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ABSTRACT 

With the development and advancement in the technology of control and multi-

robot systems, robot agents are likely to take over mine countermeasure (MCM) missions 

one day. The path planning coverage algorithm is an essential topic for research; the 

combination of an efficient algorithm and accurate sensors can save time and human 

lives. The objective of this work is to implement a path planning coverage algorithm for a 

multi-robot system in a two-dimensional, grid-based environment. We assess the 

applicability of a topology-based algorithm to the MCM mission. First, we provide an 

overview of multi-robot coverage algorithms. Second, we select one algorithm, analyze 

it, and test its performance. Then the algorithm is evaluated in nine experiments using 

different numbers of robots and obstacles. Finally, the results are assessed by how much 

time the steps took and how many free points are not visited when the algorithm is 

finished. The outcome indicates that efficiency decreases as the number of robots or 

obstacles increases. This thesis concludes with recommendations for ways to improve the 

efficiency of the algorithm as well as how to perform the experiments cost effectively in 

a real environment. 
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I. INTRODUCTION 

According to Google Scholar, the concept of single-robot systems has been 

considered since as early as 1700 while the concept of multi-robot systems emerged in 

the 1950s. Within the field of robotics, many applications and related materials are worth 

exploring. And, in this thesis, the coverage algorithm applied to both single robot and 

multi-robot systems is our primary topic. Coverage means the number of units within a 

specific area visited by robots. The coverage algorithm is a mathematical method to drive 

robots to achieve maximum coverage of a specified area. From the coverage perspective, 

using a single robot to complete coverage algorithms is no longer a challenge when the 

terrain in a defined area remains constant. By contrast, a multi-robot system is like a 

cooperative team; each robot in the system has to update its memory based on the 

information it receives from the others. This feature, then, increases the complexity of 

developing coverage algorithms for multiple robots to carry out tasks. And if we think 

about the motives for building a multi-robot system rather than a single-robot system, the 

primary reason is to save time. We expect that a team with five robots could work five 

times as quickly as a single robot to perform a mission under ideal conditions. Based on 

this line of reasoning, we might build a multi-robot system with this time-saving goal in 

mind. Indeed, most algorithms for multi-robots have been proved to be time saving, but 

there is still some room for improvement.  

A. PURPOSE OF RESEARCH 

In the past, in order to conduct a mine countermeasure (MCM) mission, we risked 

the lives of personnel searching for mines in the littoral area near the primary channel for 

warships going in and out. If we could substitute robots for military personnel to execute 

this kind of missions, we would no longer be necessary to risk human lives. The purpose 

of his research is to demonstrate a multiple robot coverage algorithm applicable to MCM 

scenarios. 
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B. APPROACH 

The steps listed below demonstrate how this work is developed gradually. We 

first do some study on the multi-robot coverage algorithms. Then, we determine an 

algorithm by interests. Develop the code based on the pseudo code of paper in MATLAB 

program is the next move. Last, we simulate different experiment by implementing the 

algorithm.  

1. Search for Related Coverage Algorithm 

The essence of the fundamental concept of path planning algorithms is well-

classified in [1]. From [1], we know coverage could be completed to some extent through 

the cell decomposition method, which consists of three branches. Most coverage 

algorithms are developed based on the knowledge and concepts from those branches. The 

branches within the cell decomposition method are classified as approximate cellular 

decomposition, exact cellular decomposition, and semi-approximate.  

a. Approximate Cellular Decomposition 

All the grids of the area to be covered are defined to have same size under 

approximate cellular decomposition. Using this type of cellular decomposition, the target 

region, such as the size and shape of obstacle, is presented approximately because the 

space is composed of uniform grids. A comprehensive concept, which is shown in 

Figure  1, is demonstrated in [2]. Usually the size of the grid is also the size of the robot 

footprint. Coverage is complete after robot enters all the grids in the domain field.  
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Figure 1.  Approximation of an Obstacle by Uniform Grids. Source: [2]. 

One of popular algorithms to illustrate approximate cellular decomposition is the 

wavefront algorithm. The wavefront algorithm is an algorithm marking the goal as zero 

and the adjacent areas around zero are marked as one. Then the adjacent areas around one 

are marked as two and so forth. Thus, each grid in the domain area is numbered in an 

ascending order. A specific area marked as any number higher than the goal is defined as 

a start zone. A robot moves from start point to the goal by following a gradient rule. An 

efficient path is defined when the sum of numbers on the path is minimized as illustrated 

in Figure 2. 

Figure 2.  An Efficient Path Found by the Wavefront Algorithm. 

Adapted from [3]. 



 4 

The best example to illustrate this is found in [3], where Zelinsky et al. 

implemented a conventional wavefront algorithm to determine a coverage path, as shown 

in Figure 3. 

 

Figure 3.  Path of Complete Coverage Executed by Conventional Wavefront 

Algorithm. Source: [3]. 
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b. Exact Cellular Decomposition

There is no uniform cell in exact cellular decomposition. The target region is 

exactly defined in the environment. Trapezoidal decomposition in [4] is the best case to 

convey this concept. Figure 4 illustrates the graphical prototype. As soon as the cells are 

defined, a robot can implement back-and-forth motion to complete coverage. 

In (a) the initial position, goal point, and populated obstacles in the environment are 

shown. In (b), the free space is decomposing into trapezoidal cells. 

Figure 4.  Example of Exact Decomposition—Trapezoidal Decomposition. 

Source: [4]. 

c. Semi-approximate Decomposition

Semi-approximate cells are cells that are partially discretized in width without 

uniform height. The robot follows a depth-first order of motion in this method. Thus, the 

robot moves along the boundary of the domain area until it meets the deepest position of 

the field. Then, it goes up if it has met the discretized width line or moves horizontally 

along the boundary. This path will result in some of area not being explored and others 

might be visited twice. The example illustrated in [1] is shown in Figure 5.  
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Figure 5.  Example of Semi-approximate Decomposition. Adapted from [1]. 

2. Coverage Algorithm of Interest 

While many papers concentrate on coverage completeness and the time it takes, 

the issue of repeated coverage is less studied. As a result, the algorithm this work extends 

is known as “Complete Multi-Robot Coverage of Unknown Environments with 

Minimum Repeated Coverage” [5]. The environment is designed to have exact cellular 

decompositions. Furthermore, the robots have no prior knowledge of the environment. 

The pseudo code presented in the paper is performed in MATLAB code. The robots 

perform behaviors such as obstacle avoidance, teammate avoidance, and boundary 

avoidance. Other behaviors, such as searching in convex or concave shaped obstacles, are 

ignored because the purpose is related to conducting an MCM mission in which warships 

have to keep a specific distance from obstacles. As a result, searching in convex or 

concave shaped obstacles has no value for our discussion.  

3. Develop MATLAB Code from Pseudo Code 

An algorithm is established under the topology concept, which is point based, and 

it is performed as shown in a two-dimensional grid-based implementation. We are 

looking for an efficient coverage algorithm for a multi-robot system to complete an 

MCM mission. In such a scenario, the most complex situation to explore is the area 

distributed with rocks and reefs. We created an environment that emphasized the area 

around obstacles and observed the performance of robots under the algorithm. In order to 
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implement the algorithm from the pseudo code, the easiest way is to analyze it from the 

kinematic perspective. 

 In the work, we use the MATLAB program as our primary platform to establish 

the environment, the behaviors of each robot, and the way each robot moves to its next 

position. The main behaviors are boundary, obstacles, and partners avoidance. 

“Neighborhood” provides a certain distance outside and around the boundary, obstacles, 

and robots, which guarantees the robots’ avoidance of one another. The algorithm drives 

each robot to go to the point which has minimum moves to choose after its arrival. When 

they reach this point, the robots switch modes from normal mode to wrap mode to 

complete the coverage. 

4. Simulation Experiment

MATLAB program is also used as a simulator to evaluate the algorithm using a 

different number of robots and obstacles. The number of robots ranges from one to three. 

The area of the domain field is constant. And, the total area containing obstacles is the 

same. The number of obstacles ranges from one to three as well. Thus, we set area size 

sixteen for one obstacle environment, size eight for two obstacles environment, and two 

obstacles of size four along with another size eight obstacle for three obstacles 

environment. To sum up, there are nine conditions to estimate in the simulation 

experiment. The number of steps and whether the coverage is completed are essential 

topics to discuss in Chapter IV. 

C. CONTRIBUTIONS 

In order to find out if the algorithm is applicable to an MCM mission, we 

implement it in the previously described environment within a specific domain area 

containing obstacles. Since all we have is pseudo code for the algorithm, from a very 

fundamental perspective, we implement the algorithm in a two-dimension grid-based 

scenario. This work will help people who want to understand coverage algorithms in an 

MCM mission, and simultaneously, we aim to provide some results to the coverage 

algorithm field. The following list highlights our intended contributions: 
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 Analysis of a topology-based, multi-robot coverage algorithm from 

pseudo code.  

 Implementation of a topology-based multi-robot coverage algorithm in 

MATLAB. 

 Extension of a topology-based multi-robot coverage algorithm for 

application to an MCM scenario. 

 Evaluation of the performance of a coverage algorithm in a variety of 

simulated scenarios. 

