.3 Inception Models Evaluation
After downloading the pretrained models, we modify scripts provided from TensorFlow
tutorials [46] to conduct our experiment. The script originally took a single image as
input and produced the top-five classification scores. Our modifications allowed us to run
all test images from a file directory through the models one image at a time and save all
1,000 classification scores. We ran the experiments with the Python 2.7.12 interpreter and
TensorFlow version 0.11.0rc2. We repeat the following process for each of the five Inception
versions. The software first reads an image from a file and decodes it into a bytecode format
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that the Inception models require for input. It also conducts a bilinear rescaling and then
a central crop on the image to reduce it to the required 299 by 299 pixel input size. After
preprocessing, we feed the image through the model while keeping scores from the three
test sets separate. We then save the model’s output per image: a score for each of the 1,000
ILSVRC 2012 categories (plus a background category score that we ignore) with the sum
of the scores equaling one. Think of these scores as a probability of each object existing in
an image according to the model.

We repeat our evaluations of the test images twice to provide time estimates for classifying
images with ideal hardware and in a resource-constrained environment. Table 4.2 displays
the hardware devices and specifications employed throughout all three of our experiments.
Using the TITAN Black GPU, we provide times for processing the AK-47 test set as single
images through the Inception models in Table 4.3. For the constrained tests, we engage
a portion of the i7-5820K CPU’s resources through a virtualized Docker [47] container
with only two cores of the processor and 4GB of RAM. The times represented in the table
measure the entire process to accomplish the image classification for all of the three test
sets: first the software restores the trained model version to memory; then, it runs a single
image at a time through the model, including preprocessing; next, the script saves image
scores in a comma-separated value file by directory; and finally it removes the model from
memory. The table also presents the average time per image by dividing the total time by
the number of images in all three test sets. While not a measure of the time it takes to feed a
single image through these models, our measurement provides an estimate for how long it
will take for the algorithm to classify a group of images and present them for input to other
software modules or store them in a database. There are possible time savings, which we
will present in Section 4.3, if users store the images in a format that allows the model to
process them in groups called batches, typically ranging from sizes of 30 to 100 images.

4.1.4 Performance Metrics
Having gathered the raw output scores by category for each of the models, we compare them
to the true labels of the test images to grade the classification performance of the Inception
versions. First, we separate the AR category score and the rifle category score from the raw
output scores. Then, we consider individually the AR score and the rifle score. To generate
a third score for evaluation, we add the previous two category scores together. Finally, we
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Table 4.2. Hardware employed for experiments.
GPUs Clock Speed Cores Memory(GB) Memory Interface
TITAN Black 980 MHz 2,880 6.144 GDDR5
1080 Ti 1.582 GHz 3,584 11 GDDR5X
CPUs
i7-5820K 3.30 GHz 12 32 DDR4-2400
i5-3317U 1.7 GHz 2 4 DDR3

Both GPUs are from the NVIDIA GeForce GTX series. The TITAN Black resides
in a compute node on the NPS Hamming Supercomputer. The 1080 Ti resides
in a personal desktop computer. Both CPUs are from the Intel Core series. The
i7-5820K is in the same desktop computer as the 1080 Ti GPU. The i5-3317U
exists in a laptop computer and provides for an evaluation of TensorFlow in a
resource-constrained environment.

Table 4.3. Inception models’ image classification times.
Inception Version Total Time Time per Image Images / sec
GPU
v1 141.7 0.0175 57.0
v2 174.2 0.0216 46.4
v3 276.6 0.0342 29.2
v4 485.4 0.0601 16.6
ResNet v2 565.7 0.0700 14.3
CPU
v1 968.1 0.120 8.3
v2 1128.8 0.140 7.2
v3 2979.9 0.369 2.7
v4 5711.0 0.707 1.4
ResNet v2 6071.9 0.751 1.3

All times are in seconds. We ran the image evaluation script on both the TITAN
Black GPU and a portion of the i7-5820K CPU’s resources through a virtualized
Docker [47] container with only two cores of the processor and 4GB of RAM. See
Table 4.2 for hardware details. We ran a total of 8,082 images through each model
to generate the time values displayed in this table.

compare these three scores to a sliding threshold of 1,000 equally spaced values between
zero and one. At each, a score above the threshold value indicates a positive classification
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by the model. We then count the true positives, false positives, and true negatives for our
labeled test images and use these counts to develop our metrics for the 1,000 thresholds.

From these counts, we calculate the recall, FPR, and F-score as defined in Equations 4.1,
4.2, and 4.4. We derive precision (defined in Equation 4.3) as a necessary intermediate step
to provide the F-score. As shown in Equation 4.4, the F-scoremetric is the harmonic mean
of both precision and recall which we provide to identify an optimal threshold for classifier
performance. We set β equal to one to attribute equal importance to both precision and
recall. Finally, we define accuracy here for completeness but only calculate it to compare
model performance during training for the final two experiments. Plotting the recall versus
FPR values at all of the 1,000 thresholds for the three different scores produces our ROC
curves presented in Chapter 5.

We employ the following abbreviations in the equations in this section:

• TP = True positives
• TN = True negatives
• FP = False positives
• PE = Total number of positive examples
• NE = Total number of negative examples

Equations for recall, FPR, accuracy, and precision [48] and F-score [49]:

recall =
TP
PE

(4.1)

FPR =
FP
NE

(4.2)

precision =
TP

TP + FP
(4.3)

F-score =
(β2 + 1) ∗ precision ∗ recall
β2 ∗ precision + recall

(4.4)
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accuracy =
TP + T N
PE + NE

(4.5)

4.1.5 AK-47 Experiment-Specific Performance Metrics
We must note that our results do not directly compare to Jones’ [15] results. While we both
present ROC curves as a performance measure, Jones’ [15] algorithm evaluates an image
several times before providing a count of AK-47s in the image instead of an overall image
classification. Thus, his definition of recall and FPR reproduced in equations 4.6 and 4.7
vary from the standard definitions. Still, we present a general comparison of performance
in Chapter 5.

Equations from Jones’ [15] thesis:

recall =
NumberO f WeaponsDetectedInSet

TotalWeaponsInSet
(4.6)

FPR =
NumberO f FalsePositivesInImageSet

Total AreasChecked
(4.7)

4.2 Ship Detection
The second experiment sets out to apply deep CNNs to a DOD image analysis task, ship
detection, even though few training images are available. This section describes the image
sets, image distortions, optimizations to reduce training time, and the training process for
reapplying the pretrained Inception-v3 model from the previous experiment. Through these
methods we replace the model’s 1,000 possible categories to produce only two classification
scores; ship or no ship. The evaluation process and performance metrics remain the same
as those presented previously.

4.2.1 Ship Related Image Sets
As described for the AK-47 experiment, we start with an Inception-v3 model pretrained
on the ILSVRC 2012 training set. There are several relevant training categories from this
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image set for ship classification. These categories suggest the feature extractors from the
original Inception model, that will remain in our new ship or no ship classifier, will be
successful; see Table 4.4 for a selection. Most of the images from Camp’s [16] thesis are
close-ups of ships or contain water scenes with coastline, mountains, ice, or wildlife and the
high performance of our first retrained model inspired us to acquire some more challenging
examples for testing. Thus, we built the Ship Internet Images set by collecting images of 67
ships on the horizon, with more unique shapes, in front of sunsets, in fog, and other more
difficult settings. We also collected 86 negative images of close-ups of objects like trash,
cargo containers, and debris floating in the water. Prioritizing a more rigorous test of the
model, we divided this set into training and test examples by only transferring seven ship
examples and 26 negative examples into the training set. After observing a high FPR on the
Ship Internet Images set by an algorithm retrained with only Camp’s [16] training set, we
sought to show that the Inception-v3 model was capable of classifying these more difficult
images by developing a small training set relating to the Ship Internet Images negative
examples. With the easy-to-find example images already in the test set, we built a training
set without requiring all negative examples to be water scenes. Specifically, we located
images of trash in landfills and other settings in hopes of teaching the algorithm that trash
in the water was not a ship without requiring more examples of trash floating in the water.
With this mindset, we found 226 additional negative training examples for the Ship Internet
Images training set by including images of trash and shipping containers not in the water,
as well as buoys, oil rigs, sunsets over water, and ocean wildlife.

4.2.2 Image Distortions
Using flags available in the retraining script, we applied several different distortions to
the images during training. Table 4.5 presents the available distortions. We vary the
combinations of these operations during the training phase to permit an evaluation of
their affect on model performance. While these distortions can lead to increased classifier
performance by artificially increasing the size of training set, engaging any one of them
significantly slows the retraining process for reasons we will discuss in the next section.
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Table 4.4. Training and test sets for the ship detection experiment.
Training Sets Category Number of Images

ImageNet [1]

container ship, . . . 1,613
speedboat 1,153

pirate, pirate ship 634
seashore, coast, . . . 2,382
other categories 1,275,385

Camp [16] ship 110
no ship 97

Ship Internet Images ship 7
no ship 226

Test Sets

Camp [16] ship 405 (8x)
no ship 99* (8x)

Ship Internet Images ship 60
no ship 60

This table is not all-inclusive of useful ImageNet categories as we omitted some
that contain smaller water craft. *Note: this number is one less than the reported
100 images from Chapter 2. We found one repeated image in both the training
and test set from Camp’s thesis and thus removed it from the test set. Camp’s test
set had all images scaled at 5, 10, 15, 20, 25, 50, 75, and full scales to simulate
classifier performance on ships further from a sensor or on the horizon.

4.2.3 Bottleneck Calculations
As mentioned previously, retraining only the last fully-connected layer of a deep CNN can
significantly reduce the time required to apply an existing algorithm to a new task. The
program provided for retraining the Inception-v3 model achieves a large portion of this
efficiency by creating bottleneck files. These files are essentially the model’s output of the
layer immediately before the last fully-connected layer; the only layer we update during
training. Running each image through about 98% of the network only once, and storing the
output as bottleneck files for later training steps, we avoid the additional operations required
to feed an image through the entire network hundreds of times [50]. A downside of the
operations discussed in Section 4.2.2 is that each distorted image is a new image that we
must run through the entire network, eliminating this efficiency and significantly increasing
training time. Table 4.6 illustrates this slow-down when retraining the Inception-v3 model
under resource constraints, such as on a laptop in a deployed environment. Still, even with
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Table 4.5. Distortions available in the retraining script from TensorFlow.
Distortion Name Effect
Random Crop Accepts a percentage (RCP). Randomly picks a center for the

first crop in the image and maintains aspect ratio while keeping
a portion of the image that has a width of the original image
minus the RCP. RCP=10 would produce an image whose width
was 90% of the original width.

