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ABSTRACT 

Firing multiple rounds of artillery from the same location has several benefits: a 

high rate of fire at the enemy and potentially improved accuracy as the shooter’s aim 

adjusts to previous rounds. Firing many rounds from the same location, however, carries 

significant risk that the enemy will detect the location of the artillery. Therefore, the 

shooter may want to periodically change location to avoid counter-battery fire. This 

maneuver is known as the shoot-and-scoot tactic. The importance of the shoot-and-scoot 

tactic has increased in recent years with the prevalence of self-propelled artillery and 

significant improvements in counter-detection technology such as radar. This thesis 

analyzes the shoot-and-scoot tactic using stochastic models, such as continuous-time 

Markov chains. We explore various examples and conclude that spending a reasonable 

amount of time firing multiple shots in the same location is preferable to moving 

immediately after firing one shot. Moving frequently reduces risk to artillery, but limits 

the artillery’s ability to inflict damage on the enemy. These results should provide 

commanders with insight about how frequently they should change positions based on the 

risk level and their capabilities. 
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EXECUTIVE SUMMARY 

Today, artillery weapons are self-propelled guns that can be easily moved during 

battle. This leads to the “shoot-and-scoot” tactic: a battery (Blue) fires a small number of 

rounds at the enemy (Red) and then Blue moves to avoid counter-fire. The shoot-and-

scoot tactic is an important maneuver, but there appears to be limited quantitative 

analysis on how long Blue should stay in one location before moving to a new location. 

Currently, commanders use their experience and intuition to determine when the artillery 

should change locations. Most commanders are risk averse, so they tend to move 

frequently to avoid the enemy’s counter-fire. Unfortunately, firing a small number of 

rounds of artillery and moving rapidly to another position has several drawbacks: a low 

rate of fire at the enemy and limited opportunities to improve accuracy by adjusting the 

aim to previous rounds. The benefit of quickly moving positions is a lower risk that Red 

will detect the location of Blue’s artillery. Since tradeoffs exist, it is difficult to determine 

how long the artillery should remain in one position before moving in order to maximize 

the benefits and minimize the risk. This thesis focuses on the cost-benefit tension of 

firing from the same spot over a prolonged period of time. We formulate a model that 

examines when an artillery force should move positions. 

For concreteness, we focus on a particular situation where Blue artillery initially 

fires on Red. We assume that Blue has the ability to move quickly to another position and 

Blue has many available positions; for simplicity, we assume Blue never needs to revisit 

a previous position. In addition, Blue has some information about Red’s initial location 

and capabilities, such as the number of Red’s weapons and Red’s power. Unlike Blue, 

Red is stationary (i.e., Red cannot move to another position). Red keeps its position until 

it is destroyed. Red has sensors (e.g., radars) that can detect the origin of Blue’s shells. 

This allows Red to eventually launch counter-fire at Blue, and Red’s accuracy will 

improve if Blue stays in the same location. To formulate this particular problem, we 

utilize stochastic analysis as our main approach since there are many uncertainties. 

Artillery performs “area fire” or “indirect fire” so the probability of a direct hit on the 

target is very low to start with. Thus, Blue improves the artillery’s accuracy by adjusting 
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the weapons to improve the hit probability. Even if Blue has perfect aim after a number 

of rounds, however, uncertainty with environmental conditions (e.g., wind velocity and 

direction) impacts the ammunition. In addition, there is uncertainty with how well Red’s 

counterbattery radars detect the fire and how quickly Red can return fire. We utilize 

continuous-time Markov chains (CTMC) to analyze this artillery engagement. 

In this thesis, we formulate two models to analyze shoot-and-scoot policies for 

artillery forces. A primary component of our models is “risk,” which increases over time 

when Blue stays in the same position. The risk represents Red’s effective firing rate, 

which is the rate that Red fires rounds multiplied by the probability a round hits Blue. 

Over time both the gross rate and hit probability may increase as Red homes in on Blue’s 

location. Our first model assumes the battle evolves over a long period of time and 

defines states according to Blue's risk level. Blue initially fires in a low risk state. 

Gradually, the risk increases to medium and then high if Blue does not move. When Blue 

moves to a new location, the risk level resets back to the lowest state. During the transit 

to a new location Blue faces no risk from Red fire, but poses no threat to Red because 

Blue does not fire while moving. To determine the optimal move policy, we examine 

several different objective functions that consider both risk and firing rate. The main 

objective of this model is to limit Blue’s exposure to a higher risk.  

Our second model focuses on the probability that Blue will win the battle during a 

limited time-window scenario. In this model, we incorporate the health of both Blue and 

Red. If one side’s health level decreases to the lowest level, then that side retreats. We 

also impose a finite battle length. The battle does not go on for an arbitrarily long time: 

Blue must force Red to retreat within a finite time window. The objective of this model is 

to maximize the probability Blue wins (i.e., forces Red to retreat). The decision variables 

in both models are the rates at which Blue moves. In the win-probability model, Blue has 

more decision variables, as Blue can tailor its move decision based on Blue’s health and 

the stage of the battle. 

We explore these two models numerically using realistic parameter values. We fix 

the expected time from the lowest risk level to the highest risk level at 30 minutes and we 

set the expected time to change positions to 10 minutes. In our long-run risk model the 
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results recommend that Blue should move roughly every 15 minutes on average. In the 

win-probability model, Blue should move frequently during the early stages of the battle. 

On the other hand, when Blue’s health is high, Blue should remain in the same position. 

For realistic parameter values, the general result is that in most situations Blue 

should spend a reasonable amount of time firing multiple shots in the same location. 

When we account for time and health, this result becomes even more pronounced. Blue 

should never move in certain states (e.g., high Blue health, later in the battle). Moving 

frequently reduces risk to Blue, but limits Blue’s ability to inflict damage on Red. Based 

on these results, we conclude that when artillery forces utilize shoot-and-scoot tactics, 

they should not move frequently because that decreases their opportunity to improve the 

accuracy and the probability to win the battle. This result may run counter to the 

approach of some commanders, who believe they should move frequently to survive and 

win the battle. These results should provide the commanders with insight about shoot-

and-scoot tactics. In addition, our models are straightforward and easy to implement. 

Therefore, artillery commanders can use our models with real battle data and force 

capabilities.  



 xviii 

THIS PAGE INTENTIONALLY LEFT BLANK 



 xix 

ACKNOWLEDGMENTS 

Above all, I really appreciate my fellows who are doing their duty in the military 

against North Korea while I complete my studies. Without their sacrifices, I could not 

have done my course successfully. 

Two years ago, I could not have expected this awesome experience in Monterey, 

CA. Although I did not apply for the Naval Postgraduate School master’s degree course, I 

would like to thank the officer who selected me to allow me to have the opportunity to 

study here. Thanks to his mistake (it might not be), I have completed a very tough matrix 

of 71 credits (56 grad level credits) in only one year. I would like to thank the Republic 

of Korea Army and Korea National Defense University for allowing me to have a great 

time in the United States. 

I would like to acknowledge everyone who played a role in my academic 

accomplishment. First of all, I would like to thank my thesis advisor, Dr. Michael 

Atkinson, for his guidance, encouragement, and patience over the last year. He made my 

work for this thesis a lot easier than I thought it was going to be. He consistently allowed 

this paper to be my own work, but steered me in the right the direction whenever he 

thought I needed it. Without him, I would have never successfully finished my course. 

