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ABSTRACT 

The inverted pendulum, a popular problem of study, is presented in many 

textbooks as a nonminimum phase system. The majority of control algorithms for this 

problem include linearizing the system about a fixed operating point. In this thesis, a 

nonlinear form of control is considered.  

A model for the rotary inverted pendulum system was derived and validated by 

comparing simulations using the derived equations to experimental data. The system 

parameters were tuned until the simulation and experimental data fit. A feedback 

linearization controller was then designed based on the model derived. The simulated 

implementation of the feedback linearization was successful but indicated continuous 

motion of the system. The experimental results of the feedback linearization controller 

were less successful than simulations. The simulated results also indicated unstable zero 

dynamics of the system, which were characterized and confirmed to be unstable. Finally, 

an intuitive fix was applied to add terms to the feedback linearization controller to 

account for the zero dynamics. The results of this controller in simulation were successful 

but did not produce a substantially different response in the experimental system.  
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I. INTRODUCTION 

A. BACKGROUND 

The inverted pendulum is a common benchmark in control theory. It is a problem 

that can be easily visualized because everyone at one point has tried to balance a 

broomstick on his or her palm. While the broomstick is a rather unsophisticated 

experiment, it demonstrates the inherit instability of the inverted pendulum system. The 

classical controls laboratory problem consists of a rigid pendulum attached to a cart. The 

goal is to keep the pendulum inverted with the only input being the forward and backward 

force on the cart. This problem is also commonly adapted to a rotary system in which the 

cart is replaced by a rotary arm connected to a DC motor and the torque of the motor is the 

input. A schematic of the cart and pendulum, as well as the rotary pendulum system, is 

shown in Figure 1. The dynamic motion equation of a pendulum includes sine and cosine 

terms; therefore, the system is nonlinear. There are two equilibrium points of the 

pendulum. The first is its downward position, often called the stable equilibrium point. This 

is an asymptotically stable equilibrium, and any position aside from the inverted position 

converges to this point. The other equilibrium point exists in the inverted position, often 

called the unstable equilibrium point. No positions of the pendulum converge to this point. 

The inverted pendulum is an under-actuated system, meaning that there are more degrees 

of freedom than there are inputs. The inherent instability of the system, as well as its 

nonlinear nature, makes the inverted pendulum a popular problem of study in control 

systems engineering.  

In many undergraduate controls courses, the inverted pendulum is stabilized using 

linearization of the equations of motion and pole placement. This technique, called state-

feedback control, is reviewed in Chapter III. The basic steps of linearization are to obtain 

the nonlinear equations of motion of the system, linearize them about an operating point, 

usually the inverted position of the pendulum, then choose either a proportional integral 

(PI), proportional derivative (PD), or proportional integral derivative (PID) controller to 

stabilize the system. Linearization is a fairly simple technique for control of the inverted 

pendulum and works well in a laboratory environment; however, many real life systems are 
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more complex, affected by disturbances, and rarely function about only one operating point 

[1]. For these reasons, other nonlinear control techniques may be more appropriate.   

 

Figure 1.  Schematics of the Linear and Rotary Inverted Pendulum Systems. 
Adapted from [2] and [3]. 

The focus of this thesis is to use feedback linearization to stabilize the rotary 

inverted pendulum. Feedback linearization is a form of control in which the input is used to 

linearize the system. Given a nonlinear model of a system, an input can be designed with 

two terms. The first is a nonlinear term that effectively cancels out the nonlinear behavior 

of the system. The second portion is a linear controller which works to stabilize the 

remaining linear portion of the system. Feedback linearization has advantages over 

linearized control because of the ability to operate over a wider range of motion than the 

small neighborhood of positions near the set operating point. For feedback linearization to 

be effective, a model of the system must be known. If unmodeled nonlinearities exist, then 

the system may become unstable. Additionally, according to Barbieri, Drakunov, and 

Grossimon feedback linearization control is known to be ineffective for controlling non-

minimum phase systems [4]. These are systems that have unstable zero dynamics. The 

inverted pendulum system has unstable zero dynamics that are examined in this thesis. In 

order to compensate for the instability, additional terms are added to the linear portion of 

the controller.  
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B. MOTIVATION 

While study into the inverted pendulum has been extensive, it is still a problem of 

interest. Prasad, Tyahi, and Om argue that most dynamic systems including robotic 

systems, missile systems, and industrial processes are nonlinear in nature [5]. The inverted 

pendulum is a somewhat simple stepping stone into the study and control of other more 

complex nonlinear systems. Applications of the inverted pendulum include wheeled mobile 

robots, which can be useful for personal mobility.  

C. PRIOR WORK 

There are nonlinear control techniques that have been successfully implemented 

on the inverted pendulum system. One common method is an input switching control 

method. In 1992, Wei performed a nonlinear switching control on an inverted pendulum 

on a cart [6]. The goal of the study was to create an algorithm that would both balance the 

pendulum on the cart while minimizing the linear motion of the cart. Control of the 

system was achieved in a set of five different cycles. Each cycle was defined by the 

pendulum angle and angular velocity and set a different value to the input. In each cycle, 

the pendulum overshot the straight-up position by continually smaller amounts. The 

control input was a piecewise function between three different values.  