Random Scaling Accepts a percentage (RSP). First conducts a central crop to
create an image whose scaled width (sw) is chosen by a random
variable (r) in a range from original width minus RSP to the
original width (w) as follows: sw = w − (RSP100 ∗w) ∗ r . This dis-
tortion then employs bilinear interpolation to resize the cropped
image by a random percentage between zero and the RSP.

Random Brightness Accepts a percentage (RBP). Using a random uniform distri-
bution, selects a number between 1± RBP

100 to multiply with the
original image pixel values.

Random Flip Accepts a Boolean. If the Boolean equals true, randomly flips
50% of images horizontally left to right during training.

These distortions help to ensure the model is invariant to changes in the depiction
of an object in an image. Rather than requiring unique examples of an object at
different scales, horizontal orientations, brightness, and occlusions, these functions
instead modify existing images. This effectively increases the size of the training
set [50]. These distortions are specific to the Inception-v3 retraining script [51]
available through TensorFlow.

distortions, transfer learning provides efficiencies from not requiring gradients to pass all
the way back through a network during backpropagation and weight updates. The training
times presented show it is possible for DOD members to repurpose pretrained models to
unit specific tasks in environments with limited resources.

4.2.4 Retraining Inception-v3 via Transfer Learning
This section describes the process for retraining the Inception-v3 model to classify images
as ship or no ship. We employ the 1080 Ti GPU from Table 4.2 for all of the experiments
in this section. We follow a simple training tutorial [50] and script [51] for guiding this
process. We first retrain the model with only Camp’s training set, no distortions, and the
following hyperparameters:
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Table 4.6. Retraining times for Inception-v3 in a resource-constrained envi-
ronment.

Distortions Training Steps Training Time
None, default 4,000 5m
None, default 8,000 11m
Random Scale (10%) 4,000 1d 22h 54m
All(10%) and Flip(T) 4,000 1d 23h 17m
All(10%) and Flip(T) 8,000 3d 22h 30m

This table depicts slow down in network retraining introduced by distortions. We
conducted these tests on a personal laptop running 64-bit Linux Ubuntu 16.04,
with the i5 CPU from Table 4.2. We ran TensorFlow version 0.8.0 in a virtualized
Docker container having access to all system resources to produce these num-
bers, following the steps described in [50]. This method has a one-time cost of
approximately 25 minutes to compile the initial model to maximize training and
evaluation speed on our specific CPU. We complete all other iterations with the
same model with default settings and change the distortion flags from Table 4.5
to the values in parenthesis. The training set included about 2,000 images divided
into two categories and the batch size per step was 100 images.

• batch size = 100
• training steps = 1,000
• learning rate = 0.01
• validation percentage = 10%

We leave the batch size, the number of images fed through the model per training step before
updating the model’s learned weights, and learning rate as the default recommended values
provided with the script. We limit the training steps to 1,000 due a larger batch size and
smaller number of training examples. In this case the model trains on each image 535 times,
or completes 535 epochs of training. The validation percentage flag provides how many
images to set aside from the training set to evaluate performance of the model throughout
training. The script selects the validation images based off of a hash of their filenames;
they remain consistent across runs. Table 4.7 provides the training and validation image
counts for our runs. The size of our validation set is a source for concern; however, when
working with a limited training set it remains necessary to keep as many images as possible
for training. For each of the runs, TensorFlow logs important training information that users
can access via TensorBoard [52].
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Table 4.7. Summary of ship detector training iterations.
Iteration Name Train (+/-) Valid. (+/-) Distortions(Value)
ship_images_orig 99 / 88 11 / 9 None
ship_images_added_default 106 / 323 11 / 32 None
ship_images_added_bright10 106 / 323 11 / 32 Random Bright. (10%)
ship_images_added_crop10 106 / 323 11 / 32 Random Crop (10%)
ship_images_added_scale10 106 / 323 11 / 32 Random Scale (10%)
ship_images_added_flip 106 / 323 11 / 32 Random Flip (T)
ship_images_added_bsc10flip 106 / 323 11 / 32 All Distortions (10%),

Random Flip (T)

The train and validation numbers represent the number of ship (+) and no ship (-)
examples available during training. For the last model, we set random brightness,
scale, and crop to ten percent and also the random flip flag to true in order to
observe the affect on performance of combining the distortions.

Figure 4.1 displays the performance of our first model using only Camp’s image set; it
classified the validation set perfectly. Due to high training and validation accuracy, we did
not train additional models with only these images. Instead, we added our Ship Internet
Images training set to Camp’s and repeated the training process. We apply the same defaults
as above, but vary the distortions as depicted in Table 4.7.

From Figure 4.2, a screen capture of TensorBoard, we observe the validation accuracy
to select the best model for another round of training. Examining the plot, we see the
distortions do not improve the performance. Thinking about the Inception-v3 model’s
initial training, one can derive a logical reason for the distortions’ apparent ineffectiveness.
Google originally trained the lower layers reading the raw pixel inputs on distorted images.
Thus, the low-level feature extractors that distortions affect most are already invariant to
them. Realizing this, we did not employ them for any further retraining iterations.

Figure 4.2 presents classification accuracy on the validation set plotted against the number
of training steps completed. The lighter lines depict raw accuracy measures, recorded every
10 training steps, whereas the darker lines represent a smoothed value from these measures.
The model without any distortions slightly out performs the others at its final iteration.
Selecting this as the best model to train for another round, we decreased the learning rate
to 0.001 and increased the training steps to 4,000. Figure 4.3 presents a comparison of
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Figure 4.1. Ship detector training and validation accuracy vs. training step
with only Camp’s [16] images from TensorBoard. This plot and legend
are screen captures from the web-browser based TensorBoard application
that is a part of TensorFlow. The interactive plot allows a user to slide
his mouse along the training steps to observe values stored at each step.
The legend displays the final values for each model. We capitalize on our
goal to present the functionality of TensorFlow to avoid exporting this data
via comma-separated values and generating our own plots; similar figures
throughout this thesis are also from TensorBoard.

the validation accuracy for our top-performing initial model (ship_images_added_defaults)
and its second-round configurations (ship_images_added_defaults_rnd_2).

As is evident in Figure 4.3, validation accuracy remains roughly constant after 1,000 training
steps. This observation, combined with our desire to avoid overfitting due to the fact that
we conduct training with a relatively small data set, encourages a selection of the original
model completing only 1,000 training steps. We look elsewhere for confirmation of this
intuition. The retraining script also logs the softmax layer’s cross-entropy loss, a measure
of the difference between the model’s predicted category scores for an image compared to
the labeled true category, which training strives to minimize. Observing Figure 4.4, the
shallow descent and higher final cross-entropy loss of the second round model suggest we
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Figure 4.2. Ship detector validation accuracy vs. training step for first round
of training. This figure displays the ineffectiveness of the distortions (de-
scribed in Table 4.7) in improving accuracy on the validation set. The
top-performing model (ship_images_added_defaults), did not employ any
distortions and we carry it forward for further comparisons in Figure 4.4.

set the learning rate too low. The combination of these two pieces of evidence provide
confidence in selecting the default model (ship_images_added_defaults) trained for 1,000
steps to evaluate the test sets against.

4.2.5 Evaluating Retrained Inception-v3 on Ship Classification
We evaluate the retrained model with a nearly identical process to the one described in
Section 4.1.3. We maintain the separation of Camp’s [16] test set with our Ship Internet
Images test set and redo this evaluation process to store the scores for ship and no ship
returned for each image. We do not apply distortions during the evaluation of the test
images besides rescaling and cropping to reduce the image to the required Inception-v3
model input of 299 by 299 pixels.
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Figure 4.3. Ship detector validation accuracy vs. training step for sec-
ond round of training. The ship_images_added_defaults model is
the top-performing model from Figure 4.3. The second round model
(ship_images_added_defaults_rnd_2) is the same model from the first
round but we train the second model with a smaller learning rate (0.001
instead of 0.01) and for an extra 3,000 training steps.

4.2.6 Ship Experiment Performance Metrics
Camp does not directly describe his calculations for recall and precision; we assume he
employs the standard equations presented in Section 4.1.4. He does however present his
results by ROC curves. We repeat our preceding method to develop our ROC curves to
allow a direct comparison of performance to Camp’s curves in Chapter 5.

4.3 Screenshot Detection in Images
Following suit, this section will discuss the image set, training and evaluation processes,
and metrics for comparing performance between modern algorithms built in TensorFlow
and those employed by Sharpe [17] in order to detect screenshots in images.
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Figure 4.4. Training and validation cross-entropy vs. training step for both
rounds of training.

4.3.1 Screenshot Image Sets
Training a deep CNN from scratch demands significantly more labeled examples than trans-
fer learning. As presented in Chapter 2, Sharpe [17] gathered over 6,000 images for her
experiment. While substantial, her image set pales in comparison to those as large as the Im-
ageNet dataset. Also, because her algorithms employ engineered feature extractors instead
of learning them from scratch, she only required ten percent of these images for training.
Needing to test our models against at least 4,800 of her images for a true comparison, we set
out to find other examples for training. First, we select ten ImageNet categories representa-
tive of objects or scenes in Sharpe’s [17] negative image set. Next, converting 192 videos
from Wikimedia Commons’ Screencast videos [53] category we capture one frame as a
JPEG for every 30 frames of each video. This method produced 11,428 screenshot exam-
ples. Finally, we wrote a script to automatically capture 177 screenshots while performing
various tasks on a personal computer. Within the ImageNet negative examples, there existed
approximately 300 digitally augmented images that resembled screenshots. After removing
them, we narrow down our training set to 11,605 screenshot and 12,789 other images. We
split these images by reserving about ten percent of them for a validation set to arrive at the
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numbers depicted in Table 4.8. Since we did not want to contaminate the validation set, we
moved groups of screenshot examples derived from the same video into the validation set.
This ensured there were no images from the same video in both the training and validation
set. By building this Screenshots dataset we reserve all of Sharpe’s [17] images for testing.