D. ORGANIZATION OF STUDY  

There are five chapters in the study. In Chapter I, we introduce primary structures 

of this work. Researches related to multi-robot coverage algorithm are studied in Chapter 

II. After determining an algorithm, the code to implement it is developed and explained 

in Chapter III. In Chapter IV, we implement the developed code of the algorithm in 

different scenarios, discuss the results from each experiment and analyze the factors that 

affect the outcomes. In Chapter V, we determine whether the algorithm is applicable for 

MCM mission, list benefit and drawbacks of the algorithm and demonstrate future works 

that we can do if time is available. 
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II. LITERATURE REVIEW

In order to execute a task of mine detection in specific waters, we have to 

determine an algorithm for the multi-robot system to perform this task. In such a mission, 

efficiency and accuracy are our top priorities. The former requires that the robots 

complete the coverage within of the least amount of time, and the latter requires finding 

out the location of interest correctly. Moreover, within the category of accuracy exists the 

probability of detection. An example to illustrate this idea is shown in Table 1. 

Table 1.   Metrics of Probability of Detection 

We can glean some potential algorithms that might be applied in the mine 

detection task. Nevertheless, even though most of the algorithms have been successfully 

implemented in various simulations and experiments, few have been examined in an 

underwater environment. Moreover, the contribution of some algorithms could not meet 

our need to perform efficient and accurate coverage in the task. Therefore, additional 

research is necessary to apply these theoretical algorithms to the practical challenges of 

an MCM. 

Aims

Yes No

Yes Correct False Alarm

No Missed Detection Correct

Is there a mine?

Is mine detected?



10 

A. SPECTRUM OF ROBOT CONTROL ARCHITECTURES FOR 

ALGORITHMS 

Before selecting an algorithm, the following are some basic concepts to 

differentiate numerous approaches. Perhaps one way to classify or differentiate between 

these different approaches is based on “behavior-based” versus “system theory based” 

approaches to the problem. 

1. Behavior–Based Approach

Most behavior-based systems are reactive systems, bioinspired, or ad-hoc 

approaches, which do not require explicit mathematical models of the subsystems or 

environment. The robot uses the gleaned information to gradually correct its actions 

depending on the changes in the immediate environment. Behavior-based robots (BBR) 

are able to perform complex behaviors; however, they have difficulty proving or 

guaranteeing both stability and performance. 

2. System Theory–Based Approach

Neither planner based nor deliberative approaches can verify sensory information 

or generate motions directly; they require a centralized computer as a medium to do this. 

The planner could apply the information in the model to generate the most proper 

sequence of actions for the robot. Thus, the quality of the performance of the robot could 

be evaluated through those explicit formulas. As a result, system theory based approaches 

can prove or guarantee both the stability and performance [6], e.g., decentralized control. 

Some documents classify the behavior-based design as one of the members of a 

reactive control system [7], while others suggest that it is much more similar to the hybrid 

control system, which is in-between the reactive and deliberative control systems [6]. In 

this thesis, the latter is adopted. Figure 6 illustrates this spectrum of potential approaches, 

and Table 2 lists the characteristics of each of the different approaches. 
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Figure 6.  Spectrum of Robot Control Architectures 
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Table 2.   Features of Robot Control Architectures. Adapted from [7], [8]. 

 

 

 

Features Reactive Behavior-based Hybrid Deliberative

World model v v

Requires large amounts of accurate information v v

Flexible for increasing complexity v v

Built-in or learned from loading in the past v v v

Making maps 

(Design path)
v v

Avoiding obstacles v v v

Monitor performance v v

Low memory processing v v v

Internal representaions v v

Ability to learn v v

Respond quick v v v

Require three-layer systems

(Reactive layer, deliberative layer and intermediate 

layer between the two)

v

A sensing system

(translate raw sensor input into a world model)
v

A planning system

(take the world model and a goal and generate a plan 

to achieve the goal)

v

An execution system

(take the plan and generate the actions it prescribes)
v

Localize a robot relative to a world model v v

Decomposition into contextually meaningful units v v

Combine the responsiveness, robustness and 

flexibility of purely reactive

 systems with more traditional deliberative methods.

v

Thinking performed through a network of behaviors v v

Uses distributed representations v v

Responds in real-time v v

Allows for a variety of behavior

 coordination mechanisms
v v
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B. STATE OF THE ART 

The coverage of single-robot systems has been analyzed for decades. The 

comprehensive categories of the levels required to complete the coverage are well 

organized in [1]. For example, we could apply heuristic and randomized approaches to 

develop an algorithm for vacuuming/sweeping robots because such applications do not 

have to take time into consideration. As a result, if given long enough time, a robot will 

complete its task as accurately as possible. However, in the demining problem, both 

efficiency (minimum time) and completed coverage (accuracy) are required. Therefore, 

some advanced algorithms based on exact cellular decomposition for multi-robot systems 

are developed. 

The algorithm proposed in [9] is based on boustrophedon decomposition [10], 

which is a kind of exact cellular decomposition. Choset and Pignon defined that a cellular 

decomposition is the construction of a graph in the desired environment, which in turn 

could be applied to plan coverage. The authors further wrote, “Once the specific cell has 

been visited, the robot uses the structure of the graph to plan a path to an uncovered area, 

and as the graph has no unexplored places, the coverage is complete” [10].  

The square robots in the algorithm are equipped only with intrinsic contact 

sensors to detect the boundary of their finite environment, and to perform a complete and 

efficient coverage in a finite environment. This algorithm is called DCR, which includes 

three distinct elements: the CCRM, feature handler, and overseer. With tasks properly 

designed by DCR, those three components could execute coverage equally capably and 

efficiently in shared, connected, and rectilinear settings. The first, CCRM, is in charge of 

covering the environment by constructing the cellular decomposition increasingly. The 

knowledge assigned to CCRM are cellular decomposition C (C = {C0, …, Cn}) and the 

current position of robot only. At this stage, each robot does not have to take other robots 

into consideration. The feature handler is the second part of DCR, except for deriving pre-

specified kinds of features from C, it is also responsible for communications between 

robots and determination of the relative location of the several robots. Finally, the last 

part, overseer, deals with the incoming data from robots and modifies the coverage of C; 

in other words, the overseer incorporates the data of a new unexplored area with the data 
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from the original one and updates the new coverage for CCRM. The control concept of the 

algorithm demonstrated here could be viewed as a centralized perspective, because there 

is a decision maker (feature handler) who is in charge of communication between robots. 

To sum up, the DCR was derived from [10], which is the complete coverage based 

on a single sensor-based robot. By applying multiple robots and the DCR algorithm in the 

same environment as [10], DCR has successfully proved that a multi-robot system, whose 

efficiency outperforms the one in [10], could complete coverage in a rectilinear 

environment. The algorithm, however, could not guarantee both the minimum time and 

repeated path required for the coverage. 

Apart from other algorithm methods of that apply the cellular decomposition 

approaches, [11] applies a generated map to solve the problem of coverage. Stachniss and 

Burgard suggest that “generating maps is one of the fundamental tasks of mobile robots” 

[11]. The authors further assert, “Some of the most important aspects are the localization 

of the vehicle during mapping, appropriate models of the environment and the sensors, as 

well as strategies for guiding the vehicle” [11]. Among the many algorithms for the 

coverage of multi-robot systems, efficiency is a primary goal, and it is appropriately 

defined as the minimum time required for completing coverage. The sensor might have 

some influences on efficiency since there might be noisy signal in communication when 

the distance between the robots and the control center becomes larger. To be efficient, the 

paper concentrates on handling the problems of localization and mapping simultaneously; 

meanwhile, the team also develops an approach for mobile robots to learn accurate maps 

from noisy range sensors [11].  

The definition of the task of exploration here is to guide a vehicle in such a way 

that it applies the sensor to sweep the environment. In other words, exploration maps the 

unknown area so as to determine the conditions and the characteristics of the 

environment. While coverage is the way that a robot travels within a given map when in 

search of an interest, the authors agree that a common strategy to perform exploration is 

to extract frontier between known and unknown places and to visit the closest unexplored 

area [11]. Yet, they also reveal that the approaches previously mentioned only recognize 
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scanned and unscanned fields. They do not take the actual information collected at each 

viewpoint into consideration [11]. 

To avoid the uncertainty of the robots in the map, they install a posterior for every 

cell. As a result, the team could monitor the change of entropy locally. The authors define 

entropy as a general measure for the uncertainty of a belief [11]. The values of entropy 

extend from 0 to 1, where 0 means well-explored area and 1 means unexplored area.  

The team further introduces the underlying concepts for their algorithm. First, the 

introduction of coverage maps, which ranges also from 0 to 1, where 0 stands for empty 

area, and 1 represents occupied fully. The figure between 0 and 1 depends on the portion 

of the obstacle in a grid cell. The result is shown in the histogram provided in Figure 7. 

Secondly, the way to update coverage maps is introduced. The team assumes their 

sensors would provide the information of distance. By applying the Bayes rule, they are 

able to convert the distance information to coverage values. The following strategies, in 

our point of view, Closest Location (CL), Maximum Information Gain (IG) and (IG-

WIN), and Combination of IG and CL (IG-CL) are the essence of their algorithm.  

The image shows a cell visited by a robot for measurement 30 times. Among 30 

measurements, the highest probability of an obstacle in this cell is about 0.2, which 

means 20% of the area is covered by an obstacle. 

Figure 7.  The Result of Probability of Coverage in Histogram. Source: [11]. 
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The strategy of Closest Location is to run the robot to the nearest location, where 

it is able to collect the information from the grid cell that has not been examined enough. 

The way to determine the uncertainty is based on the measurements of entropy. It would 

be lower than a specific value or does not have significant change (below 0.001) for a 

well-explored area. The CL considers only the shortest distance calculated from robot’s 

current position.  

