
 

 

NAVAL 
POSTGRADUATE 

SCHOOL 
 

MONTEREY, CALIFORNIA 
 

 
 

THESIS 
 
 

Approved for public release. Distribution is unlimited. 

IMPLEMENTING AND BOUNDING A CASCADE 
HEURISTIC FOR LARGE-SCALE OPTIMIZATION 

by 
 

Katherine H. Guthrie 
 

June 2017 
 

Thesis Advisor:  Robert F. Dell 
Second Reader: Gerald G. Brown 



THIS PAGE INTENTIONALLY LEFT BLANK 



 i 

REPORT DOCUMENTATION PAGE Form Approved OMB  
No. 0704-0188 

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing 
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection 
of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including 
suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215 
Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork 
Reduction Project (0704-0188) Washington DC 20503. 
1. AGENCY USE ONLY 
(Leave blank) 

2. REPORT DATE   
June 2017 

3. REPORT TYPE AND DATES COVERED 
Master’s thesis 

4. TITLE AND SUBTITLE   
IMPLEMENTING AND BOUNDING A CASCADE HEURISTIC FOR 
LARGE-SCALE OPTIMIZATION 

5. FUNDING NUMBERS 
 

6. AUTHOR(S)  Katherine H. Guthrie 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Naval Postgraduate School 
Monterey, CA 93943-5000 

8. PERFORMING 
ORGANIZATION REPORT 
NUMBER     

9. SPONSORING /MONITORING AGENCY NAME(S) AND 
ADDRESS(ES) 

N/A 

10. SPONSORING / 
MONITORING  AGENCY 
REPORT NUMBER 

11. SUPPLEMENTARY NOTES  The views expressed in this thesis are those of the author and do not reflect the 
official policy or position of the Department of Defense or the U.S. Government. IRB number ____N/A____. 

12a. DISTRIBUTION / AVAILABILITY STATEMENT   
Approved for public release. Distribution is unlimited. 

12b. DISTRIBUTION CODE 
 

13. ABSTRACT (maximum 200 words)  

A cascade heuristic appeals when we are faced with a monolithic optimization model exhibiting more 
decision variables and/or constraints than can be accommodated by computers and/or optimization 
software available. This thesis studies the implementation and bounding of a cascade heuristic by using the 
integer linear program implementations of two applications, a production model (PM) and the USMC 
Hornet Assignment Sundown Model (HASMa). While the solutions for PM are within 5% of the optimal 
solution for a wide variety of cascade heuristic implementations, the solutions for HASMa deviate, in 
some cases, by over 99% of the optimal solution. To provide a metric for the quality of a cascade heuristic 
solution, we produce a lower bound for the optimal objective function value by aggregating segments of 
each model’s periods. For PM, the aggregated models produce lower bounds all within 2% of the optimal 
objective function value. For HASMa, the lower bounds can be up to 50% from the optimal objective 
function value but are within 10% of optimal when the aggregation includes just one-third of the periods. 
In both cases, finding a lower bound for the optimal objective function value provides significant insight to 
the quality of the cascade heuristic solution.  
 
 
14. SUBJECT TERMS  
cascade heuristic, cascade optimization, F/A-18, production model, bounding objective 
function values 

15. NUMBER OF 
PAGES  

79 
16. PRICE CODE 

17. SECURITY 
CLASSIFICATION OF 
REPORT 

Unclassified 

18. SECURITY 
CLASSIFICATION OF THIS 
PAGE 

Unclassified 

19. SECURITY 
CLASSIFICATION OF 
ABSTRACT 

Unclassified 

20. LIMITATION 
OF ABSTRACT 
 

UU 
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)  

 Prescribed by ANSI Std. 239-18 



 ii 

THIS PAGE INTENTIONALLY LEFT BLANK 

  



 iii 

 
Approved for public release. Distribution is unlimited. 

 
 

IMPLEMENTING AND BOUNDING A CASCADE HEURISTIC FOR LARGE-
SCALE OPTIMIZATION 

 
 

Katherine H. Guthrie 
Captain, United States Marine Corps 

B.S., United States Naval Academy, 2011 
 
 

Submitted in partial fulfillment of the 
requirements for the degree of 

 
 

MASTER OF SCIENCE IN OPERATIONS RESEARCH 
 

from the 
 

NAVAL POSTGRADUATE SCHOOL 
June 2017 

 
 
 
 
 

Approved by:  Robert F. Dell 
Thesis Advisor 

 
 
 

Gerald G. Brown  
Second Reader  
 

 
 

Patricia A. Jacobs 
Chair, Department of Operations Research 



 iv 

THIS PAGE INTENTIONALLY LEFT BLANK 

  



 v 

ABSTRACT 

A cascade heuristic appeals when we are faced with a monolithic optimization 

model exhibiting more decision variables and/or constraints than can be accommodated 

by computers and/or optimization software available. This thesis studies the 

implementation and bounding of a cascade heuristic by using the integer linear program 

implementations of two applications, a production model (PM) and the USMC Hornet 

Assignment Sundown Model (HASMa). While the solutions for PM are within 5% of the 

optimal solution for a wide variety of cascade heuristic implementations, the solutions for 

HASMa deviate, in some cases, by over 99% of the optimal solution. To provide a metric 

for the quality of a cascade heuristic solution, we produce a lower bound for the optimal 

objective function value by aggregating segments of each model’s periods. For PM, the 

aggregated models produce lower bounds all within 2% of the optimal objective function 

value. For HASMa, the lower bounds can be up to 50% from the optimal objective 

function value but are within 10% of optimal when the aggregation includes just one-

third of the periods. In both cases, finding a lower bound for the optimal objective 

function value provides significant insight to the quality of the cascade heuristic solution.   
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EXECUTIVE SUMMARY 

A cascade heuristic appeals when we are faced with a monolith optimization 

model exhibiting more decision variables and/or constraints than can be accommodated 

by computers and/or optimization software available. A cascade heuristic attempts to 

indirectly solve a monolithic optimization problem by solving a sequence of sub-

problems, or blocks, and conveying information from block to block. Each block may 

include, say, a subset of all time periods, products, regions, or other related problem 

components, while all constraints not in the block are relaxed, and all decision variables 

not in the block are fixed. As each successive cascade block is solved, a subset of the 

resulting variable values are fixed before another block is solved. Most typically, the 

cascade involves sweeping through blocks of monolith constraints and variables once to 

indirectly assemble a solution to the monolith. Because cascade blocks are formed by, at 

once, fixing variables (a restriction) and relaxing constraints (a relaxation), there is no 

direct relationship between the overall monolith solution achieved by a cascade. In fact, 

the cascade heuristic may myopically assemble an infeasible solution for a feasible 

monolith, or an unbounded solution for a bounded monolith. Despite these hazards, a 

cascade heuristic frequently results in useful solutions to otherwise intractable monoliths.  

This thesis considers the most typical application of a cascade heuristic when 

there are discrete time periods that extend over either a finite or an infinite time horizon. 

For both horizon types, a cascade heuristic breaks the monolith into overlapping subsets 

of the time periods defined by windows. The heuristic then solves multiple iterations of 

the problem over a succession of windows. The first iteration (the first block) considers 

only the periods included in the first window with all other constraints relaxed and all 

other variables fixed. Based upon the solution obtained, variable values within a subset of 

the window are fixed. The window then slides forward to the end of an advance (the 

parameter that specifies how far forward the window progresses each iteration) to 

establish the second window. The cascade heuristic solves the second window, fixes 

variable values based on the obtained solution, and continues in a similar fashion. 
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This thesis looks at two separate applications and their integer linear program 

implementations. We use these applications to analyze the impact on solution quality 

when varying the implementation of the cascade heuristic and when developing lower 

bounds for the optimal objective function value. We examine a production model (PM) 

and a revised Hornet Assignment Sundown Model (HASMa). This thesis also considers 

variations of each model to produce lower bounds of the optimal objective function 

value.     

The cascade heuristic produces high-quality solutions for PM for all lengths of 

window and advance. For PM, there is no conclusive discovery about how long an 

advance should be for a given window length. In the PM cascade heuristic results, we 

find that longer advances do not nessessarily equate to worse quality solutions. Also for 

PM, there is no monotonic trend in solution quality when the window length advances. 

The quality of solutions produced through the cascade of HASMa are quite 

different from the quality of solutions produced in the PM cascade. For HASMa, certain 

lengths of window and advance produce solutions with a nearly 100% deviation from the 

optimal solution. This results from the inability of HASMa to easily recover from poor 

decisions made early in the model. Cascade heuristic solutions from PM echo these 

results when we modify PM’s data to include a significant demand spike in a late period 

(period ten) that no window will discover until near the end of the cascade. When this 

demand spike is included, a window length of seven periods is required to produce a 

cascade heuristic solution within 2% of the optimal solution.  

To provide a metric to judge the quality of a cascade heuristic solution without 

solving the monolith, we develop a method for producing lower bounds to the optimal 

objective function value. To do this, we solve a new integer linear program with 

aggregated constraints for time periods both early and late in the model. The objective 

function value that results is a lower bound of the monolith’s objective function value. 

The quality of the lower bound depends on the number of periods included in the 

aggregations. For PM, the lower bounds are all within 2% of the optimal objective 

function value, even when including almost all periods in the aggregations. For HASMa, 

the lower bounds produced can be up to 50% from the optimal objective function value 
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but are within 10% of optimal when just one-third of the periods are included in the 

aggregation. In both cases, aggregating the models to find a lower bound for the optimal 

objective function value provides significant insight into the quality of the cascade 

heuristic solution.   

The cascade results found from each of the two models are similar in some 

aspects and vastly different in others, which highlights the complexity of the cascade 

technique and the difficulty in making any broad conclusions regarding the application of 

a cascade heuristic. However, the results found in this thesis provide insight into the 

implementation and bounding of a cascade heuristic that could be applicable for other 

models. The results of the cascade of each model support the recommendation that, for 

any model using a cascade heuristic, one should use the longest window length that is 

computationally feasible to produce higher-quality solutions. Less conclusive evidence 

exists to back a strong statement regarding the length of the advance. Results from 

HASMa suggest that shorter advances typically yield higher-quality solutions, but this is 

not always the case for PM. Additionally, we can make no specific statements regarding 

how long the window length should be with respect to the time horizon of the model to 

guarantee any quality of solution. The results from this thesis suggest the importance of 

determining a lower bound for any model solved using a cascade heuristic. For both 

models examined, the aggregation technique produces a bound for the model that, when 

used with the results from the cascade heuristic, give the user a clear measure on the 

potential quality of the solution.   