A more formal method of switching control is called sliding-mode control. Sliding-

mode control switches between two inputs in order to drive the system toward a desired, 

pre-defined surface. Barbieri, Drakunov, and Grossimon explain that sliding-mode control 

is desirable for its robustness in systems where the dynamics are not fully known [4]. This 

surface is a linear combination of the states of the system. The sign of the input changes 

based on value of the surface. According to Khanesar, Teshnehlab, and Shoorehdeli [7], 

achieving sliding-mode control can be broken into two steps. The first is to select an 

appropriate sliding surface. The second is to ensure the input forces the system to converge 

to the sliding surface. Once the system converges to the surface, the surface itself 

determines the limitations of the system. To ensure that the system converges to the sliding 

surface, a Lyapunov function is defined to be a positive definite function of the surface. 
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Then, inputs are designed so that the time derivative of the Lyapunov function is negative, 

ensuring that both the Lyapunov function and sliding surface approach zero [7]. 

In 1996, Enrique Barbieri and Sergey Drakunov published a paper in which they 

used software to simulate sliding-mode controller on a rotary inverted pendulum system 

[4]. The goal of the study was to design a controller that could hold the pendulum at any 

commanded angle. They ran two simulations, one in which the pendulum was to be stable 

in the inverted position and another in which the pendulum was to be held at a 45 degree 

angle. The simulations showed that the pendulum could be stabilized in the inverted 

position after the rotary arm did the three full revolutions. The pendulum could be held at 

45 degrees but required the rotary arm to spin continuously.  

In 2007, Khanesar, Teshnehlab, and Shoorehdeli also published a paper 

investigating sliding-mode control of the rotary inverted pendulum system [7]. Noting 

that the position of the rotary arm could not be controlled if the angle of the pendulum 

was the only output, the authors designed two different sliding surfaces. One stabilized 

the rotary arm, and the other stabilized the pendulum. The Lyapunov function used was a 

linear combination of the two sliding surfaces, which weighted the stability of the 

pendulum over the stability of the rotary arm. A simulation was used to analyze the 

resulting controller. The pendulum was stabilized in its inverted position. The rotary arm 

settled at its desired position after the pendulum was stabilized. 

Later in 2007, Khanesar and Shoorehdeli investigated combining sliding-mode 

control with fuzzy neural networks to stabilize the rotary inverted pendulum [1]. The 

same sliding surfaces and Lyapunov function was used as in his previous paper, but this 

time the dynamics of the rotary inverted pendulum system were left to be somewhat 

unknown. Fuzzy neural network is a layered control approach which is used to estimate 

unknown parameters through a series of trial runs. The combination of the fuzzy neural 

network with sliding-mode control stabilized the system with satisfactory results.  

Among the applications of the inverted pendulum is a two wheeled robot. One 

mobile inverted pendulum robot was created  by Grasser,  D’Arrigo, Colombi, and Rufer 

to study the feasibility of the robot that could balance a driver on two coaxial wheels [8]. 

The resultant robot, called JOE, was about half a meter tall and weighed 12 kg. JOE was 
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designed only to study the problem, not to operate with a rider. The designers used two 

different linearized state space controllers to stabilize JOE. One controller balanced the 

pendulum, and the other controlled the position of the base of the robot. The robot was 

able to compensate for some disturbances in force; however, control was done via pole 

placement determined by system parameters unique to the system. If parameters of the 

system such as length or weight of the robot were changed, the control did not work.  

In 2005, Pathak, Franch, and Agrawl published a paper about the dynamics of the 

two-wheeled inverted pendulum [9]. They studied the controllability properties of such a 

system and derived the partial feedback linearized form which led to a two-level velocity 

controller and a stabilizing position controller. Simulations of the control algorithms 

showed success; however, these controllers were again dependent on the parameters of 

the system and could not control a robot with different physical parameters.  

In addition to parameter uncertainties, autonomous inverted pendulum systems 

are susceptible to changes in the terrain in which they operate. If used for personal 

transportation, the rider could feel uncomfortable and unsafe when climbing or 

descending a slope. In 2014, Dai, Gao, Jiang, Liu, and Li. modeled a two-wheeled 

inverted pendulum with an additional sliding joint at the top of the pendulum which could 

shift the weight of the load to keep the pendulum straight up when on a slope [10].  

The work in mobile inverted pendulums can lead to more commercial robots for 

personal entertainment similar to the Segway. They may also offer an alternative to 

current motorized wheelchairs with the benefit of increased maneuverability.  

D. THESIS ORGANIZATION 

This thesis is organized into eight chapters. The setup of the experimental rotary 

pendulum system is included in Chapter II. Linearization and linear control of the 

inverted pendulum is designed, implemented, and analyzed in Chapter III. The inverted 

pendulum mathematical model is derived and validated in Chapter IV. Feedback 

linearization is derived, implemented, and analyzed in Chapter V. The zero dynamics of 

the system are derived in Chapter VI. Finally, in Chapter VII a linearized feedback 

controller is designed with added terms to account for the zero dynamics. Results, 

conclusions, and future work are discussed in Chapter VIII. 
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II. EXPERIMENTAL SYSTEM 

A. SYSTEM DESCRIPTION 

All experiments were carried out on the Quanser Rotary Inverted Pendulum 

system, created by Quanser for educational purposes. The instructions for setup of the 

inverted pendulum system can be found in the Quanser manual [11]. The main hardware 

components are the pendulum system, data acquisition unit, and amplifier. 

The rotary pendulum system consists of the SRV02 motor plant, a rotary arm, and 

the pendulum itself. A motor in the SRV02 plant is attached to a load gear shaft affixed to 

the flat rotary arm. The rotary arm has a metal shaft at the end able to rotate 360 degrees. 

Also on the rotary arm is an encoder to measure the angle of rotation of the metal shaft. 

The rigid pendulum is attached to the end of the metal shaft. The rotary pendulum system 

is shown in Figure 2. 