From a specific viewpoint, the information is gained based on the measurement of 

the change of entropy, which is introduced by incorporating a measured distance. In the 

strategy of Maximum Information Gain, authors further integrate the distance into a new 

cell. Because the information of the measurement obtained by the robots is the sum of the 

information of whole cells, we do not know the exact data from the sensor at a specific 

location. Thus, all possible measurements are integrated to evaluate the expected 

information gained at a certain point. Then we have our next viewpoint. However, the 

position of next viewpoint is located at the original coordinate, which does not consider 

the location of robot. The strategy of IG-WIN is proposed to improve this disadvantage 

by providing the robot with the distance from it to the next viewpoint. 

The final strategy is the combination of IG and CL. To find an ideal tradeoff 

performance for the robot, the team develops a formula to define the behavior of that 

robot in which the result would be between 0 and 1. If the result is zero, the robot would 

perform the behavior of CL; otherwise, it performs the behavior of IG. This kind of 

algorithm could be classified as a system theory based approach since the change in the 

coverage map is based on the Bayes rule. 

The algorithm is devoted to creating a system that can generate more accurate 

maps of cells. The authors state that the algorithm decides the best trade-off between the 

number of necessary measurements and calculates the length of the resulting paths [11]. 

However, the algorithm does not guarantee the required minimum time. 

The approach described in [12] tries to solve the coverage problem using sensor-

based robots. First, Batalin and Sukhatme propose a hypothesis with a scenario in which 

the environment is unknown and the Global Positioning System is unavailable. Secondly, 
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they propose two algorithms to perform the coverage task successfully with the help of 

only local sensing and local interaction between robots. Thus, these algorithms employ 

the Informative Technique and the Molecular Technique, respectively. The robots using 

the former method could be viewed as centralized, since the robots make decisions after 

analyzing the measurement from other robots. The latter, conversely, is based on the 

decentralized concept, because each robot makes its own decision depending on its own 

measurement.  

Each robot is equipped with two planar laser range finders with a 180-degree field 

of view, color camera, vision beacons, and wireless communicator. In their system, the 

robots are not only able to perform obstacle avoidance but also of to be mutually repelled 

by one another within a certain distance limited by the sensors. The experiment is carried 

out according to three approaches. The first is called the Informative, which is based on 

the idea of assigning local identities to the robots temporarily as they are within sensor 

range of each other. Then the information mutual to the relative positions of each robot 

would be shared by the wireless network. These two stages help the robots spread out in a 

coordinated manner. The second approach is named Molecular [12], the underlying 

concept of which is simpler than the Informative. Without the local identification and 

communication among the robots, the task for each robot is only to move in a chosen 

direction away from the others. The perception of the robot to distinguish itself from 

another one is required in both approaches. The third approach is termed Basic, in which 

the robots only have the ability of to avoid obstacles. The robot does not have the ability 

to distinguish itself from the others. In the experiment, the results of the Informative and 

Molecular approaches outperform the Basic approach, because the standard deviations of 

the Basic approach increase when the robots are positioned in different locations and as 

the number of robots changes. Both the Informative and the Molecular approaches show 

small standard deviations when the robots are located at distinct positions and when the 

number of robots changes. However, the Molecular approach performs a bit better than 

Informative approach because in the Informative approach the robot has to stop to 

identify other robots within the range of its sensors. This task is costly in terms of speed 

and converge time. In the Molecular approach the robot only has to find the best path 
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away from other robots, which makes this approach the most efficient one. The team 

plans to modify the Informative approach by shortening the time a robot has to stop to 

identify other robots.  

The idea of applying a multi-robot distributed coverage algorithm, which is 

proposed in [13], manages to solve the humanitarian de-mining problem. With the 

implementation of Boustrophedon decomposition and the Cycle algorithm, Acar and 

Choset point out that “no robot remains idle while there are areas to be covered” [13]. In 

other words, their coverage is efficient. Three phases are introduced in the Cycle 

algorithm. They are the forward phase, reverse phase, and closing phase. Three scenarios 

are envisaged as environments that the robots might encounter. The first is the Cell with 

no obstacles. In this setting, the robot performs the forward and reverse phases. The robot 

confirms that the current cell coordinates are correct and renews the coverage map. 

Furthermore, the robot is able to assume that the neighbor cell, which is unexplored, has 

the exact same size as the present cell and to add it into the adjacency graph. In the 

second scenario, termed Cell with obstacles, which entails blocking part of the cell’s 

width, the robot uses the sensor to detect and memorize the obstructing position. The 

recognized location would be viewed as a starting point for the adjacent cell to be added 

later. The third scenario is named Cell divided obstacle. While performing forward and 

reverse phases, the robot meets an obstacle blocking the path. Thus, it updates the size of 

the cell and assumes that the adjacent cell has the same height as the current one. The 

outline of the graph would be rectified once the robot detects the scenario of the Cell with 

obstacles blocking part of the cell’s width. Communication plays an important role in this 

algorithm, because the robot will broadcast the new information to the team after it 

finishes the coverage. After receiving the message, each robot combines the new 

information with its own picture. Lack of communication will lead to overlap coverage. 

This paper [13] poses an algorithmic approach to the distributed complete coverage 

problem, which is quite successful because there is no idle behavior when a robot 

completes its own coverage. However, the authors reveal that the “bandwidth limitations 

and congestion in narrow areas are potential limiting factors” [13]. 
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The aim of [5] is to apply a decentralized algorithm to complete coverage in an 

unknown environment. Meanwhile, instead of looking for efficiency, they focused on 

how to minimize repeated coverage, which indirectly increased the efficiency of 

coverage. There are two modes in their algorithm: normal mode and wrap mode. Under 

these modes, onboard sensors and a network for both communication and sharing 

information among the robots are required. The robots treat explored areas as spurious 

obstacles. The diameter of the circular footprint of each robot is defined as dr. In the 

perception of a robot, there are regions that need to be covered, the actual subspace of a 

region that could be reached by robots, uncovered space, already covered space, spaces 

between obstacles that are less than 2dr apart, boundaries, real obstacles, spurious 

obstacles, and other robots. Under normal mode, a robot looks for a real obstacle and a 

spurious one while it checks its internal path simultaneously. Then the robot searches for 

a nearest point, which allows the robot to keep the distance 4dr and 2dr from the real 

obstacle and spurious obstacle, respectively. The wrap mode is activated when such a 

point cannot be located. At that moment, a robot travels along its explored area in a 

counterclockwise direction from its current position and looks for any free space. If it 

does not reach a free point by the time it arrives at the original point, the robot then 

patrols along its explored area in a clockwise direction. Under this procedure, if there is 

an unexplored area that had initially been ignored, the robot shifts from wrap mode to 

normal mode. Once an obstacle opening is detected, it covers the area by back-and-forth 

motion; meanwhile, it checks whether the distance is 4dr or 2dr from the real obstacle and 

spurious obstacle, respectively. When the condition is true, normal mode takes the place. 

The repeated coverage only happens to the areas where the distance between obstacles is 

less than 2dr. As a result, no unnecessary repeated coverage occurs under this general 

scenario, which further improves the general efficiency of the study. The team has 

successfully minimized the repeated coverage through simulations. 

The main idea of [14] is to focus on an online multi-robot coverage algorithm 

based on approximate cellular decomposition. They introduced Multi-Robot Spanning 

Tree Coverage (MTSC). By implementing the algorithm, they expected their coverage to 

be complete, non-redundant, and robust. The definition of complete is that all the paths 
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are covered by robots. And, the criteria for non-redundant is that the same place is not 

scanned more than twice. Robustness ensures that as long as a robot is still alive, the 

coverage will be finished. The robots are able to sense, determine, communicate, and 

cooperate with peers while exploring. The environment is unknown. In the algorithm, all 

robots are given an absolute location. The team conducted several trials with real-world 

robots. The authors claim “The algorithm works well in diverse environments and group 

sizes” [14]. Nevertheless, because a robot can make a turn by 90 degrees once each time, 

it limits its efficiency for coverage.  

A novel approach called the multiple aspect coverage (MAC) algorithm has been 

derived in [15] to plan paths for detecting clusters of interests. Two requirements for this 

algorithm are the information about target location and well-operated sensors for an 

autonomous underwater vehicle (AUV). The AUV will operate straight-line mode to 

approach the targets by three swaths. The algorithm calculates proper angle, the width of 

swath, and the fewest turns required to cover the clusters of targets. In an experiment 

involving three targets, the path planner of MAC uses less time, less distance, and fewer 

turns to localize the position of the targets; thus, it outperforms the other two approaches 

(Standard and Human operator). The MAC algorithm could be viewed as a budding star 

in the MCM field, even though the experiment only applied one AUV. Table 3 and 

Figure 8 contain some experiment results from [15]. 

Table 3.   Performance Metrics for the Three-target Case. Source: [15]. 

 

Path Planner
Time

(min)

Distance

(m)
Turns Probability

MAC 12.65 1461.1 8 0.952

Standard 24.64 2699.5 17 0.959

Human operator 12.13 1317.6 8 0.759
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Figure 8.  Experiment Result for the Three-Target Case. Source: [15]. 