 
 
 
 
 
 
 
 
 



 xviii 

THIS PAGE INTENTIONALLY LEFT BLANK 



 xix 

ACKNOWLEDGMENTS 

I would like to thank my family, particularly my husband, Pierce, and my parents 

for their support over the last two years. It has been a family effort to get both Pierce and 

me to graduation, and I am so thankful that we are finally here. Pierce, thank you for your 

patience, understanding, and commitment to our family. Mom and Dad, thank you for all 

of your years of love and support. Many thanks to my daughter, Lelia, for your silliness 

and sweetness, and for reminding me of what is most important in life.  

I would also like to thank my advisors, Dr. Dell and Dr. Brown, for your support 

while writing this thesis. I have learned a tremendous amount over the past year through 

your guidance, and I am truly grateful for all of the time and energy spent helping me 

through the process. 

 

 



 xx 

THIS PAGE INTENTIONALLY LEFT BLANK 

 



 1 

I. INTRODUCTION 

A. OVERVIEW 

The Oxford English Dictionary defines a cascade as, “a process whereby 

something, typically information or knowledge, is successively passed on” (“Cascade,” 

n.d.). A cascade heuristic, true to this definition, is an optimization-based technique that 

attempts to indirectly solve a monolithic optimization problem by solving a sequence of 

sub-problems, or blocks, and conveying information from block to block. Each block 

may include, say, a subset of all time periods, products, regions, or other related problem 

components, while all constraints not in the block are relaxed, and all decision variables 

not in the block are fixed. As each successive cascade block is solved, a subset of the 

resulting variable values are fixed before another block is solved. Most typically, the 

cascade heuristic involves sweeping through blocks of monolith constraints and variables 

once, with block solutions used to indirectly assemble a solution to the monolith. Because 

cascade blocks are formed by, at once, fixing variables (a restriction) and relaxing 

constraints (a relaxation), there is no direct relationship between the overall monolith 

solution achieved by a cascade. In fact, the cascade heuristic may myopically assemble 

an infeasible solution for a feasible monolith, or an unbounded solution for a bounded 

monolith. Despite these hazards, a cascade heuristic frequently results in useful solutions 

to otherwise intractable monoliths.  

This thesis considers the most typical application of a cascade heuristic when 

there are discrete time periods that extend over either a finite or an infinite time horizon. 

In the case of finite horizons, the time periods of the problem make up the set

1,2,... MAXt T= . For both horizon types, a cascade heuristic breaks the monolith into 

overlapping subsets of the time periods defined by active windows. The heuristic then 

solves multiple active iterations of the problem. The first iteration (the first block) 

considers only the periods included in the first window with all other constraints relaxed 

and all other variables fixed. Based upon the solution obtained, variable values within a 

subset of the window are fixed. The active window then slides forward to the end of an 

“advance,” the parameter that specifies how far forward the window progresses each 
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iteration, to establish the second window. This cascade heuristic solves the second 

window, fixes variable values based on the obtained solution, and continues in a similar 

fashion, as shown in Figure 1. Table 1 provides a summary of the nomenclature we use 

for the cascade heuristic in this thesis. Cascade optimization also goes by the name of 

rolling (or sliding) horizon optimization, and this thesis uses one of these other terms 

when it provides consistency with a published reference.  

 
Each successive window consists of enforced constraints and relaxed variables, while all other 
constraints are relaxed and all other variables are fixed.  

Figure 1.  Overlapping Windows of a Cascade Heuristic. 
Adapted from Baker (1997). 
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Table 1. Nomenclature Used to Describe a Cascade Heuristic 

Description Nomenclature 

Set of all time periods within the problem  

Set of all iterations required to solve problem  

Window: set of time periods solved in iteration   

Advance: set of time periods fixed for iteration  

based on solutions from the previous iterations 

 

 

Brown, Graves, and Ronen (1987) first coined the term “cascade optimization” 

when they used the technique to solve an ocean transport model to schedule shipping of 

crude oil. However, the theory and practical application of a cascade heuristic has existed 

for much longer. Dantzig (1959) discusses one early implementation of the technique to 

solve a motor-steel-tool model, a large (by 1950s standards) multistage linear program. 

To solve, Dantzig found an optimal solution for  and then used that solution as the 

initial conditions for . The process continued period-by-period until the monolith 

was heuristically solved in its entirety.  

Although cascade heuristics have been used to solve optimization problems for a 

long time, there is currently little guidance on how to determine the length of either the 

window or the advance, for those cascades consisting of only a single, sequential pass of 

windows. As optimization uses all of the resources available in a given time period, 

choosing a window that is too short can result in a myopic model fraught with end 

effects, the term used to describe premature utilization of resources in an early time 

period, or unrealistic prescriptions in later time periods caused by no visible future. 

Alternatively, longer windows can result in longer solve times.  

B. REASONS FOR THIS STUDY 

A cascade heuristic has two problems: 1) the heuristic typically offers no bounds 

on solution quality; and 2) there is little guidance on how to select the lengths for window 

and advance. This thesis provides insight on these two problems by analyzing the effect 

1, 2,..., MAXt T=

1,2,...,i n=

i iW

i ia

1t =

2t =
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of varying the length of the window and advance on solution quality, as well as 

developing and analyzing methods for producing lower bounds to the optimal objective 

function value of the seminal problem monolith, which this heuristic may never solve 

completely.   

C. THESIS SCOPE AND ORGANIZATION 

This thesis comprises five chapters. Chapter I introduces cascade optimization and 

the shortcomings of the heuristic. Chapter II includes a literature review of related research. 

Chapter III describes formulations of the two models studied in this thesis, a production 

model (PM) and a revised Hornet Assignment Sundown Model (HASMa), as well as 

formulations for an aggregated version of each model. Chapter IV describes the computer 

implementation of the models and the analysis of results. Chapter V presents conclusions 

and discusses recommendations for related research.  
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II. LITERATURE REVIEW 

There is extensive literature relating to rolling decision horizons, and the 

development and implementation of a cascade heuristic. The majority of this literature 

falls in one of three broad categories: the presentation of applications that use a cascade 

heuristic and the selection of the window length, the correction of end effects associated 

with implementing a cascade heuristic, and the convergence of what will be introduced 

and defined as primal and dual equilibrium approximations.  

A. PREVIOUS CASCADE HEURISTIC WORK 

There exists an impressive collection of diverse applications solved, at least 

approximately, by using a cascade heuristic. This section presents a sample of these 

applications chosen for their diversity and relevance to this thesis.  

Brown, Keegan, Vigus, and Wood (2001) implement a rolling-horizon heuristic 

when solving the Kellogg Planning System (KPS), an infinite-horizon production-

planning model that, when published, had been utilized by The Kellogg Company for 

more than a decade to optimize production, inventory, and distributional decisions. KPS 

solved a 30-week planning horizon at the beginning of every quarter to develop a long-

term production plan. However, the large variability in the product demand data used in 

KPS made accepting production decisions 30 weeks in advance very risky. As a result, 

Kellogg planners ran KPS at the beginning of every week to reaffirm production 

decisions for the close future to mitigate their risk. KPS uses sliding time windows to not 

only make the time horizon of the problem feasible to solve, but also to take advantage of 

the narrow time window to induce desired results without having to add additional 

constraints, and therefore increase the size of the model. For example, the length of the 

windows used in KPS create a myopic model that cannot see beyond the six-month time 

horizon to ensure that KPS does not hold products to satiate a demand that occurs beyond 

the end of their shelf life. 

Nielsen, Kroon, and Maróti (2012) solve the Rolling Stock Rescheduling Problem 

(RSRP), a model that schedules changes to the Norwegian Railways train schedule after a 
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disruption occurs. RSRP uses a rolling horizon heuristic to reduce computation time to 

allow real-time solving of the model and to introduce uncertainty into the model. As 

disruptions are unplanned events, such as damage occurring to a section of railway 

between stations, there is no way of knowing when normal operations can resume. The 

length of the time horizon is initially set to the best guess of when normal operations will 

resume, and planners solve RSRP periodically as railway administrators obtain new 

information. RSRP then extends or shortens the length of the time horizon as new 

information dictates. Nielsen et al. (2012) held all of variables constant and varied the 

length of the window of RSRP from two to five hours in fifteen-minute increments. They 

found that, in general, longer windows produced higher quality solutions. Brown et al. 

(1987) had similar findings regarding window length with their ocean transport model by 

varying window length from 10 to 80 days and comparing the model results. They found 

that while their model solved to integer optimality for each length window, shortening the 

window significantly improved model solve times.  

Miller et al. (2017) develop the Training Capability Model (TCM) to allocate 

students from each class of the United States Naval Nuclear Propulsion Training Program 

to one of the four Nuclear Power Training Units, where they complete their training and 

certification. Additionally, TCM prescribes weekly staff instructor assignments, student 

watch-standing assignments, and off-watch training. While the typical TCM planning 

horizon of two-to-four years can be solved as a monolith, by implementing a cascade 

heuristic with a window length of 1.5 years and advance of 0.5 years, the solve time can 

be significantly reduced. The authors report limited computational experience with 

cascade solutions within 1% of the monolith’s objective function value. While the 

interface of TCM allows the planner to decide whether to run the model using the rolling 

horizon or just solve the monolith outright, users have found they generally prefer the 

cascade heuristic.   

While examining a nonlinear optimization problem of an economic model, 

Manne (1992) suggests discretizing the model into both a finite portion and an infinite 

portion. By adding a terminal condition to either the dual or primal variables, one can 

evaluate how the end effects change when the length of the finite portion is varied. 
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Furthermore, Manne found that choosing unequal time intervals vice equal ones over 

which to implement a rolling horizon heuristic minimized the approximation errors of a 

discount factor utility curve, though only by approximately 2%. This thesis conducts no 

research regarding unequal time intervals; however, Workman (2009) uses this technique 

when solving the Security Force Generation Model (SFGM), a manpower model that 

plans the force growth of both officers and enlisted soldiers of the Afghan National 

Army. SFGM is an infinite-horizon model that returns both monthly and annual goals. 