 

Figure 2.  Experimental Rotary Pendulum System. Source [11]. 
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The motor of the plant is a Faulhaber Coreless DC motor model number 

2338S006. The maximum input is +/-15.0 V. The maximum currents are 3.0 A peak or 

1.0 A continuous. High-frequency signals may damage the brushes of this motor over 

time, so it is recommended by the manufacturer to limit the signal feedback to 50 Hz 

[12].  

The potentiometer used in the SRV02 plant is a Vishay Spectrol model 132. It is a 

single turn 10.0 kΩ potentiometer that ranges over 352 degrees. The output of the sensor 

is +/-5.0 V over the full range. The potentiometer gives absolute position, while an 

encoder offers only relative position from initialization position [12].  

The potentiometer is used in conjunction with an encoder to accurately measure 

the position of the load shaft. The encoder used is the U.S. Digital S1 single-ended 

optical shaft encoder [13]. It has a resolution 4096 counts per rotation, meaning it can 

detect changes in the pendulum angle as small as 0.09 degrees. It is operated by a single 

5.0 V DC source. The maximum shaft speed it can measure is 100 rpm. The same type of 

encoder is attached to the rotary arm to measure the angular position of the pendulum 

[13].  

The tachometer is used to measure the speed of the load shaft. It is connected 

directly to the shaft of the DC motor to prevent a time lapse of the response and ensures 

that the motor speed is correctly measured [12]. 

A table of parameters associated with the SRV02 plant can be found in [12]. 

While these parameters are not listed in the user manual for the inverted pendulum 

system, some of them are used in the modelling of the pendulum system when adding 

actuation dynamics. For convenience, a table of parameters used in calculations is shown 

in Table 1. 

The parameters for the inverted pendulum can be found in [11]. These parameters 

are used in the model derivation in Chapter IV. The list of parameters of the inverted 

pendulum are shown in Table 2.  
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Table 1.   Relevant SRV02 Plant Parameters. Adapted from [12].  

Symbol Description Value Unit 

Kg High gear total gear ratio 70  
kt Motor current torque constant 7.68·10-3 Nm/A 
km Motor back emf constant 7.68·10-3 V/(rad/s) 
nm Motor efficiency 0.69  
ng Gearbox efficiency 0.9  
Rm Motor armature resistance 2.6 Ohms 

Table 2.   Rotary Pendulum System Parameters. Adapted from [11]. 

Symbol Description Value Unit 
mp Mass of pendulum 0.127 kg 
Lp Total length of pendulum 0.337 m 
lp Distance from pivot to center of mass 

of pendulum 
0.156 m 

Jp,cm Pendulum moment of inertia about 
center of mass 

0.0012 kg·m2 

Bp Pendulum viscous damping 
coefficient  

0.0024 N·m·s/rad

mr Mass of rotary arm 0.257 kg 

Lr Rotary arm length pivot to tip 0.216 m 
lr Rotary arm distance pivot to center of 

mass 
0.0619 m 

Jarm,cm Rotary arm moment of inertia about 
its center of mass 

9.98·10-4 kg·m2 

Br Rotary arm viscous damping 
coefficient 

0.0024 N·m·s/rad 

Jarm Rotary arm moment of inertia about 
pivot 

0.002 kg·m2 

 

The data acquisition unit used is the Quanser Q2-USB. The maximum closed loop 

control rate using this device is 2.0 kHz. A full list of specifications can be found in [14].  

The power amplifier used, the VoltPAQ-X1, is a linear power amplifier able to 

output 24.0 V continuously and 4.16 A continuously. There are four analog inputs with a 

range between -10.0 V and 10.0 V. The full list of specifications is available [15]. 
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B. SOFTWARE 

All simulations were carried out using Simulink in Matlab 2015b. This version of 

Matlab was used because of the author’s prior experience. The system and controller 

were initially represented as S-functions in Simulink. An S-function is a user defined 

script that interfaces with the Simulink engine to solve for outputs given inputs. The 

Quanser hardware is not compatible with S-functions, so after the simulation was 

working, the equations executed in the S-functions were rebuilt using Simulink Math  

Operation blocks. Building these equations with Math Operations was not difficult but 

required attention to detail in order to make sure all the correct operations took place. 

Simulation outputs using the Math Operations were compared to those using an S-

function to check for correctness. After the math blocks were confirmed to work 

correctly, the simulation was sent to the experimental computer system via Google Drive. 

The experiments were run using Simulink in Matlab 2014b. This earlier version 

of Matlab was used because it had already been installed on the system and was 

compatible with the Quanser hardware. Simulink was interfaced with the experimental 

hardware using QUARC Real-time Rapid Control Prototyping software. This software is 

used for many QUARC products. The role of this software is to bridge the gap between 

simulation time and real time. Simulations are only limited by the processing power of 

the computer. The computer can solve the equations that govern the system faster than 

sensors can gather data and faster than the dynamics of the system will respond; 

therefore, the behavior of the inverted pendulum system can be simulated much faster 

than it could be observed. The QUARC software slows the simulation to operate at the 

same speed as the experimental system [16]. 
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III. LINEAR CONTROL 

Linear control, a simple way to control the inverted pendulum, is studied in many 

undergraduate courses. For familiarization and initial system testing, linear control 

through pole placement was performed. 

The dynamic equations of the inverted pendulum system include sine and cosine 

terms and are, therefore, nonlinear. The nonlinear model is examined in Chapter IV. The 

system can be linearized through a first order Taylor series approximation. The format of 

a linearized system in state-space format is: 

 x Ax Bu    (1) 

 .y Cx Du    (2) 

The state vector for the inverted pendulum system is 

 x





 
  
 
 
  





. 

