

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release. Distribution is unlimited.

INVESTIGATING THE FEASIBILITY OF
CONDUCTING HUMAN TRACKING AND FOLLOWING
IN AN INDOOR ENVIRONMENT USING A MICROSOFT

KINECT AND THE ROBOT OPERATING SYSTEM

by

Rebecca A. Greenberg

June 2017

Thesis Advisor: Xiaoping Yun
Co-Advisor: James Calusdian

THIS PAGE INTENTIONALLY LEFT BLANK

 i

REPORT DOCUMENTATION PAGE Form Approved OMB
No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection
of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215
Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork
Reduction Project (0704-0188) Washington DC 20503.
1. AGENCY USE ONLY 2. REPORT DATE

June 2017
3. REPORT TYPE AND DATES COVERED

Master’s thesis
4. TITLE AND SUBTITLE
INVESTIGATING THE FEASIBILITY OF CONDUCTING HUMAN
TRACKING AND FOLLOWING IN AN INDOOR ENVIRONMENT USING A
MICROSOFT KINECT AND THE ROBOT OPERATING SYSTEM

5. FUNDING NUMBERS

6. AUTHOR(S) Rebecca A. Greenberg

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND
ADDRESS(ES)

N/A

10. SPONSORING /
MONITORING AGENCY
REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government. IRB Protocol number ____N/A____.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release. Distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

Human detection, tracking, and following is one application in which computer vision can be relevant
to robotics. By using a sequence of images, a human can be found and that human’s movement can be
followed. The Microsoft Kinect, one of the most successful color image and depth (RGB-D) sensors, is
known for its human detection capabilities and has multiple software development kits available. The
objective of this thesis was to determine if it was feasible to implement human tracking and following on a
mobile robot in an indoor environment. Specifically, the tracking was conducted with the Microsoft Kinect
and a specific software development environment, Robot Operating System (ROS) and MATLAB. ROS
was utilized to run the drivers for the robot and the Microsoft Kinect, while MATLAB was utilized to run
the algorithms and experiments. The skeleton tracking capabilities of the Kinect were utilized as the main
tracking system. An auxiliary method was created by using histograms of depth and region properties to
segment a person from a depth image. The indoor robot was able to successfully track and follow a person
through the indoor environment using the raw sensor data and a combination of the two tracking methods.

14. SUBJECT TERMS
robot, Robot Operating System, Kinect, P3-DX, human detection, human tracking and
following

15. NUMBER OF
PAGES

121
16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UU
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release. Distribution is unlimited.

INVESTIGATING THE FEASIBILITY OF CONDUCTING HUMAN TRACKING
AND FOLLOWING IN AN INDOOR ENVIRONMENT USING A MICROSOFT

KINECT AND THE ROBOT OPERATING SYSTEM

Rebecca A. Greenberg
Ensign, United States Navy

B.S., U.S. Naval Academy, 2016

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
June 2017

Approved by: Xiaoping Yun
Thesis Advisor

James Calusdian
Co-Advisor

R. Clark Robertson
Chair, Department of Electrical and Computer Engineering

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

Human detection, tracking, and following is one application in which computer

vision can be relevant to robotics. By using a sequence of images, a human can be found

and that human’s movement can be followed. The Microsoft Kinect, one of the most

successful color image and depth (RGB-D) sensors, is known for its human detection

capabilities and has multiple software development kits available. The objective of this

thesis was to determine if it was feasible to implement human tracking and following on

a mobile robot in an indoor environment. Specifically, the tracking was conducted with

the Microsoft Kinect and a specific software development environment, Robot Operating

System (ROS) and MATLAB. ROS was utilized to run the drivers for the robot and the

Microsoft Kinect, while MATLAB was utilized to run the algorithms and experiments.

The skeleton tracking capabilities of the Kinect were utilized as the main tracking system.

An auxiliary method was created by using histograms of depth and region properties to

segment a person from a depth image. The indoor robot was able to successfully track

and follow a person through the indoor environment using the raw sensor data and a

combination of the two tracking methods.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. MOTIVATION ..2
B. PREVIOUS WORK ...3
C. PURPOSE AND ORGANIZATION OF THESIS5

II. DESCRIPTION OF SOFTWARE AND HARDWARE SYSTEMS7
A. SOFTWARE ...7

1. Robot Operating System ...7
2. MATLAB ..9

B. HARDWARE ...10
1. P3-DX Mobile Robot ..10
2. Microsoft Kinect ...11
3. Computer Processing Units ...14

C. SUMMARY ..16

III. DESCRIPTION OF SYSTEM DEVELOPMENT AND
INTEGRATION ...17
A. BASE INSTALLATION OF UBUNTU AND ROS17
B. ROSARIA ...20
C. P2OS AND AMR-ROS-CONFIG ...21
D. OPENNI STACK AND RGBD_LAUNCH ..22
E. OPENNI_TRACKER ..24
F. SLAM AND DEPTHIMAGE_TO_LASERSCAN26
G. SUMMARY ..26

IV. ALGORITHMS ...29
A. ROS SUBSCRIBER CALLBACK FUNCTIONS AND ROS

PUBLISHERS IN MATLAB ..29
B. KINECT TRACKER CALLBACK ...29
C. KINECT DEPTH CALLBACK ...34
D. P3-DX ROS SUBSCRIBER CALLBACK FUNCTIONS AND

ROS PUBLISHER ...41
E. SUMMARY ..45

V. RESULTS ...47
A. SKELETON TRACKING...47

 viii

B. COLLECTION OF KINECT RAW DATA FOR IMAGE
SEGMENTATION ..50

C. FINAL TEST ..61
1. Script File ..61
2. Results ...62

VI. CONCLUSION ..67
A. SUMMARY ..67
B. FUTURE WORK ...68

APPENDIX A. ROS LAUNCH FILES ...71
A. ROSARIA LAUNCH FILE ..71
B. OPENNI_LAUNCH LAUNCH FILE ..71
C. DEPTHIMAGE_TO_LASERSCAN LAUNCH FILE72
D. SLAM GMAPPING LAUNCH FILE ..72

APPENDIX B. OPENNI_TRACKER CALLBACK FUNCTION75

APPENDIX C. KINECT CALLBACK FUNCTION ..77

APPENDIX D. KINECT POST-PROCESSING SCRIPT ..81

APPENDIX E. MOBILE ROBOT CALLBACK FUNCTION87
A. MOBILE ROBOT CALLBACK USING OPENNI_TRACKER87
B. MOBILE ROBOT CALLBACK USING GOAL POSITION

FROM MICROSOFT KINECT RAW DEPTH DATA89

APPENDIX F. EXPERIMENT SCRIPT ..93

LIST OF REFERENCES ..97

INITIAL DISTRIBUTION LIST ...103

 ix

LIST OF FIGURES

Figure 1. P3-DX Mobile Robot as Distributed by Manufacturer. Source: [23].11

Figure 2. NITE Algorithm Joint Definition. Source: [25]. ..13

Figure 3. Microsoft Kinect Hardware Configuration. Source: [26].14

Figure 4. NETGEAR Router Connections. Adapted from [29].15

Figure 5. System Diagram. Adapted from [23], [28], [30]–[33].16

Figure 6. Lines Added to Files on the Desktop Computer ..19

Figure 7. Lines Added to Files on the Computer onboard the Mobile Robot19

Figure 8. Visualization of the Full Tree of Coordinate Transforms for the P3-
DX Mobile Robot with Kinect Sensor ...22

Figure 9. Terminal Window Command Lines to Clone the Git Repository and
Install the Linux Driver ..23

Figure 10. Point Cloud Visualization through rviz ...24

Figure 11. Example Image of the Lab Environment ...24

Figure 12. Psi Pose for Startup Calibration of the openni_tracker Node.
Source: [51]. ...25

Figure 13. Rosgraph Showing the Nodes and their Connections27

Figure 14. Terminal Command Lines to Set ROS Parameters and Start the
Tracker Node ...30

Figure 15. Example Message on the /tf_skeleton Message Topic31

Figure 16. Example Exploration of the Structure Fields of the /tf_skeleton
Message Type ..32

Figure 17. Mobile Robot Transforms ..33

Figure 18. 640×480 Depth Images ...35

Figure 19. Histograms of the Depth Data..36

Figure 20. Binary Image for Depth Region-of-Interest ...37

 x

Figure 21. Example Resulting Image Segmentation ...38

Figure 22. Explanation of Calculation of Relative Angle between the Sensor
and Object in Image ...40

Figure 23. Distance Control Actions for P3-DX ...44

Figure 24. Microsoft Kinect Sensor with Foam Pieces Added for Stability48

Figure 25. Terminal Printout for the openni_tracker During Robot Motion49

Figure 26. Standard Deviation of the Area Error ..52

Figure 27. Linear Regression and Data for Area...53

Figure 28. Linear Regression and Data for Bounding Box Height54

Figure 29. Linear Regression and Data for Bounding Box Width54

Figure 30. Successful Image Segmentation with Multiple Objects56

Figure 31. Depth Image during Test with Two People Located in the Field-of-
View at Different Depths ...57

Figure 32. Histogram of Depth Image with Two People in Field-of-View at
Different Depths ...58

Figure 33. Image Segmentation Result with Two Individuals at Different
Depths ..58

Figure 34. Depth Image During Test with Two People in Field-of-View at the
Same Depth ..59

Figure 35. Histogram of Depth Image with Two People in Field-of-View at the
Same Depth ..60

Figure 36. Image Segmentation Result with Two Individuals at the Same Depth61

Figure 37. Test Geometry in the XY Plane ...63

Figure 38. Robot Position over the Trial ...64

Figure 39. Goal Position over the Trial ...65

 xi

LIST OF TABLES

Table 1. Comparison of the OpenNI Library and the Microsoft SDK. Adapted
from [3]. ...12

Table 2. Data Collected During Testing to Determine Human Parameters51

Table 3. Threshold Values for Image Segmentation of a Person55

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

LIST OF ACRONYMS AND ABBREVIATIONS

HOD histogram of oriented depth

HOG histogram of oriented gradients

IP Internet protocol

IR infrared

LS3 Legged Squad Support System

P3-DX Pioneer 3 differential drive mobile robot

RGB-D red, green, blue and depth

ROS Robot Operating System

SDK software development kit

SLAM simultaneous localization and mapping

SSH secure shell

URDF unified robot description format

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

ACKNOWLEDGMENTS

First, I would like to thank my advisors, Professor Xiaoping Yun and Professor

James Calusdian, for helping me through the thesis process. Professor Yun, thank you for

the introduction to graduate-level robotics and for helping me find a project related to my

interest. Professor Calusdian, thank you for all of the support you provide within the lab.

Second, I would like to thank Professor Brian Bingham for the introduction to ROS.

Professor Bingham, taking your robotics class in the fall quarter gave me a basic

understanding of how to utilize ROS and the MATLAB callback functions that helped so

much in completing this thesis. Thank you for all of the work and support you give to the

students working with ROS at this school.

 xvi

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

Robotic vision has recently drawn the attention of many researchers as mobile

robotics technology and platform availability have expanded. Robotic vision is the

method of equipping a robot with sensors, such as a camera, to obtain images of the

environment that can be analyzed to gain visual understanding of the environment. With

previous levels of technology, conventional visual processing methods used two-

dimensional images, such as a camera image, to analyze a three-dimensional

environment. This did not provide enough information about the environment; however,

with increasing availability of new technology, objects and humans can be observed in

three dimensions. Observing in three dimensions has helped eliminate errors from

estimating a three-dimensional environment with a two-dimensional picture of that space.

More broadly, human detection and tracking have been extensively studied in the

realm of computer vision and have many applications to mobile robotics and robotic

vision. Computer vision seeks to use sensor data to automate the tasks of the human

visual system. It seeks to use information from a single image or a sequence of images to

analyze and understand the environment depicted. In human detection and tracking

specifically, the objective of computer vision is to find a human and follow the human’s

movements using a sequence of images. Both cameras and range-sensors are popular

sensors for this task; however, red, green, blue camera and depth, RGB-D, sensors that

provide both depth and image data, are becoming more popular for this task due to

increasing availability and affordability.

There are widespread challenges with human detection in images or videos.

Variations in posture, light conditions, occlusion, and the complexity and cluttered state

of the background all have significant effects on the ability to detect a human from sensor

data. Having a large sensor suite of multiple types and streams of data can help alleviate

some of the challenges; however, multiple sensors can be costly. Additional challenges

are seen in human detection when incorporated with robotics due to the added motion of

the robot and the change in background environment. Effects from this motion can be

seen on the images or videos collected.

 2

The most widespread and successful RGB-D sensor is that developed by

Microsoft for the Microsoft Kinect. The Microsoft Kinect sensor was originally released

as an accessory for the Xbox 360 to allow for interactive game play, allowing humans to

interact with games using gestures and body motion. This RGB-D sensor provides both a

camera image as well as a corresponding depth image. The sensor developed by

Microsoft was released to the public along with its software development kit. The

Microsoft Kinect’s software, in its ability to do skeleton tracking pose estimation, was

state of the art. Due to its low cost, availability, and software capabilities, the Kinect has

become an influential and widely used sensor for developers and researchers in robotics

being used in the fields of simultaneous localization and mapping, autonomous

navigation, and human tracking and following.

The Robot Operating System (ROS) is an open-source operating framework, and

its use has become widespread both in academia and the public and private sectors. It

provides tools and libraries for researchers developing software to run robots and their

sensors with packages available for many commercially available robotic systems. With a

large collection of drivers and fundamental robotics algorithms, as well as tools to

visualize robot state, sensor data, and debug faulty behaviors, the framework gives a

starting point for research and development. The open source operating system allows

and encourages the sharing and collaboration by multiple users in developing software

allowing users to piece together individual small packages that work for their individual

systems and incorporate their own algorithms, saving the user time.

A. MOTIVATION

Person detection is a fundamental task for many robots, intelligent vehicles, and

interactive systems that share their environment space with humans. Service robots must

detect, identify, and track humans in a complex environment. These robots should have

capabilities allowing them to respond to hand gestures and specific human actions. The

ability to detect and track the human, specifically the human skeleton, is a key component

of recognizing gestures and actions. It is also a major part of the human following task

that these robots are designed to complete. If the robot can detect and track human

 3

motion, the robot will not need to build an environment map or the user to have to input a

target location.

In the military realm, robots are used to conduct dull and dirty tasks and decrease

risk to the soldier, but most of these robots must be manually driven. A human following

robot that did not have to be manually driven would decrease a soldier’s workload. With

the necessary sensor suite on the mobile robot, the robot would also have the ability to

run autonomously locally without needing to send and receive data from the command

location. Autonomous robots that can assist medical personnel and evacuate personnel on

a battlefield are other areas that will benefit from human detection and tracking.

The Legged Squad Support System (LS3) developed by Boston Dynamics is one

example of a robot that was designed to work with the military [1]. The LS3 pack mule

style robot was designed to be able to automatically follow humans and respond to simple

voice commands. Avoiding a joystick and computer screen control was important

because this allows the soldier to focus on the mission at hand; however, development on

the system was shelved in 2015 due to noise level problems, among other issues [2].

Human detection and tracking also has security applications. The ability to detect

and track a human could be integrated into patrol robots, increasing a facility’s perimeter

security posture while simultaneously decreasing manning requirements.

B. PREVIOUS WORK

Since the release of the Microsoft Kinect sensor and its software development kit,

researchers have continuously been working to implement human detection, tracking, and

following algorithms using sensor data. Some researchers simply use the depth and

camera raw images available from the Kinect sensor to conduct human detection and

following using computer vision techniques. Others use the skeleton tracking capabilities

of the Kinect which outputs position and orientation of the person’s joints and either look

to improve on this algorithm or combine this ability with auxiliary methods to create a

more robust tracking system [3].

 4

Many approaches use the Kinect sensor for human detection and tracking utilizing

the raw RGB-D data. Some methods use a model-based approach. First, regions where a

person may exist are determined from the depth data. Inside that region specific body

parts like the head and torso are attempted to be matched with a model [4]. Several

researchers have looked into using histograms of depth (HOD) data as well as histograms

of oriented gradients (HOG) in RGB data [5], [6]. Others do human segmentation using

background subtraction methods [7], [8]. These methods cover the spectrum of using

only the depth data, only the RGB data, or using both streams of data together.