C. ALGORITHMS SUMMARY 

Table 4 lists studies related to the classification of algorithms based on types of 

control, characteristics, number of robots, interaction among robots, assumptions, and the 

contents of the studies. 
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Table 4.   Classification Determined by Assorted Characteristics 
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D. DETERMINE ALGORITHMS FOR THE MCM TASK 

Even though we have listed the characteristics for every algorithm, it is difficult to 

determine which algorithm is the most suitable for the MCM task. The approach in [9] 

could develop complete coverage for a rectilinear environment with a multi-robot system, 

but it does not consider the problem of avoiding obstacles, which is a required behavior 

in our mission. The work of [11] introduces an algorithm based on the coverage map, and 

it could be modified based on the sensory information. However, the algorithm focuses 

on finding the exact boundaries of each cell instead of the position of the targets. Thus, 

this algorithm is not applicable in an MCM mission. In [12] three methods to perform the 

coverage are demonstrated. Among these methods, the Informative algorithm has the 

potential to be used in our mission since it has ability to recognize other robots in the 

predefined environment; however, it takes too much time when identifying peers. As a 

result, in consideration of efficiency, the Molecular approach might be a possible 

solution. Based on the exact cellar decomposition algorithm, [13] could complete the 

coverage and also perform the behavior of avoiding obstacles. Thus, it might be a 

potential candidate as well. In [5], it is worthwhile to think about an algorithm that 

calculates the minimum repeated coverage within a predefined territory. The set 

environment of the experiment has obstacles of various shapes, and the result shows this 

algorithm performs efficiently and sweeps the coverage area completely. The algorithm 

applied in [14] is based on the approximate cellar decomposition method. Even though it 

executes well for demonstrating a complete coverage in the experiment and uses less time 

compared with the exact cellar decomposition method, the accuracy of the position of 

targets does not need to be determined in the experiment. The novel approach in [15] is a 

state-of-the-art technique useful for our mission, even though it uses only one AUV in its 

experiment. The mine should be distributed on the bottom of the ocean in a cluster 

formation. Thus, the MAC algorithm has been proven to be the best way to locate the 

position of the mines. 
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III. ALGORITHM DEVELOPMENT

A. GENERAL TOPOLOGY–BASED ALGORITHM 

The algorithm presented in this chapter, including the equations and notation 

associated with the algorithm, is proposed in [5]. A contribution of this thesis is the 

interpretation of the algorithm and its implementation in a grid-based environment. The 

reason why it is called the minimum repeated coverage algorithm is that when the robot 

cannot find another route to explore, it moves along the boundary of its own explored 

area to search for a new route. Following this this behavior, it only repeats the route of 

the boundary of its own covered area instead of other routes chosen by chance. There are 

two modes under this algorithm: normal mode and wrap mode. Table 5 summarizes the 

basic nomenclature for the algorithm. Table 6 lists the meaning of the symbols used in 

the following figures.  

Table 5.   Nomenclature. Source: [5]. 
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Table 6.   Meaning of Symbols 

B. NORMAL MODE 

The normal mode is the mode in which robots can move as they keep a certain 

distance from the domain area, obstacles, and other robots. In addition, the robots must 

go to the spaces that are bordered by the most covered areas. Since the areas bordered by 

less covered areas are distinct from those covered by the most covered area, the spaces 

bordered by the most covered areas have a greater chance of being ignored. This is true 

even when robots are in wrap mode if they go to the spaces bordered by a less covered 

area first. Figure 9 shows the pseudo code of normal mode.  
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in N ,5 E  that do not contain q .

3. // Classify the regions that should be avoided into E .

4. Let E  = E , ,

c

c ri r c ri

um

um um ri ob k ob

D q d

N q d N O d



      
 

, j

*

, 2 ,2

5. if  then

6. // Change mode if there are no permissible paths for expansion.

ri ob c ob

N

N q d N E d

B

 

 

  
* 2*

, i

* , i

7. Enter: Wrap mode.

8. else

9. // If permissible paths exist, move to the point bordered by the most E . 

10. Let q  = arg max  D E

11. // Ensure that E  does not become disconnected.

12

n N

c

n n c
q B

ux

q




  

 

   

* *

, i , i *, i *, i

. if E  D  = 'disconnected'  then

13. B  =B -D

14. Enter: Wrap mode.

15. else

16. Move to q . Set E  = E D , and E  = E D .

ux c n

N N c n

n c c c n c c c n

q

q

q q



 

Figure 9.  Pseudo Code of Normal Mode. Source: [5]. 



27 

1. Description of the Basic Concept of Normal Mode

The unexplored area, Eux
 in [5], shall be visited by the robot, which is given as 

1

E  = E - E  - 
obn

ux c k

k

O


, (1) 

where E  is the domain area, Ec
 is the explored area of the robots, and Ok

 stands for an 

obstacle. The equation states that uncovered area is the area that remains after removing 

explored area and the area occupied by obstacles from the domain area. 

The area explored by robots, Ec
 in [5], is the sum of the area explored by other 

robots that does not include the robot itself and is defined as 

1

, i

0

E  = E
rn

c c

i





, (2) 

where 
,Ec i
 is explored area covered by unit robot. 

The combination of robot footprints, 
*Ec
 in [5], excluding the robot itself, is 

defined as 

 
1

*

0

E  = 
rn

c c rj

j

D q




, (3) 

where  c rjD q  is the footprint of a unit robot. 

Let 
',Ec j

 in [5] be the points that intersect the neighborhood made by the robot 

footprint with length 5 dr  and the combination of robot footprints. This is can be 

expressed as 

  c,' j c*E  = N D ,5 Ec ri rq d  , (4) 

where  D qc ri  is a disc centered a qri
 with radius 0.5 dr

 and dr
 is the  diameter of the 

circular footprint of each robot. Figure 10 shows how 
',Ec j

could be found, and Figure 11 

displays the scope of the neighborhood of
',Ec j

. 



 28 

 

Figure 10.  The Basic Concept of Defining 
',Ec j

 

 

Figure 11.  Illustration of  ', jN ,  4dc rE  

Let 
*BN
 in [5] be an arc of the boundary that a robot can move to, which is defined as 

          * , i ', jB =B ,  0.5d ,  0.5d -N ,  d -N ,  d - N ,  2dN c r ri r E ob k ob c obN E N q B O E , (5) 

where 
, 0.5 0.5 )B(N(E , d ) N(q , d )c i r ri r  is the boundary of the intersection of the 

neighborhood of 
,Ec i
 with 0.5dr

, and the neighborhood of qri
 with 0.5dr

. N(B ,d )E ob
 is the 

neighborhood of BE
 with dob

 , where dob
 in [5] is given as 

 2d dob r . (6) 

N(O ,d )k ob
 is the neighborhood of Ok

 with dob
, and 

', 2N(E , d )c j ob
is the 

neighborhood of 
',Ec j

 with 2dob
. Figure 12 demonstrates the limited direction in which a 
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robot could move. Figure 13 shows the general concept how a robot moves from its 

current position to the next position. 

Figure 12.  Illustration of Boundary of Intersection of  ,0.5N q dri r  

and 
, 0.5N(E , d )c i r

 

Figure 13.  Illustration of *BN

Let 
,Eum i

 in [5] be the subset of Eux
 and an empty space initially for each robot. 

,Eum i
 is described as 

,E  E  be um i ux  . (7) 
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Let 
,Eum i

 in [5] be defined as the equation when operating the algorithm 

         , , c, jE  = E N , , N ,2 E ,2um i um i ri ob k ob ri ob obq d N O d q d N d    , (8) 

where  ,N q dri ob  is the neighborhood of qri
 with dob

 and  ,N O dk ob  is the neighborhood 

of qri
with dob

.  ,2N q dri ob  is the neighborhood of qri
 with 2dob

 and  ', , 2N E dc j ob
 is the 

neighborhood of 
',Ec j

 with 2dob
. The intersection of  ,N q dri ob with  ,N O dk ob  and the 

intersection of  ,2N q dri ob  and  ', , 2N E dc j ob
 must be empty sets to keep 

,Eum i
 empty. 

Figure 14 and Figure 15, respectively, convey these ideas graphically. 

 

The intersection of  ,N q dri ob  and  ,N O dk ob  should always be an empty set, where 

dob
 equals 2dr

 . 

Figure 14.  Illustration of Intersection of  ,N q dri ob  and  ,N O dk ob  



31 

The intersection of  ,2N q dri ob and  ', , 2N E dc j ob
 should always be an empty set. 

Figure 15.  Illustration of Intersection of  ,2N q dri ob and  ', , 2N E dc j ob

Let qn
 in [5] be a point bordered by the most explored area, and it is given as 

  
* 2*

* , iLet q  = arg max  D E
n N

n n c
q B

q


 ; (9) 

if the number of qn
 is more than one, then choose any of them as next point. Figure 16 

demonstrates the geographical concept of a point bordered by the most covered spaces. 

In this figure, since point 1 is bordered by three covered spaces while point 2 is bordered 

by only two covered spaces, the next move should be point 1 for qri
. 

Figure 16.  Illustration of Choosing Next Point for qri



32 

2. Grid–Based Implementation

The original algorithm from [5] is demonstrated in a generic two-dimensional 

representation, which is shown in Figure 17. As a step towards implementation, we 

reformulate the algorithm under two-dimensional uniformly gridded space. In other 

words, the direction that a robot can move under the original algorithm is defined initially 

as 360 degrees, while in our work the direction is restricted to four options; that is up, 

down, left, and right. The robot footprint with 0.5dr
 is illustrated in Figure 18.  

Figure 17.  Direction that a Robot Can Turn in Original Algorithm. Source: [5]. 

The distance from blue star to green diamond equals 0.5dr
 . 

Figure 18.  The Diameter of Robot Footprint Is dr
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To visualize the possible and uncovered spaces to which the robot can go, 

Figure 19 and Figure 20 show the neighborhood of both the domain area and obstacle, 

and the neighborhood of 
',Ec j

 with a certain distance. The extension of the neighborhood 

centered at the robot serves as a detective fan, which is used to find whether there exists 

the position of another robot that intersects with the detective fan. If an intersection 

exists, then the position of the other robot is also the position of 
',Ec j

. Thus, the robot has 

to avoid getting close to the neighborhood established by the domain area, obstacle, and 

',Ec j
. In other words, the neighborhood occupied by others could be viewed as a 

forbidden zone for the robot. Figure 19 and Figure 20 display how to define the 

neighborhood of 
',Ec j

 step by step. 