In this representation, the variable ߠ	represents the angle of the rotary arm, and the 

variable α represents the angle of the pendulum. The dot convention represents the time 

derivative of the variable. The linearized model is presented in [11]. The state matrices 

are 

 

0 0 1 0

0 0 0 1
,

0 81.4033 45.8259

0 12

.9319

44.09662.0545 1.3972

A

 
 
 
 
  




  (3) 
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80.31

0

0
,

83.4659

62

B

 
 
 
 
 
 

  (4) 

 
1 0 0 0

,
0 1 0 0

C
 

  
 

  (5) 

and 

 
0

.
0

D
 

  
 

  (6) 

A system is said to be controllable, according to Ogata [17], if for any initial state, 

it can be brought to another state in a finite amount of time using an unconstrained input. 

Ogata explains that for the system to be controllable, the rank of the controllability matrix 

T must equal the number of states. The controllability matrix for this system is 

 2 3T B AB A B A B     . (7) 

The system was checked for controllability. In the case of the rotary inverted pendulum, 

the rank of the controllability matrix is four; therefore, the system is controllable [17]. 

Because the system is controllable, it can be stabilized using pole placement. 

Poles are the eigenvalues of the matrix A and determine the behavior of the system. All 

the eigenvalues of stable systems have a negative real portion. Unstable systems have a 

pole that has a positive real portion. Systems with single poles at the origin or on the 

imaginary axis are marginally stable, but the system becomes unstable if any of those 

poles are repeated. The poles of the inverted pendulum can be found using  

 det( ) 0sI A    (8) 

where s is a variable and I is the identity matrix of the same dimension as the matrix A. The 

poles of the system are at  −48.4156,  −5.8644, 0, and 7.0569. The pole in the right half 
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plane indicates that the system is not stable. The goal of pole placement is to use an input 

of the form u Kx in order to shift the poles to the left half plane. In this controller, K is a 

1×4 vector. By plugging the input u into Equation (1), we get the new state equation  

 ( )x A BK x   . (9) 

The poles of the system after pole placement are the eigenvalues of the matrix (A+BK). 

The values of K can be changed to modify the eigenvalues of the matrix  

 

1 2 3 4

1 2 3 4

0 0 1 0

0 0 0 1
( )

83.4659 81.4033 83.4659 45.8259 83.4659 .9319 83.4659

80.3162 122.0545 80.3162 44.0966 80.3162 1.3972 80.3162

A BK
k k k k

k k k k

 
 
  
     
     

. (10) 

In addition to determining stability, the eigenvalues are linked to the damping 

ratio ζ and natural frequency ωn of the system. The damping ratio determines the 

transient response of the system. If ζ is less than 1.0, then the system is underdamped, 

and the transient response is oscillatory. If is greater than 1.0, the system is overdamped 

and approaches the steady-state value without oscillations. Ogata states that the natural 

frequency determines the frequency of the system when it is not damped [17].  

Poles which are closer to the origin have a greater effect on the overall system 

response than those farther away from the origin. A standard rule in control systems is 

that the effect of poles greater than 10 times those poles located near the origin can be 

neglected. The set of equations used to calculate the dominant poles of the system is 

 
2

1,2 1 .n np j       (11) 

A natural frequency of 4.0 and a damping ratio of 0.5 produces the dominant 

poles of the system at −2.0+3.464j and −2 −3.464j. The remaining two poles are chosen 

to be at −40 and −45 as to have negligible effect on the system. The Matlab command 

‘place’ was used to calculate gains given the system A and B matrices and the desired 

poles. The required gain values to shift the poles to these locations are  
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  7.8917 37.8317 2.9850 3.6222K     . (12) 

This controller was represented as a gain block and tested in Simulink. A picture of the 

simulation diagram is shown in Figure 3. The output is shown in Figure 4. 

 

Figure 3.  Simulink Diagram for Linear Control Simulations 

 

 

Figure 4.  Underdamped Simulation Output 
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In the simulation, an initial pendulum angle of ten degrees from vertical was used. 

The pendulum and rotary arm both settle within two seconds of the start of the 

simulation. It is evident that the response is underdamped, as the pendulum angle 

oscillates before settling at zero. The same controller was then implemented on the 

experimental system. A picture of the Simulink diagram, interfaced with the experimental 

hardware, is shown in Figure 5. The green block titled SRV02-ET+ROTPEN-E interfaces 

with the actual input and output of the real rotary pendulum. The output of the states is 

shown in Figure 6. The experimental controller is only set to engage when the pendulum 

is within ten degrees of vertical to prevent the rotary arm from moving as the pendulum is 

manually brought to the desired starting position. During the first 1.5 s of the experiment, 

the pendulum was manually brought to its starting position. After that time, the controller 

engaged, and the pendulum was balanced by the system. In the experimental output, it is 

more difficult to notice the transient response because of the way the pendulum must be 

manually brought to the starting position.  

 

Figure 5.  Simulation Diagram Interfaced with Hardware for Experiments 
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Figure 6.  Experimental Output of Rotary Pendulum System Using 
Underdamped Pole Placement Method 

In the first simulation and experiment, the poles were chosen to show an 

underdamped response. It is possible to recalculate the poles to show an overdamped 

response. The damping ratio was changed to 1.2. The dominant poles were calculated by 

using Equations (11) to be at −2.1467 and −7.4533. The remaining poles were left at 40  

and 45 . The new gain matrix is  

  7.8917 45.1949 5.7471 6.5623K     . (13) 

This controller was implemented in Simulink. The output of the states is shown in 

Figure 7. The pendulum and rotary arm settle at zero degrees much faster than when the 

system is underdamped. The pendulum still overshoots the final position but by a much 

smaller amount. The rotary arm does not oscillate around its final position. The new 

control gains were implemented on the experimental system. The output states are not 
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included, as there is not a large visual difference in the plots from the underdamped 

response experimentally. 