I would also like to acknowledge Dr. Dashi Singham as the second reader of this 

thesis, and I am grateful for her very valuable comments. 

Finally, I must express my very profound gratitude to my lovely wife, Sunhwa 

Kim, and adorable children, Junhoo and Woojin, for providing me with unfailing support 

and continuous encouragement throughout my study. Without their patience and support, 

I would not have been able to devote the time needed to complete my thesis. 

 



 xx 

THIS PAGE INTENTIONALLY LEFT BLANK 

 



 1 

I. INTRODUCTION 

A. BACKGROUND 

Joseph Stalin, leader of the Soviet Union from 1922–1952, said that “Artillery is 

the god of war” during World War II (Holmes et al., 2001). Artillery remains an 

important component of modern warfare. According to Gautam (2010), over the last 

decade it has been instrumental in conflicts in Iraq, Afghanistan and elsewhere. This 

thesis examines a specific type of artillery tactic that has become more prevalent as 

artillery weapon systems improve their capabilities of fire and counter-fire. 

Traditionally, a battery (Blue) fires from a fixed position. The benefits from firing 

in the same location are improved accuracy and a constant and relatively high firing rate. 

On the other hand, the risk is that the enemy (Red) may eventually determine where Blue 

is firing from and take countermeasures to attempt to eliminate the Blue artillery. This 

thesis focuses on the cost-benefit tension of firing from the same spot over a prolonged 

period of time. 

B. MOTIVATION 

We formulate a model that examines when an artillery force should move 

positions. In the past, moving positions was a relatively low priority compared to quickly 

and accurately firing on the enemy. When artillery consisted primarily of towed cannons, 

physically moving artillery equipment from one position to another consumed much time, 

effort, and manpower. In many cases in the past, it was difficult to detect the origin of an 

artillery round because an observer had to see evidence of the round in real time. In 

recent years, however, the maneuverability aspect of artillery has become a crucial aspect 

of artillery battles. With the advent of modern counterbattery radar systems, the origin of 

artillery fire can be determined safely and quickly away from the shells. Consequently, if 

artillery remains in its original position for a long time, it will eventually be hit by the 

enemy’s counter-fire. Also, moving the artillery to another position is much easier than in 

previous years. Today, artillery weapons are self-propelled guns so troops can easily 

move quickly to another location. Consequently, this leads to the “shoot-and-scoot” 
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tactic, which is explained by Koba (1996) that immediately after firing at a target, the 

artillery changes location to avoid counter-battery fire (p. 16). 

In this thesis, we generalize the shoot-and-scoot tactic so the artillery does not 

need to move immediately after firing one round. There are benefits to firing multiple 

rounds from the same position. Since tradeoffs exist when a battery stays in the same 

position for a short time, it is difficult to decide how long the artillery should remain in 

one position before moving in order to maximize the benefits and minimize the risk. 

Firing a small number of rounds of artillery and moving rapidly to another position has 

several drawbacks: a low rate of fire at the enemy and potentially no chance to improve 

accuracy by adjusting the aim to previous rounds. On the other hand, moving quickly to 

another position lowers the risk that the enemy will detect the location of the artillery. 

The problem is that artillery commanders rely mainly on their experience and intuition in 

deciding when to move to another position. Moreover, in general, most commanders are 

risk averse and often will move quickly because they prefer to keep their force safe rather 

than destroy the enemy. For example, a commander may decide to move immediately 

after the first shot or as soon as the enemy starts to fire even if the enemy’s aiming is 

inaccurate to start. Frequent moving generates low risk, but it consumes much time and 

effort and imposes a cost of lost firing with improved accuracy. Therefore, in this thesis, 

we propose a model that examines how long the commander should fire in the same 

position before moving in order to maximize the fire rate and its accuracy, and minimize 

the risk. This quantitative analysis provides the artillery commanders with insight about 

when they should move. 

C. SCOPE 

For concreteness, we focus on a particular situation. One artillery force (Blue) 

initially fires at the enemy (Red). We assume that Blue has an ability to move quickly to 

another position and Blue has many available positions; for simplicity, we assume Blue 

never needs to revisit a previous position. In addition, Blue has some information about 

Red’s initial location and abilities such as the number of weapons and their power. 

Unlike Blue, Red is stationary (i.e., Red cannot move to another position). Red keeps its 
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position unless it is destroyed. Red has radars that can track Blue’s shells and detect their 

origin. This allows Red to eventually launch counter-fire at Blue.  

A real-life situation consistent with these assumptions could be artillery 

engagement between the Republic of Korea (ROK) and Democratic People’s Republic of 

Korea (DPRK). The ROK has a well-developed self-propelled artillery weapon called the 

“K9 Thunder.” Its max speed is 67km/h and its firing range is 40km (“K9 Thunder Self-

Propelled Howitzer,” 2014). Although the DPRK has many artillery forces on its forward 

line, its weapons are old with poor maneuverability. Therefore, the DPRK cannot “scoot” 

after it “shoots.” The DPRK has counter-battery radars that can detect the origin of ROK 

artillery, however. In this circumstance, the ROK takes the shoot-and-scoot tactic to 

avoid the counter-fire from the DPRK’s artillery. 

To formulate this particular problem, we utilize stochastic analysis as our main 

approach since there are many uncertainties. Artillery performs an “area fire” or “indirect 

fire” so the probability of a direct hit on the target is very low to start with. Thus, Blue 

has to improve the artillery’s accuracy by adjusting the weapons to improve the hit 

probability. Even if Blue has a perfect aim after a number of shots, however, uncertainty 

with environmental conditions (e.g., wind velocity and direction) impacts the 

ammunition. In addition, there is uncertainty with how well Red’s counterbattery radars 

detect the fire and how quickly Red can return fire. In general, the probability that Red 

detects the firing location depends on several factors. The U.S. Marine Corps (2002) 

believes these are target type, range, elevation and number of projectiles being 

simultaneously tracked (U.S. Marine Corps, 2002). Our primary stochastic machinery is 

the continuous-time Markov chain (CTMC), which is a very useful and powerful 

approach to analyze stochastic phenomena. 

D. LITERATURE REVIEW 

Washburn (2002) presents a general treatise in the area of “Firing Theory.” It 

primarily focuses on computing the kill probability obtained from several shots. It 

accounts for dispersion and bias errors, which can create dependencies across multiple 

shots. Under some assumptions, the distribution of final shot locations follows a bivariate 
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normal density. Washburn allows for feedback, which increases accuracy over time and 

produces higher hit probabilities. This work is much more detailed than we need. We 

essentially take these assumptions and analysis for granted and assume that when Blue or 

Red fire, there is some probability of a hit, and we also allow for those probabilities to 

change over time in various ways as accuracies improve. 

Christy (1969) analyzes small unit infantry combat engagements by developing a 

firefight model using Lanchester’s square law to examine different tactical fire and 

maneuver policies. His objective is similar to ours at a high level. Christy uses infantry 

forces and considers a maneuver policy based on “distance” to rush. In our analysis, we 

use “time” as our basis to move. In addition, Christy’s model is deterministic and our 

model is stochastic. 