Use of the Kinect sensor’s skeletal tracking for mobile robotic completion of the

human following task also takes multiple forms. Babaians et al. approach was to combine

the skeletal tracking with an auxiliary vision tracker, OpenTLD, to create a more robust

system that could function even when the Microsoft Kinect skeleton tracking failed [9]. A

similar method using Camshift as the auxiliary tracker was capable of correcting the

tracking when the skeleton tracking failed [10]. The authors found that their tracking

system had greater success than the skeleton tracking system alone with a cluttered

environment or when the user moved with their back facing the robot. Other researchers

focus on implementing a Kalman filter to estimate the position of the human and decrease

noise from the skeletal data collected [10], [11].

At the Naval Postgraduate School, previous work has been conducted with the

Microsoft Kinect RGB-D sensor in the Electrical and Computer Engineering Department

focusing on the ability to use the Microsoft Kinect sensor for obstacle avoidance. The

Kinect sensor was capable of detecting thin or narrow obstacles that the onboard sonar

sensor of the mobile robot could not detect [12]. Research into the ability to interface the

Microsoft Kinect with ROS for mobile robot autonomous navigation and map-building

was also conducted [13]. It was shown that it was feasible to use ROS to conduct

Simultaneous Localization and Mapping (SLAM) and autonomous navigation without a

GPS or simulated indoor GPS; however, neither of these two theses focused on the

human tracking capabilities of the Microsoft Kinect sensor.

 5

C. PURPOSE AND ORGANIZATION OF THESIS

The purpose of this thesis is to investigate the feasibility of implementing human

following with a Kinect RGB-D sensor on an indoor mobile robot using a specific

development environment involving ROS and MATLAB. The thesis is divided into six

chapters. An overview of ROS and the MATLAB toolbox used in the project as well as

the hardware, the Microsoft Kinect, the Pioneer P3-DX, and the Computer Processing

Units is given in Chapter II. The system development and integration of the ROS system

and packages is discussed in Chapter III. The approaches taken for the two human

tracking methods implemented as well as the controller for the robot are explained in

Chapter IV. The results of the tracking methods are focused on in Chapter V. Lastly, the

work of the thesis is summarized and future work in the areas of this thesis at NPS are

presented in Chapter VI.

 6

THIS PAGE INTENTIONALLY LEFT BLANK

 7

II. DESCRIPTION OF SOFTWARE AND HARDWARE SYSTEMS

The software and hardware design put into operation for this thesis is described

within this chapter. Firstly, the software used is explained with descriptions of the Robot

Operating System and the MATLAB Robotics toolbox. Secondly, the hardware used is

detailed with descriptions of the P3-DX mobile robot, the Microsoft Kinect sensor, and

the Computer Processing Units.

A. SOFTWARE

1. Robot Operating System

To gain an understanding of the Robot Operating System, it is important to

understand its history, philosophy, and parts. Quigley, Gerkey, and Smart, authors of

Programming Robots with ROS, give a brief history and introduction to the operating

system [14]. Quigley and Gerkey are cofounders of the Open Source Robotics

Foundation which maintains and develops ROS. In the mid-2000s at Stanford University,

various projects involved the creation of prototypes of a “flexible, dynamic software

system” similar to what ROS has become [14]. The projects involved integrative

embodied Artificial Intelligence (AI), and some examples include the Stanford AI Robot

and the Personal Robots program. The robotics research community saw the need for an

open collaboration framework. In 2007, Willow Garage, Inc., a robotics incubator

neighboring Stanford, provided resources to extend the earlier concepts investigated in

these Stanford projects; however, countless researchers also contributed to the making of

the core of ROS and its fundamental software. Multiple institutions, on multiple robotic

platforms, developed the ROS framework concurrently.

Understanding the philosophical aspects of ROS are key to comprehending how

and why the system is widely used. All aspects of ROS’s development philosophy

support its primary goal of encouraging sharing and collaboration. Quigley, Gerkey, and

Smart in [14] give five aspects which are explained in detail: the use of peer-to-peer

connections, the tools-based system, the multilingual approach to programming

languages, the objective of being thin, and the free and open source licensing.

 8

Peer-to-peer connections allow for easy scalability as the amount of data in a

system increases. ROS functions using “small computer programs that connect to one and

another and continuously exchange messages” [14]. With no central routing system, the

messages travel directly from one program to another. Although a roscore service

provides information to each node, the messages are not sent through the roscore. The

ROS master established with roscore is only used to tell the node where other nodes and

data streams are located to allow for the pee-to-peer connection.

The focus on a tools-based system enables large numbers of users to use the same

programs. Individual tools are small and generic [14]. A separate program is necessary

for logging data, visualizing system interconnections, plotting data streams, etc. Quigley

et al. explain how the large set of tools available in ROS allow for easy visualization of

robot states and algorithms, debugging of behaviors, and recording of sensor data,

encouraging developers to create new and improved implementations of each desired

task. In newer versions of ROS, some tools have been combined into a single process for

efficiency, creating a cleaner interface for the developer.

The multilingual approach to programming languages which ROS takes allows

individual researchers to choose the language in which they work. Continuously,

researchers dispute which programming language is best suited to complete a task. As

such, the developers of ROS believed that situational requirements determine the

necessity of using different programming languages [14]. ROS’s capabilities include the

ability for the developer to write software modules in any scripting language that is

supported through a client library. The two most largely used and documented client

libraries are created for Python and C++; however, client libraries exist for more than ten

programming languages [15].

The thin objective of ROS allows the operating system to be easily integrated

with other frameworks. Being thin implies that the setup of ROS encourages users to

create and use libraries that are standalone and then to simply wrap the libraries, allowing

them to send and receive from other ROS modules [14]. The purpose of this thin

objective is to allow the reuse of programs outside of ROS with other robot software

frameworks.

 9

The final and paramount aspect of ROS’s philosophy is its being free and open

source. Quigley et al. explain that the core of ROS is released under a BSD license. The

license allows for both commercial and noncommercial use. Any individual or group can

start a ROS repository on their own server, and it is up to the individual or group if they

wish to make the repository available to the public. Developers can share their personal

adaptations and codes using GitHub, a repository hosting service. Furthermore, ROS

includes a wiki site including documentation, tutorials, and a discussion forum to which

users can contribute and submit questions.

The specifics of the installation of ROS and the packages utilized are further

discussed in Chapter III.

2. MATLAB

Worldwide, MATLAB is widely used by engineers and scientists. In education

specifically, MATLAB is used widely as a basic programming language for mathematical

computation. MATLAB is seen as a user-friendly environment with its method of

processing, evaluating, and graphically displaying numerical data. With its “matrix-based

language” it is a “natural way to express computational mathematics” [16]. With a

collection of toolboxes available, both with the general download as well as others for

purchase, MATLAB has tools varying from control systems to signals processing and

communications. Thorough documentation available both in command line tools like the

help command as well as on the MathWorks Documentation site makes using

MATLAB’s many toolboxes easier [17].

Prior to 2015, multiple groups produced solutions to the problem of integrating

ROS with MATLAB; however, none of the libraries, or bridges as they were termed,

caught on [18]. The Robotics System Toolbox, released in MATLAB R2015a, filled the

void and became the leading method of interfacing MATLAB with ROS.

The toolbox, released in 2015, includes a wide variety of tools providing for

development of autonomous mobile robotic applications with both algorithms and an

interface between ROS and MATLAB. The toolbox includes algorithms for path

planning and following as well as map representations in the form of Binary Occupancy

 10

Grids [19]. The interface between ROS and MATLAB allows for access to ROS

functionality within MATLAB. When MATLAB communicates with ROS, it acts as one

node able to communicate with other nodes by registering with the ROS master. In the

initialization phase, the node attempts to connect to the ROS master at the local host, and

if one has not already been opened, it starts a new core in MATLAB. Once the node has

been established, bidirectional communication in real time through the use of publishers

and subscribers allows for the exchange of many supported message types across the

network. The contents of a ROS message can be viewed and edited using functions

included in the toolbox. Lastly, the interface allows for the reading of rosbag data files

that store ROS message data. This allows for collection of data during testing and later

analysis, visualization, and processing of data post testing in an easy user friendly format.

B. HARDWARE

1. P3-DX Mobile Robot

Mobile robots are widely available for educational purposes and research. Starting

in 1995, Adept MobileRobots began commercially selling mobile robots beginning with

the Pioneer 1. In this thesis research we use the Pioneer 3 DX, P3-DX, mobile robot

which, without added hardware, is shown in Figure 1. The P3-DX is a compact

differential-drive mobile robot with two wheels that is designed for use in indoor

laboratory or classroom settings [20]. The robot comes with a complete software

development kit, Pioneer SDK. The Advanced Robot Interface for Applications (ARIA)

is used as the main library tool for interfacing with the mobile robot [21]. This core

library “provides an interface and framework for controlling and receiving data from all

MobileRobots (ActivMedia) robot platforms” [21]. Notably, it includes an open source

framework that allows for client-server network programming.

The P3-DX can travel at a maximum forward or backward speed of 1.2 m/s [22].

The robot is able to turn in location with a 0.0-cm turn radius. The operational payload of

the robot, the allowable added weight, is 17 kg. The robot runs on up to three batteries at

a time with a battery voltage of 12.0-V. The robot communicates to the connected

libraries through a serial connection.

 11

Figure 1. P3-DX Mobile Robot as Distributed by Manufacturer. Source: [23].

2. Microsoft Kinect

Microsoft Kinect was released in 2010 as an input device to the Xbox game

console. It was revolutionary in its ability to allow the user to interact with games without

any controller through its human detection algorithm. Before February 2012 and the

release of the Kinect Software Development Kit (SDK) for Windows, the Kinect was

already being used for research and non-gaming applications. Researchers realized that

the three-dimensional (3-D) depth image available from the Kinect was comparable, at a

much lower cost, to much more expensive 3-D depth methods such as stereo cameras or

time-of-flight cameras [3]. The “complementary nature” of the RGB data with the depth

data also allowed for interesting new research. Web based discussion communities like

KinectHacks.net arose and saw wide use [24]. Large numbers of projects and applications

for the Kinect were posted. Papers were also published before February 2012 that used

the Kinect as the main sensor.

With the release of the SDK for Windows, it became easier for researchers and

hobbyists to work with the Kinect sensor data directly. The release gave access to the raw

camera data streams as well as the skeletal data from the 3-D human motion algorithm;

however, other libraries for working with the Kinect exist. Two other available Kinect

tools available are OpenNI and OpenKinect [3]. Unlike the Microsoft SDK, which is only

 12

available on Windows, the OpenNI tool works together with a middleware called NITE

and works on multiple platforms, an attribute that is important for this thesis. The

OpenNI tool and NITE middleware can be run on a Linux computer. A key difference

between the two libraries is that the Microsoft SDK does not require calibration before it

begins human tracking, whereas the OpenNI library requires the user to stand in a

specific calibration pose to initialize the tracking [3]. A comparison of the two libraries is

shown in Table 1.

Table 1. Comparison of the OpenNI Library and the Microsoft SDK.
Adapted from [3].

 OpenNI Microsoft SDK

Camera calibration Yes Yes

Automatic body calibration No Yes

Standing skeleton Yes (15 joints) Yes (20 joints)

Seated skeleton No Yes

Body gesture recognition Yes Yes

Hand gesture analysis Yes Yes

Facial tracking Yes Yes

Scene analyzer Yes Yes

3-D scanning Yes Yes

Motor control Yes Yes

The NITE library was developed by the company PrimeSense. They developed

the Prime Sensor Development Kit, similar to the Microsoft SDK. NITE Algorithms user

guide [25], included within the zipped NITE file folder, contains a basic description of

the capabilities of the package. Specifically in the discussion of user segmentation and

skeleton tracking, the user guide discusses known issues. One known issue that can

produce inaccuracies in user segmentation is if the sensor is being moved while the user

 13

segmentation is active. Although automatic calibration was added in NITE version 1.5,

versions before it did not have the ability of autocorrelation, and a psi pose had to be

used [25]. The NITE joint locations used for skeleton tracking are shown in Figure 2.

Figure 2. NITE Algorithm Joint Definition. Source: [25].

The Microsoft Kinect sensor for Xbox 360 contains advanced sensing hardware

for its relatively low cost. The Kinect sensor consists of an infrared projector, infrared

camera, and a color camera [3]. The location of the hardware aboard the sensor can be

seen in Figure 3. The depth sensor functions by the infrared projector sending an infrared

(IR) speckle dot pattern into the 3-D scene [3]. As explained in [3], the infrared camera

captures the reflected infrared speckles, and a depth map returning the distance of an

object relative to the sensor is determined using the return from the infrared camera as

well as a calibration file. This depth data is a 640×480 pixel map published at a rate of 30

frames/s. The authors express the angular field-of-view of the sensor as 57° horizontally

and 43° vertically. Similarly, the color camera produces an RGB image with three color

components, the size is 640×480 and is also operated at 30 frames/s [3].

 14

Figure 3. Microsoft Kinect Hardware Configuration. Source: [26].

In 2012, the Microsoft Kinect and the Windows SDK library were analyzed for

performance by Livingston et al. [27]. For their analysis, the Kinect sensor was mounted

on a flat surface for testing and the sensor was not in motion. The optimal range as

suggested by Microsoft is 1.2 m to 3.5 m, but they found in their tests that a skeleton

could be acquired in the range of 0.8 m to 4.0 m [27]. The investigation determined that

for any skeleton past the 4.0 m mark, the location was set to zero. The Windows SDK

limited depth tracking of the skeleton to the range of 4.0 m.

3. Computer Processing Units

In this thesis research, two computers and a local Wi-Fi network were utilized.

The first computer is a desktop computer reimaged to run Ubuntu Linux 14.04 (Trusty

Tahr). This was used to run the roscore master for the ROS system, MATLAB, and other

ROS packages that did not have to be run on the computer connected to the robot and

sensor. With the use of secure shell protocols (SSH), the second computer can be run

from the desktop. The code used for the thesis research was run on the second computer

that was initialized inside a shell on the desktop computer.

The second computer is a SUMICOM Small Computer, design S675, reimaged to

run Ubuntu Linux 14.04 (Trusty Tahr). The computer has four USB 3.0 ports, two USB

 15

2.0 ports, and a CD Driver [28]. Connection to the Kinect sensor is made through the

USB 3.0 port. The computer also has one RS232 (COM) port for serial communications.

The mobile robot is connected to the computer through the RS232 (COM) port. The

minicomputer has a total memory size of 16 GB and uses a 12.0-V power supply

provided by the robot. To connect to the wireless network, the computer is equipped with

a built-in Intel LAN controller. The small computer was physically mounted atop the

mobile robot. ROS packages to run the skeleton tracking, Kinect sensor, and the mobile

robot were run on this onboard computer.

A local wireless network was established using NETGEAR wireless LAN

products. A NETGEAR Web Safe Router was used to allow one broadband connection

which allowed the two computers to communicate. A 5.0-V power supply was provided

to the router. The router was connected to the internet through an Ethernet cord plugged

into both the NPS wired network and into the internet connection on the back of the

router. Four LAN connections were available on the router, but only two of the LAN

connections were used. One LAN connection was made directly to the desktop computer

through an Ethernet cable. The other LAN connection was made to the Wireless N150

Access Point. The location of the connections on the router can be seen in Figure 4. A

Wireless N150 Access Point provided connectivity to the network within a provided

range. It acted as a bridge between the wired LAN system and the wireless client, the

SUMICOM small computer.

Figure 4. NETGEAR Router Connections. Adapted from [29].

 16

C. SUMMARY

An explanation of ROS and MATLAB were given within this chapter. The

hardware used within the thesis was also described within this chapter. The relation

between the different hardware pieces is visualized through a system diagram in Figure 5.

Each hardware piece is shown with its method of connection depicted.

Figure 5. System Diagram. Adapted from [23], [28], [30]–[33].

 17

III. DESCRIPTION OF SYSTEM DEVELOPMENT AND
INTEGRATION

The development of the software systems is discussed within this chapter

beginning with the Ubuntu Linux operating system and the ROS installation. The setup of

the ROS network over the two computers is explained. Then, the download and setup

process of the ROS packages and repositories is discussed.

A. BASE INSTALLATION OF UBUNTU AND ROS

To set up the desired software systems, the computers were reimaged to run

Ubuntu Linux 14.04 (Trusty Tahr). The Ubuntu 14.04 software was downloaded from the

Ubuntu website as an ISO image file. Using the help community pages, we followed

tutorials which explained how to burn the ISO image file to the DVD [34]. With this

imaged DVD located in the disc drive of the computer, the computer’s boot menu was

accessed [35]. The boot order for the computer was changed, putting the disc drive first.

After we restarted the computer, the opening screen appears and gives the option of

trying Ubuntu or proceeding directly to installation. At this point the Ubuntu Linux

operating system was installed and the Microsoft Windows was removed from the

computer. The installation process was repeated for both the desktop computer and the

SUMICOM minicomputer.