Table 4.8. Training, validation, and test sets for the screenshot experiment.
Training Sets Category Number of Images

ImageNet [1]

house 1,231
range, mountain range, . . . 2,029

government building 334
building, edifice 1,421

coast 321
littoral, litoral, . . . 1,932

furniture, piece of furniture, . . . 2,138
tree 1,181

divided highway, dual carriageway 1,213
street 1,330

Screenshots screenshot 10,414
other 11,513

Validation Set

Screenshots screenshot 1,191
other 1,276

Test Set

Screenshots (Sharpe [17]) screenshot 2,420
other 3,644

Before beginning training, we check that we did not make the critical mistake of contam-
inating the test set. To do this we must compare all of the images in the training and
validation sets to those in the test sets to be certain no duplicates exist. By employing a
hash algorithm on the images’ content we can quickly and reliably compare a large number
of images. We first enter all of the training and validation images into a hash database by
running them through a difference hash programmed in Python [54]. The difference hash
tracks gradients in images to match duplicates [55]. We then check all of Sharpe’s [17] test
images against the hash database. In our case, we found two duplicates from our ImageNet
negative examples. We remove these images from our training set to leave the test set
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intact. During the image hashing, the difference hash also identified that approximately
5,500 of the 11,605 screenshot examples are near duplicates. While unsurprising due to
our screenshot generation methods, this is worth noting as a weakness in our dataset. We
left the near duplicates as slight variations in the screenshots still provide useful training
examples; at worst they cause overfitting of the model, which we can identify during training
if the model performs poorly on our validation set. As a final note, we conducted this image
hashing process for each of our experiments but save mentioning it until now as it was most
important for this large training set gathered from similar sources to the test set.

4.3.2 Training Modern Models to Identify Screenshots
The training process involves two distinct steps: first, import the Screenshots training,
validation, and test sets into a TensorFlow Dataset [56] and second, run the TensorFlow-
Slim training functions to initialize and train the three models presented in Chapter 2 from
scratch.

After building the Screenshots sets described above, we convert the images into a single
TensorFlow Dataset. We read all of the images from our sets into a TensorFlow file format
known as a TensorFlow Record (TFRecord) [57]. This format stores the information from
thousands of JPEG files into a handful of TFRecord files that facilitate fast streaming of
images into memory without opening thousands of separate files from the disk. While
importing Sharpe’s [17] grayscale negative example images into this format, we repeat the
single channel pixel values three times for each of the red, green, and blue channel to allow
our model to receive the expected three channel input size when evaluating these images.
We then associate the TFRecord files for each set into a TensorFlow-Slim defined Python
object known as a Dataset. This allows us to point TensorFlow to a desired image set by
passing the Dataset name, in our case Screenshots, and a split name: training, validation,
or test. Using this object, TensorFlow supervises which images get passed to the model
for training to ensure the network sees all training examples before repeating the images
for subsequent epochs. Our use of TensorFlow’s Dataset class in our experiments provides
access to desired image sets in a manner that prevents contamination among our three splits
and facilitates the use of our new dataset with existing TensorFlow training and evaluation
functions. Having efficient access to the image content and associated category labels
necessary for our experiments, we stand ready to train the models.
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Using a TensorFlow-Slim script [58], we supply the Screenshot Dataset training split and
the following inputs to train the three models covered in Chapter 2:

• batch size = 25
• max number of steps = 50,000
• optimizer = adam
• model name = vgg_16, resnet_v2_50, or inception_resnet_v2

With this batch size, number of training steps, and the number of training images available,
we train each model for approximately 57 epochs. Table 4.9 depicts the training time for all
training iterations of our models. We run the Adam [59] optimizer, with TensorFlow’s de-
fault configurations, to adjust the learning rate throughout training as depicted in Figure 4.5.
We train all three models on a Windows 10 desktop employing TensorFlow r1.0.1, Python
3.5.3, and both the 1080 Ti GPU and i7 CPU from Table 4.2. To start the actual training,
the CPU loads images from the Screenshot Dataset object and then conducts the prescribed
preprocessing steps for each model [12], [13], [30], [31]. Provided a properly formatted
Dataset object, TensorFlow-Slim contains scripts to quickly execute these preprocessing
steps and save the correctly-sized images for input to a specific network in a queue in the
CPU’s memory. The GPU then requests batches of these images for each training step. Ten-
sorFlow manages this queue which enables more efficient training of a network on the GPU
by reserving its processing power for the forward pass and back propagation of gradients to
update the network’s weights. The queue also minimizes the time the GPU has to wait on
the preprocessing of images. As a separate process on the CPU, we run an evaluation step to
capture a model’s performance on 500 images from the validation set every 1,000 seconds
and then on all validation images at the completion of training. We repeat these steps for
each model listed and use TensorBoard to produce the plots in Figure 4.6 and Figure 4.7.

As Figure 4.6 and Figure 4.7 show, the ResNet model achieves the best performance in
both training and evaluation on the validation set at the final training iteration. Looking
closer at Figure 4.7, at around 35,000 steps both Inception-ResNet-v2 and VGGNet start to
perform worse during evaluation. This drop, after a period of about 15,000 training steps
with consistent performance in terms of validation accuracy, could mean that the models
are overfitting to the training set. Still, both models seem to recover and achieve comparable
performance to the ResNet model on the entire validation set after 50,000 steps. Since we
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Table 4.9. Training times for two iterations of three screenshot models.
Model Training Steps Training Time
Round 1: Defaults
VGGNet

50,000
8h

ResNet 4h
Inception-ResNet-v2 12h
Round 2
VGGNet

30,000
5h

ResNet 3h
Inception-ResNet-v2 9h

All times are for training with the 1080 Ti GPU and i7 CPU from Table 4.2. Times
are rounded up to the nearest hour.

Figure 4.5. Learning rate vs. training steps for all three models. TensorFlow-
Slim’s training methods adjust the learning rate throughout the training pro-
cess by employing TensorFlow’s implementation of the Adam [59] optimizer.
This plot was identical for all three models.
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do not get significant separation of performance on the validation set we repeat the training
with two adjustments. First, rather than classifying only 500 of the validation images every
1,000 seconds we evaluate the entire set every 2,000 seconds. We increase the interval
since this operation slows the training process by consuming most of the CPU’s resources
for evaluation. Second, we decrease the number of training steps to 30,000 to test our
hypothesis of overfitting. Figure 4.8 and Figure 4.9 depict the cross-entropy and validation
set accuracy for each model during this second round of training.

Figure 4.6. Screenshot detector cross-entropy vs. training step for round
one.

In round two, the Inception-ResNet-v2 achieves the best performance and scores the highest
validation set accuracy out of all models from both rounds of training. However, the ResNet
model from round one still scored the lowest cross-entropy loss out of all of the models. Due
to these inconsistencies, and some concerns about our newly built validation set accurately
representing Sharpe’s [17] test set, we carry both iterations of the VGGNet, ResNet, and
Inception-ResNet-v2 models forward to compare performance on the Screenshots test set.
Best practice suggests training hundreds of iterations of these models, adjusting training pa-
rameters for each, to achieve maximum performance. We forgo this hyperparameter search
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Figure 4.7. Screenshot detector validation set accuracy vs. training step for
round one.

due to strong performance on the validation set, time and compute resource constraints, and
TensorFlow providing the recommended configurations from each algorithm’s creators.

4.3.3 Evaluating Deep CNNs as Screenshot Detectors
The evaluation method for this experiment varies due to our implementation of a
TensorFlow-SlimDataset. All software and hardware remains the same from Section 4.3.2.
We run our evaluation on all of the available 6,064 archived images from Sharpe’s [17]
experiments. In contrast, she only evaluates performance through ten-fold cross validation
on a selection of 4,800 of these images. With no record of which 4,800 images Sharpe [17]
included, we evaluate our best models on all available examples. Similar to training, we
engage the CPU to complete model-specific preprocessing steps to generate a queue of
images.

For the VGGNet and ResNet models, with pixel values starting as integers between zero
and 255, the evaluation preprocessing steps are as follows:
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Figure 4.8. Screenshot detector cross-entropy vs. training step for round
two.

1. Resize the image so that the smallest side equals 224 pixels.
2. Conduct a central crop to match the longer side to 224 pixels while maintaining the

original aspect ratio.
3. Subtract the training set mean red, blue, and green pixel values from each pixel in the

image.

For the Inception-ResNet-v2 model, with pixel values starting as 32-bit floats in range
between zero and one, here are the steps:

1. Conduct a square-central crop containing 87.5% of the original image area.
2. Execute a bilinear resize on the image to the match a 299 by 299 input size.
3. Subtract 0.5 from all pixel values.
4. Multiply all pixel values by 2.0 to make range between one and negative one.

After preprocessing, TensorFlow sends batches of 100 images to the GPU and runs them
through the current model to produce a score for ship and no ship. Once the 61 batches
finish, we store each image filename and associated scores in a comma-separated value file
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Figure 4.9. Screenshot detector validation set accuracy vs. training step for
round two.

for evaluating model performance. Table 4.10 presents the time to evaluate all three models
on the test set images.

Table 4.10. Screenshot models’ image classification times.
Model Total Time Time per Image Images / sec
GPU
VGGNet 49.4 0.00814 122
ResNet 38.1 0.00628 159
Inception-ResNet-v2 86.3 0.0142 70

This table displays a measure of the time, in seconds, required to classify images
with deep CNNs in TensorFlow when using the TFRecord format and evaluating
batches of images simultaneously. We produce these times with the described
evaluation process in Section 4.3.3 by employing the 1080 Ti GPU and i7 CPU
from Table 4.2 and evaluating 6,064 test images. The 1080 Ti has more resources
available than the TITAN Black GPU that produced the times in Table 4.3. There-
fore, we cannot compare the Inception-ResNet-v2 model in both tables to attempt
to measure specific time savings with the TFRecord format.