Sweat (1971) considers a single-shot duel between Blue and Red where they have 

kill and detection probabilities that vary depending on the distance, which are functions 

of time. Our probabilities also depend upon time, although we allow for multiple hits in 

our model. Ravid (1989) studies two alternative modes of defense against attacking 

aircraft: engagement with a lower kill probability before bomb release line (BRL) versus 

engagement with a higher kill probability after BRL (1989). Sweat and Ravid take “time” 

as an important decision point to determine when to respond and have tradeoffs about 

moving earlier versus later. We consider a similar time-dependent tradeoff. 

Kress (1991) proposes a model of a two-on-one duel: two Blue units and one Red 

unit. Similar to our assumptions, Blue can move but Red is stationary. This work, 

however, focuses on Red’s decision about which Blue to engage and Blue’s decision 

when to move toward Red in order to win the battle. Kress does not consider detection 

systems such as counter-battery radar; Kress assumes Blue and Red know the other’s 

location. 

Duke (1996) presents a discrete-time Markov chain (DTMC) to analyze the 

effectiveness of a new artillery weapon system, at that time called Crusader. Duke 

focuses on the lifetime of Crusader, where it waits for fire missions, executes 
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survivability moves, conducts resupply and executes fire missions until the Crusader is 

killed. It takes a discrete time approach, whereas our model is continuous time.  

Harari (2008) considers the opposite side of this thesis. The scenario is that 

insurgents attack the defender using mortars and short range rockets and the insurgents 

use the shoot-and-scoot tactic. The Defender has sensors to detect the insurgents, but the 

sensors are imperfect. The Defender also has missiles to counter-fire at the insurgents. 

The defender’s tradeoff is launching his missile earlier with less accuracy (and potentially 

causing collateral damage and wasting a missile) or launching it after some aiming 

process with more accuracy and risk of being too late because the insurgents have already 

moved locations. In this situation, Harari presents an analytical probability model and 

simulation result to support the defender’s decision making and suggests a new counter-

mortar/rocket tactic. The new tactic is that the defender launches his missile immediately 

after obtaining an initial rough estimate of the launcher’s location from the sensor. To 

achieve it, the missile should be a “smart weapon” that can update its target location 

information while in flight. In this thesis, we do not model the specifics of Red’s firing 

tactics in great detail. We assume after a random time Red determines Blue’s location 

and starts to return fire with a hit probability that increases over time. 

Park (2015) analyzes artillery tactics that consider the distance from the artillery 

to a moving target. Park utilizes a Markov model and computes the expected time until a 

retreat condition is satisfied. Park uses a DTMC, whereas we formulate a continuous-time 

model. We introduce decision variables related to how frequently Blue should move; 

whereas Park takes a more descriptive approach to examine the impact the distance has 

on the retreat condition. 

E. THESIS OUTLINE 

Chapter II introduces the Long-Run Risk Model, which is a CTMC model for 

analyzing Blue’s moving policy. It focuses on a relatively “long” engagement, 

determines the move policy, and illustrates numerically with examples. In addition, we 

also consider a renewal process approach to allow for more realistic assumptions. 

Chapter III develops another CTMC, the Win-Probability model, which incorporates 
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more realistic aspects: a limited engagement window and the health status of both Blue 

and Red. Chapter IV compares and analyzes these two CTMC models and concludes the 

thesis with discussion of suggested tactics and future works. 
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II. LONG-RUN RISK MODEL 

This chapter formulates a model to analyze when Blue should move its artillery to 

another position. On one hand, Blue wants to rarely move as it is inefficient and 

decreases Blue’s overall firing rate. On the other hand, Blue should move relatively 

frequently to avoid high risk circumstances where Red has determined Blue’s position 

with reasonable accuracy. In this chapter, we consider only “Risk” as the factor that 

increases in time as Blue fires from the same position. We define the risk to Blue as the 

effective firing rate of Red, which is the rate that Red fires rounds multiplied by the 

probability a Red round hits Blue. These two quantities (especially the hit probability) 

will increase in time as Blue stays at the same location. The risk to Red may also increase 

in time as Blue increases its effective firing rate. However, for most of the analysis in this 

Chapter, we assume a constant risk to Red (i.e., Blue’s effective firing rate is constant).   

We take a long-run approach to the problem. In the next chapter, we incorporate 

additional components such as the health of Blue and Red and a limited time horizon into 

a related, but separate, model. We take a CTMC approach to this problem, and thus we 

give a brief overview of CTMCs in Section A before describing the model in Section B. 

After the model description, we analyze the long-run behavior of the model in Section C 

and extend it to a more general case in Section D. We present results for the CTMC 

models in Sections E and F. Finally, in Section G, we present a Renewal Process 

approach to the problem that allows us to relax some of the non-realistic assumptions in 

the CTMC model. 

A. CTMC REVIEW 

Consider a discrete-time stochastic process { , 0,1, 2,...,}nX n =  with nX  taking on 

values in the state space. For concreteness, assume here that the state space is the non-

negative integers. If nX i= , then the process is said to be in state i at time n. Whenever 

the process is in state i at time n, there is a fixed probability ijP  that it will next be in state 

j at time n+1. Knowing the state of the process in previous periods does not convey any 

additional information about the state in period n+1. 
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Mathematically we have 

 

1 1 1 1 1 0 0

1

{ | , ,..., , }

{ | }

n n n n
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n n ij
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P X j X i P

+ − −

+

= = = = =

= = = =

  

 
 

 

for all states 0 1 1, ,..., , ,ni i i i j−  and all 0n ≥ . Such a stochastic process is known as a 

discrete-time Markov chain (DTMC). If we know the present state nX , the future state 

1nX +  is independent of the successive past states 1 1 0{ ,..., , }nX X X− . 

There is an analogous stochastic process in continuous time { ( ), 0}X t t ≥  called a 

continuous-time Markov chain (CTMC). The Markov condition for CTMC becomes 

 
{ ( ) | ( ) , ( ) ( ) ,0 }

{ ( ) | ( ) }
future present past

future present

P X t s j X s i X u x u u s

P X t s j X s i

+ = = = ≤ <

= + = =

  

 
  

 

for all , 0s t ≥  and all states , , ( ),0i j x u u s≤ < . Again, the future state ( )X t s+  depends 

on the process history only through the present state ( )X s . Ross (2014) introduces 

several properties of a CTMC as follows. 

 
1. The amount of time the system spends in state i before transitioning into a 

different state is exponentially distributed with rate iµ . 

2. When the process leaves state i , it next enters state j  with some 
probability ijP  which must satisfy 0iiP =  and 1ij

j
P =∑  for all i . 

3. The time until the process transitions from state i to state j has an 
exponential distribution with rate ij ij iq P µ= ×  for j i≠ . The matrix Q 
containing the ijq  rates is called the infinitesimal generator matrix. 
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A CTMC can be viewed as a stochastic process that moves from state to state in 

accordance with a DTMC, but the amount of time it spends in each state, before 

proceeding to the next state, has an exponential distribution. See chapters 4 and 6 of Ross 

(2014) for details. 

B. MODEL DESCRIPTION 

Blue fires at Red for some amount of time and then moves to a new location. 