Before beginning installation of any of the ROS packages, configuration changes

had to be made to the base Ubuntu installation. The Ubuntu repositories store programs

available to Ubuntu in software archives. Opening the Ubuntu Software Tab allows the

user to check under the software tab the restricted, universe, and multiverse repositories

to allow their access [36].

Due to ROS’s open source and large user wiki, an installation page for Ubuntu

platforms exists for each ROS distribution. The chosen ROS distribution, ROS Indigo

Igloo, was released on July 22, 2014. The distribution primarily targeted the Ubuntu

14.04 release. The “Ubuntu install of ROS Indigo” was followed to ensure that all lines

were written properly in the command line. The installation first checks that the Debian

 18

package is up-to-date using the update command. Next, the full desktop installation of

ROS Indigo was installed. The full desktop installation, which is recommended, gives

access to “ROS, rqt, rviz, robot-generic libraries, 2D/3D simulators and 2D/3D

perception” [37]. Next, rosdep was initialized and updated. Rosdep enables easy

installation of system dependencies for compiled sources. For some core components of

ROS to function, rosdep must be installed. The environment is set up by adding a source

line to the .bashrc file. The .bashrc file runs every time a new shell is launched. By

adding the source line of code, the ROS environment is set up automatically each time a

new shell is opened. Lastly, the rosinstall command line tool was downloaded allowing

easy download of some source trees for ROS packages with a single command [37].

The SSH client and server also had to be installed. SSH is used to allow the user

to remotely log in to computer systems securely over an unsecured network. Specifically,

the SSH protocols allow for the user to remotely log in to the computer aboard the robot

from a terminal window open on the desktop computer. This allows for the mobile robot

to operate without an onboard monitor. SSH was installed to the computer using terminal

install commands.

With the two computers on a single network created by the NETGEAR router, the

computers can run a single ROS master, roscore. Tutorials exist explaining how to run

the master for a system on one computer. The “Running ROS across multiple machines”

tutorial helps to configure multiple machines to use a single master [38]. The Internet

Protocol (IP) addresses of the desktop computer and SUMICOM mini-computer were set

using the NETGEAR router to 192.168.0.2 and 192.168.0.3, respectively. Using the ROS

Network Setup documentation, we completed name resolution by exporting the ROS_IP

and ROS_HOSTNAME as well as configuring the etc/hosts file so that the machines

could find each other [39]. The file lines were added to the .bashrc and etc/hosts file for

the desktop and the minicomputer aboard the robot. The lines in Figure 6 were added to

the .bashrc file and the etc/hosts file for the desktop computer, and the lines in Figure 7

were added to the two files on the minicomputer. With the addition of the lines, the

computers can locate each other on the network. With the edits to the two files, the

 19

minicomputer can be run from the desktop computer using SSH, and a single roscore

master can be run for the two machines.

Figure 6. Lines Added to Files on the Desktop Computer

Figure 7. Lines Added to Files on the Computer onboard the Mobile Robot

A ROS workspace must be created to allow the download and installation of ROS

packages. Catkin workspaces in ROS Indigo allow catkin packages to be built. The

“Creating a workspace for catkin” tutorial was used to set up the environment [40]. Once

the workspace has been created and built, ROS packages can be cloned from a git

repository or installed using the command line tool and built in the workspace. With a

lines added to the /.bashrc file:

source /opt/ros/indigo/setup.bash
source ~/catkin_ws/devel/setup.bash
export ROS_MASTER_URI=http://192.168.0.2:11311
export ROS_IP=192.168.0.2
export ROS_HOSTNAME=192.168.0.2

file lines added to the /etc/hosts file:

192.168.0.2 basecomp
192.168.0.3 ragreenb@cslab cslab

lines added to the /.bashrc file:

source /opt/ros/indigo/setup.bash
source ~/catkin_ws/devel/setup.bash
export ROS_MASTER_URI=http://192.168.0.2:11311
export ROS_IP=192.168.0.3
export ROS_HOSTNAME=192.168.0.3

lines added to the /etc/hosts file:

192.168.0.3 cslab
192.168.0.2 ragreenb@basecomp basecomp

 20

single catkin workspace, the setup file may be added to the .bashrc file to run each time

a shell is opened. The second line shown in Figures 6 and 7 was added to the .bashrc

file, which sources the setup file for the workspace.

Lastly, git must be installed. GitHub is used widely by the ROS community. With

a free account, a user can create public repositories. Many open-source ROS packages are

stored and are available as git repositories. Installing git using the command line tool

gives the ability to clone these repositories. Cloning a git repository creates a copy within

the folder in which you are currently located. Git repositories are cloned into the src

folder of the catkin workspace.

B. ROSARIA

The RosAria node authored by Srećko Jurić-Kavelj is available for ROS

distribution Indigo. The node provides an interface with ROS for Adept MobileRobots

which use the open source ARIA library [41]. First, the ARIA library must be installed

from Adept MobileRobots. The ARIA software ARIA 2.9.1 for Ubuntu 12.04.2, or

newer, for a 64- bit architecture was downloaded. The RosAria node was cloned from

source using git. By using rosdep, we also installed the necessary dependencies. Lastly,

the node was built using catkin.

To test and run the RosAria node, the “How to use ROSARIA” tutorial was

referenced [42]. With the mobile robot connected to the computer using a RS232 serial

communications link, the rosrun command is issued with the port parameter specified

defining a serial connection over COM1. The RosAria node publishes on multiple topics

including pose and battery voltage. The /pose topic is of the ROS message type

nav_msgs/Odometry. The message contains the position in xyz-coordinates as well as

the rotation or twist of the robot. Both the pose and twist messages also contain

covariance values. The pose of the robot is set to [0, 0, 0] at the start of the RosAria

node, setting the [0, 0, 0] world location at the robot’s starting location. The battery

voltage is a float message of type std_msgs/Float32 that gives a measurement of the

battery voltage in DC. The node subscribes to the topic /cmd_vel, the topic on which

new velocity commands to the robot can be published. When a command is sent over the

 21

topic, the desired velocity is set in ARIA. The robot obtains and maintains the velocity

sent for up to 600 ms unless another velocity command is received. As such, the velocity

commands to the robot are only necessary for changing its speed [41].

C. P2OS AND AMR-ROS-CONFIG

Two other ROS packages must be installed to ensure the ability to run the Adept

Mobile Robots correctly. The first package, p2os, is installed from source with git. The

p2os package from allenh1 contains rviz robot models for simulation [43]. The package

was not updated to run with ROS Indigo; however, the models contained within the

package are up to date. The second package cloned to the src subdirectory of the catkin

workspace is the amr-ros-config package. The repository contains Unified Robot

Description Format (URDF) and launch files as well as other ROS configurations for

Adept Mobile Robots [44]. The URDF files in the description subdirectory of the amr-

ros-config are based on sources, including the p2os package first installed. The amr-

ros-config package also contains a folder with examples for running gazebo, the

simulator used with ROS.

The URDF files are ROS’s method for storing robot model descriptions. The P3-

DX robot’s URDF model is available describing the locations and orientations of the

different robots transforms. Having a local copy of the URDF for the mobile robot was

important because the robot’s sensor had to be added to the URDF. Lines added to the

URDF allow for the programs to understand where the sensor was located and oriented

compared to the robot. The additional lines added to the URDF of the robot to include the

Kinect sensor were adapted from the previous thesis work of Capt. Lum of the United

States Marine Corps [13]. Using ROS tools like xacro, check_urdf, and view_frames,

we built the URDF file and checked for a successful creation [45]. The successful

transform tree built by the URDF file once the Kinect sensor was added is shown in

Figure 8.

 22

Figure 8. Visualization of the Full Tree of Coordinate Transforms for the P3-DX
Mobile Robot with Kinect Sensor

D. OPENNI STACK AND RGBD_LAUNCH

With the packages downloaded to be able to run and visualize the Pioneer robot,

the next step was to download the packages necessary to run the Microsoft Kinect sensor.

The packages were downloaded to both the desktop computer and to the computer

onboard the mobile robot. For initial testing of the sensor, the Microsoft Kinect was

plugged into the desktop, but during actual testing and robot motion, the Microsoft

Kinect was plugged into the computer onboard the P3-DX. As discussed in Chapter II,

the OpenNI library works with a computer running Linux and is well documented in its

use with ROS. Starting with the ROS Hydro distribution, the distribution before ROS

Indigo, we know much of the functionality of the original openni_stack was moved to

the rgbd_launch package [46]. This was to allow other drivers to use the same code. As

such, the openni_launch package contains a single launch file which starts RGB-D

processing through other nodes. The openni_launch file can be used with any OpenNI-

compliant device. For the launch file to run successfully, the openni_camera ROS

odom

base_link

back_sonar kinect_link top_plate right_hub left_hub front_sonar

kinect_depth_frame

kinect_depth_optical_frame

kinect_rgb_frame

kinect_rgb_optical_frame

caster_wheel

caster_hubcap

 23

driver must also be installed. The node created by openni_camera and opened with

openni_launch simply publishes the raw data from the sensor [47]. The nodelets that are

established with the launch file convert the raw depth, RGB, and IR data streams from

openni_camera to depth images, disparity images, and point-cloud data using the

rgbd_launch nodes.

In order to run the Microsoft Kinect, a driver must also be installed from source.

The PrimeSensor Modules for OpenNI are located within a git repository [48]. The git

repository is cloned to the computer, and the necessary files must be extracted and

installed. The lines of code in Figure 9 were used to clone and install the necessary driver

for the Microsoft Kinect sensor.

Figure 9. Terminal Window Command Lines to Clone the Git Repository and
Install the Linux Driver

With the installation of the described packages, the Kinect sensor was able to be

run from the computers. With the help of the “QuickStart” tutorial for the

openni_launch package, the sensor data of the Microsoft Kinect was visualized using

rviz and the image_view tool in ROS. The pointcloud data from the Kinect was

visualized using rviz, and an example is shown in Figure 10. Left image is the direct view

from the sensor, while the right image is a side view of the point cloud data. The depth

and camera images from the Kinect were visualized using the Camera in rviz, and an

example image is shown in Figure 11. The left image shows the raw depth data. The right

image shows the corresponding RGB color image.

Lines ran in the terminal window to clone, extract, and install PrimeSensor Modules

$ git clone https://github.com/avin2/SensorKinect
$ cd SensorKinect/Bin
$ tar xjf SensorKinect093-Bin-Linux-x64-v5.1.2.1.tar.bz2
$ cd Sensor-Bin-Linux-x64-v5.1.2.1
$ sudo ./install.sh

 24

Figure 10. Point Cloud Visualization through rviz

Figure 11. Example Image of the Lab Environment

E. OPENNI_TRACKER

Next, the OpenNI tracker package for ROS was installed. The package

openni_tracker, by author Tim Field, is the available node that broadcasts the OpenNI

skeleton frames using /tf, ROS coordinate transform messages [49]. Although the

package is only updated and maintained through the ROS Hydro release, the package

works with ROS Indigo. The Hydro development branch of the package was cloned

using git.

 25

In order to be able to run the openni_tracker node, the NITE library software

must be manually installed. The NITE software was downloaded from the openni.ru

website from the “OPENNI SDK HISTORY” page which contains the files for past

OpenNI SDK versions as well as past NITE versions [50]. The openni_tracker package

is compatible with NITE v1.5.2.21 and v1.5.2.23; however, only the NITE v1.5.2.23

version for a 64-bit Linux architecture is available on the website. Once the NITE version

was downloaded, the files were extracted, and the install file was run. With the NITE

library installed, the tracking node package can be successfully run.

The openni_tracker node is independent in that it does not require the

openni_launch nodes to be running. The tracking node simply needs the Kinect to have

power. Once the node starts and is running, a user must stand in front of the Kinect

sensor and hit the psi pose as shown in Figure 12. With calibration complete, the user’s

pose is published as a set of 15 transforms [49]. The one parameter that can be set for the

node is the camera_frame_id, the name of the frame that all of the transforms will use

as a parent.

Figure 12. Psi Pose for Startup Calibration of the openni_tracker Node.
Source: [51].

 26

F. SLAM AND DEPTHIMAGE_TO_LASERSCAN

For this project, it was desirable to be able to build a map of the environment as

the mobile robot travelled through the space. As such, SLAM was a necessary task. The

slam_gmapping package for ROS Indigo was installed, which provides a laser-based

SLAM node creating a two-dimensional occupancy grid map from laser data and pose

data from the mobile robot [52]. The package is a ROS wrapper for OpenSlam’s

Gmapping. Pose data from the mobile robot exists; however, the Microsoft Kinect does

not provide laser data. Nevertheless, another package in ROS, the

depthimage_to_laserscan package, takes a raw depth image and outputs a two-

dimensional laser scan [53]. The methods for converting the Microsoft Kinect raw data to

a laser scan and conducting SLAM using the ROS package were modified from Capt.

Lum’s prior thesis work [13].

G. SUMMARY

The software development was described within this chapter. The ROS packages

and nodes described within this chapter are run together to create one large system. The

specific launch files used for each of the nodes can be found in Appendix A. One master

launch file was not used due to instability in the launch of the openni_launch node

which randomly failed, necessitating a restart of the node. As such, each package was run

in a separate terminal window. With the different programs running, the communication

can be visualized using a ROS computation graph. The ROS graph built when all of the

programs have been launched can be seen in Figure 13. The openni_tracker node is not

connected to any of the other topics or nodes because no person was calibrated. Until a

person is calibrated, no messages are published by the node. The graph allows the user to

visually understand how the different nodes are connected through the topics they publish

and subscribe to and allows for troubleshooting in the case of unexpected errors.

 27

Figure 13. Rosgraph Showing the Nodes and their Connections

openni_tracker
/openni_tracker

kinect_base_link1
/kinect_base_link1

my_p3dx
/my_p3dx

kinect_base_link2
/kinect_base_link2

kinect_base_link3
/kinect_base_link3

kinect_base_link4
/kinect_base_link4

robot_state_publisher
/robot_state_publisher

publisher
/publisher

/kinect/depth_metric

/kinect/depth_registered_rectify_depth
/kinect/disparity_depth

/kinect/rgb_rectify_mono
/kinect/ir_rectify_ir

/kinect/depth_rectify_depth
/kinect/rgb_debayer

/kinect/disparity_registered_sw
/kinect/depth_metric_rect
/kinect/rgb_rectify_color

/kinect/depth_registered_metric
/kinect/depth_registered_sw_metric_rect

/kinect/points_xyzrgb_hw_registered

/kinect/depth_registered_sw_metric_rec
t

/kinect/points_xyzrgb_sw_registered
/kinect/disparity_registered_hw

/kinect/driver

/kinect/depth_points

/kinect/register_depth_rgb

/joint_states

/kinect/depth/image_raw

/kinect/depth/image_rect_raw

/kinect/depth/camera_info /kinect/kinect_nodelet_manager

/scan

/tf_static

/tf

slam_gmapping
/slam_gmapping

depthimage_to_laserscan
/depthimage_to_laserscan

kinect

 28

THIS PAGE INTENTIONALLY LEFT BLANK

 29

IV. ALGORITHMS

The algorithms used within the thesis are described in this chapter. One

MATLAB script file was used to start each experiment, and four separate ROS subscriber

callback functions were used inside the script. The first callback function was written to

take in the data from the skeleton tracker. The second callback function was made to take

as an input the raw Kinect depth data and run image segmentation on that data. The last

callback functions were used to drive the robot using the input of its position. The

function published a velocity command as an output. The callback functions are

discussed in detail.

A. ROS SUBSCRIBER CALLBACK FUNCTIONS AND ROS PUBLISHERS
IN MATLAB

With the release of the Robotics System Toolbox, it was necessary to have a

method for sending messages to and receiving messages from the ROS network. With a

ROS master initialized in MATLAB, a ROS subscriber can be written to subscribe to any

topics that already exist in the network, and a ROS publisher can be written to publish

messages to the network. The ROS subscriber is able to automatically detect the type of

message, unlike the ROS publisher which must have its message type defined. A ROS

subscriber can be written to wait to receive a message, or it can be written to execute each

time a new message is received as a callback. If using multiple subscribers, the second

callback function method must be used to allow other MATLAB code to execute while

the subscriber is waiting for a new message. Two options are available when passing

information to the subscriber callback functions. The writer can choose to use global

variables or arguments can be passed directly to the callback function. Global variables

were used to share data due to the large number of arguments passing between the

callback functions and the desire to save the data for analysis.

