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ABSTRACT 

Nowcasting is a trending subset of numerical weather prediction that aims to 

produce a highly accurate analysis of current conditions along with a short-term forecast. 

One of the greatest challenges to a nowcast system operating in data-sparse regions is that 

of accurately forecasting clouds. Clouds significantly impact a variety of operations, 

particularly intelligence, surveillance and reconnaissance.  

A prototype nowcast system is developed and tested on a case of summertime 

stratus clouds over the Monterey Bay in California. This system ingests high-resolution 

geostationary satellite data and mesoscale model fields to produce gridded 06-h forecasts 

of cloud reflectance and probability of cloud. A statistical post-processing technique is 

applied using Bayesian estimation to train the system from a set of past predictor 

variables and observed imagery. 

This approach demonstrates skill over a climatology-based approach and shows 

an ability to accurately forecast non-typical cloud patterns. It proves to be very 

computationally feasible for nowcasting. This study lays down the initial framework for a 

highly accurate nowcast system that can operate anywhere in the world to enable mission 

success while reducing costs.   
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I. INTRODUCTION 

A. IMPORTANCE OF NOWCASTING CLOUD FIELDS 

Nowcasting is a trending subset of numerical weather prediction that aims to 

produce a highly accurate analysis of current weather conditions along with a short-term 

forecast. The goal of nowcast systems is to achieve higher accuracy by focusing efforts 

on a limited forecast area and time period, as opposed to conventional forecast models 

that are designed for larger time periods and forecast areas. Producing highly accurate 

analysis and short-term forecasts is one of the most difficult forecast challenges. This 

challenge increases the value of human forecasters for their ability to look at and react 

quickly to real-time data such as in-situ observations and satellite imagery.  

Clouds significantly impact a variety of military and civilian activities. The 

intelligence community (IC) is particularly interested in clouds because they can be 

obstacles to optical and thermal sensing systems that perform intelligence, surveillance 

and reconnaissance (ISR). For instance, unmanned aerial vehicle (UAV) sorties can be 

rendered unsuccessful if the UAV cannot observe its target because clouds obscure its 

view. UAV operators must carefully consider cloud cover before deciding to sortie, so 

that time and fuel are not wasted. Related problems to cloud forecasting include 

turbulence and icing, which also represent significant threats to UAV missions and a 

variety of other flying operations. Therefore, UAV missions and many other military 

operations require highly accurate cloud field nowcasting. 

B.  CUSTOMER NEEDS FOR NOWCASTING 

A civilian company called PEMDAS Technologies and Innovations has 

developed a nowcast system for the U.S. Air Force. The goal of their “NOWcasting” 

system is to produce accurate analysis and short-term forecasts of current weather 

conditions to be used primarily by UAV operators in data-sparse regions (Lockhart 

2015). The PEMDAS NOWcasting system employs observational nudging techniques to 

adjust high-resolution regional model forecasts with real-time data from various in-situ 

observations including sensors attached to UAVs. The NOWcasting system also has the 
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advantage of updating hourly, whereas conventional models update every six hours. 

Figure 1 visually depicts how the NOWcasting system bridges the gap between 

conventional models and reality. Note that conventional model runs occur every 6 or 12 

hours and do not reach the forecaster until 3 to 6 hours after the analysis (00-h) time. 

PEMDAS conducted a major test of its NOWcasting system in Barrow, Alaska, in the 

summer of 2015.  

Figure 1.  Schematic depicts the PEMDAS NOWcasting system bridging 
the gap between conventional models and actual conditions. Source: 

PEMDAS (2015). 

Any nowcasting system designed for use by UAV operators would ideally predict 

cloud fields at high resolutions of 4 km or higher. In addition to horizontal extent, ISR 

forecasters need to have some information about the vertical extent of the cloud field. 

This is so that forecasters can determine whether the clouds are thick enough to have 

mission impacts, which ISR missions are impacted, and what flight level is ideal. At a 

minimum, this system should produce a forecast output for every hour in the 0–6 hour 

time frame, and be updated hourly as new observations come in. Clearly, it would need to 
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forecast more than just clouds; basic fields such as pressure, temperature and moisture 

should be included as well as accurate derived fields like icing, turbulence, visibility and 

precipitation. 

It would require an easy-to-use visual output, ideally in a format that ISR weather 

forecasters are accustomed to. Model derived forecast “pseudo-satellite imagery” that 

looks just like a satellite image would be one such solution, as ISR forecasters are very 

adept at using satellite imagery. Another possible output format would be one similar to 

current AF horizontal weather depiction (HWD) charts, which depict cloud layers by sky 

coverage category and average layer heights. Forecaster-in-the-loop (FITL) format is also 

ideal; this is any automated format that can be adjusted by a forecaster before 

dissemination.  

C. MOTIVATION AND SCOPE OF RESEARCH 

A crucial challenge for any nowcasting system used to support ISR operations is 

the generation and depiction of accurate cloud fields despite the scarcity of available 

observations. As mentioned above, the success of UAV operations and other ISR 

missions depends upon accurate high-resolution cloud forecasts. These operations 

frequently occur over regions where ground-based weather observations are scarce, such 

as Afghanistan. An excellent example of the potential impact of incorporating only 

coarsely spaced surface observations with sub-optimal model fields (i.e., without 

leveraging satellite data) to produce cloud field analyses is shown in Figures 2.a and 2.b 

(derived from PEMDAS provided data generated during the Barrow, Alaska, exercise). 

Here, concentric circular contours of cloud fraction at given pressure levels highlight the 

adverse impact that the fusion of surface-based observational data has when satellite data 

is withheld from the fusion process. More accurate depictions are attainable when 

satellite data is leveraged in conjunction with surface based observations (not shown). 
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a) 990 mb (%) cloud cover (light blue) (northern Alaskan coastline shown in black)

b) 980 mb (%) cloud cover (light blue) (northern Alaskan coastline shown in black)

Figure 2.  PEMDAS 00-h analyses from August 26 2015 2100Z displayed using the 
VISUAL graphics program 
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Another way to increase nowcast accuracy is using statistical methods. This is a 

popular approach in the field of numerical weather prediction due to limitations in 

conventional model forecasts. LCDR Robert Wendt, USN, is currently conducting 

innovative research in predictive modeling with Bayesian estimation (BE) to link 

predictor-variable fields to an outcome-variable field using a series of weights 

determined by past occurrences. This method can be applied to increase the accuracy of 

cloud field forecasts, given climatological data and cloud predictor variables derived 

from the forecast model.  

If the two processes above can be successfully integrated into a nowcasting 

system, it may help to establish the framework for a highly accurate nowcast system that 

can be utilized by AF UAV operators in the data-sparse regions in which they operate. 

Such a system has the potential to greatly increase forecast accuracy and maximize sortie 

effectiveness while reducing the number of forecasters needed, thus reducing costs. It 

also has potential for use by various Department of Defense, Intelligence Community, 

and civilian agencies in forecasting for ISR and other missions.  

The primary focus of the study is cloud field forecasting because that is a 

significant obstacle to a highly accurate nowcast system. The secondary focus of the 

study is to demonstrate the use of Bayesian estimation to produce more accurate cloud 

fields. If this can be shown to increase accuracy of cloud fields, it can be used to increase 

accuracy of other less complicated forecast fields as well.   

D. BENEFITS OF STUDY 

This study will determine the usefulness of such corrections in nowcasting for 

UAV operators. The improvements mentioned above could greatly increase forecast 

accuracy and maximize sortie effectiveness while reducing the number of forecasters 

needed, thus reducing cost. Because these forecasts are so vital, a human forecaster will 

still be desired as a sanity check to the model; however, the model may allow one 

forecaster to do with greater accuracy the work that four do now.  

Relative to the operations community, this research will be of interest to agencies 

in the Department of Defense and intelligence communities that conduct ISR missions. 
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These techniques have the potential to be useful in other types of forecast models for a 

variety of civilian and military activities including land operations and maritime 

operations. 

Relative to the meteorological community, this research will be of interest to the 

fields of numerical weather prediction and cloud forecasting. Bayesian estimation has 

shown great promise as a post-processing technique that can potentially improve model 

performance for a variety of forecast uses. It has yet to be applied to maritime cloud 

forecasting over a two-dimensional grid. Cloud forecasting utilizing high-resolution 

satellite ingest has not been studied extensively, and cloud forecasting that makes use of 

the visible channel is rare. Therefore, methods used in this study will lay down a 

framework for further BE and satellite ingest research that could lead to significant 

advances in numerical modeling practices.  
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II. BACKGROUND 

A. NOWCASTING 

Nowcasting is not a new concept but has developed over the years and has 

recently been trending due to technological advances that allow for increased short-term 

accuracy. The term “nowcast” is referenced in literature as far back as the mid-1970s. In 

its infancy, nowcasting focused on tracking convection and relied heavily on temporal 

extrapolation of meteorological radar imagery. Over time, more advanced algorithms 

were applied to track individual storm cells and eventually to account for storm growth 

and decay. Modern nowcast systems often combine mesoscale models with various real-

time observations. Nowcasting capabilities have grown rapidly in recent years due to the 

development of higher resolution numerical models and denser observation  

networks (Mass 2012).  

For example, the National Oceanic and Atmospheric Administration (NOAA) 

Rapid Update Cycle (RUC) originated in 1994 as an 80 km resolution model with 

updates every three hours (Mass 2012). It has since been replaced by the Rapid Refresh 

(RAP) model with 13 km resolution and hourly updates. In 2016, the High-Resolution 

Rapid Refresh (HRRR) was introduced operationally as a 3 km resolution version of the 

RAP that can also assimilate radar data from every 15 minutes (NOAA ESRL 2016). 

Five km and 1.67 km resolution versions of the Weather Research and Forecasting 

(WRF) mesoscale model have been utilized operationally by Air Force Weather. The 

Penn State University/National Center for Atmospheric Research (NCAR) Mesoscale 

Model (MM5) also boasts resolution as high as 4 km. The United States and other 

developing countries have seen a huge increase in the density of their weather 

observation networks in the past several decades (Mass 2012). Although other regions 

around the world remain data-sparse, there have still been advances that allow for 

increased data collection in these regions, much of which is not utilized by conventional 

models. This includes satellite data, lightning, Portable Doppler Radar, mobile 

observations, clandestine sensors, and data collected from UAVs, in addition to 
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conventional soundings and surface observations. All of these data sources can and 

should be exploited in a nowcast system designed for use by the ISR community.  

Arguably the most advanced radar-based nowcast system is the National Center 

for Atmospheric Research (NCAR) Auto-Nowcast System. This system combines 

satellite, radar, lightning, numerical modeling, upper-air data and a variety of surface 

observations to output 0–1 hour forecasts of convective storm location and intensity. The 

satellite imagery ingested is from Geostationary Operational Environmental Satellite 

(GOES); the system identifies cumulus and cumulus congestus using cloud-type 

algorithms. Infrared (IR) channel brightness temperatures are also used to identify cloud 

top warming and cooling. All of the ingested data are processed into predictor fields. A 

statistical approach called fuzzy logic is employed to produce an overall likelihood from 

the observed predictor variables (Mueller et al. 2003). This nowcast system is similar to 

what is required by AF ISR, but more emphasis on non-convective clouds and additional 

output variable fields is needed.  

A simple and commonly applied technique in recent nowcast systems is 

observational nudging—also known as Four Dimensional Data Assimilation (Mass 

2012). Observational nudging takes a numerical model forecast as a first guess and 

utilizes additional observations to relax the model forecast fields in order to fit the 

observations. The nudged fields then become the nowcast analysis. The subsequent 

forecast hours (which are calculated using the nudged fields) become the nowcast 

forecast hours. The simplicity and low computational costs of this approach allow for 

frequent new nowcast runs (Schroeder et al. 2006). One system that employs this 

technique is the Rapidly Relocatable Nowcast Prediction System (RRNPS) produced for 

the U.S. Army; it uses the Penn State/NCAR MM5 as its first guess and can be run for 

any location on the globe. The NCAR Four Dimensional Weather System (4DWX) is a 

similar model created for use at Army test ranges; it updates every three hours.  