The objective function of SFGM includes discount penalties to incentivize decision-

making early in the planning horizon. Workman chooses distinct windows in different 

phases of SFGM to allow for detail that is more precise where needed in the first part of 

the model and eliminate unnecessary detail to improve solve time in the latter part of the 

model. Specifically, SFGM solves in monthly increments for the first three years, and 

annually thereafter.  

In the wake of extended delays to deliver the F-35 Lightning II Joint Strike 

Fighter to the United States Marine Corps (USMC) to replace the aging F/A-18 Hornet, 

Zerr (2016) develops the Hornet Assignment Sundown Model (HASM). HASM 

“prescribe[s] each individual Hornet’s monthly squadron assignment, utilization, 

maintenance, storage, and retirement over its remaining service life while ensuring each 

squadron satisfies, to the extent possible, monthly flight hour requirements” (Zerr, 

2016, p. 18). HASM solves by dividing its optimization monolith into 59 windows of six 

months each. The windows overlap by three months, and each iteration takes 

approximately 10–15 minutes to solve. Zerr (2016) used a trial-and-error technique to 

choose the lengths of six and three months for the window and advance, respectively. He 

selected these lengths to best satisfy his goal of both minimizing model solve time while 

still preventing myopic behavior. 

Baker (1997) suggests that the length of each window and the advance between 

windows can have a significant effect on the quality of the solution produced using a 

cascade heuristic. Analysis of the results obtained throughout his research lead to the 

suggestion that the advance between windows should be, “at least as large as the  
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maximum number of time periods indices that are common to consecutively indexed 

rows” (Baker, 1997, p. 6). Additionally, Mercenier and Michel (1994) discuss the 

selection of the length of the window in conjunction with reformulating the infinite-time 

problem as a discrete-time approximation. The authors claim it is critical to ensure 

solutions of the discrete-time approximation are robust with respect to changes in the 

length of the window.  

B. PREVIOUS WORK IN CORRECTING “END EFFECTS” 

Selecting the length of a finite horizon approximation to an infinite-horizon 

problem must trade off computational speed with loss of optimality. The general belief is 

that as the length of the window increases, both the quality of solution obtained and the 

computation cost of solving the model increase.  

While there is no formal definition of “end effects,” the term generally describes 

the premature utilization of resources in an early time period or unrealistic prescriptions 

in later time periods caused by no visible future. An infinite planning horizon, especially 

with resources that regenerate over time, is challenging to represent in finite time with 

any fidelity to infinite-horizon consequences of near-term finite horizon decisions. As the 

length of the window decreases, the end effects of the model typically increase 

(Zerr, 2016).  

There are four primary methods for correcting end effects: primal equilibrium 

approximation, dual equilibrium approximation, truncation, and salvage. While each 

method can be vitally important to improving solution quality, each technique also has 

significant shortfalls. Grinold (1983) provides both a quantitative and qualitative 

assessment of the strengths and weaknesses of these techniques and suggests model types 

for which each technique is best suited.  

To achieve a “primal equilibrium approximation” to the monolith, Grinold adds 

additional constraints to restrict the model, which results in an upper bound of the 

optimal solution. For example, constraints are added to restrict all decision variables after 

a given month to the same value in an optimization model with monthly production 

decision variables. One shortcoming of this approximation is that a time period must 
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exist, “where a functional relationship can be derived that restricts the feasible region and 

leads to a finite-horizon re-formulation” (Walker, 1995, p. 22). Given a primal 

equilibrium approximation is a restriction, the approximation could be infeasible when 

the monolith is feasible. Conversely, if the monolith is infeasible any restriction is also 

infeasible.  

To produce a lower bound to the optimal solution of a monolith, Grinold (1983) 

suggests a “dual equilibrium approximation.” This technique forms a relaxation of the 

monolith by aggregating constraints of the monolith after a given time period. This thesis 

similarly aggregates constraints after a given time period to produce a lower bound to our 

cascades. 

The third technique for mitigating end effects, truncation, separates the model into 

time epochs and ignores the latter ones while solving the prior. While this is perhaps the 

easiest technique to implement, it can also result in unbounded solutions. To mitigate 

this, Grinold links epochs by adding a Lagrangian penalty to resources carried over from 

early ones to later ones, and refers to this as the salvage technique. 

Workman (2009) compares the rate of convergence to an equilibrium 

approximation of the objective function values of the primal and dual SFGM. He 

structures SFGM to “approximate the infinite horizon that occurs at the end of the finite 

planning horizon” (Workman, 2009, p. 35). Additionally, Workman compares the 

convergence rate of a time truncation of the model designed to induce myopia by 

disregarding all events that occur outside its finite horizon. By comparing the results of 

the rate of convergence to equilibrium of the three models, Workman (2009) chooses the 

model best suited for his choice of periods. Zerr (2016) adds monthly penalties to reduce 

the effects of the myopic behavior induced by a six-month time window. 

C. PREVIOUS WORK CONCERNING CONVERGENCE OF PRIMAL AND 
DUAL EQUILIBRIUMS 

Baker (1997) develops a method for bounding the error resulting from a cascade 

heuristic for linear programs. Baker solves what is referred to as the “proximal cascade” 

with “a rolling-horizon technique to sequentially solve overlapping subsets of a SLP 
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[staircase linear program], where each subset is defined by a contiguous portion of the 

staircase” (Baker, 1997, p. 1). The bound for the error of the proximal cascade is then, 

“produced by a Lagrangian cascade, which solves sub problems that are also defined by 

contiguous portions of a staircase linear program (SLP), but are made separable by 

relaxing rows that would otherwise link columns from different sub problems” 

(Baker, 1997, p. 1). The Lagrangian cascade incorporates Lagrangian penalties, derived 

from the dual variables stored from previously solved sub-problems, in the objective 

function of the present sub-problem. Comparing the two cascade approximations 

provides a quantitative assessment of the accuracy of the proximal approximation 

solution. Baker found an average gap of 2.7% between the cascade solution and the 

monolith’s optimal solution when he applied this method to ten test problems. 

Furthermore, Baker attributes 60% of the gap reduction to the Lagrangian cascade. While 

this method works well for the test problems chosen, this is a very limited set of test 

problems and we know of no other research to guide implementation for more general 

problems. 
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III. MODEL FORMULATION 

This thesis looks at two separate applications and their integer linear program 

(ILP) implementations, a production model (PM) and the revised Hornet Assignment 

Sundown Model (HASMa). We use these applications both when analyzing the impact 

on solution quality of varying the implementation of a cascade heuristic and when 

developing lower bounds for the optimal objective function value. This thesis also 

considers two variations of each model to produce lower bounds of the optimal objective 

function value. Production-1A and HASM-1A aggregate all periods following a 

designated time period. Production-2A and HASM-2A aggregate all time periods both 

before and after designated time periods.     

A. PRODUCTION MODEL 

Brown and Dell (2016) develop PM to serve as a simple test model for analyzing 

a cascade heuristic. This section presents the sets, data, decision variables, objective 

function value, and constraints that comprise the model.   

1. Model Formulation 

a. Indexed Sets [cardinality] 

  facility [4] 

   product [4] 

   state (i.e. closed or open) alias s′ [2] 

   time period in planning horizon [12] 

b. Data [units] 

  units of demand for product p during time t [cases] 

 units of product p to be stored at facility f at end of planning 

horizon [cases] 

f F∈

p P∈

s S∈

t T∈

,p tdemand

f,pend_stor
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  initial state of facility f  [open or closed] 

  maximum production by facility f of product p during time t 

[cases] 

  units of product p stored at facility f at start of planning horizon 

[cases] 

  transition cost for facility f from state s to s′  [dollars] 

  variable cost per unit at facility f for product p [dollars] 

c. Variables [units] 

  units of product p made by facility f during time t [cases] 

  units of product p shipped by facility f during time t [cases] 

  units of product p stored at facility f at end of time t [cases] 

  =1 facility f transitions from state s to s′ at end of time t        

[binary 0, or 1] 

d. Formulation 

, ,
,

MIN _TRAN PROD f,s,s f,s,s ,t f,p f,p,t
STOR SHIP f,s,s',t f,p,t

tran cost TRAN v_cost MAKE′ ′ +∑ ∑                (0) 

subject to: 

 

 
  

   

   

   

finit_state

f,p,tmake

f,pstart_stor

f,s,s'tran_cost

f,pv_cost

f,p,tMAKE

f,p,tSHIP

f,p,tSTOR

f,s,s',tTRAN

| | 1 | | 1|f,p t f,p,t -1 t f,p,t

f,p,t f,p,t

start_stor | STOR MAKE

STOR SHIP 0
= >+ +

− − =

, ,f F p P t T∀ ∈ ∈ ∈ (1)

0f,p,t p,t
f F

SHIP demand
∈

− =∑ ,p P t T∀ ∈ ∈ (2)

0f,p,tf,p,t f,s,'open',t
s S

MAKE +make TRAN
∈

− ≥∑ , ,f F p P t T∀ ∈ ∈ ∈ (3)

0f,s,s',t
s S,s' S

TRAN 1
∈ ∈

− =∑ , tf F T∀ ∈ ∈ (4)
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, ,f F s S t T∀ ∈ ∈ ∈    

 

 
 

 

 
, , ,f F s S s S t T′∀ ∈ ∈ ∈ ∈   

 
 

 

   
 
 
 

e. Auxiliary Variables [units] 

, ,, , ,
'

_ f p tf p t f p
t t

A start stor make ′

≤

= +∑  [cases] 

, ,, , 1 ,max 0, f p tp t p t p t
f

B B make demand−

 
= + − 

 
∑  [cases] 

,"0" ,_p f p
f

B start stor=∑  [cases] 

, , , ,_f p t p t f p
t t

C demand end stor′
′>

= +∑ [cases]  

2. Explanation of Model Formulation 

Equation (0) is the objective function of the model. There are two components to 

the function:  

(a) , and  

(b) . 