After Blue moves to the new location, Red eventually returns fires. As Blue fires in time, 

Red obtains information through sensors (e.g., radars) or human resources like 

reconnaissance units about the exact position of Blue. Thus the probability that Red hits 

Blue with a round increases in time. We define the risk to Blue (henceforth just risk) as 

Red’s effective firing rate: the overall rate Red fires rounds multiplied by the hit 

probability. The risk increases if Blue stays in the same location, even if Blue never fires, 

because Red may have reconnaissance units or surveillance assets (e.g., satellites or 

UAVs) that can pinpoint Blue’s location. In our model risk explicitly increases with time. 

Implicitly we assume this occurs primarily as Red reacts to Blue’s artillery fire. However, 

it may also increase in time for other reasons as mentioned previously. A more accurate 

(and perhaps complex) model would more directly tie Blue’s fire to increases in risk.  

After moving to a new location, the risk resets to the lowest level as Blue begins 

firing from the new position. This follows because we assume Red has limited 

information about the new location of Blue and thus poses little threat to Blue at this 

initial firing time. We model this as a CTMC. At any time t, the system is in one of the 

following four states:  

 
• R1: Low risk (this occurs immediately after traveling to a new position) 

• R2: Medium risk 

• R3: High risk 

• TRAVEL: Blue moves to another position 
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To reiterate: for each risk state, Red’s effective firing rate is constant. In time as 

Red collects more intelligence about Blue’s location, the effective firing rate increases 

(e.g., hit probability increases), and hence the system transitions to the next higher risk 

level. For most of this chapter, we do not explicitly specify the effective firing rate of Red 

or Blue. We assume Blue has a constant firing rate and Red has a firing rate that increases 

with the risk level. We only consider the risk level and assume Blue prefers to be in lower 

risk levels. In sections E.4 and F.4 we analyze a scenario with specific effective firing 

rates for both Red and Blue. Here, we only consider three risk levels. In the next section, 

we generalize to an arbitrary number of risks levels. Blue has a lower probability to be hit 

by Red in the low risk state than in medium or high risk states. 

We assume the system starts at time 0 when Blue arrives to a new position and 

starts firing. This corresponds to the low risk level R1. Gradually, risk increases to Blue 

as Red better determines Blue’s position. As we model this as a CTMC, we assume the 

times until the risk increases by one level are exponentially distributed with iµ , where 

index i represents the current risk level. The time between risk level increases 

corresponds to the time it takes Red to improve its effective firing rate, which involves 

re-aiming to increase accuracy, interpreting the radar signals, processing surveillance 

information, and switching modes to fire at a faster rate.  We assume that the time until 

Blue moves (and enters the travel state) is also exponential with rate λ . The key decision 

for Blue is setting λ , which dictates Blue’s move policy. Finally, the travel time is also 

exponential. It may be unrealistic to model all times as exponential, especially the 

movement and travel times. We want to formulate an analytically tractable approach to 

the problem, however. We discuss non-exponential times at the end of this chapter, which 

may provide more realistic settings. 

Figure 1 shows the possible transitions between these states. Whenever in the low 

or medium risk level (state R1 or R2), Blue transitions to TRAVEL with rate λ  and the 

next higher risk state with rate ( 1, 2)i iµ = . Whenever in the highest risk level (state R3), 

Blue only transitions next to the TRAVEL state with rate λ . The move rate λ  does not 

depend upon the risk level; we discuss this assumption in more detail at the end of this 
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section. Whenever in state TRAVEL, Blue only transitions to R1 state with rate δ . This 

assumes that Blue moves to a totally new position whenever Blue completes its travel. In 

other words, once Blue arrives back to the R1 state, the system will be considered as new, 

regardless of what occurred previously. As the system evolves in time, all times are 

independent and have an exponential distribution with the rates presented earlier. 

 
Figure 1.  Transition diagram and its infinitesimal generator matrix Q 

The travel rate δ  and the risk rates iµ  depend on the situation on the battlefield 

and we take them to be exogenous parameters. In particular, the risk rates ( 1, 2)i iµ =  

may differ: 1µ  may be greater than 2µ  and vice versa. For example, imagine that finding 

Blue’s position is more difficult for Red than improving Red’s firing accuracy once Blue 

has been located. In that case, 1µ  will be small and Blue will stay in the lowest risk state 

for a while (probabilistically) as it takes time for Red to locate Blue. The risk level will 

transition very quickly (probabilistically) from Medium to High because 2µ  will be 

much larger, however. In other cases, it may be difficult to improve the accuracy after 

reaching some point of accuracy, which would correspond to a large 1µ  and a small 2µ . 

Later in this chapter, we present results of several experiments varying iµ . 

While δ  and iµ  are fixed inputs, the parameter λ  is a decision variable of the 

Blue commander. We make an important assumption that λ  is constant across all risk 

levels. That is, the commander cannot tailor his move decision based on the current risk. 

There are a few possible justifications for this assumption. For operational reasons the 
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move decision cannot be made in real time but must be set ahead of time (e.g., as soon as 

the arrival to new location). Another reason is the Blue commander may not actually 

know the true risk level in real time. If the commander knew the true risk level, he would 

probably move more frequently in higher risk states (i.e., higher λ  in R3) and less 

frequently in lower risk states (i.e., lower λ  in R1). The risk level is Red’s effective 

firing rate. While Blue can observe the accuracy of current incoming fire, we feel that 

does not provide enough information to make an informed estimate of Red’s effective 

firing rate, and hence the current risk level, in real time. Therefore, we assume that since 

Blue does not know the true risk level, it can only make one move decision and hence 

one λ  parameter. 

C. THE LONG-RUN BEHAVIOR 

In order to compute the optimal move policy (i.e., the optimal λ ), we need to 

specify an objective. We assume that this battle goes on for an infinite amount of time, or 

at least long enough such that the infinite time horizon is reasonable. One possible 

objective function is the proportion of time the Blue artillery is in the low risk state. In 

order to compute an objective function about the long-run behavior of the system, we 

first need to compute the limiting distribution of the CTMC. We denote the long-run 

proportion of time the system is in state i as iπ . To compute the iπ , we solve the balance 

equations of the CTMC. Roughly speaking these balance equations specify that the rate at 

which a CTMC transitions out of a state must equal the rate at which the CTMC 

transitions into the state. See section 6.5 of Ross (2014) for more information on solving 

for the limiting distribution. For instance, in the TRAVEL state the incoming rates are 

1 2 3( )R R Rπ π π λ+ +  and the outgoing rate is TRAVELπ δ . Since 1 2 3 1R R R TRAVELπ π π π+ + + = , 

it yields (1 )TRAVEL TRAVELπ δ π λ= −  and then produces 

 

TRAVEL
λπ

λ δ
=

+  
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The same approach in every state yields 

 

1 1

2 2 1 1

3 2 2

( )

( )

R TRAVEL

R R

R R

π λ µ π δ

π λ µ π µ

π λ π µ

+ =

+ =

=

          →          

1
1 1

1

1 1
2 1

2 2 1

1

2 1

2 2 1
3 2

2 1

2 1

2 1

R TRAVEL

R R

R R

δ δ λπ π
λ µ λ µ λ δ
λ δ

λ µ λ δ
µ µ δ λπ π

λ µ λ µ λ µ λ δ
µλ δ

λ µ λ µ λ δ
µ µ µ δ λπ π
λ λ λ µ λ µ λ δ
µ µ δ

λ µ λ µ λ δ

= = ×
+ + +

= ×
+ +

= = × ×
+ + + +

= × ×
+ + +

= = × × ×
+ + +

= × ×
+ + +

 

 

One interpretation for the long-run proportion of time in the lowest risk state R1

1( )Rπ  is the probability Blue is not traveling ( )δ
λ δ+

, multiplied by the probability Blue 

moves before increasing to state R2 
1

( )λ
λ µ+

. Similarly, the long-run proportion of time 

at state R2 2( )Rπ  is the probability Blue is not traveling ( )δ
λ δ+

, multiplied by the 

probability we reach R2 before moving 1

1

( )µ
λ µ+

, multiplied by the probability Blue 

moves before increasing the risk to state R3 
2

( )λ
λ µ+

. A similar interpretation holds for 

the limiting distribution for R3. 