The PEMDAS NOWcasting system is perhaps the latest system to use 

observational nudging. It was tested using both the NOAA RAP and the Navy’s Coupled 

Ocean Atmosphere Mesoscale Prediction System (COAMPS) as a first guess over 

Barrow, Alaska. The RAP was run on an 11.75 km resolution grid. The COAMPS model 
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was run at higher resolutions. The observed data used to nudge the first guess models 

included hourly surface observations, upper air soundings (twice per day), buoy data, and 

data observed by sensors mounted on small UAVs (Raven and Scan Eagle). PEMDAS 

calls this UAV data collection system ASAPS (Atmospheric Sensing and Prediction 

System). It can provide the model with continuous real-time data, which includes icing 

and cloud detection; it outputs a variety of easy to use displays for operators. Although a 

full evaluation of ASAPS and its usefulness is outside the scope of this study, it is worth 

noting that such a system could be very valuable to any nowcast system working in data 

sparse areas, specifically one operated by the ISR community (Housel et al. 2016). 

Satellite data and additional in-situ observations were collected by PEMDAS during the 

Barrow test but only for verification purposes; they were not utilized in NOWcasting 

predictions (PEMDAS 2015). However, the PEMDAS NOWcasting system is more than 

capable of ingesting and exploiting satellite data. According to PEMDAS Senior Scientist 

and expert on Remote Sensing technologies Mike Gauthier Ph.D., the NOWcasting 

system has the capability of ingesting “multiple channels” of satellite data at multiple 

spatial resolutions (M. Gauthier, personal communications, Mar. 29, 2017).  

B. MACHINE LEARNING AND BAYESIAN INFERENCE IN NUMERICAL 
WEATHER PREDICTION 

In 1963 mathematician Edward Lorenz famously showed that for any dynamical 

system (such as the atmosphere), “two [initially] indistinguishable states could eventually 

evolve into entirely different states” given time (Lorenz 1963). It follows that 

deterministic numerical weather prediction is limited due to the chaotic nature of the 

atmosphere. Stochastic modelers attempt to account for this problem using statistical 

methods to forecast probabilities rather than deterministic outcomes. Statistical post-

processing refers to the family of techniques in which assumptions are made about future 

outcomes (the predictand) based on past observations (training data). These methods 

identify biases in a model and correct them accordingly to produce a more accurate and 

concentrated posterior predictive distribution (PPD), the distribution of predicted 

outcomes. Figure 3 shows an example of a PPD of predicted automobile fuel economy. 

Statistical post-processing methods include non-homogeneous Gaussian regression, 
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analogues, and kernel density estimation (KDE) such as ensemble dressing, ensemble 

regression and Bayesian model averaging (BMA). These methods are common in 

nowcasting research because they offer a computationally inexpensive way to increase 

the accuracy of mesoscale models and other predictors. 

  

 

Figure 3.  Example of PPD. Source: Warner (n.d.). 

Although KDE and BMA have been popular and seemingly intuitive post-

processing techniques, they have several deficiencies that have recently been highlighted. 

These deficiencies include: overfitting (Hamill 2007), problems with extreme forecasts 

(Bishop and Shanley 2008) and problems at long lead times (Wilks 2006), as observed by 

Hodyss et al. (2016). Hodyss et al. (2016) has also identified a tendency of BMA to 

overweight climatology when adjustments are applied in an incorrect order. It proposes a 

direct application of Bayes’ rule, such as Bayesian estimation (BE), as an alternative that 

minimizes error variance (Hodyss et al. 2016). BE is also a less computationally 

expensive method and so is well suited for nowcasting. As Kruschke (2010) points out, 
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another advantage is that BE can handle redundancy in predictor variables; if there are 

correlations between two or more predictors, BE will still produce a valid probability 

distribution, whereas KDE and other methods would “explode” and not produce 

meaningful results. BE also makes it easy for the modeler to interpret results and identify 

relationships among predictor variables, so that the predictor variable list can be fine-

tuned in later tests (Kruschke 2010). 

BE is used to predict an observable outcome based on an inference about the 

model parameters. These model parameters are derived from past performance of a set of 

predictor variables. Bayes’ rule can be stated that “the posterior probability of a model 

parameter (𝜃𝜃) is the product of a likelihood function and a prior probability divided by 

the evidence”:  

 𝑝𝑝(𝜃𝜃|𝑌𝑌) = 𝑝𝑝(𝑌𝑌|𝜃𝜃)𝑝𝑝(𝜃𝜃)
𝑝𝑝(𝑌𝑌)

 (1) 

𝑝𝑝(𝜃𝜃|𝑌𝑌) is the posterior probability and can be stated as “the probability of model 

parameter 𝜃𝜃  being observed given observation Y.”   𝑝𝑝(𝑌𝑌|𝜃𝜃) is the likelihood function and 

can be stated as “the likelihood of having observed Y given parameter 𝜃𝜃.”  𝑝𝑝(𝜃𝜃) is the 

prior probability and can be stated as “the estimate of the probability of observing 𝜃𝜃 

(before observing Y).”  𝑝𝑝(𝑌𝑌) is the evidence or “the likelihood that 𝑌𝑌 will be observed at 

all.”  The goal of the inference is to derive the posterior, 𝑝𝑝(𝜃𝜃|𝑌𝑌), from past data (referred 

to as “training period” data), so that we can then use that posterior to make a prediction 

about future observations given a set of current predictor variables (Kruschke 2010). 

LCDR Robert Wendt (2017) is a Ph.D. candidate at the Naval Postgraduate 

School who has considered the findings of Hodyss et al. (2016) and others, and has been 

conducting research using Bayesian estimation. His application of predictive modeling 

utilizes BE to stochastically frame the forecast problem and a Markov Chain Monte Carlo 

(MCMC) sampling method to complete the inference (Wendt 2017). This method has 

been tested successfully in the North American Collegiate Weather Forecasting 

Competition (also known as The Weather Challenge) using predictor variables derived 
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from the NCEP Short Range Ensemble Forecast (SREF). Very similar methods will be 

applied in this study. 

A trending practice in meteorology is the use of machine learning in numerical 

models. This involves employing statistical post-processing methods to “train” a model 

based on past (observed) results. Artificial neural networks embrace this concept and use 

feedback loops to produce continuous machine learning in the model. Eros Pasero and 

Walter Moniaci (2004) are two meteorological experts in the focus of neural network 

forecasting. They use the following analogy to describe the usefulness of neural networks 

in weather prediction:  

The idea is that a native old fisherman usually is able to predict the 
weather of the harbour according to his experience during last years. It’s 
typical to ask to the old fisherman whether it’s a good idea to sail or to 
stay inside the harbour. He bases his “weather report” on his experience. 
His “neural network” knows which events influence the evolution of the 
weather, on a local basis, better than the national weather system.  

The NEMEFO (Neural Meteorological Forecast) system is a neural network 

nowcast system based in Italy. It samples weather data every 15 minutes from a particular 

location and stores it in a historical database. Statistical methods must be used to analyze 

the historical data so that only the most relevant information is exploited to determine the 

probability of a particular phenomenon. Each variable in the data set is a potential 

predictor variable for the phenomenon in question. NEMEFO estimates the probability 

density function (PDF) of each predictor variable by “making a sum of Gauss kernels, 

each one centered on a record of the database” (Pasero and Moniaci 2004). This is a type 

of KDE known as the Parzen method. NEMEFO then compares two predictor variables at 

a time and selects the one whose PDF gives rise to the smallest entropy difference, 

eventually narrowing down the field of predictor variables to only the most  

significant (Pasero and Moniaci 2004). 

There have been several studies in related fields performed using Bayesian 

statistics. Uddstrom et al. (1998) and English et al. (1999) applied it to cloud masks in 

order to retrieve surface irradiance for numerical models. Roquelaure and Bergot (2008, 

2009), Roquelaure et al. (2009) and Chmielecki and Raftery (2011) studied Bayesian 
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model averaging techniques for visibility forecasting. Several studies including Pasini et 

al. (2001), Bremnes and Michaelides (2007), and Marzban et al. (2007) have applied 

neural networks to forecast visibility (Chmielecki and Raftery 2011). 

C. PREVIOUS CLOUD FORECASTING RESEARCH 

One of the first comprehensive studies of short-term (1–6-h) ceiling forecasting 

was performed at Penn State by Vislocky and Fritsch (1996) and employed statistical 

post-processing. A real-time observations (obs)–based statistical forecast method was 

tested against a traditional model output statistics (MOS)-based statistical approach and a 

persistence climatology statistical approach for 1, 3 and 6-h forecasts. The MOS-based 

approach takes model prediction, the latest observation and climatic tendency for the 

specific forecast site as predictor variables. The persistence climatology approach takes 

only the latest observation and climatic tendency as predictor variables. The obs-based 

approach takes a network of surface observations and climatic tendencies as predictor 

variables. All three sets of predictor variables are input into a least squares linear 

regression model. The relationship of the predictand, Y, to the predictor variables, 𝑋𝑋𝑝𝑝, is    

 𝑌𝑌 = 𝐵𝐵𝑜𝑜 + 𝐵𝐵1𝑋𝑋1 + 𝐵𝐵2𝑋𝑋2 + ⋯+ 𝐵𝐵𝑛𝑛𝑋𝑋𝑛𝑛 (2) 

Coefficients, 𝐵𝐵𝒑𝒑, are determined as the values that minimize the least square error 

between the observed and predicted values (Vislocky and Fritsch 1996).  

This study demonstrated the importance of real-time data in short-term statistical 

cloud forecasting. At all forecast hours, the obs-based method demonstrated considerable 

skill over the persistence climatology method, which had previously been considered a 

benchmark for accurate short-term cloud forecasting. It also beat the MOS-based 

method’s skill score by 4% on 1 and 3-h forecasts. The 06-h forecast hour was 

determined to be the “crossover” point at which the obs-based method no longer adds 

skill to the model based approach (Vislocky and Fritsch 1996). The obs-based statistical 

method was tested again on marine stratus at San Francisco International Airport and 

produced similar results (Hilliker and Fritsch 1999). 
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In 2008, the Northrup Grumman Analytic Sciences Corporation (TASC) took this 

a step further. Their forecast system combined the NCAR WRF 36 km resolution 

mesoscale model, NOAA Geostationary Operational Environmental Satellite (GOES) 

satellite data and statistical post-processing using logistic regression. The GOES data was 

used to derive cloud/no-cloud determinations made by the Cloud Mask Generator (CMG) 

developed by TASC. CMG utilizes six GOES products: visible 0.6-µm channel (VIS), 

near IR 3.9-µm channel (NIR), 10.7-µm and 11.2-µm far IR channels (FIR), derived 

nighttime fog, and derived daytime shortwave reflectivity. It essentially compares the 

current imagery to a “clear sky background” calculated from thirty days of previous 

GOES data (Kemp and Alliss 2007). 

Logistic regression was utilized to determine cloud/no-cloud based on the two 

predictor variables, WRF and GOES data. 

 𝑙𝑙𝑙𝑙 � 𝜋𝜋
1−𝜋𝜋

� = 𝛼𝛼 + 𝛽𝛽1𝑋𝑋1 + ⋯+ 𝛽𝛽𝑝𝑝𝑋𝑋𝑝𝑝 (3) 

Logistic regression offers advantages over linear regression in predicting a binary (yes/

no) outcome. It assumes the π[1 − π] variance required for binary outcomes. Also, it will 

always output values between 0 and 1. Figure 4 summarizes the TASC forecast system.   

The TASC forecast system performed well in a test performed over Washington-

Dulles International Airport. 75% of the forecasts displayed error 25% or less. Fifty 

percent of forecasts displayed error 15% or less. This study demonstrated that model 

data, GOES satellite imagery and statistical post-processing could be successfully 

combined to produce cloud/no-cloud forecasts (Kemp and Alliss 2007). 
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Figure 4.  TASC forecast process. Source: Kemp and Alliss (2007). 

Timothy Hall et al. (2010) of the Virginia based Aerospace Corporation 

Engineering and Technology Group conducted a study of short-range sky condition 

forecasting using statistical post-processing of model and GOES IR data. The end goal 

was a 1–5 hour probabilistic forecast of clear sky condition. A cloud mask algorithm was 

applied to 10.7-µm and 3.9-µm channel 4 km resolution satellite data to determine cloud 

or no-cloud for each pixel. This cloud mask technique is called the bispectral composite 

threshold (BCT) method established by Jedlovec et al. 2008 (Hall et al. 2010). This 

technique computes spatially and temporally varying thresholds of brightness 

temperature difference between the two channels. BCT was verified manually and shown 

to determine the true sky condition 87.6% of the time. It is worth noting that 82% of 

misses and 77% of false alarms came on low cloud predictions. The higher low cloud 
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false-alarm rate occurred over land, while the higher low-cloud miss rate occurred over 

ocean (Jedlovec et al. 2008). 