Component (a) expresses the cost of opening or closing each facility during each 

period. Component (b) expresses the cost of making each product at each facility during 

each period. Each constraint (1) ensures the initial units of a product at a facility and the 

| | 1 , ', , 1 | | 1
'

, , ',
'

1 | |

0

ft s init_state f s s t t
s S

f s s t
s S

TRAN

TRAN

= ∧ = − >
∈

∈

+

− =

∑

∑

(5)

{0,1}f,s,s',tTRAN ∈

[0, ]f,p,tf,p,tMAKE make∈

,[0, ]f,p,t p tSHIP demand∈

[0, ]f,p,t f,p,tSTOR ubs∈

, ,f F p P t T∀ ∈ ∈ ∈

, ,f F p P t T∀ ∈ ∈ ∈
, ,f F p P t T∀ ∈ ∈ ∈

(6)

{ }min , ,f,p,t f,p,t p,t f,p,tubs A B C= , ,f F p P t T∀ ∈ ∈ ∈

, , ' , , ',
, , ',

_ cos f s s f s s t
f s s t

tran t TRAN∑

, , ,
, ,

_ cos f p f p t
f p t

v t MAKE∑
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quantity of some product stored or made at that facility at the end of the previous period 

is equivalent to the quantity of that product shipped or stored at that facility at the end of 

the period. Each constraint (2) ensures the amount of a product shipped from a facility is 

equivalent to the demand for that product during a period. Each constraint (3) ensures 

that the quantity of a product made at a facility does not exceed the maximum production 

capability, for a facility that is open. Each constraint (4) ensures that a facility makes no 

more than one transition during a period. Each constraint (5) keeps track of the state of a 

facility and ensures only proper transitions occur. Constraints (6) define domains for the 

variables. In addition, some auxiliary variables are computed from model values. , ,f p tA  is 

the maximum amount of each product p that can exist up to time t for facility f. ,p tB  is the 

maximum amount of storage possible based on the total product limits. ,"0"pB  is the total 

initial amount of each product. , ,f p tC  is the maximum amount of each product, at each 

time period and each facility, that would ever be required in the future.  

B. PRODUCTION MODEL AGGREGATION 

An ILP with aggregated constraints for periods 1 to  and 1τ +  to TMAX, as 

shown in Figure 2, produces a lower bound on the optimal objective function value 

because it is a relaxation of the monolith. In the aggregated segments, additional 

constraints sum all time periods together. The aggregated PM breaks the periods of the 

model into three segments: an aggregation of a contiguous set of beginning periods, a 

contiguous segment when time periods are not aggregated, and a following aggregation 

to the end of the model. The aggregation of PM maintains all the same sets, data, 

variables, formulation, and constraints as the original production model. However, the 

PM aggregation adds two new parameters, and , where  indicates the last period of 

the non-aggregated segment and  indicates the last period of the former aggregation. 

This thesis consider two variations of the aggregated PM. Production-1A fixes  for 

all iterations while 1,2,...,11.τ =  Production-2A considers values of and where

and . 

'τ

τ 'τ τ

'τ

' 1τ =

τ 'τ

2,3,...,12τ = ' 1, 2,...,11τ =
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In this model, 8τ = and 6τ ′ = . The beginning aggregation consists of periods 1–5, and 
the later aggregation consists of periods 9–15. The model does not aggregate periods 6–8 
and these periods solve under the same conditions as the monolith.   

Figure 2.  Example of an Aggregated Model 

1. Aggregated Production Model Modifications 

1τ +     First period of later aggregation  

τ ′    Last period of early aggregation 

  
(1) 

 
 (1a) 

 
 (1b) 

  
(2) 

| | 1 | | 1|f,p t f,p,t -1 t f,p,t

f,p,t f,p,t

start_stor | STOR MAKE

STOR SHIP 0
= >+ +

− − =

, ,
| '
f F p P

t tτ τ
∀ ∈ ∈

< ≤

| | 1 | | 1

1

|MAXT
f,p t f,p,t -1 t f,p,t

t f,p,t f,p,t

start_stor | STOR MAKE
0

STOR SHIPτ

= >

= +

+ + 
=  − − 

∑
,f F p P∀ ∈ ∈

'
| | 1 | | 1

1

|f,p t f,p,t -1 t f,p,t

t f,p,t f,p,t

start_stor | STOR MAKE
0

STOR SHIP

τ
= >

=

+ + 
=  − − 

∑
,f F p P∀ ∈ ∈

0f,p,t p,t
f F

SHIP demand
∈

− =∑ ,
| '
p P

t tτ τ
∀ ∈

< ≤
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 (2a) 

 
 (2b) 

  
(3) 

 
 (3a) 

 
 (3b) 

  
(4) 

 
 (4a) 

 
 (4b) 

 
 

(5) 

 

 (5a) 

 

 (5b) 

1
0

MAX
T

f,p,t p,t
t f F

SHIP demand
τ= + ∈

 
− = 

 
∑ ∑

p P∀ ∈

'

1
0f,p,t p,t

t f F
SHIP demand

τ

= ∈

 
− = 

 
∑ ∑

p P∀ ∈

0f,p,tf,p,t f,s,'open',t
s S

MAKE +make TRAN
∈

− ≥∑ , ,
| '
f F p P

t tτ τ
∀ ∈ ∈

< ≤

1
0

MAX
T

f,p,tf,p,t f,s,'open',t
t s S

MAKE +make TRAN
τ= + ∈

 − ≥ 
 

∑ ∑
,f F p P∀ ∈ ∈

'

1
0f,p,tf,p,t f,s,'open',t

t s S
MAKE +make TRAN

τ

= ∈

 − ≥ 
 

∑ ∑
,f F p P∀ ∈ ∈

0f,s,s',t
s S,s' S

TRAN 1
∈ ∈

− =∑ ,
| '
f F

t tτ τ
∀ ∈

< ≤

1
0

MAXT

f,s,s',t
t s S,s' S

TRAN 1
τ= + ∈ ∈

 
− = 

 
∑ ∑

f F∀ ∈

'

1
0f,s,s',t

t s S,s' S
TRAN 1

τ

= ∈ ∈

 
− = 

 
∑ ∑

f F∀ ∈

| | 1 , ', , 1 | | 1
'

, , ',
'

1 | |

0

ft s init_state f s s t t
s S

f s s t
s S

TRAN

TRAN

= ∧ = − >
∈

∈

+

− =

∑

∑

,s S,
| '
f F

t tτ τ
∀ ∈ ∈

< ≤

| | 1 , ', , 1 | | 1
'

1 , , ',
'

1 | |
0

MAX ft s init_state f s s t tT
s S

t f s s t
s S

TRAN

TRANτ

= ∧ = − >
∈

= +
∈

 +
  = − 
 

∑
∑ ∑

,s Sf F∀ ∈ ∈

| | 1 , ', , 1 | | 1'
'

1 , , ',
'

1 | |
0

ft s init_state f s s t t
s S

t f s s t
s S

TRAN

TRAN

τ = ∧ = − >
∈

=
∈

 +
  = − 
 

∑
∑ ∑

,s Sf F∀ ∈ ∈
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2. Explanation of Model Formulation 

Each of the original constraints of PM are modified so that they are only 

considered for time periods between  and . The aggregated PM adds two additional 

constraint sets for each of the original constraint sets (1) through (5). One set aggregates 

the periods afterτ , while the other aggregates the periods beforeτ ′ .   

C. HORNET ASSIGNMENT SUNDOWN MODEL 

1. Background  

Zerr (2016) formulates and implements the ILP HASM to optimally assign 

aircraft from the USMC F/A-18 Hornet inventory to various squadrons and maintenance 

depot locations to satisfy the operational flight hour requirements of Hornet squadrons, 

while simultaneously meeting aircraft maintenance requirements. Production delays of 

the F-35 Lightning II Joint Strike Fighter, the replacement aircraft for the F/A-18, have 

forced the Marine Corps to extend the service life of the F/A-18 beyond its initial 

capability, creating the concern that F/A-18 flight hour requirements could be satisfied 

while still performing both routine required maintenance and service life extensions 

(Zerr, 2016). HASM assigns each aircraft to an optimal location during each month of the 

next 15 years to minimize the cost of required depot maintenance, while still maintaining 

the number of required squadron flying hours as they slowly transition to the F-35. Zerr’s 

(2016) version of HASM considers transitions of 274 aircraft to and from 13 squadrons 

over 176 months and to five different depot maintenance events. This model consists of 

“more than 28.8 million rows, 80 million columns (77 million discrete columns), and 388 

million non-zero elements,” (Zerr, 2016, p. 37) and is far too large to solve as a monolith.  

As a result, the author solves HASM using a cascade heuristic with a window of six 

months and an advance of three months. 

We simplify HASM to reduce run time and make the monolith solvable and refer 

to the revised version of the model as HASMa. Having a solvable monolith provides a 

baseline to compare the quality of solution produced using a cascade heuristic. The 

simplifications of HASMa include aggregating the time periods from months into years, 

considering only three depot events vice five, and aggregating the 13 flying squadrons 

' 1τ + τ
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into one squadron that indicates utilization of the aircraft in the operating forces. HASMa 

keeps the three primary depot events, per Zerr (2016): planned maintenance interval 

(PMI), initial service life extension (SLE), and high flight hour (HFH) extension. SLE 

increases the service life of an aircraft from 6,000 to 8,000 flight hours, and the HFH 

upgrade adds an additional 2,000 flight hours to the service life. Depots cannot conduct 

HFH maintenance until the initial SLE is completed. The two depot events eliminated in 

HASMa are combinations of PMI with either SLE or HFH, events which Zerr found had 

little significance in increasing aircraft availability. Zerr gathered the original inputs to 

HASM from four unclassified data sources: the 2016 USMC Aviation Plan from 

Headquarters Marine Corps Aviation, flight hour inventory reports from Naval Air 

Systems Command (NAVAIR), Aviation Maintenance/Supply Readiness Report Data 

from Headquarters Marine Corps Aviation, and Depot Maintenance Data from NAVAIR. 

This thesis added no additional or supplemental data to HASMa. 