B. KINECT TRACKER CALLBACK

The first callback ROS subscriber used in this thesis research works with the

openni_tracker node. The openni_tracker node as written publishes messages on the /tf

 30

topic. The /tf topic is also the data stream on which the transforms of the mobile robot are

published. As such, the topic on which the openni_tracker node publishes was changed

to be /tf_skeleton when the node was ran using ROS command line tools. The command

lines used are shown in Figure 14. By publishing on a different topic, we can write a ROS

subscriber in MATLAB that only subscribes to the skeleton transforms and not also the

mobile robot’s transforms.

Figure 14. Terminal Command Lines to Set ROS Parameters and Start the
Tracker Node

The skeleton tracker transform messages have 15 possible frame names. The

frames were shown in Figure 2 in the description of the NITE software. The torso frame

was chosen as the position to use for tracking because the frames representing the arms

and legs have more variance between measurements. If gesture tracking is desired, a

different joint, such as the hand joints, needs to be chosen.

To gain an understanding of the information stored within the transform

messages, the ROS subscriber callback was first used to explore the resulting data. The

data is stored in a variable named message. Using showdetails, we can explore the

contents of the message with an example message shown in Figure 15. The showdetails

command not only shows the contents of the message but gives the user an understanding

of where the data is located within the object array structure.

Lines ran in the terminal window to set parameters for the openni_tracker node and

start the node

$ rosparam set /openni_tracker/camera_frame_id odom

$ rosrun openni_tracker openni_tracker tf:=tf_skeleton

 31

Figure 15. Example Message on the /tf_skeleton Message Topic

The transform message data is stored in an object array called Transforms. The

structure of the objects stored in the structure is shown in Figure 15. The Transforms

object array contains the MessageType, the Header (which contains message about the

sequence in which the data came), the ChildFrameId for the message, and the

Transform information. By further expanding the structure object as conducted in

Figure 16, we see that the Transforms.Transform field contains the Translation of the

transform as a ROS Vector3 and the Rotation of the transform as a ROS Quaternion.

The ChildFrameId, an object of the Transforms field, is also important to the function

because it contains the joint name. The ChildFrameId of each message was compared to

a string, allowing the algorithm to ignore any data published with a different frame.

>> showdetails(message)

 Transforms

 ChildFrameId : torso_1

 Header

 Seq : 0
 FrameId : odom
 Stamp
 Sec : 1491860524
 Nsec : 129086241

 Transform

 Translation
 X : 2.26913801
 Y : 0.08211563481
 Z : 0.1678627587
 Rotation
 X : 0.4939337634
 Y : 0.5903243741
 Z : 0.4856521535
 W : 0.4143531785

 32

Figure 16. Example Exploration of the Structure Fields of the /tf_skeleton
Message Type

The Translation object contained an X, Y, and Z position that was relative to

whichever frame the parent frame was set. Initially it was thought that this should be set

to the kinect_link frame or one of its children frames; however, the Microsoft Kinect

transform frames are initialized at the start location of the mobile robot and do not move

with the odom frame as the robot moves. The frames of the mobile robot after the robot

has been driven directly forward are shown in Figure 17. The odom frame has moved

forward, while the rest of the transforms are stationary, located near the world origin. The

transforms show that the kinect_link does not move with the odom frame.

Lines ran in MATLAB command window to explore the ROS message structure
>> message.Transforms

ans =

 ROS TransformStamped message with properties:

 MessageType: 'geometry_msgs/TransformSta…'
 Header: [1x1 Header]
 ChildFrameId: 'torso_1'
 Transform: [1x1 Transform]

>> message.Transforms.Transform.Translation
ans =

 ROS Vector3 message with properties:

 MessageType: 'geometry_msgs/Vector3'
 X: 2.2691
 Y: 0.0821
 Z: 0.1679

>> message.Transforms.Transform.Rotation

ans =

 ROS Quaternion message with properties:

 MessageType: 'geometry_msgs/Quaternion'
 X: 0.4939
 Y: 0.5903
 Z: 0.4857
 W: 0.4144

 33

Figure 17. Mobile Robot Transforms

The openni_tracker node using NITE expects the Kinect sensor to be stable and

unmoving. With a written in saturation only allowing tracking up to 4.0 m away from the

sensor, if the kinect_link is used as the parent frame, the accuracy of the tracker fails 4.0

m from the start location because it gives positions relative to the stationary kinect_link

located near the world origin. As such, it was necessary to set the camera_frame_id for

the node to the moving odometry frame of the robot, the odom frame, which is

constantly changing. The command line to make this change is shown in Figure 14. This

ensures that the data being published by the openni_tracker node is relative to the

location of the mobile robot.

The openni_tracker callback function is a simple function which may be viewed

in Appendix B. The function takes in the transform message as an input. It extracts the

ChildFrameId of the message, which contains the joint name. As shown in the example

message in Figure 15, the ChildFrameId has a number appended on the end. As this

number can change if the user has to recalibrate during testing, only the first five

characters of the string are checked. The position of the transform relative to the

 34

odometry frame is extracted, and the goal position is set to the x and y location of the

transform

 .rel

x
Goal

y

=

 (1)

A global counting variable for the skeleton tracking is set to zero each time a new

skeleton message is received with the torso frame.

Although gesture recognition is not studied in this thesis research, code was

included in the callback function to determine the angle of the transform frame. The

quaternion message data was extracted and converted to Euler angles. The Euler angles,

as well as the difference between the past angles and the current angles, were stored in

global variables to allow for further post analysis of the rotations of the transform frames

if desired.

C. KINECT DEPTH CALLBACK

The second callback ROS subscriber function was written to analyze the depth

data from the Microsoft Kinect sensor. As discussed in Chapter III, the openni_launch

package launches nodes to process the data streams from the sensor and convert that data

into usable message types. The nodes output a large number of ROS topics from which

the user can choose the data that best works for their needs. Because the relative position

between the person and the mobile robot was the desired information, it was decided that

the raw depth data from the sensor should be used. With the expectation of a noisy indoor

environment, image segmentation was run within the callback to determine if a person

existed. The callback function MATLAB script is located in Appendix C.

The first step in analysis was reading the image in the message using MATLAB

commands. Any point in the image at a distance greater than 4.0 m was set to zero. The

documentation for the Microsoft Kinect states that tracking is optimal up to 3.5 m, but the

openni_tracker node using NITE allowed for tracking up to 4.0 m. The further distance

was chosen to allow for the person to be further from the robot during motion. Next, the

data in rows below a specific threshold was set to zero to remove the data points from the

ground. The threshold was determined through experimentation. An example of a depth

 35

image before and after the background data is removed is shown in Figure 18. Comparing

the depth images, we see that the removal of depth pixels past 4.0 m removes the

background noise in the image, specifically the ceiling data. Removing the data points

from the bottom of the image removes the ground data picked up by the sensor.

Figure 18. 640×480 Depth Images

As discussed in the prior works section of Chapter I, research has been conducted

into using histograms of oriented depth (HOD) image methods on the Microsoft Kinect

data. These papers, specifically a paper that investigated image segmentation from

histogram of depth data by Dinh et al., motivated this section of the research [54]. The

histogram of the data was calculated with a set number of bins. An example histogram of

the data is shown in Figure 19. The top subplot shows the histogram of the raw data

 36

before any background portions of the image are removed, and the bottom subplot shows

the histogram of the data once the background and floor noise were removed. The

histograms allow us to see the depths at which a large number of pixels are concentrated.

Figure 19. Histograms of the Depth Data

The number of data points in three sequential bins was calculated and compared

to a thresholding value determined by experiment. If the number of pixels within the

three bins combined was greater than the threshold, it was determined that the average

distance of those bins was a region-of-interest in the image where a large amount of data

resided. Then the process was repeated for all bins of the histogram to detect which other

depths were important. The first bin was ignored because it contained all the zeros where

no data existed for the depth. Some of the determined regions-of-interest were very close

in value which was not ideal.

Computational load makes it desirable that there be as few regions-of-interest as

possible. Dinh et al. in their research used a threshold that was the difference between the

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Depth (mm)

0

5000

10000

15000

C
ou

nt

Histogram of the Raw Depth Data

500 1000 1500 2000 2500 3000 3500 4000

Depth (mm)

0

5000

10000

15000

C
ou

nt

Histogram of the Depth Data with Depths Past 4.0 m Removed

 37

nearest and furthest depth of the human body to help determine the regions-of-

interest [54]. In their paper, they used a threshold of 0.4 m and compared it to a vector of

detected peaks. For the image segmentation in this callback function, detected peaks were

not used. Instead, the thresholding message described previously was used to determine

regions-of-interest. With a threshold of 0.2 m, half of the threshold used by Dinh et al.,

led to better results. If two depth regions-of-interest fell within 0.2 m of each other, the

two depths were averaged. By combining these two methods, we see that the regions-of-

interest for the depth image were determined.

For each of the regions-of-interest, image segmentation was run on the depth data

contained in the image within a range of that distance. Image segmentation began with

the smallest value depth region-of-interest. A lower and upper distance bound were

determined to include the data within 0.35 m of the determined depth. The depth image

was then converted to a binary image with the data in the region set to one and all other

depth data not contained in that region set to zero. An example binary image for a region-

of-interest can be seen in Figure 20. The binary image only takes the data within a set

range of the region-of-interest. With a binary image, the image processing toolbox

functions in MATLAB can be utilized.

Figure 20. Binary Image for Depth Region-of-Interest

 38

 The image processing toolbox has multiple functions that can be utilized to

analyze a binary image. First, the bwconncomp command determined the connected

components of the binary image. This function was chosen because of its low memory

use compared to other functions. The output is a structure which contains the number of

objects and the number of pixels within each of those objects. For each object

determined, the number of pixels in the object was compared to a threshold. If the

number of pixels was less than the threshold, the object was set to zero. This removes any

small components in the image not part of the larger objects. Once the small components

were removed, the connected components was again calculated for the resulting image.

An example of the binary image after the small objects were removed can be seen in

Figure 21. By comparing Figure 20 to Figure 21, we can see that only the large object in

the region still exists.

Figure 21. Example Resulting Image Segmentation

 39

Next, the regionprops command was utilized to measure properties of image

regions. The properties that were returned included the Area, Centroid, Orientation,

BoundingBox, and EulerNumber of each connected component. The Area is simply a

scalar specifying the number of pixels in the region. The Centroid of the object is a vector

containing the x and y coordinates of the centroid of the connected components. The

Orientation is a scalar value that specifies the angle between the x-axis and the major axis

of an ellipse that contains the region. The BoundingBox is the smallest rectangle

containing the connected components. It specifies the upper-left corner point of the

rectangle as well as its length and width in pixels. Lastly, the EulerNumber is a scalar

value that specifies the number of holes in the object. Each of these parameters were used

to determine whether the object at the depth was a person. As it was possible for multiple

objects to exist in the region-of-interest, each connected component was considered a

separate object. The properties of each object were compared to thresholds for the

parameters that were determined experimentally. The experimentation to determine the

thresholds as well as the resulting thresholding values used are discussed in the results

section of Chapter V.

If it was determined that the object in the binary image was a person, its location

had to be determined. Once a person had been determined to be in the image, the image

segmentation process loop stops. By taking the y-centroid of the object, we determine the

angle between the center of the image and the person. First, the distance in pixels from

the center of the image is determined by subtracting 320 pixels from the y-centroid value.

Then the distance in pixels must be converted to meters using a conversion factor

determined experimentally. With the depth region-of-interest known and the distance in y

from the center of the image, the relative angle between the Microsoft Kinect located

onboard the mobile robot and the person was determined, as shown in Figure 22.

 40

Figure 22. Explanation of Calculation of Relative Angle between the Sensor and
Object in Image

During the real-time running of the callback function, we did not plot the images

as this slowed down the running of the script; however, the callback function was

rewritten into a script that could be run post testing using a rosbag file recorded during

testing. The rosbag file contained the Microsoft Kinect depth data. During the post

processing, we plotted the depth images, histograms, and binary images for analysis. If a

person was found, the centroid and bounding box around the person were also plotted.

The figures shown in this section were all created during post processing to visualize the

actions taken by the algorithm in real time. The post-processing script is found in

Appendix D.

Relative Distance
between the sensor
and object

Object in
Field-of -
View

Distance between
object centroid and
center of image

Relative Angle
between the sensor
and object

Microsoft Kinect
Sensor onboard
mobile robot

 41

D. P3-DX ROS SUBSCRIBER CALLBACK FUNCTIONS AND ROS
PUBLISHER

 Two actions were taken in MATLAB pertaining to the P3-DX mobile robot. First,

a ROS publisher had to be set up to be able to send velocity commands across a topic

back to the RosAria node. The topic on which these commanded velocities were

published is the /my_p3dx/cmd_vel. A ROS publisher and a corresponding

rosmessage were created. The RosAria node, as described in Chapter III, subscribes to

this topic and uses it to set velocity commands for the robot in ARIA. The rosmessage

is where the velocities can be set. With the send command, velocity messages can be

published to the ROS Network on the topic. The second action that had to be taken in

MATLAB was writing a ROS subscriber callback function to run each time a new robot

pose topic was published. The topic was published on the /my_p3dx/pose by the

RosAria node. The callback function was passed the ROS publisher and the

rosmessage as arguments to allow the velocity to be set within the callback. The

callback functions for the mobile robot can be found in Appendix E.

For each new pose data received, the message had to be processed. Similar to the

skeleton transform data, when received in MATLAB, the pose message type has a

specific object structure. From this structure, the X and Y position, as well as the

orientation of the robot, had to be extracted. The X and Y positions of the P3-DX were

also stored in a ROS Vector3 containing the X, Y, and Z position of the robot. The Z

position of the robot was ignored. The orientation of the P3-DX was stored as a ROS

Quaternion. To determine the heading of the robot, the quaternion was converted to

Euler angles. The first of the three Euler angles pertains to the heading. The x-position,

y-position, and heading of the robot rθ were stored in a variable

 .

r

x
Pose y

θ

 =

 (2)

 The relative goal position of the person being tracked was passed to the odometry

callback function through the use of global variables. If the callback for the tracker was

being used, the goal positions were given directly as x and y relative positions. If the

 42

callback for the raw depth data was being used, the goal position was passed as a relative

depth and relative angle to the person. Due to the small difference in these two forms of

the relative goal data being passed, two separate callback functions were written for the

mobile robot to process the data; however, once the global goal position was processed,

the two functions were identical.

When the tracker callback was running, the relative x and y position of the person

was passed using the global variables. Before calculating the absolute position of the

target, it was checked if a new goal or target position had been received. Each time a new

position was passed, the absolute target position was calculated by adding the relative

position as defined in (1) to the robots position as

(1)

.
(2) rel

Pose
Goal Goal

Pose

= +

 (3)

This calculated goal position was now in absolute world coordinates. If no new goal was

passed from the tracker, the past goal position within the current callback was used.

When the raw depth callback was running, the relative angle and relative distance

between the target and the robot were passed as global variables. Like the first method,

before a position was calculated, it was first determined if new relative data had been

passed. If new relative data had been passed, using coordinate transforms, we calculated

the relative position of the target. The coordinate transform for the mobile robot is a

rotation in the z-axis, as

cos() sin()
sin() cos()

r r
robot

r r

R
θ θ
θ θ

−
=

 (4)

with rθ the heading of the mobile robot. The coordinate transform for the target is also a

rotation in the z-axis,

cos() sin()
sin() cos()

t t
target

t t

R
θ θ
θ θ

−
=

 (5)

with tθ the relative angle passed from the depth callback. Lastly, the relative distance is
written as a 2×1 column vector

0
rel

rel

d
D

=

 (6)

 43

with reld the relative distance to the target passed from the depth callback. The relative
position relP of the target is calculated using
 argrel robot t et relP R R D= (7)

by substituting (4), (5), and (6) into (7). With the relative position calculated, the absolute

position of the target in the world frame can be found by adding the relative position to

the position of the robot using (3) by substituting (7) for relGoal . If no new relative data

was passed from the depth callback, the past absolute goal position was used.

Although the method for calculating the absolute target position was slightly

different, the two callbacks functioned in exactly the same way after that process. With a

goal target position and the position of the robot, the distance error, defined as the

distance to the target, was calculated as

(1)

.
(2)

Pose
derror norm Goal

Pose

= −

 (8)

The angle between the robot’s position and the goal position was also determined as

 (2) (2)_ arctan .
(1) (1)

Goal Posetheta g
Goal Pose

 −
= −

 (9)

The heading of the robot was subtracted from this angle to determine the angular error as

 _ _ rang error theta g θ= − , (10)

which is the error between the robot’s current heading and the heading needed to drive

directly towards the target.

