RAESTAN“A PER SCIENT[AM

¥

NAVAL
POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

NETWORK OF TAMCNS: IDENTIFYING INFLUENCE
REGIONS WITHIN THE GCSS-MC DATABASE

by
Victor G. Castro

June 2017

Thesis Advisor: Gurminder Singh
Second Reader: Arijit Das

Approved for public release. Distribution is unlimited.

THIS PAGE INTENTIONALLY LEFT BLANK

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments
regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and
to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
June 2017 Master’s Thesis 06-29-2017 to 06-16-2017
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

NETWORK OF TAMCNS: IDENTIFYING INFLUENCE REGIONS WITHIN THE
GCSS-MC DATABASE

6. AUTHOR(S)
Victor G. Castro

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
MBER

Naval Postgraduate School
Monterey, CA 93943

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING
N/A AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

The views expressed in this document are those of the author and do not reflect the official policy or position of the Department of
Defense or the U.S. Government. IRB Protocol Number: N/A.

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release. Distribution is unlimited.

13. ABSTRACT (maximum 200 words)

The Global Combat Support System-Marine Corps (GCSS-MC) system enables the logistics and supply chain management system
for the United States Marine Corps. This system allows leaders, operators, maintainers, and suppliers to work together on a common
platform and provides transparency and situational awareness in the logistics and supply cycle. The data associated with the GCSS-MC
system is stored in a database. As the size of the data increases, challenges arise in obtaining insights into large data sets and its impact
on network infrastructure. Network science identifies relationships between objects and provides tools to quantitatively determine
objects whose influence impacts other objects or the system as a whole. This thesis applies network science techniques to determine
important Table of Authorized Material Control Numbers (TAMCNSs) in the GCSS-MC database, according to their impact on other
TAMCNSs in the database based on degree, eigenvector, betweenness, and closeness centrality. Additionally, this thesis develops
a formula to rank components from most to least important. We further develop a process to identify pertinent tables within the
database and export the information to create a complex network containing multiple layers that analyze various attributes associated
with GCSS-MC. We find that the methodology identifies the most important TAMCN and provides a list of TAMCNS in order of
importance. We also analyze the community and core structure of the GCSS-MC complex network and identify influential TAMCN
regions in the database.

14. SUBJECT TERMS 15. NUMBER OF
GCSS-MC, database, centrality, influence, graph, network science PAGES 101
16. PRICE CODE
17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF
OF REPORT OF THIS PAGE OF ABSTRACT ABSTRACT
Unclassified Unclassified Unclassified Uu
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 239-18

THIS PAGE INTENTIONALLY LEFT BLANK

ii

Approved for public release. Distribution is unlimited.

NETWORK OF TAMCNS: IDENTIFYING INFLUENCE REGIONS WITHIN
THE GCSS-MC DATABASE

Victor G. Castro
Captain, United States Marine Corps
B.S., United States Naval Academy, 2011

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE
from the

NAVAL POSTGRADUATE SCHOOL
June 2017

Approved by: Gurminder Singh
Thesis Advisor

Arijit Das
Second Reader

Peter Denning
Chair, Department of Computer Science

iii

THIS PAGE INTENTIONALLY LEFT BLANK

iv

ABSTRACT

The Global Combat Support System-Marine Corps (GCSS-MC) system enables the logistics
and supply chain management system for the United States Marine Corps. This system
allows leaders, operators, maintainers, and suppliers to work together on a common platform
and provides transparency and situational awareness in the logistics and supply cycle. The
data associated with the GCSS-MC system is stored in a database. As the size of the data
increases, challenges arise in obtaining insights into large data sets and its impact on network
infrastructure. Network science identifies relationships between objects and provides tools
to quantitatively determine objects whose influence impacts other objects or the system as
a whole. This thesis applies network science techniques to determine important Table of
Authorized Material Control Numbers (TAMCNs) in the GCSS-MC database, according to
their impact on other TAMCNSs in the database based on degree, eigenvector, betweenness,
and closeness centrality. Additionally, this thesis develops a formula to rank components
from most to least important. We further develop a process to identify pertinent tables
within the database and export the information to create a complex network containing
multiple layers that analyze various attributes associated with GCSS-MC. We find that the
methodology identifies the most important TAMCN and provides a list of TAMCNs in
order of importance. We also analyze the community and core structure of the GCSS-MC

complex network and identify influential TAMCN regions in the database.

THIS PAGE INTENTIONALLY LEFT BLANK

vi

Table of Contents

1 Introduction

1.1
1.2
1.3
1.4

Problem Statement.
Research Questions

Relevance to DOD.

Thesis Organization .

2 Background

2.1
2.2
2.3
24

3 Identifying the Most Influential Table of Authorized Material Control Num-
ber (TAMCN)

3.1
32
33
34

GCSS-MC Research .
Principles of Graph Theory .
Complex Networks

Summary .

Tools .

Locating and Exporting Tables in GCSS-MC Database .

Complex Network Construction and Analysis .

Summary .

4 Results and Analysis

4.1
4.2
4.3
4.4

Attribute Search Results
Layer Analysis .
Overall Importance

Summary .

S Findings

5.1

Future Work .

vii

N

29

31
32
34
38
44

45
45
47
68
72

73
75

List of References

Initial Distribution List

viii

77

83

List of Figures

Figure 1.1

Figure 1.2

Figure 1.3

Figure 2.1
Figure 2.2

Figure 2.3

Figure 2.4
Figure 2.5

Figure 2.6

Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4
Figure 3.5

Figure 3.6

Figure 4.1
Figure 4.2

Figure 4.3

GCSS-MC High-Level Operational Concept Graphic (OV-1). Source:
[2]. .

GCSS-MC Example Service Request Form. Source: [3].

GCSS-MC Example Work Queue. Source: [3].

Example MDR Table Output. Adapted from [5].
Example Graphs and Corresponding Adjacency Matrices

Complex Network Depicting Shortest Paths from a Test Host to an
Announced Network. Source: [9].

Game of Thrones Social Network. Source: [28].
Graph Demonstrating Modularity

k-Core for Figure 2.2 (a)

Methodology Overview
Oracle SQL Developer Example
File Extractor Script Flow Chart
Network Formed from Table 3.1
Flow Chart Describing CSV File Processing

GCSSGraph Class Layout

Current Parts on Order Layer
Community Distribution among the 4 Most Populous Communities

Eigenvector versus Degree Centrality for Current Parts on Order .

ix

10

12

22

27

28

31

32

35

39

40

41

48

49

51

Figure 4.4

Figure 4.5

Figure 4.6
Figure 4.7
Figure 4.8

Figure 4.9

Figure 4.10
Figure 4.11
Figure 4.12
Figure 4.13
Figure 4.14
Figure 4.15
Figure 4.16

Figure 4.17

Figure 4.18

Average Degree and Eigenvector Centrality Comparison for Current
Parts on Order

Average Betweenness and Closeness Centralities for Current Parts
on Order

TAMCN C7909 Connections

TAMCN C7908 Connections o v o

Current Parts on Order Betweenness versus Degree Centrality . .

Sample Connections from Current Parts on Order Graph Illustrating
Non-Adjacent Neighbors

A, B, C,D, E, and N TAMCN Centrality Measure CDF Graphs .
H,J, K, M, U, and V TAMCN Centrality Measure CDF Graphs .
Current Partson OrderCore
Community 32 Core Composition
PDF of the Core Distribution for AIl TAMCNs
PDF of TAMCNs withinCore
Current Parts on Order and Synthetic Model Degree Distributions

Open Service Request Layer Scatter-Plot and Binned Degree Distri-
butions

TAMCN Quartile Breakdown

52

53

54

55
56

56
57
58
59
60
60
61

62

68

71

List of Tables

Table 2.1

Table 3.1

Table 4.1
Table 4.2
Table 4.3
Table 4.4
Table 4.5

Table 4.6

Graph Geodesics for Figure 2.2 (a)

Sample CSV Pull from a Notional Database

Attribute Search Table

Top 15 Current Parts on Order Layer Centrality Measures

Current Parts on Order and Synthetic Model Comparison

Deadline Parts on Order and Synthetic Network Metrics

Open Service Requests and Synthetic Network Metrics

Top 25 TAMCNs and Top 25 Maintenance Drivers

xi

15

38

45
50
64
66
67

70

THIS PAGE INTENTIONALLY LEFT BLANK

xii

List of Acronyms and Abbreviations

AAV

AS

CDF

CSv

DOD

EBS

fMRI

GEXF

GCSS-MC

GSC

GUI

HDFS

HMMWV

HTML

IDE

JSON

LAV

MANET

MDR

Assault Amphibious Vehicle

autonomous system

cumulative distribution function

comma separated value

Department of Defense

E-Business Suite

functional magnetic resonance imaging

Graph Exchange XML Format

Global Combat Support System-Marine Corps
giant strong component

graphical user interface

Hadoop Distributed File System

High Mobility Multipurpose Wheeled Vehicle
HyperText Markup Language

integrated development environment
JavaScript Object Notation

Light Armored Vehicle

mobile ad hoc network

Master Data Repository

xiii

MRI magnetic resonance imaging

NSN national stock number

NPS Naval Postgraduate School
NRP Naval Research Program

OSPF Open Shortest Path First

PDF probability distribution function
PFP Positive-Feedback Preference
SQL Structured Query Language

TAMCN Table of Authorized Material Control Number

Xiv

Acknowledgments

Professor Singh: Thank you for your cool demeanor and willingness to let me explore
ideas. I really appreciate the focus you applied to this work and your encouragement and

confidence that I could complete the task.

Professor Das: Thank you for your commitment to this project and the many hours you
spent bouncing ideas around. NPS can be very hectic and fast-paced, and I appreciate your
words of affirmation, which helped me believe I could finish. I also appreciate the energy

you bring to your work.

Professor Gera: Although you are not one of my thesis advisors, I would not have been
able to complete this project without your help in network science. Thank you for your

willingness to help a student from another department.

Lunch Club: Thank you, Dan, Alexis, Boulat, Warren, and Tony for your friendship.
You made spending many hours at NPS an enjoyable experience. In particular, I want

to acknowledge Dan for his assistance with math and LaTeX.

Sybil and Paulina: Sybil, witnessing you pass through your battle with cancer with grace
and a positive outlook inspired me to do better and never give up. Paulina, the love of
learning that you instilled in me at a young age has not abated, and I am grateful for your

ever-present support and love.

Joseph, Dominic, and Annie: Thank you, J, Dom, and Annie, for your patience as I plugged
away at schoolwork not only during the day, but many times late into the night, as well.
J and Dom, thank you for your boundless energy and affection. Difficulties do not seem
challenging after spending time with you. Annie, thank you for always believing in me and

caring for our boys, who are our most precious gifts. I love the three of you so much!

XV

THIS PAGE INTENTIONALLY LEFT BLANK

XVvi

CHAPTER 1

Introduction

Marine Corps Order 4400.150 [1] defines the Global Combat Support System-Marine
Corps (GCSS-MC) system as "a Marine Corps specific logistics chain management system
which provides cross-functional information to enhance ground supply and maintenance
operations." Figure 1.1 illustrates the interactions between users and the GCSS-MC system.
GCSS-MC supports users based in units in garrison, stationed abroad, and even in combat
zones. Whether GCSS-MC is fielded in a large maintenance facility within the U.S. without
any bandwidth constraints or in expeditionary locations in constrained communications

environments, GCSS-MC sustains logistics operations, ensures asset visibility, and enables

responsiveness in supply and maintenance requests.

CC/JTF: Combatant Commander/JointTaskForce

MAGTF: Marine Air Ground Task Force
NLI: Naval Logistics Integration

HQMC |&L: Headquarters Marine Corps Installation
andLogistics MEFs:

Marine Expeditionary Force

GCSS-MC/LCM: Global Combat Support System —
Marine Corps/Logistics Chain Management

Homelond Garrison
Securily Actmiies

Domestic = ‘\)
eechil o R |
=]

5'::'6": Vendors &Commercial
< Indust
Operotions 3

[Host Nation Support

GCSS-MC/LCM provides:

Visibility of Logistics Execution
Enterprise Logistics Planning
Logistics Command & Control
Logistics Chain Management

Figure 1.1. GCSS-MC High-Level Operational Concept Graphic (OV-1).

Source: [2].

GCSS-MC users access the system through an Internet-based graphical user interface (GUI)
built upon the Oracle E-Business Suite (EBS) database. Figure 1.2 displays an example

screen found in the GCSS-MC GUI that allows a user to fill and submit a service request.

r .
| £| Oracle Applications - GCERB - GCSS Mobile Training Suite Release 2011-01-01 lﬂgﬂ-‘

File Edit View Folder Tools Tools1 Tools2 Window Help ORACLE
29SP KX I DPDER L@ P% QB
B R e e et
g (g and Note Profile... B
Try It! ctions ¢
el 7 N | OMNZE 2 CRoine -
Click the Save button. (& [Serial EchlotiMaint
Phone Type| ELT (M21635 @
e I P1UNIT 35608 oo &
Phone Type, [FPO { Support Site i
WEID o I Closed On
. @ [us IO [Uswcou .
M Contacts / A Tasks i Related Objects Service History arges. Work Orders EI
Problem Summary [Naed help setting up classroom = T
- rint Frien:
Problem Code [[‘ W [) y)
Op I Status |OF -Deg From | To [13.5EP2011 235 [Refresh
Resolution Summary [
Resolution Code
Respond By Status Date
RDD Resolution By
Outcome Title Type Number Visibility | Type Visibility v
) l[[[M [(Description
4| 3 ‘ "/
\ Search Knowledge Unlink Solution [Refresh New | [Note Details og and Notes
”)
I
Record: 11 |1 | | | <0sC=

Figure 1.2. GCSS-MC Example Service Request Form. Source: [3].

Nearly every action undertaken in GCSS-MC revolves around the aspect of the service
request. Figure 1.2 illustrates the GUI users interact with to submit a service request.
Users can submit service requests for services such as requesting repairs, ordering parts,
and requesting equipment. GCSS-MC service requests even support non-traditional tasks
such as assistance setting up a classroom as seen in the Problem Summary field of Figure
1.2. Once a service request is submitted to the system, anybody with the proper access and

authority can view and modify the request.

For example, a Marine may submit a service request desiring repairs to a radio. The
radio repairman may access the service request, view the maintenance history of the item,
read notes concerning the problem, and note any maintenance completed. This example
illustrates interactions between users and the system. Any complexity is abstracted out of
the user interaction to create a friendly user experience. Figure 1.3 depicts an example work
queue containing all of the open service requests for some unit. The figure reveals some of
the underlying complexity of the system which lies in the Oracle EBS. Notice that the work

Eile Edit View F
+ v O®

Tools Actions Window Help

2L Y X

€

© Universal Work Queue - 13-8EP-2011 15:35:03

| £/ Oracle Applications - GCERB - GCSS Mobile Training Suite Release 2011-01-01

1@

(=D
ORACLE’

Work Type
[Servoe Request. Group e (469 |~ |
Senice Request453) . l'“” —— = Operational Status #+ Days Deadlined - Days In Shop ¢ Date Received In Shop ~ Second
Wy Tasks ()) 63 12-JUL-2011
Marketing Lists - Manual Assignments (0) My Owned (@) * | Deadlined 6322 0
[T i MyAssigned (38) _ * | Supply or Sevice O 0
1000001000... NON-MARES Croup Owned 558) | gypaly or Sevice 0 0
Group Assigned (3)} ¥
1000001000... NON-MARES L e e 2] Supply or Service 0 1]
Sernii ;
79504100 Click the Group Owned menu list item}
79306100 MARES NON-MEE ~ D11587 K.08770A Y 1]
79304100 Supply or Service 0 0
79112100 MARES NON-MEE BOD607B.11503A.850) Deadlined 37.25 1] VALY
79110100 MARES NON-MEE BO0B07B.11503A.850 Deadlined 727 0 BTRY
79106100 MARES NON-MEE BOOBO7B.11503A.850.) Deadlined 4013 0 VALY
79104100 MARES NON-MEE BOOB07B.11503A.850. Deadlined 402 0 BTRY
78912100 NON-MARES A70617G.10771B.FLK... Operational - Minor 0 4308 01-AUG-2011
78906100 MARES NON-MEE ~ BO0B07B.11803A.850) Deadlined 4718 0 VALY
78718100 MARES NON-MEE D11587K.08770A.M398 Deadlined 4302 49,02 26-JUL-2011
78716 Supply or Service 0 0
78714100 MARES NON-MEE BOOGO7B.11503A.850) Deadlined 50.19 0 BTRY
768712100 MARES NON-MEE ~ D11587K.08770A.M398 Operational - Degra... 0 0
7{;1‘71mm MARFS NON-MFEF NM1587K NA77NA MIGR Nneratinnal - Neara N n - e

Record: 1/1 || | | | <0sc»

Figure 1.3. GCSS-MC Example Work Queue. Source: [3].

queue resembles a database. All of the information entered in a service request, as depicted
in Figure 1.1, is incorporated into a database schema that controls the information and can

be accessed as seen in Figure 1.3.

Naturally, the GCSS-MC database contains data that includes information pertaining to
Marine Corps equipment. This presents two areas of interest. First of all, every Marine
unit (that has been granted permission) accesses the same physical Oracle servers to access
GCSS-MC. The size and frequency of the data retrievals vary from unit to unit. Generally
speaking, the greater the amount of data, the longer the time it takes to retrieve it. As the
data in the GCSS-MC database is growing rapidly, existing infrastructure may not handle
the demand for the data in a timely manner. Techniques should be developed that address
data growth through software without having to invest in costly additions to infrastructure.
Additionally, the current most organized view of the database exists in the work queue. This
solution may be sufficient for single units, but observations can be more difficult to perceive

as GCSS-MC aggregates data from multiple into one giant database.

1.1 Problem Statement

GCSS-MC treats every Table of Authorized Material Control Number (TAMCN) equally; it
does not distinguish TAMCNss as it provides content to users. Since it does not distinguish
among TAMCNSs, data retrieval from the database can be slow. New infrastructure may
obscure the speed of a database pull, but the underlying issue remains and as the data grows,
hardware improvements may cost more than a software solution. The fundamental function
of GCSS-MC remains providing the user with a situational awareness of the data in a timely

manner. The data is the key component of this function.