The statistical post-processing technique applied by Hall et al. (2010) was the k-

nearest neighbor (k-nn) analogue forecast algorithm (KAF); this scheme essentially 

identifies the k most analogous cases within a given set of training data and yields a 

probability of the observable (clear sky condition) based on the fraction of the analogue 

cases when the observable occurred (i.e., if clear sky condition occurred in 75 out of 100 

analogues, the model would predict 75% chance of clear sky condition). The data set was 

made up of 105 predictor variables derived from satellite and the 40 km resolution 

National Centers for Environmental Prediction (NCEP) Eta Model Data Assimilation 

System (EDAS), then pruned down to 10–16 variables using data mining, heuristic 

elimination and random forest method. In every test, the most important predictor 

variables were determined to be satellite derived percent cloud coverage over the target. 

Other significant variables included percent cloud cover in the upwind direction, recent 

historical sky conditions, 1000–500mb thickness gradient and 6 hour change, mean sea 

level pressure gradient, static stability, time of day and maximum solar angle (Hall et al. 

2010). 

The study confirms that satellite imagery (GOES in particular) and statistical 

methods can add significant skill to model and observation based cloud forecasting. KAF 

outperformed persistence, conditional expectancy of persistence and satellite cloud 

climatology techniques on all five performance metrics. The results showed that this 

scheme can produce quality short-term sky condition forecasts for local and regional 

targets in two different geographic areas (Hall et al. 2010).  
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III. DATA/METHODOLOGY 

A. OVERVIEW 

The nowcast system created for this study combines 1 km resolution visible 

imagery brightness temperature values and 13 km resolution NCEP Rapid Refresh (RAP) 

data on a 1 km spacing lambert conformal grid using multi-quadric interpolation and 

Bayesian estimation (BE). The multi-quadric interpolation is used to map the RAP data to 

the nowcast grid at both analysis and forecast times. BE is used to predict out to 6 hours 

the presence of low cloud by statistically relating prior forecasts to cloud cover, then 

using this relationship to predict future cloud cover. This Naval Postgraduate  

School (NPS) nowcast system is tested on a case study of 2016 summer low-level clouds 

over the Monterey Bay in Central California using a 100 x 100 km grid.   

This grid size was chosen to simulate a target region for a UAV mission. The 

small size also makes it easier to achieve meaningful results from BE, in order to 

establish proof of concept for this approach. The location and time period was chosen to 

maximize the presence of low clouds while including variation throughout the day as 

well as day to day. Low clouds represent significant obstacles to ISR and tend to be the 

most difficult to analyze and predict, as found by Jedlovec et al. (2008). Central 

California is also a mid-latitude location, representing latitudes where the military often 

operates and where geostationary imagery is the only reliable real-time satellite data.  

 Given the statistical nature of this approach, cross validation testing of various 

data grouping schemes and learning period lengths is performed in order to determine the 

ideal process for the NPS nowcast. Statistical analysis and side-by-side comparison are 

used to score NPS nowcast results and compare them to truth and climatology. 

Adjustments are made as necessary. All Bayesian estimation, model outputs and scoring 

were generated with Anaconda Python and the Seaborn library.   
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B. DATA SET 

1. NOAA GOES 15 (Geostationary Operational Environmental Satellite) 
Imagery 

NOAA GOES 15 (also known as GOES-WEST) nominal 1 km spatial resolution 

visible channel (0.55–0.75-µm)  imagery and 4 km spatial resolution imagery from all 

other GOES 15 channels was provided by the Naval Research Laboratory (NRL) in 

Monterey, CA. The GOES 15 visible channel is accurate to within 5% of the maximum 

irradiance value (NOAA Satellite Information System 2013). Imagery is available at 30-

minute intervals; several images from each day were not available due to information 

gaps and NRL processing. The satellite data were pulled from an archive and processed 

into TDF files by a TeraScan master machine. SeaSpace TeraScan is a software suite 

used to receive, process, and archive satellite data. Irradiance values were scaled 0–239 

for TeraScan imaging (K. Richardson, NRL, personal correspondence, Dec. 12, 2016). 

The data was mapped to a lambert conformal map projection on an 800 x 800 km box 

over the Monterey Bay; NRL calls this the Monterey Bay Vis sector. The processed data 

was also provided in JPEG and netCDF file formats for reference purposes. A sun zenith 

angle correction was applied in producing the JPEG files, but no such correction was 

performed on the TDF data. Figure 5 shows a JPEG image of the Monterey Bay Vis 

sector. 

http://noaasis.noaa.gov/NOAASIS/ml/imager.html
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Figure 5.  NRL 0.6-µm GOES 15 Monterey Bay Vis sector (JPEG) 

Only the visible channel imagery is ingested and utilized in the NPS nowcast; 

however, other channels were received and were used to identify hours when reflectance 

values are contaminated by mid and high level clouds. These hours were identified 

through a subjective assessment of all hours used in this study. The 4 km resolution data 

from the 3.80–4.00-µm, 6.50–7.00-µm, 10.20–11.20-µm, and 11.50–12.50-µm channels 

is interpolated onto the same 800 x 800 km grid with 1 km grid spacing via TeraScan’s 

standard procedure. According to NRL satellite specialist Kim Richardson, it performs a 

“piecewise polynomial interpolation where the polygram size for the biquadratic 

polynomials is 9 x 9, which is the default: poly_size = 100. They say that the 

interpolation was found to be less [than] 0.15 kilometers [in error] with the default” (K. 

Richardson, NRL, personal correspondence, Dec. 12, 2016). Figure 6 displays (a) a 

10.20–11.20-µm image and (b) a 3.80–4.00-µm image.  
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                                  a)                                                                           b)  

Figure 6.  NRL (a) 10.20–11.20-µm (FIR) and (b) 3.80–4.00-µm (NIR) TeraScan 
images 

2. 13 km Resolution NCEP Rapid Refresh (RAP) 

13 km resolution RAP Version 2 data was downloaded and saved from NOAA 

NCEP’s File Transfer Protocol (FTP) site. The data was saved in GRIB2 file formats for 

the period of 01 June–31 July 2016. RAP Version 2 is a non-hydrostatic grid point model 

that employs Hybrid Ensemble–3DVar (three-dimensional variational data assimilation) 

and Thompson v.3.4.1 microphysics. RAP is run hourly and outputs hourly forecasts out 

to 24-h each run (Benjamin et al. 2016). Data was available at every 25mb in the vertical. 

Only 00-h analysis and 06-h forecasts were saved for every available (hourly) model run. 

Several derived fields were not available, including liquid water content and cloud ice 

content. 

C. ANALYSIS PROGRAM 

1. VISUAL  

VISUAL is a meteorological display program created by Wendell Nuss in 1986 

and further developed over the years. It utilizes Graphical Kernel System (GKS) output 

primitives and NCAR Graphics routines (Nuss and Drake 1990). It was used to visually 

display and evaluate PEMDAS’ NOWcasting output fields. (Figure 2, shown previously, 
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is an example of a VISUAL graphic used in this study.) It was also used to verify that 

data ingest techniques were functioning properly throughout the generation process of the 

NPS nowcast system. All displays used a uniform distance, non-staggered grid on a 

Lambert Conformal map projection.  

2. GARP 

GARP (GEMPAK Analysis and Rendering Program) is another display program 

that inputs GEMPAK file formats for visualization. It is designed for easy user interface. 

GARP was used to display RAP 13 km fields and compare to GOES 15 imagery in order 

to identify possible model predictor variables. Select valid time periods of potential 

model predictor variables were overlaid on the GOES visible imagery and subjectively 

assessed for their “fit” to the low cloud field. Although many potential variables could 

serve as predictors, this analysis resulted in three predictor variables, described in a later 

section.  

3. Grid and Multi-quadric Interpolation 

The grid employed in the NPS nowcast system is 100 x 100 km centered on the 

Monterey Bay with 1 km uniform spacing on a Lambert Conformal map projection, true 

at 30N and 60N latitude. The grid is referenced to latitude and longitude (36.8N; 

122.0W) at grid point (x = 59, y = 57). This gives approximate corner points of (36.28N; 

122.66W) in the lower left and (37.19N; 121.53W) in the upper right. Figure 7 is a 

VISUAL graphic of the NPS nowcast grid over the Monterey Bay coastline. Each red 

circle corresponds to a grid point. 
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This plot was created using VISUAL. Note that the first row (bottom) and column (far 
left) are omitted. 

Figure 7.  NPS nowcast 100 x 100 km grid  

Multi-quadric interpolation is the technique used to interpolate the 13 km 

resolution RAP data onto the 1 km resolution grid. This method has been shown to 

produce accurate analyses in a variety of cases. It employs hyperboloid radial basis 

functions of the difference vector between the observation point and any other point. Due 

to it being much less computationally expensive and quick to run, it is much more 

applicable to nowcast models than methods commonly used at operational numerical 

weather prediction centers, such as optimum interpolation or 3D and 4D variational 

analysis. It has been shown to outperform other methods such as the Barnes and 

Cressman methods, which have been used for mesoscale analysis. It has also been 

demonstrated to perform reasonably well in data-sparse regions (Nuss and Titley 1994). 

Although this technique can be used for observational nudging, in this study the coarse 

resolution model fields were simply interpolated to the fine grid. 



 23 

D. SATELLITE PROCESSING AND INGEST METHODS 

After receipt from NRL, satellite data TDF files were prepped for data ingest via a 

four-step process:  

1)   A sun zenith angle correction was performed to standardize 
irradiance (visalbedo) values across all hours of the day:  

if 𝑠𝑠𝑠𝑠𝑙𝑙𝑠𝑠𝑠𝑠𝑙𝑙𝑠𝑠𝑠𝑠ℎ < 85, 𝑠𝑠ℎ𝑠𝑠𝑙𝑙 𝑣𝑣𝑠𝑠𝑠𝑠𝑣𝑣𝑙𝑙𝑣𝑣𝑠𝑠𝑣𝑣𝑣𝑣 =
𝑣𝑣𝑠𝑠𝑠𝑠𝑣𝑣𝑙𝑙𝑣𝑣𝑠𝑠𝑣𝑣𝑣𝑣

𝑐𝑐𝑣𝑣𝑠𝑠(𝑠𝑠𝑠𝑠𝑙𝑙𝑠𝑠𝑠𝑠𝑙𝑙𝑠𝑠𝑠𝑠ℎ) ,

else 𝑣𝑣𝑠𝑠𝑠𝑠𝑣𝑣𝑙𝑙𝑣𝑣𝑠𝑠𝑣𝑣𝑣𝑣 = 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑙𝑙𝑠𝑠𝑠𝑠 

2)   Irradiance values (scaled 0–239) were converted to reflectance 
values (0-100): 𝒓𝒓𝒓𝒓𝒓𝒓 = 𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒓𝒓𝒗𝒗𝒗𝒗

𝟏𝟏𝟏𝟏𝟏𝟏
∗ 𝟏𝟏𝟏𝟏𝟏𝟏.   

Figure 8 compares satellite imagery before and after steps (1) and (2) are applied. 

Notice that before the correction, the 1400Z (0700 local time) and 2000Z (1300 local 

time) TDF images display very different irradiance values over the stratus clouds. After 

the correction, the reflectance values look similar over the stratus. 

3)   A 100 x 100 pixel box was cropped from the original to fit the 
100 x 100 km NPS nowcast grid. 

4)   A uniform shift of 1 km north and 3 km east was applied to all 
images. All images with significant erroneous values or mapped 
coastline error were flagged and discarded.  

A problem was encountered where the Terascan mapped coastline did not line up 

with the physical coastline apparent from visual appraisal of the imagery. A common 

issue that the analyst encounters when working with geostationary imagery is a slight 

“wobble” in the optics as the satellite performs its daily orbit of the earth.  This wobble is 

not accounted for in the navigation parameters used to map the imagery and results in an 

imperfect alignment between the mapped satellite imagery and the physical 

coastline.  This error was observed in the Terascan imagery and varied with no apparent 

pattern of predictability. Upon further manual inspection, most images displayed a 

mapped coastline offset of 1–5 km to the northeast of the physical coastline. The solution 

was to reduce this potential source of error by flagging and discarding image files with a 
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mapping error that was outside of this range. Figure 9 shows examples of (a) an 

acceptable mapped coastline error 1–5 km to the northeast and (b) an unacceptable 

coastline error 4 km to the west. After unacceptable image files were discarded, the 

uniform shift of 1 km north, 3 km east was applied to all images in order to minimize the 

coastline displacement error. Thus, each NPS nowcast forecast hour carries 

approximately a 0–2 km error due to this effect.  