Robot 
#
1, which is centered at [7, 10], looks for who is positioned at 

',Ec j
. And, because the

position of robot 
#
2 intersects with N(D(qr1),5dr) while robot

#
3 does not, the position of robot

#
2 is 

',Ec j
. 

Figure 19.  Possible and Uncovered Spaces for Robot 
#
1 to Move (Part 1)
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Once the 
',Ec j

 is defined, we can locate the blocked out area that robot 
#
1 has to avoid. All in all, robot 

#
1 

cannot go to the neighborhood colored in magenta, red, and cyan. 

Figure 20.  Possible and Uncovered Spaces for Robot 
#
1 to Move (Part 2) 

  



35 

C. WRAP MODE 

If there is no available point for a robot to move under normal mode, the 

algorithm switches from normal mode to wrap mode. In wrap mode, qri
 follows the 

boundary established based on its explored points and goes counterclockwise. Once an 

unexplored point is found, wrap mode switches to normal mode until there is no 

unexplored point. The obstacle-opening problem is not discussed here, since when 

warships enter the sea channel they would avoid getting closer to obstacles that could 

lead to a collision or being stranded in shallow waters. Figure 21 shows the pseudo code 

of wrap mode.  

 

    

 

, i , i , i

1

, j , i 

0

, i , i , i

, i

Wrap Mode

1. Update E ,  i.e. E  E .

2. Let E  E  E , and q  q .

3. if  B E ,  s.t. N ,   E ,  where  > 0 then

4. Move anticlockwise along B  towa

r

c c c c n

n

ucul ux c st ri

j

B c B ucul

c

D q

q q

E

 





 

  

  

  
, i

, i , i

, i , i

, i , i

rds the nearest q .

5. if  is reached before q  then

6. Enter: Normal Mode.

7. else

8. Move anticlockwise along the boundary of E  towards q .

9. When q  or q  is reached, move c

B

B st

c st

st tr

q

 

    

 

, i , i

, i , i , i

, i , i

lockwise along B  towards q .

10. loop

11. if  B E ,  s.t. N ,   E ,  where  > 0 then

12. Move clockwise along B  towards the nearest q .

13. else

14. Move clockwise along B

c st

B c B ucul

c B

c

E

q q

E

E

   

 , i , i towards q .st

 15. if Detected: Obstacle Opening  2d  then 

16. Denote the part of the opening nearest to r  as the 'near-side' boundary,

  and the obstacle at the other side as the 'far-side' boundary.

17. Move 

ob

i



    , i , i

in a back-and-forth motion between the two boundaries, keeping

d  from the 'far-side' boundary.

18. E  E , ,

19. repeat

20. Continue covering the area between the near and far

r

um um ri ob k obN q d N O d  

-side boundaries.

21. until (r  reaches the end of the opening, OR another opening on the other

side of the first opening, OR when it is at the near-side boundary and also

within d  of the en

i

r

  

 

, i , i

, i

, i

d of the opening)

22. else if  is reached before q  then

23. Set q  q .

24. Enter: Normal Mode.

25. else if  is reached  then

26. Cease activities. Enter: Idle Mode.

B st

tr ri

st

q

q



Figure 21.  Pseudo Code of Wrap Code. Source: [5]. 

1. Description of the Basic Concept of Wrap Mode

Let 
,Ec i
 in [5] be redefined and expressed as 

 , i , iE  = E   Dc c c nq
, (10) 

where  
,Ec i
 is the explored area and  D qc n  is a disc centered at qri

 with radius 0.5dr
. 

This will make    c, jN ,2 E ,2ri ob obq d N d  different from the one we illustrated in Figure 15. 

With redefined 
,Ec i
,    c, jN ,2 E ,2ri ob obq d N d is displayed as Figure 22. The result will 

further affect the value of Eum . 
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The result of Eum
 is different from the one in Equation 7 because the output of 

 c, jE ,2 obN d  is modified from Figure 21. 

Figure 22.  Illustration of Redefined Intersection of  N ,2ri obq d  and  c, jE ,2 obN d  

Let Eucul
 in [5] be the set after removing the areas explored by robots from the 

unexplored field and which is described as  

 
1

, j , i 

0

E  = E  - ,  and q
rn

ucul ux c st ri

j

E q




 . (11) 

Furthermore, the position of qri
 represents a start point, qst

, when the robot executes the 

algorithm under wrap mode.  

Let 
,qB i

 in [5] be a point on the boundary of the explored area, and the 

neighborhood of 
,qB i

 exists on one or more than one unexplored points, which are a 

subset of Eucul
. The expression of 

,qB i
 is  

    , c,i , 

c,i , 

 if   B E ,  s.t. N ,   E ,  where >0  

then move anticlockwise along the boundary of E  towards the nearest 

B i B i ucul

B i

q q

q

   
. (12) 

Once wrap mode is activated, the robot then moves counterclockwise looking for 
,qB i
. If 

,qB i
 is detected, the robot switches from wrap mode to normal mode. The graphical 

demonstration is shown in Figure 23. 
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The qri
 moves counterclockwise and toward the nearest 

,qB i  , and then enters normal 

mode.  

Figure 23.  Illustration of qri
 Equals qst

 under Wrap Mode and Moving 

toward Existing 
,qB i

If 
,qB i  cannot be located, then the robot moves along the boundary toward the qst

. 

Once the qst
 is reached, then the qst

 serves as the transition point, qtr
, which is the 

moment that the robot begins moving clockwise along the boundary to the qtr
. The 

graphical demonstration is shown in Figure 24. 

When entering wrap mode, qri  moves counterclockwise looking for 
,qB i

; if 
,qB i

 cannot 

be found and as qri
 reaches qst

 again, qst
 would be redefined as qtr

. 

Figure 24.  Illustration of qst
 Becoming qtr

 as 
,qB i
 Cannot Be Located under 

Wrap Mode when qri  Moves Counterclockwise 
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As the robot moves clockwise, it also searches for 
,qB i
; if 

,qB i
 is reached before 

qtr
, then the robot switches from wrap mode to normal mode. If 

,qB i
 cannot be located, 

then the robot moves along the boundary toward the qtr
. Once qtr

 is reached, the robot 

enters idle mode. The graphical demonstration is shown in Figure 25. 

 

Figure 25.  Illustration of qri
 Entering Idle Mode if qri

 Cannot Find 
,qB i  When 

Moving Clockwise from Transition Point and Reaching qtr
 Again 

D. DIRECTION OF MOVEMENT IN WRAP MODE ANALYSIS 

(COUNTERCLOCKWISE EXAMPLE) 

In this thesis, the direction for robot to move for the next position is the most 

complicate challenge to overcome. The followings describe the primary concepts and 

methods to help us work out this problem. 

1. Basic Concept of Moving Counterclockwise 

Generating direction in wrap mode requires distinguishing between 

counterclockwise and clockwise travel. Thus, three angles must be determined. The first 

angle is defined by the line between a central point and the current position of the robot, 

in which the central point is calculated by the area explored by the robot. There are two 

points located in front of and behind qri
, respectively, where qri

 stands for the current 

position of the robot. The second and third angles are defined by the lines between the 

central point and the points in front of and behind qri
. Signs (positive and negative) 

would be revealed after the second angle and third angle subtract to the first angle, 
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respectively. The positive angle makes movement in wrap mode go clockwise while a 

negative angle makes it go counterclockwise. We use this feature to determine the 

direction of qri
. However, this characteristic is valid only when qri

 is on the boundary of 

its explored area. Figure 26 shows the way to determine the direction, and Figure 27 

illustrates the comparison of angles. 

Point A stands for the point in front of qri
 while point B is the point behind qri

. 

Figure 26.  Concept for qri
 to Determine a Direction 

Angles of point A, qri
, and point B with respect to the mean value of explored points, 

respectively. 

Figure 27.  Comparison of Angles 

2. Definition of “Required Points”

Because the value of an angle cannot guarantee qri  to go counterclockwise or 

clockwise when qri
 does not have a connection with the boundary points of a domain 

area, we need to develop other approaches to make it work. That is the reason why 

“required points” arise. Required points mean the number of directions in which qri
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could choose to move. There are three different cases. We discuss the different cases and 

show how required points help us to make qri
 go correctly, as shown in Figure 28. 

 

Figure 28.  Four Cases for Directions in which qri
 Could Move 

a. Required Point Equals One Move 

When the required point is equal to one, the next point to which qri
 can move is 

only one. Just as the plot shows in Figure 29, the next point for qri
 will be the one under 

the current position of qri
. 

 

Required point is equal to one as qri  goes counterclockwise. 

Figure 29.  Required Point Is One Move 
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b. Required Points Equal Two Moves

In example 1 of Figure 30, the distance between point 1 and point 2 is equal to 

two moves, and there are three cases to discuss here. The first one occurs as point 1 and 

point 2 have the same y value. If the unexplored points are above qri
, then qri

 moves to 

the left. The second one happens when qri
 is next to the boundary of the domain area; in 

this situation, qri
 follows the “angle rule” to keep moving counterclockwise. The last one 

applies to the case when there is no boundary point around the sides. We could remove 

the previous point and have the other one continue going forward. 