Network science analyzes relationships in information. Since the priority is data, net-
work science can identify influencers in the data that can be optimized to provide faster

performance while maintaining the same network infrastructure.

1.2 Research Questions
Network science may provide insight to the relationships found within the GCSS-MC
database which can help optimize it for access. This thesis seeks to answer the following

questions:

Can network science techniques identify influential portions of the GCSS-MC
database?

What methods are best suited for finding influence in a database?

Does GCSS-MC data model real life systems?

What can be done to optimize the performance of the GCSS-MC database?

1.3 Relevance to Department of Defense (DOD)

This research benefits the Marine Corps by providing insight into methods that can be used
to improve system performance. This study can also be applied to other entities within
the DOD since other services also need to manage logistics and supply systems. Although
this research applies to a logistics system, fundamentally this research seeks to improve
database performance in general. Therefore, this research has the potential to improve

databases throughout the DOD. Additionally, the methodology described in this thesis

may provide DOD entities with additional data analysis tools that enhance understanding

of patterns and trends within databases and can assist in the decision making process.

1.4 Thesis Organization

We organize this thesis in the following format. Chapter 2 begins with a coverage of prior
work conducted on the GCSS-MC database and an introduction to graph theory principles
found in this thesis. We also discuss degree, eigenvector, betweenness, and closeness
centrality and introduce well known synthetic models. We conclude by introducing other
network properties that characterize networks. Chapter 3 describes our methodology, which
identifies tables in the GCSS-MC database that contain information used to construct the
network, export the tables to a usable file format, and construct and analyze the network.
Chapter 4 applies the methodology described in Chapter 3. We also provide an analysis of
the data and describe the formula we developed to rank data within the database. Chapter

5 presents the findings of this thesis and provides recommendations for future work.

THIS PAGE INTENTIONALLY LEFT BLANK

CHAPTER 2:
Background

This chapter provides background information on network science. We also address previous
work and analysis conducted on GCSS-MC as it pertains to this thesis. We begin by
introducing topics in graph theory that are used in constructing a complex network. Once
the reader obtains an overview of graph theory principles and an understanding of the
importance and functionality of complex networks, we discuss methods for analyzing
networks. Specifically, we introduce four network centralities commonly used to determine
influence in a network. For each centrality, we discuss cases where they are normally
used and research associated with them. After providing an example that encompasses all
the centralities we introduce research that combines centrality measures. We also discuss
three widely used synthetic models used to model networks. We conclude the chapter by

introducing other important concepts of network science used in this thesis.

2.1 GCSS-MC Research

Although we introduce GCSS-MC in Chapter 1, we focus our attention on TAMCNSs. In
this section, we also discuss previous research conducted on GCSS-MC. Refer to Section
2.1 in Bitto’s [4] thesis for further information about the architecture of the GCSS-MC
database. Marine Corps Order 4400.150 [1] identifies the TAMCN nomenclature by the
commodity, item number, and major class and subclass of Marine Corps inventory. We

discuss establishing relationships between TAMCNS in further detail in Chapter 3.

2.1.1 Finding Redundant Entries in GCSS-MC Database

Previous studies [4], [5] on performance issues affecting GCSS-MC analyzed the growth of
data associated with GCSS-MC data tables. Das [5] received data tables representing a 2014
snapshot of GCSS-MC tables. Bitto [4] loaded four gigabytes of data into an Oracle 11G
single instance database and focused on long-running Structured Query Languages (SQLs)
that involve multi-table joins. The research examined moving these SQLs to a 10-node,
100-terabyte Hadoop Distributed File System (HDFS) cluster and using Java code to achieve
the same result.

A follow-on research effort [5] continued to analyze the data integrity of the tables. If
there is duplicate or non-existing information in the database, the time needed to execute
a query increases. Duplicate information includes rows in a table loaded multiple times
with the same data. Non-existing information is an entry in a table that is blank. The study
conducted the analysis on all 3174 tables in the database. About half of those tables are
actually Oracle system tables. The script written in R analyzes every table, generates a

statistical summary for each table, and outputs a .txt file with the analysis.

AAC TAMCN NSN NOMENCLATURE
Length:8345 Length:8345 Length:8345 Length:8345
Class :character Class :character Class :character Class :character
Mode :character Mode :character Mode :character Mode :character
CLASS OF SUPPLY RECORD_KEY ID NO MODEL_NO
Length:8345 Length:8345 Length:8345 Length:8345
Class :character Class :character Class :character Class :character
Mode :character Mode :character Mode :character Mode :character
ITEM EXIT DATE DATA SOURCE SOURCE_FROM
Min. :1950-01-01 00:00:00 Min. :1.000 Length:8345
1st Qu.:2009-12-01 00:00:00 1st Qu.:1.000 Class :character
Median :2016-07-01 00:00:00 Median :2.000 Mode :character
Mean :2016-03-09 02:28:47 Mean :1.848
3rd Qu.:2021-10-01 00:00:00 3rd Qu.:2.000
Max. :2036-07-01 00:00:00 Max. :4.000

Figure 2.1. Example MDR Table Output. Adapted from [5].

Every .txt file represents an analysis of a unique table. Refer to Figure 2.1. The analysis
includes the number of rows in the table, the name of every column, the minimum value
of each column, the values of the columns split into quartiles, and the maximum value of
the column. The study recommended methods to investigate the data by first determining
the number of rows to ensure the amount of data on hand matches the amount that should
actually be there. Then they examine the form of the data. For example, if the input data is
a character, but it was originally a number, the SQL performance would be affected since
it needs to map the number to the character type. The system then identifies potentially
problematic data entries. An example of a potentially problematic data entry is a date
decades ago when the entries referring to it did not exist or one in the future. Consider an

entry adding a computer to the database in 1920 although computers were not invented until

8

later. Also, consider an entry for a computer in maintenance in 2037. A computer currently
in maintenance cannot have a current date two decades in the future. It then examines the
correctness of the data distribution. The data distribution is correct if, for example, 75%
of dates are earlier than 2021 and 25% of dates are earlier than 2009. Lastly, it runs all

possible types of SQL queries and further investigates slow queries.

2.2 Principles of Graph Theory

West [6] defines a graph G as a triple consisting of a vertex set V(G), an edge set E(G),
and a relation that associates with each edge two vertices (not necessarily distinct) called
its endpoints. In this thesis, we refer to a vertex in V(G) as a node. Figure 2.2 represent
two main types of graphs, directed (digraph) and undirected graphs. Rosen [7] defines a
digraph as consisting of a nonempty V(G) and a set of directed edges in which an edge is
an ordered pair (u,v) where the edge starts at node u and ends at node v. A loop in a graph
connects a node to itself. Rosen [7] states an undirected graph does not have any edges
with direction. Rosen [7] also states that a simple digraph does not have repeated directed
edges or loops. A directed multigraph can have multiple edges either to other nodes in V(G)
or to itself. Rosen [7] further states that a multigraph is an undirected graph that contains
multiple edges but no loops. West [6] defines the order of a graph, n(G) as the total number
of nodes in V(G) and the size of a graph as the total number of edges, ¢(G).

Rosen [7] defines the degree of a node v in an undirected graph as the number of edges
incident on it, except that a loop at a node contributes twice to the degree of that node.
West [6] states an edge e is incident to a node u if u is an endpoint of e and the degree
of some node u belonging to V(G) is written as d(u). For example, in Figure 2.2 (a), the
degree for node 3 is d(3) = 4. Every node of a digraph will have a degree. This degree is
partitioned in an in degree and an out degree, annotated as d*(«) and d~(u) for some node
u, respectively. The sum of d~(«) and d*(u) equals d(u). In Figure 2.2 (¢), d”(3) = 1 and
d*(3)=3. So,d"(3) + d*(3) =4.

Rosen [7] states that two nodes u and v are considered neighbors, also referred to as adjacent,
if u and v share an endpoint in an edge. West [6] defines a neighborhood of some node u
as the set of all nodes adjacent to u, written as N(u) = 1...n. In both (a) and (b) of Figure

2.2, N(3) = {1,4,6,5}. There are various ways to represent a graph. This thesis utilizes

/ 1 2 3 4 5 6\
1 011101
2 1 0 0 0 0 O
310 0 1 1 1
4 1 01 0 1 0
\ 5 00110 1 /
6 1 0 1 0 1 0
(a) Undirected Graph (b) Adjacency Matrix for (a)
1 2 3 4 5 6\
0 1.0 0 0 1
1 0 0 0 0 O
1 0 0 0 0 O
1 01 0 0 O
0 01 1 10 /
0 01 0 1 O
(c) Directed Multigraph (d) Adjacency Matrix for (c)

Figure 2.2. Example Graphs and Corresponding Adjacency Matrices

adjacency matrices as the main graph representation to compute necessary calculations.
West [6] defines the adjacency matrix, A(G), as the n-by-n matrix in which entry a; ; = 1 if
an edge exists in G with endpoints {v;, v;}. Figure 2.2 (b) and (c) are matrix representations
of their respective graphs. For Figure 2.2 (b), the adjacency matrix is created by inserting a
1 into the matrix if the two nodes share an edge and 0 otherwise. The nodes are listed in the
first row and column of the matrix. The summation of any node’s row or column is equal
to the degree of that node. The adjacency matrix for Figure 2.2 (d) is similarly constructed.
Since the edges have direction in a digraph, the entry corresponding to a pair reflects that.
In Figure 2.2 (d), the degree of any node is equal to the summation of that node’s column

and the summation of its row.

10

West [6] states that a path is a simple graph whose nodes can be ordered so that two nodes
are adjacent if and only if they are consecutive in the list. Some graph G is capable of
possessing multiple paths between two nodes. The shortest path between two nodes is the
path with the fewest edges between end nodes, also known as a geodesic. For example,
in Figure 2.2 (a), (1,4,3,5) is a path between nodes 1 and 5 so (a) contains a (1, 5) path.
Additionally, since a path exists between 1 and 5, (1,5) is said to be connected. Figure 2.2
(a) contains three shortest paths from 1 to 5 including the path (1, 3, 5). Moreover, if for any
nodes u,v € G, a (u,v) path exists, G is considered to be connected. Both Figure 2.2 (a)

and (b) are connected graphs.

2.3 Complex Networks

In this section, we discuss the concept of complex networks. We explore the definition
of a complex network and provide some examples. Additionally, we introduce multilayer
networks. In social network analysis, centrality is defined as the position of some person
relative to other persons within that social network [8]. We use this definition in general to
discuss central, or important, nodes in a network. We introduce different centrality measures

such as degree, eigenvector, betweenness, and closeness along with some examples.

2.3.1 Introduction to Complex Networks

Section 2.2 introduces concepts found in Graph Theory. Complex networks are similar to
traditional graphs but deal with a much larger scale. Boccaletti et al. [10] define complex
networks as "networks whose structure is irregular, complex and dynamically evolving in
time, with the main focus moving from the analysis of small networks to that of systems
with thousands or millions of nodes, and with a renewed attention to the properties of
dynamical units." For example, consider Figure 2.3, created by Burch and Cheswick [9],
depicting a map of the Internet. Other examples of complex networks include power grids,
road networks, the brain, airline routes, and terrorist networks. These examples illustrate
the variety associated with complex networks. They are found across scientific disciplines

such as biology, engineering, and sociology.

Due to their size and complexity, complex networks can be difficult to understand and

study. Strogatz [11] describes six possible complications associated with complex networks:

11

Figure 2.3. Complex Network Depicting Shortest Paths from a Test Host to
an Announced Network. Source: [9].

structural integrity, network evolution, connection diversity, dynamical complexity, node
diversity, and meta-complication. Structural integrity can be an issue with a lack of
understanding of how the system works. Complications with network evolution can be
observed with the Internet. Consider Figure 2.3. If Burch and Cheswick [9] wrote Mapping
the Internet today, the resulting Internet mapping would appear completely different since
the Internet evolves and changes frequently. Connection diversity entails the variability
of edges in a network with regard to aspects such as weight and direction. Nodes that
are nonlinear can exhibit dynamical complexity. Kohn [12] studied cell cycle regulatory

networks by organizing known interactions in the form of a diagram, map, and/or database

12

and developed a molecular interaction map with intricate wiring. The interactions between
the diverse types of nodes in this map illustrate complications that can arise from node
diversity. Attempting to map the Internet raises meta-complications. This occurs because
the physical and logical wiring for the Internet increases the complexity of the structural
integrity for an Internet topology and the Internet constantly changes, which affects the

network evolution. Meta-complications occur when complications influence one another.

2.3.2 Degree Centrality

In Section 2.2, we defined the degree of a graph. In this section, we extend this principle to
a measure of centrality within a network. Each node in a network has a degree centrality.
Freeman [13] describes the degree of a node as the count of the number of other nodes
adjacent to it and therefore in direct contact to it. Opsahl et al. [14] formalize this measure

as:
N

Coi) =) ai; 2.1)
J
where Cp is the degree centrality, i is the node being measured, j represents all other nodes,
and a is the adjacency matrix in which the cell g; ; is 1 if i is connected to j and O otherwise.
For example, Cp(3) = 4 for node 3 in Figure 2.2 (a). While degree centrality is measured
per node, a graph can have an average degree. Average Degree, Avgg, for some graph G is
measured as: SV Co)
Avgg = W (2.2)
where n(G) is the order of the graph. For example, the average degree for Figure 2.2 (a) is
3.

Ortiz-Arroyo [8] and Scott and Carrington [15] describe degree centrality as a local measure
because given any node u in a network, Cp(u) is confined to its neighborhood N(u). For
example, node 2 ¢ N(3) in Figure 2.2 (a). Cp(3) in Figure 2.2 provides a measure of
importance in the graph but does not take into account any nodes outside of its neighborhood.
However, [8] asserts nodes with high degree centrality have a higher probability of affecting
the overall network since they have a relation to every node connected to them and can

quickly transmit information and communicate with other nodes in their neighborhood.

13

Laxe et al. [16] compared port hierarchies from 2008 and 2010 to determine the effect of
changes to maritime port policy following the reaction to the financial crisis of 2008, as
documented in [17]. After the crisis in 2008, maritime companies modified their policies
to choose different ports. Laxe et al. collected data and constructed a network where nodes

represented ports and edges represented shipping lanes between ports. Laxe et al. utilized

os1(v)
Ost

degree centrality and a form of betweenness centrality p where p; = . s2v#je(pi} and
o:(v) is the number of shortest trajectories between s and ¢ to rank ports based on how
influential they are for both 2008 and 2010. They observed that the degree centrality did
not vary as much as the p centrality for the hierarchy between 2008 and 2010. Laxe et al.
used these comparisons to conclude that the combination of both centralities can precisely
determine port hierarchies and that the throughput for the transport network of cargo has
contracted. They also conclude mediation carried out by Indonesian ports with respect to
movement along the pendulum line of the East of Asia-Northern Range seems to have been
consolidated, and the relative weight of emergent port regions located at the entrance and

exit of the Panama Canal may have an effect on the potential enlargement of the channel.

Opsahl [14] claims that degree is a basic indicator and is often used as a first step when
studying networks. The study of Laxe et al. [16] exhibits this behavior and helps establish a
comparison with the p centrality used in their paper. This thesis also begins with a degree

centrality analysis as a first step in Chapter 3.

2.3.3 Betweenness Centrality

In Section 2.2, we defined the shortest path of a graph. Betweenness focuses on shortest
paths in its measure of centrality. Shortest paths can have a significant role in complex
networks. Open Shortest Path First (OSPF) is a common routing protocol used to route
Internet traffic. In this routing protocol, as the name states, a packet is routed from some
node u to some node v using the shortest path. If 7 is a node and the path from (i, v) is (u, ¢, v)
in a graph representing a routing network where E(G) = {(u,?),(t,v)}, then intuitively ¢
has a high betweenness value. Freeman [13] describes a node such as ¢ as a node that
controls communication between the two other nodes. Pioro et al. [18] explain in a larger
network where there are multiple shortest paths to choose from, OSPF will evenly distribute
traffic among those paths. Nodes along these paths have different values of betweenness.

Freeman [13] expands on his explanation of betweenness in a larger network. When multiple

14

shortest paths exist between two connected nodes, the nodes exhibit a partial betweenness
meaning nodes along those paths possess some control in the transfer of information between
the connected nodes. Freeman [13] discusses nodes with partial betweenness as having the
potential to control the information flow as a probability. For nodes u, v € G, the probability
of using any one shortest path is gu%, where ¢g is a geodesic (shortest path) from (u, v). If
t is a node in a (u, v) path, g,,(¢) is equal to the number of shortest paths ¢ is a member of

from (u, v). So the betweenness b of node ¢ on a (u, v) path is:

(2.3)

buo(t) = = - guo(t) = $20

uv uv

The probability introduced earlier is b,,(t) for t because it is the possibility that ¢ will be
a member of a randomly chosen (u,v) path. Freeman [13] continues and determines a
universal betweenness centrality Cp for any node k taking into account all nodes and paths

in G by taking the summation of all of the partial betweenness values of k:

Cp(k) = an Zn: bij(k) (2.4)

i<j

where i and j are connected points and i # j # k for all unordered pairs in G, and n is the

order of the graph.