D. GENERAL NUMBER OF RISK LEVELS 

In the previous section, we arbitrarily defined three risk states: low, medium, and 

high. In this section, we increase the number of risk states. There are two extreme risk 

points: no risk and the highest risk. How many states do we need between them to 

adequately represent reality? Three may be enough, but perhaps 10 or even 100 or 1,000 
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would be better. It is possible a more refined risk level granularity may capture the real 

risk better. From now on, we use n as the number of the risk states. Figure 2 shows the 

transition diagram for this generalized model. 

 
Figure 2.  Advanced CTMC model 

Going through similar steps as in the previous section, we can compute the limiting 

distribution. 

 

1
1 1

1
1

1
1

1
1

1
1

, 2,3, , 1

TRAVEL FIRING

R TRAVEL

k
k i

Rk Rk
ik k i

n
n i

Rn Rn
i i

k n

λ δπ π
λ δ λ δ

δ λ δπ π
λ µ λ µ λ δ

µ µλ δπ π
λ µ λ µ λ µ λ δ

µ µ δπ π
λ λ µ λ δ

−
−

−
=

−
−

−
=

= =
+ +

= = ×
+ + +

 
= = × × = − + + + + 

 
= = × + + 

∏

∏

2
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E. OBJECTIVE FUNCTIONS FOR OPTIMIZATION 

To determine the optimal move policy λ , we need to define an objective function 

that adequately captures the tension the commander faces. Moving frequently is 

inefficient and avoids performing the mission task: firing on the enemy. Moving 

infrequently exposes Blue to increased risk via increased effective fire from Red, 

however. In this section, we introduce several possible objective functions to maximize 

Blue’s benefit. We numerically examine these objective functions in Section F. 

1. 1 1RMax Z
λ

π=  

The state R1 is the best state for Blue: Blue fires on Red in a low risk setting. 

Consequently, we first consider this simple objective function. 

2. 2 1R Rn TRAVELMax Z
λ

π π π= − −  

The commander desires state R1 but also wants to avoid the highest risk states. 

Furthermore, the commander wants to avoid excessive travel because Blue is not firing 

on Red when Blue travels. This objective is a modification of the first one that penalizes 

the time traveling and the time in the highest risk state Rn. 

3. 
1

3
1

n

Rn TRAVEL i Ri
i

Max Z w
λ

π π π
−

=

= − − +∑  

For a small number of risk levels (small n), objectives 1 and 2 may suffice. For 

larger n, however, those objectives ignore all the intermediate states between R1 and Rn. 

The lower risk levels may provide benefits and we may want to penalize the higher risk 

states. In this objective, we use a weight for all risk levels except the highest. We assign 

higher weights to lower risk states since Blue wants to spend more time in these lower 

risk states. Also, the sum of all weights is 1 
1

1
( 1)

n

i
i

w
−

=

=∑ . 

4. 4 , ,
1

( )
n

B Ri R Ri Ri
i

Max Z f f
λ

π
=

= −∑  

We have primarily focused on the increased risk to Blue from staying in the same 

location for a long time. There may be increased benefits to Blue in staying in the same 
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location for a long time, however. We assume Red’s effective firing rate increases over 

time as Red’s accuracy at hitting Blue increases; the same could hold for Blue’s accuracy 

and effective fire rate. In this objective, we consider the actual effective firing rate f of 

Red and Blue corresponding to each risk level. ,B Rif  means the firing rate of Blue in state 

Ri. Moreover, , ,( )B Ri R Rif f−  is the relative firing rate for Blue. Presumably both ,B Rif  and 

,R Rif  increase with risk level Ri. Therefore, the Blue commander may want to overwhelm 

Red by staying longer to achieve greater relative firing rates at higher risk states. We will 

examine different forms of the firing rate function: linear, concave, convex. A concave 

function may describe the situation where there is a quick learning curve to initially 

improve accuracy to moderate levels, but it is much more difficult to increase from 

moderate accuracy to high accuracy. On the other hand, a convex function can model the 

situation where it is difficult to initially calibrate the artillery, but thereafter the accuracy 

improves quickly. We consider this further in the next section. 

F. NUMERICAL DEMONSTRATION 

To implement this model, we use the R: A language and environment for 

statistical computing (R core team, 2016). We use the optimize() function to find the 

optimal solutions in R. We experiment with different n to examine the impact when we 

have more levels. For the purpose of comparison and analysis, however, we fix the travel 

rate at δ  and assume the expected time to transition from the lowest risk to highest risk 

when Blue cannot travel (i.e., 0λ = ) is constant for any value of n. We denote this 

expected time between lowest and highest risk states as T. If it  is the amount of time 

spent in state Ri for 1, 2,..., 1i n= − , then 

 
1

1 1 2 1

1 1 1( | 0)
n

i
i n n

T E t λ
µ µ µ

−

= − −

= = = + + +∑   

 

In other words, we split the fixed expected amount of time from lowest risk to 

highest risk into 1n −  parts by varying iµ  appropriately with n. For example, if 3n =  
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and 30T = , then 1 2 1/15µ µ= =  is one of the possible values for iµ . We will use the 

following travel rate δ  and time T as our base case values. 

 
1 , 30

10
Tδ = =

 
 

There are several possibilities for defining the iµ : increasing, decreasing or 

constant. We use the following three definitions for iµ  for the three scenarios. Recall the 

expected time T is a constant. 

 

• Increasing:  
1

11 1 ( 1) , 1, 2,..., 1
2( )

n

j
i

j n n for i n
T n i T n i

µ
−

= −
= × = × = −

− −
∑

    

• Decreasing:  
1

11 1 ( 1) , 1, 2,..., 1
2

n

j
i

j n n for i n
T i T i

µ
−

= −
= × = × = −

∑
   

• Constant:  1, 1, 2,..., 1i
n for i n
T

µ −
= = −  

 

For example, if n = 10 and iµ  is increasing, we use 1 80.167, , 0.75µ µ= =2  and

9 1.5µ = . Before proceeding, we discuss the limiting case when n →∞ . A decision-

maker may want to incorporate finer resolution in modeling changes in Red’s effective 

firing rate (i.e., risk), and thus we explore the limiting behavior, which may be a 

reasonable approximation even for modest values of n. For all three scenarios (increasing, 

decreasing, constant) the transition rates iµ →∞  when n →∞ . It turns out that in the 

limit for all three cases, the time between entry into the lowest risk state and entry to the 

highest risk state is deterministic. To prove this, we compute the mean and variance for 

this quantity and show that the variance converges to 0 in the limit. 