 

Figure 7.  Output of Overdamped Simulation 
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IV. MODEL DERIVATION AND VALIDATION 

The inverted pendulum was studied through its linearized dynamic equations and 

pole placement in the previous chapter. The nonlinear model of the inverted pendulum is 

analyzed in this chapter. One requirement of linearization feedback control is to have an 

accurate model of the nonlinear system. The input of the system is designed to cancel out 

the nonlinearities of the system. If the model of the system is not accurate, the input will 

not account for all the dynamics of the system, and the controller will not perform as 

expected.  

The mathematical model given in the Quanser manual was examined. If the 

model was accurate, then experimental data of the motion of the pendulum should match 

the output of the simulation given the same initial conditions. First, data was gathered 

from the experimental pendulum system, and then simulation data was gathered. The 

simulated and experimental data were then compared to assess the accuracy of the 

system’s mathematical model. 

The model of the pendulum system was represented as an S-function in Simulink. 

The experimental motion of the pendulum and the simulated motion of the pendulum 

using the equations of motion given in the user manual with a large initial angle are 

shown in Figure 8. The experimental and simulated pendulum motion with a small initial 

angle are shown in Figure 9. In these figures, the zero angle is defined as the pendulum’s 

stable equilibrium point.  
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Figure 8.  Experimental and Simulated Pendulum Motion with No Controller 

 

Figure 9.  Experimental and Simulated Pendulum with No Control with a Small 
Initial Angle 
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As seen in both figures, the period of oscillation of the simulation is faster than 

that of the actual rotary pendulum. Additionally, simulation damps off faster than the 

experimental data. The experimental and simulated data more closely match each other 

when the initial angle is large. This indicates some nonlinearity not modeled in the 

system. The large discrepancy between the simulation and experimental motion indicates 

that system is not modeled correctly. Because feedback linearization is based on the 

model of the system, it is critical that the model is accurate. The system model was 

examined more closely by looking at another source due to some ambiguity in the 

manual’s model derivation. In [18],  Cassolato and Prime derive a model for the rotary 

inverted pendulum using both the Euler-Lagrange method as well as the Newton-Euler 

method. While their method is similar to that found in the rotary inverted pendulum user 

manual, they do not make simplifications involving the moments of inertia until the very 

end. This leads to a very clear and concise model with well-defined parameters. The 

model derived in [18] is  

 
       

    
1 2 2 2 1 2
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2 2 2
2 2

1 1
sin 2 sin 2 sin

2 2
sin1

sin 2
2

b J J mLl
D

gml
J a b

      
 






          
                   

   

 
  (14)  

where  

 
     

  

2
0 2 2 1 2

2 1 2 2

cos
 

cos

J J sin m L l
D

m L l J

 



 
 
  

 . (15) 

The parameters used in Equations (14) and (15) as well as the values for each as 

given in the QUANSER manual are defined in Table 3. 
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Table 3.   Inverted Pendulum System Parameters. Adapted from [11]. 

Variable Description Value 
 Angle of the rotary arm from ࣂ

defined zero angle 
N/A 

 Angle of the pendulum from ࢇ
straight down  

N/A 

 ૚ Total length of the rotary arm 0.216 mࡸ
 ૚࢒ Distance of rotary arm pivot 

point to center of mass 
0.0619 m 

 ૛ࡸ Total length of the pendulum 0.337 m 
 ૛ Distance of pendulum from࢒

pivot point to center of mass 
0.156 m 

 ૚࢓ Mass of the rotary arm 0.257 kg 
 ૛ Mass of the pendulum 0.127 kg࢓
 ૚ Viscous damping coefficient࢈

of the rotary arm 
-0.0024 

 ૛ Viscous damping coefficient࢈
of the pendulum 

-0.0024 

 ૚ࡶ Moment of inertia of the rotary 
arm about its center of mass 

9.98·10-4 kg·m2 

 ૛ࡶ Moment of inertia of the 
pendulum about its center of 
mass 

0.0012 kg·m2 

૚෡ࡶ   Moment of inertia of the rotary 
arm about its pivot point. 
Using parallel axis theorem: 

ଵ෡ܬ ൌ ଵܬ ൅ ݉ଵ݈ଵ
ଶ 

 

0.002 kg·m2 

૛෡ࡶ   Moment of inertia of the 
pendulum about its pivot point. 
Using the parallel axis 
theorem: 

ଶ෡ܬ ൌ ଶܬ ൅ ݉ଶ݈ଶ
ଶ 

 

0.0043 kg·m2 

૙෡ࡶ  Equivalent moment of inertia 
as seen by the motor of the 
rotary arm and pendulum 
together.  
଴෡ܬ ൌ ଵܬ ൅ ݉ଵ݈ଵ

ଶ ൅ ݉ଶܮଵ
ଶ 

0.0079 kg·m2 

g  Gravity constant 9.8 m/s2

 

In their paper, Cassolato and Prime define the zero angle of the pendulum as 

straight down. To be consistent with the conventions used in the rest of this thesis, this 

reference was changed to define the zero angle of the pendulum as straight up by 
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changing the sign of the gravity term. When using the model given in [18] and the 

parameters given in the manual, we found that the experimental data still did not fit the 

simulated data. While the form of the model is likely correct, the given parameters may 

not be accurate. The simulated and experimental pendulum motion at a large and small 

initial angle are shown in Figures 10 and 11. 