Table 2.1. Graph Geodesics for Figure 2.2 (a)
1 2 3 4 5 6
1 - 1 1 1 3 1
2 - - 1 1 3 1
3 - - - 1 1 1
4 - - - - 1 3
5 - - - - - 1
6 - - - - - -

In our example, we use Cp as formalized by Boccaletti et al. [10]:

. nji(i)
Csi)= Y, — (2.5)

py
jkeV(G)jek Ik

15

where i is the node whose betweenness is measured, j and k are nodes, 7 are the number of
shortest paths from (j, k), and n; (i) are the number of shortest paths from (j, k) containing
i. Table 2.3.3 lists the number of shortest paths found in Figure 2.2 (a). Since Figure 2.2
(a) is an undirected graph, the shortest path (i, j) for any nodes i and j is the same as (J, i).
Table 2.3.3 reflects that quality of undirected graphs and lists the values only once. Node 3
appears only once in each of the shortest paths for paths (1,5), (2,5), and (4, 6). The Cp(3)

equals:

Cg(3) = Z G

jikeV(lG),j#{C ik (2.6)
==-+-+=-=1
37373

Zhou and Mondragén’s [19] study on modeling the Internet topology at the autonomous
system (AS) level explores which model models the Internet most accurately and introduces
their own model. First, they use an actual AS level graph to set a basis for comparison for
various measures including betweenness centrality. They study an Interactive Growth and
a nonlinear preferential attachment model. An Interactive Growth model creates a random
graph and adds nodes through preferential attachment. We discuss preferential attachment
in further detail in Section 2.3.8. The network adds nodes per time step with probability
p € [0, 1] and probability 1 — p. The network adds a new node with probability p € [0, 1]
connecting it with a host that exists in the network and adds two edges from the existing host
to two other peers in the network. The network adds a new node with probability 1 — p and
connects it with two host nodes and adds a new edge between one of the hosts who received
the new node and an existing host in the network. Nonlinear preferential attachment favors
high degree nodes, and [19] implements this model similarly to Interactive Growth except
it uses nonlinear preferential probability. Zhou and Mondragén combine these two models
and introduce the Positive-Feedback Preference (PFP) model. In PFP, the network adds
a node by attaching it to an existing host and also adds an edge between that host and a
peer with probability p € [0, 1]. With probability ¢ € [0, 1 — p], the networks attaches a
new node to an existing host and adds two edges between that host and two peers. With
probability 1 — p — g, the network attaches to two existing host nodes and adds an additional

edge between one of those host nodes and a peer. They find that the maximum value of

16

Cp for the AS and PFP graphs are significantly larger than for the Interactive Growth and
nonlinear preferential attachment graphs. Zhou and Mondragén conclude that PFP more

accurately reproduces AS level measurements.

2.3.4 Closeness Centrality

Closeness centrality is similar to betweenness centrality in the sense that they both use
shortest paths in their centrality measure. While betweenness centrality measures a node
based on the number of shortest paths it is a member of, closeness centrality measures the
shortest distance from a node to every other node in the graph. Specifically, Freeman [13]
describes closeness as the inverse of the sum of the shortest distances from a node to every
other node in the graph. The inverse is necessary because the value increases as the nodes
are farther apart. Borgatti [20] describes how closeness centrality affects a graph with
regard to network flow. Nodes with low closeness centrality in a graph signify that the node
is relatively close to other nodes in the graph and can receive flows sooner. Conversely, it
can also reach other nodes faster. Costanbeder and Valente [21] relate closeness to a social
network. Nodes with low closeness centrality measures are able to more efficiently contact

other nodes within the network.

First, Freeman [13] defines the number of edges between two nodes as d(i, k) where k is
the node whose closeness is being measured and i is some node in V(G). The closeness

centrality Cc for k is:

Ce(k)™ =) di,k), 2.7)
i=1

where i is a node connected to k and n is the order of the graph. Freeman describes how
this value can be normalized by removing the impact of the size of the graph by taking into
account the average distance between k and all other nodes in the graph by subtracting 1
from n. For some node k whose neighborhood is N(V(G) — k), meaning it is connected to
all other nodes except itself. n — 1 is the minimum sum of the distance to all the nodes. As
the normalized value of C¢ shrinks, the average distance between a node to any other node

grows. Freeman cites the normalized closeness measure as

n—1

Cc(k) = m

(2.8)

17

The closeness centrality for node 3 in Figure 2.2 (a) is

n-—1
CcB) = o——=
¢ " d,3)
_ 6-1
d(L3)+d(2,3) +d(4,3) +d(5,3) + d(6,3) (2.9)
5
Tl l+1+2+4142

5
= — ~ (.833.
6

Ma and Zeng [22] study metabolites in metabolic networks to analyze the connectivity of
genome-based metabolic networks. They find the genome based metabolic networks for 65
fully sequenced organisms and perform a connectivity analysis on the entire network. If a
sub-network is fully connected, they refer to it as a strong component. The largest strong
component in the network is the giant strong component (GSC) containing 274 nodes.
The GSC seems to model a scale-free network and resembles the bow-tie structure of the
internet. We discuss scale-free networks in further detail in Section 2.3.8. Ma and Zeng
use closeness centrality to characterize the connectivity of the GSC. Through closeness
centrality, they find the top 10 central metabolites in the E.coli metabolic network. Using
this information, they find that eight of these metabolites are in the central metabolism.
They also introduce the term overall closeness centralization index to find correlations with

the average GSC path length.

2.3.5 Eigenvector Centrality

We discuss degree centrality in Section 2.3.2. While computing degree centrality, every
node is considered equal in terms of importance. If a uniform weight is applied, then the
weighted degree can be computed and the ranking of the nodes (based on degree centrality)
stays the same. Eigenvector centrality takes into account the individual importance of a
node based on the importance of its neighbors. For example, according to [23] and [20],
a node with a high degree centrality demonstrates an example of an important node in
the network. For a node, the eigenvector centrality value increases if that node connects
to important nodes, and the converse is true. Bonacich [23] also points out that unlike

degree centrality, which is a local measure, eigenvector centrality takes into account the

18

entire network because indirect connections also affect the eigenvalue of a node. Bonacich

describes eigenvector centrality in two equal ways:

Ax = Ax, Ax; = Z a;jjxj, (2.10)
j=1

where A is the adjacency matrix, A is the largest eigenvalue of A, x is the eigenvector

associate with A, n is the order of the graph, and a;; is an entry in the adjacency matrix.

Seary and Richards [24] describe that eigenvalues are affected and related to other network

features such as diameter, cycles, number of triangles in a graph, and graph clustering.

To find the eigenvector centrality for Figure 2.2 (a):

01 110 1\ /1 4

1 00 00 0f |1 1

i 1 0011 1]]1 3
X; = aiiX; = 1 1=1 |- 2.11
;“1010101 4 @.11)

00110 1|11 3

1 0101 0/ \1 3

Notice that x(1) in Equation 2.11 is the degree centrality vector. It is distance 1 from each

node. Continuing with the equation:

011101\ /[4 11
1 00 00 O |1
2(2) = 1 00111 . 3 _ 8 ‘ 2.12)
1 01 01O0] |4 14
00110 1f1{3 10
1 01 01 0/ \3 10

x(2) in Equation 2.12 represents a weighted degree centrality with a distance of 2 or less.

19

We continue with x(4) which yields the weighted degree centrality with a distance 4 or less:

01 110 1\ (36 110
1 00 00 Of |11 36
() = 1 00111 . 25 _ 76 , 2.13)
1 01 01 0] |45 142
00110 1f(32 99
1 01 01 0/ \29 93

normalizing x(4), according to Newman [25], yields the desired eigenvector. We use

Networkx (which we discuss in further detail in Section 3.1) to determine the eigenvector:

0.4504
0.1367
0.5138
0.4167|
0.4089
0.4167

(2.14)

The eigenvalue corresponding to node 3 in Equation 2.14 is 0.5138. It is the highest
eigenvalue in the graph. It is also a member of four triangles, which is the highest in the
graph. This correlates with Seary and Richard’s [24] statement about the relationship with
eigenvector centrality and number of triangles, namely that eigenvector centrality increases

as the number of triangles increases.

Lohmann et al. [26] apply eigenvector centrality to analyze connectivity in functional
magnetic resonance imaging (fMRI) data associated with the human brain. They apply
eigenvector centrality to fMRI data for the first time. Previous fMRI studies using Network
Science focus on other centrality measures such as betweenness. Lohmann et al. decide to
use eigenvector centrality because it is less computationally intensive than betweenness and
therefore can be applied to larger areas of the cerebrum. The study applies an eigenvector
measure to each voxel in the brain. Yuhas [27] defines a voxel as a 3-d section of the
brain containing about one million brain cells. This paper analyzes a network of about
40,000 voxels, which belabors the necessity of using eigenvectors to cover a larger portion

of the brain than betweenness. Voxels with high eigenvector centrality are connected and

20

correlated with other central voxels in the brain. Lohmann et al. [26] collect data by
conducting two experiments. Both experiments ask subjects to fixate on a cross on a screen
while magnetic resonance imaging (MRI) scanners scan the subject’s brain. One group is
in a state of hunger while the other is in a state of satiety. This study finds that the left
and right thalamus possess higher eigenvector centralities in the experiment conducted on
sated subjects, suggesting that the subjects may have fatigued as the experiment continued.
Lohmann et al. cites research proposing that the thalamus affects mediating attention and
arousal to back the claim. The study also finds high eigenvector values in cortical and

subcortical areas.

2.3.6 Centrality Summary

In this section, we summarize the centralities discussed from Section 2.3.2 through Section
2.3.5 by examining a network that utilizes these measures created by Beveridge and Shan
[28]. Beveridge and Shan create a social network to analyze characters from George R.
R. Martin’s Game of Thrones: A Storm of Swords. In the social network, nodes represent
characters from the book and edges connect nodes if names appear within 15 words of one
another. Edges in this network are weighted and if there already exists an edge between two

nodes, the edge weight is incremented.

Figure 2.4 portrays the Game of Thrones social network graph. The size of the node
represents degree centrality. The larger the node, the greater the degree. The greater the
degree centrality for a node, the more nodes that node is connected to. According to the
study and by visual inspection, Tyrion has the highest degree Centrality. Tyrion also has
the lowest closeness and highest eigenvector centrality. Tyrion’s low closeness centrality
means that his average shortest paths to other nodes are shorter than others. Tyrion can
more quickly spread information through the network. High eigenvector centrality signifies
that Tyrion is connected to other influential nodes. Examining both the book and Figure
2.4 illustrate that Tyrion indeed has many interactions with other main characters of the
book. The only other character that has some centrality higher than Tyrion is Jon. Jon
has the highest betweenness centrality. Beveridge and Shan [28] note that this signifies
that as information spreads through the graph, Jon is positioned to interact with multiple

communities sending information.

21

0]
lliyrio

Q@ Daaricts
Belwaso D

) rogo
Barrista.r{ K Icrjri
10}

Missandei

oDaé%le

Rhaegar

Kraznys Worm o
© Rakharo

Aegon

@
Chataya

Olenna

Tommen g C_
Myrcella PodrickBronn lyn

Figure 2.4. Game of Thrones Social Network. Source: [28].

Beveridge and Shan [28] also discuss the importance of using various measures of cen-
tralities because they complement each other since they assign influence based on different

parameters. We apply this logic in Chapters 3 and 4 as we determine the most influential

TAMCN.

2.3.7 Combining Centrality Measures

centrality measures highlights importance in different ways.

In this section, we discuss methods used to combine centrality measures. Each of the

important than others depending on the circumstance. Daly and Haahr [29] and Hui et

22

Some measures are more

al. [30] apply social network analysis concepts to their respective research and use multiple

measures of centrality to determine overall importance in their respective networks.

Daly and Haahr [29] apply social network analysis techniques in their study of mobile ad hoc
networks (MANETS). They introduce aspects of MANETS that demonstrate the difficulty
in delivering messages such as the inconsistent topology of the network and the possibility
of many disconnected components. They frame these complications as an information
flow problem within social networks. They predict that information flow in a MANET
can be achieved using betweenness centrality and similarity and tie strength calculations.
Similarity and tie strength calculations are used since a MANET changes. They use
similarity to examine the common nodes between the node measured against the destination
node and calculate it by summing the overlapping neighbors between the two nodes. This
calculation assists in ranking the adjacencies established and predicting future relations.
They aggregate various metrics to establish tie strength between connections including
frequency, intimacy/closeness, and recency. Frequency calculates how often a node is
encountered. Intimacy/closeness measures how long two nodes remain connected. Recency
measures how recent two nodes encountered each other. Tie strength is the summation of
frequency, intimacy/closeness, and recency. They use betweenness, similarity, and tie
strength to develop utility measures for each one that are used to determine which node
is the best carrier for some message. Each utility measure is assigned to a node u with a
destination node d compared to some other node m. The utility values have equal importance
and the total utility value is the sum of the utilities, which they call the SimBetTSUtil value.
This is also the name of the routing protocol using these utility measures. They measure
each of the utilities and simulate SimBetTS routing, named after the SimBetTSUtil value,
and compare it to Epidemic Routing and PRoOPHET routing. They find that the betweenness
utility provides the best overall performance in delivering messages although it causes
greater congestion in central nodes. Compared to PRoOPHET routing, SimBetTS performs
better. SimBetTS yields similar performance results to Epidemic routing except that its

message delivery contains less overhead.

Hui et al. [30] apply social network techniques in their study of delay-tolerant networks.
First, they present the problem of forwarding data in networks that develop in an ad hoc
manner such as those containing smart devices that connect to networks intermittently. They

cite previous methods of dealing with ad hoc networks using routing tables that update base

23

on the current topology of the network but it is cost ineffective since the network changes
frequently and the routing tables only partially captures the structure of the network at any
given time. Hui et al. propose using network centralities found in an ad hoc network to
design the routing algorithm. Specifically, they focus on community detection methods and
general centrality measures. We discuss community detection in further detail in Section
2.3.9. The general centrality measure used in this paper is similar to degree centrality in
a digraph in regard to the degree of the node except that this centrality only counts unique
neighbors connected within a certain time frame. They develop the BUBBLE algorithm in
which some node u sending a message to some destination d traverses a global hierarchical
ranking tree based on the general centrality previously discussed until it locates a node
within the same community. Then a local ranking system sends the message until the
message either reaches d or the hop count associated with the message expires. They
implement BUBBLE in an ad hoc network and compare its performance to PROPHET and
SimBetTS routing. They find that BUBBLE routing performs similarly to both PROPHET

and SimBetTS but uses fewer resources.

2.3.8 Synthetic Models

In this section, we study various methods used to create synthetic networks. Modeling a
network enables researchers to potentially quickly and easily study real life phenomena. For
example, infectious diseases can spread quickly and their impact is substantial on society.
Synthetic models are relevant to the study of infectious disease because its growth can
be studied without the necessity of observing a live outbreak. Other phenomena can be
expensive to reproduce. For example, modeling the network structure of the Internet or a
power grid would be cost prohibitive if actual equipment were used. We review random
graphs as formalized by Erdds and Rényi, small-world graphs as formalized by Watts and

Strogatz, and preferential attachment as formalized by Barabdsi and Albert.

ErdSs and Rényi [31] discuss the creation of a random graph in terms of the probability
that edges form given a fixed V(G) for some graph G and a probability p. They begin by
describing the number of graphs that can be created from V(G). If E(G) for arandom graph
is empty, then the probability to create edges in G is 0. They establish that there are ((;1((22)))
total possible number of graphs created with n(g) nodes and e(g) edges and where ("(29))

is the possible number of edges between n(g) nodes. The number of edges is an outcome

24

of creating the random graph. They prove properties relating to random graphs such as
the probability of creating a completely connected graph, the probability that the greatest
connected component (the subgraph of G with the greatest amount of connected nodes)
has n — k nodes where k = 0, 1,2, ..., the probability that a random graph contains k + 1
connected components, and the probability that as edges are added to a random graph in
its construction, edges that are not in the graph have the same probability to be selected as
the next edge. ErdGs and Rényi [32] conduct a follow on study and examine the probable
structure of a random graph. They expect the number of edges in a random is (”(29)) p, where
this is actually the mean number of edges since the graph is random and the total number

of edges can vary for each graph with probability p. Then,

, (2.15)

where e(g) is the size desired for the random graph and n(g) is the order of the graph.

Watts and Strogatz [33] define a small-world network as a network that possesses a high
clustering coefficient such as a lattice and small average path length similar to random
networks. Watts and Strogatz create a small-world network by beginning with a regular
graph. A regular graph is a graph of order n where each node is connected to its nearest k
neighbors. At this point the graph is highly structured. They introduce a probability p as
they rewire edges in the regular graph. A regular graph represents p = 0. As p approaches
1, more edges between nodes are randomly rewired to other nodes until p = 1 produces
a random unstructured graph with a low average path length. We note that the number
of edges does not increase or decrease as p changes, but rather the structure of the graph.
In other words, e(G) remains constant while E(G) changes. Watts and Strogatz continue
that with real life examples such as power grids, p creates a graph with a higher clustering
coefficient which stems from more structure and a low average path length allowing nodes
to reach each other on shorter paths. In this power grid, we suspect the high clustering
coefficient can be attributed to a city power grid while the low average path length can be

attributed to connections between cities.

Barabasi and Albert [34] continue research on small-world networks by exploring scale-
free networks which are a type of small-world network. First, they discuss the interaction

between nodes in a network where the interaction is probabilistic and decays with a power-

25

law distribution. In a network following a power-law, high number of nodes have small
degree centralities, which depict the connections to other nodes, and the number of nodes
with high degree centrality decreases exponentially. Barabasi and Albert study small-world
and random networks and observe that those networks fix the order of the graph without
modification. They continue with the comparison to real-life networks, namely that they
generally do not possess a constant number of nodes. Usually, real life networks change
as they grow by adding nodes to the network. Barabdsi and Albert incorporate preferential

attachment through the equation:

ki

ki) = ,
I1(k;) S5

(2.16)

where I1(k) is the probability that a node k introduced into the network will connect to some
existing node i depending on the connectivity of i. In other words, for every node introduced
into the graph, it will find a node it prefers based on some connectivity and connect to it.
They contrast this distribution to the Poisson distribution commonly found in random graphs.
In random graphs, the tail of the distribution contains fewer high value members than a
tail with a power-law. This signifies that there are fewer high degree centrality nodes in
random graphs. They expand the scaling attributes of power-law distributions to a network
incorporating preferential attachment. Since this model follows a power-law distribution,
its growth is scale-free. Scale-free growth signifies that the shape of the distribution does

not change as nodes are introduced to the graph.

2.3.9 Other Network Properties

In this section, we discuss other network properties used to analyze complex networks.
Although the centralities covered in Sections 2.3.2 through 2.3.5 identify importance in
a network, other properties are used to gain an understanding of network behavior. We

examine community detection, assortativity, and k-core identification in further detail.