 

 

                             a) June 01 1400Z TDF                   b)   June 01 1400Z Reflectance 

 

             c)   June 01 2000Z TDF                  d)   June 01 2000Z Reflectance 

Figure 8.  Comparison of original imagery (a) and (c) to imagery after the reflectance 
conversion (steps 1 and 2) was applied (b) and (d).  
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a)  Example of acceptable mapped coastline error 1–5 km to the northeast 

 

b)  Example of unacceptable coastline error 4 km to the west 

      

Note that both images are zoomed-in on the Monterey Bay coastline. The mapped 
coastline is in green.  

Figure 9.  Mapped coastline error shown after processing steps 1 and 2 were applied.   
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E. FORECAST METHODS 

1. Overview  

The NPS nowcast approach is characterized as a type of statistical post-processing 

of short-term numerical model forecasts. The short-term model forecasts used in this 

application are from the NOAA RAP model, but other models could be used. This 

approach does not generate new dynamical analyses and forecasts. Instead, statistical 

correction is applied based on past performance and current model data. The PEMDAS 

NOWcasting system that motivated this study employed a similar approach by using 

current observations to adjust the analyses and short-term forecasts. These approaches are 

common in nowcasting but are distinctly different than dynamical short-term analysis and 

forecast models such as the RAP, HRRR and Navy COAMPS systems. The purposes of 

statistical nowcast approaches are to reduce short-term error inherent in the dynamical 

analysis-forecast systems without greatly increasing computational costs. 

2. Bayesian Estimation Method 

The statistical post-processing method utilized by NPS nowcast is Bayesian 

estimation (BE) using a Markov Chain Monte Carlo (MCMC) sampling scheme adapted 

by Wendt (2017). This direct application of Bayes’ Rule offers many advantages over 

Kernel Density Estimation (KDE) and other commonly used statistical post-processing 

methods. Predictor variables (from the NOAA RAP 06-h forecast fields) are compared to 

observed reflectance values (from GOES imagery) over the “training period.”  This 

training data is then used to infer a mathematical generalized linear model (GLM) that 

predicts future reflectance values given the corresponding RAP predictor variables. This 

prediction takes the form of a posterior predictive distribution (PPD), which is a 

probability distribution of possible observed reflectance values. This process is 

summarized visually by Figure 10.  
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Figure 10.   Summary of NPS nowcast Bayesian estimation prediction process 

As stated above in equation (1), Bayes’ Rule is given by:  

𝑝𝑝(𝜃𝜃|𝑌𝑌) =
𝑝𝑝(𝑌𝑌|𝜃𝜃)𝑝𝑝(𝜃𝜃)

𝑝𝑝(𝑌𝑌)  

In NPS nowcast, Y is the reflectance value.  θ  is the set of five mathematical 

model parameters.  θ2, θ3, and θ4 correspond to the weighting coefficients of the predictor 

variables. In NPS nowcast, three predictor variables derived from RAP 06-h forecast 

fields are used. (The three predictor variables and the process used to choose them are 

described later in this chapter.)  The two additional parameters, θ1 and θ5, correspond to 

the intercept and the variance, σ2, of all the data points in the training period, 

respectively. Thus, this application of BE seeks to predict Y, reflectance values, by 

inferring information about the model parameters, θ , from the training data. 

In the “training” step, Y is the observed reflectance value.  𝑝𝑝(𝑌𝑌) can also be 

described: 𝑝𝑝(𝑌𝑌) = ∫ 𝑝𝑝(𝑌𝑌|𝜃𝜃)𝑝𝑝(𝜃𝜃)𝑣𝑣𝜃𝜃. Thus, Bayes’ Rule (1) can be re-written: 

 𝑝𝑝(𝜃𝜃|Y) = 𝑝𝑝(Y|𝜃𝜃)𝑝𝑝(𝜃𝜃)
∫𝑝𝑝(Y|𝜃𝜃)𝑝𝑝(𝜃𝜃)𝑑𝑑𝜃𝜃

 (4) 

Equation (4) is the inference used to obtain the probability of the parameters 

given the observed reflectance values, 𝑝𝑝(𝜃𝜃|Y). In order to complete the inference, 

MCMC discrete sampling methods are used to estimate the target distribution:  
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 𝑝𝑝(𝜃𝜃|Y) ∝  𝑝𝑝(Y|𝜃𝜃)𝑝𝑝(𝜃𝜃) (5) 

MCMC is commonly required to complete statistical inferences, especially 

complex BE with multiple predictor variables and multivariate structures (Gelman et al. 

2013). It is a robust, sophisticated sampling method. MCMC methods have emerged in 

the last thirty years and have helped fuel a resurgence of BE techniques because MCMC 

is so well suited to BE (Robert and Casella 2011).   

The specific MCMC method applied in this study is the Metropolis algorithm. It 

evaluates 𝑝𝑝(𝜃𝜃|𝑌𝑌) at a current state, θt, and a randomly selected proposed state, θt+1. If 

𝑟𝑟 = 𝑝𝑝(𝜃𝜃𝑡𝑡+1|𝑌𝑌)
𝑝𝑝(𝜃𝜃𝑡𝑡|𝑌𝑌)

 is greater than a randomly drawn number in the interval (0,1), then 

Metropolis accepts the jump to θt+1. If not, Metropolis rejects the jump, and θt is repeated 

as the next element of the chain. Each θ state has a corresponding T, transition kernel, 

describing the random “jump” from θt-1 to θt. This chain of θ states and corresponding T’s 

is known as the Markov chain. It represents a “random walk” through the sample space. 

The chain is said to converge when the Metropolis algorithm reaches a stationary 

distribution (Wendt 2017). In the NPS nowcast, the Metropolis algorithm is continued 

more than 500,000 samples after convergence is deemed to have been reached.  

Ten thousand Monte Carlo samples are then taken from the portion of the Markov 

chain succeeding the point of convergence. These samples yield a discrete probability 

distribution (i.e., histogram) of each parameter. KDE is used simply to estimate a 

continuous probability density function (PDF) (i.e., the curve over the top of the 

histogram) from the discrete distribution for visualization purposes. The PDFs of 

parameters θ1, θ2, θ3 and θ4 each correspond to the Betas (β)—also known as slope values 

or weighting coefficients. The PDF of θ5 corresponds to the variance, 𝜎𝜎2. The Betas and 

variance are parameters in the following Gaussian generalized linear model (GLM):  

 𝑌𝑌(𝑋𝑋|𝛽𝛽𝑜𝑜,𝛽𝛽1,𝛽𝛽2,𝛽𝛽3,𝜎𝜎2)~𝑁𝑁(𝛽𝛽𝑜𝑜 +  𝛽𝛽1𝑋𝑋1 + 𝛽𝛽2𝑋𝑋2 + 𝛽𝛽3𝑋𝑋3, 𝜎𝜎2) (6) 

In the forecast step, this GLM outputs the prediction about the reflectance value 

that will be observed 6 hours in the future (i.e., the 06-h forecast value). Here, N( ) is a 

Gaussian probability distribution function, N(µ,σ2), describing the probability density of 
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observing reflectance value Y. The mean of the distribution, µ, is approximated by: 

µ ~ βo + β1X1 + β2X2 + β3X3. X1, X2, and X3 are the 3 current predictor variable values 

(from RAP 06-h forecast fields). Notice that this GLM takes into account variance, σ2, 

whereas simple linear regression would not. The modeler also has the option of including 

prior assumptions about the observable, 𝑝𝑝(𝑌𝑌); however, prior assumptions were not 

included in this application of BE. The final step of the forecast process is that the normal 

(Gaussian) distribution is transformed back into a log-normal distribution—since a log 

transformation was performed on the training data. In recap, the mathematical model (the 

GLM) parameters are inferred from training period predictor variables and observed 

reflectance values in the training step. Then in the forecast step, current predictor 

variables are input into the GLM, which outputs a predictive distribution of 06-h forecast 

reflectance values. 

3. Application of Bayesian Estimation 

In order to establish proof of concept, the BE procedure was simplified to 

decrease computational cost by using only every 9th grid point in the latitudinal and 

longitudinal direction as a sub-sample from the original 10,000. This creates a uniformly 

spaced grid of 144 representative points with 9 km spacing and the same external 

dimensions as the original 100 x 100 km box. Figure 11 is a VISUAL graphic of the  

144 point sub-sampled grid. Note that the first row and column of the grid are omitted 

due to limitations of the VISUAL program. The data extracted at each of the 144 points 

consisted of 06-h RAP forecast fields and GOES observed visible channel (0.6-µm) 

reflectance values for the corresponding valid times. In addition, each of the 144 grid 

points was assigned a value of either 0 or 1 denoting either ocean or land surface, 

respectively. Lastly, each data point contains a valid time. 
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This plot was created using VISUAL. Note that the first row (bottom) and column (far 
left) are omitted. 

Figure 11.  NPS nowcast sub-sampled 144 point grid  

The BE methods described above are applied using three different data grouping 

schemes described in further detail in a later section. For each scheme, multiple data sets 

(within the two month case study period) representing various training period lengths are 

tested. The purpose of this cross validation is to identify the ideal grouping scheme, 

training period and predictor variables. In every test, a PPD of reflectance values is 

produced for each of the 144 grid points, for each forecast valid time.  

Two different forecast products are produced from these PPDs. Firstly, the mean 

reflectance value of each PPD is extracted and plotted to create a “pseudo-satellite 

image” for the forecast hour (in both grey-scale and color enhanced scales for added 

detail). The goal of this approach is to generate a false image that, as closely as possible, 

matches a reduced resolution version of the observed satellite image. This format would 

be easy for an intelligence, reconnaissance and surveillance (ISR) forecaster to use. 
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Secondly, each PPD is used to produce a ‘probability of cloud’ field. This product is 

primarily for the purposes of scoring and comparing to other forecasts. The following 

thresholds were determined through visual examination of the processed satellite imagery 

in TeraScan: for all sea grid points, reflectance < 5.0% = ‘no cloud’; for all land grid 

points, reflectance < 11.0% = ‘no cloud’. The 5% cloud threshold over sea is “safe” from 

a meteorological standpoint; the sun angle never produces a sun glint pattern over the 

Monterey Bay in June, so the maximum reflectance should remain under 5%. The 

surrounding land varies in albedo but is mostly vegetated, so 11% is also a “safe” land 

threshold based on meteorological reasoning.  

4. Predictor Variable List 

Three RAP 06-h forecast fields were used as predictor variables based on 

forecaster knowledge and side-by-side comparisons of model fields to satellite imagery: 

Low cloud fraction (LCLD) – this is a RAP derived field describing 
cloud cover below 642mb. The field is highly smoothed using a 40 km 
radius smoother. It is designed to match National Weather Service 
cloudiness forecasts. Values range from 0–100% (NOAA ESRL 2016).  

Low level OMEGA (Ω) – the highest magnitude negative Ω value out of 
all isobaric levels between 1000mb and 850mb. OMEGA is a RAP 
derived field converted from vertical velocity (in m/s) using the formula: 
Ω = -rho*g*w, where rho is air density, and g = 9.80665 m/s2. Negative 
values denote upward vertical velocity (NOAA ESRL 2016).  

Low level Relative Humidity (RH) – the highest RH value out of all 
isobaric levels between 975mb and 700mb. Because the majority of grid 
points are located over ocean, the 1000mb height level was not used as it 
would have considerably decreased the variability of this predictor. At a 
majority of valid times, the highest RH value was observed in the 975mb 
field. RH is a RAP derived field defined with respect to saturation over 
water (NOAA ESRL 2016).  

Figure 12 is one example of many visual comparisons that were made. From this 

example, it appears that the LCLD field (Figure 12.a) is correlated to the observed cloud 

but loses fine detail due to smoothing. The OMEGA field (12.b) looks like it may be 

loosely correlated as there are negative values (upward velocity) over most of the cloud 

region and positive values over land.  850mb is displayed here because this pressure level 
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contains the highest magnitude negative values at 1400Z. The RH field (12.c) also 

appears correlated. Notice it is similar to the LCLD field but contains more detail.  