61



4.3.4 Screenshot Performance Metrics
Wecalculate the samemetrics defined in Section 4.1.4 to grade the topmodel’s performance.
Sharpe [17] does not provide the equations she implemented for her performance metrics
so we assume she follows the standard definitions. Using thre process described previously,
we summarize performance in a ROC curve and present the results in Chapter 5.
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CHAPTER 5:
Results and Discussion

With our experiments complete, this chapter presents and discusses results with the goal
of answering the first four research questions from Section 1.6. Following the order of
introduction in Chapter 4, we provide ROC curves and F-scores for the three detectors and
compare their classification performance against previous methods. For each experiment,
we will examine where the best algorithm fails in an attempt to better understand which
features the algorithm learned or missed during training. In Section 5.4 we analyze the
training and evaluation times presented in Chapter 4 in order to assess the feasibility of
TensorFlow-based image classification in deployed and resource-constrained environments.
In summary, we present our empirical measure of TensorFlow in this chapter.

5.1 Performance of the Inception Models as AK-47
Detectors

This section examines the pretrained Inception models’ performance as AK-47 detectors.
To start, we compare performance across two category scores and their sum: AR; rifle;
and AR + rifle. Next, we observe the five Inception models’ performance on Jones’ [15]
images. Third, we present performance of the best Inception model, selected by highest
F-score on Jones’ [15] test set, against the two additional image sets to more vigorously test
its classification performance. Finally, we examine the misclassifications on all three test
sets to provide further insight into the behavior of the Inception models as AK-47 detectors.

5.1.1 Three Score Comparison
Recording our three separate category-classification scores proves unnecessary. Figure 5.1
displays the ROC curve for the first Inception model on all three test sets. For Inception-
v1, the rifle category performed its best relative to the AR score as an AK-47 detector.
Still, it scored a lower F-score than the AR category individually and did not improve the
F-score when added to the AR category. Looking at the latest model, Figure 5.2 depicts
the same plot for Inception-ResNet-v2. Here the rifle category again performs worse and
does not improve F-score when added to the AR score. As a result of these findings and
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a preference for simplicity, we consider only the AR category score for our remaining
comparisons. All of the Inception model ROC plots of this three score comparison, and
tables containing corresponding performance metrics at the best F-score threshold, are
available in Appendix A.1.1.

Figure 5.1. Inception-v1 ROC curve for three category scores on all three test
sets combined. All of our ROC curves in this section plot the recall versus
FPR at the 1,000 score thresholds as described in detail in Section 4.1.4.
The lines on these plots connect these values without performing any sort
of fitting. The circles plotted on the graph represent the threshold for the
highest F-score; we include the recall (TPR) and FPR values generating this
F-score in each legend.
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Figure 5.2. Inception-ResNet-v2 ROC curve for three category scores on all
three test sets combined.

5.1.2 AK-47 Detector Performance on Jones’ Test Images
The Inception models perform well as AK-47 detectors without any additional training
and show significant performance increases from the first iteration to the latest Inception-
ResNet-v2model. Figure 5.3 provides the ROC curve for all five Inceptionmodels evaluated
on Jones’ [15] test set images; in the Appendix, Figure A.6 shows a closer view of the same
curves. At the best F-score threshold, from v1 to ResNet-v2, the recall rate increased
by eight percentage points while the FPR dropped by a factor of three. At its optimal
threshold, the Inception-ResNet-v2 correctly identified 645 of 687 AK-47 images while
only incorrectly identifying 10 of 7,045 negative images as containing an AK-47.
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For the reasons discussed in Section 4.1.5, we cannot directly compare the performance
of the Inception models to the algorithms implemented by Jones [15]. In order to avoid
misleading the reader we do not provide Jones’ [15] ROC curve in this section for a side-
by-side comparison. Still, we can observe the recall when the FPR equals zero to obtain a
sense of how strongly the Inception-ResNet-v2 model outperforms Jones’ [15] algorithms.
Instead of using the best F-score threshold for our classifier, we instead use the highest
AR category score that generated a false positive on a negative example. Classifying any
image with a score above this threshold as an AK-47, we obtain a FPR of zero and a
recall of 86.2%. At this new threshold, our algorithm still classifies 592 out of 687 AK-47
examples correctly without generating any false positives. Observing the left side of the
ROC curves from Figure 2.2, all of the algorithms begin to generate false positives before
producing recall rates above 78%. This simple comparison removes our largest difference
in calculations, the FPR rate, and inspires confidence that the Inception models improve
classification error rates in their out-of-the-box configuration. See Appendix A.1.2 for a
closer view of Figure 5.3 and also a table of key performance metric values at the best
F-score threshold for each model.

5.1.3 AK-47 Detector Performance on Internet Images
Desiring to stretch the best performing Inception model further, we evaluate Inception-
ResNet-v2 on the AK-47 Internet Images and Rifle-Like Images test sets described in Sec-
tion 4.1.1. Figure 5.4 portrays the ROC curves for the Inception-ResNet-v2 model on these
two new test sets with the curve produced previously for Jones’ [15] test set. Not surpris-
ingly, performance of the model drops when we test it against more naturally occurring
images of AK-47s versus the AK-47 video stills. On the AK-47 Internet Images test set,
at its best threshold the Inception-ResNet-v2 model classifies 98 out of 107 of the images
containing AK-47s correctly, and only produces two false positives out of 143 negative ex-
amples. Even when attempting to fool the model by providing images of rifle-like objects,
the Inception-ResNet-v2 model performs reasonably well; it only classifies 18 of 100 of
the images incorrectly. As before, Appendix A.1.3 contains more detailed metrics for these
tests.
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Figure 5.3. AK-47 detector performance using the AR category for all In-
ception models on Jones’ [15] test set.

5.1.4 AK-47 Detector Missteps Analysis
An analysis of the Inception-ResNet-v2 model’s missteps provides insight into the algo-
rithms performance and the kinds of mistakes it makes. Interesting trends exist in these
missteps in terms of both false negatives and false positives. Starting with false negatives,
we first explore failures in Jones’ [15] test set due to the opportunity to compare stills from
the same video that the algorithm classified correctly to those it missed. In about 30 of the
false negatives, the algorithmmissed when an object of a known category in the background
became the central focus of an image. For example, a video sequence of a man shooting
an AK-47 in front of a mobile home produced 24 of the false negatives. The algorithm
missed when the camera zoomed out and included the entire mobile home in the center of
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Figure 5.4. Best AK-47 detector performance using the AR category on
internet test sets.

the image behind the shooter. Table 5.1 presents the top-three classification scores for a
distant-view image, which Inception-ResNet-v2 misclassified at our best F-score threshold,
and the scores for the close-up view of the AK-47 which the model classified correctly. In
the distant view, the algorithm detected the mobile home so strongly that it did not produce
a significant score in any other category.
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Table 5.1. AK-47 detector top-three category score comparison for false
negatives versus true positives in same video sequences.

Image Cat. 1 Score Cat. 2 Score Cat. 3 Score

Mob. Home(-) mobile home 0.946 revolver 0.002 boathouse 0.001
Mob. Home(+) assault rifle 0.586 mobile home 0.159 rifle 0.158
Lawn(-) giant schnauzer 0.121 Appenzeller 0.080 lawn mower 0.064
Lawn(+) assault rifle 0.755 chainsaw 0.086 rifle 0.065
Boots(-) cowboy boot 0.121 plow 0.080 bow 0.064
Boots(+) assault rifle 0.070 valley 0.060 worm fence 0.046

This table compares a false negative (–) and true positive (+) frame from the
same videos of Jones’ [15] test set to describe causes of error. We include only
the first category description instead of the full name of each ILSVRC category.

In a second instance of failure, pictured in Figure 5.5, a woman fires an AK-47 on a bright
green lawn. The Inception model classifies all but the last two frames of this sequence
correctly. When the woman moves the weapon from the firing position to below her hips
and turns towards the camera it appears that the lawn in the background strongly influences
the classification scores. Table 5.1 shows that the classifier produces its strongest scores for
two dog breeds and a lawn mower for the last two frames. Examining the ILSVRC 2012
training set for the dog categories, we find that a significant portion of the images are of
the dogs sitting on bright green lawns. The third highest classification score of lawn mower
also supports this hypothesis. While the algorithm performed well enough on the ILSVRC
2014 challenge for us to know that it is not simply relying on bright green backgrounds to
detect these categories, it is interesting to note that the presence of grass does significantly
influence the category scores.
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(a) True positive: Lawn (+). (b) False negative: Lawn (–).

Figure 5.5. Stills from Jones’ [15] test set of an AK-47 video from YouTube.
See Table 5.1 for these stills’ top three category scores. Adapted from [60].

A final phenomenon for discussion that negatively affected AK-47 detection were stills in
which a camera lost focus and an image became pixelated around the AK-47, perhaps due
to rapid motion of the weapon during firing. In the third example pair in Table 5.2, this
loss of focus led our algorithm to pick up the image’s more clearly defined objects, like the
boots on a man in the background of the image. These three examples cover a majority of
the false negatives produced by the Inception model and develop some intuitions for the
causes of failure.

Let us shift focus to false positives produced by Inception-ResNet-v2. There are fewer
on Jones’ [15] test set, but one trend exists, and the internet and rifle-like images produce
the most interesting trends for discussion. For Jones’ [15] test set, 5 of 10 false positives
contained military members in uniform without any weapons. Table 5.2 records the top
classification scores side-by-side with scores for the assault rifle category for these five
images. This trend is not surprising: many of the training images for the assault rifle
category contain military members in uniform. Thus, from the model’s perspective a
military uniform in a picture increases the likelihood that an assault rifle also exists in the
image. Since assault rifle earned the top category score for only one of these five images,
and the remaining four images’ scores are close to the best F-score threshold, this trend does
not produce significant concern in light of the Inception model classifying other images
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with military members in uniform correctly. We could probably correct both this bias and
the green lawn bias by including more training examples to counter the biases; they do
not represent a significant algorithm flaw. Moving on to the trends present on the internet
and rifle-like image sets, 6 of 19 false positives on these sets came from images containing
paintball guns. Considering the similar features between assault rifles and paintball guns,
and the fact thatmodel does not possess a paintball gun category, this seems like a reasonable
mistake. Nine other false positives came from images of men holding large wrenches, power
drills, a pitch fork, and a fishing pole in carry positions common when holding a weapon,
like leaning on a shoulder, 45 degrees across the body, or underarm. Again potential feature
similarities make these errors seem reasonable. Another false positive was for an image
containing the undercarriage of an automobile. The algorithm placed assault rifle as the
eighth highest category for the image with a score of 0.022, well above the best F-score
threshold for the rifle-like images set. Perhaps the edges and color patterns in the pipes
and struts under the car resemble those features the algorithm learned from images of
assault rifles. The remaining three false positives are harder to reason about and justify.
They contain images of groups of people with no obvious patterns that could confuse the
algorithm. Such mistakes, those that a human does not make or struggles to understand,
are a weakness of algorithms incorporating ANNs which we will discuss more thoroughly
in Chapter 6.
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Table 5.2. Top category and assault rifle scores for AK-47 detector false
positives on military members in uniform.