Newman and Girvan [35] describe community structure as a network in which densely
connected components are connected through a sparse number of edges. These densely
connected components are also known as clusters. Community detection methods strive to
identify and quantify this structure. For example, Figure 2.5 colors the nodes of the graph

based on their modularity class as defined by Blondel et al. [36]. Newman and Girvan [35]

26

Figure 2.5. Graph Demonstrating Modularity

describe modularity as a quality index for a graph clustering between —1 and 1. They find
community structure by assigning betweenness values to all edges in the graph, locating
the edge with the highest betweenness and removing it, recalculating betweenness for the
remaining edges, and then repeating. Blonde et al. [36] introduce an algorithm named the
Louvain Method that finds high modularity clusterings within the graph and partitions the
nodes into communities. The algorithm they use is divided among two phases that repeat
iteratively. The initial phase partitions the nodes into as many communities as there are
nodes and then examines the neighborhood of each node by comparing the node to its
neighbors and determining whether the modularity would improve by placing the node in
the community of its neighbor. The second phase builds a graph where the nodes are placed
in the communities determined in the first phase by summing the edge weights between
nodes in the communities. The edge weight in an undirected graph such as in Figure 2.5
remains 1. Afterward, the two phases are iteratively repeated. The modularity for Figure

2.5 is equal to 0.436 and the coloring shows two communities identified by the algorithm.

While modularity partitions nodes based on their membership in a community with rela-
tion to the density of that cluster, according to Newman [37], assortativity (also known as
homophily) analyzes nodes based on similar connections among nodes. In another paper,
Newman [38] describes the importance of assortativity and presents an algorithm for deter-
mining the assortativity coefficient of a network. Assortativity recognizes connections that

exist based on similar relationships. Newman uses example from social networks to illus-

27

trate the point but also conjectures that the same phenomenon occurs in nonsocial networks
as well. For example, he describes assortative mixing with relation to language. Consider-
ing a country with multiple languages, assortative mixing can partition communities based
on a particular language which demonstrates that people tend to communicate with other
people who speak the same language. Newman [38] discusses assortative mixing by vertex

degree in an undirected graph using the equation:

L Zjk Jk(ejx — qjqx)

2 b
Ty

(2.17)

where r is the standard Pearson correlation coefficient. The value of r is contained in the
range —1 < r < 1. When r = 1, the graph is said to be perfectly assortative. Conversely,
when r = —1, it is perfectly disassortative. The graph resembles a random network when
r = 0. For a variable of interest such as language as introduced earlier, e is the fraction
of all edges in the network which joins two nodes with degree j and k. For the degree
distribution of a graph G where py, is the probability that a node chosen randomly has degree

k and z is the mean degree of G,

_ (k+ Dprs
dk = f

(2.18)

The value gy is the fraction of edges whose endpoints start or end at nodes with values of

degree k. The value o is the standard deviation for g.

Figure 2.6. k-Core for Figure 2.2 (a)

28

Studying subgraphs of some graph can be more beneficial in identifying network structures.
Consider scale-free networks that possess power law degree distributions as discussed in
Section 2.3.8. These networks have many low degree nodes with exponentially decreasing
higher degree nodes. Finding the k-core of the graph may bring more insight to the
network. For example, Bader and Hogue [39] analyzed yeast protein interactions using
k-cores and found that essential proteins exhibit a higher connectivity than non-essential
ones. Seidman [40] uses node degrees of subgraphs to define a k-core. Specifically, let H
be a subgraph of a graph G and §(H) is the minimum degree of H. Then by definition, every
node in H will be adjacent to at least 6(H) other nodes in H. If H is maximally connected
and 6(H) > k, then, per Seidman, we consider H a k-core of G. Figure 2.6 is the k-core for
Figure 2.2 (a). Figure 2.6 is a k-core of 3. This means that 6(H) = 3. Every node has a

minimum degree of at least 3 and the graph is maximally connected.

2.4 Summary

In this chapter, we discussed previous studies conducted on the GCSS-MC database. We
also introduced network science principles. We examined degree, eigenvector, closeness,
and betweenness centralities through real-world applications and examples. Additionally,
we reviewed synthetic models, community structure, core structure, and assortativity. In
Chapter 3, we set forth the methodology used to create a complex network from information

within a database.

29

THIS PAGE INTENTIONALLY LEFT BLANK

30

CHAPTER 3:
|dentifying the Most Influential TAMCN

In this chapter, we introduce the methodology created to identify the most influential
TAMCN in the GCSS-MC database. Considering this is one of the rare network-centric
studies conducted on the GCSS-MC database, we also developed a methodology to extract
the pertinent information from the GCSS-MC data. Figure 3.1 outlines the general concept
of the methodology proposed in this Chapter. First, we developed a program that searches
through the data collected by Das [5] and Bitto [4] mentioned in Section 2.1.1 for keywords
associated with the GCSS-MC terms selected as attributes in the complex network. Once
we locate the tables associated with the search terms, we use Oracle SQL Developer to
manually analyze the tables. Using SQL Developer, we select the columns containing
the information needed to determine influence and export the table to a comma separated
value (CSV) file.

A
a

GCSS-MC data stored in CSV file format containing Graph layer based on
Database TACMN s and attributes attributes

Figure 3.1. Methodology Overview

We downloaded icons created by Madebyoliver [41] and Freepik [42] on
www.flaticon.com to create this figure.

We use the CSV files to construct a complex network. Each attribute represents a layer in
the network that must be built. Each attribute is a graph. The collection of these graphs
comprises the GCSS-MC complex network. We developed a program that reads a CSV file

and constructs an adjacency matrix for any given layer. Afterward, the program reads the

31

adjacency matrix and builds a graph. Once the graph is constructed, we can use network

visualization software to visualize the network.

After the graphs have been constructed, we analyze each centrality to determine the impor-
tance of the nodes in the network. Additionally, we compare the network to well-known
synthetic models in order to match the layers in the network to the models. The goal of this
methodology is to determine the centrality measures discussed in Section 2.3 and list every
TAMCN in order from most to least important. As Figure 3.1 illustrates, we locate relevant
tables in the GCSS-MC database and export it to a CSV file format that we parse and input

into a custom built class in order to create a complex network that can be analyzed.

3.1 Tools

In this section, we discuss the tools used throughout the thesis. We use Oracle SQL
Developer to examine GCSS-MC tables and export information. To build graphs and
complex networks we use Networkx [43]. We use Gephi [44] to visualize graphs and

complex networks and to analyze them.

('?W r..'.‘.n c (2) StartPage. (2GCSS |) CURRENT_OPEN_PARTS_ON_ORDER 3 |
., .gg’r!:n B CTNO NS [Cournes ocialmoce|consrais| cranes sestsse rggers| asiock pependencie | et parsonsIndes st i\ﬂ ain
& {0 Tables (Fitered) -,z = ~ 4
@ & £ AAC_TAMON
-5 ADVICE_CODES
@ () AEMIT_COMPONENT_STATS
3 ca

| DATA_TYPE HULLABLE | DATA_DEFAULT | COLUMN_ID |} COMMENTS.
v (autl) 1a

& & CAL ST
£ CALCULATED_READMESS

.
(£ DEADLINE_PARTS_ON_ORDER_REP
& [DSPOSIT_BISTR
@ £ DSPOSIT_SER
@ £ equIP_MG
() ERO_CATEGORES
% {2 HISTORY_AUTHORIZED
& [l HISTORY_AUTHORIZED_NR Mesanes-Lop
&£ HISTORY_DEADLINED
[HISTORY_DEADLINED_NR
% [HISTORY_POSSESSED
] HISTORY_POSSESSED_NR.
& [BIFLATION_RATES.
@ [NFLATION_RATES_BACKUP_2014
& £ NSTORES_REDIST
% & 108_L06
& [J08_STATUS
% 1 J08_STEP_10G
% B MADIT_NDUCT_EQUP
@2 MAINT_STATUS_CRITERIA
MARES_HST
% [MASTER_COND._CODES
* MASTER_DEFECT_CODE_1

Messages Logging Page - Statements

Figure 3.2. Oracle SQL Developer Example

Oracle SQL Developer is a free integrated development environment (IDE) that executes
SQL queries and scripts [45]. SQL Developer allows a user to visualize the tables in a

database using multiple windows in a GUI as seen in Figure 3.2. This allows a user to use

32

both SQL queries and buttons from the GUI to find and use data. Through SQL Developer,
a user can export selected views and tables to different file formats such as CSV, HyperText
Markup Language (HTML), JavaScript Object Notation (JSON), and others.

Networkx is a software package for the Python programming language that was publicly
released in 2005 which enables a user to construct, manipulate, and analyze graphs and
complex networks [43]. For example, we used Networkx to construct Figures 2.2 (a) and
(c) and 2.5. Networkx provides tools to construct graphs in various ways. Nodes can be
individually added or added through the addition of edges, and both nodes and edges can
be added in batches. We demonstrate how to add edges to a graph to create Figure 2.2 (a)

using Networkx:

import networkx as nx
graphl = nx.Graph()
graphl .add_edge(1,2)
graphl .add_edge (1 ,4)
graphl .add_edge(1,3)
graphl .add_edge (3.,5)
graphl .add_edge (3,6)
graphl .add_edge (5,6)
graphl .add_edge(1,6)
graphl .add_edge (4.,3)
graphl .add_edge (4.,5)
nx.write_gexf (graphl, "graphl.gexf")

After importing the Networkx module as nx, the variable graph1 instantiates a graph object
that includes properties such as nodes and edges. We add edges one by one until the graph
is populated. As each edge is added, if the nodes that the edge connects to do not exist, they
are added to the graph. Networkx can write the graph to various file formats. In this thesis
we use the Graph Exchange XML Format (GEXF) and Gephi file formats. The last line of
code demonstrates writing the graph to a GEXF file with the name "graph1.gexf".

Although Networkx possesses the ability to visualize graphs through an implementation of
MatPlotLib, we use Gephi. Gephi [44] is a graph visualization and analysis tool that allows

a user to interact with graphs to intuitively find patterns, manipulate graph structures, and

33

run statistics. For example, as previously stated, we constructed Figures 2.2 (a) and (c)
and 2.5 using Networkx but visualized them using Gephi. Gephi reads many different file
formats and converts them to a Gephi file. In this instance, our GEXF was converted to a
Gephi file. Within Gephi, we are able to interact with the graph in various ways such as
varying node sizes and colors according to different attributes such as degree centrality or
modularity. Gephi also provides pre-built visualization layouts that spatialize the data. For
example, we applied the Force Atlas 2 layout for Figures 2.2 (a) and (c) and 2.5. Jacomy
et al. [46] describe their Force Atlas 2 algorithm as having nodes repulse and edges attract.
The repulsion and attraction is based on distance in the graph. The closer the nodes are, the
less likely they are to repulse each other and vice versa. Jacomy et al. mention that their
algorithm is scalable up to about 10,000 nodes. Figure 2.5 demonstrates Gephi’s ability
to quickly run and visualize statistics. After constructing Figure 2.5 using Networkx and
visualizing it with Gephi using the Force Atlas 2 layout, we applied the Louvain method of
community detection, as described in Section 2.3.9, and colored the nodes based on their
modularity class using Gephi. Figure 2.6 illustrates Gephi’s ability to find the core of a
graph. We applied the same techniques to obtain Figure 2.6 as we did for Figure 2.5 except
for the application of community detection. Instead, we filtered the graph by k-core until
we found the core. We reach the core in Gephi by incrementing 6(H) until 6(h) + 1 yields
an empty graph. Alternatively, Networkx provides a function to calculate 6(H) such that
O0(H) > k.

3.2 Locating and Exporting Tables in GCSS-MC Database

In this section, we introduce the methodology to find which attributes to use in the formation
of the complex network and locate where they are referenced in the database. We develop
a program to assist in locating columns containing the desired search terms. After finding
the table containing the column, we manually examine the table in order to decide which
columns to export. We use an SQL query to create a view with only the needed information
and then export it to CSV.

3.2.1 Deciding on Attributes
Every layer in the complex network is based on attributes. In this thesis, we define an

attribute as a characteristic that is shared by nodes within the network. In each layer of

34

this network, the nodes represent a distinct TAMCN. The relationship between the nodes
in the graph is represented through edges shared between nodes. The layer represents the
relationship being examined and an edge represents a specific instance of that relationship
occurring between the two nodes. Before we determine what the specific overall layers are,

we must identify columns that contain data to establish relationships.

We focus on three broad fields pertaining to GCSS-MC to begin narrowing the attributes
each layer represent: procurement, maintenance, and equipment transfers. We developed
a Python program named File Extractor to help identify tables that contain the desired
information. We introduce previous research pertaining to GCSS-MC in Section 2.1.1.
Using the File Extractor script, we search through the .txt files from [5]. Figure 2.1
illustrates an example of the content of one of the .txt files. The .txt files contain the names
of each column located in the GCSS-MC table associated with the .txt file name.

Begin |
y

h 4

Method
make List

Input ;
criteria l

Qutput
file list

Method
search
Output
search list

Figure 3.3. File Extractor Script Flow Chart

Figure 3.3 illustrates the logical flow of the File Extractor program. File Extractor uses
Python lists as the basic data structure to manipulate data. The two main lists are file_list

and search_list. The list file_list, once populated, is a list of every file name in the

35

directory being searched. The directory contains 3,174 files corresponding to each of the
tables analyzed by Das [5]. The list search_list, once populated, is a list of each file
containing column names that match our search criteria. File Extractor uses two methods to
populate file_list and search_list. The make_List method populates file_list
by using the OS library in python to iterate through every file in the directory and add the
file name to file_list. Once completed, file_list serves as a search queue and one of

the inputs for the second method, search.

Figure 3.3 depicts the method search, which takes in two parameters, file_list and
criteria. The parameter criteria is a list of strings used to search in each file. We
establish the criteria list based on our knowledge of the files in the directory. Figure
2.1 illustrates an example of a file found in the directory. We know that the column titles
are the only strings in the document that are capitalized. We use this knowledge to define
the criteria list as a list of strings we expect column titles to possess. For example, we
may define the list criteria as the list containing the strings [’ TAMCN’, ’REPAIR’]. For
every file in file_list, search opens the file and for every string in the criteria list,
search checks if the file contains that string instance of criteria. If it contains each string
belonging to criteria, then there exists column names within that file (which represents
a table in the GCSS-MC data) that match information we may find useful according to our
criteria input. Once and if search finds matches for all strings belonging to criteria,

the method appends the file name to the search_list list.

The main execution block for File Extractor executes the two methods discussed and
then prints each item in the list search_list along with the total number of items in
search_list. The last 10 lines of output produced by executing File Extractor using the
criteria parameter [’TAMCN’, ’REPAIR’] are:

TESMS . C_TFSMS_TAM_CHG_RV_BK20130518 . txt
TFSMS .C_TFSMS_TAM_SS. txt

TFESMS . C_TFSMS_TAM_SS_BK20130518 . txt
TESMS .C_TFSMS_TAM_SS_REV. txt

TFSMS . C_TFSMS_TAM_SS_RV_BK20130518. txt
TFSMS . ECP2098_TAM_ATTRIBUTES . txt
TLCMDR . STARRS_TAMCN_HST . txt

WSTIAC. WST_MIMMS_HIST_EROS_EXCEP. txt

36

WSTIAC . WST MIMMS_REPAIR_PARTS _EXCEP. txt
The size of the search list is:140

This represents the last nine files out of 140 files that contain column names contain-
ing both the strings *TAMCN’ and ’REPAIR’. Each file name listed follows the pattern
Username.Table_Name.Txt. The Username part of the file name refers to the user the
Table_Name is listed under in the GCSS-MC database that owns the schema. Now that we
have a method for finding desired attributes, we discuss the methodology associated with

exporting desired table content from GCSS-MC data using Oracle SQL Developer.

3.2.2 Exporting GCSS-MC Tables

In this section, we discuss locating and exporting the tables we find using the methodology
found in Section 3.2.1. First we access the GCSS-MC data by providing the path to the
location found in the Naval Postgraduate School (NPS) servers. Figure 3.2 displays an
example of the SQL Developer layout of the different windows and tabs available to the
user. The connections window of the SQL Developer GUI lists all of the tables in the
Tables tab. Expanding the tab allows us to view the titles of the tables. We choose a table
to view which then displays information in the main window. For the data set we access
in this thesis, under the columns tab, SQL Developer displays a description of each of the
columns. This allows us to verify information we search to help us determine whether the
table contains data that should be exported. The data tab displays the data associated with
the table.

The main window also contains a tab that allows users to input SQL queries. We use the
select method in SQL to create a view containing the desired columns that we then export.
We use the query:

select column_i, column_j, ... , column_k from tableName

where column_i through column_k are the columns we want to export and tableName
is the table they pertain to. Running the query displays only those columns and their
associated data in the Messages window. These columns are exported to a CSV file for

complex network construction.

37

3.3 Complex Network Construction and Analysis

In this section, we discuss the methodology used to create a complex network. We also
introduce the methods and data structures implemented to create the complex network from
data retrieved from the GCSS-MC database. Then we discuss how we implement Networkx
and Gephi to analyze the network. In this section, we discuss the generic methodology
while in Chapter 4, we apply the methodology to the GCSS-MC data.

Table 3.1. Sample CSV Pull from a Notional Database

Name Friend Made Class Taken
Alice Greg CS101
Alice Jill MA101
Bob Greg -

Bob Phil -
Chuck Greg MAI101
Chuck Sam PH101
Eve Greg CS101
Eve Greg CHI101
Eve Greg SW101
Fred - MAI101
Fred - CH101
Helen - SW101
Helen - PHI101
John Sam -

First, we begin with a conceptual overview of the complex network construction. Assume
Table 3.1 contains CSV entries from a notional database and that we obtained the CSV file
using the methodology from Section 3.2 in a social network scenario. The Name column
contains people that represent nodes in a graph. The Friend Made and Class Taken

columns represent attributes that manifest themselves as edges between nodes.