2. Model Formulation 

This section presents the indexed sets, data, variables, formulation, and 

constraints that comprise the formulation of HASMa, modified from the original 

composition of HASM by Zerr (2016).  

a. Indexed Sets [cardinality] 

A   The set of all F/A-18 Hornet aircraft [274] 

  { }1...a A N∈ =   

ALLOW   The set of allowable locations at time t [105] 

                       ( ),l t ALLOW∈   

DEP    The set of all depot maintenance activities [3] 

 

HFHC   The set of initial aircraft that have received HFH [111]  

                        a HFHC∈    

INIT    The set of a which begin HASMa at depot [115]   

                       ( ),a l INIT∈   

{ }, ,l PMI SLEEP HD HF=∈
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L    The set of all non-squadron locations [6]          

                        l L∈  , { }, , , , ,L PMI SLE HFH Store Backlog Retire=   

SLEC   The set of initial aircraft that have received SLE [247]  

 a SLEC∈   

T    The set of all time periods [years] [15]         

                        { }1... MAXt T T∈ =   

b. Data [units] 

Initial Conditions [units] 

0afT    The total flying hours for aircraft a at t=1. [flight hours] 

0ajT   The time period that aircraft a must depart the depot if located at the depot 

at the beginning of model. [year] 

0aPMI   The next PMI for aircraft a must be completed on or before this year. 

[year] 

,0a lxT    The initial starting condition for aircraft a at t=1. [indicator 0, or 1] 

Depot Data [units] 

cap    Capacity restriction on aircraft at depot locations. [aircraft] 

admax   The maximum number of years between PMI events for aircraft a. [years] 

admin  The minimum number of years between PMI events for aircraft a. [years] 

thhours   Number of hours of HFH maintenance in the tth year of maintenance. 

[man-hours] 

_1aLwin  Lower limit for 1st PMI event for aircraft a, similarly 

_ 2 , _ 3 , _ 4a a aLwin Lwin Lwin   are the lower limits for 2nd, 3rd, and 4th 

PMI events. [years] 

tphours   Number of hours of PMI maintenance in the tth year of maintenance.  

[man-hours] 



 20 

otq    Number of overtime depot maintenance hours. [man-hours] 
regq    Number of regular depot maintenance hours. [man-hours]  

tshours  Number of hours of SLE maintenance in the tth year of maintenance. 

[man-hours] 

ltime    Number of years to complete depot event at location l. [years] 

ot
tu    Cost of an hour of overtime depot level work for any event. [penalty/hour] 

_1aUwin  Upper limit for 1st PMI event for aircraft a, similarly 

_ 2 , _ 3 , _ 4a a aUwin Uwin Uwin   are the upper limits for 2nd, 3rd, and 4th 

PMI events. [years] 

Flight Hour and Readiness [units] 

th    Minimum cumulative flying hours for all aircraft in year t. [flight hours] 

th    Maximum flying hours for a single aircraft in year t. [flight hours] 

m   Minimum percentage of th  that must be completed by each aircraft not in 

a depot location in t. [flight hours] 

tr    Ready Basic Aircraft (RBA) rate at t. [fraction of RBA] 

Aircraft Assignment [units] 

n    Maximum number of serviceable aircraft at Squadron location. [aircraft] 

n    Minimum number of serviceable aircraft at Squadron location. [aircraft] 

Penalties [units] 

Elastic penalties Elastic penalties for violating constraint equations 

,
n

l t
pew    Penalty per aircraft per year for non-squadron location.  

[penalty/aircraft] 
, '
xfr
l lw  Penalty per aircraft to transfer as aircraft from l to ' l in time t. 

[penalty/aircraft] 
, 'a lpens   Penalty multiplier for aircraft a for preference of transfer location.  

[penalty/penalty] 
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c. Binary Variables 

{ }, 0,1a tH ∈   Binary variable with value of one if aircraft a has completed HFH on or 

before time t, zero otherwise. 

{ }, 0,1a tR ∈       Binary variable with value of one if aircraft a retires on or before time t,  

                        zero otherwise. 

{ }, 0,1a tS ∈  Binary variable with value of one if aircraft a has completed SLE on or 

before time t, zero otherwise. 

{ }, 0,1a l,tX ∈  Binary variable with value of one if aircraft a is in location l at the start of 

year t, zero otherwise. 

{ }0,1a,l,l ,tY ′ ∈  Binary variable with value of one if aircraft a transfers out of location l 

into location at the start of the year t, zero otherwise. 

d. Nonnegative Variables [units] 

,a tF    Number of flight hours assigned to aircraft a during year t. [hours] 

,
tot

a tF   Cumulative flight hours assigned to aircraft a up to and including year t. 

[hours] 
ot

tV     Number overtime hours used at depot during year t. [hours] 

e. Formulation 

. , , , , , , ,
, , ,

MIN pen xfr ot ot
l t a l t l l a l a l l t t t

a l t ALLOW l l t TRANS t
w X w pens Y u V Elastic penalties′ ′ ′

′∈ ∈

 
+ + + 

 
∑ ∑ ∑ ∑  

 (0)  

Subject to: 

,
,

  a t t t a,l,t
a l La

F r h X
∉

≤∑ ∑  t T∀ ∈  (1) 

,  a t t a,l,t
l L

F h X
∉

≤ ∑  
, ta TA∀ ∈ ∈  (2) 

,a t t a,l,t
l L

F mh X
∉

≥ ∑  
, ta TA∀ ∈ ∈  (3) 

' l
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,a t t
a

F h≥∑   t T∀ ∈   (4) 

, , 0tot
a t a t aF F fT+=  , 1a A t∀ ∈ =  (5) 

, , , 1
tot tot

a t a t a tF F F −= +  , 1a t∀ >  (6) 

, 10000tot
a tF ≤   ,a HFHC t T∀ ∈ ∈  (7) 

, ,8000 2000tot
a t a tF H≤ +  ,a SLEC t T∀ ∈ ∈  (8) 

, , ,6000 2000 2000tot
a t a t a tF H S≤ + +  ,a SLEC HFHC

t T
∀ ∉ ∪
∈

 (9) 

,, , 0
a la l tX xT=  , , 1a A l L t∀ ∈ ∈ =  (10) 

, ,
|( , )

1a l t
l l t ALLOW

X
∈

=∑   
, ta TA∀ ∈ ∈  (11) 

, , , , 1 , ', , 1 , , ',
' '

a l t a l t a l l t a l l t
l l

X X Y Y− −= + −∑ ∑  , , 1a A l L t∀ ∈ ∈ >  (12) 

,
a,l,t

a l L
X n

∉

≤∑                                                                                                            t T∀ ∈  
  

(13) 

,
a,l,t

a l L
X n

∉

≥∑   t T∀ ∈  (14) 

, ,
,  

a l t
a l DEP

X cap
∈

≤∑  t T∀ ∈  (15) 
 
 

, , , , ',
'

a l t a l l t
l

X Y≥∑  , ( , ) a A l t ALLOW∀ ∈ ∈
 

(16) 

, ', , , , ',
' '

a l l t a l l t
l l

Y Y ′=∑ ∑  ,  ,
, l

a A l DEP
t T t t +time
∀ ∈ ∈

′∈ =
 

(17) 

, , , 1a l l t
l

Y ′
′

=∑   
( , ) , 0aa l INIT t jT∈ =   (18) 

, , , ' , , , , , , , ,
, ' | '

, , 1

a l t a Store t a BacP klog t a Retire t a SLE t
l t t t

a H

MI

FH t

Y X X X X

X
≤

+ + + +

+ ≥

∑
 

  

, |1 0aa A t PMI t∀ ∈ < ≤
  

(19) 
 

, , ' , , , ,
'  

, , , , , , , , ,
 

1
a

a PMI t a Store t a Retire t
t t t

a SLE t a HFH t a Backlo
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Pg t MIa l t
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X X X

X X X Y
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+ + +
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,

a
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(20) 
 

, , , '
, ' | '

1
a

a l t
l t

PMI
dmint t t

Y
− < ≤

≤∑  a A∀ ∈  (21) 
 

, , , , '
, | ' HFH

a t a l t
l t' t t ti

HFH
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H Y
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, , , , '
, | ' SLE

a t a l t
l t' t t ti

SLE
me

S Y
≤ −

≤ ∑  ,a SLEC t T∀ ∉ ∈  (23) 

' 1 , , , '
, , | '

' 1 , , , '
, , | '

' 1 , , , '
, ,

1

1 '

1

|

HFH

PMI

SLE

t t a l HFH t
a l t t time t
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3. Explanation of Model Formulation 

Equation (0) is the objective function. To discourage violations of flight hour 

requirements and aircraft assignments, both piecewise linear penalties and a discount 

factor are included, as originally described by Zerr (2016). There are four components to 

the objective function:  
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(c)  , and 

(d) .Elastic penalties   

Component (a) and component (b), per Zerr (2016), describe the penalties 

associated with transferring aircraft between locations and removing them from the 

operational squadron. Component (c) calculates the overtime costs incurred at the depot 

when conducting maintenance. Component (d) represents elastic penalties for violating 

constraints.  

Each constraint (1) and (2), per Zerr (2016), ensures that the flight hours assigned 

to each aircraft remains below the number of hours an aircraft has the ability to fly, based 

on its service life restrictions. Each constraint (3) ensures every aircraft flies a minimum 

percentage of the total yearly flight hour goal. Each constraint (4) “balances the total 

number of flight hours assigned to a squadron with the minimum required and deviations 

below that amount” (Zerr, 2016, p. 35). Each constraint (5) and (6) tracks the total 

number of hours each aircraft has flown. Each constraint (7) through (9) imposes service 

life restrictions on each aircraft based on the maintenance it has completed. 

The next set of constraints track each aircraft’s location during each year. Each 

constraint (10), (11), and (12) “establish the initial position of each aircraft at the start of 

the model, limit an aircraft to one unique location during any time period, and connect 

each aircraft’s location to where it was in the previous time period” (Zerr, 2016, p. 35). 

Each constraint (13) and (14) limits the number of aircraft assigned to the squadron 

“between a floor minimum number and an elastic maximum number” (Zerr, 2016, p. 35). 

Each constraint (15) limits the number of aircraft receiving maintenance.  