The next step was to determine if the robot should turn or drive forward. First, it

was checked that the angular error was in the range of [],π π− + . If the angular error

determined was outside of this range, 2π was added or subtracted from it to place it in

the range. The robot was treated as a differential drive robot, and as such, it was only

allowed to turn or drive forward. This was to allow for easier understanding of the actions

of the robot during testing while avoiding excess jostling of the sensor. The maximum

translational and rotational speed of the robot was set to 0.2 m/s and 0.2 rad/s,

respectively. If the absolute angular error was greater than a set value, the angular

velocity of the robot was set using a proportional gain as

 44

 _ _ .p angang vel K ang error−= (11)

The gain p angK − was set to 0.4. The goal translational velocity was set to zero. If the

angular error was less than the set value, the distance error was next checked. The actions

of the robot fell into three possible options: the robot could drive forward, the robot could

stay in place, or the robot could drive backwards. The distances and the actions to be

taken are as shown in Figure 23. For straight motion, the translational velocity of the

robot was set using a proportional gain as

 _ p disttrans vel K derror−= (12)

with the gain p distK − set to 0.4 and the angular velocity set to zero.

Figure 23. Distance Control Actions for P3-DX

Sending the calculated translational and angular velocities without any filtering

led to a jerky motion of the robot which rattled the Microsoft Kinect sensor onboard. As

such, a low pass filter was used to create a weighted average of the past velocity

command and the new command velocity as

 _(1)out cmd cmd pastV AV A V= + − (13)

with cmdV the stacked translational and angular velocity commands, _cmd pastV the last

velocity commands sent to the robot, and A a weighting coefficient. With the use of the

filter, the motion of the robot was weighted towards the past velocity commands with a

small value for A , which led to smoother motion of the robot as it changed speeds.

If derror < 1.7 m
 Drive backward slowly
if derror <1.85 and derror>1.7
 Stay in place
else
 Drive forward using proportional gain controller
end

 45

E. SUMMARY

 The callback functions described within this chapter allow the control laws to be

implemented and the processing of data to be conducted within MATLAB. The callback

function for the skeleton tracking was very simple because the x and y relative positions

of the person are readily available, and very little processing needs to be done. The

callback function for the raw depth information from the Microsoft Kinect is much more

complex as image segmentation had to be run to determine if a person existed in the

depth image. Many of the parameters used within the callback function were determined

through experimentation and are discussed as a part of the results section. Lastly, the

callback function for the P3-DX contained the control laws to drive the robot to follow

the person found using either of the other two callback functions. Parameters in this

callback function were also determined through experimentation and are discussed

further as part of the results section. In the results section, we also explain how all the

callback functions described were used together to produce the best final successful

product.

 46

THIS PAGE INTENTIONALLY LEFT BLANK

 47

V. RESULTS

The results of this thesis are discussed within this chapter. The openni_tracker

node and its results are discussed with its effects on the parameters in the robot controller

explained. Next, the experimentation and methods to determine the parameters for the

image segmentation are discussed. Then, the combination of the callback functions into

the experiment script file is explained. Lastly, results from the final experiments are

discussed.

A. SKELETON TRACKING

The skeleton tracking callback function in MATLAB and the ROS subscriber and

ROS publisher for the P3-DX were written into a simple MATLAB script. We wanted to

see if the robot could follow a person simply using the position from the skeleton

tracking and the current position of the robot. This would allow us to determine how

robust the skeleton tracker was during robot motion. With calibration completed, the

robot attempted to move towards the goal position where the person was located;

however, we saw multiple problems.

The first issue we saw was that when the initial distance between the robot and

person was large, the initial velocity command sent accelerated the robot too quickly. The

tracking would immediately fail and report that the user tracking information had been

lost. The tracking algorithm used from NITE in the openni_tracker node was written for

a sensor that was stationary on a platform with the only motion occurring in the person it

was tracking. It was determined that the failure seen was caused by the abrupt

acceleration of the robot on which the sensor was mounted. The sensor’s base is mounted

to the built up frame connected to the robot; however, the joint of the sensor that allows it

to be tilted was not stabilized. The acceleration of the robot led to a large amount of

motion in the horizontal bar of the sensor where the camera sensor and depth sensor are

located. As such, we needed to find a way to stabilize the sensor.

Originally, a 3-D printed bracket was used to stabilize the base of the sensor and

mount it to the frame added to the P3-DX to hold the sensor and computer. Rather than

 48

change the mount itself, dense foam was added under each side of the horizontal bar

between the frame and the bar as shown in Figure 24. The simple skeleton tracking test

was again run.

Figure 24. Microsoft Kinect Sensor with Foam Pieces Added for Stability

The addition of the foam below the bar did help decrease some of the motion of

the sensor; however, when the robot attempted to move towards the person’s position, the

tracking node still failed and said the user tracking information had been lost. We

determined that some sort of filter should be added to the motion control laws within the

ROS subscriber. The filter explained in Equation (13) was implemented. An initial value

for the filter constant A was set to 0.2 to heavily weight the past velocity command sent

to the robot. At the start of the experiment, this past velocity command was set to zero.

The maximum translational velocity was set to 0.2 m/s, and the maximum rotational

velocity was set to 0.2 rad/s.

With the addition of the foam below the sensor bar and the velocity filter, the

robot again attempted to follow a person using only the skeleton tracking. This was

 49

marginally successful, with the tracker able to track for a few meters and through small

amounts of turning. If the robot hit a bump in the floor, sometimes the tracking failed.

Other times, the tracking failed simply while the robot was turning. The NITE tracking

algorithms do not work well for a person that has turned, with their body and face not

directly facing towards the sensor, and it was seen that the tracking failed if the user

turned around and walked facing away from the sensor. We determined that the skeleton

tracking alone was not adequate for the robot to conduct human following.

Even with the sensor stabilized and the allowed acceleration decreased through

the filter, it was seen that as the robot moved forward, and especially when the robot

turned, ghost users were found. Ghost users are new users that the node registers while

both the robot and the person are in motion. These new users are caused by an

introduction of noise from the motion into the data. An example of the terminal print out

during the running of the openni_tracker node during robot motion is seen in Figure 25.

With a single person in the field-of-view, ghost users are seen by the sensor and lost

during robot and human motion.

Figure 25. Terminal Printout for the openni_tracker During Robot Motion

ragreenb@cslab:~/catkin_ws/src/p3dx/launch$ rosrun openni_tracker openni_track
tf:=tf_skeleton
[INFO] [1492557957.331544419]: New User 1
[INFO] [1492557958.461030211]: Pose Psi detected for user 1
[INFO] [1492557958.727864364]: Calibration started for user 1
[INFO] [1492557959.600426388]: Calibration complete, start tracking user 1
[INFO] [1492557971.244095615]: New User 2
[INFO] [1492557971.740070224]: Lost user 2
[INFO] [1492557973.612380156]: New User 2
[INFO] [1492557973.746457089]: New User 3
[INFO] [1492557975.011846443]: Lost user 2
[INFO] [1492557975.012308237]: Lost user 3

 50

B. COLLECTION OF KINECT RAW DATA FOR IMAGE
SEGMENTATION

In order to run the image segmentation on the depth image, it was necessary to

determine parameters for the person. As the amount of space the person takes up within

the image is strongly affected by the distance of the person from the sensor, a test was

conducted to determine equations for these parameters. We determined that the Bounding

Box dimensions, the width and height in pixels of a person, as well as the Area the

number of pixels a person contains, would be most affected by change in depth.

The test was run by placing the robot at a specific point in the laboratory and

measuring out 4.0 m directly from the robot. Within the range, no other objects were

located near the center of the field-of-view. The P3-DX was powered up to give power to

the sensor, and the launch file was run to start the processing of the Microsoft Kinect

data. The raw depth image messages were recorded in a rosbag file through a command

in the terminal window. The author walked backward from a distance of 1.2 m to 4.0 m,

repetitively taking a few steps and then stopping. During the collection of data the

researcher’s arms were kept close by her sides.

This data was post processed using the MATLAB file described in Chapter IV.

The method for determining regions-of-interest in the depth image using the histogram

had already been implemented, as well as the removal of small objects that were below a

certain threshold number of pixels. From the depth images collected in this test, the

objective was to determine equations that described the relationship between Bounding

Box width, Bounding Box length, and Area of a person in the field-of-view, as well as to

determine if the initial guess thresholds used in both the histogram methods and the

removal of small objects were accurate. As such, the Area, Bounding Box dimensions,

and depth were collected from the raw depth images in which the researcher had stopped

moving.

The first result found from the raw data was related to the distance from which a

person could be tracked. Due to the tilt of the sensor and its low height off the floor, the

range for tracking that is given in the Microsoft Kinect product information, as well as

the NITE documentation, was inaccurate. At a distance closer than 1.7 m, a person was

 51

not fully within the field-of-view. This discovery had impacts on the control law for the

robot, as it needed to keep a larger distance from the person it was tracking in order to

keep them within the field-of-view. This discovery also helped explain errors seen in the

skeleton tracking when the robot came too close to the person it was attempting to track.

Information from the data was collected for analysis. The resulting data collected

from the post processing of the images are shown in Table 2 with the Bounding Box

dimensions and Area listed for each collected depth. The Area and Bounding Box

dimensions change by a large amount within the range in which a person can be tracked.

As such, it was determined that a curve should be fit to the data with the independent

variable as the distance.

Table 2. Data Collected During Testing to Determine Human Parameters

Depth (m) Area Bounding Box Width Bounding Box Height

1.8 40000 161 393

1.9 40700 156 380

2.0 34400 145 369

2.3 30000 134 343

2.5 27000 129 326

2.8 22000 117 305

3.2 16300 101 263

3.5 14000 91 251

3.75 12600 87 239

We next plotted the data to determine what degree polynomial would best fit the

data in y. A second order polynomial was chosen over a first or third order polynomial

 52

because it provided the least error as shown in Figure 26. The standard deviation of the

error in predicting the value for the Area over the 100 data points estimated is shown in

Figure 26. A first, second, and third order polynomial were tested.

Figure 26. Standard Deviation of the Area Error

Using second order polynomials, we calculated the coefficients of the polynomial.

With the coefficients, values for the regression line were calculated and plotted along

with the data points. The equations for determining the fit with the data are

 24695.4342 40595.7005 98619.4503Area d d= − + , (14)

 213.1368 152.3431 623.3157heightBB d d= − + , (15)

and

 26.8689 75.6528 273.226widthBB d d= − + (16)

0 10 20 30 40 50 60 70 80 90 100

Data Points

1000

1500

2000

2500

3000

3500

4000

Ar
ea

 E
rro

r (
pi

xe
ls

)

Second Order Polynomial

Third Order Polynomial

First Order Polynomial

 53

with d being the relative distance between the sensor and the person. The regression line

for the Area is shown in Figure 27, where it can be seen that the Area over the distance

range changes by more than 3000 units. The regression line for the Bounding Box height

is shown in Figure 28, where it can be seen that the height over the distance range

changes by about 200 pixels. Lastly, the regression line for the Bounding Box width is

shown in Figure 29, where it can be seen that the width over the distance range changes

by about 100 pixels.

Figure 27. Linear Regression and Data for Area

1.5 2 2.5 3 3.5 4

Distance from sensor (m)

1

1.5

2

2.5

3

3.5

4

4.5

5

Ar
ea

 (p
ix

el
s)

10 4

Area= 4695.4342*x 2 - 40595.7005*x + 98619.4503

Data Points

Regression Line

 54

Figure 28. Linear Regression and Data for Bounding Box Height

Figure 29. Linear Regression and Data for Bounding Box Width

1.5 2 2.5 3 3.5 4

Distance from sensor (m)

200

250

300

350

400

450

H
ei

gh
t (

pi
xe

ls
)

BB vert= 13.1368*x 2 - 152.3431*x + 623.3157

Data Points

Regression Line

1.5 2 2.5 3 3.5 4

Distance from sensor (m)

80

90

100

110

120

130

140

150

160

170

180

W
id

th
 (p

ix
el

s)

BB horiz= 6.8689*x 2 - 75.6528*x + 273.226

Data Points

Regression Line

 55

The other outcome of conducting this test was to determine if the threshold

parameters that were guessed would suffice over the entire range in which tracking

occurred. Originally, a threshold value of 15,000 pixels was used to determine whether a

distance was a region-of-interest; however, from the test it was seen that at a distance of

3.75 m, a person only took up about 12,600 pixels. As such, the threshold was decreased

to 10,000 pixels, as it was estimated that a person would take up an area of more than

10,000 pixels even at a maximum tracking distance of 4.0 m. The number of pixels for an

object in the binary image to be considered an object and not be deleted was also set to

10,000 pixels.

Five items were checked to determine whether an object was a person: Area,

Bounding Box height, Bounding Box width, Orientation, and Euler Number. Using the

depth, we calculated the expected Area and Bounding Box dimensions using the

regression-line equations. The difference between these parameters and the value

calculated for the object were compared to a threshold value. The Orientation of the

object relative to the ground was taken and compared to a threshold value for the

orientation. Lastly, the Euler Number, the number of holes in the object, was also

compared to a threshold value. The threshold values used to determine if an object was a

person were initially guessed and updated as data was collected to produce better results.

The final threshold values used are shown in Table 3.

Table 3. Threshold Values for Image Segmentation of a Person

Object Parameter Threshold Value

Area 6000 pixels

Bounding Box height 70 pixels

Bounding Box width 60 pixels

Orientation 75 degrees

Euler Number 10 holes

 56

The large threshold values for the Bounding Box height and width are to allow for

different sized individuals as well as different body positions to fit the object parameters.

An object had to match all five of the parameters to be determined to be a person and not

another object in the field-of-view.

Through the use of the five parameters, it was possible to determine a person from

a desk or chair within the environment, as shown in Figure 30. The chosen method of

image segmentation was successful in identifying the person in the right side of the

image, and the method successfully rejected the laboratory bench which was located in

the left side of the image at approximately the same depth.

Figure 30. Successful Image Segmentation with Multiple Objects

For testing, only a single person was within the field-of-view; however, we

wanted to understand how the algorithm would work with multiple people in the field-of-

view. The algorithm looks at each depth region-of-interest separately when running the

image segmentation to determine if a person is in the field-of-view. As long as the

distance in depth between the two people is large enough, they are determined to be in

two separate regions-of-interest. The algorithm starts with the depth closest to the sensor,

and so as long as the person meets all the criteria, the closer person to the sensor is set as

the goal position.

 57

Data were collected with two people within the field-of-view. The robot was kept

stationary, and the two people stood within the field-of-view separated by a great enough

distance to not be seen as one object. This test also allowed for the robustness of the

threshold values to be checked, as the two individuals were of different heights. At first,

the two people stood at different depths, 2.4 m and 3.5 m. The raw depth image, as well

as an image with its background data and the floor having been removed, is shown in

Figure 31. From the histograms of the depth data once the background has been removed,

shown in Figure 32, it is clear that there are two regions-of-interest where the two

individuals are standing. The image segmentation is successful, as seen in Figure 33, and

the person is located in the right center portion of the field-of-view because that person is

at a closer depth of 2.4 m from the sensor.

Figure 31. Depth Image during Test with Two People Located in the Field-of-
View at Different Depths

 58

Figure 32. Histogram of Depth Image with Two People in Field-of-View at
Different Depths

Figure 33. Image Segmentation Result with Two Individuals at Different Depths

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Depth (mm)

0

5000

10000

15000

C
ou

nt

Histogram of the Raw Depth Data

500 1000 1500 2000 2500 3000 3500 4000

Depth (mm)

0

5000

10000

15000

C
ou

nt

Histogram of the Depth Data with Depths Past 4.0 m Removed

 59

Next, the individuals moved and stood at the same distance of 3.4 m to determine

how the algorithm would respond to two individuals who fit the parameters at the same

depth. Again, the two individuals stood far enough apart that there was no overlap in the

image. Looking at Figure 34, we see that other objects exist besides the two individuals

in the field-of-view: a chair and part of a laboratory desk. By looking at the histogram in

Figure 35 and comparing it to the histogram in Figure 32, we see that there is only one

distinct region-of-interest in which a person may be located, such that the two individuals

must be located at the same depth.

Figure 34. Depth Image During Test with Two People in Field-of-View at the
Same Depth

 60

Figure 35. Histogram of Depth Image with Two People in Field-of-View at the
Same Depth

In this scenario, the algorithm selects the left person in the image as the goal

location. By increasing pixel value location, we see that the objects are sorted in the

image segmentation from left to right in the image. Because the algorithm breaks out of

the image segmentation loop as soon as a person and its centroid are found, the first

person that the algorithm finds, the left individual in this case, is set as the goal position

as shown by the rectangle and centroid location overlaid on the depth image in Figure 36.