The goal of Section 3.3.1 is to convert the nodes and attributes found in Table 3.1 to a
network which represents it, such as in Figure 3.4. Figure 3.4 represents two layers of a
complex network. The first layer represents friends made during some time period. The

second layer represents classes taken during the same time period. In Figure 3.4 (a), an

38

(a) Friendship Layer (b) Course Taken Layer
Figure 3.4. Network Formed from Table 3.1

edge connects nodes if the nodes have a common friend made. In Figure 3.4 (b), an edge
connects nodes if the nodes share a common class. Notice that not all of the nodes are in
both layers. Nodes missing from Figure 3.4 (a) signify that those nodes did not take any
classes during the time periods they made those friends. Nodes missing from Figure 3.4
(b) signify those nodes did not make any friends during the time periods they took their
respective courses. Section 3.3.1 discusses the methodology developed to apply the same
concept to the GCSS-MC database.

3.3.1 Building the Network

Section 3.2.2 discusses retrieving data from GCSS-MC and exporting it to a CSV file format.
Once obtained, we use the CSV Python library to open the CSV file and the csv.reader
method to place it into a variable we call reader. Figure 3.5 illustrates the methodology
used to process the CSV data in a flowchart and convert it to a data structure we further
analyze. We convert reader to a Python list called data where every item in the list is a
row of the CSV file. This row is similar to rows found in Table 3.1 in that a column contains
nodes and one or more column contains attributes for that node. The CSV file may contain
multiple columns of information, however, we focus on two columns at a time, the column
containing the TAMCNS since they are nodes and the column containing an attribute that
will form a layer. Applying this reasoning to the notional data in Section 3.3, Table 3.1
displays two columns for attributes, and Figures 3.4 (a) and (b) illustrate the layers of the

graph representing those attributes.

39

(/ Begin \\
\hL,/
Input
reader

h

Python function
list()

Output
data

h 4

Append function
useableData

h 4

Method
dictCreator

¥

Output
myDict

Figure 3.5. Flow Chart Describing CSV File Processing

We iterate through each item in data and append a list containing the TAMCN and attribute
to a new list we call useableData. The list useableData contains pairs of a TAMCN
and its attributes. Since a TAMCN can have multiple attributes by appearing in several
rows but useableData lists items one pair at a time, we construct a Python dictionary to
list all of the attributes for each TAMCN. We call this dictionary myDict and the key is
the TAMCN while the value is a list of the attributes associated with that TAMCN. We
construct myDict through a method we created called dictCreator by iterating through

the useableData list. For the first appearance of each TAMCN, we create a dictionary

40

entry with the key being the TAMCN and the value being a list containing the attribute. For
every subsequent appearance of a TAMCN that has been added to myDict, we append the

attribute to the list contained in its value.

GCSSGraph p
Initialization—»| self.matrix IanIJt
self.vertices myDict

fillmatrix()
createGraph()

Y

Networkx graph object

Figure 3.6. GCSSGraph Class Layout

We use a custom built class structure to construct the network using the length of themyDict
data structure as a parameter. Figure 3.6 illustrates the class we define as GCSSGraph. A
GCSSGraph object contains the main methods and data structures needed to build and store
a complex network such as an adjacency matrix and a Networkx graph object. We initialize
a GCSSGraph object by defining the amount of nodes the network has based on the length
of myDict. Afterward, we create a nxn matrix that represents the adjacency matrix of the
network where # is the number of nodes in the network. At this point, we have an object
with an empty adjacency matrix. This adjacency matrix is the most basic representation
of the network. If we were to visualize this network with an instantiated empty adjacency

matrix, it would be a graph containing n nodes and no edges.

We apply the methods contained in GCSSGraph to continue to build the network.
GCSSGraph contains the method fillMatrix. This method uses the myDict dictionary
as a parameter to fill the adjacency matrix. First we apply the Python 1ist() function
to create a list of all of the TAMCNs from myDict. Then, for every TAMCN item, we

build a local list called comparisonList containing the myDict value corresponding to

41

that TAMCN entry. For each item in comparisonList, which represents the attribute of
the TAMCN, we compare it to every value of the key:value pairs in myDict. If amyDict
key:value pair contains the item from comparisonList, then the key from myDict, which
is a TAMCN, relates to the TAMCN whose value is the comparisonList. This means that
the TAMCNes, as long as they are not the same TAMCN, contain an attribute that they share
in common. This means that they share an edge. Since they share an edge, we increment

the adjacency matrix entry a;; where i and j are the two TAMCNSs who share the attribute.

We then begin network construction after filling the adjacency matrix. We created a method
called createGraph that constructs the graph from the adjacency matrix using a list of all
TAMCNSs from the myDict dictionary. First, createGraph instantiates a Networkx graph
object we call graph. Then, for each TAMCN in the list of TAMCNs, we add the TAMCN
to graph as a node. We instantiate two local integer variables within createGraph to
represent the row and column of the adjacency matrix. We iterate through the adjacency
matrix by row and column and if there is an adjacency matrix entry a;; > 1, then an
edge exists between the TAMCNSs representing the row and column. Upon encountering
1 or greater, we use Networkx to add an edge between the TAMCNs. There exists the
possibility of having an q;; entry greater than 1. This represents two TAMCNSs sharing
multiple attributes. However, we only focus on undirected graphs in this thesis. Therefore,
we only add one edge despite the possible existence of multiple attribute similarities. At
this point, our GCSSGraph network object contains a completely filled adjacency matrix

and exportable Networkx graph object that represents the matrix.

3.3.2 Analyzing the Network

In this section, we discuss the preparations needed for analysis. We implement the methods
discussed in this section in Chapter 4. In Section 3.3.1, we construct the network according
to TAMCNS and attributes exported to CSV as described in Section 3.2. We use tools in
both Networkx and Gephi to analyze the graph. We also use Networkx to build synthetic

models.

We use Networkx to find the eigenvector centrality values for each node in the network. We
find the eigenvector values by inserting the graph object of the network as a parameter in the

networkx.eigenvector_centrality(graph object) method. This method outputs

42

a dictionary where the key is the node and the value is the eigenvector measure associated
with the node. Similarly, we find the assortativity of a network by inserting the graph
object as a parameter to the networkx.degree_assortativity_coefficient(graph
object) method. This method outputs the assortativity value » for the network as discussed
in Section 2.3.9. Although Networkx provides the ability to find assortativity by different
attributes, our methodology does not distinguish nodes by attribute; therefore, we use the

degree assortativity.

As discussed in Section 3.1, Networkx provides the ability to export graphs to GEXF
file formats. Once we finish constructing the network, we write the file to GEXF. We
continue to analyze the graph in Gephi. We use Gephi to visualize the networks using
the provided layouts and run statistics. We find the degree centrality of the network and
plot the degree distribution through Gephi. We use Gephi to find other centrality measures
including betweenness and closeness. Additionally, we use Gephi to find the modularity
of the Network and the number of communities. For each of these measures, Gephi
utilizes a Data Laboratory that allows the export of network properties and values to a CSV
format. This allows us to export node labels and their corresponding centrality and network

measurements to CSV. We use Gephi to identify the core of the graph as well.

In Section 2.3.8, we discussed synthetic models and their importance to Network Science.
In this thesis, we use Networkx to construct the three main models discussed in Section
2.3.8. The method networkx.erdos_renyi_graph(n, p) creates a synthetic random
graph with parameter n and p where n is the number of nodes in the synthetic network and
p is the probability that edges form. The method networkx.watts_strogatz_graph(n,
k, p) creates a synthetic small-world network with parameters n, k, and p where n is
the number of nodes in the synthetic network, k is the number of nearest neighbors that
each nodes connects to, and p is the probability that edges rewire to different endpoints.
The method networkx.barabasi_albert_graph(n, m) creates a synthetic scale-free
network with parameters n and m where n is the number of nodes in the synthetic network
and m is the number of edges incoming nodes create as they join the network. For each

synthetic network we use, we export the network to a GEXF file and analyze it using Gephi.

43

3.4 Summary

In this chapter, we provided a methodology to build a layer in a complex network according to
attributes that we decide. We introduced the tools necessary to carry out the methodology
and then demonstrated how to determine attributes and find and export tables from the
GCSS-MC data. Afterward, we delved into constructing the network using a custom built
class structure involving adjacency matrices and Networkx graph objects. We concluded the
chapter with an explanation on analyzing the complex network. We apply the methodology

discussed in this chapter and determine the most important TAMCN in Chapter 4.

44

CHAPTER 4
Results and Analysis

In this chapter, we describe implementation of the methodology discussed in Chapter 3. We
search through the GCSS-MC data for tables that contain information related to the three
main attributes we chose to examine, specifically procurement, maintenance, and equipment
loans and transfers. Once we find and select the tables, we convert the columns we desire
to CSV format and run the GCSSGraph algorithm. We analyze the centrality measures and
synthetic model comparisons for each graph produced by the algorithm in their own layer.

Afterward, we discuss trends among the layers and determine the most important TAMCN.

4.1 Attribute Search Results

Table 4.1. Attribute Search Table

Criteria Search | Tables Used
Hits

TAMCN, REPAIR 140

TAM, REP, NSN 187 CLC2S.REPAIR_DATA,
GCSS_TEST.GCSS_IB_ASSET_MAINT,
GCSS_TEST.GCSS_MARES_IB_D...

TAM, ORDER, NSN 192 LCMIDBA.DEADLINE_PARTS_ON_OR..

TAM, PARTS, NSN 119 LCMIDBA.CURRENT_OPEN_P...,
LDRDBA.GCSS2_SR_HEADER_HST

TAM, MAINT, NSN 132 GCSS.R001_SRHEADERS

TAM, FIX, NSN 114 LDRDBA.GCSS_MARES_IB_DEADL...

TAM, SERVICE, NSN 118 MLS2FEEDS.X_GCSS_BR2_MER_SR_H..

TAM, LOAN, NSN 88

LOAN 4

LEND

TRANSFER 3

FROM 68

RECEIVE 128 WSTIAC.WST_EROS

45

In this section, we methodically search for tables that contain information pertaining to
procurement, maintenance, and equipment loans and transfers. Table 4.1 details the various
search terms we entered into the File_Extractor program described in Section 3.2.1.
For each search criteria, we provide the total number of tables that contain the strings used
as search parameters. While searching through the tables we observe that many of the same
tables appear as results for different criteria. We also provide names of tables we extracted
and converted to CSV files. Notice that many of our search criteria contain the string NSN.
Marine Corps Order 4400.150 [1] defines a national stock number (NSN) as a number
that conveys information about a specific item of supply. NSNs belong to TAMCNs. For
example, a truck can be a TAMCN. The truck is a system composed of many parts. Each
part that comprises the truck needs to be identified. This identification occurs through
the use of a NSN. We find that TAMCN and NSN pairs are the most useful pieces of
information because we can easily establish relationships between them. Therefore, our
searches favor tables that contain both TAMCNs and NSNs. We cautiously avoid pitfalls
that lead to networks that do not convey any meaning. For example, we do not search for
TAMCN:S that share a cost. Although we can apply the methodology, the resulting network
would be meaningless. All TAMCNs that cost the same amount of money would connect
to one another and no other TAMCNSs. This would produce a disjoint graph containing x
completely connected communities where x equals the number of different prices. Using
an NSN as a characteristic, on the other hand, provides depth. Since each TAMCN contains
many NSNs, many different TAMCNs can relate through a common NSN.

Although we found 10 different tables containing information including TAMCNs and
NSNs, we only use those tables which produced edges between TAMCNs. The following
three tables are finally selected:

 LCMIDBA.CURRENT_OPEN_PARTS_ON_ORDER
* LCMIDBA.DEALINE_PARTS_ON_ORDER
* WSTIAC.WST_EROS.

The graphs with just a collection of nodes without any edges that correspond to unused
layers have no NSNs in common. This signifies that for all of the tables we selected except
for the three listed, no two TAMCNSs shared an NSN in common. Additionally, we did
not find any tables pertaining to loaning or transferring TAMCNSs. At first we attempted to

46

search for specific words relating to lending an item. When that failed, we searched for tables
containing the string FROM since it suggests some sort of exchange. Notwithstanding, we
searched through all of the tables containing the string FROM and did not find any reference

demonstrating one unit transferring or loaning a TAMCN to another unit.

4.2 Layer Analysis

In this section, we analyze each layer of the GCSS-MC data. For the Current Parts on Order
layer, we visualize the network using Gephi and present a detailed analysis of the centrality
measures and community structure. Additionally, we explore the structure of the core and
determine the assortativity of the layer. We also compare the layer to each of the synthetic
models outlined in Section 2.3.8. For each subsequent layer, we provide a summary of the

results and any prominent observations.

4.2.1 Current Parts on Order

We retrieved the data for this layer from the LCMIDBA.CURRENT_OPEN_PARTS_ON_ORDER
table. We used the search criteria [’TAM’, ’'PARTS’, ’NSN’] to find this table. This
table is important because it supports the procurement aspect of our analysis. The table
provides information, as the table title states, regarding parts that are currently on order.
We chose to extract two columns for this layer, the column containing the TAMCNs and
the column containing the NSNs. Every row of the table contains one TAMCN and NSN
pair. In this case, the NSN listed in a row with the TAMCN represents a part that has been
purchased.

Figure 4.1 visualizes the Current Parts on Order layer. The size of each node corresponds to
the degree centrality of the node. The greater the degree centrality, the larger the node. The
color of each node represents the modularity class Gephi calculates based on the Louvain
community detection method. We apply the Force Atlas 2 layout to highlight the structure.

An edge between two nodes signifies the relationship:
ANSN such that NSN € TAMCN X N TAMCN Y. 4.1)

Equation 4.1 states that an edge exists between two TAMCNs X and Y if there exists an
NSN that both X and Y has on order. Figure 4.1 represents 512 of the 617 TAMCNs. We

47

ATESE
v ATORE

lt s s
:1'4_i$_!‘ Bi217 ol
oo o
Eo A
e N
BoE4T
Ba218
Egme E
"z ad
Agis

Figure 4.1. Current Parts on Order Layer

take every node into consideration for centrality calculations, modeling, and assortativity.
However, we apply a k = 1-core filter for the visualization. This filters out any nodes that
have a degree centrality equal to 0. This signifies that the nodes in the set of zero degree
nodes do not possess an NSN on order that any other TAMCN possesses. Thus, the nodes
that do not appear in Figure 4.1 possess unique NSNs while those that do appear have at

least one NSN in common with a member node of the layer.

48

<CzzZA—"ImMoOm>>
<cCzzATIMOO®>

(a) Community 34 (22.53% of all nodes) (b) Community 32 (21.07% of all nodes)

< CzZT AT ITMOO®>
<CzzATIMOO®>

(c) Community 90 (19.94% of all nodes) (d) Community 47 (15.88% of all nodes)

Figure 4.2. Community Distribution among the 4 Most Populous Commu-
nities

We discussed community detection in Section 2.3.9. We determine the modularity index
and assign each node a modularity class before applying the community detection filter.
The Louvain method assigned 117 different communities in this graph. However, many of
those communities contain only one node. More than three quarters of all the TAMCNS in
the graph pertain to four communities. The rest of the communities contain a maximum of
0.65% of nodes in the graph per community. Figure 4.2 represents the composition of the
four most populous communities in this layer. We observe that although multiple TAMCN
classes comprise each of the majority communities, a dominant TAMCN class does exist in

each of the communities. In three of the four communities, one specific TAMCN seems to

49

dominate the community structure. In community 32, as represented in Figure 4.2 (b), even
though D TAMCNS clearly represent the majority of the community, B TAMCNs comprise

a larger portion of the community than other minority TAMCNS in the other communities.

Table 4.2. Top 15 Current Parts on Order Layer Centrality Measures
Degree Eigenvector Betweenness Closeness
E0846 : 0.3685065 || E0846 : 0.1269398 || E0846 : 0.0558122 || E0846 : 0.4967493
A0067 : 0.2987013 || D1158 : 0.1223459 || BO0O0O : 0.0419745 || E0947 : 0.4697270
E0947 : 0.2987013 || A0067 : 0.1220722 || A1440: 0.0312819 || A0067 : 0.4622370
E0796 : 0.2922078 || D0022 : 0.1202579 || E0856 : 0.0264496 || E0796 : 0.4590997
D1158: 0.2873376 || E0947 : 0.1202265 | E0671 : 0.0235054 || D1158: 0.4585810
A1440: 0.2824675 || DO030: 0.1185019 || E0947 : 0.0196386 || D0022 : 0.4554929
A1957:0.2775974 | D0O031 : 0.1174368 || E0796 : 0.0183096 || A1957 : 0.4544727
E1888: 0.2775974 | DO198 : 0.1167520 || E1888 : 0.0165894 || E1888 : 0.4539643
D0022 : 0.2743506 || A1957: 0.1166229 || A0153: 0.0150683 || A1440: 0.4529510
D0003 : 0.2678571 || E1888 : 0.1162657 | B2605 : 0.0147768 || E0856 : 0.4519423
E0856 : 0.2678571 | D0O003 : 0.1160856 || A0067 : 0.0146407 || BOOOO : 0.4489427
B0000 : 0.2662338 || E0796 : 0.1157297 | E0000 : 0.0145070 || D0O030 : 0.4479516
D0030: 0.2581169 || D1001 : 0.1123923 || A2042: 0.0129406 || E0942 : 0.4445171
D0031 : 0.2516234 || E0942 : 0.1110852 || C7911 : 0.0129355 || DO198 : 0.4435455

Table 4.2 lists the top 15 nodes for each centrality measure. For each centrality measure,
TAMCN EO0846 possesses the highest centrality value. Therefore, according to degree
centrality, EO846 connects to more nodes than any other node in the graph. With respect to
the layer, it has more parts on order in common with other TAMCNs than any other TAMCN.
Since E0846 also possesses the highest eigenvector centrality measure, it is adjacent to
important nodes as well. Figure 4.3 represents a plot of eigenvector centralities versus degree
centralities. Figure 4.3 suggests a strong linear correlation between degree and eigenvector
centrality for this layer. We determine that the higher the eigenvector centrality for any
TAMCN, the importance of the nodes adjacent to that TAMCN correspond to their degree.
In this example, E0846 is adjacent to more high degree nodes than any other TAMCN
and correspondingly, the eigenvector centrality is higher. The strong linear correlation

in Figure 4.3 also indicates possible ways that an algorithm assigning importance can be

50

Eigenvector vs. Degree Centrality

Degree Centrality
=] =] o e
= = N N
o (8] o [S,]
1 1 1 1
L3
"

| o v
005 '. -’é""a}' °
0.00 - ﬁ)

0.00 0.02 0.04 0.06 0.08 0.10 0.12
Eigenvector Centrality

Figure 4.3. Eigenvector versus Degree Centrality for Current Parts on Order

written. Degree centrality is less computationally expensive than eigenvector centrality.
Therefore, calculations using degree centrality may be used to estimate importance in lieu

of eigenvector centrality.