We focus on the constant case for concreteness, but the proof for the other cases is 

similar. We define the rate for the time between transitions as 1C
i

n
T

µ µ −
= =  for all risk 
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levels. Since all the random variables it  are exponentially distributed and independent, 

the random variable W, which is the total amount of time from the lowest risk state to the 

highest, follows a gamma distribution with shape 1n −  and rate Cµ as follows. 

 
1

1
~ ( 1, )

n
C

i
i

W t Gamma n µ
−

=

= −∑  

 

Consequently, the mean and variance of W go to T and 0 respectively. 

 
1lim [ ] lim Cn n

nE W

T
µ→∞ →∞

−
=

=
 2

2

1lim [ ] lim
( )

lim
1

0

Cn n

n

nVar W

T
n

µ→∞ →∞

→∞

−
=

=
−

=

 

 

This implies that if we send iµ →∞ , the random variable W becomes the deterministic 

value T. We will examine this deterministic case in Section G. Therefore, in the 

following numerical examples we only look at smaller n (3 or 10). We primarily focus on 

the increasing and decreasing patterns and later discuss the constant case. We now focus 

on the specific objective functions introduced in Section E. 

1. 1 1RMax Z
λ

π=   

Figure 3 shows several results using different n and increasing or decreasing iµ . 

We compute the optimal λ  numerically, which is a straightforward exercise as it is a 

one-dimensional optimization problem. When we increase n, the optimal objective value 

(Z1) (i.e., 1Rπ ) decreases and the rate λ  increases. This means that Blue moves more 

frequently because for larger n, iµ  is larger and thus Blue remains in the lowest risk state 

for a (probabilistically) smaller time before transitioning to risk state 2. The only way to 

return to risk state 1 is by moving and hence λ  increases. Unfortunately, larger λ  

corresponds to a greater long-run proportion of time Blue spends in state TRAVEL (

TRAVELπ ); when n = 10, Blue spends over 0.6 of its time traveling and thus fires at Red less 
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than 0.4 of the time. This is a somewhat disappointing result as Blue needs to fire at Red 

to complete the mission. 

 
Figure 3.  Plots using different n and change patterns of iµ  

For both n=3 and n=10, the optimal rate λ  is larger for decreasing iµ . The 

reason is that when iµ  decreases, Blue leaves risk level 1 very quickly compared to the 

increasing case; 1µ  is greater in the decreasing case compared to the increasing case. In 

order to return to the low risk state, Blue needs to move and that is why λ  is greater in 

the decreasing case. When n = 10, * 0.129λ =  with increasing iµ  and * 0.387λ =  with 

decreasing iµ . This corresponds to Blue moving its position on average 7.8 minutes 

(1/0.129) after firing commences for the increasing iµ  scenario and 2.6 minutes (1/0.387) 

for decreasing iµ .  
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2. 2 1R Rn TRAVELMax Z
λ

π π π= − −  

Figure 4 shows the results. The optimal λ  is much smaller compared with the 

previous one because this objective penalizes TRAVELπ , which increases with λ . Inspection 

of Figure 4 reveals an issue with using this objective for larger n. As we vary λ  from 0 to 

1, both TRAVELπ  and Rnπ  range from nearly 0 to nearly 1. For large n, however, 1Rπ  is 

close to zero for all values of λ . Thus, for larger values of n, the optimization problem 

simplifies to minimizing Rn TRAVELπ π+ , which ignores the time spent firing in low risk (

1Rπ ). While it may be a valid objective to only focus on penalizing those two states, it 

does suggest that for larger n, we need to consider more “good” states other than R1. The 

next subsection considers a different objective function that does just this. 

 
Figure 4.  Plots using the objective function Z2 
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3. 
1

3
1

n

Rn TRAVEL i Ri
i

Max Z w
λ

π π π
−

=

= − − +∑  

An issue with the first two objective functions is that they only put a premium on 

being in the lowest risk state. When we only consider three risk states this may be 

reasonable, but for larger n, Blue may consider other lower risk levels (e.g., 2, 3) 

acceptable. In this objective function, we give different weights at each risk state except 

the highest risk state, where we penalize it as in the previous objective. We could also 

assign a negative weight to higher levels, such as 1n − , 2n − , etc., but we decide to 

assign them a (probably small) positive weight. The reason is that, in general, for most 

parameters of interest, the proportion of time Blue spends in an intermediate risk level 

right below the highest (risk level 1n − ) is almost zero. It is possible Blue spends a 

significant amount of time in the highest risk state, however. Figure 5 illustrates the 

limiting distribution for the various risk levels for different parameters. 

 
Figure 5.  Examples of distribution of iπ , n = 10 

For concreteness, we define the weights as follows, which puts higher weights on 

lower levels. 

 

1

1

2( )
( 1)i n

k

n i n iw
n nk

−

=

− −
= =

−∑
 ,          1, 2,..., 1i n= −  
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For example, when 10n = , 1 0.2w = , 2 0.178w = ,… and 9 0.02w = . Further, the 

objective function becomes 

 
1

3
1

2 ( )
( 1)

n

Rn TRAVEL Ri
i

Max Z n i
n nλ

π π π
−

=

= − − + −
− ∑

 
 

 Figure 6 shows the results. For this objective, we have a fairly stable optimal 

solution λ  that does not depend on the number of risk states n and the pattern of iµ . 

 
Figure 6.  Plots using the objective function Z3 

4. 4 , ,
1

( )
n

B Ri R Ri Ri
i

Max Z f f
λ

π
=

= −∑   

Both Blue and Red have an effective firing rate f that increases with the risk level. 

We assume the effective firing rate takes one of three forms: concave, convex, linear. 

This produces nine combinations of the firing rate structure between Blue and Red, as 

illustrated in Table 1. We assume that the minimum effective firing rate minf  is 2 per 

minute and the maximum firing rate maxf  is 10 per minute on both sides and 10n = . 
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Also, we use different specific functions for the concave and convex functions so they do 

not trivially overlap. The x-axis in Table 1 corresponds to the risk level (1 to 10) and y-

axis the firing rate (min: 2 and max: 10). The functional form we use is 

min max min
1( )( )

9
aif f f −

+ −  where a  is 1 (Linear), 1/3 (Concave) and 2 (Convex) for Blue, 

and 1 (Linear), 1/2 (Concave) and 3 (Convex) for Red. 

Table 1.   Combinations of different forms of the effective firing rate 
functions 

 
 

We classify the nine situations illustrated in Table 1 according to who has the 

higher firing rate. We number the 9 figures in Table 1 moving left to right and up to 

down so we can we refer to specific cases by the label in discussions. First, Blue has the 

higher effective firing rate (i.e., cases labeled 2, 5, 7, 8 and 9 in Table 1). Second, Red 

has the higher effective firing rate (i.e., labels 3, 4 and 6 in Table 1). We ignore 

combination 1 as it generates an objective value of 0 for any λ  as the effective firing 

rates for Blue and Red are the same across all risk levels. We look at the second case 

first, where Red has a higher effective firing rate. For convenience, we use the constant 

iµ  scenario. 
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Figure 7 shows the results when Red has the higher effective firing rate. This 

situation, as presented in Table 1, produces somewhat trivial results as Blue should never 

move ( * 0λ = ) and the objective value is zero ( *
4 0Z = ). The best Blue can do in these 

cases is have the same effective firing rate as Red, which occurs in either the lowest risk 

state or the highest risk state (see Table 1). For all other risk states, Red’s effective firing 

rate dominates Blue’s effective firing rate. Consequently Blue has two choices: move 

very frequently to only fire in the low risk level or never move so the situation remains in 

the high risk level. 