975mb is displayed here because it contains the highest RH values (not including 

1000mb) at 1400Z. 

 
 a) June 01 1400Z reflectance image                          b) June 01 06-h LCLD valid 1400Z 

 
 c) June 01 06-h 850mb OMEGA valid 1400Z          d) June 01 06-h 975mb RH valid 1400Z    

 

Figure 12.  Comparison of June 01 2016 1400Z reflectance imagery to RAP 06-h forecast 
fields 
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Other meaningful predictor variables were examined but not applied in order to 

maintain simplicity and establish proof of concept. Model derived variables that should 

be tested in a scheme predicting clouds at all height levels include:  

• Mid level cloud fraction (MCLD) 

• High level cloud fraction (HCLD) 

• Mid level OMEGA 

• High level OMEGA 

• Mid level RH 

• High level RH 

• Surface based Lifted Index (LI)  

• Best Lifted Index (BLI) 

Satellite derived fields should also be tested, including reflectance value at grid 

point from the most recent visible image, brightness temperature value from the most 

recent FIR image, and a local average of reflectance (and brightness temperature) values. 

Cloud mask algorithms would need to be applied to identify what regime (low, mid, high 

or convective) each cloud falls into. A multivariate BE scheme could be used to produce 

a forecast for each regime so that height information is also provided to the forecaster. 

5. Three Data Grouping Schemes  

Without any grouping of the data points (i.e., the RAP predictor variable fields 

and corresponding observed reflectance values), each of the 144 grid points at each valid 

time in the verification period—the time period that the predictions are made for—would 

receive the same bias correction. That is to say that the same Betas would be used in the 

GLM to predict reflectance values for all grid points at all valid times. The only part of 

the GLM that would change with grid point or valid time is the current predictor variable 

values X1, X2, and X3, themselves. The problem with this approach occurs when the 

relationship between predictor variables and observed reflectance values varies across 

data points (i.e., if predictor variable bias changes with geographical location, time of 

day, time of month, or any other factor). These variations are highly likely from a 

meteorological standpoint; meteorological phenomena evolve differently depending on 
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geography, time of day, synoptic pattern, etc. Without grouping, the model will not 

identify these variations, and will calculate a less accurate bias correction for each point. 

Grouping similar data points together and generating a different set of Betas for each 

group can capture these variations and produce more accurate results. The disadvantages 

of grouping are that it can be more computationally expensive and can negatively impact 

forecast results if applied incorrectly (i.e., if the wrong groups are chosen). Three 

different grouping schemes are experimented with in this study. 

1) No grouping. In the initial scheme, no grouping was applied. The linear 

regression was performed using all the data points (144 grid points multiplied 

by the number of hours in the training period). Thus, the same Betas are used 

in the GLM to predict reflectance values for all 144 grid points. The 

advantages of this approach are simplicity and low computational cost. The 

disadvantages are that it does not account for variation in predictor variable 

bias across location, time or other factors that impact forecast accuracy. As an 

example of this scheme, Figure 13 shows a scatter plot of normalized LCLD 

versus reflectivity for all points in data set 6. (Data set 6 is the smallest of 5 

data sets which will be described in a later section.)  Notice that one best fit 

line is drawn through the entire group. 

 

Figure 13.  Data set 6 normalized LCLD versus reflectivity with no grouping 
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2) Grouping by land and sea. Data points were divided into two groups based

on whether they occurred over a land or ocean surface. Each data point, from

training and verification periods, was assigned either a 1 (land) or 0 (sea) and

divided accordingly before Bayesian estimation was applied. Thus, two sets of

Beta coefficients were calculated and used in the GLM, one for all land grid

points and one for all sea grid point. The land surface is drier, less uniform

and generally more reflective (of the 0.55–0.75-µm channel) than the ocean

surface. Low clouds in the land regime are typically advected from the bay

and so are much more dependent on winds and orographic effects. Thus, it

was reasonable to expect different predictor variable biases from these two

regimes. As an example of this scheme, Figure 14 shows a scatter plot of

LCLD versus reflectivity, grouped by land (green) and sea (blue) for all points

in data set 6. Notice the two best fit lines, one drawn through the land data

points and the other through the sea points. The sea points tend to exhibit

higher LCLD and reflectance values while the land points tend to exhibit

lower values.

Figure 14.  Data set 6 normalized LCLD versus reflectivity with land-sea grouping 
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3) k-means clustering. This approach uses data mining to group all training data

points into k clusters. An algorithm determines clusters that yield the

minimum sum of the distances (in data space) between all data points and the

centroid of the cluster. This sum of the distances is known as the distortion.

That data points are not grouped using observed reflectance values, because in

reality the observed values in the verification data would not be known until

after the forecast is verified. Instead, the four dimensions used in this

algorithm are the three predictor variables as well as the time difference

between the valid time and 2100Z. This variable is meant to account for

model bias variations between midday and morning/nighttime hours, since

2100Z corresponds to 1400 local time. The k-means clustering scheme is

similar to the land/sea approach in that it seeks to capture patterns in predictor

bias variability. The difference is that it uses actual data to determine several

groups rather than relying on a meteorological assumption to create two

groups. The only foreseen disadvantage is that it requires a slight increase to

computational cost. As an example of this scheme, Figure 15 shows a scatter

plot of LCLD versus reflectivity, grouped in k = 6 clusters, for all points in

data set 6. Notice the six color coded groups with a unique best fit line drawn

through each.
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Figure 15.  Data set 6 normalized LCLD versus reflectivity with k-means clustering 

The number of clusters, k, was chosen by actually performing the clustering on 

each data set for k = 2:8 and conducting a silhouette analysis for each value of k. 

Silhouette analysis is a technique commonly used to determine the appropriate k value. 

Each data point is assigned a silhouette coefficient (on a -1.0 to 1.0 scale) based on how 

similar it is to the other points in its cluster. The ideal choice of k yields silhouettes with 

all positive or minimal negative coefficient values and high peak values. k = 6 was 

chosen as the ideal number of clusters for all data sets. Figure 16 shows the silhouette 

analysis for data set 7 when k = 6. (Data set 7 is the second smallest of 5 data sets 

described in the next section.)  Small slivers of negative values in clusters 1 (indigo), 2 

(light blue), 4 (yellow) and 5 (red) indicate minimal amounts of data points that were not 

similar—relatively speaking—to the other points in their cluster. The peaks of each 

silhouette range from coefficient values of 0.5 to 0.7, which was high compared to the 

silhouette analyses when k was less than 6. 
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Figure 16.  Data set 7  silhouette analysis for k = 6 

F. DATA ANALYSIS AND SCORING 

The data used to test NPS nowcast is grouped into 5 sets numbered 6–10. Each set 

contains training period data and verification (or forecast) period data. The “no grouping” 

and “land/sea grouping” schemes are tested on set 6 only. The k-means cluster scheme is 

tested on data sets 6–10 for cross validation purposes. The time periods contained in sets 

6–10 are described here: 

• Data set 6: 20 hours (10 training | 10 forecast), June 05–06 

• Data set 7: 47 hours (37 training | 10 forecast), June 01–03, 05–06  

• Data set 8: 98 hours (78 training | 20 forecast), June 01–13,  

• Data set 9: 137 hours (112 training | 25 forecast), June 01–16, 18–20 

• Data set 10: 201 hours (163 training | 38 forecast), June 01–16, 18–24, 26–28  

Three data analysis steps were performed for each test. Firstly, the extracted 

training data is preprocessed to get an idea of the relationships between predictor 
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variables and observed reflectance. This is performed for each scheme. The scatter plots 

shown previously in Figures 13–15 are examples of this. For the k-means cluster scheme, 

additional analysis is performed to determine the most cost efficient value of k.   

Secondly, after the “training step” is performed, the PDF of each model 

parameter, θ, is produced and analyzed visually. These PDFs determine the Beta, β, value 

for each predictor variable. Thus, the actual relationship between each predictor variable 

and the observed reflectance is determined. The relative “meaningfulness” of each 

predictor variable is assessed. Also, the Monte Carlo Markov Chain convergence process 

is graphed, and the amount of time that it takes for NPS nowcast to compute each PDF is 

recorded. This is performed for each cluster. 

Lastly, after the “prediction step,” the forecast products are produced and 

analyzed. The results are visually compared to the observed imagery. The three primary 

metrics used to score NPS nowcast are mean absolute error (MAE), mean squared error 

(MSE) and Brier score. These metrics are commonly used to measure forecast results. 

MAE is the mean of the absolute values of the error at each data point (in space and 

time); it does not distinguish between over-forecasting and under-forecasting: 
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= − =∑ ∑  where n is the total number of forecast data points 

(across space and time), fi is the forecasted reflectance value (the mean of the PPD), yi is 

the observed reflectance value, and ei is the error (or the difference between them). MSE 

is the mean of the squared error values at each data point; MSE assigns more weight to 

larger individual errors than MAE does: 2 2
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score is used only on the ‘probability of cloud’ output. It is applicable to probabilistic 

predictions of mutually exclusive outcomes. Thus, it does very well with yes/no 

predictions like cloud/no-cloud: 2
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= −∑ , where ft is the probability of cloud 

and ot is the binary outcome (cloud = 1, no cloud = 0). Zero is a perfect Brier score, while 

1.0 is the worst possible score. NPS nowcast results are also compared to that of “land-

sea climatology.”  This reference forecast simply outputs the mean value of all land (sea) 
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data points in the training period over land (sea). Lastly, further analysis is performed to 

determine what factors (geographic location, time, meteorological conditions, etc.) 

impact NPS nowcast results and how the results are impacted. 
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IV. RESULTS 

A. OVERVIEW 

While the overall goal of this study is to accurately predict the short-term low 

cloud field, the impacts of the grouping scheme and learning period length on forecast 

skill must be assessed in order to optimize performance. Thus, the results of this study are 

broken into three sections. Firstly, the impacts of each grouping scheme are examined to 

determine the ideal method of data grouping. Secondly, the role of learning period length 

is examined to determine its impact on forecast accuracy. These two sections are broken 

into three sub-sections: (1) pre-processing of the data, (2) the generalized linear model 

(GLM) that was produced from training period data, and (3) forecast output. Finally, 

overall performance is examined to demonstrate the viability of this nowcast approach 

and to identify its strengths and weaknesses.   

B. GROUPING SCHEME CROSS VALIDATION 

1. Pre-processing 

“Pre-processing” refers to any techniques used to assess the data points before 

they enter the Bayesian processor. As part of the pre-processing step, several scatter plots 

were created to assess the relationships between each predictor variable and the observed 

outcome. Best fit lines were calculated to see if a linear relationship could be found. 

Figure 17 shows the relationship between each predictor variable and the observed 

reflectance values for the entire data set, the training and verification periods combined. 

All predictor variables and observed values are normalized. The scatter distribution (in 

Figure 17.b) of OMEGA versus reflectance does not lend itself well to a linear fit because 

its orientation is nearly vertical. The LCLD (17.a) and RH (17.c) scatter distributions lend 

themselves well to a linear fit, and so higher Beta values (indicating higher weighting) 

are expected for these two variables.  

Figure 18 shows the same scatter plots with sea grid points in blue and land grid 

points in green. Very distinct groupings of sea and land points can be seen in each plot; 

the land points tend to cluster towards lower reflectance values as well as lower LCLD 
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(Figure 18.a), OMEGA (18.b), and RH (18.c) values. This indicates that the land-sea 

grouping approach may add skill to the model, particularly for θ2 (corresponding to the 

LCLD β-coefficient) and θ3 (corresponding to OMEGA β-coefficient) because the 

orientations of the sea and land groups look more linear than the original. Figure 19 

shows the data points once again, this time grouped into 6 clusters by the k-means cluster 

approach. The clusters appear to be fairly distinct from each other as they should be by 

design. The clusters are not as distinct in terms of the range of reflectance values that 

they contain; for example, the LCLD plot (Figure 19.a) exhibits four clusters—shown in 

green, dark blue, red and light blue—that contain very similar ranges of reflectance 

values. Given that these clusters appear tightly grouped, they should lend themselves to a 

better linear fit and therefore increase forecast skill. 