The algorithm succeeds in finding a person even when two individuals are located within

the region-of-interest in the image; however, if the other person, the person on the right in

this case, was the desired person for the mobile robot to follow, this method fails and

picks the wrong user.

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Depth (mm)

0

5000

10000

15000

C
ou

nt

Histogram of the Raw Depth Data

500 1000 1500 2000 2500 3000 3500 4000

Depth (mm)

0

5000

10000

15000

C
ou

nt

Histogram of the Depth Data with Depths Past 4.0 m Removed

 61

Figure 36. Image Segmentation Result with Two Individuals at the Same Depth

C. FINAL TEST

The final test was conducted within the laboratory environment. The objective

was to determine if the robot could successfully follow a person around the indoor

environment. Only one person was located standing within the field-of-view of the

sensor. During the test, the person walked facing the robot with other objects located in

the peripherals.

1. Script File

With a working image segmentation algorithm, the next step was to determine

how to combine the skeleton tracking and the image segmentation of the depth image to

produce the final result of conducting human following in the environment. As discussed

in Chapter I, multiple researchers have looked into using the skeleton tracking as the

main tracker and using an auxiliary tracker when the skeleton tracking became unstable.

It was decided that this method should be used, with the auxiliary tracker being the depth

image segmentation.

Before the experiment can begin, the ROS nodes must be started. On the desktop

computer, the roscore, depthimage_to_laserscan, slam_gmapping, and a rosbag

 62

collection command are run by means of the terminal window. Using SSH, we ran the

openni_tracker, RosAria, and openni_launch nodes on the computer onboard the

robot using the terminal window.

A single script file was created to run the experiment. The script utilized is found

in Appendix F. Global variables are set to allow information to be passed between the

main script and the four callback functions implemented. The ROS publisher for the P3-

DX commanded velocity is initialized. A pause is included to allow the user to move

from starting the MATLAB script running on the desktop computer to standing in front

of the robot and hitting the psi pose to calibrate the tracking node. The /tf_skeleton topic

must be publishing a transform for the test to begin. The ROS subscriber callback

function for the robot using the skeleton data is then initialized.

The test is run inside of multiple MATLAB while loops. Counters for the robot

and skeleton tracking are used to determine how many pieces of each type of information

have been passed without a new piece of data being received. This allows for the

algorithm to determine when the tracking node has lost the user it was tracking. When the

skeleton tracking has lost the user, the Microsoft Kinect raw depth data callback function

is initialized and image segmentation begins. The callback function for the robot using

the skeleton data is deleted from the workspace, and the callback function for the robot

using the goal position from the image segmentation is initialized. If the person

recalibrates and the tracking node begins to publish skeleton transforms again, the

skeleton counter is reset. The image segmentation is stopped as well as the P3-DX

callback function which is using the raw depth data goal position. The skeleton transform

position is again used as the goal position to the respective P3-DX callback function. By

using two different callbacks for the P3-DX depending on which tracker is being used,

we can run the skeleton tracking callback continuously, and the node can wait for the

person to hit the psi pose and recalibrate.

2. Results

Using the script file described above, we conducted tests to determine whether it

is possible for the robot to successfully track and follow a person through the laboratory

 63

environment. The test was successful, and the robot was able to track the person from the

start location forward around a grouping of desks and back to the start location. The

scenario geometry, the paths of the person and the robot, can be seen in Figure 37. From

the data plotted in Figure 37, it does not look as if the person and robot returned to the

start location (0, 0). This error seen in the plot can be directly attributed to the odometry

error. Odometry error occurs because encoders on the wheels are used to determine how

far the robot has travelled and how much the robot has turned, as well as the pose and

orientation of the robot. A large amount of error is introduced into the location of the

robot due to the turning conducted by the robot to keep the person in the center of the

field-of-view.

Figure 37. Test Geometry in the XY Plane

The robot’s position in X and Y over the trial can be seen in Figure 38. The robots

position was stored for each iteration of the callback function for the robot’s position. As

expected, the robot is initially located at the position (0, 0). The goal position, the

location of the person being followed in the world frame, is plotted in Figure 39. The goal

0 2 4 6 8 10 12 14 16

X Distance (m)

-4

-2

0

2

4

6

8

Y
D

is
ta

nc
e

(m
)

Robot Position

Human Position

 64

position of the target was stored for each iteration of the callback function for the robot’s

position. By comparing Figure 38 with Figure 39, we notice that the path of the robot is

much smoother than the path of the person being tracked. This is also evidenced through

the geometry plot in Figure 37. This can be attributed to the fact that the robot only has to

turn when the person is outside of the allowed angular amount of error. If the person has

moved slightly left or right but is still within the allowed angular amount of error, the

robot continues to simply travel in a straight line. This can be seen in Figure 37 between

an X distance of four to seven meters, as the person walked first to the right and then to

the left. The robot’s direction only changed slightly through the large motion to the left

and right of the person. The lack of smoothness in the position trajectory of the person

can also be seen as a result of the tracking. It is believed this was caused by greater error

in the position of the person between successive measurements than when compared to

the error in the robot’s position in successive measurements.

Figure 38. Robot Position over the Trial

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

5

10

15

20

D
is

ta
nc

e
(m

)

Goal Position in X over the trial

0 200 400 600 800 1000 1200 1400 1600 1800 2000
-4

-2

0

2

4

6

D
is

ta
nc

e
(m

)

Goal Position in Y over the trial

 65

Figure 39. Goal Position over the Trial

The robot’s position never reaches the maximums of the goal position. This result

was also expected. The robot’s task is to keep the person’s location within a certain

range. As the goal position and position of the robot are constantly updated, it is possible

for the robot to travel a shorter path than the person.

Due to the large error in the odometry measurements of the robot, issues were

seen in the SLAM creation of the Occupancy Grid. The inputs to the SLAM package are

the sensor data and the transforms required for the sensor scans and robot position. Each

scan is transformed into the odometry transform frame. Then that information is

transformed into a world position. Due to the large amount of odometry error from the

angular motions of the robot, large errors are seen in the occupancy grids built from the

SLAM. Also, the person constantly moving within the view of the sensor caused

problems because the person was seen as an occupied space. Due to these two problems,

the map created by the robot as it was tracking a person was deemed unusable.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

5

10

15

20

D
is

ta
nc

e
(m

)

Robot Position in X over the trial

0 200 400 600 800 1000 1200 1400 1600 1800 2000
-4

-2

0

2

4

6

D
is

ta
nc

e
(m

)

Robot Position in Y over the trial

 66

THIS PAGE INTENTIONALLY LEFT BLANK

 67

VI. CONCLUSION

A. SUMMARY

Human detection, tracking, and following is one application in which computer

vision can be relevant to the field of robotics. In computer vision, human detection and

tracking is defined by the objective of finding a human and following the movement of

the human using a sequence of images. Original methods of human detection in robotics

used a two-dimensional image to estimate a three-dimensional space. This method

necessitates estimation as the sensor does not provide enough information; however, with

availability of new technology, observation in three dimensions is possible.

The Microsoft Kinect, one of the most successful RGB-D sensors, is known for

its human detection capabilities and has multiple software development kits available.

With the Microsoft Kinect’s release in 2010, and the release of the Microsoft SDK in

2012, the sensor became widely used in research due to its low cost, availability, and

software capabilities. With a camera sensor and depth sensor, the Microsoft Kinect

allows for a three-dimensional understanding of the environment.

The objective of this thesis research was to determine if it was feasible to

implement human tracking and following on a mobile robot in an indoor environment.

Specifically, we wanted to conduct tracking with the Microsoft Kinect using a specific

software development environment, ROS and MATLAB. The P3-DX, a Pioneer indoor

mobile robot, was chosen to be worked with in this thesis research.

First, the hardware and software for the system had to be set up. Available ROS

packages were utilized to run the drivers for the robot and the Microsoft Kinect.

MATLAB was utilized to receive and send messages to and from the ROS system. This

allowed for the algorithms to be written in MATLAB as callback functions and for

experiments to be initialized using a script in MATLAB.

The skeleton tracking capabilities of the Microsoft Kinect, specifically the NITE

software, were utilized as the main tracking system. An auxiliary method was created

using histograms of depth and region properties to segment a person from the depth

 68

image produced by the sensor. From each of these two methods, the goal position of the

human was found relative to the mobile robot. This relative position was used to drive the

mobile robot towards the location of the person being tracked while keeping the robot a

minimum distance from the person to keep them within the field-of-view. A simple

control law and low pass filter were utilized to drive the mobile robot to the goal location.

The first result of this thesis research is a successful image segmentation

algorithm. A relationship was found between the depth, the independent variable, and the

dependent variables Area, Bounding Box width, and Bounding Box height. Using these

relationships, as well as other object parameters, we can determine if a person exists in

the depth image. This result supported the final objective of conducting human following

with a mobile robot.

The P3-DX indoor mobile robot was able to successfully track and follow a

person through the indoor environment. Employing ROS, we utilized packages to run the

P3-DX, Microsoft Kinect, and NITE skeleton tracking. MATLAB was successfully

utilized for implementing algorithms as scripts and callback functions. Using the

combination of the ROS packages and the MATLAB codes, we met the objective of this

thesis research, proving that it is feasible to implement human following on a mobile

robot in an indoor environment.

B. FUTURE WORK

Future work that could be conducted in the realm of this thesis research would be

to implement a searching algorithm. The tests run were conducted expecting a person to

always be within the field-of-view. Implementing a search method, a person outside of

the field-of-view could be detected. This could also allow for the robot to find a person

who was being tracked and then moved outside of the field-of-view.

Another area that could be explored would be the combination of multiple sensors

onboard the mobile robot to conduct obstacle avoidance while tracking a person.

Assuming that no obstacle was located between the mobile robot and the person it was

tracking in the environment, we did not implement obstacle avoidance in this thesis

research. Combining multiple sensors will allow for this capability to be added. For

 69

example, the P3-DX contains an array of range-finding sonars which can be incorporated

to detect obstacles. Another option is to utilize two Microsoft Kinect sensors to gain a

larger picture of the environment.

 70

THIS PAGE INTENTIONALLY LEFT BLANK

 71

APPENDIX A. ROS LAUNCH FILES

A. ROSARIA LAUNCH FILE

<?xml version=“1.0”?>

<launch>

 <arg name=“port” default=“/dev/ttyS0” />

 <node pkg=“rosaria” type=“RosAria” name=“my_p3dx” output=“screen”>

 <param name=“port” value=“$(arg port)” />

 </node>

 <!-- This following lines are taken from the p2os_urdf package-->

 <include file=“$(find p3dx)/launch/upload_pioneer3dx.xml”/>

 <node pkg=“robot_state_publisher” type=“state_publisher”
name=“robot_state_publisher”>

 <param name=“publish_frequency” type=“double” value=“30.0”/>

 <param name=“tf_prefix” type=“string” value=““/>

 </node>

 <node pkg=“p2os_urdf” type=“p2os_publisher_3dx” name=“publisher”/>

</launch>

B. OPENNI_LAUNCH LAUNCH FILE

<?xml version=“1.0”?>

<launch>

 72

 <!-- setting camera in this file was not working so reset it in
openni.launch to kinect -->

 <include file =“$(find
openni_launch)/launch/openni.launch”/>

 <param name=“respawn” value=“true”/>

 <arg name=“camera” value=“kinect”/>

 <param name=“depth registration” value=“false” />

</launch>

C. DEPTHIMAGE_TO_LASERSCAN LAUNCH FILE

<?xml version=“1.0”?>

<launch>

<node pkg=“depthimage_to_laserscan” type=“depthimage_to_laserscan”
name=“depthimage_to_laserscan” respawn=“true” >

 <remap from=“image” to=“/kinect/depth/image_rect_raw”/>

 <param name=“scan_height” value=“200”/>

 <param name=“scan_time” value=“0.125” />

 <param name=“range_min” value=“0.45”/>

 <param name=“range_max” value=“7.0” />

 <param name=“min_height” value=“0.05”/>

 <param name=“max_height” value=“1.0” />

 <param name=“output_frame_id”
value=“kinect_depth_frame”/>

</node>

</launch>

D. SLAM GMAPPING LAUNCH FILE

<?xml version=“1.0”?>

<launch>

 73

<node pkg=“gmapping” name= “slam_gmapping” type=“slam_gmapping”>

 <param name=“maxUrange” value=“5.5” />

 <param name=“maxRange” value=“6.0” />

 <param name=“xmin” value=“0.0” />

 <param name=“xmax” value=“20.0” />

 <param name=“ymin” value=“-10.0” />

 <param name=“ymax” value=“10.0” />

 <param name=“delta” value=“0.1” />

 </node>

</launch>

 74

THIS PAGE INTENTIONALLY LEFT BLANK

 75

APPENDIX B. OPENNI_TRACKER CALLBACK FUNCTION

%tf callback function
function tfCallback(~,message,cmdpub,cmdmsg)

% Skeleton Tracker
% Called when each each new /tf_skeleton message is received

global counter_tf;
global goal;
global angles;
global Translation;
global counter_pose;
global delta_angle
global angle_out
global counter_skeleton
global counter;
goal=goal;
if counter_tf <15
 counter_tf=counter_tf+1;
else
 % Generate a simplified pose
 frame=message.Transforms.ChildFrameId;
 if strncmp(frame,'torso_1',5)
 if counter==0
 %do nothing
 else
 angles_past=angles;
 pose_past=Translation;
 end

 % Extract Pose

Translation=[message.Transforms.Transform.Translation.X,message.Transforms.Transform.Tran
slation.Y,message.Transforms.Transform.Translation.Z];
 quat = message.Transforms.Transform.Rotation;

 % From quaternion to Euler

 angles = quat2eul([quat.W quat.X quat.Y quat.Z]);

 if counter==0
 %do nothing
 else
 delta_angle(counter,:)=angles-angles_past;
 angle_out(counter,:)=angles;
 end
 goal=[Translation(1,1),Translation(1,2)]';

 76

 counter=counter+1;
 fprintf('Current goal X=%4.2f, Y=%4.2f\n',goal(1),goal(2));
 counter_skeleton=0;
 counter_pose=counter_pose+1
 else
 % data='not left_elbow';
 return;

 en
 counter_tf=0;

end

 77

APPENDIX C. KINECT CALLBACK FUNCTION

function kinectdepthCallback(~,message,cmdPub,cmdMsg)

% Callback for depth image raw data editing

%global derror;
global goal_d_rel;
global goal_ang_rel;
global counter_k;
global counter;
% Extract Image Data in message and read into Matlab variable
%Im is 480x640 depth image uint16

Im=readImage(message);
I_show=Im;
I_show = double(I_show)/65535;
% Show image, it's histogram below it
mean_dist=[];

for ii=1:480
 for kk=1:640
 if(I_show(ii,kk)>0.0)
 I_show(ii,kk)=1;
 else
 I_show(ii,kk)=0;
 end
 end
end

for ii=1:480
 for kk=1:640
 if(Im(ii,kk)>4000)
 Im(ii,kk)=0;

 end
 end
end
% Set data coming in in the bottom 70 rows to zero to cut out ground
for ii=410:480
 Im(ii,:)=0;
end

i=h.NumBins-2;
counter=1;
while i>1 %attempting to ignore everything below certain depth in histogram
 %for i=h.NumBins-2:-1:2 %number of bins

 78

 if ((h.Values(i)+h.Values(i+1)+h.Values(i+2))>10000)
 pixelValue=h.Values(i)+h.Values(i+1)+h.Values(i+2);

dist_b=((h.BinLimits(2)/h.NumBins)*(i+2)+(h.BinLimits(2)/h.NumBins)*(i+1)+(h.BinLi
mits(2)/h.NumBins)*(i))/3000;

if dist_b ~= 0

 dist_h2(counter)=dist_b;
 counter=counter+1;
 end
 end
 i=i-1;
end
if exist ('dist_b')
 if (dist_b<1.0)
 low_dist=dist_b;
 dist_b=0;
 end
else
 dist_b=0;
 dist_h2=0;
end
count=length(dist_h2);
% combine distances if closer than 0.2 meters
while(length(dist_h2)>1)
if (abs(dist_h2(length(dist_h2))-dist_h2(length(dist_h2)-1))<0.2)
 ans=(dist_h2(length(dist_h2))+dist_h2(length(dist_h2)-1))/2;
 dist_h2(length(dist_h2)-1)=ans;
 dist_h2(length(dist_h2))=[];
else
 mean_dist=[mean_dist,dist_h2(length(dist_h2))]
 dist_h2(length(dist_h2))=[];
end
end
mean_dist=[mean_dist,dist_h2(1)];
%loop through each distance and run image segmentation on each
for pp=1:length(mean_dist)
T=700;
upper=mean_dist(pp)*1000+T/2;
lower=mean_dist(pp)*1000-T/2;
% Convert image from depth image to decimels, then convert to binary using
% for loop
I64 = double(Im)/65535;%imshow(I64)
for ii=1:480
 for kk=1:640
 if(Im(ii,kk)<lower || Im(ii,kk)> upper)
 I64(ii,kk)=0;
 else
 I64(ii,kk)=1;
 end