Each constraint (16) through (21) tracks the flow of aircraft in and out of the three 

maintenance events and prevents excessive transferring of aircraft. Each constraint (16) 

ensures an aircraft is only transferred to a new location if it is allowed to be transferred to 

ot ot
t t

t
u V∑
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that location during the given time period. Each constraint (17) forces aircraft to remain 

in maintenance for enough consecutive periods to complete the event. Each constraint 

(18) ensures aircraft assignment to one location each period. Each constraint (19) through 

(21) “require every aircraft to complete the first scheduled PMI event and every 

subsequent PMI event unless the aircraft is placed in storage or retired” (Zerr, 2016, p. 

36). Each constraint (22) and (23) updates an aircraft’s service life based on the 

maintenance it has completed. Each constraint (24) tracks the maintenance hours worked 

by depot employees, and each constraint (25) dictates the maximum number of overtime 

hours available each year. Each constraint (26) tracks aircraft that have been retired. Each 

constraint (27) ensures an aircraft does not receive PMI before it is required. Each 

constraint (28) prevents an aircraft from completing the same service life extension more 

than once. Each constraint (29) through (31) gives non-negative domains for variables, 

and (32) through (35) indicate the binary decision variables. 

D. HASMa AGGREGATION 

Similar to the aggregation of PM, in the aggregated version of HASMa, the 

periods of the model are broken into three epochs: an aggregation of the beginning 

periods, a segment of periods not aggregated, and an aggregation of the end of the model. 

The aggregated model maintains all the same sets, data, binary variables, nonnegative 

variables, formulation, and constraints as HASMa. However, the HASMa aggregation 

adds two new parameters, and . The parameter  indicates the last period of the 

former aggregation while  indicates the last period of the non-aggregated segment. For 

analyzing results, this thesis considers two variations of the HASMa aggregation. 

HASM-1A set  for all iterations while 1, 2,...,14,τ = meaning that there was no 

aggregation in the beginning of the model. HASM-2A considers all possible 

combinations of and where  and , which results in 91 trial 

runs. 

1. Aggregated HASMa Modifications 

1τ +     First period of later aggregation  

τ 'τ 'τ

τ

' 1τ =

τ 'τ 2,3,...,14τ = ' 1, 2,...,13τ =
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2. Explanation of Model Formulation 

All constraints from HASMa not listed in the modifications given previously also 

appear unchanged in the HASMa aggregation. The aggregated model considers 

aggregated constraints for HASMa constraints (1) through (4) and (6) through (9). 

HASMa aggregates these constraints because they are responsible for assigning the 

proper number of flight hours to each available aircraft, ensuring assignment of the 

minimum flight hours to the squadron, and ensuring each aircraft flies only the number of 

hours that its service life limitation allows. It was not necessary to aggregate constraints 

(10) through (40) of HASMa as they primarily consider the logistics of tracking and 

updating an aircraft’s location. The aggregated model also does not include an aggregated 

constraint for constraint (5) of HASMa, as this constraint considers the initial location of 

the aircraft and only effects the first period. Wherever the aggregated model adds a 

constraint, it also modifies the original constraint. The original constraint is now only 

applicable for periods  to . ' 1τ + τ
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IV. IMPLEMENTATION AND ANALYSIS 

This chapter provides insight into the implementation and analysis of the models 

considered. This thesis uses the Generalized Algebraic Modeling System (GAMS) 

version 24.6.1 to generate all models and CPLEX 12.0 to solve them. (GAMS, n.d.). We 

solved all models on a Dell computer using two 2.30GHz processors and 128 GB RAM.  

We solve the monolithic forms of both PM and HASMa prior to solving the 

model with the cascade heuristic. The objective function values reported for the 

monoliths are the true optimal solution for each respective problem. In the following, we 

refer to the optimal minimization solution as the monolith solution. These solutions 

provide a baseline for comparison of all other objective function values reported with the 

cascade heuristic and with the model aggregations.  

A. PRODUCTION MODEL CASCADE IMPLEMENTATION 

This thesis solves PM with 55 different cascades, with the window and advance 

varied for each run. With only 1,729 decision variables and 577 constraints, the monolith 

solves in less than a second. In the runs considered, the window takes on values 2, 3... 11, 

while the advance takes on values of 1, 2... 10 respectively. The trial runs consider every 

possible combination of window and advance between these respective values. 

Additionally, each run of the model requires a 0.0% optimality gap (a guaranteed optimal 

solution). PM generates its data using the formulas provided below with the given values.  

 

_ 1000demand scale =  (1) 

_ 1000facility scale =  (2) 

_ 3make scale =  (3) 

_ 10product scale =  (4) 
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_tran scale =   

State 
From 

State 
To Cost 

closed closed 0.1 
closed open 1.0 
open open 0.4 
open closed 2.0 
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tseasonal =   

time period 1 2 3 4 5 6 7 8 9 10 11 12 

Seasonality 1.0 1.0 1.0 1.5 1.0 1.0 1.0 1.0 1.0 1.1 2.0 2.5 
 

 

(10) 

 
,_ 0f pstart stor =     ,f F p P∀ ∈ ∈  
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Table 2 shows the percent increase from the monolith’s objective function value 

for each of the 55 runs of the cascade of PM. For example, with an advance of one and a 

window of two, the cascade heuristic solution is 4.45% above the monolith’s objective 

function value. The quality of the solutions from each run is very good. Figure 3 

highlights that holding the length of the window constant while simultaneously 

increasing the length of the advance results in neither a monotonically increasing nor 

decreasing change in the objective function value. With the exception when window=7 

and advance=1, longer windows report better or equal objective function values than 

shorter windows.  
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Table 2. For PM, Percent above Monolith’s Objective Function Value 
Achieved by the Cascade Heuristic for Combinations of 

Window and Advance 

 
For example, with advance = 1 and window = 2, the heuristic’s objective function over-estimates 
optimal by 4.45%.  

 
The distribution of the PM objective function values, as percent increase from the monolith’s objective 
function value, for each window, when the advance is varied. For all combinations of window and 
advance not shown, the cascade heuristic objective function value is equivalent to the monolith’s 
objective function value.  

Figure 3.  For PM, Percent above Monolith’s Objective Function Value 
Achieved by the Cascade Heuristic 

Window=2 Window=3 Window=4 Window=5 Window=6 Window=7 Window=8 Window=9 Window=10 Window=11
Advance=1 4.45% 0.031% 0.514% 0.207% 0.107% 0.266% 0.146% 0.209% 0.000% 0.000%
Advance=2 1.016% 0.199% 0.474% 0.466% 0.088% 0.209% 0.435% 0.000% 0.000%
Advance=3 2.714% 0.312% 0.306% 0.122% 0.336% 0.000% 0.000% 0.000%
Advance=4 0.709% 0.568% 0.477% 0.000% 0.000% 0.000% 0.000%
Advance=5 0.845% 0.000% 0.000% 0.000% 0.000% 0.000%
Advance=6 0.000% 0.000% 0.000% 0.000% 0.000%
Advance=7 0.000% 0.000% 0.000% 0.000%
Advance=8 0.000% 0.000% 0.000%
Advance=9 0.000% 0.000%
Advance=10 0.000% 0.000%
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For PM, there are no conclusive statements about how long an advance should be 

for a particular window length. Shorter advances mean that more iterations of the model 

are being solved in rapid succession, so myopic decisions made in early time periods can 

be quickly rectified as new information about future periods is encountered. However, the 

PM cascade results show that shorter advances do not nessessarily equate to better-

quality solutions, as we see for a window of seven, where an advance of two yields a 

higher quality solution than an advance of one. For this model, setting advance = 1 

represents the most reliable choice for producing high-quality results. While, for a given 

window length, there could be a value of advance that yields an even better solution, it is 

impossible to discern that without testing all possible values of advance.  

Another reason for the high-quality solutions from the cascade of PM is that 

demand is homogeneous over time, as shown in Table 3. The demands listed in Table 3 

are used for each cascade of PM. As there are no significant changes to requirements as 

time progresses, production decisions made in early periods remain good decisions over 

time. Adding a demand spike in just one period during the later half of the model has a 

significant impact on solution quality. Specifically, we revise the formula to calculate 

demand for period 10 to be: 

{ }, max 0,p tdemand D= , 

where 

( )10 10~ 3* _ * ,0.5*D N demand scale seasonal demand_scale* seasonal .  

This modifies the demand for period 10 from 1,103.366 to 10,598.25, 529.688 to 

7,495.7439, 2,007.06 to 1,726.069, and 1,032.468 to 11,614.443 for each product, 

respectively. Solving the model with modified demand using a cascade heuristic with 

various window lengths and the advance held constant at one, the quality of the objective 

function reported significantly declines. Figure 4 shows the new objective function values 

reported for each of the six runs conducted. The objective function value from the 

cascade heurstic does not fall within 2% of the optimal solution until the window length 

is seven.  
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Table 3. Original Demand for PM by Time Period and Product 

 
 

 

Figure 4.  Objective Function Value of PM, as Percent Increase from Objective 
Function Value, with Modified Demand for Period 10 

When Advance=1 

 
 

Product t01 t02 t03 t04 t05 t06
p01 350.4967 312.263 1159.84 2390.266 423.3956 1355.011
p02 1331.367 1785.4928 2106.669 1031.413 890.9129 518.9402
p03 1502.197 623.8679 1377.981 2400.298 1421.769 284.731
p04 375.8913 203.0075 593.7956 898.7243 728.2773 1641.388

t07 t08 t09 t10 t11 t12
p01 1508.655 637.9648 500.3038 1103.366 1005.408 1366.323
p02 946.2021 868.6966 736.6907 529.6878 3982.034 3532.75
p03 2049.636 1336.6945 1084.476 2007.057 3267.691 4756.55
p04 809.5161 643.2418 1035.47 1032.468 239.4918 2498.581

Time Period
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B. HASMa CASCADE  

For a detailed description of the data included in HASM, see Zerr (2016). This 

same data is included in HASMa. As HASMa is composed of 15 time periods, 154,696 

decision variables and 117,423 constraints, the run time for this model is considerably 

longer than that of PM. While the HASMa monolith solves in 312 seconds, certain 

combinations of window and advance take upwards of 5,800 seconds to solve to 

optimality. As a result, we limit the combinations of window and advance. To first 

develop a baseline understanding of how the window length effects the objective function 

value reported, the length of the advance remains fixed at one while the length of the 

window takes on values 2, 3 … 15. Not until the window includes more than two-thirds 

of the periods in the model does the objective function value fall within 20% of the 

optimal solution. Figure 5 shows how a window length of eight marks the first significant 

improvement in the quality of the objective function value. Henceforth, we only consider 

window lengths of at least eight. 