Interestingly, for each second highest centrality value node, the TAMCN class to which
the nodes belong are different. For instance, the second highest degree, eigenvector,
betweenness and closeness centrality TAMCNSs are respectively A0067, D1158, B000O,
and E0947. Notice that they each begin with a different letter. We consider E0947 the
closest TAMCN to E0846 of the second highest value centrality TAMCNSs because they
both begin with the letter £ and thus pertain to the same TAMCN class. The nomenclature
for the TAMCNs more clearly reveals the similarity. Marine Corps Bulletin 3000 [47] lists
that EO846 represents an Assault Amphibious Vehicle (AAV) Personnel variant and E0947
represents a Light Armored Vehicle (LAV) Light Assault variant. The E0947 TAMCN:s is
the most similar to EO846 in the sense that they both possess weapon systems that belong to
the platforms and have the capacity to carry troops and traverse water. A0067, D1158, and
B0O0O represent, respectively, a AN/MRC-148 High Frequency Vehicle System, a M1123

51

High Mobility Multipurpose Wheeled Vehicle (HMMWYV), and an air conditioning unit.
The top 5 TAMCNSs with regard to centrality in this layer happen to be vehicles except for the
air conditioning unit. Additionally, two of those TAMCN:ss are practically the same although
they appear different since they belong to separate TAMCN classes. The AN/MRC-148
differs from the M 1123 in that the purpose of that TAMCN is the radio it carries although
the vehicle which carries it is a M1123 variant. This suggests that vehicles or TAMCNs

that possess a vehicle are more important than other equipment.

Average Degree and Eigenvector Centralities by TAMCN

EEm Eigenvector Centrality
0.12 A Degree Centrality
0.10 -+
wv
S
= 0.08 1
>
)
T 0.06
€
[}
O
0.04 -
0.02 -
0.00 - —
A B C D E H J K M N U \
TAMCNSs

Figure 4.4. Average Degree and Eigenvector Centrality Comparison for Cur-
rent Parts on Order

Figures 4.4 and 4.5 (a) and (b) represent the average centrality value for each TAMCN class.
We plotted the average betweenness and closeness centrality in their own plot in order to
more easily identify trends. Although the centrality values for EO846 are the highest for
all of the centralities measured, the £ TAMCN does not represent the highest average
centrality for any centrality measure. Instead, the D TAMCN class possesses the highest

average centrality for each centrality measured. Table 4.2 corroborates this observation for

52

Average Betweenness Centrality Values by TAMCN Average Closeness Centrality Values by TAMCN

Bl Betweeness Centrality mmm Closeness Centrality

I
W
@

0.0020 -

4
W
o

o
)
G

0.0015 A

o

N

o
!

Centrality Values

0.0010

Centrality Values
o
b
&

o
H
o

0.0005

o
o
@

0.0000 - T T T T .

o
=3
S

A B C D E H J K M N u \
TAMCNs TAMCNs
(a) Average betweenness centrality (b) Average closeness centrality

Figure 4.5. Average Betweenness and Closeness Centralities for Current
Parts on Order

the top 15 TAMCNSs. Generally, E and D TAMCNSs populate the majority of the highest
centrality values except for betweenness centrality. For betweenness centrality, not a single
D TAMCN instance occurs in the list.

Both betweenness and closeness centrality rely on geodesics to establish importance. In this
layer, a more important node with respect to betweenness centrality appears on a greater
number of shortest paths than a less important node. As E0846 represents the node with
the highest betweenness centrality, EO846 appears on the most amount of shortest paths.
Since an edge represents an instance where two TAMCNs share a common part on order, a
shortest path from one node to another represents a node or a series of nodes that connect
the two endpoints. Consider Figures 4.6 and 4.7. Figure 4.6 highlights all of the nodes
TAMCN C7909 connects to and Figure 4.7 similarly highlights TAMCN C7908 and its
neighbors. Notice in Figure 4.6 that C7909’s only neighbor is C7908. Figure 4.7 illustrates
that C7908 is on the shortest path between nodes such as B0730, C7905, and BO891. This
means that since C7909 does not connect to B0O891 and B0730, C7909 relates to those
TAMCNSs through C7908.

Closeness centrality also relies on geodesics in its calculations except that unlike between-
ness centrality, it measures the shortest distance from a node to all other nodes. In this
layer, intuition suggests that since edges represent a common part on order between two
TAMCNSs, importance favors those TAMCNSs that have many neighbors. A high degree

53

C7908

C7909

Figure 4.6. TAMCN C7909 Connections

centrality means that a TAMCN shares different parts with many other TAMCNs. How-
ever, Figure 4.8 plots betweenness centrality against degree centrality and illustrates that
a linear correlation does not exist between the two. This lack of correlation suggests that
closeness centrality favors TAMCNs that have high numbers of non-adjacent neighbors.
Non-adjacent neighbors in this case are neighbors in the neighborhood of some TAMCN

that do not share an edge.

Figure 4.9 illustrates non-adjacent neighbors. Figure 4.9 (a) highlights neighbors in the
neighborhood of E3162 while Figure 4.9 (b) highlights neighbors in the neighborhood of
E3141. Notice that although both E3141 and E3163 are in the neighborhood of E3162,
E3141 and E3163 are not themselves neighbors. The concept of non-adjacent neighbors
relates to closeness because the TAMCN with non-adjacent neighbors contains paths directly
to each of those neighbors. We suspect the closeness centrality would increase if the non-

adjacent neighbors are also pendants. A pendant is a node of degree equal to 1.

54

B0891
C7905
D1062

B0730

C7908

C7909

Figure 4.7. TAMCN C7908 Connections

Figures 4.4 and 4.5 (a) and (b) provide a graphical depiction of the average centrality measure
for each centrality and for each TAMCN. Although useful in generalizing the data, it may
obscure trends. Figures 4.10 and 4.11 plot the cumulative distribution function (CDF) for
each of the centrality measures and for each TAMCN. The CDF provides a more granular
display of the centrality measures for each TAMCN. For each centrality measure, we divide
the TAMCN classes in half. We group the A, B, C, D, E, and N TAMCNs together according
to their similar average centrality measures. We group the rest of the TAMCNs together
although they also share lower average centrality measures in general. Figures 4.10 (a)-(d)
all illustrate that A, C, and D TAMCNS possess the highest centrality measures. D TAMCNs
differ from other TAMCNS in their degree and eigenvector centrality distributions. While
the other TAMCNSs enclose approximately 60% of their nodes in degree centrality less than
.05 and eigenvector centrality less than .03, D TAMCNs almost linearly distribute in degree
and eigenvector centrality. Figure 4.10 (d) differs from the others in that the majority of
TAMCNS possess high closeness centrality nodes. This suggests that in general, TAMCN’s
are close to each other, meaning they have short distances to other nodes. Using Gephi

we find that the average path length for this layer is 2.575 albeit the diameter of this layer

55

Betweenness vs. Degree Centrality

0.35 -
0.30 -
> 0.25 | .
= -
©
= L .
< 0.20 A 2 i
U . M - -
9 et
5, 0.151 < -_-:' .
(7] .'-'. Te .
a PP .
0.10 1 o °
g?. '
oos| ¥l
0.00 - E v

0.00 0.01 0.02 0.03 0.04 0.05 0.06
Betweenness Centrality

Figure 4.8. Current Parts on Order Betweenness versus Degree Centrality

E3163

E3141 E3141
E3162 E3162

(a) E3162 TAMCN neighbors (b) E3141 TAMCN neighbors

Figure 4.9. Sample Connections from Current Parts on Order Graph Illus-
trating Non-Adjacent Neighbors

56

1.01

0.8 q

0.6 q

CDF

0.4

0.2

0.01

1.0

0.8 4

0.6 4

CDF

0.4 4

0.2 4

Degree Centrality CDF

—— ATAMCNs

B TAMCNs
—— CTAMCNs
—— D TAMCNs
—— E TAMCNs
—— N TAMCNs

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
Degree Centrality

(a) Degree centrality CDF

Betweenness Centrality CDF

—— ATAMCNs

B TAMCNs
—— C TAMCNs
—— D TAMCNs
—— E TAMCNs
—— N TAMCNs

T T T T T T
0.00 0.01 0.02 0.03 0.04 0.05
Betweenness Centrality

(c) Betweenness centrality CDF

CDF

CDF

10+

0.8 4

0.6

0.4 4

0.2 4

0.0 1

104

0.8 4

0.6 4

0.4 4

0.2 4

0.0 1

Eigenvector Centrality CDF

—— A TAMCNs

B TAMCNs
—— C TAMCNs
—— D TAMCNs
—— ETAMCNs
—— N TAMCNs

T T T T T T T
0.00 0.02 0.04 0.06 0.08 0.10 0.12
Eigenvector Centrality

(b) Eigenvector centrality CDF

Closeness Centrality CDF

—— A TAMCNs

B TAMCNs
—— C TAMCNs
—— D TAMCNs
—— ETAMCNs
—— N TAMCNs

T T T T T T
0.0 0.1 0.2 0.3 0.4 0.5
Closeness Centrality

(d) Closeness centrality CDF

Figure 4.10. A, B, C, D, E, and N TAMCN Centrality Measure CDF Graphs

is 7. Figures 4.11(a)-(d) illustrate that the majority of J, K, M, U, and V TAMCNs have

centrality measures close to 0. H TAMCNs demonstrate a less exponential centrality CDF

but are still generally less than the TAMCNs found in Figure 4.10. In general, we conclude
that J, K, M, U, and V TAMCN:s are less important.

Figure 4.12 visualizes the core for this layer. The core contains 64 nodes which represent
10.37% of the total nodes in this layer and 2016 edges which represent 21.72% of the total
edges in the layer. We find that the k-core value for this layer equals k = 63. Each node

represented in the core connects to at least 63 other nodes. We also find that the core is

a clique, which signifies that every node in the core is connected to at least every other

Degree Centrality CDF Eigenvector Centrality CDF

1.0 1.0 A
0.9 0.9
081 0.8
0.7 0.7
& g
o Q
0.6 1 0.6
—— HTAMCNs —— HTAMCNs
0.5 1 J TAMCNs 0.5 - J TAMCNs
—— KTAMCNs —— KTAMCNs
0.4 —— M TAMCNs 0.4 —— M TAMCNs
—— UTAMCNs —— UTAMCNs
034 —— VTAMCNs 03 —— V TAMCNs
0.00 0.01 0.02 0.03 0.04 0.05 0.0000 0.0025 0.0050 0.0075 0.0100 0.0125 0.0150 0.0175
Degree Centrality Eigenvector Centrality
(a) Degree centrality CDF (b) Eigenvector centrality CDF
Betweenness Centrality CDF Closeness Centrality CDF
1.0 4 1.0 A
0.9
0.9
0.8
0.8
0.7
w w
o =}
() o
074 0.6
—— H TAMCNs —— HTAMCNs
) TAMCNSs 0.5 4] TAMCNs
0.6 —— KTAMCNs —— KTAMCNs
—— M TAMCNs 0.4 —— MTAMCNs
—— U TAMCNs —— UTAMCNs
0.5 - —— V TAMCNs 03 4 —— V TAMCNs
0.000 0.002 0.004 0.006 0.008 000 005 010 015 020 025 030 035
Betweenness Centrality Closeness Centrality
(c) Betweenness centrality CDF (d) Closeness centrality CDF

Figure 4.11. H, J, K, M, U, and V TAMCN Centrality Measure CDF Graphs

node in the core. This implies that changes in one of the core nodes can potentially affect
every other node in the core if it pertains to a part they all have in common. Since an edge
represents a common part on order, we infer that if a node in the core orders a new part,
other nodes in the core are likely to need the part as well. We filtered out nodes from the
graph found in Figure 4.1 until only the core nodes remained. Therefore, the size of the
nodes and their coloring still correspond to the original degree centrality and community

assignment initially calculated.

We observe that community 32 colored in green possesses the largest amount of core nodes.

Figure 4.2 depicts the composition of community 32 for the entire graph. For & = 0, where

58

Figure 4.12. Current Parts on Order Core

every node and edge in the graph is present, D TAMCNSs comprise the majority of the
community. Figure 4.13 (b) depicts the composition of community 32 within the core.
Although D TAMCNs comprise the majority of community 32 when £ = 0 and when
k = 63, D TAMCNs comprise a larger portion of the community in the core. This implies
that the higher the degree or eigenvector centrality for D TAMCNs, the more important

they become in the community.

59

<Cz=z2A—"ITmMmoO®m>

Figure 4.13. Community 32 Core Composition

Probability Distribution Function of Core Distribution Probability Distribution Function of Core Distribution

1.0 —— ATAMCNs 0.5 —— HTAMCNs
~——— B TAMCNs ~—— J TAMCNs
—— CTAMCNs —— KTAMCNs
—— D TAMCNs —— M TAMCNs
—— ETAMCNs —— UTAMCNs

—— N TAMCNs —— VTAMCNs

4
©
I
kS
L

=4
o
o
W

I
'S
o
N
L

o
)
Percent of TAMCN Remaining in Core

Percent of TAMCN Remaining in Core

AN

4
o
!

°1 ﬂ;l//

54
=}

10 20 30 40 50 60

6 1‘0 2‘0 3‘0 4‘0 5‘0 6‘0
Core Core
(a) PDF of core distribution (b) PDF of core distribution

Figure 4.14. PDF of the Core Distribution for All TAMCNs

Although Figure 4.12 provides an accurate visualization of the core, it lacks the granularity
demonstrating the evolution of the graph according to k in the k-core. Figure 4.14 illustrates
the probability distribution function (PDF) for each TAMCN class as k increases. We
organize TAMCN classes according to their average degree. Higher degree TAMCNSs
including A, B, C, D, E, and N are represented in Figure 4.14 (a) while the rest are
represented in Figure 4.14 (b). Each curve represents the percentage of the TAMCN class
present for values of k where 0 < k < 63 and O and 63 represent the entire graph and the
core respectively. We observe from Figure 4.14 that generally the percentage of TAMCNs

60

remaining in the k-core fall precipitously as k increases for each TAMCN except for D
TAMCN:Ss. This seems to explain why the portion of D TAMCNSs in community 32, which
is the community representing the most nodes in the core, is greater in the core than for the
overall graph. Since approximately 50% of D TAMCNSs remain in the core for k = 63, we
know that at least half of all D TAMCNSs contain degree equal to 63 or greater.

Probability Distribution Function of TAMCNs Within Core

0.5 -
—— ATAMCNs —— E TAMCNs K TAMCNs
B TAMCNs —— NTAMCNs —— M TAMCNSs
—— CTAMCNSs HTAMCNs —— UTAMCNSs
0.41 — DTAMCNs ——] TAMCNs V TAMCNs
()
]
Q
£ 034
=
5 \’\/\/—’\\
=
<
'_
5 0.2 1
s
(0]
o
Q
[a
0.1
0.0 1 x ~
0 10 20 30 40 50 60
Core

Figure 4.15. PDF of TAMCNs within Core

While Figure 4.14 illustrates the PDF of each TAMCN class as k increases, Figure 4.15
depicts the PDF for the k-core as k increases. For each value of k, Figure 4.15 represents
the percentage of each TAMCN present. We observe that initially when k£ = 0, D TAMCNSs
comprise approximately only 10% of all nodes. The D TAMCN class is the only TAMCN
class that consistently increases in percentage as k increases. As k approaches 63, D
TAMCNSs comprise nearly 50% of all nodes in the core. We also observe that when &
reaches k = 60, the core no longer changes significantly. This signifies that all the nodes in
the core behave the same when 60 < k < 63.

Although an E TAMCN represents the largest centrality measure from each centrality
measured, D TAMCNs are the most important TAMCN in this layer. D TAMCNs are the

61

most important because although they do not have the largest centrality measures, Figure
4.10 suggests a larger majority of D TAMCNs possess high centrality measures compared
to the other TAMCN classes. Additionally, Figures 4.2 and 4.13 both show D TAMCNS as
majority members of a significant community with regards to size of the community. Also,
since D TAMCNs comprise the largest portion of the core, we infer that changes to those
TAMCNSs are more likely to affect other TAMCN s throughout the network.

Degree Distribution Degree Distribution
100 55)
90 50
80 45
70 40
o BOqf= - 35
= c
3 3 30
8 50 8 2
40 5
301|= 15
20 - 10
W04 e 5
0 PR Bl T A T VO U S O L o 0
0 20 40 60 80 100 120 140 160 180 200 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48
Value Value
(a) Current parts on order (b) Erdés Rényi
Degree Distribution Degree Distribution
204 75 -
659} 70
60 65
55 60
50 55
454} =0
£ 40 e®
5 40
8 ER
30 30
25 25
w0 20
15 '." 15
10 v.i‘v 10
5 B R St 5
0 m " s mas " memamm e Era . . - 0 . [
20 30 40 50 60 70 B8O 90 100 110 120 130 140 150 161 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
Value Value
(c) Barabasi Albert (d) Watts Strogatz
Figure 4.16. Current Parts on Order and Synthetic Model Degree Distribu-

tions

Figure 4.16 depicts the degree distribution for this layer and for each of the synthetic
models discussed in Section 2.3.8. This illustrates the amount of nodes for each degree
in the network. We discussed the methodology needed to create the synthetic models

in Section 3.3.2. For each synthetic model, we set the amount of nodes to 617, which

62

represents the total nodes in the graph. Figure 4.16 (b) depicts the degree distribution for an
Erdds Rényi random graph. We determine the parameter for the random graph by inputting
the size and order of the actual network into Equation 2.15. We find that the probability p

needed to create a random network with approximately 9282 edges is:

“lg)

(9

3 9282 3 9282 (4.2)
a (657) ~ 190036

~ 0.048843377.