 
Figure 7.  Plots when Red has a higher effective firing rate 

Figure 8 shows the result when Blue has a higher effective firing rate. In this case, 

the optimal solutions are not the same. The optimal λ  lie in (0.043, 0.079) across the 

different scenarios. In combination 8, the optimal objective value is the highest, followed 

by cases displayed in blocks 2, 7, 5 and 9 in order. Intuitively, Blue wants to spend a 

large fraction of time in states where Blue’s effective firing rate is much higher than 

Red’s rate because that is the objective of interest. Figure 9 shows the relative effective 
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firing rates ( , ,B Ri R Rif f− ) by the risk states. In combination 5, the relative effective firing 

rate is higher in the early risk levels and the highest at the state R2. This explains why 

combination 5 has highest optimal λ  in Figure 8. On the other hand, Blue prefers the 

states near state R7 in combination 9, which leads to the lowest optimal λ  among the 

considered scenarios. 

 
Figure 8.  Plots when Blue has a higher effective firing rate 



 26 

 
The legend labels correspond to the number labels in Table 1. 

Figure 9.  Relative effective firing rate ( , ,B Ri R Rif f− ) in the cases when Blue has 
a higher firing rate 

G. REWARD RENEWAL PROCESS 

In previous sections, we assume all times are exponentially distributed. This is not 

realistic, so we allow for some non-exponential times by using a renewal approach. A 

renewal process is a counting process { ( ), 0}N t t ≥ , and nX  denotes the interarrival time 

between ( 1n − )st and nth events. The interarrival times must be nonnegative independent 

and identically distributed (IID) random variables. The key in constructing a renewal 

process is defining a renewal point where the process restarts or regenerates. In our case 

this happens whenever Blue moves and enters the low risk state. See chapter 7 of Ross 

(2014) for details. 

1. Deterministic T 

First, we assume the time to transition from the lowest risk to the highest risk is 

deterministic. As discussed earlier, the CTMC model approaches this for large n. With 

this approach, we define two states: risk (firing) and travel. After traveling, Blue arrives 

back to the risk state, which is when the renewal occurs. As soon as it occurs, the risk 

increases (i.e., Red’s effective firing rate increases) and in deterministic time T it 

eventually reaches the highest risk level. Blue remains in the highest risk level until Blue 

changes position (i.e., switches to travel state). The decision for Blue is still when to 

move. We assume the actual time until Blue moves is a random variable (e.g., uniform, 
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exponential, gamma). The decision variable for Blue is what the parameters of this 

movement random variable should be. We define  
 

nX =  time between 1n −  renewal and nth renewal 

nM =  time until Blue moves for the nth time, IID random variables with 
distribution F 

δ =  mean travel time 
 

The travel time distribution does not need to be exponential. All we need for our analysis 

is the mean: δ . The expected time between renewals is thus 
 

[X] E[M]E δ= +   
 

Similar to the CTMC model, Blue may want to spend most of its time in the lower risk 

portion of the firing time. For concreteness, Blue wants to maximize the time it spends in 

the α  lowest risk portion, that is, between times 0 and Tα . In a renewal-reward context, 

the reward during Xn is the amount of time spent firing between times 0 and Tα . 

Therefore, in this process, the reward is the minimum time of Tα  and Mn. 
 

min( , ) n
n n

n n

T if M T
R T M

M if M T
α α

α
α

≥
= =  <

  

 

Then, the expected reward during one renewal period is 
 

0
( ) ( ) (1 ( ))

T
E R mf m dm F T T

α
α α= + −∫   

 

where f(m) is the probability density function (PDF) and F(M) is cumulative distribution 

function (CDF) of distribution of Mn. 

Define Rn as the reward accumulated during the nth renewal (i.e., time spent in 

low risk firing during nth round of firing). If R(t) is the total reward earned up to time t, 
( )

1
( ) N t

nn
R t R

=
=∑ , by the renewal-reward limit theorem we can compute the long-run 

average reward rate as follows. 
 

0
( ) (1 ( ))( ) ( )lim

( ) ( )

T

t

mf m dm F T TR t E R
t E X E M

α
α α

δ→∞

+ −
= =

+
∫  
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This long-run reward rate is the long-run proportion of time spent firing in the lowest α  

of the risk spectrum. Therefore, we can obtain the optimal solution that maximizes the 

long-run average reward rate by determining the best parameter for distribution of Mn. 

For example, if 30(min)T = , 10(min)δ = , 0.2α =  and Mn ~ exp(λ ), then 

 
1 (1 ( 1) )( ) ( )lim 1( )

T T

t

T e TeR t E R
t E X

λα λαλα α
λ

δ
λ

− −

→∞

− + +
= =

+
  

 

Figure 10 provides the resulting plot. When 0.1545λ = , it has the highest long-run 

average reward rate. This is equivalent to moving on average every 6.5 minutes 

(1/0.1545). 

 
Figure 10.  Long-run average reward rate by λ  

If we take 1α = , which means that Blue accepts all risk levels except for the 

highest, the optimal λ  is 0.058. This is a similar objective to Z3 in our CTMC model. As 

shown in Figure 11, this 1α =  case for the renewal reward scenario produces the same 

optimal solution as the CTMC model with the objective function Z3 for infinite n. 
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Figure 11.  Comparison with the CTMC model 

2. Deterministic M 

If the iµ  are equal in the original CTMC model, then the time until the system 

transitions to the highest risk level has an Erlang distribution. In the previous subsection, 

we assume that the distribution of T is deterministic. Here, we allow any distribution 

(e.g., uniform, exponential, gamma). The time until Blue moves, M, is deterministic, 

however, which will be a decision variable in this model. Similarly, with the previous 

scenario, we define 

 
nX =  time between 1n −  renewal and nth renewal 

nT =  transition time from the lowest risk to the highest risk, 
IID random variables with distribution G 

δ =  mean travel time 
 

Then, the expected time of Xn should be 

 
[X] ME δ= + . 

 

Here, we assume the objective is to maximize the time Blue stays at risk levels below the 

maximum. As discussed at the end of Section B, we assume the commander must choose 

his move variable M without knowledge of the risk level in real time. Otherwise the 

commander would move in real time as soon as the risk level hit its maximum. This 

assumption is valid if the commander has to choose M ahead of time for operational 
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reasons, or the commander only has an incomplete knowledge of the risk in real time. . 