  

Figure 5.  HASMa Objective Function Values for Cascade When Advance = 1 
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The quality of solutions produced by the cascade applied to HASMa is quite 

different from the quality of solutions produced in the cascade heuristic with PM. This 

results from the inability of HASMa to easily recover from poor decisions made in early 

time periods. The maintenance depots can accommodate only a fixed number of aircraft 

at any particular time. Shorter window lengths place priority on achieving flight hour 

requirements in the early periods. As a result, not enough aircraft are scheduled for 

service life extensions, and in the later time periods there are neither enough capable 

aircraft remaining to meet flight hour goals, nor availability of depot floor space and 

man-hours to rectify the problem.  

Figure 6 shows the degradation of solution quality when the window length is 

held constant and the advance is increased. These findings represent a significant 

deviation from the findings of PM, where there was no monotonic trend seen between the 

length of the advance and the quality of the solution. Shorter advances mean that the 

model requires more iterations to solve in its entirety. While shorter windows can 

produce myopic solutions, shorter advances can provide the opportunity for the model to 

rectify poor decisions. For example, setting the window = 10 and advance = 5 means that 

despite regarding two-thirds of the periods in the first window, the later time periods of 

the model are not considered at all until the solutions for the first third of the model have 

been locked down. Conversely, setting window = 10 and advance = 1 means that after 

executing just one year’s worth of aircraft assignments, the model is re-evaluated and 

later time periods are considered. The price for this improved vision is the increased 

computation time required to consider long windows with short advances.  
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Figure 6.  HASMa Objective Function Value for Cascade Heuristic When 
Window= 10, 11,…,14 and Varied Advances 

PM is a cost-minimization model where the objective function value reported 

represents the lowest possible cost incurred while meeting the supply and demand 

requirements of each period. The objective function value of HASMa, however, 

incorporates several other components in addition to cost, as the purpose of this model is 

to meet flight hour requirements for each time period while still completing required 

maintenance and service life extensions. The elastic penalties included for violating 

particular constraints heavily influence the value of the objective function for HASMa. 

Figure 7 shows how, regardless of the window length, each solution fails to meet the 

flight hour requirements for years one through five, and then again for years 10–14. 

Whereas, in some years, shorter window lengths struggle to meet flight hour 

requirements at the end of the model by over 9,000 flight hours, the monolith deviates by 

no more than 2,400 flight hours from the number required.  
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Figure 7.  Flight Hours Prescribed per Time Period by Cascade of HASMa 
When Advance = 1 

These results provide evidence of the myopic solutions often produced by short 

windows. Solved with a short window, particularly one that consists of less than a third 

of the total periods, HASMa over-prescribes flight hours in the early stages of the model 

in an attempt to minimize the penalty for violating the required flight hour constraint. The 

cascade then makes reactionary decisions in the later periods because not enough aircraft 

have received the SLE and HFH maintenance to allow them to continue to accrue flight 

hours. This results in high deviations from the flight hour requirement and a higher 

penalized objective function value. Figure 8 shows how the total number of flight hours 

prescribed by each solution varies only slightly between window length, with all trials 

(monolith included) failing to meet the total flight hour requirement. However, the 

assignment of flight hours within each time period has a drastic effect on the objective 

function value, and more importantly on readiness of the USMC F/A-18 community. As 

an attempt to rectify this, additional constraints or elastic penalties can be added to the 

model that enhance the value of decisions in later time periods, a technique used by 

Zerr (2016) on HASM.  
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Figure 8.  Total Flight Hours Prescribed by Cascade of HASMa by Window 
Length When Advance = 1 

C. PRODUCTION MODEL AGGREGATION 

This thesis considers two aggregated versions of PM. Production-1A fixes  to 

one, which results in a single aggregation at the end of the model. The value of  takes 

on all possible values between 1, 2…, 11. Figure 9 shows the periods included in the 

aggregation for each of the 11 runs of the model. Sixty-eight trial runs of Production-2A 

were conducted, one for each unique combination of and where and

. Varying the values of  and  allows for comparison of the lower 

bounds produced when the same size segment of non-aggregated time periods starts at a 

different time period within the model. For example, Figure 10 shows how, by varying 

the values of and , a non-aggregated segment consisting of six periods emerges in six 

different locations across the model. A comparison of the objective function value that 

results from each of the six runs indicates that the location of the two aggregations can 

cause significant variability in the quality of the resultant lower bound. Considering all 

values of  and  allows for the analysis of non-aggregated 

segments comprised of one to eleven periods.  

'τ

τ

τ 'τ 2,3,...,12τ =

' 1, 2,...,11τ = τ 'τ

τ 'τ

2,3,...,12τ = ' 1, 2,...,11τ =
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Figure 9.  Time Periods Included in Aggregation of Production-1A 

 
The 68 runs completed of Production-2A produced six non-aggregated segments of size six. 
The colored segments of the graph show the location of the non-aggregated segments within 
the larger model. All time periods before the colored segment are part of the early 
aggregation, while all the time periods at the end of the model are part of the later 
aggregation. Similar graphs could be produced to show non-aggregated segments of length 
one through eleven. 

Figure 10.  The Six Non-aggregated Segments of Length Six for Production-2A 



 41 

1. Production-1A Analysis 

Figure 11 shows the percent decrease of the objective function value reported 

during the trials of Production-1A from PM’s monolith. As the value of increases, the 

percent deviation between the reported objective function value for Production-1A and 

the monolith decreases. As  increases, the aggregated model solves more periods under 

the same conditions as the monolith, and thus this decrease in deviation (increase in 

solution quality) is expected. For  9, 10, and 11 the objective function value of the 

aggregated model is equivalent to the objective function value of the monolith. With the 

largest possible aggregation, when  = 1 and all but the first time period is included in 

the aggregation, there is less than a 2% deviation between the reported objective function 

value and the monolith. For this particular model, all values of  produce a lower bound 

that provides the user of the model the ability to make informed decisions that would 

result in near-optimal conditions. Without developing an aggregated model, a simple way 

to produce a lower bound is to solve the model as a relaxed mixed integer program 

(RMIP), which relaxes the integer requirement on discrete variables. However, it is not 

always possible to solve the relaxation if the problem is too big. The RMIP solution for 

PM produces a lower bound of comparable quality to those produced by Production-1A, 

with its percent deviation from the optimal objective function value at just 0.69%.   

 

τ

τ

τ =

τ

τ
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The objective function value of each of the 11 runs completed of Production-1A, represented 
as the percent decrease from the monolith’s objective function value.  

Figure 11.  Objective Function Values of Production-1A 

2. Production-2A Analysis 

Figure 12 summarizes the results for the 68 runs of Production-2A. As the number 

of time periods not included in either aggregation increases, the deviation of the objective 

function value from the monolith decreases, which improves the lower bound produced 

by the aggregation. However, even when only one period is included in the non-

aggregated segment, the lower bound is still within 2% of the optimal objective function 

value. As the lower bounds produced by Production-1A were all within 2% of the 

optimal objective function value, the results from Production-2A do little to improve 

them. Figure 12 also shows the relationship between the location of the segment of non-

aggregated periods and the quality of the bound produced. Consistently across all non-

aggregated segment lengths, the quality of the lower bound improves as the segment 

moves earlier in the model. 
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Production-2A objective function values as the percent decrease from the monolith’s objective function 
value. Series on the plot show the various lengths of the non-aggregated segment of periods, while the 
horizontal axis shows the location of the non-aggregated segment.    

Figure 12.  Production-2A Objective Function Values, Shown as the Percent 
Decrease from the Monolith’s Objective Function Value  

D. HASMa AGGREGATION 

This thesis also considers two aggregated versions of HASMa. HASM-1A fixes 

 to one so only one aggregation occurs at the end of the model, while the parameter  

takes on values of for each of the 14 different runs of HASM-1A. HASM-2A 

considers all possible combinations of and where  and   , 

which results in 91 trial runs. 

1. HASM-1A Analysis 

Figure 13 shows the percent decrease of the objective function value of HASM-

1A from the objective function value of the HASMa monolith. Similar to the results 

found with Production-1A, as the value of  increases, the percent deviation between the 

objective function values from each trial of HASM-1A to the monolith’s objective 

function value decreases. For  13 and 14 is there no deviation between the objective 

function value of HASM-1A and the HASMa monolith. With the smallest aggregation, 

'τ τ

1,2,...,14

τ 'τ 2,3,...,14τ = ' 1, 2,...,13τ =

τ
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when  = 1, there is a more than 50% deviation between objective function values. Not 

until the aggregation includes more than two thirds of the total periods of the model does 

the lower bound fall within 10% of the optimal objective function value. While the 

general trend of the results is in keeping with the results found with PM, the quality of the 

lower bounds produced by HASM-1A is significantly worse than those produced by 

Production-1A, where even the worst lower bound reported is within 2% of the optimal 

objective function value. These findings also mirror the results of the HASMa cascade 

solutions, where setting the window length at 10 marks a significant improvement in the 

quality of the objective function value. For HASM-1A, setting  = 10 marks the first 

significant improvement of the lower bound.  

 

Figure 13.  HASM-1A Objective Function Values as the Percent Decrease from 
the Monolith’s Objective Function Value 

In conjunction with the lower bound produced by HASM-1A, we produce a 

corresponding upper bound for the model by solving HASM-1A using a cascade. For 

example, setting 6τ =  produces a lower bound for the objective function value of 

362,460, a 44.57% decrease from the optimal objective function value. We then solve 

τ

τ
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HASM-1A, keeping 6τ =  and setting the window=5 and the advance=2. This produces 

an upper bound for the model that is a 99.79% increase from the optimal objective 

function value. Table 4 summarizes the results from this analysis. The upper bounds 

produced with this method are only slightly better than the cascade results for the same 

window and advance without the aggregation. However, by developing upper and lower 

bounds for the model, we are able to see, even without any comparison to the monolith’s 

solution, the potential for low-quality solutions produced by a cascade. Exploring the full 

range of upper and lower bounds, for all values ofτ , could provide insight into the range 

of window and advance to consider when implementing a cascade heuristic on the 

original model.   