Image Top Category Score AR Rank AR Score

1 mountain bike 0.197 5 0.042
2 military uniform 0.300 4 0.046
3 assault rifle 0.265 1 0.265
4 bulletproof vest 0.101 3 0.072
5 stretcher 0.188 4 0.055

This table provides the top category scores for five false positive images from
Jones’ [15] test set on images that contained military members in uniform. Any
score for the AR category above a threshold of 0.036 produced a false positive. The
first image was of a Marine in camouflage dancing next to two children on bicycles.
The remaining four images were from the same video sequences of army soldiers
running a relay race in camouflage in front of a building. The table includes the
rank, with one being the highest, that the assault rifle category score received out
of all 1,000 possible classifications. We include only the first category description
instead of the full name of each ILSVRC category.

5.2 Retrained Inception-v3 Ship Detector Performance
This section includes our results from applying transfer learning techniques and retraining
the Inception-v3 model as discussed in detail in Section 4.2.4. It is important to remember
that the models discussed in this section benefit from previous training on the 1,000 cate-
gories of images from ImageNet and that we only update the last fully connected layer. We
present performance of the first retrained model using only Camp’s [16] training images
on his test set. Next, we provide the results for our second model iteration, which we
retrained by adding the Ship Internet Images training set to Camp’s [16] training set, on
both Camp’s [16] and the Ship Internet Images test sets, defined previously in Table 4.4.
Finally, we explore missteps of the retrained Inception-v3 model by examining images it
misclassified.
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5.2.1 Ship Detector Performance on Camp’s Test Images
The retrained Inception-v3 model achieves near-perfect performance when classifying
Camp’s [16] test images. Figure 5.6 depicts a comparison of Inception-v3 to Camp’s [16]
best performing model at the four largest scales. As shown in this figure, the Inception algo-
rithm only misclassifies a single no ship image at the 75% scale. Moving to Figure 5.7, we
provide a closer view of the retrained Inception-v3 model’s performance at seven scales to
compare to Camp’s [16] best performing model across all scales. Observing the Inception-
v3’s performance at the smallest scale, we see that it outperforms Camp’s [16] HYBRID
model at full scale. The Inception-v3 model achieves strong scale invariance as a ship
detector; a desirable trait for the UAS use case developed in Section 1.4. See Appendix A.2
for an ROC curve depicting all eight scales and a table of performance metrics at the best
F-score threshold for each scale.
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(a) Inception-v3 ROC Curve.

(b) Camp’s DPM ROC Curve.

Figure 5.6. Inception-v3 ship detector performance when retrained on
Camp’s [16] training set compared to his DPM detector. Camp’s [16] DPM
detector achieved the highest performance of all his algorithms at scales
above 50%. Due to poor performance at smaller scales Camp [16] only
presents down to 25% scale in this plot. Source(b): [16, Figure 18].
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(a) Inception-v3 ROC curve close-up.

(b) Camp’s HYBRID ROC curve.

Figure 5.7. Inception-v3 ship detector performance when retrained on
Camp’s [16] training set compared to HYBRID detector. Camp’s [16] HY-
BRID detector achieved the best performance across all image scales. We
provide a close-up view of the ROC depicted in Figure 5.6 including smaller
scales to match Camp’s [16] plot. Source(b): [16, Figure 18].
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Because he separates the ROC curves by scale, Camp [16] does not test his algorithms’
ability to use a single threshold and classify images across multiple scales. This capability
would add utility to the ship detector we describe in our UAS scenario from Section 1.4.
Thus, in Figure 5.8we combine images from full scale down to 25% scale in order tomeasure
the retrained Inception model’s classification performance across the scales. Examining
the Camp Training Only curve, we see that Inception-v3 achieves scale invariance and
still retains near perfect performance when performing classification using the single best
threshold of 0.450 for multiple scales. The algorithm generates a single false positive
and false negative across four different scales of each of the 405 positive examples and 99
negative examples. Still, identifying a small-scale ship when it is the focus of the image
remains an easier problem than having to identify the ship in an image covering a long
horizon; this harder problem is the focus of our next tests.

5.2.2 Ship Detector Performance on Internet Images
This section describes the performance of the Added Images model produced by a second
iteration of retraining that incorporated training and test images from the more challenging
Ship Internet Images set. We evaluate the Added Imagesmodel (described in Section 4.2.4)
that achieves the highest validation set accuracy during training while only completing
1,000 training steps. This model had additional no ship and ship examples available as
described in Section 4.2.1. Figure 5.8 displays a comparison of the performance of the first
iteration of Inception-v3, the Camp Training Only model, to our Added Images model on
Camp’s [16] test set across four scales. The Added Images model performs worse but not
significantly; it still achieves an F-score of 0.99. The Added Images model does generate
20 false positives out of 396 negative examples; however, 14 of these errors are repeats of
the same images at different scales. Moreover, it only generates two false negatives across
all four scales of ship examples.

Confident that our Added Images model still performs well on Camp’s [16] images, we
provide a depiction of the algorithm’s stronger resistance to false positives on the Ship
Internet Images test set in Figure 5.9. While at some thresholds the Camp Training Only
model performs slightly better than a random guess, its best F-score still comes from
classifying all 120 difficult test images as ships. Comparing the algorithms at their best
F-score thresholds, the Added Images model increases its F-score over the Camp Training
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Figure 5.8. Inception-v3 iterations compared on Camp’s [16] test set from
full to 25% scale combined. This figure shows performance of the first
iteration Inception-v3 model, retrained only on Camp’s [16] images, and the
second iteration, retrained with the added images discussed in Section 4.2.1.
These curves show performance of the models across Camp’s [16] test images
combining the following scales: full, 75%, 50%, and 25%. We discuss the
second iteration model performance in Section 5.2.2.

Onlymodel by 15 percentage points. At its best F-score threshold, the Added Imagesmodel
manages to classify 53 of 60 ship examples correctly while generating 24 false positives
out of 60 negative examples. The Added Images model does not perform well enough
to implement as is; yet, our results support that with more relevant training examples
Inception-v3 can learn to identify ships on the horizon and distinguish large ocean debris
from ships.
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Figure 5.9. Inception-v3 iterations compared on the Ship Internet Images
test set.

5.2.3 Ship Detector Missteps Analysis
This section discusses the errors for both iterations of the ship detector on Camp’s [16]
test set and the Ship Internet Images set. We start with the first Inception-v3 iteration (the
Camp Training Only model) evaluated across four scales. At its best F-score threshold the
model misses two images at scales above 20%. It classifies a full-scale image of a large ice
shelf on a hazy horizon as a ship. It is easy to imagine the algorithm identifying similar
features to that of a ship’s bow at the pointed edges of the ice, driving the ship category
score to a value of 0.516 which fell above the 0.450 threshold. Looking at the single false
negative, the Camp Training Only model classifies a 75% scale image of a cargo ship as
not containing a ship. The cargo ship in this image sits in front of a coastline with a water
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tower in the distance. Due to Camp’s [16] training set containing several negative examples
with coastal structures, the algorithm may have been overly influenced by the presence of
the water tower. This ship image scored 0.446 for the ship category, only 0.004 below the
threshold to classify it as a ship. We omit a discussion of algorithmmisses below 25% scale
as the misclassifications do not contain obvious trends.

Examining the Added Images model misses on the Ship Internet Images test set, we find
two trends worth discussing. In terms of false positives, even with the additional land-
based shipping containers in the training set, the algorithm still classifies eight images with
shipping containers floating in the water as ships. It also classifies five box-like pieces of
trash as ships; Figure 5.10 depicts two of these images. The distinct linear features of these
images are similar to that of many of the training images for ships. All seven of the false
negatives came from challenging images of ships distant on the horizon, again Figure 5.10
depicts two of these example images. Since we know the algorithm can detect ships at
smaller scales, there are two options to improve performance on such examples. Either
modify the algorithm to slide a window along the horizon, feeding less of the entire view
through the algorithm at a time, or simply provide more positive training examples with
ships at this distance and in different positions in the frame. These two trends suggest a
need for more training examples; we did not spend the time to procure them as building the
additional internet images set already went beyond the original scope of this thesis. Still,
this discussion should serve as a starting point for the next steps in developing a training set
for another iteration of this algorithm in pursuit of refining it for operational use.
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(a) False positive. Source: [61]. (b) False negative. Source: [62].

(c) False positive. Source: [63]. (d) False negative. Source: [64].

Figure 5.10. Example error images from the Ship Internet Images test set.

5.3 Screenshot Detector Performance for CNNs Trained
from Scratch

This section presents the performance of Oxford’s VGGNet, Google’s Inception-ResNet-
v2, and Microsoft’s ResNet-v2 (50 layer version) as screenshot detectors. Our best model
achieves the same high-level of performance as Sharpe’s [17] best combination of all four
feature sets. Figure 5.11 depicts the ROC curves for both iterations of the three models.
All of the trained models show promise as screenshot detectors but the Inception-ResNet-
v2 model, trained for 50,000 steps, stands out as the top-performer. At its best F-score
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threshold, this model achieves the highest recall by three percentage points over the next
closest model by correctly identifying 2,314 of 2,420 screenshot examples. At the same
time it produces the fewest false positives, classifying only 11 of 3,644 other images as
screenshots. Sharpe [17] did not provide an ROC curve for her best performing combination
of feature sets, but we reproduce the numbers from Table 2.4 to compare her algorithm that
achieves the highest F-score to our best in Table 5.3. From this table we see that the
algorithms obtain near-identical performance; Sharpe’s [17] best algorithm surpasses the
Inception-ResNet-v2 algorithm when including the third significant digit. As discussed in
Section 4.3.3, our algorithm evaluated all 6,064 of Sharpe’s [17] archived images while her
numbers are averages from ten-fold cross validation across a selection of only 4,800 of the
images. Also, mentioned in Section 2.2.3, Sharpe’s [17] negative test images are grayscale.
This test set trait did not provide an advantage to her algorithms as they did not extract
features based on color. In contrast, the Inception-ResNet-v2 model is able to detect color
patterns in images; however, since we train the Inception model using only color images for
both negative and positive training examples, we do not gain advantage from this test set
trait either. Rather, we hinder the Inception model as it does not benefit from any useful
color patterns it learned during training and simply has to rely on other features, such as
higher level combinations of edges and shapes, to classify Sharpe’s [17] negative examples.