 79

 end
end

BW=I64;
Area=bwarea(BW);
CC=bwconncomp(BW);
BW=imfill(BW,8,'holes'); %Doesn't do crap
numPixels = cellfun(@numel,CC.PixelIdxList);
[biggest,idx] = max(numPixels);

for i=1:CC.NumObjects
 if numPixels(i)<10000
 %if the object is smaller than 10000 pixels set it to zero
 BW(CC.PixelIdxList{i}) = 0;
 end
end

% figure()
% imshow(BW)
Area=bwarea(BW);
CC=bwconncomp(BW);
if(Area>10000 && dist_b ~=0)
 s=regionprops(CC,'Area','centroid','MajorAxisLength','MinorAxisLength','Orientation','B
oundingBox','EulerNumber','Perimeter');
 centroid=cat(1,s.Centroid);
 Major=s.MajorAxisLength;
 Minor=s.MinorAxisLength;
 %hold on
 p_A=[4695.43419202680,-40595.7005014340,98619.4503311143];
 p_B1=[6.86887903612834,-75.6528307159344,278.225979474800];
 p_B2=[13.1367701568270,-152.343060807504,623.315704575546];
 Area_r=p_A(1)*dist_b^2+p_A(2)*dist_b+p_A(3);
 B1_r=p_B1(1)*dist_b^2+p_B1(2)*dist_b+p_B1(3);
 B2_r=p_B2(1)*dist_b^2+p_B2(2)*dist_b+p_B2(3);

 error=6000;

 for k = 1 : length(s)
 BB = s(k).BoundingBox;
 Orient=s(k).Orientation;
 AREA=s(k).Area;
 holes=s(k).EulerNumber;
 cent=cat(1,s(k).Centroid)
 if (abs(BB(3)-B1_r)<60 && abs(BB(4)-B2_r)<70 && abs(Orient)>75.0 && abs(AREA-
Area_r)<error && abs(holes)<=10 && abs(cent(2)-240)<100)

 centroids=cat(1,s(k).Centroid);
 else
 end

 80

 end

else
 ang=0;
end
 if exist('centroids')
 break;
 end
end
% Calculating relative position using distance and centroid
% Image is a 480 x 640 480 tall, 640 wide
% knowing distance we should be able to calculate angle from center
% center is at 320 pixels
if exist ('centroids')
 y_pixels=centroids(1)-320;
 % conversion from pixels to meters, found using experimentation
 %

 if y_pixels<0
 pix_to_meters=0.0065;
 else
 pix_to_meters=0.0055;
 end

 ang=atan2((y_pixels*pix_to_meters),mean_dist(pp));

%setting global vairables
 goal_d_rel=mean_dist(pp);
 goal_ang_rel=ang*-1;
 counter_k=0;
 counter=0;
 %fprintf('error=%4.2f, angerror=%4.2f\n',goal_d_rel,goal_ang_rel);
else
 % if no person is found in the image

counter_k=counter_k+1
 goal_d_rel=1.75;
 goal_ang_rel=0;
 % if the smallest distance to an object is less than 1.6, set that distance as the goal
 % to make the robot back up
 if min(mean_dist)<1.6
 goal_d_rel=min(mean_dist)
 if exist ('low_dist')
 goal_d_rel=low_dist;
 goal_ang_rel=0;
 end
 counter=0;
end

end

 81

APPENDIX D. KINECT POST-PROCESSING SCRIPT

close all; clear all;
%filepath=’fill in name of bagfile.bag';

filepath='trialdata.bag';
bag = rosbag(filepath);
bag.AvailableTopics
%bag.MessageList;
counter_k=0;
%%
bagselect1=select(bag, 'Topic','/kinect/depth/image_raw');
Msgs=bagselect1.MessageList;
msgs2=readMessages(bagselect1,[1:200]);
distance=[];
angles=[];

%%

% The for loop runs through every fifth image and runs the image segmentation and
% plots the images and histograms
for jj=1:5:200
Im=readImage(msgs2{jj});
mean_dist=[];
figure()
subplot(2,2,1)
imshow(Im)
image(Im,'CDataMapping','scaled')
subplot(2,2,3)
histogram(Im)
for ii=1:480
 for kk=1:640
 if(Im(ii,kk)>4000)
 Im(ii,kk)=0;

 end
 end
end
for ii=410:480
 Im(ii,:)=0;
end

subplot(2,2,2)
imshow(Im)
image(Im,'CDataMapping','scaled')

subplot(2,2,4)
histogram(Im,35)

 82

%%
h=histogram(Im,35);
i=h.NumBins-2;
counter=1;
while(i>1)

 if ((h.Values(i)+h.Values(i+1)+h.Values(i+2))>10000)
 pixelValue=h.Values(i)+h.Values(i+1)+h.Values(i+2);

 dist_b=((h.BinLimits(2)/h.NumBins)*(i+2)+(h.BinLimits(2)/h.NumBins)*(i+1)+(h.BinLimit
s(2)/h.NumBins)*(i))/3000;
 if dist_b ~= 0
 dist_h2(counter)=dist_b;
 counter=counter+1;
 end

 end
 i=i-1;
end

%end
if exist ('dist_b')
 if (dist_b<1.7)
 low_dist=dist_b;
 dist_b=0;
 end
else
 dist_b=0;
 dist_h2=0;
end
distance=[distance,dist_b];
count=length(dist_h2);

while(length(dist_h2)>1)
if (abs(dist_h2(length(dist_h2))-dist_h2(length(dist_h2)-1))<0.2)
 ans=(dist_h2(length(dist_h2))+dist_h2(length(dist_h2)-1))/2;
 dist_h2(length(dist_h2)-1)=ans;
 dist_h2(length(dist_h2))=[];
else
 mean_dist=[mean_dist,dist_h2(length(dist_h2))]
 dist_h2(length(dist_h2))=[];
end
end
mean_dist=[mean_dist,dist_h2(1)]

for pp=1:length(mean_dist)

T=700;

 83

upper=mean_dist(pp)*1000+T/2;
lower=mean_dist(pp)*1000-T/2;
I64 = zeros(480,640);%imshow(I64)
for ii=1:480
 for kk=1:640
 if(Im(ii,kk)<lower || Im(ii,kk)> upper)
 I64(ii,kk)=0;
 else
 I64(ii,kk)=1;
 end
 end
end
%pause
figure()
imshow(I64)
BW=I64;
Area=bwarea(BW);
BW2=imfill(BW,8,'holes'); %Doesn't do crap
CC=bwconncomp(BW);
numPixels = cellfun(@numel,CC.PixelIdxList);
[biggest,idx] = max(numPixels);
for ii=1:CC.NumObjects
 if numPixels(ii)<10000
 %if the object is smaller than 10000 pixels set it to zero
 BW(CC.PixelIdxList{ii}) = 0;
 end
end

figure()
imshow(BW)
Area=bwarea(BW);
CC=bwconncomp(BW);
if(Area>10000&& dist_b ~=0)
s=regionprops(CC,'Area','centroid','MajorAxisLength','MinorAxisLength','Orientation','Bounding
Box','EulerNumber','Perimeter');

Major=s.MajorAxisLength;
Minor=s.MinorAxisLength;
hold on
%plot(centroids(:,1),centroids(:,2),'b*');

%Bounding Box information, 1,2 left corner of box pixel, 3 is x length 4 is
%y length
p_A=[4695.43419202680,-40595.7005014340,98619.4503311143];
p_B1=[6.86887903612834,-75.6528307159344,278.225979474800];
p_B2=[13.1367701568270,-152.343060807504,623.315704575546];
dist_b=mean_dist(pp);
Area_r=p_A(1)*dist_b^2+p_A(2)*dist_b+p_A(3);
B1_r=p_B1(1)*dist_b^2+p_B1(2)*dist_b+p_B1(3);

 84

B2_r=p_B2(1)*dist_b^2+p_B2(2)*dist_b+p_B2(3);
error=6000;
for k = 1 : length(s)
 AREA=s(k).Area;
 BB = s(k).BoundingBox;
 Orient=s(k).Orientation;
 centroids=cat(1,s(k).Centroid);
 holes=s(k).EulerNumber;
 if (abs(BB(3)-B1_r)<60 && abs(BB(4)-B2_r)<70 && abs(Orient)>75.0 &&
abs(AREA-Area_r)<error && abs(holes)<=10 && abs(cent(2)-240)<100)

 rectangle('Position', [BB(1),BB(2),BB(3),BB(4)],...
 'EdgeColor','r','LineWidth',2)

 plot(centroids(1,1),centroids(1,2),'b*');
 centroid=centroids
 if exist('centroid')
 break;
 end
 else
 % centroids(k,:) = []

 end
end
else
 ang=0;
end
if exist('centroid')
 break;
end
end

% Calculating relative position using distance and centroid
% Image is a 480 x 640 480 tall, 640 wide
% knowing distance we should be able to calculate angle from center
% center is at 320 pixels
if exist ('centroid')
y_pixels=centroid(1)-320;
% conversion from pixels to meters,
pix_to_meters=0.006;

ang=atan2((y_pixels*pix_to_meters),dist_b);
goal_d_rel=dist_b;
goal_ang_rel=ang*-1;
else
 counter_k=counter_k+1;
 goal_d_rel=1.3;
 goal_ang_rel=0;

 85

 ang=0;
end

angles=[angles,ang];
clear dist_b angle centroid
pause(1)
close all

end

 86

THIS PAGE INTENTIONALLY LEFT BLANK

 87

APPENDIX E. MOBILE ROBOT CALLBACK FUNCTION

A. MOBILE ROBOT CALLBACK USING OPENNI_TRACKER

function pwaypointCallback(~,message,cmdPub,cmdMsg)

% Control for Pioneer to drive to goal position collected from a tf message

global derror
global goal
global cmd_vel_past
global cmd_vel
global goals
global odom
global counter_skeleton
global goal_local
global counter_pose

% Extract Data

pos = message.Pose.Pose;

quat = message.Pose.Pose.Orientation;

% Convert Quaternion to Euler Angles

angles = quat2eul([quat.W quat.X quat.Y quat.Z]);

theta = angles(1);
% goal(1)=goal(1)-0.25*cos(theta);
% goal(2)=goal(2)-0.25*sin(theta);

% State Vector

pose = [pos.Position.X, pos.Position.Y, theta]'; % X, Y, Theta
odom=[odom,pose];
if counter_skeleton==0
goal_local=goal+pose(1:2);
end
counter_skeleton=counter_skeleton+1;
counter_pose=0;

% Compute Distance to Goal and angle

 88

derror = norm(goal_local-pose(1:2));

theta_g = atan2(goal_local(2)-pose(2),goal_local(1)-pose(1));

% set the local goal and derror if no new skeleton message has come in after 25 pose data
if counter_skeleton>25
 goal_local=[1.65;0]+pose(1:2);
 derror=1.65;
 theta_g=0;
elseif counter_skeleton>15
 goal_local=[1.55;0]+pose(1:2);
 derror=1.55;
 theta_g=0;
end
%ang_error = theta_g - pose(3);
ang_error = theta_g;

% Testing just using the goal position
%derror=norm(goal);
%ang_error=atan2(goal(2),goal(1));

% Proportional Guidance

if ang_error > pi

 ang_error = ang_error - 2*pi;

elseif ang_error < -pi

 ang_error = ang_error + 2*pi;

else

 ang_error = ang_error;

end

Kp_ang = 0.4; % proportinal gain for Angular velocity
Kp_dist =0.4; % proportional gain for Linear Velocity

Vnom = 0.2; % Nominal velocity
Anom=0.2;

%command of 1.0 in terminal, sends 1000 to robot
 if abs(ang_error) > 0.2
 cmdMsg.Linear.X = 0;
 cmdMsg.Angular.Z = Kp_ang*ang_error;
 if abs(cmdMsg.Angular.Z)>Anom
 if (cmdMsg.Angular.Z)<0.0
 cmdMsg.Angular.Z=-Anom;

 89

 elseif (cmdMsg.Angular.Z)>0.0
 cmdMsg.Angular.Z=Anom;
 end
 end

elseif(derror<1.7)
 cmdMsg.Linear.X = -0.05;
 cmdMsg.Angular.Z = 0;
 fprintf('!!!!');
elseif (derror<1.85 && derror>1.7)
 cmdMsg.Linear.X = 0;
 cmdMsg.Angular.Z = 0;
 fprintf('!!!!');
else

 cmdMsg.Linear.X = min(Kp_dist*derror,Vnom);
 cmdMsg.Angular.Z =0;
end
cmd_vel=[cmdMsg.Linear.X;cmdMsg.Angular.Z];

% Create filter
A=0.2;
Yout=A*cmd_vel+(1-A)*cmd_vel_past;

%fprintf('Current pose X=%4.2f, Y=%4.2f, goalX=%4.2f, Y=%4.2f,
error=%4.2f\n',pose(1),pose(2),goal_local(1),goal_local(2),derror);

% Send Message
cmdMsg.Linear.X=Yout(1);
cmdMsg.Angular.Z=Yout(2);
send(cmdPub,cmdMsg);
cmd_vel_past=Yout;
goals=[goals,goal_local];

B. MOBILE ROBOT CALLBACK USING GOAL POSITION FROM
MICROSOFT KINECT RAW DEPTH DATA

function pwaypointkinectCallback(~,message,cmdPub,cmdMsg)

% Waypoint control for Pioneer using goal position from Kinect raw data

global derror
global goal
global cmd_vel_past
global cmd_vel
global goals
global odom

 90

global goal_d_rel;
global goal_ang_rel;
global counter;
global counter_k;

% Extract Data

pos = message.Pose.Pose;

quat = message.Pose.Pose.Orientation;

% Convert Quaternion to Euler Angles

angles = quat2eul([quat.W quat.X quat.Y quat.Z]);

theta = angles(1);

% State Vector

pose = [pos.Position.X, pos.Position.Y, theta]'; % X, Y, Theta
odom=[odom,pose];

% Compute Distance to Goal

% Compute absolute position of target in world frame if new goal_ang_rel is
% received
if (counter==0)
theta_t=goal_ang_rel;

Rz_robot=[cos(theta) -sin(theta)
 sin(theta) cos(theta)];
Rz_target=[cos(theta_t) -sin(theta_t)
 sin(theta_t) cos(theta_t)];
Pose_rel=[goal_d_rel;0];
Position_rel=Rz_robot*Rz_target*Pose_rel;
goal=[pose(1);pose(2)]+Position_rel
end

% counter is set to zero in the Kinect raw data callback when a new target position
% is determined
counter=1;

% Compute Distance to Goal

derror = norm(goal-pose(1:2));

% Proportional Guidance

 91

theta_g = atan2(goal(2)-pose(2),goal(1)-pose(1));

%
ang_error = theta_g - pose(3);

if ang_error > pi

 ang_error = ang_error - 2*pi;

elseif ang_error < -pi

 ang_error = ang_error + 2*pi;

else

 ang_error = ang_error;

end

Kp_ang = 0.4; % proportinal gain for Angular velocity
Kp_dist =0.4; % proportional gain for Linear Velocity

Vnom = 0.2; % Nominal velocity
Anom=0.2;

if abs(ang_error) > 0.12
 cmdMsg.Linear.X = 0;
 cmdMsg.Angular.Z = Kp_ang*ang_error;
 if abs(cmdMsg.Angular.Z)>Anom
 if (cmdMsg.Angular.Z)<0.0
 cmdMsg.Angular.Z=-Anom;
 elseif (cmdMsg.Angular.Z)>0.0
 cmdMsg.Angular.Z=Anom;
 end
 end

elseif(derror<1.7)

 cmdMsg.Linear.X = -0.05;
 cmdMsg.Angular.Z = 0;
 %fprintf('!!!!');
elseif (derror<1.85 && derror>1.7)

 cmdMsg.Linear.X = 0;
 cmdMsg.Angular.Z = 0;
 fprintf('!!!!');

else

 92

 cmdMsg.Linear.X = min(Kp_dist*derror,Vnom);
 cmdMsg.Angular.Z =0;

end

% if have not gotten a new goal position in 20 depth frames send a zero
% velocitycommand
 if counter_k>20
 cmdMsg.Linear.X = 0;
 cmdMsg.Angular.Z =0;
 fprintf('No new goal in 20 depth image frames\n');
 end

cmd_vel=[cmdMsg.Linear.X;cmdMsg.Angular.Z];