 

a) LCLD (X) v. reflectance (Y)     b) OMEGA (X) v. reflectance (Y)   c) RH (X) v. reflectance (Y) 

Figure 17.  Pre-processed normalized model predictor versus observed reflectance 
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a) LCLD (X) v. reflectance (Y)     b) OMEGA (X) v. reflectance (Y)   c) RH (X) v. reflectance (Y) 

Figure 18.  Pre-processed (land-sea) normalized model predictor versus observed 
reflectance 

 

a) LCLD (X) v. reflectance (Y)    b) OMEGA (X) v. reflectance (Y)    c) RH (X) v. reflectance (Y) 

 

  

Figure 19.  Pre-processed (k-means cluster) normalized model predictor versus observed 
reflectance 

 

2. Generalized Linear Model 
  

During the “training step,” training data is run through the Bayesian processor to 

generate the GLM. For each test, 1,000,000 MCMC samples were performed. The 

posterior probability, 𝑝𝑝(𝜃𝜃|Y), was then generated using 10,000 samples drawn from the 

last 500,000 samples. Graphical analysis of early trial runs indicated that convergence 
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occurred well-within the first 500,000 samples, and so 1,000,000 was chosen as a “safe” 

number of samples. Figure 20 shows the MCMC sampling process reaching convergence 

before the red vertical “burn-in” line (at 500,000 samples) for the no grouping scheme. 

The training step took a total time of approximate 3 minutes 20 seconds for the no 

grouping scheme, 6 minutes 20 seconds for the land-sea scheme, and 18 minutes for the 

k-means cluster scheme.  

 

a) Jumping Kernel Variance 

 
b) MCMC Acceptance Rate 

 

Figure 20.  No grouping scheme data set 6 a) jumping kernel variance and b) MCMC 
acceptance rate  
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After the training data is run through the Bayesian processor, a posterior 

probability density function (PDF) is output for each model parameter (θ).  θ1 

corresponds to the intercept and is always zero by design.  θ2, θ3, and θ4 and correspond 

to the Betas of the three predictor variables; the Betas are essentially weighting 

coefficients assigned to each variable.  θ5 is the natural logarithm of variance, ln[σ2], and 

indicates the squared standard deviation or the width of the posterior predictive 

distribution (PPD) that will be created; thus a small value of θ5 is desired for predicting a 

singular reflectance value. 

Figure 21 shows the PDF of θ2 (the coefficient for LCLD) for the no grouping 

scheme and a graph of the sample convergence process used to generate this specific 

PDF. In Figure 21.a, notice that the cumulative mean (blue line) of the distribution 

stagnates on a single value as the distribution converges before the burn-in point (vertical 

red line) is reached. In Figure 21.b, the 95% highest density interval (HDI) is shown by 

the solid horizontal red line on the PDF and indicates the interval containing 95% of the 

distribution. The distribution mean is indicated by the dashed vertical red line on the 

PDF. The mean and HDI indicate the “meaningfulness” of LCLD relative to the other 

two predictor variables. The 95% HDI for θ2 in the no grouping scheme ranges from -

0.13 to -0.28 and the mean value is -0.21. In the land-sea scheme, these values were 

similar. In the k-means cluster scheme, they vary greatly with cluster; the mean ranges 

from -0.56 to +0.19, with several of the HDIs containing zero which indicates relatively 

no meaningfulness of LCLD for that cluster. 
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a) MCMC Sampling Convergence Process 

 
b) PDF 

 

Figure 21.  No grouping θ2 (LCLD) a) sampling convergence process and b) PDF 

Shown in Figure 22, the 95% HDI for θ3 (the coefficient for OMEGA) in the no 

grouping scheme also contains zero. This indicates that OMEGA is not predictive of low 

cloud reflectance. However, in the land-sea scheme, θ3 is predictive, and it is positive 
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over land and negative over sea as shown in Figure 23 for both the land (23.a) and sea 

(23.b) regimes, separately. This means that—for this location and training period on June 

5—maximum upward vertical motion in the 1000mb–850mb layer is negatively 

correlated to low cloud over land, and positively correlated to low cloud over the ocean. 

Thus, the land-sea grouping scheme added significant skill to OMEGA. The k-means 

scheme values also varied with each cluster and added skill to OMEGA for several 

clusters.  

 

Figure 22.  No grouping θ3 (OMEGA) PDF 
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a) Land group 

 
b) Sea group 

 

Figure 23.  Land-sea θ3 (OMEGA) PDFs 

The 95% HDI for θ4 (the coefficient for RH) in the no grouping scheme ranges 

from 0.90 to 1.06 with a mean of 0.98. This is shown in Figure 24. These values were 

lower in the land-sea scheme (means near 0.70 for both land and sea); however, this 

simply indicates that RH is relatively less predictive because LCLD and OMEGA are 

now more predictive in these schemes. In the k-mean scheme, values were all positive 
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and varied from near zero (not predictive) to 1.08 (very predictive) with cluster. Based on 

data set 6 only, RH is by far the most useful predictor variable for each data grouping 

scheme. Figure 24 shows the PDF of θ5 (the coefficient for variance) for the no grouping 

scheme. The mean and HDI were similar for all three schemes. The magnitude of θ5 is 

very high in data set 6 due to the very short training period (i.e., less data is used to train 

the model).  

 

 

Figure 24.  No grouping θ4 (RH) PDF 

 

Figure 25.  No grouping θ5 (variance) PDF 
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3. Performance 

Data set 6 was a very small data set consisting of 10 hours of training data and 10 

hours of verification data; it was easy to forecast for because there was little variation in 

the observed cloud field, which was present over the ocean for most of the period. All 

three grouping schemes performed similarly in terms of mean absolute error (MAE) and 

total Brier score on this very short and easy-to-forecast data set. Figure 26 shows the 

absolute error distribution for each scheme, broken into land (green) and sea (blue) 

regimes. The means of the land and sea distributions are denoted by the green and blue 

dashed vertical lines, respectively. The mode of each distribution is close to zero, and 

most of the mass of each distribution is shifted to the left (toward low error values), 

which is desirable. Table 1 shows total MAE and total Brier score as well as MAE and 

Brier score over land and over sea for each scheme. All MAE scores were within 0.7 of 

each other and all Brier scores were within 0.02 of each other. The no grouping scheme 

performed the best over sea grid points, which makes sense because there are more sea 

grid points than land. The land-sea scheme performed best over land, likely because the 

land group contains fewer data points and experienced little cloudiness throughout the 

period.   

Table 1.  Data set 6 MAE and Brier scores for each scheme 

 

 

 Total 
MAE Sea MAE Land 

MAE 

Total 
Brier 
Score 

Sea Brier 
Score 

Land 
Brier 
Score 

No 
grouping 6.0716 5.8706 6.3697 0.0765 0.0023 0.1864 

Land-sea 6.3285 6.5298 6.0298 0.0632 0.0023 0.1534 

k-means 6.7561 6.8833 6.5674 0.0832 0.0032 0.2018 
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    a) No grouping scheme absolute error                           b) Land-sea grouping scheme absolute error 

 
 

         c) k-means cluster scheme absolute error 

 

Figure 26.  Forecast absolute error distributions of a) no grouping b) land-sea grouping 
and c) k-means cluster 

All three schemes are able to capture the general shape and size of the cloud field, 

but do not necessarily capture the small variations in the extent of cloud cover within the 

bay and along the coastline. All three also struggled with pinpointing exact reflectance 

values within the cloud field (5 to 10 percentage points of absolute error were common). 

The k-means cluster scheme appeared to do best with resolving these finer details and 

some of the more extreme values. Figure 27 shows the NPS nowcast 06-h “pseudo-
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satellite” forecast output for each grouping scheme compared to a “false color” image of 

the observed cloud field (at the same resolution) for June 6 2100Z. Notice that the k-

means cluster forecast better resolves the edge of the cloud field along the coastline and 

also captures some of the higher values within the cloud field. Also, it is worth noting 

that anything above 35% reflectance looks like thick low cloud to an ISR forecaster; 

therefore, there is some room for error with extreme values in this particular forecast 

application. 

Although all three grouping schemes performed similarly on this easy “softball” 

data set, the k-means cluster scheme was selected for further testing because it has the 

greatest potential. In addition to resolving finer structure over water, more cloud edge 

detail and better handling of extreme values, it is most likely to yield accurate results for 

longer and more complex data sets. The no grouping and land-sea grouping schemes will 

likely falter in cases where the verification data points do not match with the training 

data. This will be explained further in the next section. 
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a) No grouping forecast                                              b) Land-sea grouping forecast 

 
 

c) k-means cluster forecast                                         d) Observed image 

 
 

Figure 27.  June 6 2016 2100Z forecast for each data grouping scheme  versus observed 
reflectance imagery (continued on next page)   
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e) Map included for reference 

 
 

Figure 27. (Continued from previous page) 

 

 

 

C. PERIOD LENGTH CROSS VALIDATION 

1. Pre-processing 

Data set 6 consists of 10 hours of training data from June 5 and 10 hours of 

verification data from June 6. Clouds were present over much of the bay throughout the 

period. Both days were similar, and so good results were expected. Figure 28 shows a 

comparison of training data (blue) to verification data (green) for each predictor. As 

expected, the training and verification data match up very nicely because there was little 

variation in the observed cloud field throughout the period. If the verification data points 

were distributed very differently from the training data, this would be a reason to expect 

weaker results. 

Data sets 7 appears similar in that the verification data matches up fairly well with 

the training data and a similar best fit line can be drawn through both for each predictor. 

The larger data sets contain much more variation in the observed cloud field and the 

corresponding predictor variables. Data set 9 represents a set in which the group of 

verification data points is notably different from the group of training data points. Figure 

29 shows the comparison of training and verification data for set 9. It is apparent that the 
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observed reflectance values were anomalously low during the training period due to very 

little cloud cover present during this time. The best fit lines for the verification data are 

very different than that of the training data for each predictor. This is a cause for concern. 

In the no grouping scheme, this would mean an inappropriate bias correction and poor 

results. However, in the k-means cluster scheme, there is hope that the verification data 

will fall into clusters with the appropriate bias correction. For data sets 8 and 10, the 

training and verification data does not match up as nicely as in sets 6 and 7; however, the 

training and verification best-fit lines are not as dissimilar as in set 9.  
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a) LCLD (X) v. reflectance (Y)                                            b) OMEGA (X) v. reflectance (Y) 

c) RH (X) v. reflectance (Y) 

Note that data points are broken up into training (blue) and verification (green) points—
not land and sea. 

 

Figure 28.  Data set 6 pre-processed training and verification data for a) LCLD, b) 
OMEGA, and c) RH versus observed reflectance  
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a) LCLD (X) v. reflectance (Y)                                            b) OMEGA (X) v. reflectance (Y) 

c) RH (X) v. reflectance (Y) 

 
Note that data points are broken up into training (blue) and verification (green) points—
not land and sea. 

Figure 29.  Data set 9 pre-processed training and verification data for a) LCLD, b) 
OMEGA, and c) RH versus observed reflectance  
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2. Generalized Linear Model 

Table 2 shows the total time it took to run each data set through the Bayesian 

processor in order to generate the GLM. Data set 10 (163 hours of training data) took the 

longest to run at 25.5 minutes. The time for each cluster varies with the amount of data in 

each and ranged from 2 minutes 38 seconds to 5 minutes 8 seconds. These times are very 

reasonable because the “training step” will not need to be run hourly for operational use. 

For instance, it could be run automatically once per day, and the updated GLM can be 

used for the next 24 hours until the next update. The results suggest that daily updating 

would be more than sufficient, as data sets 7–10 represent cases where the same GLM is 

used for multiple days without sacrificing performance as the period continues.    

Table 2.  Total time of “training step” 

Data Set 6 Data set 7 Data set 8 Data set 9 Data set 10 

~18 min ~17 min ~20 min ~23 min ~25 min 30 sec 

 

In the k-means cluster scheme, the predictor variable Betas (corresponding to θ2, 

θ3 and θ4) varied greatly. Table 3 shows the mean parameter (θ) values (not including θ1, 
which equals zero) for each cluster within each data set. The mean value was not 

included if the 95% HDI contained zero. The variation of Betas which occurred between 

clusters was expected; the k-means clustering scheme is essentially designed to identify 

groups of data points with a distinct set of Betas. However, several of the clusters also 

yielded negative values of either θ2 or θ4, but never both. This indicates that an increase in 

the variable (LCLD or RH) is correlated to a decrease in observed reflectance value in 

these clusters. This relationship is not readily meteorologically intuitive, but that does not 

mean that there is not statistical reasoning for it based on patterns of predictor variable 

bias in each cluster.  