Table 5.3. Screenshot detector performance comparison for best F-score
models. Adapted from [17, Table 4.9].
Algorithm Accuracy Precision Recall F-score

Sharpe’s All Features 0.980 0.997 0.963 0.980
Inception-ResNet-v2 (50K) 0.981 0.995 0.956 0.975

5.3.1 Screenshot Detector Missteps Analysis
Once more looking at the algorithm misses, this time for the Inception-ResNet-v2 model
at its best F-score threshold, we find three observations worthy of discussion in the false
negatives and a single trend in the false positives. Figure 5.12 displays the images discussed
in this section and Table 5.4 provides the images’ category scores produced by the Inception
model. The first observation comes from the only false negative in a series of screenshots
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Figure 5.11. VGGNet, Inception-ResNet-v2, and ResNet models compared
on Sharpe’s [17] entire image set.

from a Linux terminal. Comparing the images in Figure 5.12a and Figure 5.12b, the sole
difference is the presence of more text in the latter image. This extra text increased the
algorithm’s confidence that the second image contained a screenshot by 0.126; enough
to break the threshold and allow a correct classification. This observation supports the
hypothesis that the model learned to associate typed text as a feature of screenshots.
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(a) False negative. Source: [65]. (b) True positive. Source: [66].

(c) False negative. Source: [67]. (d) True positive. Source: [68].

Figure 5.12. Example false negatives (left) and related true positives (right)
from the Screenshots [17] test set.
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Table 5.4. Category scores for images in Figure 5.12.
Image Screenshot Other

Terminal(-) 0.828 0.172
Terminal(+) 0.954 0.046
Real Image(-) 0.340 0.660
Real Image(+) 0.999 1.41E-12

This table provides the category scores from the best Inception-ResNet-v2 model
for the images in Figure 5.12. We classify all images using a best threshold of 0.897.
The examples are from similar images in the Screenshots test set to facilitate a
discussion of what features the model relies on for classification.

A second trend comes from a pattern of misses for screenshots that include large depictions
of real images. The best model missed 15 such images. Figure 5.12c depicts one of
these false negatives and Figure 5.12d depicts a similar screenshot, with an even larger
area containing real images, that the algorithm classified correctly with almost perfect
confidence. It is interesting to note the uniform and perfectly white margins separating the
real images in the latter image. Such features rarely occur in our other category examples
whereas the earth-toned colors of the less-definedmargins of the false negative occurred in a
portion of the real images. It appears that the presence of the more obvious artificial margins
allows the algorithm to detect that the real images in Figure 5.12d are a part of a screenshot.
A final source of bias in the false negative examples is the tendency of the algorithm to
classify screenshot examples consisting of mostly blue colors as other category images. The
algorithm misclassified 21 blue-hued screenshots. Looking to the other category training
set, the source of this bias becomes obvious. As discussed previously, we train the algorithm
with categories from ImageNet including buildings, highways, coasts and more. A majority
of these types of images contain large swaths of blue sky. In contrast, our training set
for the screenshot category did not contain significant numbers of blue-hued screenshots;
about five percent were mostly blue. For this reason, it appears the algorithm became
overly responsive to the prevalence of blue pixels as a predictor for the other category.
One potential fix for this bias is to follow Sharpe’s [17] lead and forgo considering color
features. We could do this by converting all training and test images to grayscale during

84



image preprocessing for the model; however, we did not pursue correcting this bias and
suspect limiting the model in this manner may have other undesired performance effects.

Of the 11 false positives, ten contained furniture, houses, buildings or man-made structures.
The high prevalence of linear features, large patches of consistent pixel intensity, and
manufactured patterns in these images proved challenging for the algorithm as these feature
prevail in screenshots. Even with these misses, the algorithm proved highly resistant to false
positives in other images where the same features exist, but are somewhat less prevalent.

5.4 TensorFlowModels for DODOperating Environments
Beyond classification performance, our experiments assess feasibility in terms of runtime
for implementing TensorFlow-based object detectors in simulated DOD use cases. We first
compare the training and evaluation time of our algorithms to the times from the three
previous theses captured in Chapter 2. Then we apply our image classification runtimes to
three potential DOD applications to develop an intuition for the prospective time savings
available through our TensorFlow-based object detectors compared to manual analysis.

In general, if run on the same hardware, the deep CNNs we implement in TensorFlow take
longer to train and evaluate than preselected feature extractors of previous models. For
example, we did not attempt to train the deep CNNs from scratch using only CPUs due
to the expected week-long-training times. Still, the effort savings afforded to algorithm
designers, who no longer have to manually adjust methods for feature extraction for every
new object detector, make the extra-computational costs acceptable. Also, Table 4.6 proves
that methods like transfer learning can negate the extra training time required, even in
resource-constrained environments. When a classification problem warrants training a
deep CNN from scratch, Table 4.9 illustrates a modern GPU and CPU combination allows
our algorithms to complete training in 12 hours or less; a reasonable training cycle for
testing many iterations of the algorithms. This is important as the algorithms often require
hundreds of iterations of training in order to conduct a proper hyperparameter search to
achieve optimal performance. With the largest computational costs levied during training,
Table 4.3 shows that the slowest TensorFlow-based detectors we tested still classify images
in less than one second in resource-constrained environments. Even though this evaluation
runtime proves slower than previous methods, we believe the algorithms are fast enough to
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remain relevant considering their improved accuracy and potential time savings over human-
only analysis of images. Importantly, when leveraging current hardware and optimized data
pipelines to feed images into the algorithms, deep CNNs prove capable of offering near-
real-time evaluation of images. By achieving classification speeds of over 60 frames per
second in such cases, deep CNNs show potential for analysis of live video feeds.

In order to provide a concrete example of how TensorFlow-based algorithmsmay perform in
real-world applications, Table 5.5 adapts the training and classification times fromChapter 4
to predict the TensorFlow-based algorithms’ runtimes in realistic scenarios. These time
estimates provide a rough measure of speed of classification of images in three potential
DOD applications. From our experiments we believe the DOD can benefit from TensorFlow
and deep CNNs in deployed, unmanned, and enterprise level systems and environments.

Table 5.5. Adaption of object detector runtimes in potential DOD environ-
ments.

Model Hardware Batch Size Images Time
Deployed
Inception-v3 Computer(CPU) 1 5,000 31m
Inception-ResNet-v2 Computer(CPU & GPU) 100 10,000 3m
Unmanned

Inception-v3 UAS(CPU) 1 3 stills 1.25s
UAS(CPU & GPU) 6 stills 0.25s

Enterprise
Inception-ResNet-v2 Data Center with 100 350M 14h
ResNet-v2 (50 Layers) 100x (CPU & GPU) 7h

We derive these time estimates by dividing the number of images by the images
per second values in Tables 4.3 for rows listed with a batch size of one and
Table 4.10 for rows with a batch size of 100. This table is meant to provide a
simple estimate to guide the reader to the right order of magnitude for the time
savings offered by employing the listed algorithms through TensorFlow on specific
hardware combinations. The UAS example considers a system with three cameras
or six cameras, providing 180 or 360 degree sensing respectively.

TensorFlow shows promise for application by deployed military units by easing time con-
straints for intelligence analysts at the battalion and squadron level and above. Employing
only commonly available hardware, such as a laptop or desktop computer with a modern
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CPU and at least 8GB of RAM, an analyst can now scan and tag images pulled from a con-
fiscated hard drive in minutes instead of hours or days. If the analyst has access to a device
containing a dedicated GPU our measurements show the time required decreases roughly by
a factor of ten. Beyond the evaluation runtimes, referring back to the transfer learning times
in Table 4.6, deployed analysts could also repurpose previously trained Inception models to
identify images containing threat-specific objects, for example perhaps a local terror group’s
insignia. A typical laptop or desktop computer containing only a CPU can complete this
retraining process in under thirty minutes. The resulting algorithm will analyze images
with the same level of runtime efficiency and possibly, depending on the object and training
images available, the same high-level of classification accuracy displayed by our retrained
ship detector. With hardware found in deployed environments today, TensorFlow-based
CNNs can benefit DOD users immediately.

TensorFlow-based algorithms’ runtimes on devices with modest resources suggests utility
for these algorithms in UAS. Recalling the ship-detecting UAS from Section 1.4, suppose
that system had a port, starboard and forward-facing camera capturing live video. An UAS
employing the Inception-v3 algorithm with a standard CPU could analyze stills taken from
these three sources, scanning a video frame from each sensor every 1.25 seconds. A version
of this same system with a GPU and three more cameras to allow 360 degree observation,
could analyze a video frame from the six sensors four times a second. Once the algorithm
detects an object of interest, it will alert its operator and send a segment of the saved video,
including frames before and after the detection, back for human review. There are further
time savings available if the six images, one from each sensor, are sent through the algorithm
simultaneously as a batch. With TensorFlow-based CNNs, in the near future the DOD could
achieve real-time detection of objects of interest with UAS.