Figure 4.16 (c) depicts the degree distribution for a Barabasi Albert scale-free network. We
know that the parameter for scale-free networks determines how many nodes an incoming
node will attempt to connect to. We find that in order to create a graph with approximately
the same number of edges as the actual network, a node will attempt to connect to 15
other nodes since 617 * 15 = 9255 where 617 is the number of nodes in the graph and
15 is the parameter. Figure 4.16 (d) depicts the degree distribution for a Watts Strogatz
small-world network. We use the average degree of the actual network as an integer value,
30 specifically, as a parameter in the small-world network which determines how many of
its nearest neighbors it connects to. As the probability parameter for small-world networks
approaches 0, the graph becomes more modular. We know the modularity index for the
actual network and adjusted the probability parameter until finding a value p = 0.65 that

produces a graph with a similar modularity index.

Table 4.3 lists the metrics we use to compare the synthetic models to the Current Parts on
Order layer. Together with Figure 4.16, we conclude this layer models a Barabdsi Albert
scale-free network. We find that the Erd&s Rényi random graph is the least similar model
to the actual network. Not only does the degree distribution follow a Poisson distribution
instead of a power law, the clustering coefficient is low. Although the Watts Strogatz
small-world model accurately captured the modularity of the actual network, it severely
underestimated the clustering coefficient and also differs in its degree distribution. Even
though the Barabdsi Albert model underestimates both the modularity and the clustering,
it closely models the degree distribution. We conclude the degree distribution is the most

important metric to compare because it characterizes the network and affects the rest of

63

Table 4.3. Current Parts on Order and Synthetic Model Comparison

Name Actual Net- | Erdds Rényi | Barabasi Al- | Watts Stro-
work bert gatz

Average Degree || 30.088 30.016 29.271 30

Modularity 0.249 0.154 0.149 0.251

Clustering Coef- || 0.649 0.048 0.111 0.07

ficient

Average Path || 2.575 2.171 2.184 2.19

Length

k-core 63 22 15 23

% of nodes in || 10.37 91.09 100 98.54

Core

the metrics. All of the models failed to accurately model the core of the network. The
core of the network helped identify important communities and subsequently highlighted

TAMCN:Ss that appear important due to their presence as k increases.

Analyzing the synthetic networks does not reveal importance for any particular nodes since
the distribution is randomly assigned. However, the synthetic networks model the structure
of the actual network. Despite the variance in the metrics found, we obtain bounds on
the behavior of this layer. With the random graph as a lower bound, we find that the
Current Parts on Order layer is not random. This implies that the information stored in the
GCSS-MC data contains structure and the relationships between the data are not random.
We infer that this layer is a variation of a scale-free small-world network due to the similar

modularity to a small-world network and the degree distribution of a scale-free network.

We introduced assortativity in Section 2.3.9. Newman [38] describes degree assortativity as
the mixing of high degree nodes with low degree nodes. He explains that networks with high
degree assortativity, in which a value of r = 1 represents a perfectly assortative network
while r = —1 conversely represents a perfectly disassortative network, mix high degree
nodes with other high degree nodes and similarly for low degree nodes. This relationship
manifests itself in a densely populated core with loosely connected peripheries for highly
assortative networks and clustered networks with a small core for disassortative networks.

He provides a table listing assortativity coefficients for social, technological, and biological

64

networks. Social networks tend to have assortativity coefficients greater than 0, signifying
higher assortativity while technological networks such as power grids, the internet, and
software dependencies have negative values and are less assortative. Biological networks
such as protein interactions, metabolic networks, and neural networks have the lowest

negative values in the table and represent disassortative networks.

The degree assortativity coefficient for the Current Parts on Order layer is r = 0.02750. We
find that this layer is assortative not only due to its assortativity coefficient, but also its core
structure. As previously stated, the core is a clique with every node in the core possessing
a degree of at least 63. We observe that this layer counter-intuitively resembles a social
network instead of technological and biological networks. Considering the GCSS-MC
database contains information regarding inanimate objects, we assumed the data would
show a stronger correlation to technological networks. Additionally, due to the assortativity
coeflicient, we infer that high degree nodes mix with other high degree nodes. With regards

to the database, we imply that TAMCNs with many parts on order mix together.

4.2.2 Deadline Parts on Order

We retrieved the data for this layer from the LCMIDBA.DEALINE_PARTS_ON_ORDER table.
We located this table with the [’TAM’, 'ORDER’, ’NSN’] search criteria. We consider
this table unique not only its application to the procurement aspect of our analysis, but also
in its relationship to maintenance. A TAMCN is considered deadlined when it contains
a NSN that needs repair which leaves the entire TAMCN inoperable unless repaired or
replaced. Therefore, if a TAMCN appears as a node in this layer, we also know that it is in
the maintenance cycle. Similar to the Current Parts on Order Layer found in Section 4.2.1,
we extracted the columns containing TAMCNs and NSNs which produced a CSV file with
rows containing TAMCN, NSN pairs. We assume that entries in this layer are distinct from

entries in the Current Parts on Order layer.

An edge in this layer follows the same format found in Equation 4.1. Although the edge
represents the same relationship between nodes, the layer represents a different attribute
we analyze, namely TAMCNs that are deadlined which have parts on order. The order
and size of this layer are 265 and 2358, respectively, which is smaller than the size and

order of the Current Parts on Order layer. Table 4.4 displays the metrics associated with

65

Table 4.4. Deadline Parts on Order and Synthetic Network Metrics

Name Actual Net- | Erdds Rényi | Barabasi Al- | Watts Stro-
work bert gatz

Average Degree 18.48 19.193 17.411 18

Modularity 0.195 0.197 0.187 0.197

Clustering Coef- || 0.705 0.072 0.141 0.065

ficient

Average Path || 2.45 2.172 2.218 2.219

Length

k-core 50 13 9 13

% of nodes in || 18.55 92.73 99.64 96.36

Core

Assortativity 0.04324 - - -

Most Important | E0846 - - -

TAMCN

this layer. Similar to the Current Parts on Order layer, TAMCN E0846 represents the
most important TAMCN in the layer. Unlike the Current Parts on Order layer, EO846 does
not occupy the highest centrality node for every centrality measured. E0846 represents
the highest centrality measure for each centrality except for eigenvector centrality where
TAMCN D003 represents the greatest centrality instead.

The core contains a higher percentage of nodes than the core of the Current Parts on
Order Layer. This implies there exists a greater number of high degree nodes. The larger
assortativity coefficient asserts that high degree nodes tend to connect with other high degree
nodes. The larger clustering coefficient and lower modularity imply that although the nodes
cluster, many edges exist in between those clusters. This layer also follows a power law
degree distribution. Similar to the Current Parts on Order layer, we also categorize this

layer as a Barabdsi Albert small-world scale-free network.

4.2.3 Open Service Request
We retrieved the data for this layer from the WSTIAC.WST_EROS table. This table contains
information regarding open service requests. We introduced the concept of a service re-

quest as it pertains to GCSS-MC in Chapter 1. This layer supports the procurement and

66

maintenance aspect of our analysis. An open service request attached to a TAMCN repre-
sents an instance where a service is required for that TAMCN. A service includes actions
such as purchasing parts, requesting maintenance, and recording preventative maintenance.
We exported columns containing TAMCNSs and NSNs for this layer as well. The rows in
the resulting CSV file represent TAMCN, NSN pairs that signify an open service request
regarding a NSN for its corresponding TAMCN.

Table 4.5. Open Service Requests and Synthetic Network Metrics

Name Actual Net- | Erdds Rényi | Barabasi Al- | Watts Stro-
work bert gatz

Average Degree 12.78 12.976 12.878 12

Modularity 0.197 0.167 0.145 178

Clustering Coef- || 0.679 0.31 0.415 0.293

ficient

Average Path || 1.735 1.679 1.684 1.71

Length

k-core 10 10 8 9

% of nodes in || 46.34 80.49 100 90.24

Core

Assortativity -0.1887 - - -

Most Important | D1158 - - -

TAMCN

Edges in this layer also follow the format found in Equation 4.1. The attribute presented in
this layer, namely open service requests, is the difference between this layer and previous
layers discussed. The order and size of this layer are 41 and 262, respectively. Beginning
with the order and size of the layer, we observe that this layer differs from the previous
layers. This anomaly possibly arises from the data sampled. The table whose data we
analyzed may be a subset of another table or may be incomplete. Nonetheless, for this

thesis we assume that the table is independent of any other tables.

The most important node according to the centrality measures for this layer differs from
the other layers. In this layer, TAMCN D1158 possesses the highest centrality measure for
each of the different centralities measured. While E0846 dominated the highest centrality
values for the other layers, it only appears in the top 15 TAMCNs for betweenness centrality.

67

Degree Distribution

6.0 . | E
5.5

5.0

4.0
5. N

2.0 . .] . \ \

15 —

0.5

0-0 =3 0 5 10 15 20 25 30 35

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34
Value
(a) Scatter plot degree distribution (b) Bin degree distribution with lines of fit

Figure 4.17. Open Service Request Layer Scatter-Plot and Binned Degree
Distributions

Another key difference lies in the degree distribution. Figures 4.17 (a) and (b) depict the
degree distribution for this layer. Figure 4.17 (a) displays the degree distribution in a scatter
plot. While the degree distributions from the other layers obviously depicted a power law
abiding exponential distribution, the degree distribution from this layer does not follow a
neat distribution. Therefore, we binned the degrees and re-plotted the graph as depicted in
Figure 4.17 (b). The x-axis represents the degree while the y-axis represents the amount
of nodes in each bin. Afterward, we fitted the graph to both an exponential distribution in
green and a Weibull variate distribution in red. The Weibull variate distribution clearly fits
the data more closely than an exponential distribution since a greater portion of the data
is contained within its distribution. Besides the distribution, this network follows a Watts
Strogatz small-world model. Since it does not follow a power law, we infer that this layer is
not scale-free. Additionally, the negative assortativity coefficient implies that high degree
nodes are unlikely to connect with other high degree nodes and likewise for low degree
nodes. It also suggests that this layer compares more closely with biological networks than
social networks. Curiously, this layer also defies intuition in that as with the previous layers

analyzed, we expected this layer to behave similarly to technological networks.

4.3 Overall Importance
While in Section 4.2 we analyzed each layer independently, in this section, we present

a ranking system that determines the overall most important TAMCN in the GCSS-MC

68

database. First of all, we identify trends among the three layers. We observe that the denser
the layer, the more it follows a scale-free power law degree distribution. The denser layers
also possess higher positive assortativity coefficients. However, this does not imply that the
assortativity increases as the amount of nodes and edges increase since the Deadline Parts on
Order assortativity coefficient is higher than the Current Parts on Oder layer. All the layers
possess high clustering coefficients. This signifies a large number of connections within
communities. According to our community analysis, although the community breakdown
does not separate communities entirely by TAMCN class, each community is made up of a
majority of a distinct TAMCN class. The high clustering coefficients for each of the layers
implies TAMCNs have many connections among their own TAMCN class. Additionally,
we notice that D TAMCNSs are important in each of the layers.

We create a ranking system that ranks TAMCNs based on their importance in each of the
layers. A more important TAMCN will have a higher centrality measure. In order to find
the most important overall TAMCN, first we create a Python dictionary data structure in
which the key is the TAMCN and the value is a list of each centrality measure associated
with the TAMCN. Consider a TAMCN that appears in each layer. The length of the list
associated with the TAMCN is: 4 - ¢(TAMCN), where ¢(TAMCN) is the number of layers
the TAMCN appears in and 4 represents the 4 total centrality measures. We find the greatest
value of ¢ which is max(¢) in the dictionary and set a starting value of y = 4 - max(¢). We
find a ranking value by calculating the summation of each centrality value associated with
a TAMCN and subtracting it by y:

rank_value(TAMCN) = y — (Z Cp(i) + Z Ce(i) + Z Cp(i) + Z Cc(i)), 4.3)
i=1 i=1 i=1 i=1

where Cp, Cg, Cp, Cc are degree, eigenvector, betweenness, and closeness centralities,
respectively, m = ¢(TAMCN), and i is the layer containing the centrality measure. Not all
TAMCNSs are present in each one of the layers. We incorporate a penalization for TAMCNss
that do not appear in a layer through the use of y. We know that the centrality value is
less than 1 for each centrality since the values are normalized. Therefore, Equation 4.3
demonstrates that if a TAMCN has a value m < max(¢), then the TAMCN’s ranking value
is penalized by a value of y — (4 - (max(¢) — m)). In other words, consider a TAMCN
that appears in each layer. For each layer the TAMCN appears in, it has 4 opportunities to

69

subtract from the starting value y according to its 4 centrality values. Thus, for every layer
a TAMCN does not appear in, it loses 4 opportunities to subtract from y. We finalize the
ranking by sorting the TAMCN in ascending order according to the rank_value associated
with each TAMCN. The TAMCN with the lowest rank_value is the most important
TAMCN in the GCSS-MC database.

Table 4.6. Top 25 TAMCNs and Top 25 Maintenance Drivers

Maint Driver Top TAMCNSs Maint Driver Top TAMCNs
1 : EO8467K 1:DI1158 14 : A20427G 14 : A0067
2: E18887M 2: DO198 15 : DO0037K 15 : E0947
3: E09477M 3 : E0846 16 : A01297G 16 : D0O003
4: A00977G 4: A1440 17 : A03367G 17 : D1059
5: D00367K 5: E0796 18 : E09487B 18 : D0022
6 : E06717M 6: D1159 19 : D00227K 19 : A1957
7: A20687G 7 : D1002 20 : E07967K 20 : D0030
8 : B05897B 8:D1125 21: A01267G 21: D0031
9: D0O0307K 9: D1001 22 : DO0157K 22 : E0942
10: D11587K 10 : D1062 23 : A21797G 23 : E1888
11: E13787K 11: D0209 24 : D01987K 24 : D0036
12 : B0O1607B 12: D1213 25 : E08567K 25 : D0033
13: A15037G 13: D1073

Table 4.6 lists by comparison the top 25 maintenance drivers and the top 25 TAMCNs from
our methodology. We obtained the top 25 maintenance drivers from [48]. The maintenance
drivers are TAMCNs that are of elevated interest. Although our methodology did not
rank the TAMCNs in the exact order as the maintenance drivers, the methodology did
capture several of the TAMCNs found in the maintenance drivers. Of the top 25 TAMCNs
identified by our methodology, 10 are also contained in the top 25 maintenance drivers. We
successfully matched nearly half of the TAMCNss in the top 25 current maintenance drivers

using only three layers and a static snapshot of data nearly three years old.

Figure 4.18 depicts the TAMCN quartile breakdown for the overall ranking. We split the
TAMCNS into four groups according to their ranking. We observe that the first quartile
has the smallest sampling of TAMCN classes. This signifies that the majority of important

70

mooO >
ZAIMOO®>

(a) First quartile (b) Second Quartile

CzZTATITmMmoO >
<ZTAIMOO ®>

(c) Third Quartile (d) Fourth quartile
Figure 4.18. TAMCN Quartile Breakdown

TAMCNS fall under five TAMCN classes. Figure 4.18 (a) illustrates that D TAMCNs
comprise the majority of the first quartile. The proportion of D TAMCNs decrease as the
quartile increases. This suggests that D TAMCNSs are more important since they concentrate
in the first quartile while the other TAMCNs distribute more evenly through the quartiles.
This observation supports our layer analyses which show that D TAMCNs are the most
important TAMCN class. E TAMCNs comprise the majority of the third quartile but
appear in large numbers throughout all quartiles. Although E TAMCNs do not comprise a
majority of the first or second quartiles, individual E TAMCNSs convey importance as seen

in Table 4.6. Low degree nodes tend to appear more often in the third and fourth quartiles.

71

4.4 Summary

In this chapter, we applied the methodology discussed in Chapter 3. We systematically
searched for tables that contain information prevalent to creating a complex network based
on the GCSS-MC database. Once we located the tables, we extracted the TAMCN and
NSN columns via SQL Developer and exported them to a CSV file. We then constructed
a complex network consisting of three layers from the information obtained from the CSV
files. We provided an in depth analysis of the Current Parts on Order layer and then
summarized the Deadline Parts on Order layer and the Open Service Request layer. We
identified trends and the most influential TAMCN per layer and concluded by identifying
the most important TAMCN of all three layers. We compared our ranking to current
maintenance drivers and found that we identified nodes considered important within the

maintenance cycle. We conclude our thesis with a summary and analysis of our findings in
Chapter 5.

72

CHAPTER 5:
Findings

This thesis investigated the application of network science in determining importance within
the GCSS-MC database. A TAMCN is considered important based on its impact to
other TAMCNSs in the network. We used eigenvector, degree, betweenness, and closeness
centrality to determine importance in the GCSS-MC database network consisting of three
layers. Additionally, other network attributes such as community structure, core structure,
and assortativity aid in the understanding of relationships between nodes and edges and
provide insight into the relationships between the nodes. Network models generalize
behavioral properties which allow the comparison to other phenomena and provide foresight
into potential changes and growth in the network. We developed a process to find columns
within tables belonging to the GCSS-MC database based on search criteria related to Marine
Corps procurement, maintenance, and equipment loan and transfer functions. Then we
export the columns to a CSV file through Oracle SQL Developer. Each table whose columns
are exported represents a relationship between the columns selected. This relationship serves
as the attribute used to construct a layer in the complex network. We developed an algorithm
to create a complex network consisting of multiple layers. Finally, we constructed a ranking

algorithm that ranks TAMCNSs in order from most to least important.
This thesis concludes the following:

1. We demonstrated a methodology that ranks TAMCNs from most to least important
based on centrality measures. This methodology also identifies the most important
TAMCN in each layer.