Table 4. Upper Bounds Produced for HASMa by Solving HASM-1A with a 
Cascade Heuristic 

 
 

2. HASM-2A Analysis 

When directly comparing the results of HASM-2A to HASM-1A for any given 

value ofτ , adding an additional aggregation at the beginning of the model produces a 

worse quality lower bound. For example, when 8τ =  HASM-1A produces a lower bound 

that is a 43.55% decrease from the monolith’s objective function value. When 8τ =  and 

2τ ′ =  the objective function value for HASM-2A is a 50.48% decrease from the 

monolith. This holds true when comparing all objective function values from HASM-1A 

and HASM-2A in a similar manner. However, HASM-2A does improve the quality of the 

lower bound when comparing the objective function values produced by the same 

number of non-aggregated periods in each model. When 8τ =  there are eight non-

window advance tau % Deviation
5 2 6 99.791
6 3 7 99.588
7 4 8 94.573
8 5 9 97.927
9 6 10 97.424

10 2 11 64.677
11 2 12 62.041
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aggregated periods in HASM-1A, and the lower bound is a 43.55% deviation from the 

monolith. For HASM-2A, when there are eight non-aggregated time periods, the percent 

deviation from the monolith varies from a 43.55% deviation to a 2.91% deviation for 

various values of τ  andτ ′ , as shown in Table 5. Figure 14 displays the results for each 

run of HASM-2A, while Figure 15 shows only the results from HASM-2A that are within 

15% of the optimal objective function value. HASM-1A does not produce a lower bound 

within 10% of the optimal objective function value until 12τ = , where the model includes 

just three periods in the aggregation. Adding a second aggregation to the beginning of the 

model results in lower bounds within 10% of the optimal objective function value with 

the exclusion of as few as ten periods from the aggregation. The quality of all lower 

bounds produced by HASM-1A and HASM-2A is significantly better than that produced 

by the HASMa RMIP solution, which deviates from the optimal objective function value 

by 60.88%.   

Table 5. HASM-2A Objective Function Values, as the Percent Deviation from 
the Monolith for a Non-aggregated Segment Length of Eight 

 
 

tau tau' % Deviation 
9 1 -43.547

10 2 -36.240
11 3 -28.898
12 4 -11.967
13 5 -2.938
14 6 -2.913

Non-Aggregated Segment Length = 8
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HASM-2A objective function values as the percent decrease from the monolith’s objective function value. 
The clusters of bars represent the multiple lower bounds for each non-aggregated segment length (NSL). 
The color of the bar represents the first time period of the non-aggregated segment.  

Figure 14.  HASM-2A Objective Function Values as the Percent Decrease from 
Monolith’s Objective Function Value  
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HASM-2A objective function values as the percent decrease from the monolith’s objective function value. 
The clusters of bars represent the multiple lower bounds for each non-aggregated segment length (NSL). 
The color of the bar represents the first time period of the non-aggregated segment. This graph shows the 
subset of lower bounds that are within 15% of the optimal objective function value.   

Figure 15.  HASM-2A Objective Function Values as the Percent Decrease from 
Monolith’s Objective Function Value for a Subset of Runs 

While the results of Production-2A display a monotonically decreasing quality of 

lower bound when the non-aggregated segment moves to later periods, this trend only 

occurs for the HASM-2A solutions when the non-aggregated segment includes more than 

seven time periods. For non-aggregated segments of seven and less, there is an initial 

decrease in lower bound quality as the non-aggregated segment moves later in the model. 

However, the lower bound quality then begins to improve as the non-aggregated segment 

enters the middle periods of the model, before again decreasing when at the end of the 

model. For example, when the non-aggregated segment length is four, as shown in 

Figure 16, the quality of the lower bound begins to improve when the non-aggregated 

segment begins at the sixth time period and the quality of the lower bound begins to 

decrease again when the non-aggregated segment begins at the 10th period. While non-

aggregated segments of all lengths less than eight display similar characteristics for their 
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general behavior, the quality of the lower bounds increases and decreases at different 

time periods for different segment lengths.  

 

Figure 16.  HASM-2A Objective Function Values for Non-aggregated Segment 
Lengths= 4 

We can partially explain these results by recalling the inability to meet flight hour 

requirements for close to two-thirds of the periods included in the model. The optimal 

solution produced by the monolith fails to meet the flight hour requirement goal until the 

sixth year, however during years six through nine the monolith is able to meet flight hour 

requirements to within two hours. Between years 10–13, the monolith again fails to meet 

flight hour requirements by a significant amount. Including at least one of these middle 

periods, when the model has the capability of meeting flight hour requirements, in the 

non-aggregated segment appears to be critical to producing a higher quality lower bound.  
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V. CONCLUSIONS AND RECOMMENDATIONS 

A. CONCLUSIONS 

This thesis considers two separate applications to study the effects on solution 

quality of changing the length of the window and advance when implementing a cascade 

heuristic. We chose to study PM because of its simplicity and general applicability to 

other ILPs. We chose to study HASMa for both its real-world application and the 

additional complexity added when objective functions include elastic penalties. This 

thesis then goes on to implement aggregations of each model that produce a lower bound 

for the optimal objective function value. 

The cascade results found from each of the two models are similar in some 

aspects and vastly different in others, which highlights the complexity of the cascade 

technique and the difficulty in making any broad conclusions regarding the application of 

a cascade heuristic. The cascade results for each model support choosing the longest 

window length that is both time and computationally feasible to produce higher-quality 

solutions for any cascade. This thesis produces less conclusive evidence to back a 

statement regarding the length of the advance. Results from HASMa suggest that shorter 

advances typically yield higher-quality solutions, but this is not always the case for PM. 

We can make no specific statements regarding how long the window length should be 

with respect to the total length of the model to guarantee any quality of solution.  

The quality of the solution produced using a cascade is highly dependent upon the 

data, as is seen in both models. The cascade solutions for HASMa are poor until enough 

time periods are included in the first window to see nearly to the end of the model. We 

see the dependence of solution quality upon data again in PM when we modified the 

demand in period 10 to reflect a significant increase from previous periods. Models with 

the ability to recover quickly from decisions made in early periods produce solutions that 

are more resilient to variations of the length of the window and advance.  

Baker (1997) suggests that the advance between windows should be, “at least as 

large as the maximum number of time period indices that are common to consecutively 



 52 

indexed rows” (Baker, 1997, p. 6). Setting the length of advance to one for HASMa 

violates this recommendation, as there is an overlap between consecutive time periods. 

All maintenance events, save for PMI, take more than one period to complete, so an 

aircraft assigned to HFH in period two must remain there beyond the start of period three. 

However, for each window length, we found that setting the advance to one produced the 

highest-quality solutions.   

 For both models examined the aggregation produces a bound for the model that, 

when paired with the results from the cascade, provides an unambiguous measure on the 

quality of the cascade. Obtaining the HASMa results that show the huge deviation 

between the cascade solution and the lower bound clearly reveals the necessity to change 

the implementation of the heuristic to produce a more acceptable deviation. On the other 

hand, comparing the solutions obtained by each method for PM indicates that any length 

of window and advance should provide a solution within 5% of the true optimal solution. 

The results from this thesis suggest the importance of determining bounds for any model 

solved using a cascade. For PM, the lower bounds produced through aggregation are 

comparable to the lower bound produced by the RMIP relaxation of the model. However, 

the lower bounds produced by HASM-1A and HASM-2A are all significantly better than 

the lower bound produced by the RMIP approximation to HASMa.  

Comparing the results of each technique used to solve HASMa provides valuable 

information about the significance of the elastic penalties associated with different 

periods of the model. In order to combat the end effects produced by the six-month 

window length implemented, Zerr (2016) weights the objective function of HASM to 

ensure the model meets flight hour requirements in later periods. However, this results in 

a drastically inflated objective function value for cascades with short window lengths that 

fail to meet flight hour requirements in later periods. In reality, though longer windows 

do a better job meeting flight hour requirements across all periods, the deviation between 

results produced by short and long window lengths is not nearly as dramatic as the 

objective function value makes it seem. For the cascade results, setting the window 

length to more than ten results in significantly improved findings, in part, because the 

aircraft assignments made in the early periods include the critical information about 
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periods six through ten. The lower bounds produced in the aggregations of the model 

improve significantly when the set of critical periods is included in the non-aggregated 

segment and solved under the same constraints as the monolith.  

B. RECOMMENDATIONS FOR FUTURE WORK 

There are many different aspects of implementing a cascade heuristic that could 

be studied in depth. This thesis used only two models to study the effect of the length of 

window and advance on the quality of cascade heuristic solutions. Both models studied in 

this thesis were finite-horizon ILP applications. By studying a wider variety of models, 

such as infinite-horizon models, more conclusive statements regarding the optimal length 

of window and advance might be made. There is also no research conducted in this thesis 

on non-uniform window lengths across the model. HASMa might benefit from this type 

of analysis. 

Studies of several variations of the PM would enhance the findings of this thesis. 

One could move beyond using a cascade heuristic for the time horizon of the model and 

implement a cascade of aggregated stock keeping unit groups. A cyclic cascade, where 

the heuristic does not begin its computation with the first time period but later in the 

model, could be used to develop deeper insight into the effect of demand spikes. Finally, 

a cascade heuristic could be used to seed initial incumbent solutions. 

Any future work regarding Zerr’s (2016) version of HASM should reference the 

findings of this thesis. At the time HASM was developed, there was no metric to judge 

the quality of solution produced by the window and advance chosen by the author when 

implementing a cascade heuristic. Though the work completed for this thesis uses a 

simplified version of HASM, the results are nevertheless applicable. Adding an 

aggregation to HASM to determine a lower bound to the optimal objective function 

value, and using that bound in conjunction with the results of this thesis, would help 

ensure the recommendation of a high quality solution to the Marine Corps.  
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