Figure 30.  Two Different Distances as Required Points Equal Two Moves 

In example 2 of Figure 30, the distance between point 1 and point 2 is about 1.4, 

and there are also three cases to discuss. In the first case, the qri
 is next to the boundary 

points of the domain area. Thus, qri
 could follow the angle rule to maintain the desired 

direction. Secondly, this is a much more complex situation because we have 
,qB i
. We 

have to find out where the unexplored point is placed. If the unexplored point that has the 

same y value as qri  is located on the right side of qri , then qri  should move left to keep 

moving counterclockwise, and vice versa. The last condition is easier to determine since 

removing the previous point is good enough to keep qri  going forward. Figure 31 
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displays MATLAB representation of the case where the required points are equal to two 

moves and there are different distances between point 1 and point 2. 

 

Required points equal two moves with different distances. 

Figure 31.  Required Points Equal Two Moves 

c. Required Points Equal Three Moves 

When the required points are equal to three moves, more complicated situations 

appear for us to consider. Thus, we need to come up with some ideas to help us analyze 

the situation thoroughly. 

(1) Introduction of Different Neighborhood Patterns 

There are three basic types of neighborhood patterns, and they are the “Big-

square,” “Small-square,” and “Diamond-shape” patterns, which are shown in Figure 32. 

 

Figure 32.  Neighborhood Patterns of qri  



43 

(2) Four Conditions from Intersection of Small Square and Explored Points 

The number of intersections of the small square (SS) and explored points (EP) 

leads to four possible conditions. These conditions are depicted in Figure 33, Figure 36, 

Figure 39, and Figure 42. 

Zero point occupies the small square 

Examples 1 to 4, discussed in the following paragraphs, are illustrated in 

Figure 34, and the specific condition in the MATLAB program is displayed in Figure 35. 

Figure 33.  Intersection of SS and EP Equals Zero 

Figure 34.  Required Points Equal Three Moves and Intersection with Small 

Square Equals Zero 
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Example 1 – The arrows show our desired route of qri
. This occurs as qri

 is next 

to the boundary of the domain area. Point 1 is the previous point. We do not want to go 

back; thus, we remove point 1. Since we have to explore each point on the boundary, we 

need to go up. The location of the unexplored point assists us to determine the next point 

for qri
. Point 3 has the explored point on its side; therefore, point 2 becomes our ideal 

next point. 

Example 2 – After exploring the upper part of the points, we would like to go 

down now. We remove the previous point, which is point 1. Then, because qri
 is next to 

the boundary of the domain area, we could apply the angle rule to find the 

counterclockwise movement for this situation. Point 3 will be the next point. 

Example 3 – In this example, there is no boundary of the domain area, but we still 

have to explore upward in this case. We remove the previous point and the point that has 

the same height as qri
 in order to determine the next position. 

Example 4 – After exploring upward points, we need to find the next one. If the 

height of the points explored by other robots is above the height of qri
, the robot has to 

go left to guarantee counterclockwise direction and vice versa. 

 

Required points equal Three Moves as qri  goes Counterclockwise. 

Figure 35.  Zero Point Occupies Small Square under the Required Points Equal 

Three Moves Condition 
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One point occupies at small square 

The number of intersections of the small square (SS) and explored points (EP) 

leads to four possible conditions. The second condition is depicted in Figure 36.  

Figure 36.  Intersection of SS and EP Equals One Move 

The black points shown in Figure 37 represent the boundary points in the domain 

area. In this situation, we remove the point that has the same height as qri
 (point 1) and 

have the other two points follow the angle rule. If we want the qri
 to move 

counterclockwise, point 2 will be chosen as the next position of qri
, and vice versa. 

Figure 38 demonstrates the specific condition using the MATLAB program. 
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Figure 37.  Required Points Equal to Three Moves and Intersection with Small 

Square Is One Move 

 

Required points equal three moves as qri  goes counterclockwise. 

Figure 38.  One Point Occupies the Small Square under the Required Points Equal 

Three Moves Condition 
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Two points occupy a small square 

As stated previously, the number of intersections of the small square (SS) and 

explored points (EP) leads to four possible conditions. The third condition is depicted in 

Figure 39. Figure 40 demonstrates how does robot move to next position under this 

situation. 

Figure 39.  Intersection of SS and EP Equals Two Moves 

Figure 40.  Required Points Equal Three Moves and Intersection with Small 

Square Equals Two Moves 
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The 
,qB i
 is the unexplored point before being discovered by qri

 when it is under 

wrap mode. If the current position of qri
 was the unexplored point previously, qri

 has to 

determine the correct direction to go. Under this condition, first, we remove the point that 

has the same altitude as qri
. Then we let qri

 go up if there is no explored point on its right 

and go down when there is no explored point on its left. Those features are illustrated in 

Figure 40, and the specific condition simulated in the MATLAB program is shown in 

Figure 41. 

 

Required point equals three moves as qri  goes counterclockwise. 

Figure 41.  Two Points Occupy the Small Square under the Required Points Are 

Three Moves Condition 
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Three points occupy a small-square 

. The last condition is illustrated in Figure 42. Two examples of another condition 

of the number of intersections of the small square (SS) and explored points (EP) are 

shown in Figure 43, and the specific condition simulated in the MATLAB program is 

shown in Figure 44.  

Figure 42.  Intersection of SS and EP Equals Three Moves 

Figure 43.  Required Points Equal Three Moves and the Intersection with Small 

Square Equals Three Moves 
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Example 1 – If we have 
,iqB
 under this situation, we remove the point that has the 

same height as qri
 first, which is point 1. Then we find out which side of the unexplored 

points are on; if they are on the right side, qri
 goes up. By contrast, qri

 goes down when 

they are on the left side. If we do not have 
,iqB
, we could just remove the previous point 

and the point that has the same height as qri
 to keep qri

 going counterclockwise. 

Example 2 – In example 2, the figure on the left is easier because we can take out 

the previous point and the third point count from the end to have the desired point 

remain. The figure on the right, however, depicts a much more complex case. We do the 

same to delete the previous point. Then we have to find out the location of the star point. 

If the star point has the same x value as qri
, then we pick the point that has the same x 

value as qri
, too. 

 

Required point equals three moves as qri  goes counterclockwise. 

Figure 44.  Three Points Occupy Small Square under the Required Points Equal 

Three Moves Condition 

d. Required Points Equal Four Moves 

Figure 45 displays this condition graphically, including the position of qri
, the 

desired direction and the distribution of other points. We apply a big square 

neighborhood pattern as our base and remove the explored points around the qri
. Usually 
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we will have one point on the left, which becomes the critical point. The procedure to 

locate the critical point is shown in Figure 46. 

Figure 45.  Required Points Equal Four Moves 

Find critical point by removing explored points on the boundary from the big square 

neighborhood pattern. 

Figure 46.  Demonstration of Finding the Critical Point 

A diamond-shaped neighborhood pattern around the critical point would be used 

and then we would look for its intersection points with the explored points around the qri
. 

The procedure to find the next possible points is shown in Figure 47. 

Find possible moves by locating the intersection of the diamond-shaped neighborhood 

centered at the critical point and the explored area on the boundary centered at qri
. 

Figure 47.  Demonstration of Locating Next Moves 
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We will have two points after the previous step. One is the previous position of 

qri
 and the other is the desired next position for qri

. What we have to do is to remove the 

previous point and have the other point remain. The specific condition simulated in the 

MATLAB program is illustrated in Figure 48. 

 

Required point equals four moves as qri  goes counterclockwise. 

Figure 48.  Required Points Equal Four Moves 
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e. Required Point Equals Zero

When executing the aforementioned rules, the required point equals zero when 

there are no more boundary points around qri
. Some of the boundary points disappear as 

the unexplored points surrounded by them have been covered. As a result, qri
 has to find 

a way back to the nearest boundary to carry out the algorithm. Since qri
 can only go up, 

down, left, and right, we apply and extend the length of the diamond-shaped 

neighborhood to find the nearest point on the boundary of its explored area, and drive the 

qri
 to move to the nearest point. The specific condition simulated in the MATLAB 

program is shown in Figure 49. 

Required point equals zero condition. 

Figure 49.  Required Point Equals Zero 

3. Concept to Go Clockwise

The logical rules to execute the clockwise direction are the opposite of the rules to 

perform the counterclockwise direction. 
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E. TWO-DIMENSIONAL GRID-BASED IMPLEMENTATION 

In this section, we display how the normal mode and combination of normal mode 

and wrap mode do in MATLAB program, respectively. 

1. Normal Mode 

Figure 50 shows the implementation of normal mode when exploring the area. 

 

Figure 50.  Normal Mode Performed by Two Robots 
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2. Normal Mode + Wrap Mode

Figure 51 shows the implementation of normal mode when exploring the area. 

Figure 51.  Robots Switch between Normal Mode and Wrap Mode to Complete 

Coverage 

F. DEVELOPED MATLAB CODE FOR THE ALGORITHM 

All the developed MATLAB codes are saved on the following website at gitlab. 

https://gitlab.nps.edu/bsbingha/multirobot_coverage/tree/master/matlab. 

https://gitlab.nps.edu/bsbingha/multirobot_coverage/tree/master/matlab
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IV. SIMULATION EXPERIMENT

A. DESCRIPTION OF EXPERIMENTS 

In this work, there are nine experiments, shown in Table 8. The number of 

obstacles and the number of robots are independent variables. Both of them vary from 

one to three. We perform the experiment using a different number of obstacles and robots 

and evaluate the number of time steps as a measure of system performance. The 

following lists the characteristics of these experiments: Let N denotes the number of 

robots and O denote the number of obstacles, which are expressed as ( , )Exp N O  in 

Table 7. 