A final area for discussion of time efficiencies is in employing TensorFlow-based algorithms
at an enterprise level. For enterprise in the DOD, we consider a data center and the agency
that employed Clara from Chapter 1. In terms of the number of images, we start with
an estimated 3.25 billion images [69] shared on popular social media platforms a day.
Assuming the intelligence agency would narrow down these images to specific sources
and only collect about ten percent of them daily, we develop our hypothetical 325 million
images. If the agency converted these images to TFRecords during collection and the data
center could support 100 instances of a TensorFlow-based algorithm, we divide by the

87



images per second values from Table 4.10 and round up to the nearest hour to produce the
estimate in Table 5.5. Although there are many more details to consider in optimizing the
collection and storage process to facilitate efficient evaluation, it appears reasonable that our
algorithms could flag images containing threat categories for human analyst review within
hours of posting.
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CHAPTER 6:
Conclusion

With the three experiments complete and our results presented in Chapter 5, a discussion of
the answers to our research questions and the salient outcomes from the results remains. To
begin, in light of the empirical results, we will answer our first four research questions from
Section 1.6 and discuss why our results are relevant to the DOD. Next, we consider traits
beyond just raw performance measures and seek to answer our fifth research question as to
the high-level risks and benefits of employing an open-source machine learning library in
the DOD. Last, to answer our sixth and final research question, we draw relevant next steps
for the DOD from our work.

6.1 TensorFlow-BasedObjectDetectors’ Performance and
Why It Matters

In pursuit of our first four research questions we draw answers from the performance
of the TensorFlow-Based object detectors summarized in the ROC curves and the time
tables of Chapter 5. We start by comparing the training requirements of deep CNNs to
previous methods in terms of compute resources and training data required, while also
considering what our results reinforce about deep CNNs’ versatility across datasets. We
follow this discussion with another focusing on the tested algorithms’ ability to scale for
different operating environments in the DOD. Finally, we reflect on the improvement of
classification performance and potential implications for future DOD systems incorporating
these open-source solutions.

It is well known that Deep CNNs require more resources to train to convergence than legacy
methods in terms of compute power and labeled data, yet their versatility across object
detection problems makes them relevant to the DOD. We show this fact once again by
considering the over one million training images from the ImageNet [1] dataset required to
train the Inception models and the over 20,000 images we collected to train our screenshot
detectors. In contrast, Jones’ [15], Camp’s [16], and Sharpe’s [17] algorithms required only
6,806; 220; and 480 training images respectively. Still, our results affirm that the costs
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associated with developing larger training sets and executing extra computations during
training and evaluation prove worth paying. All three of the previous algorithm designers
first studied the subjects of their detectors closely to understand the relevant features present
in the objects they sought to detect. Then, they selected their feature extractors with care
to match their specific classification problem. Next, they trained and tested many iterations
of these feature extractors to optimize performance. Finally, they designed a data pipeline
to run their images through the algorithms and produce a prediction. Deep CNNs do not
demand such costly human involvement for each new use case. These algorithms instead
incur a one-time design cost. Later, the algorithms only require sufficient training examples
of the new object for detection and compute resources to repurpose the algorithm. For this
reason, we were able to complete our experiments in the same amount of time each of the
three previous algorithm designers had to construct a single object detector. With industry
and academia paying these one-time-design costs for their open-source deep CNNs and the
internet serving as growing source of training examples, the DOD can now, more than ever,
afford to apply cutting-edge deep CNNs to meet a spectrum of its media analysis needs
through open-source options.

Organizations of the Department of Defense demand software solutions for media anal-
ysis that function across a wide range of operating environments. Having discussed the
steep training costs associated with TensorFlow-based object detectors, one might mistak-
enly assume that these algorithms only provide value to groups with significant compute
resources at their disposal. Our results show otherwise. Conducting costly training up
front, or repurposing trained networks through efficient methods like transfer learning, the
DOD can deploy trained deep CNNs in more austere environments for evaluating images.
By exploring the time required to classify images in both ideal and resource-constrained
configurations, we prove that TensorFlow-based object detectors can operate on currently
available hardware across many DOD operating environments.

The final and most significant conclusion from our empirical results lies in the classification
performance improvements available through TensorFlow-based object detectors. Without
any investment, in terms of development time or compute resources for training, Tensor-
Flow’s latest Inception model offers increased performance over previous AK-47 detectors
and also shows promise in helping the DOD identify objects in images across hundreds
of other categories. Further, historical improvement across five iterations of the Inception
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model suggests that Google will continue to update and release future versions incorporating
the latest advances in the field. Looking at repurposing an Inception model for a new task
with transfer learning, we found the model to achieve near perfect results on Camp’s [16]
test set; increasing recall rates by 10 to 20 percent across image scales while reducing false
positive rates. With this performance increase, we also prove that deep CNNs persist in
their applicability for DODmedia analysis problems even when limited numbers of training
examples exist. Finally, in retraining a deep CNN from scratch, we achieved nearly identical
results to Sharpe [17] on her test set. While this result is not a performance improvement,
her task lends itself to human-selected feature extractors. Features applicable for identify-
ing screenshots, like strong linear features, continuous patches of pixel values, and text, are
more obvious to a human eye than those required to distinguish more complex subjects in
natural photos. This trait of screenshots facilitated Sharpe’s [17] near perfect classification
performance with an F-score of 0.980. Coming in with a slightly lower F-score of 0.975,
the best deep CNN’s ability to learn applicable features without direct human input remains
equally impressive. Achieving a strong level of classification performance on this task, we
illustrate that when possessing sufficient images the DOD can apply proven algorithms to
new problems by training deep CNNs from scratch. In summary, by attaining F-scores
above 0.95 on all three previous test sets, we demonstrate the ability of open-source deep
learning solutions to assist members of the DOD across a spectrum of media analysis needs.

We believe these results matter to the Department of Defense. The three previous exper-
iments and ours span only seven years. In that time, machine learning algorithms have
matured from hand-crafted models for single-uses to the deep CNNs that successfully gen-
eralize across many unique image classification problems. These algorithms’ classification
error rates are low enough to start implementing them in systems to facilitate human-
machine teaming, where machines ease an analyst like Clara’s workload and increase her
effectiveness. The openness and collaboration of academia and industry continues to spur
progress more quickly than individual groups could achieve. Google’s Inception stands as
direct proof of this statement. Starting with the work of others, the company developed its
own state-of-the-art model, entering it into the ILSVRC 2014 competition. Then inventing
and sharing new methods, Google released three further iterations of the model. Finally,
seeing an admirable idea from another industry leader, Microsoft, Google incorporated
residual layers into the Inception model and attained its most accurate model to date, which
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it also made public. Referring back to Figure 5.3, one sees that in our application of In-
ception as an AK-47 detector, this open collaboration reduced error rates by 50 percent on
Jones’ [15] test set between the first and last iteration. The DOD must find a way to include
itself in this collaboration and bring to bear open-source progress in order to keep up with
the current rate of change in the field of machine learning.

6.2 Benefits and Risks of Employing TensorFlow in the
DOD

Working with multiple releases of TensorFlow for over a yearlong period, we strive to
summarize our experience through an analysis of high-level risks and benefits of applying
TensorFlow and deep CNNs in DOD work environments and defense systems. In setting
out to accomplish this task, we also seek the answer to our fifth research question.

Beyond providing access to powerful machine learning models discussed in Section 6.1,
the benefits of TensorFlow include abstractions through the API that facilitate collaboration
in solving machine learning tasks, continual updates and improvements to the software,
and scalability across compute platforms. Because TensorFlow provides low-to-high levels
of programming abstractions through its sub-libraries, like TensorFlow-Slim, users of the
software can quickly apply proven algorithms to new problems with the high-level abstrac-
tions or develop new algorithms with the low-level abstractions. These abstractions provide
a framework for defining and discussing implementations of machine learning methods
to facilitate collaboration in solving complex problems. A second benefit of the software
is its pace of improvement. Where the DOD struggles to maintain its software libraries,
TensorFlow stands out for rapid releases of updates. These include new functionality, itera-
tions of algorithms with increased performance, TensorFlow implementations of the latest
machine learning models from academia, updates to data pipelines and processes in pursuit
of computational efficiencies, and more. Further benefits for the DOD are TensorFlow’s
cross-platform availability and the scalability of the software. In our tests we employed
TensorFlow on Linux Ubuntu, Windows 10, and CentOS operating systems and found our
scripts and experiments to work well across the platforms. Officially, TensorFlow supports
Ubuntu, Mac OS X, and Windows; but, as the source code is public, it is possible to
compile TensorFlow for many more systems. TensorFlow community members already
compile source code and share necessary files for installing TensorFlow on systems like
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the Raspberry Pi. This leads us to the final benefit for discussion, scalability. With several
choices of open-source machine learning software frameworks, competition thrives among
maintainers to make the most efficient and versatile implementations of proven algorithms
and methods. The resulting efficiency and versatility of TensorFlow allows it to run on plat-
forms as small as the Raspberry Pi while also scaling to run in production environments,
like Google requires, through the TensorFlow Serving library. Also, Google offers cloud
services with TensorFlow [70] running on hardware specialized for machine learning which
could benefit larger organizations within the DOD. Such scalability encourages application
of the software throughout all levels of the DOD. This limited discussion of the benefits
of TensorFlow, coupled with the performance improvements discussed previously, should
sufficiently motivate efforts to incorporate it in the DOD.

Adopting TensorFlow in the Department of Defense does involve some risks and challenges.
We introduce these here and discuss steps for overcoming them in Section 6.3. First, the
software library requires an understanding of computer programming that the average-
candidate users for the software in the DOD do not currently possess. Even with access to
online tutorials and the prerequisite-programming skill, understanding TensorFlow’s data
pipelines, queuing systems, and other processes requires significant study and effort. This
proved especially true when attempting to import and train proven models with a new
dataset. Where we discussed the library’s rapid updates as a benefit, a consequence of such
innovation is that the software providesmultiple options to conduct the same task. This leads
to confusion as to which sub-library and which function calls to employ when developing
code. These multiple options do serve two purposes: they allow users to complete tasks at
different levels of abstraction or preserve functionality as legacy methods and procedures
get updated, marked for removal, and eventually discontinued. Still, multiple options can
become a source of confusion to users learning how to employ TensorFlow. Afinal challenge
the DOD will face in using TensorFlow stems from its permissive Apache 2.0 License. The
license allows anyone to modify the source code of TensorFlow and release it under a new
license. Acquisition professionals seeking to incorporate TensorFlow into a DOD program
will have to ensure that contractors do not make modifications to the software library,
copyright the slightly modified version, and sell it to the DOD as a proprietary software
library. These risks and challenges are not inconsequential; regardless, we believe the DOD
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can accept and overcome them to reap the benefits available through open-source software
like TensorFlow.