 

Figure 10.  Simulated and Experimental Pendulum Motion with Given Parameters 
with a Large Initial Angle 

The parameters were adjusted until the model fits the experimental data. The 

parameters that were changed were the length of the pendulum tip to center of mass and 

the moment of inertia of the rotary arm about its center of mass. The new value of 2l  was 

0.1656 m, and the new value of 1J was 9.98. The experimental data and simulated data 

with the new parameters starting at a large initial angle are shown in Figure 12. It can be 

seen from the graph that the simulation seems slightly underdamped at the beginning and 

overdamped toward the end. Using the same set of adjusted parameters and starting the 

simulation at a smaller initial angle, we can see that the friction term must be adjusted to 
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fit the data at a smaller angle. In Figure 13, the simulated response is shown using a 

smaller initial angle without adjusted friction terms. 

 

Figure 11.  Simulated and Experimental Pendulum Motion with Given Parameters 
with a Small Initial Angle 

When the viscous damping coefficient was adjusted to −0.00085, the model fits 

the experimental data much better as shown in Figure 14. Toward the end of the 

simulation, the experimental data does not fit quite as well. Again, this can be attributed 

to some nonlinearity in the system. Because the pendulum is expected in the 

neighborhood of the equilibrium point at zero, the friction term that best fit the 

experimental data at a small initial angle was used.  
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Figure 12.  Simulated and Experimental Pendulum Motion with Adjusted 
Parameters and a Large Initial Angle  

 

 

Figure 13.  Simulated and Experimental Pendulum Motion with Adjusted 
Parameters and a Small Initial Angle  
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Figure 14.  Simulated and Experimental Pendulum Motion with an Adjusted 
Friction Term and a Small Initial Angle  
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Using the measured length and mass, the moment of inertia was calculated based on the 

approximation 
2

12

ml
J   where J is the moment of inertia. The rotary arm could not be 

easily removed and measured because of the system construction. It is unclear whether or 

not the published mass of the rotary arm included the encoder and other wiring on the 

arm. Additionally, the irregular shape and mass distribution of the rotary arm negates an 

easy approximation equation being used to calculate the moment of inertia. The 

additional equipment on the rotary arm was estimated to have a mass of 0.1 kg. The 

moment of inertia was increased to 2.0×10-3. The viscous damping coefficient was kept at 

−0.00085. The results of the small angle simulation using these parameters are shown in 

Figure 15. The parameters are still not exactly right but give a better result than the 

unadjusted parameters. The remaining discrepancy between the simulation and 

experimental data could be caused by some unmodeled dynamics such as the interaction 

of the gearbox with the system. 

 

Figure 15.  Simulated and Experimental Pendulum Motion Using Moderately 
Adjusted Parameters  
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V. FEEDBACK LINEARIZATION CONTROL 

Feedback linearization is a form of control for nonlinear systems in which the 

nonlinear input effectively cancels out the nonlinearities in the system. A nonlinear 

system takes the form 

 
( ) ( )

( ).

x f x g x u

y h x

 



  (16) 

Based on the model given in Equations (14) and (15),  

 

3

4

3

4

( )

x

x
f x

f

f

 
 
 
 
 
 

  (17) 

where 
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
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     
         


  (18) 

and 

 
3

4

0

0
( )g x

g

g

 
 
 
 
 
 

  (19) 

where 

 
3 1

4

1

0

g
D

g
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   
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In Equations (18) and (20), 

 
     
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2
0 2 2 2 1 2 2

2 1 2 2 2

cos
 

cos

J J sin x m L l x
D

m L l x J

 
 
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.  (21) 

The output of the system is the angle of the pendulum; therefore, the output is given by 

 2( )h x x .  (22) 

The control input u Kx  was used to stabilize the linearized inverted pendulum system 

in Chapter III. In this chapter, a controller of the form ( ) ( )u a x b x v    is used.  

In order to calculate an appropriate input to linearize the system, the relative 

degree of the system must be calculated. The relative degree is determined using Lie 

derivatives. A system has a relative degree r if ( ) 0i
g fL L h x    with 0 1i r    and 

1 ( ) 0r
g fL L h x   [19]. The relative Lie derivatives of the rotary inverted pendulum system 

are 

  
3

4

0

0
0 1 0 00g

h
L h g

gx

g

 
     
 
 
 

, (23) 

  
3

4
4

3

4

0 1 0 0f
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 
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 , (24) 

and 

   4
3
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0
0 0 0 1 0f

g f
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L L h g g
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The relative degree of the system is two. The form of a controller for input-output 

linearization with a relative degree of two is [19] 

  21
 f

g f

u L h v
L L h

    . (26) 

The controller in Equation (26) cancels out the nonlinearities in the system. The 

linearized system is given by .y v  This linear system has two poles at the origin and is 

unstable. A proportional derivative controller that has the form 22 n nv y y     is used 

to stabilize the system. In this equation, the variable ζ is the damping ratio, and the 

variable ωn is the natural frequency. These parameters can be changed to affect the 

performance of the system. In this case, the parameter ωn was selected to be 4.0, and the 

damping ratio ζ was selected to be 0.7. 

A. SIMULATION 

Initially, the controller performance was simulated in Simulink using S-Functions; 

however, the S-Function block is not compatible with Quanser hardware, so the 

controller was built using Math Operations. The simulation was run given an initial angle 

of ten degrees from vertical. A scope of the states throughout the simulation is shown in 

Figure 16. A graph of the voltage required from the motor is shown in Figure 17. 

As can be seen in the simulation, the pendulum angle converges to zero after only 

about half a second; however, the rotary arm is shown to keep moving at a constant 

velocity of approximately 1.1 rad/s until the end of the simulation. With friction modeled 

in the system, the rotary arm should not move at a constant velocity with no input torque. 