Table 7.   Experiment Matrix 

1 2 3

1 Exp(1,1) Exp(1,2) Exp(1,3)

2 Exp(2,1) Exp(2,2) Exp(2,3)

3 Exp(3,1) Exp(3,2) Exp(3,3)

Number of obstacle

number 

of robot
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1. Domain Area 

The domain area is a 30 by 30 grid. Based on the algorithm, each point stands for 

0.5dr
 and every robot has to keep 2dr

 away from the domain boundary. Figure 52 

presents the unexplored points as well as the neighborhood field within the domain area. 

 

Figure 52.  Unexplored Points and Neighborhood Field of Domain Area 

2. Obstacles 

Robots also have to keep 2dr
 from obstacles. Thus, we construct a neighborhood 

with a thickness of four points around each obstacle. The outline of the obstacle is 

depicted by points. Even though we have different cases of varying numbers of obstacles, 

we maintain the same total area for the obstacles for all experiments. Subsequently, we 

arrange one obstacle with area of sixteen, two obstacles with area of eight, respectively, 

and three obstacles are composed of one area of eight and two areas of four. Different 

numbers of obstacles cases are shown in Figure 53, Figure 54, and Figure 55. 
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Figure 53.  One-Obstacle Environment 

Figure 54.  Two-Obstacle Environment 

Figure 55.  Three-Obstacle Environment 
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Keeping the area the same does not guarantee that the value of the unexplored 

points will be equal. In other words, the area an obstacle has does not have an essential 

influence on the coverage algorithm in conducting the MCM mission, but the number of 

obstacles will since the unexplored points decrease significantly due to neighborhood 

points. 

3. Number of Robots 

The number of robots varies from one to three. The first robot is located at  5,26 , 

the second robot positioned at  26,5 , and the third one started from  19,26 . The same 

initial robot locations are used for all trials. 

4. Experiment Scenarios 

The prior knowledge of environments is unknown to all robots. Thus, robots will 

not have information about the location of uncovered spaces. However, the data about 

explored points visited by all robots is shared and used to implement the algorithm. The 

exact cellular decomposition is applied to the scenario. Robots move back-and-forth to 

visit points under normal mode and move along the boundary of the explored area under 

wrap mode. In wrap mode, the robot goes counterclockwise from qst
 to qst

 and moves 

clockwise from qtr
 to qtr

, as it looks for ignored unexplored points. Subsequently, qst
 

becomes qtr
 after robot meets qst

 again while moving counterclockwise. The algorithm is 

terminated once the robot arrives at qtr
 again when going clockwise. 

5. Evaluation Methods 

There are two critical performance metrics that we desire to observe. One is the 

number of time steps robots take in each environment to implement the algorithm. This is 

directly proportional to the completion time steps for the mission. The other is the ratio of 

area covered to total area, where complete coverage is indicated by a ratio of 1.0. 



61 

B. PREDICTION 

We listed the total number of free grid cells in each experiment as shown in 

Table 8. If a robot knows the environment in advance, it should take 315 time steps to 

finish the coverage. With the number of robots being more than one, we just divide the 

free grid cells by the number of robots. We set the time steps as shown in Table 9 as our 

criteria and the ratio is 1.0 under this condition. 

Table 8.   Total Number of Free Grid Cells 

Table 9.   Lower Bound of Time Steps for Each Experiment (Min # Steps) 

1 2 3

315 234 126

Number of obstacles

number 

of robots

1

2

3

315 234 126

315 234 126

1 2 3

Number of obstacles

number 

of robots

1 315 234 126

2 158 117 63

3 105 78 42
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C. EXPERIMENTS 

Here, we reveal our result in each experiment. The result is displayed in 

MATLAB plot with the last step of each calculation.  

1. One Robot with One Obstacle  1,1  

This is a single robot coverage implementation. As shown in Figure 56, the robot 

took 435 steps to complete the coverage and that coverage was 100% complete. 

 

Figure 56.  Coverage Algorithm Implemented by One Robot in One-Obstacle 

Environment 
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2. One Robot with Two Obstacles  1,2

This is a single robot coverage implementation. As shown in Figure 57, the robot 

took 315 steps to complete the coverage. Increasing the number of neighborhood points is 

reflected in the reduction in steps. 

Figure 57.  Coverage Algorithm Implemented by One Robot in Two-Obstacle 

Environment 
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3. One Robot with Three Obstacles  1,3  

This is a single robot coverage implementation. As shown in Figure 58, the robot 

took 335 steps to complete the coverage. Increasing the number of neighborhood points 

leads to some loss of steps, but the extended boundary increases the number of steps 

catastrophically. The obstacles connected to the boundary of the domain area boost the 

number of boundary points of the area explored by the robot. When it implements the 

algorithm under wrap mode, the robot has to go along the boundary of its own explored 

area both counterclockwise and clockwise. In comparison to experiment 1 and 

experiment 2, whose obstacles are not connected to the boundary of the domain area, 

experiment 3 has a longer boundary of explored area due to this connection. 

 

Figure 58.  Coverage Algorithm Implemented by One Robot in a Three-Obstacle 

Environment 
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4. Two Robots with One Obstacle  2,1

This is a two robot coverage implementation. As shown in Figure 59, the robot 

takes 334 steps to complete the coverage. As predicted, the number of steps declined 

because of the increase in the number of robots. And, when the number of robots reaches 

two, the behavior of colleague avoidance could be observed, which is shown in Figure 

60. Ignored unexplored area occurs under the colleague avoidance condition. It will be

visited if other robots are far enough away from it and after the robot completes a circle 

by moving counterclockwise along the boundary of its own explored area. The scenario is 

illustrated in Figure 61. This feature results in an increase in steps. From Figure 60 and 

Figure 61, we observe a difference of almost 100 steps. 

Figure 59.  Coverage Algorithm Implemented by Two Robots in a One-Obstacle 

Environment 
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Figure 60.  Colleague Avoidance Behavior 

 

Figure 61.  Ignored Unexplored Points Visited by One Robot as the Other Robot 

Is Far Away 
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5. Two Robots with Two Obstacles  2,2  

This is a two robot coverage implementation. As shown in Figure 62, it takes 328 

steps to complete the coverage. 

 

Figure 62.  Coverage Algorithm Implemented by Two Robots in a Two-Obstacle 

Environment 
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6. Two Robots with Three Obstacles  2,3  

This is a two robot coverage implementation. As shown in Figure 63, it takes 259 

steps to complete the coverage. Compared with experiment 4 and experiment 5 that have 

two areas in which robots interfere with each other due to the behavior of colleague 

avoidance, experiment 6 only has one interference area. Also from the comparison, we 

find it is the number of interference areas that affects the efficiency of the coverage 

algorithm. 

 

Figure 63.  Coverage Algorithm Implemented by Two Robots in a Three-Obstacle 

Environment 
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7. Three Robots with One Obstacle  3,1

This is a three robot coverage implementation. As shown in Figure 64, it took 203 

steps to complete the algorithm. Yet, the coverage could not be completed for two 

reasons. The first factor was the colleague avoidance behavior, which is fully explained 

in the experiment. The second one was the rule of algorithm. The robot goes 

counterclockwise and searches for ignored unexplored points along the boundary of the 

explored area for a circle. If another robot is close enough that it has to avoid the robot 

again, then this ignored area will be overlooked again for the same reason. Incomplete 

coverage happens when one robot is still too close to another while patrolling clockwise 

along the boundary of the explored area.    

Figure 64.  Coverage Algorithm Implemented by Three Robots in a One-Obstacle 

Environment 
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8. Three Robots with Two Obstacles  3,2  

This is a three robot coverage implementation. As shown in Figure 65, it takes 

233 steps to complete the coverage. 

 

Figure 65.  Coverage Algorithm Implemented by Three Robots in a One-Obstacle 

Environment 
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9. Three Robots with Three Obstacles  3,3

This is a three robot coverage implementation. As shown in Figure 66, it took 316 

steps to complete the algorithm. The coverage could not be completed in this experiment.  

Figure 66.  Coverage Algorithm Implemented by Three Robots in a One-Obstacle 

Environment 

D. RESULTS AND ANALYSIS 

In this part, we evaluate our results and analyze what are the reasons for affecting 

the time steps and the coverage. 

1. Results of Experiments

Table 10 lists the number of steps each experiment took to implement the 

algorithm. The final time steps ratio is defined as  

Actual # Steps

Min # Steps
, 

where Actual # Steps  is taken from Table 10 and Min # Steps is taken from Table 9. 

And, the result is shown in Table 11. 
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Table 10.   Number of Steps Taken by Each Experiment 

Table 11.   Final Time Steps Ratio 

2. Factors that Affect Time Steps

After evaluating the result from the experiments, the characteristics listed below 

are factors that I consider affecting how long it takes in the experiments. 

a. Number of obstacles

Increasing the number of obstacles leads to a boost of neighborhood points, which 

generates a significant reduction in free spaces. Evidence is provided in Table 8. From 

Table 11, we find that as the number of obstacles increases, the time steps ratio gets 

higher. This means the efficiency diminished due to an increase in the number of 

obstacles. 