A final realization necessary to responsibly apply deep CNNs in the DOD requires recog-
nizing and appreciating the errors such algorithms make. As we showed in an analysis of
each object detectors missteps in Chapter 5, deep CNNs do not make the same types of
mistakes humans make. They are capable of missing objects obvious to a human analyst
and also prove able to generate false positives in cases that would not deceive the human
eye. Appreciating this fact narrows the types of problems with which these algorithms
can assist. Specifically, current deep CNNs do well filtering and prioritizing information
for human review, serving on a human-machine team, vice making independent decisions
which bear significant consequence, like automatic weapons release. A benefit of initial
human-machine teaming is the ability of a human to identify patterns in an algorithms’ mis-
takes, especially for false positives, and add misclassified examples to a training database
with the goal of improving the algorithm’s performance. For example, with a deep CNN
AK-47 detector, a program would first sort images from a confiscated hard drive from the
highest to lowest score of containing a weapon. The human reviewer could quickly inspect
the highest-ranking images for actionable intelligence. When time permitted review of the
remaining images, the analyst could complete her inspection and add any identified false
negatives to the algorithm’s training set. In this way it is possible to improve the AK-47
detector in the future without requiring a complete redesign of the model. In applying deep
CNNs to problems that facilitate such human-machine teaming, the DOD can mitigate risk
and gain an appreciation for their strengths and weaknesses while considering their potential
for future independent applications.

6.3 Next Steps for the DOD to Employ Open-Source
Machine Learning Solutions

In an effort to address some of the risks of using TensorFlow, and answer our final research
question, this section explores potential next steps for DOD organizations hoping to benefit
from open-sourcemachine learning solutions. Our research confirms that TensorFlow offers
a needed capability to the Department of Defense, a first step in a more complex problem
of providing access to similar software for groups across the organization. Significant work
remains to implement the technology and software we explored in this thesis for operational
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use cases. A potential next step is to compare available libraries and select one or more for
use on DOD systems and networks. Narrowing the selection to a few of the most promising
frameworks mitigates risk of employing a sole framework, inspires further competition
among open-source communities, and still encourages collaboration as DOD groups can
share solutions they implement within the same open-source machine learning libraries. A
second step is to make it known that the selected software is available to DOD users. While
we showed that policy exists to allow open-source products in the DOD, the organization
must inform personnel of their ability to employ the software and provide specific guidance
about licensing considerations and terms of use. Further, information assurance policies
must permit installation of the software on government owned systems; this may require
certification of the software by DOD security professionals.

Once given access to the software, personnel will require training. Thus, DODorganizations
must develop a training pipeline to provide the prerequisite knowledge of a programming
language, a basic understanding of the principles of machine learning, and introductory
training on application specific algorithms, like deep CNNs, to gain an appreciation for
their strengths and the types of mistakes they make. Fortunately, the required training
topics are available through online courses and material [32], [71], [72] and the DOD could
train personnel efficiently by developing certifications for specific personnel who complete
a combination of online courses. These three steps can move the DOD closer to delivering
the ability to apply open-source object detectors in media analysis tasks to intelligence
analysts at many levels of the organization.

As a potential strategy to reduce training requirements, the DOD could also contract a
company to build and maintain a graphical user interface that makes calls to an open-
source machine learning library. This project would require minimal software development
but would allow everyday users access to the deep learning algorithms, like the Inception
models, without requiring significant instruction. The interface could also allow users to
apply transfer learning to the Inception models by supplying directories containing example
images for new categories. In only contracting the company to provide the graphical user
interface, the contractor could not make the underlying library proprietary and the cost of
employing TensorFlow would remain low. Completing this step, everyday members of the
DOD could deploy powerful deep learning solutions to new, organization specific, media
analysis challenges.
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Startingwith the hypothesis of whether or not theDepartment of Defense should procure and
implement open-source algorithms and software libraries, we developed research questions
necessary to explore this supposition. After selecting three previous defense-related theses
and datasets, we developed experiments to apply an open-source machine learning frame-
work to the same images to create a baseline for performance comparison. We captured
timing metrics for the training and evaluation of the deep learning algorithms and related
our measurements to realistic scenarios to show that open-source deep CNNs will function
across several DOD environments. We observed that TensorFlow-based object detectors
outperform or match previous algorithm performance, while requiring significantly less
effort to apply them to each new problem. These observations provide empirical evidence
supporting future DOD procurement and application of open-source machine learning soft-
ware. Beyond our results, we argue that benefits of open-source deep learning libraries
outweigh associated risk and that it is logical for the DOD to employ them. In illustrating
TensorFlow’s utility to the Department of Defense, we assert that the organization can
benefit from the open-source innovations of industry and academia in the field of machine
learning. Doing so affords the DOD an opportunity to increase efficiency and to keep pace
with state-of-the-art advances in order to maintain a technological edge over its adversaries.
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APPENDIX: Detailed Results

A.1 AK-47 Detector ROC Curves and Tables

A.1.1 Three Classification Scores Comparison

Figure A.1. Inception-v1 ROC curve for three category scores on all test
sets.

Table A.1. Inception-v1 best F-score performance metrics all test sets.
Model Thres. Acc. Prec. FPR Rec. F-score

v1 AR 0.047 0.976 0.938 0.006 0.804 0.866
v1 rifle 0.022 0.973 0.925 0.007 0.792 0.853
v1 AR + rifle 0.072 0.976 0.944 0.005 0.801 0.866
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Figure A.2. Inception-v2 ROC curve for three category scores on all test
sets.

Table A.2. Inception-v2 best F-score performance metrics all test sets.
Model Thres. Acc. Prec. FPR Rec. F-score

v2 AR 0.030 0.984 0.948 0.005 0.889 0.917
v2 rifle 0.011 0.982 0.924 0.008 0.893 0.908
v2 AR + rifle 0.040 0.984 0.940 0.006 0.894 0.917
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Figure A.3. Inception-v3 ROC curve for three category scores on all test
sets.

Table A.3. Inception-v3 best F-score performance metrics all test sets.
Model Thres. Acc. Prec. FPR Rec. F-score

v3 AR 0.058 0.983 0.946 0.005 0.878 0.911
v3 rifle 0.016 0.969 0.874 0.013 0.805 0.838
v3 AR + rifle 0.108 0.983 0.956 0.004 0.869 0.910
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Figure A.4. Inception-v4 ROC curve for three category scores on all test
sets.

Table A.4. Inception-v4 best F-score performance metrics all test sets.
Model Thres. Acc. Prec. FPR Rec. F-score

v4 AR 0.063 0.988 0.982 0.002 0.890 0.934
v4 rifle 0.019 0.984 0.944 0.006 0.885 0.914
v4 AR + rifle 0.077 0.987 0.967 0.003 0.897 0.931
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Figure A.5. Inception-ResNet-v2 ROC curve for three category scores on all
test sets.

Table A.5. Inception-ResNet-v2 best F-score performance metrics all test
sets.
Model Thres. Acc. Prec. FPR Rec. F-score

ResNet-v2 AR 0.036 0.989 0.972 0.003 0.916 0.943
ResNet-v2 rifle 0.011 0.985 0.942 0.006 0.906 0.924
ResNet-v2 AR + rifle 0.037 0.989 0.957 0.005 0.926 0.941
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A.1.2 Jones’ Test Set Performance Comparison

Figure A.6. AK-47 detector performance using the AR category for all In-
ception models on Jones’ [15] test set (zoom in).

Table A.6. Inception models’ best F-score performance metrics Jones test
sets.

Model Thres. Acc. Prec. FPR Rec. F-score

v1 0.047 0.983 0.947 0.005 0.857 0.900
v2 0.030 0.990 0.962 0.004 0.923 0.942
v3 0.125 0.989 0.987 0.001 0.889 0.936
v4 0.053 0.992 0.988 0.001 0.926 0.956
ResNet-v2 0.036 0.993 0.985 0.001 0.939 0.961
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A.1.3 All Test Set Performance Comparison

Figure A.7. Best AK-47 detector performance using the AR category for
internet test sets.

Table A.7. Inception-ResNet-v2’s best F-score performance metrics compar-
ing Jones and internet test sets.
Image Set Thresh. Acc. Prec. FPR Rec. F-score

Jones Video Frames 0.036 0.993 0.985 0.001 0.939 0.961
Internet Images 0.002 0.956 0.980 0.014 0.916 0.947
Internet/Rifle-Like 0.004 0.911 0.833 0.078 0.888 0.860

103



A.2 Ship Detector ROC Curves and Tables

Figure A.8. Ship detector performance across all Camp’s test set scales
retrained with only Camp’s training images.

Table A.8. Ship detector best F-score performance metrics on Camp’s test
set at all scales.

Image Set Thresh. Acc. Prec. FPR Rec. F-score

Full Scale 0.517 1.000 1.000 0.000 1.000 1.000
75% Scale 0.406 0.998 0.998 0.010 1.000 0.999
50% Scale 0.362 1.000 1.000 0.000 1.000 1.000
25% Scale 0.426 1.000 1.000 0.000 1.000 1.000
20% Scale 0.410 0.996 0.998 0.010 0.998 0.998
15% Scale 0.327 0.992 0.995 0.020 0.995 0.995
10% Scale 0.090 0.976 0.980 0.082 0.990 0.985
5% Scale 0.067 0.952 0.966 0.143 0.975 0.970
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A.3 Screenshot Detector ROC Curves and Tables

Figure A.9. Screenshot detector all models’ performance on all Sharpe’s [17]
images.

Table A.9. Screenshot detector best F-score performance metrics on
Sharpe’s images all models.

Model Thresh. Acc. Prec. FPR Rec. F-score

VGGNet-16(30K) 0.097 0.956 0.967 0.021 0.921 0.944
ResNet-v2-50 (30K) 0.074 0.958 0.970 0.019 0.922 0.946
Inception-ResNet-v2 (30K) 0.055 0.964 0.983 0.010 0.926 0.954
VGGNet-16 (50K) 0.721 0.963 0.986 0.009 0.919 0.952
ResNet-v2-50 (50K) 0.056 0.956 0.989 0.007 0.899 0.942
Inception-ResNet-v2 (50K) 0.897 0.981 0.995 0.003 0.956 0.975
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