Throughout the simulation, a voltage of 0.6 V is applied throughout the simulation. This 

continuous motion does not cause problems in the simulation but could in the 

experimental system. 
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Figure 16.  Simulation Output Using Feedback Linearization Control 

 

Figure 17.  Simulated Voltage Required to Use Feedback Linearization 
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B. HARDWARE IMPLEMENTATION 

When the controller was implemented on the hardware, the pendulum was 

stabilized to a certain extent. The pendulum was manually brought to the vertical position 

and then the controller was triggered. The pendulum stayed inverted as the rotary arm 

revolved around its pivot point in the beginning of the experiment. The rotary arm sped 

up throughout the trial, which caused the pendulum to fall. Plots of the pendulum angle, 

rotary arm angle, and input voltage are shown in Figures 18, 19, and 20, respectively. 

This trial was terminated after 3.5 s when the rotary arm had completed a nearly full 

revolution. Unlike the simulated results, the rotary arm accelerated throughout the 

experiment rather than moving at a constant angular velocity. The input voltage in the 

experiment was also larger than it was in the simulation. Differences between the two can 

be attributed to limitations of the system, outside disturbances, or errors in the model.  

While the simulation output indicated that the feedback linearization controller 

could be used to successfully control the rotary inverted pendulum system, the 

experimental results were less successful. The pendulum of the experimental system 

could be balanced for a few seconds but always fell as the rotary arm moved faster. The 

simulated and experimental results may be related to unstable zero dynamics of the 

system. The zero dynamics of the system are analyzed in the next chapter.  

 

Figure 18.  Experimental Pendulum Angle 
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Figure 19.  Experimental Angle of the Rotary Arm  

  

Figure 20.  Experimental Output Voltage of Feedback Linearization Controller  
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VI. ZERO DYNAMICS 

The zero dynamics were examined to better understand the behavior of the 

inverted pendulum system using feedback linearization. Zero dynamics are defined as the 

systems response when the output is zero. For the rotary pendulum system, the zero 

dynamics refer to the system response when both the pendulum angle and pendulum 

angular velocity are zero. 

The zero dynamics can be discovered using a state transformation to put the 

system into the normal form. A state transformation matrix T(x) is used to transform the 

state variables from x to z. As calculated in Chapter V, the relative degree of the inverted 

pendulum system is two. The general form for a state transformation for a system of 

relative degree two is  

    1 2 1 2 T x     .  (27) 

The first two terms in the transformation matrix relate to the output and its Lie derivatives, 

while the last two terms 1  and 2 relate to the zero dynamics. Typically, the first two 

terms of T(x) are Lie derivatives of ascending degrees of the output along f(x). In the 

present case of the inverted pendulum system, the expressions for the ξ terms are given by 

 1 2h x     (28) 

and 

 2 4. fL h x     (29) 

Each η element must have a Lie derivative along the g matrix that is equal to zero. That is 

to say  
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for 1, 2.k   There are three unique choices for η that satisfy this constraint. The first is 

2x  . Because this value has already been assigned to 1 , it cannot be used. The second 

value that satisfies this constraint is 1.x   Because this value is valid, it is assigned to 

1 . The final value can be calculated using  

 
2 2

3 4
3 4

0g g
x x

 
 

    (31) 

where 3g and 4g are defined in Equation (20). Solving Equation (31) results in  

    2 2 4 2 1 2 2 3cos  J x m L l x x   .  (32) 

With all values of T(x) defined, the state transformation and inverse state transformations 

are  
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and 
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.  (34) 

The internal dynamics are given by ߟሶ  as a function of η and ξ where ξ is arbitrary. 

The zero dynamics are obtained from the internal dynamics when ξ is set to zero. Solving 

for the internal dynamics, we obtain  
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and 
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In Equation (36), the term 2 gu
x




  equals zero as the state transformation terms 

were selected to satisfy the constraint set in Equation (30); therefore,  

     2
2 3 4 2 1 2 2 2 1 2 2 3 2 4 sin cosf x x m L l x m L l x f J f

x




       (37) 

 

where 3f  and 4f  are defined in Equation (18). Equations (35) and (37) can be simplified 

to   

 4
1 3

2 1 2

z
z

m L l
      (38)  

and 

 2 4 0z      (39) 

 

when the values represented by the variables 1  and 2  are zero. Based on these 

equations, the linear system  

 3 3
2 1 2

4 4

1
0

0 0

z z
m L l

z z

 
             




  (40) 

 

can be written to be examined for stability. The system is second order. Both eigenvalues 

of the system matrix are zero. A system with two repeated poles at zero is unstable. As 

shown in Figure 16 of the simulated system response, the rotary arm rotated at a constant 

velocity until the simulation ended. After examining the zero dynamics, this response 

makes sense given that 3z  relates to the position of the rotary arm, and the derivative 

given in Equation (40) is non-zero.  