 There were also large variations of the Betas across data sets, which was 

unexpected. In data set 6, θ4 (the coefficient for RH) is relatively large and positive for 
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most of the clusters, while θ2 (the coefficient for LCLD) is negative for all but one 

cluster. RH was clearly the dominant predictor variable for data set 6. As the size of the 

data set is increased, RH (corresponding to θ4) becomes less dominant and LCLD 

(corresponding to θ2) becomes more dominant. In data set 10, θ2 is positive in every 

cluster, and LCLD is the dominant variable.   

 A possible explanation of this data set variation is that RH may perform better 

when more low cloud cover is present, and LCLD may perform better when less low 

cloud is present. Extensive low cloud cover was present over the bay on June 5–6. This is 

the time period of data set 6, but this time period is also contained in each data set. 

Therefore, if anomalously high amounts of cloud cover during these days caused RH to 

be very predictive and LCLD to not be very predictive, then adding more data (which 

included more clear sky conditions) would gradually decrease the influence of June 5–6 

until RH was no longer the dominant variable. This could very well have something to do 

with the relationship between RH and LCLD, shown in Figure 30. This relationship is 

shown for (a) data set 6 and (b) data set 10 to show that it was fairly consistent across all 

data sets. Notice that at high RH values (at the far right of the plots) that correspond to 

high amounts of cloud, there are large variations in possible LCLD values; these large 

variations may inhibit the NPS nowcast’s ability to use LCLD as a meaningful predictor 

variable. On the other hand, when RH values are low (left side of both plots in  

Figure 30), corresponding to clear sky conditions, there is very little variation in LCLD, 

which may make it a better predictor variable. This relationship makes sense from a 

meteorological perspective; most sky cover conditions (0 to 100%) occur within about a 

30% range of RH values. 

For the most part, θ3 (the coefficient for OMEGA) was negative and close to zero, 

indicating a relatively weak correlation between upward vertical motion and low cloud. 

As expected, the size of the HDI decreases with more data.  θ5 (corresponding to ln[σ2]) 

tended to decrease in magnitude with more data.  
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Table 3.  Model parameter (θ) means 

  Cluster 0 Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 

Set 6 

θ2(LCLD) -0.25 contains 0 contains 0 -0.56 contains 0 0.19 

θ3(OMEG) 0.18 contains 0 -0.19 contains 0 contains 0 -0.34 

θ4(RH) 0.82 0.41 0.47 1.08 contains 0 contains 0 

θ5(σ2) -0.61 -0.4 -0.23 -0.79 0.01 -0.10 

Set 7 

θ2(LCLD) -0.23 -0.31 -0.14 -0.19 -0.18 -0.20 

θ3(OMEG) -0.15 contains 0 0.21 contains 0 0.12 contains 0 

θ4(RH) 0.52 0.19 0.45 0.34 0.60 0.65 

θ5(σ2) -0.34 -0.05 -0.17 -0.04 -0.30 -0.44 

Set 8 

θ2(LCLD) 0.12 0.31 0.15 contains 0 -0.08 -0.22 

θ3(OMEG) contains 0 -0.18 -0.08 contains 0 -0.09 -0.10 

θ4(RH) 0.35 -0.05 0.37 0.17 0.23 0.53 

θ5(σ2) -0.20 -0.15 -0.20 -0.03 -0.04 -0.31 

Set 9 

θ2(LCLD) 0.05 0.38 0.55 0.19 -0.09 contains 0 

θ3(OMEG) contains 0 -0.20 -0.25 contains 0 -0.13 -0.05 

θ4(RH) 0.31 -0.10 -0.14 -0.18 0.32 0.14 

θ5(σ2) -0.11 -0.24 -0.34 -0.02 -0.12 -0.03 

Set 10 

θ2(LCLD) 0.13 0.52 0.08 0.47 0.11 0.45 

θ3(OMEG) -0.16 -0.27 -0.25 -0.29 -0.09 -0.35 

θ4(RH) 0.05 -0.29 0.27 -0.19 0.13 contains 0 

θ5(σ2) -0.04 -0.25 -0.18 -0.43 -0.04 -0.50 
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a) Data set 6                                                             b) Data set 10 

 

Figure 30.  Relationship between normalized RH and LCLD in a) data set 6, and b) data 
set 10  

3. Performance 

Although the k-means clustering scheme was used to generate all of the following 

forecast results, many of the scores and graphics contain information about land and sea 

data points. It is useful to continue to split results into these two regimes in order to gain 

additional detail about performance over each. This allows the modeler to see how well 

the NPS nowcast accounts for the differences in these two regimes when k-means 

clustering is used.  

As shown in Table 4 and Figure 31, the NPS nowcast achieved its lowest MAE 

score (4.38 total) on data set 9, even though pre-processing scatter plots looked 

concerning because the verification (or forecast) period data points did not match up well 

to training period data points. As shown in Figure 32.a, the forecast period for data set 9 

exhibited very low observed reflectance values corresponding to very little observed 

cloud—most of the data points are grouped toward the lower left corner. The k-means 

clustering technique was able to account for this by grouping the majority of the forecast 

period data points into three clusters that yielded very low absolute error; this is shown in 

Figure 32.b. Each scatter point corresponds to a mean forecast value. Points are broken 

into land (green) and sea (blue). Although this success may also be attributed to the 

ability of the predictor variables to make accurate predictions when no cloud is present, 
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the fact that the majority of the data points were grouped into 3 clusters indicates that the 

k-means cluster scheme likely added skill over a no grouping or land-sea grouping 

scheme.   

Data set 10 consisted of an even longer training period and also yielded 

impressive results. The MAE score was a bit higher (5.53 total), but the forecast period 

for this set contained much greater variability of observed values, particularly over the 

sea grid points, where set 10 did not perform as well. This increased variability is seen in 

Figure 33, the plot of mean forecast value versus observed for data set 10. Notice that 

unlike Figure 32.a, the sea data points in Figure 33 are spread throughout the plot.  

Sets 9 and 10 did not do quite as well as sets 6 and 7 with Brier scores, 

particularly over the sea grid points. This likely has to do with the fact that there were 

more clear sky conditions in sets 9 and 10; it is more difficult to score a perfect Brier 

score with clear sky conditions because the window of reflectance values below the 

threshold (< 5.0% = ‘no cloud’ for sea grid points) is very small. This effect is apparent 

in Figure 34. Notice that the forecast image (Figure 34.a), which takes the mean value of 

the PPD, looks very similar to the observed (34.b); however, because these mean values 

are very close to the threshold (5% reflectance over sea), this translates to a non-zero 

probability of cloud (34.c) and therefore a non-zero Brier score in the same geographic 

location (34.d). Figure 34.d shows a map of individual Brier scores calculated for each 

grid point at 2100Z. It may be appropriate to choose a higher ‘no cloud’ threshold for the 

sake of fair scoring, even though 5.0% reflectance was the threshold observed from the 

GOES imagery.  
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a) Data set 6 

 

b) Data set 7 

 
 

c) Data set 8 

 

 

d) Data set 9 

 
 

e) Data set 10 

 
 

 

Figure 31.  Absolute error of mean forecast value of a) set 6 b) set 7 c) set 8  d) set 9, and 
e) set 10 
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Table 4.  MAE and Brier scores for each data set 

 
Total 

MAE 
Sea MAE 

Land 

MAE 

Total 

Brier 

Score 

Sea Brier 

Score 

Land Brier 

Score 

Set 6 6.7561 6.8833 6.5674 0.0832 0.0032 0.2018 

Set 7 7.3071 7.6313 6.8264 0.0837 0.0032 0.2020 

Set 8 11.6402 13.7798 8.4677 0.2421 0.2589 0.2172 

Set 9 4.3779 5.6319 2.5185 0.1585 0.2311 0.0508 

Set 10 5.5260 7.3719 2.7889 0.1345 0.1801 0.0668 

The best (lowest) score for each metric is shown in blue. The worst (highest) score for each 
metric is shown in red. 
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a) Scatter plot of mean forecast value versus observed reflectance  

 
b)  Scatter plot of absolute error grouped by cluster  

 

Figure 32.  Data set 9 scatter plots of a) mean forecast value versus observed reflectance, 
and b) absolute error grouped by cluster 
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Figure 33.  Data set 10 scatter plot of mean forecast value versus observed reflectance 
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 a) Forecast image                                            b) Observed image 

 
c) Probability of cloud forecast                        d) Brier score map 

 

Figure 34.  Data set 9 June 20 2016 1700Z a) forecast image, b) observed image, 
c) probability of cloud product, d) Brier score map, and e) reference map 

(continued on next page) 
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               e) map included for reference 

 
Figure 34. (Continued from previous page) 

 

Also evident in Table 4 and Figure 30 (shown previously) is that data set 8 scored 

the worst (highest) on every scoring metric. One significant reason for this is that there 

was a large amount of variation in the observed cloud field over land and especially over 

sea grid points. This variability is shown in Figure 35, a plot of forecast mean values 

versus observed values. Another potential reason is that the training period data points 

did not match up well to the forecast period data points, and due to the variability in the 

forecast period cloud field, the k-means cluster scheme was not able to solve this problem 

as it did in sets 9 and 10. Lastly, there were several irregular cloud patterns observed 

during the forecast period that were not present during the training period. One example 

is shown in Figure 36. It is reasonable to assume that a longer training period—which 

would capture more variability—would have improved these results. The main reason 

that sets 6 and 7 performed well is likely that the training data and forecast data matched 

up so well. Figure 37 shows a grey-scale forecast image compared to the observed image 

for data set 7. The predicted pseudo-satellite image (Figure 37.a) shows similarity to the 

observed image (37.b) but lacks the finer scale structure. This lack of detail in the 

predicted image is most likely due to a lack of resolution in the model forecast fields.  
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Figure 35.  Data set 8 scatter plot of mean forecast value versus observed reflectance 

 

  

Figure 36.  Data set 8 June 13 2016 2100Z observed image with reference map included 
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Figure 37.  Data set 7 June 06 2200Z grey-scale  image a) forecast and b) observed  

 

D. GENERAL PERFORMANCE 

In order to create skill scores for NPS nowcast, a climatology-based forecast 

method was created called “mean land-sea climatology.”  “Land-sea climatology” scored 

fairly well in terms of absolute error, particularly over land and particularly over the 

smaller data sets that saw less variation in the observed cloud field. Figure 38 displays the 

land-sea climatology forecast calculated for data set 8. This “climocast” remains the same 

for each forecast hour in the data set.  
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Figure 38.  Data set 8 land-sea “climocast”  

“Land-sea climatology” was used to compute skill scores for MAE, mean squared 

error (MSE) and Brier score. A skill score is used to determine the relative improvement 

of a forecast (NPS nowcast) over a reference forecast (“land-sea climatology”). The 

formula used to compute a skill score is:  𝑠𝑠𝑠𝑠𝑠𝑠𝑙𝑙𝑙𝑙 𝑠𝑠𝑐𝑐𝑣𝑣𝑟𝑟𝑠𝑠 = 𝑠𝑠𝑠𝑠𝑜𝑜𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑡𝑡 − 𝑠𝑠𝑠𝑠𝑜𝑜𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑟𝑟𝑓𝑓𝑓𝑓
𝑠𝑠𝑠𝑠𝑜𝑜𝑠𝑠𝑠𝑠𝑝𝑝𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑡𝑡 − 𝑠𝑠𝑠𝑠𝑜𝑜𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑟𝑟𝑓𝑓𝑓𝑓

 . In 

this case, the scoreperfect equals zero because zero MAE, MSE and Brier scores indicate 

perfect forecasts. A positive skill score indicates that NPS nowcast outscored land-sea 

climatology.  1.0 is the highest attainable skill score. The MSE skill score is also known 

as a reduction of variance.   