2. This methodology also identified the most influential regions within the database.
Influential regions consist of TAMCN classes with high centrality measures through
the analysis of the community and core structure of each layer.

3. According to the data analyzed, the GCSS-MC network behaves similarly to social
networks. All of the layers model small-world networks — and two of the three are also
scale-free — in their degree distribution, low average path length, and high clustering

coeflicients and whose values suggests a strong similarity to social networks [11],

73

[34], [10], [49].

Two of the three layers contain positive degree assortativity coefficients signifying
that high degree nodes are more likely to connect with other high degree nodes and
likewise for low degree nodes. The assortativity coefficients of these layers resemble

assortativity values found in social networks [38].

. We note that a non-random network structure does exist in the GCSS-MC database. As

such, the database should be optimized based on the network properties discovered
in this thesis with regard to the GCSS-MC database. Specifically, the GCSS-MC
database should be optimized for D TAMCNSs according to the data analyzed.

Alderson [50] (see also: [51], [52], [53], [54]) describes characteristics of complex networks
and provides common pitfalls researchers tend to make in their analyses of networks. We

examine these pitfalls in the context of the resultant GCSS-MC network produced through

our methodology:

1.

Taking data at face value. We obtained the data from the same source as [4] and [5].
Also, the methodology described in this thesis identifies and retrieves the data used
to create the network.

Misconceptions about power laws. Two of the three layers depict a power law
degree distribution. However, the data obtained represents a portion of a snapshot
in time. Thus, we do not have insight into the growth of this network. We do not
assume the GCSS-MC network follows preferential attachment growth. Since the
relationships between TAMCNs are based on properties related to NSNs, hubs in the
network should be affected by NSN changes.

Insufficient validation. The network constructed in this thesis does not take into
consideration all possible layers or provide a history of changes in the database.
Nonetheless, the methodology presented in this thesis demonstrates the ability to
create complex networks from the GCSS-MC database.

Reducing a complex system to a simple graph. We recognize the complexity
involved with the relationships in the GCSS-MC database and address it through the
use of a multilayer network. Each layer of the network presents a different attribute,

as described in Chapter 3.

. Confusing '""Disorganized Complexity' with '""Organized Complexity." Individ-

ual TAMCNs represent systems with organized complexity. For example, a tank

74

exhibits technologically organized complexity in that a tank contains many compo-
nents engineered to fit together in a deliberate fashion. A tank cannot be constructed
by randomly connecting its components. The GCSS-MC data is a collection of tech-
nologically complex items grouped by type. However, the organization of the data
within the database does not appear to be deliberate. The network created with our

methodology demonstrates that structure exists within the database.

5.1 Future Work

This thesis presented a methodology to identify the most important TAMCN. The future
work associated with this thesis focuses on automating the process, incorporating big data
analytic techniques, and expanding the size of the network by adding layers. In this section,
we discuss these ideas in further detail by providing a high level overview designed to

continue the research started by this thesis.

First of all, we were unable to locate tables from the data set which reference equipment
loans and transfers. Further research would benefit from obtaining data containing transfers
of equipment from one unit to another. This thesis concentrated on undirected graphs.
Utilizing data containing loans and transfers would enable the use of a digraph. While this
thesis used four centrality measures, including a digraph would allow the use of the page
rank algorithm, which may offer further insight into the GCSS-MC database. While all of
the layers in the network created in this thesis consisted of nodes in V(G) which represent
TAMCNS, a digraph can have nodes represent units. Then, an edge connecting one node to
another represents one unit loaning or transferring a TAMCN to another. Our methodology
can be easily adjusted to create a digraph instead of an undirected graph. However, our

ranking formula does not take into account nodes belonging to digraphs.

Automating the methodology can be divided into two parts. Figure 3.1 illustrates the
methodology overview. We use different tools in order to accomplish each step depicted in
Figure 3.1. Instead, one program can combine all of the steps needed to create the complex
network. We iterate through the tables in order to find columns using the File Extractor
program written in Python. Future work can entail using the cx_Oracle Python library [55]
in order to connect to the database and pull columns without having to export it to CSV

first. The same program can then use the GCSSGraph class to create a graph directly

75

from the data. Searching through tables was a time-consuming aspect of the methodology.
Machine learning can be incorporated into the methodology to train an algorithm to search
for columns that contain information desired to create a network. Also, since the GCSS-MC
database is dynamic, the data contained in the database changes. Our current methodology
ranks a static snapshot of the GCSS-MC database. Machine learning can be used to learn
how the GCSS-MC data changes over time and predict important TAMCNss.

This thesis explored three well-known models, and our methodology compared the resultant
networks to the models. We observed that although the degree distribution estimated the
actual network, each synthetic model underestimated the composition of the core. The
synthetic models also varied in their estimation of modularity and clustering coefficients.
Future work can entail designing a synthetic model that closely models the behavior found
in the GCSS-MC network. This model can assist in studying growth as the number of nodes
and edges in the graph increase. This research can help determine whether the graph builds

and grows through preferential attachment.

Lastly, big data analytic techniques can be applied to this project. This thesis does not
attempt to parallelize or distribute the computation involved in creating the network. The
largest CSV file we applied our methodology to is only 22.3 MB. As the data grows,
the capabilities of the laptop may not sufficiently handle the processing power necessary to
create the graph. For example, the fillMatrix method in the GCSSGraph class is a suitable
candidate for parallelization. For large files, a HDFS cluster can be used to fill in specific
a;; entries pertaining to the adjacency matrix. Applying big data analytic techniques to
network science in order to study the GCSS-MC database can provide decision makers with

fast, accurate information regarding relationships within the database among the TAMCNSs.

76

List of References

[1] Consumer-Level Supply Policy, MCO 4400.150, United States Marine Corps, Wash-
ington, DC, 2014.

[2] U. S. M. C. concepts and programs. Global Combat Support System - Marine Corps
(GCSS-MCQ). [Online]. Available: https://marinecorpsconceptsandprograms.com/
programs/command-and-controlsituational-awareness-c2sa/global-combat-support-
system-marine-corps. Accessed May 25, 2017.

[3] “GCSS-MC welcome to GCSS-MC basics,” MarineNet Course GCSS11BCO. Avail-
able: https://www.marinenet.usmc.mil/MarineNet/Courses/CourseDetails.aspx

[4] N. Bitto, “Adding big data analytics to GCSS-MC,” M.S. thesis, Naval Postgraduate
School, Monterey, Ca, 2014.

[5] A. Das, “Marine Corps Logistics Command Master Data Repository (MDR) study,”
Internal NPS Report, Oct. 2016.

[6] D. B. West et al., Introduction to Graph Theory, 2nd ed. Upper Saddle River, NJ:
Prentice Hall, 2001.

[7] K. H. Rosen, Discrete Mathematics and Its Applications, 7th ed. New York, NY:
McGraw-Hill, 2012.

[8] D. Ortiz-Arroyo, “Discovering sets of key players in social networks,” in Computa-
tional Social Network Analysis. Springer, 2010, pp. 27-47.

[9] H. Burch and B. Cheswick, “Mapping the internet,” Computer, vol. 32, no. 4, pp.
97-98, Apr. 1999.

[10] S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D.-U. Hwang, “Complex net-
works: Structure and dynamics,” Physics Reports, vol. 424, no. 4, pp. 175-308, Feb.
2006.

[11] S. H. Strogatz, “Exploring complex networks,” Nature, vol. 410, no. 6825, pp. 268—
276, Mar. 2001.

[12] K. W. Kohn, “Molecular interaction map of the mammalian cell cycle control and
dna repair systems,” Molecular Biology of the Cell, vol. 10, no. 8, pp. 27032734,
May 1999.

[13] L. C. Freeman, “Centrality in social networks conceptual clarification,” Social Net-
works, vol. 1, no. 3, pp. 215-239, 1978.

77

https://marinecorpsconceptsandprograms.com/programs/command-and-controlsituational-awareness-c2sa/global-combat-support-system-marine-corps
https://marinecorpsconceptsandprograms.com/programs/command-and-controlsituational-awareness-c2sa/global-combat-support-system-marine-corps
https://marinecorpsconceptsandprograms.com/programs/command-and-controlsituational-awareness-c2sa/global-combat-support-system-marine-corps
https://www.marinenet.usmc.mil/MarineNet/Courses/CourseDetails.aspx

[14] T. Opsahl, F. Agneessens, and J. Skvoretz, “Node centrality in weighted networks:
Generalizing degree and shortest paths,” Social Networks, vol. 32, no. 3, pp. 245—
251, 2010.

[15] J. Scott and P. J. Carrington, The SAGE Handbook of Social Network Analysis. Los
Angeles: SAGE Publications, 2011.

[16] F. G. Laxe, M. J. F. Seoane, and C. P. Montes, “Maritime degree, centrality and vul-
nerability: Port hierarchies and emerging areas in containerized transport (2008—
2010),” Journal of Transport Geography, vol. 24, pp. 33—44, Sept. 2012.

[17] F. C. 1. Commission, The Financial Crisis Inquiry Report: Final Report of the
National Commission on the Causes of the Financial and Economic Crisis in the
United States. New York: PublicAffairs, 2011.

[18] M. Pié6ro, A. Szentesi, J. Harmatos, A. Jiittner, P. Gajowniczek, and S. Kozdrowski,
“On open shortest path first related network optimisation problems,” Performance
Evaluation, vol. 48, no. 1, pp. 201-223, May 2002.

[19] S. Zhou and R. J. Mondragén, “Accurately modeling the Internet topology,” Physical
Review E, vol. 70, no. 6, p. 066108, Dec. 2004.

[20] S. P. Borgatti, “Centrality and network flow,” Social Networks, vol. 27, no. 1, pp. 55—
71, Jan. 2005.

[21] E. Costenbader and T. W. Valente, “The stability of centrality measures when net-
works are sampled,” Social Networks, vol. 25, no. 4, pp. 283-307, Oct. 2003.

[22] H.-W. Ma and A.-P. Zeng, “The connectivity structure, giant strong component and
centrality of metabolic networks,” Bioinformatics, vol. 19, no. 11, pp. 1423-1430,
Jul. 2003.

[23] P. Bonacich, “Some unique properties of eigenvector centrality,” Social Networks,
vol. 29, no. 4, pp. 555-564, Oct. 2007.

[24] A.]J. Seary and W. D. Richards, “Spectral methods for analyzing and visualizing net-
works: an introduction,” in Dynamic Social Network Modeling and Analysis: Work-
shop Summary and Papers. Washington, D.C.: National Academies Press, 2003, pp.
209-228.

[25] M. Newman, Networks: An Introduction. New York, NY: Oxford University Press,
Inc., 2010.

78

[26] G. Lohmann, D. S. Margulies, A. Horstmann, B. Pleger, J. Lepsien, D. Goldhahn,
H. Schloegl, M. Stumvoll, A. Villringer, and R. Turner, “Eigenvector centrality map-
ping for analyzing connectivity patterns in fmri data of the human brain,” PloS One,
vol. 5, no. 4, p. €10232, Apr. 2010.

[27] D. Yuhas. (2012, Jun. 21). What’s a voxel and what can it tell us? A primer on
fMRI. Scientific American. [Online]. Available: https://blogs.scientificamerican.
com/observations/whats-a-voxel-and- what-can-it-tell-us-a-primer-on-fmri/

[28] A. Beveridge and J. Shan, “Network of thrones,” Math Horizons, vol. 23, no. 4, pp.
18-22, Apr. 2016.

[29] E. M. Daly and M. Haahr, “Social network analysis for information flow in discon-
nected delay-tolerant MANETS,” IEEE Transactions on Mobile Computing, vol. 8,
no. 5, pp. 606—-621, Nov. 2009.

[30] P. Hui, J. Crowcroft, and E. Yoneki, “BUBBLE rap: Social-based forwarding in
delay-tolerant networks,” IEEE Transactions on Mobile Computing, vol. 10, no. 11,
pp- 1576-1589, Dec. 2011.

[31] P. Erd6s and A. Rényi, “On random graphs, 1,” Publ. Math. Debrecen, vol. 6, pp.
290-297, 1959.

[32] P. Erd6s and A. Rényi, “On the evolution of random graphs,” Publ. Math. Inst.
Hung. Acad. Sci, vol. 5, no. 1, pp. 17-60, 1960.

[33] D.J. Watts and S. H. Strogatz, “Collective dynamics of ’small-world’ networks,”
Nature, vol. 393, no. 6684, pp. 440-442, Apr. 1998.

[34] A.-L. Barabdsi and R. Albert, “Emergence of scaling in random networks,” Science,
vol. 286, no. 5439, pp. 509-512, Oct. 1999.

[35] M. E. Newman and M. Girvan, “Finding and evaluating community structure in net-
works,” Physical Review E, vol. 69, no. 2, p. 026113, Feb. 2004.

[36] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, “Fast unfolding of
communities in large networks,” Journal of Statistical Mechanics: Theory and Ex-
periment, vol. 2008, no. 10, p. P10008, Oct. 2008.

[37] M. E. Newman, “Assortative mixing in networks,” Physical Review Letters, vol. 89,
no. 20, p. 208701, May 2002.

[38] M. E. Newman, “Mixing patterns in networks,” Physical Review E, vol. 67, no. 2, p.
026126, Feb. 2003.

79

https://blogs.scientificamerican.com/observations/whats-a-voxel-and-what-can-it-tell-us-a-primer-on-fmri/
https://blogs.scientificamerican.com/observations/whats-a-voxel-and-what-can-it-tell-us-a-primer-on-fmri/

[39] G. D. Bader and C. W. Hogue, “Analyzing yeast protein—protein interaction data
obtained from different sources,” Nature Biotechnology, vol. 20, no. 10, pp. 991—
997, 2002.

[40] S. B. Seidman, “Network structure and minimum degree,” Social Networks, vol. 5,
no. 3, pp. 269-287, Sept. 1983.

[41] Madebyoliver, www.flaticon.com author page, 2017. Available: http://www.flaticon.
com/authors/madebyoliver

[42] Freepik, www.flaticon.com author page, 2017. Available: http://www.flaticon.com/
authors/freepik

[43] Networkx. Networkx overview. [Online]. Available: https://networkx.readthedocs.io/
en/stable/overview.html. Accessed April 27, 2017.

[44] Gephi. Gephi overview. [Online]. Available: https://launchpad.net/gephi. Accessed
April 28, 2017.

[45] Oracle. (2014, May). What is SQL Developer. [Online]. Available: http://www.
oracle.com/technetwork/developer-tools/sql-developer/what-is-sqldev-093866.html

[46] M. Jacomy, T. Venturini, S. Heymann, and M. Bastian, “Forceatlas2, a continuous
graph layout algorithm for handy network visualization designed for the Gephi soft-
ware,” PloS One, vol. 9, no. 6, p. €98679, Jun. 2014.

[47] Marine Corps Readiness Reportable Ground Equipment, MCBul 3000, United
States Marine Corps, Washington, DC, 2016.

[48] Headquarters I&L, “Top 25 maintenance drivers,” presented at Enterprise Ground
Equipment Management Corporate and Executive Boards, Quantico, Va, 2017.

[49] M. E. Newman, “The structure and function of complex networks,” SIAM Review,
vol. 45, no. 2, pp. 167-256, 2003.

[50] D. Alderson, “Catching the network science bug,” presented at NPS MA4404 Guest
Lecture, Monterey, Ca, 2017.

[51]1 W. Willinger, D. Alderson, and J. C. Doyle, “Mathematics and the Internet: A
source of enormous confusion and great potential,” Notices of the AMS, vol. 56,
no. 5, pp. 586-599, 2009.

[52] D. L. Alderson, “OR forum—catching the "network science’ bug: Insight and oppor-
tunity for the operations researcher,” Operations Research, vol. 56, no. 5, pp. 1047-
1065, Oct. 2008.

80

http://www.flaticon.com/authors/madebyoliver
http://www.flaticon.com/authors/madebyoliver
http://www.flaticon.com/authors/freepik
http://www.flaticon.com/authors/freepik
https://networkx.readthedocs.io/en/stable/overview.html
https://networkx.readthedocs.io/en/stable/overview.html
https://launchpad.net/gephi
http://www.oracle.com/technetwork/developer-tools/sql-developer/what-is-sqldev-093866.html
http://www.oracle.com/technetwork/developer-tools/sql-developer/what-is-sqldev-093866.html

[53] D. L. Alderson and J. C. Doyle, “Contrasting views of complexity and their implica-
tions for network-centric infrastructures,” IEEE Transactions on Systems, Man, and
Cybernetics-Part A: Systems and Humans, vol. 40, no. 4, pp. 839-852, Jun. 2010.

[54] J. C. Doyle, D. L. Alderson, L. Li, S. Low, M. Roughan, S. Shalunov, R. Tanaka, and
W. Willinger, “The "robust yet fragile’ nature of the Internet,” Proceedings of the

National Academy of Sciences of the United States of America, vol. 102, no. 41, pp.
14497-14 502, Oct. 2005.

[55] Oracle. Using Python with Oracle Database 11g. [Online]. Available: http://www.
oracle.com/technetwork/articles/dsl/python-091105.html. Accessed May 24, 2017.

81

http://www.oracle.com/technetwork/articles/dsl/python-091105.html
http://www.oracle.com/technetwork/articles/dsl/python-091105.html

THIS PAGE INTENTIONALLY LEFT BLANK

82

Initial Distribution List

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library

Naval Postgraduate School
Monterey, California

83

	Introduction
	Problem Statement
	Research Questions
	Relevance to DOD
	Thesis Organization

	Background
	GCSS-MC Research
	Principles of Graph Theory
	Complex Networks
	Summary

	Identifying the Most Influential TAMCN
	Tools
	Locating and Exporting Tables in GCSS-MC Database
	Complex Network Construction and Analysis
	Summary

	Results and Analysis
	Attribute Search Results
	Layer Analysis
	Overall Importance
	Summary

	Findings
	Future Work

	List of References
	Initial Distribution List