1 2 3

Experiment 1 Experiment 2 Experiment 3

435 315 353

Experiment 4 Experiment 5 Experiment 6

334 328 259

Experiment 7 Experiment 8 Experiment 9

203 233 316

number 

of robots

1

2

3

Number of obstacles

1 2 3

Number of obstacles

number 

of robots

1 1.38 1.35 2.80

2 2.12 2.80 4.11

3 1.93 2.99 7.52
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b. Obstacles Connected to the Boundary

Having obstacles connected to the boundary causes a dramatic increase in the 

number of points on the boundary of the area explored by the robot. That is the reason 

why the number of free grid cells of the three-obstacle environment is much lower than in 

the environments with one and two obstacles. Consequently, this extends the steps a 

robot requires to patrol.   

c. Number of Robots

Increasing the number of robots is a double-edged sword. The advantage of doing 

so lies in sharing the steps in the environment. A best-case scenario is when the domain 

area is broad enough that robots will not meet each other very often.  The drawback 

occurs when robots meet each other very often, which increases the number of ignored 

free spaces due to the robots colleague avoidance behavior. Thus, it extends the steps 

directly. Furthermore, from the final time steps table, three robots have a higher ratio than 

the other two in an environment with the same number of obstacles. Take the 

environment with three obstacles as an example: the ratio of a single robot is 2.8, the ratio 

of two robots is 4.11, and the ratio of three robots is 7.52. This indicates that multiple 

robots actually have less efficiency than a single robot. It is worth noting that in two 

cases, experiment 5 and 9, the time steps they took are more than what we expected. In 

experiment 5, frequent updating qst
 of robot 2 is the primary reason that leads to more 

time steps. And in experiment 9, frequent colleague avoidance behavior performed by 

three robots is the factor that extends the time steps.  

d. Colleague Avoidance Behavior

Colleague avoidance is a very essential and indispensable behavior in the 

coverage algorithm of multi-robot systems. This feature limits the number of robots to 

perform the algorithm in different environments. In experiment 9, for example, three 

robots generated at least two ignored free spaces, shown in Figure 67, which further 

extended the steps and resulted in uncomplete coverage. Fewer free spaces with many 
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robots lead to frequent colleague avoidance, and that is a problem resulting in poor 

performance.   

 

Ignored unexplored spaces are marked as one and two. 

Figure 67.  Ignored Unexplored Spaces Due to Colleague Avoidance Behavior 

e. Uncertainty Factor 

From observation, a factor that extends the steps is unpredictable, which 

introduces uncertainty to the algorithm. If qst
 is defined and visited earlier, the robot 

could cover the ignored unexplored area under clockwise travel. This would save many 

steps to complete the algorithm. Because the function of both counterclockwise and 

clockwise patrols is looking for an unexplored point, this makes one of the patrols 

redundant if complete coverage is not essential in the MCM mission. 

3. Factor that Affects Complete Coverage  

The number of ignored free spaces increases in a narrow environment with many 

robots. Since there are no more unexplored points for robots to visit in as far as the robot 

knows, due to colleague avoidance behavior, they execute the algorithm in wrap mode. 

Robots start to travel counterclockwise and search for unexplored points. If these points 
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cannot be reached due to colleague avoidance before qst
, clockwise patrol would be 

activated. If unexplored spaces still cannot be visited before qtr
 for the same reason, the 

algorithm will be terminated. And, this leads to the coverage not being completed. 

Experiment 9 is the best example to illustrate this. Since it has three obstacles and three 

robots, fewer free points and more robots, this leads to frequent colleague avoidances 

among robots. And because experiment 9 has too many colleague avoidances, it is unable 

to complete the coverage. The results of complete coverage are presented in Table 12.  

Table 12.   Coverage Completeness Ratio 

1 2 3

Number of obstacles

number 

of robots

1 100.00% 100.00% 100.00%

2 100.00% 100.00% 100.00%

3 96.51% 100.00% 92.86%
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V. CONCLUSION 

Path planning coverage algorithms for multi-robot systems could be applied to 

many fields. MCM is just one of them. Mine countermeasure missions are usually carried 

out by ships. With the development and advancement in the technology of control and 

multi-robot systems, though, it is believed that these robot agents will one day take over 

the MCM mission. As a result, the path planning coverage algorithm becomes an 

essential topic in this field because the combination of an efficient algorithm and accurate 

sensors saves time and human lives. Many path planning coverage algorithms for multi-

robot systems have been developed, tested, and applied on agents on land. After studying 

the collected algorithms, we decided to implement one of them in an MCM environment. 

The aim of this thesis is to develop the algorithm in the MATLAB program and to 

evaluate whether the implemented algorithm is suitable in an MCM mission.  

To construct a picture of cell decomposition, which is the foundation of path 

planning coverage, we introduced three classifications of cell decomposition in Chapter I. 

Approximate cellular decomposition does not depict targets in a region exactly since all 

targets are composed of grids. Robots in an approximate cellular environment usually 

have a footprint of the same size as the grid. The coverage is complete after all the cells 

are visited by the robots. The wavefront algorithm is quite a good example to convey the 

idea. Exact cell decomposition is defined as having the explicit shape of the targets. The 

cells are constructed based on the distribution of targets, and the robots move in back-

and-forth motion within each cell. Trapezoidal decomposition gives a valuable 

illustration of exact cell decomposition. Another cell decomposition method, the semi-

approximate method, assigns each cell equal width but allows them to vary in length 

vertically. Robots follow the depth-first rule to explore the area. Some boundaries of the 

cell will be covered twice while others may not be visited at all. And, that is how the 

semi-approximate method is defined.  

Research on coverage algorithms of multi-robot systems is described in Chapter II. 

None of those studies had applied a coverage algorithm related experiment to a real AUV. 

As a result, considering the scenario, environment, characteristics of mission, and 
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available knowledge applicable to our purpose from previous work, we chose [5] as our 

algorithm to implement in the MCM scenario. 

In Chapter III, we first explained the algorithm from pseudo code. There are two 

modes under this algorithm. One is normal mode, in which robots operate when free 

space is reachable. The other is wrap mode, which is activated when no more free space 

can be reached. The free space consists of the points that remain after removing the 

boundary, the neighborhood of boundary, the obstacles, the neighborhood of obstacles 

and the neighborhood of robot’s footprints, as well as the explored area of robots. In wrap 

mode, each robot travels along its own explored area in a counterclockwise direction. If 

no more free points can be reached, the robots go clockwise in order to look for free 

space. If there is no more free space, the algorithm is terminated. After analyzing the 

algorithm, we developed and performed the algorithm in a two dimension grid-based 

environment in the MATLAB program.  

In Chapter IV, we simulated nine experiments with a different number of robots 

and obstacles in each experiment. The number of both robots and obstacles from one to 

three is distributed in each experiment. We found that increasing the number of obstacles 

results in a decreased amount of free space. But, having an obstacle connected to the 

domain boundary boosts the time step because the line along the obstacle will become 

part of the boundary explored by the robot. As a result, the robot has to move back and 

forth in wrap mode looking for free space. This feature is observed from experiment 3. 

Furthermore, the result shows that when the number of robots increases, efficiency is 

diminished primarily due to the behavior of colleague avoidance. This characteristic is 

obvious when there are many obstacles in the domain area. The outcome subverts my 

anticipation because of complexity of environment and robot’s behavior of colleague 

avoidance. 

A. PROS AND CONS  

Considering the result of experiments, the comments below are my perspectives 

toward this algorithm. 
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1. Idea

Avoiding repeated paths in the coverage algorithm is not simple. It is a good idea 

to develop an algorithm that could complete the coverage with a minimum number of 

repeated paths. We predict the time step will be reduced by the development of a 

coverage algorithm with the fewest repeated paths. In this work, we implemented [5] and 

observed that this algorithm does not really save time steps. In fact, the time step rises 

since the robot has to move back and forth on the boundary of the explored area to look 

for free space. Sometimes the coverage could not be finished due to frequent colleague 

avoidance. Nevertheless, since the robot does not have prior knowledge about its 

surroundings, this result can be considered as an acceptable approximation. 

2. Scalability

The domain area in this work is small in scale, only a 30 by 30 grid. Since the 

robots have no prior information about the environment, they have to memorize and store 

all the data after each step. As a result, much space would be required for storing 

information and the amount of time for each step would increase when this algorithm is 

operated under a large scale environment. 

3. Completeness of Coverage

From the result of experiment 7, we observed that some free space within the 

boundary of area explored by the robot could not be completed due to colleague 

avoidance behavior. This might be improved by turning off the colleague avoidance 

behavior once the located free points are within the boundary of area explored by a robot. 

B. FUTURE WORK 

The followings are further researches which are supposed to be studied in the 

future. 
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1. Monte Carlo Simulation 

Due to limited time, the initial positions of the robots were fixed in each trial. The 

objective outcome of this algorithm would be better weighed through quantitative 

analysis. Thus, random positions must be chosen for at least 100 trials for each scenario. 

2. Improve the Algorithm 

To complete the coverage as often as possible, the colleague avoidance behavior 

should be paused if a robot operating in wrap mode locates free points inside the 

boundary of its own explored area. 

3. Run the Algorithm with Robotic Simulator  

Running the algorithm with Gazebo or Stage will help us to narrow the gap 

between theory and reality. From the results of the simulator, we could improve the 

algorithm in the MATLAB program environment and inspect it in the simulator again. 

With this “back and forth” procedure, the behavior and experiment result of the robots 

would become much more like that of real robots. 

4. Appliy the Algorithm on Land Robots in MCM-like Environment 

Before testing the algorithm on an AUV, it is better to inspect the behavior and 

reaction of robots on land using an MCM-like environment. Through the examination, we 

could observe their performance, improve the algorithm if required, and anticipate their 

actions when they are operated under water. Most important, we could iterate the process 

in the least amount of time and at minimal cost compared with operating the robots 

directly in an underwater environment. 

5. Implement the Algorithm on an AUV in a Littoral Zone 

If the result and performance are good enough to indicate that this algorithm is 

applicable in an underwater environment, we could implement it on an AUV in a littoral 

zone. Through such an experiment, we could observe the amount of time that it takes to 

complete the algorithm. And, it would be perfect if the coverage could be finished. If not, 
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the contributing factors would need to be determined and solved in order to improve the 

algorithm and performance of the robots. 
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