Table 5 shows the skill scores for each data set. In the shorter data sets—6, 7 and 

8—NPS nowcast did not add significant skill in terms of MAE and MSE. However, NPS 

nowcast displayed much better distributions of absolute error than did land-sea 

climatology. The land-sea climatology distributions for each data set are shown in Figure 

39. Notice that the mode, or the most frequently observed value, occurs toward the center 

of the land-sea climatology absolute error distribution for each data set; all of the NPS 

nowcast MAE distributions (shown previously in Figure 31) had the bulk of the error 

shifted to the left (toward zero), and so were much more desirable distributions.  
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Table 5. Skill scores  

 MAE skill 
score 

MSE skill 
score 

Brier skill 
score 

6 -0.0196 -0.0224 0.8621 
7 -0.0644 -0.0620 0.7891 
8 0.0323 -0.0716 0.0384 
9 0.6717 0.8080 0.4659 
10 0.2850 0.2305 0.3396 

 

Data sets 9 and 10 added noticeable skill to climatology in all three skill 

categories. This demonstrates the ability of larger training periods to capture more 

variability and produce more accurate forecasts. The skill scores for data set 9 were also 

aided by the fact that the forecast period did not match up well to the training period; this 

caused very high error in land-sea climatology (which is derived from training period 

data) but did not negatively impact the NPS nowcast.  
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a) Data set 6 

 

b) Data set 7 

 
 

c) Data set 8 

 

 

d) Data set 9 

 
 

e) Data set 10 

 

Figure 39.  Land-sea climatology error distribution for each data set 
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Additional analysis of all results was conducted to assess the impacts of 

geographic location and valid time on forecast results. This analysis focuses on data sets 

9 and 10 because cross validation confirmed that the longer training periods used in these 

sets yield better forecast results. Interestingly, in both data sets 9 and 10, the NPS 

nowcast identified very similar regions of distinctly higher cloud probability; these 

regions correspond roughly to the land and sea regions. Essentially, the NPS nowcast is 

able to identify the land and sea regions even though it did not know whether each grid 

point was a land or sea point (the k-means cluster scheme does not include this 

information). Thus, additional grouping into land and sea grid points is not necessary. 

This is evident in the heat map of mean cloud probability forecasts for data sets 9 and 10 

at each of the 144 grid points, shown in Figure 40. On these plots, the increasing Y 

direction points toward the west; the mapped coastline is included for reference. 

 

a) Data set 9 

 

Figure 40.     Probability of cloud heat map for a) data set 9 and b) data set 10 with c) 
reference map included (continued on next page) 
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b) Data set 10 

 
c) Reference map 

 
Figure 40. (Continued from previous page) 
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The difference in forecast accuracy between the land and sea regimes is also very 

evident. NPS nowcast was much more accurate over land than over sea. This was true for 

all 5 data sets using the k-means cluster scheme. This result was expected because there 

are more sea points. Also, the sea grid points tend to experience more variation in the low 

cloud field (i.e., the clouds are constantly building and clearing over the bay, but are only 

occasionally advected onto land). Figures 41 and 42 show heat maps of MAE and Brier 

scores calculated at each grid point over data sets 9 and 10. (Brier score is displayed here 

on a 1.0 to 2.0 scale; simply subtract 1.0 from each value to obtain the true Brier score.) 

These heat maps reveal the land-sea dichotomy in forecast accuracy. Careful examination 

of these plots also reveals higher error along the coastline; this is particularly evident for 

data set 10, during which there were more events of cloud being advected inland. 

   

a) Data set 9 (note that Brier scores are displayed here on a 1.0 to 2.0 scale) 

      

Figure 41.  Brier score heat map for a) data set 9 and b) data set 10 with c) reference map 
included (continued on next page) 
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b) Data set 10 (note that Brier scores are displayed here on a 1.0 to 2.0 scale) 

      
 

c) Reference map 

 
 

Figure 41. (Continued from previous page) 
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a) Data set 9 

       
b) Data set 10 

        

Figure 42.  MAE heat map for a) data set 9 and b) data set 10 
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Analysis of forecast accuracy as a function of time was less conclusive. In each 

data set, there were certain valid times for which the NPS nowcast performed better or 

worse; however, these valid times were not consistent across multiple data sets. For data 

set 9, the midday hours exhibited greater absolute error. For data set 10, the morning 

hours exhibited greater absolute error. Figure 43 shows violin plots of absolute error for 

each forecast valid time. The body (i.e., the bulky part) of each “violin” describes the 

bulk of the data points that fell under each valid time. Therefore, if the body of the violin 

is contained below the 5.0 absolute error line, then the majority of data points had an 

absolute error less than 5.0 for that valid time. A desirable error distribution is one in 

which the majority of the violin is contained close to zero. The data points are also 

broken into land (green) and sea (blue). For data set 9: 19Z, 21Z and 22Z (1200, 1400 

and 1500 local time) exhibit the least desirable distributions where the error is shifted 

towards higher values, especially over water—note that there were no 20Z forecasts 

present in data set 9 due to unavailability of 20Z satellite imagery. For data set 10: 14Z, 

15Z and 16Z (0700, 0800 and 0900 local time) exhibit the least desirable distributions, 

again due to the broad distribution that is shifted toward higher values. Because the data 

set 10 forecast period contained more observed cloud, this may indicate that higher 

forecast error occurs during morning valid times when cloud is present, and that higher 

error occurs during midday when cloud is not present. If true, that would indicate that the 

k-means cluster method is not appropriately addressing model bias differences between 

valid times and should be adjusted. However, further testing is needed to make that 

conclusion. On average, data set 9(10) only contained 2(3) forecasts for each valid time.  
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a) Data set 9 

 
b) Data set 10 

 

Figure 43.  Violin plots of absolute error for each valid time in a) data set 9 and b) data 
set 10 
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V. CONCLUSION 

A. SUMMARY AND CONCLUSIONS 

In summary, NPS nowcast was created by performing Bayesian estimation over a 

9 km resolution grid on a training period of observed GOES-15 visible channel imagery 

and 06-h RAP forecast fields. This analysis produces a generalized linear model (GLM) 

that inputs current RAP 06-h predictor variable fields to generate a probabilistic 06-h 

forecast of low cloud reflectance values. This information is used to produce “pseudo-

satellite” and “probability of cloud” forecast products. NPS nowcast was tested on a case 

study of summertime low level stratus within a 100 by 100 km box around the Monterey 

Bay.   

Testing and analysis yielded several significant results. Firstly, k-means clustering 

was demonstrated to be a valuable pre-processing technique. It improves forecast 

accuracy by grouping the forecast data with like training data so that the most applicable 

GLM is used for each forecast. As shown in the data set 9 results, it allows the nowcast 

system to accurately forecast anomalous events that would otherwise throw off the 

model. Also of note, the particular k-means cluster scheme applied in this study grouped 

data points using the three predictor variable values and the number of hours offset from 

2100Z. It is very possible that a different application of k-means clustering could produce 

better results.   

In addition, a longer training period was shown to improve accuracy for this 

particular forecast application, geographic location and time of year. It is likely that 

accuracy would increase with training period length as long as the period is contained 

within the same synoptic regime. A nowcast system operating over a different location or 

time of year would require cross validation testing to determine the ideal training period 

for that particular time and forecast area.  

The computational cost of this nowcast approach is very reasonable. The longest 

data set took 25.5 minutes to perform the Bayesian processing on. Adding predictor 

variables and increasing resolution would increase this time; however, the Bayesian 
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processing step used to update the GLM does not need to be run every hour. It could be 

run once a day without any negative impacts to forecast results. The amount of time it 

takes this approach to actually generate the forecast for each hour is negligible.   

The NPS nowcast system forecasted the general cloud area well but struggled 

with detail along the cloud edge as well as with fine structure within the cloud field. This 

can likely be improved with higher resolution mesoscale model data and by using the full 

set of 1 km resolution satellite reflectance data. NPS nowcast noticeably outperformed 

the land-sea climatology forecast that was created as a reference, particularly when a 

longer training period was used. This shows that the success of NPS nowcast is not 

simply due to an easy forecast challenge.   

Results showed that NPS nowcast performs better over land than over sea. They 

also indicated slightly increased error along the coastline—the transition area between the 

land and sea regimes. Although all three predictor variables displayed some 

“meaningfulness” that varied with cluster, relative humidity (RH) and % low cloud 

(LCLD) were the most useful predictor variables across all data sets. Further testing may 

reveal that LCLD is more useful for longer training periods.  

This study has shown that a successful nowcast system can be developed using 

Bayesian estimation to accomplish machine learning given prior geostationary satellite 

imagery and 06-h mesoscale model forecast fields. It has also shown the utility of GOES 

visible channel imagery in forecasting the low cloud field during the daytime. It is very 

reasonable to assume that these methods will be even more successful in producing 00–

05-h forecasts. It is also very likely that forecast results can be improved by using a 

longer training period and a larger set of predictor variables. Finally, it is reasonable that 

these methods will also be successful using higher resolution model data and the full 1 

km resolution data set, which will improve the level of detail in the cloud field structure 

and cloud edge.   
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B. RECOMMENDATIONS FOR FURTHER RESEARCH 

The results indicate that additional research and testing of this nowcast 

application may produce more accurate results and broaden the scope of its use. Further 

research pertaining directly to this forecast application should investigate:  

• Applying the NPS nowcast system to generate 00–05-h forecasts   

• Using the full 10,000 grid points (1 km resolution) in the forecast process 

• Using the most recent satellite imagery as a predictor variable, or to derive 

multiple predictive variables such as average reflectance or upstream 

reflectance 

• Longer training periods  

• Modifications of the k-means clustering scheme to determine the ideal 

application  

• Expanding the predictor variable list to contain forecast fields from other 

numerical models 

• Using other GOES channels and a multivariate scheme to forecast for low, 

middle, and high clouds 

Further research that broadens the scope of this nowcast application should 

investigate:  

• Using real time in-situ observations to “nudge” the analysis and 

subsequent forecast cloud fields 

• Using higher resolution mesoscale model data 

• Other forecast locations and seasons 

• Cloud field nowcasting under a convective regime 

• Related forecast applications such as turbulence and icing 

• Additional forecast fields such as pressure, temperature, etc. 
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In conclusion, this study has laid down a foundation on which further research 

and testing can be built to eventually produce a highly accurate, high-resolution nowcast 

system that can be applied using any numerical weather model and satellite imagery 

combination over any geographical location in the world, no matter how sparse the 

observation network. This approach has the potential to be adapted to forecast not only 

low cloud fields, but high clouds, convection, turbulence, icing and a variety of other 

forecast fields relevant to special operations. Such a nowcast system will provide 

operators with the most accurate, updated and detailed information needed for mission 

success. Furthermore, it will reduce cost by preventing unsuccessful sorties and 

decreasing the number of forecasters needed.  
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APPENDIX: NRL GOES-15 IMAGERY DIMENSIONS 

center_lat      : 37 15.00 N 
center_lon      : 122 30.00 W 
pixel_width     : 1.0154 
pixel_height    : 1.0154 
total_width     : 812.3054 
total_height    : 811.7591 
 
upper_edge_len  : 810.8702 
lower_edge_len  : 810.4583 
left_edge_len   : 811.7551 
right_edge_len  : 811.7551 
 
upper_left_lat  : 40 48.79 N 
upper_left_lon  : 127 18.46 W 
upper_right_lat : 40 48.79 N 
upper_right_lon : 117 41.54 W 
lower_left_lat  : 33 30.45 N 
lower_left_lon  : 126 51.76 W 
lower_right_lat : 33 30.45 N 
lower_right_lon : 118  8.24 W 
 
mid_left_lat    : 37  9.67 N 
mid_left_lon    : 127  4.46 W 
mid_right_lat   : 37  9.67 N 
mid_right_lon   : 117 55.54 W 
mid_upper_lat   : 40 54.39 N 
mid_upper_lon   : 122 30.00 W 
mid_lower_lat   : 33 35.53 N 
mid_lower_lon   : 122 30.00 W 
 
center_sun      : 37.29 
upper_left_sun  : 41.04 
upper_right_sun : 33.74 
lower_left_sun  : 40.62 
lower_right_sun : 33.34 
mid_left_sun    : 40.94 
mid_right_sun   : 33.63 
mid_lower_sun   : 36.98 
mid_upper_sun   : 37.40 
 
center_sat      : 45.04 
upper_left_sat  : 42.37 
upper_right_sat : 39.77 



 86 

lower_left_sat  : 50.26 
lower_right_sat : 47.20 
mid_left_sat    : 46.31 
mid_right_sat   : 43.50 
mid_lower_sat   : 48.88 
mid_upper_sat   : 41.20 
 
sat_sub_lat     :  0  0.00 N 
sat_sub_lon     : 135  0.00 W 
 

Data provided by Mr. Kim Richardson, a satellite specialist at Naval Research Laboratory 
(personal correspondence, Dec. 12, 2016). 
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