% Create filter
A=0.2;
Yout=A*cmd_vel+(1-A)*cmd_vel_past;

% Send Message
cmdMsg.Linear.X=Yout(1);
cmdMsg.Angular.Z=Yout(2);
send(cmdPub,cmdMsg);
cmd_vel_past=Yout;
goals=[goals,goal];

 93

APPENDIX F. EXPERIMENT SCRIPT

% Control script for the P3-DX using both Openni skeleton tracker and Kinect raw data
% tracker

rosinit('http://192.168.0.2:11311', ...
 'NodeHost', '192.168.0.2');
 %%

global derror; % This is the distance to the waypoint - calc. in callback

derror = 10; % Initially we'll make this large

cmdpub = rospublisher('/my_p3dx/cmd_vel',rostype.geometry_msgs_Twist);

cmdmsg = rosmessage(cmdpub);

global goals;
goals=[0;0];
global odom;
odom=[0;0;0];
global goal;
goal=[0;0];
global goal_local
goal_local=[0;0];
global angles;
angles=[0, 0,0];
global Translation;
Translation=[0,0,0];
global counter_pose;
counter_pose=0;
global delta_angle;
delta_angle=[0, 0,0];
global angle_out;
angle_out=[0, 0,0];
global cmd_vel_past;
cmd_vel_past=[0;0];
global cmd_vel;
cmd_vel=[0;0];
global counter_skeleton;
counter_skeleton=0;
global counter;
counter=0;
global counter_k;
counter_k=0;
global goal_d_rel;
goal_d_rel=0;

 94

global goal_ang_rel;
goal_ang_rel=0;

pause(8)

% start skeleton tracker callback
tf = rossubscriber('/tf_skeleton',{@tfCallback,cmdpub,cmdmsg});
pause(2)
%wait for skeleton tracker callback to get first goal position
while(goal(1)==0)
 pause(1)
end

% once have a goal position begin subscribing to the pioneer position

odomsub = rossubscriber('/my_p3dx/pose',{@pwaypointCallback,cmdpub,cmdmsg});
count=0;
while(1)
 while(1)
 pause(1)
 if (counter_pose>5)
 cmdmsg.Linear.X=0;

 cmdmsg.Angular.Z=0;

 send(cmdpub,cmdmsg);
 end
 if counter_skeleton> 25
 break
 else
 if count>0
 clear odomsub2;
 clear k_raw;
 odomsub =
rossubscriber('/my_p3dx/pose',{@Copy_of_pwaypointCallback,cmdpub,cmdmsg});
 end
 end
 end
 clear odomsub;
 k_raw =
rossubscriber('/kinect/depth/image_raw',{@kinectdepthCallback_lin,cmdpub,cmdmsg});
 while(goal_d_rel==0 && goal_ang_rel==0)
 pause(1)
 end
 odomsub2 = rossubscriber('/my_p3dx/pose',{@pwaypointkinectCallback,cmdpub,cmdmsg});
 count=count+1;
end

%%

 95

% at the end of experiment send a zero velocity command and shutdown the MATLAB
% Ros node
clear odomsub
cmdmsg.Linear.X=0;

cmdmsg.Angular.Z=0;
send(cmdpub,cmdmsg);
rosshutdown

 96

THIS PAGE INTENTIONALLY LEFT BLANK

 97

LIST OF REFERENCES

[1] Boston Dynamics. (n.d.). LS3 - Legged Squad Support Systems. [Online].
Available: http://www.bostondynamics.com/robot_ls3.html. Accessed Mar. 5,
2017.

[2] H. H. Seck. (2015, Dec. 22). Marine Corps shelves futuristic robo-mule due to
noise concerns. [Online]. Available: http://www.military.com/daily-
news/2015/12/22/marine-corps-shelves-futuristic-robo-mule-due-to-noise-
concerns.html

[3] J. Han, L. Shao, D. Xu, and J. Shotton, “Enhanced computer vision with Microsoft
Kinect sensor: a review,” IEEE Transactions on Cybernetics, vol. 43, no. 5, pp.
1318–1334, Oct. 2013.

[4] L. Xia, C. C. Chen, and J. K. Aggarwal, “Human detection using depth information
by Kinect,” in CVPR Workshops, Colorado Springs, CO, 2011, pp. 15–22.

[5] L. Spinello and K. O. Arras, “People detection in RGB-D data,” in IEEE/RSJ
International Conference on Intelligent Robots and Systems, San Francisco, CA,
2011, pp. 3838–3843.

[6] N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection,” in
IEEE Computer Society Conference on Computer Vision and Pattern Recognition,
San Diego, 2005, vol 1, pp. 886–896.

[7] C. Rougier, E. Auvinet, J. Rousseau, M. Mignotte, and J. Meunier, “Fall detection
from depth map video sequences,” in 9th International Conference on Smart
Homes and Health Telematics, Montreal, Canada, 2011, pp 121–128.

[8] Z. Zhang, W. Liu, V. Metsis, and V. Athitsos, “A viewpoint-independent statistical
method for fall detection,” in Proceedings of the 21st International Conference on
Pattern Recognition, Tsukuba, 2012, pp. 3626–3630.

[9] E. Babaians, N. Khazaee Korghond, A. Ahmadi, M. Karimi, and S. S. Ghidary,
“Skeleton and visual tracking fusion for human following task of service robots,” in
3rd RSI International Conference on Robotics and Mechatronics, Tehran, 2015, pp.
761–766.

[10] Q. Ren, Q. Zhao, H. Qi, and L. Li, “Real-time target tracking system for person-
following robot,” in 35th Chinese Control Conference, Chengdu, 2016, pp. 6160–
6165.

 98

[11] E. Machida, M. Cao, T. Murao, and H. Hashimoto, “Human motion tracking of
mobile robot with Kinect 3D sensor,” in Proceedings of SICE Annual Conference,
Akita, 2012, pp. 2207–2211.

[12] T. K. Calibo, “Obstacle detection and avoidance on a mobile robotic platform using
active depth sensing,” M.S. thesis, Dept. Elect. Eng., Naval Postgraduate School,
Monterey, CA, 2014. [Online]. Available:
http://calhoun.nps.edu/handle/10945/42591

[13] J. S. Lum, “Utilizing Robot Operating System (ROS) in robot vision and control,”
M.S. thesis, Dept. Elect. Eng., Naval Postgraduate School, Monterey, CA, 2015.
[Online]. Available: calhoun.nps.edu/handle/10945/47300

[14] M. Quigley, B. Gerkey, and W. D. Smart, Programming Robots with ROS: A
Practical Introduction to the Robot Operating System, Sebastopol, CA: O'Reilly
Media, Inc., 2015.

[15] I. McMahon. (2016, May 23). Client libraries. [Online]. Available:
http://wiki.ros.org/Client%20Libraries

[16] MathWorks. (n.d.). MATLAB product page. [Online]. Available:
https://www.mathworks.com/products/matlab.html. Accessed Mar. 15, 2017.

[17] MathWorks. (n.d.). MATLAB help page.[Online]. Available:
https://www.mathworks.com/help/. Accessed Mar. 15, 2017.

[18] P. Corke, “Integrating ROS and MATLAB [ROS Topics],” IEEE Robotics &
Automation Magazine, 2015, vol. 22, no. 2, pp. 18–20.

[19] MathWorks (n.d.). PDF documentation for Robotics System Toolbox. [Online].
Available: https://www.mathworks.com/help/pdf_doc/robotics/index.html.
Accessed Mar. 15, 2017.

[20] Pioneer robotics. (n.d.). [Online]. Available:
http://www.mobilerobots.com/Libraries/Downloads/Pioneer3DX-P3DX-
RevA.sflb.ashx. Accessed Mar. 15, 2017.

[21] ARIA. (n.d.). Omron Adept MobileRobots, LLC. [Online]. Available:
http://robots.mobilerobots.com/wiki/ARIA. Accessed Mar. 15, 2017.

[22] Pioneer P3-DX. (n.d.). Omron Adept MobileRobots, LLC. [Online]. Available:
http://www.mobilerobots.com/Mobile_Robots.aspx. Accessed Mar. 15, 2017.

 99

[23] Pioneer P3-DX mobile robot. (n.d.). Generation Robots. [Online]. Available:
https://static.generation-robots.com/6629-large_default/robot-mobile-pioneer-3-
dx.jpg. Accessed Mar. 17, 2017.

[24] Z. Zhang, “Microsoft Kinect sensor and its effect,” IEEE MultiMedia, 2012, vol.
19, no. 2, pp. 4–10.

[25] “PrimeSense NITE Algorithms 1.5,” (n.d). PrimeSense Inc. [Online]. Available:
http://www.openni.ru/wp-content/uploads/2013/02/NITE-Algorithms.pdf.
Accessed Mar 17, 2017.

[26] Kinect for Windows sensor components and specifications. (n.d.). Microsoft.
[Online]. Available: https://i-msdn.sec.s-msft.com/dynimg/IC584396.png.
Accessed Mar. 17, 2017.

[27] M. A. Livingston, Z. A. Sebastian, Z. Ai, and J. Decker, “Performance
measurements for the Microsoft Kinect skeleton,” in IEEE Virtual Reality
Workshops, Costa Mesa, CA, 2012, pp. 119–120.

[28] SUMICOM S675G3. (n.d.). [Online]. Available:
http://www.kingyoung.com.tw/S675G3.htm. Accessed Mar. 16, 2017.

[29] NETGEAR RP614 web safe router. (n.d.). Web Collage. [Online]. Available:
https://smedia.webcollage.net/rwvfp/wc/live/16282083/module/netgear/www.netge
ar.com/images/enus_diagram_backdiagram_rp61418-5526.gif.w960.gif. Accessed
Apr. 22, 2017.

[30] Kinect Sensor. (n.d.). Microsoft Corporation. [Online]. Available:
https://msdn.microsoft.com/en-us/library/hh438998.aspx. Accessed Apr. 22, 2017.

[31] RP614v1 – 4 port cable or DSL router with 10/100 Mbps switch. (n.d.).
NETGEAR. [Online]. Available:
https://www.netgear.com/support/product/rp614v1?cid=wmt_netgear_organic#Gett
ingStarted_CommonTopics. Accessed Apr. 22, 2017.

[32] WNR612. (n.d.). NETGEAR. [Online]. Available:
https://www.netgear.com/support/product/WNR612.aspx?cid=wmt_netgear_organi
c. Accessed Apr. 22, 2017.

[33] Optiplex desktop computers. (n.d.). Dell. [Online]. Available:
http://www.dell.com/us/business/p/optiplex-desktops. Accessed Apr. 22, 2017.

[34] BurningIsoHowto. (2015, Mar. 29). Ubuntu. [Online]. Available:

 100

https://help.ubuntu.com/community/BurningIsoHowto

[35] Installation. (2016, Jan. 04). Ubuntu. [Online]. Available:
https://help.ubuntu.com/community/Installation#Installation_without_a_CD

[36] Repositories/Ubuntu. (2016, Sept. 20). Ubuntu. [Online]. Available:
https://help.ubuntu.com/community/Repositories/Ubuntu

[37] Ubuntu install of ROS Indigo. (2017, Apr. 14). Open Source Robotics Foundation.
[Online]. Available: http://wiki.ros.org/indigo/Installation/Ubuntu

[38] Running ROS across multiple machines. (2017, Mar. 14). Open Source Robotics
Foundation. [Online]. Available:
http://wiki.ros.org/ROS/Tutorials/MultipleMachines

[39] ROS/NetworkSetup. (2016, Apr. 13). Open Source Robotics Foundation. [Online].
Available: http://wiki.ros.org/ROS/NetworkSetup

[40] Creating a workspace for catkin. (2015, May 20). Open Source Robotics
Foundation. [Online]. Available:
http://wiki.ros.org/catkin/Tutorials/create_a_workspace

[41] ROSARIA. (2017, Mar. 01). Open Source Robotics Foundation. [Online].
Available: http://wiki.ros.org/ROSARIA

[42] How to use ROSARIA. (2016, Dec. 19). Open Source Robotics Foundation.
[Online]. Available:
http://wiki.ros.org/ROSARIA/Tutorials/How%20to%20use%20ROSARIA

[43] P2os. (2013, June 07). Open Source Robotics Foundation. [Online]. Available:
http://wiki.ros.org/p2os

[44] MobileRobots/amr-ros-config. (n.d.). GitHub, Inc. [Online]. Available:
https://github.com/MobileRobots/amr-ros-config. Accessed Apr 10, 2017.

[45] URDF. (2014, Oct 12). Open Source Robotics Foundation. [Online]. Available:
http://wiki.ros.org/urdf

[46] Openni_launch. (2013, Nov 14). Open Source Robotics Foundation. [Online].
Available: http://wiki.ros.org/openni_launch

[47] Openni_camera. (2016, Apr. 27). Open Source Robotics Foundation. [Online].
Available: http://wiki.ros.org/openni_camera

 101

[48] Avin2/SensorKinect. (n.d.). GitHub, Inc. [Online]. Available:
https://github.com/avin2/SensorKinect. Accessed Apr. 10, 2017.

[49] Openni_tracker. (2013, Mar. 05). Open Source Robotics Foundation. [Online].
Available: http://wiki.ros.org/openni_tracker

[50] OpenNI SDK History. (n.d.). OpenNI. [Online]. Available:
http://www.openni.ru/openni-sdk/openni-sdk-history-2/. Accessed Apr. 10, 2017.

[51] Hacking the Kinect 360. (2012, Aug. 15). [Online]. Available:
http://1.bp.blogspot.com/-
cRPcA5nbwgM/UBiC6YC0bFI/AAAAAAAAAqI/bQA5xr3AaqU/s1600/kinectpo
se-01.png

[52] Gmapping. (2015, Dec. 09). Open Source Robotics Foundation. [Online].
Available: http://wiki.ros.org/gmapping?distro=indigo

[53] Depthimage_to_laserscan. (2013, Mar. 10). Open Source Robotics Foundation.
[Online]. Available: http://wiki.ros.org/depthimage_to_laserscan

[54] T. H. Dinh, M. T. Pham, M. D. Phung, D. M. Nguyen, V. M. Hoang, and Q. V.
Tran, “Image segmentation based on histogram of depth and an application in
driver distraction detection,” in 13th International Conference on Control
Automation Robotics & Vision, Singapore, 2014, pp. 969–974.

http://www.openni.ru/openni-sdk/openni-sdk-history-2/

 102

THIS PAGE INTENTIONALLY LEFT BLANK

 103

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
 Ft. Belvoir, Virginia

2. Dudley Knox Library
 Naval Postgraduate School
 Monterey, California

	NAVAL
	POSTGRADUATE
	SCHOOL
	I. Introduction
	A. motivation
	B. Previous Work
	C. purpose and organization of thesis

	II. Description of Software and Hardware Systems
	A. Software
	1. Robot Operating System
	2. MATLAB

	B. Hardware
	1. P3-DX Mobile Robot
	2. Microsoft Kinect
	3. Computer Processing Units

	C. Summary

	III. Description of System Development and Integration
	A. Base Installation of Ubuntu and ROS
	B. ROSARIA
	C. P2os and amr-ros-config
	D. Openni stack and rgbd_launch
	E. Openni_tracker
	F. SLAM and Depthimage_to_laserscan
	G. Summary

	IV. Algorithms
	A. Ros subscriber Callback Functions and ros publishers in MATLAB
	B. Kinect Tracker Callback
	C. Kinect Depth Callback
	D. P3-DX ros subscriber callback functions and ros publisher
	E. Summary

	V. Results
	A. Skeleton Tracking
	B. Collection of Kinect Raw Data for image segmentation
	C. Final Test
	1. Script File
	2. Results

	VI. Conclusion
	A. Summary
	B. Future Work

	Appendix A. ROS Launch files
	A. RosAria launch file
	B. Openni_launch launch file
	C. Depthimage_to_laserscan Launch file
	D. SLAM GMapping Launch File

	Appendix B. Openni_tracker callback function
	Appendix C. Kinect callback function
	Appendix D. Kinect post-processing script
	Appendix E. Mobile robot callback function
	A. Mobile robot callback using openni_tracker
	B. Mobile robot callback using GOAL position from microsoft kinect raw depth data

	Appendix F. Experiment Script
	List of References
	initial distribution list