In the next chapter, a new controller that includes terms relating to the position 

and velocity of the rotary arm is developed in order to stabilize the system response.  
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VII. INTUITIVE CONTROLLER 

The inverted feedback linearization controller should successfully balance the 

pendulum, but the rotary arm will continue to spin around at a constant velocity based on 

the results of the simulations in Chapter V shown in Figure 16. One way to stabilize the 

position of the rotary arm is to add terms to the linear portion of the controller. The 

original linear portion of the feedback linearization controller is 

 22 n nv y y    .  (41) 

In Equation (41), the parameter ζ is the damping ratio, and the parameter ωn is the natural 

frequency. The output is the pendulum angle, so in Equation (41) the variable y  is the 

pendulum angle, and the variable y  is the pendulum angular velocity. Because the 

controller had no terms that relate to the position or velocity of the rotary arm, the rotary 

arm moved much more than necessary to balance the inverted pendulum. The new 

controller had the form  

 22 n nv y y a b          (42) 

where the variable  is the rotary arm angle and the variable  is the angular velocity of 

the rotary arm. The coefficients a and b were changed and tested to see how the system 

responded. Initially, both a and b were given small values of 0.04. The simulated 

response is shown in Figure 21. The pendulum oscillates more than it did given the 

original feedback linearization controller but is still stabilized within two degrees of 

vertical after two seconds of the simulation. The rotary arm is oscillatory throughout the 

whole six minutes of simulation, but the oscillations dampen and settle to zero. The first 

rotary arm oscillation is almost ten radians from the zero positon. Ten radians is almost 

two full revolutions of the rotary arm, so while the motion settles, there is a significant 

amount of movement at the beginning of the trial. It is desirable for the rotary arm to be 

bounded within a smaller arc, so the coefficients a and b were both increased. 
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Figure 21.  Simulation Output for Coefficients a and b both Equal to 0.04. The 
Initial Pendulum Angle was 10 degrees  

With coefficients a and b increased to 1.0, the pendulum response was more 

oscillatory than it was with smaller a and b values yet still stable. The rotary arm was 

bounded within 1.5 radians of the zero position. The arc of the rotary arm is still 

significant but does not require the rotary arm to spin all the way around. The output of 

the states is shown in Figure 22. The input voltage is shown in Figure 23. In contrast to 

the original feedback linearization controller, the input is oscillatory and settles to zero.  

The coefficients were increased as much as possible to attempt to reduce the arc 

of the rotary arm even further. As the coefficients were increased, the system settled 

faster with smaller oscillations of the rotary arm. When a and b were increased beyond 

12.0, the system response began deteriorating. When a and b were increased to 14.0, the 

system became unstable. The simulation response with a and b equal to 14.0 is shown in 

Figure 24.   
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Figure 22.  Simulation Output with a and b Equal to 1.0 and Initial Pendulum 
Angle of 10 Degrees 

 

 

Figure 23.  Input Voltage Using the Modified Controller and 
Coefficient Values of 1.0 
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Figure 24.  Simulated Output When a and b are Equal to 14.0 and the 
Pendulum Has an Initial Angle of 10 Degrees  

The simulations confirm that the rotary inverted pendulum can be stabilized by 

adding terms to the linear portion of the controller. The coefficients of those terms 

determine the system behavior. If the coefficients are too small, the rotary arm rotates 

several times before all the states become static. If the coefficients are too large, the 

system becomes unstable.  
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VIII. CONCLUSION AND FUTURE WORK 

The theory and feasibility of using feedback linearization to control an inverted 

pendulum system was investigated in this thesis. Initially, linear control was implemented 

in both simulation and on the experimental system for control familiarization. A linear 

controller worked well in balancing the pendulum and controlling the position of the 

rotary arm. 

The model of the inverted pendulum system was examined. The model given in 

the manual had some ambiguous terms and did not fit the experimental pendulum data. A 

new model based on [18] was developed. Even when the given system parameters were 

input into the new model, it still did not fit the experimental data. The parameters that 

could not be easily validated by simply weighing or measuring system parts were 

changed until the model fit the experimental data. The friction term in the model had to 

be changed based on the initial angle of the experimental data. Even within one set of 

data, the model seemed underdamped at the beginning of the trial and overdamped at the 

end. This indicates that there are nonlinearities in the system that are not in the model. 

Model parameters that did not cause the simulated pendulum motion to match up with the 

experimental pendulum motion perfectly were used because they likely represented the 

system accurately enough.  

A feedback linearization controller was designed to balance the inverted 

pendulum system. The simulations showed that the inverted pendulum was balanced 

within two seconds, but the rotary arm continued rotating around even after the pendulum 

was stabilized. After the pendulum was stabilized, a voltage of 0.6 V was constantly 

applied to the system. When this controller was implemented experimentally, the 

pendulum was inverted for up to two full revolutions of the rotary arm but always fell as 

the rotary arm spun faster.  

From studying the output of the simulated feedback linearization controller, we 

can see that the inverted pendulum can be balanced, but the rotary arm continues to move 

throughout the entire simulation. This is due to the zero dynamics of the system. The 
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state transformation matrix was calculated, and the zero dynamics were derived. The zero 

dynamics of the inverted pendulum system were shown to be unstable.  

Based on the findings of the unstable zero dynamics, terms were added to the 

linear portion of the controller that weighed the position and velocity of the rotary arm 

into the input. In simulation these terms did stabilize the output of the inverted pendulum 

system. The coefficients a and b in Equation (42) influenced how quickly the system 

stabilized. These coefficients could be increased up to 14.0 before the position and the 

velocity of the rotary arm were weighted too heavily, and the inverted pendulum system 

became unstable.  

While feedback linearization control was not proven to work experimentally on a 

rotary inverted pendulum system, the simulation and theory showed success. The 

parameters that were changed in order to make the model match experimental data may 

be different than the actual physical parameters of the system. Additionally, there may be 

nonlinearities within the system that are not modeled.  

In the future, the rotary inverted pendulum model could be studied more 

thoroughly to construct a model that is proven to be accurate. In particular, the effective 

moment of inertia should be investigated in detail. The behavior of the motor rotor, rotary 

arm, and pendulum should be studied with the effect of the gear ratios properly taken into 

consideration. Based on this new model, feedback linearization could be tested on the 

experimental system again, perhaps with more successful experimental results.  
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