The reward is the amount of time in the low risk levels: min(M, Tn). 

min(T , ) n
n n

n n

M if T M
R M

T if T M
≥

= =  <
  

Then, the expected reward is 

0
( ) ( ) (1 ( ))

M
E R tg t dt M G T= + −∫   

where g(t) is the PDF and G(T) is the CDF for the distribution of Tn. Then, the long-run 

average reward rate is 

0
( ) (1 ( ))( ) ( )lim

( )

M

t

tg t dt M G TR t E R
t E X M δ→∞

+ −
= =

+
∫   

Accordingly, we can obtain the optimal solution that maximizes the long-run average 

reward rate by computing the best deterministic time M. For example, if 10(min)δ = , 

~ exp( 1/ 30)T µ = , then  

1 (1 ( 1) )
( ) ( )lim

( )

M M

t

M e Me
R t E R

t E X M

µ µµ
µ

δ

− −

→∞

− + +
= =

+   
As shown in Figure 12, 21.57(min)M =  produces the highest long-run average reward 

rate. 

 
Figure 12.  Long-run average reward rate by M ( 10, 1/ 30δ µ= = ) 
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We can still compute the optimal moving policy even if we relax the assumption 

that all times have an exponential distribution by using the reward renewal approaches. In 

addition, the results of this approach are similar to the CTMC model. 

H. SUMMARY 

We discussed several models and different scenarios in this chapter. In all cases, 

we use the same travel rate 10(min)δ = , and the expected time 30(min)T =  to transition 

from the lowest risk to the highest risk when the expected time until Blue moves = ∞ . 

Most of the optimal solutions specify that Blue should move to another position on 

average every 12 to 24 minutes. Many of the solutions are clustered even more tightly 

around 15 minutes. There are a few scenarios that produce a much higher rate (see Figure 

3), but these result from not adequately penalizing moving and accepting only very low 

risk states. In conclusion, the results are similar across a variety of modeling assumptions 

and objectives. If Blue fires at Red with a constant effective firing rate, Blue should 

spend some amount of time repeatedly firing from the same location, rather than moving 

to another position immediately after the first fire. 
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III. WIN PROBABILITY MODEL WITH TIME LIMIT 

In Chapter II, we assume the battle lasts for a long enough time that we can 

appeal to the limiting distribution of the CTMC and focus on long-run characteristics 

such as the probability of low risk firing. In reality, the engagement will not last a long 

time. One side will retreat if it sustains enough damage. Also, the mission may be time 

critical where it is imperative that Blue forces Red to retreat in a certain time window. If 

Blue cannot achieve this then Blue effectively “loses” the battle. In this chapter, we carry 

through the CTMC setup and assumptions from Chapter II. We also incorporate the 

health of Blue and Red, however, which is directly tied to how many hits each side has 

received. We also assume Blue has a limited time window to complete its mission. When 

Blue determines its move policy, it must consider the time and its health. We first define 

the states of our new CTMC model in Section A. We next describe the model in more 

detail in Section B. In Section C, we define the probability that Blue wins, which is our 

primary measure of effectiveness (MOE) when determining a move policy. Subsequently, 

we propose an optimization algorithm to find the optimal solution to maximize the win 

probability in Section D. We conclude with numerical examples in Section E. 

A. THE STATES 

Before developing a model, we need to define the states. Since the model includes 

three extra components compared to the base model of Chapter II, we represent the state 

as a vector of four elements: 

 
(R, HB, HR, T) 

• R: the risk level 

• HB: the health level of Blue  

• HR: the health level of Red  

• T: current time 
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As in Chapter II, we discretize the state space, so each of the four factors takes on a small 

number of discrete values. In this chapter, for concreteness we assume each of the four 

factors takes on four levels, but this is easy to generalize. See Table 2 for a list of the four 

levels of each factor. “Risk” is treated the same as in Chapter II: there are three risk levels 

and we include travel as a level in Risk here as travel is effectively the zero-risk level. 

Each risk level corresponds to a fixed Red effective firing rate, which increases over time 

when the risk level increases (e.g., because of improved aiming via reaction to Blue fire 

or intelligence from surveillance).  The health status for Red and Blue can either be high, 

medium, or low. Additional damage after the “Low” level forces the commander to 

retreat. Moreover, we define some absorbing conditions and divide the absorbing states 

into two conditions: Win and Lose. If HB reaches Retreat, then Red “wins” and if HR 

reaches Retreat, then Blue “wins.” To model the limited time horizon, we divide that time 

window into the beginning, middle, and end. After the end state, we assume the battle is 

over and Blue loses because Blue did not achieve its objective (Red retreat) within the 

time window. In Section D, we formulate a model to optimize the win probability that the 

system reaches a Blue win state before a lose state.  

Table 2.   Status of each component and the number expression 

 R HB HR T 

1 Low High High Begin 

2 Mid Mid Mid Mid 

3 High Low Low End 

4 Travel Retreat Retreat Lose 

Bold: absorbing states 

 

For simplicity, we use numbers 1–4 to represent the levels rather than the text in 

Table 2. For example, the state (1, 2, 3, 1) represents that the risk level is “Low,” the 

health level of Blue is “Mid,” the health level of Red is “Low” and time is at the 

beginning of the time horizon. When the system reaches 4RH =  (Red Retreat), Blue 

wins the battle. When the system reaches 4BH =  (Blue Retreat), Blue loses the battle. 
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Finally, Blue also loses if the time window closes before Blue forces Red to Retreat; that 

is, Red wins if 4T =  (Lose). Under these assumptions, we define the absorbing states as 

follows. 

 
• (*, 4, *, *): Blue retreats. Lose states. 

• (*, *, 4, *): Red retreats. Win states. 

• (*, *, *, 4): Time is over. Lose states. 

 

Mathematically, there are 256 (4×4×4×4) possible states. We can remove several 

of these states from consideration, however, as multiple absorbing conditions cannot 

occur simultaneously. For example, Blue and Red cannot retreat at the same time or Blue 

cannot retreat after the time window has closed. Moreover, since we assume that Blue 

and Red cannot be hit by the enemy while they move, it is not possible that a moving 

state (i.e., (4, *, *, *)) has any absorbing condition. As a result, the number of possible 

states decreases to 198 after we remove the impossible 58 states. The final valid state 

space consists of 108 (4×3×3×3) transient states and 90 (3×1×3×3 + 3×3×1×3 + 

4×3×3×1) absorbing states. 

B. MODEL DESCRIPTION 

The system starts at a state (1, 1, 1, 1) that represents low risk and high health of 

Blue and Red in the beginning of the battle. After some amount of firing time, the system 

transitions to one of the following five states, depending on what happens first. We 

provide more detail about each of these five state changes as follows. 

 
i. Risk level increases:  (2, 1, 1, 1) 

ii. Blue’s health decreases:  (1, 2, 1, 1) 

iii. Red’s health decreases:  (1, 1, 2, 1) 

iv. Time horizon changes:  (1, 1, 1, 2) 

v. Blue moves:    (4, 1, 1, 1) 
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i) The risk level gradually increases over time as Red obtains better information 

about Blue’s location. This information may come from radar signals that track Blue’s 

fire or surveillance assets, such as UAVs. The time until the risk increases by one level is 

exponentially distributed with Rµ . As discussed in Chapter II, this time includes, for 

example, the time required to process intelligence to determine an updated aimpoint and 

the time to recalibrate and aim the artillery for the new aimpoint. For simplicity, we 

assume the rate Rµ  does not depend on the current risk level, although this is easy to 

generalize. Therefore, the state (1, 1, 1, 1) transitions to (2, 1, 1, 1) with rate Rµ . 

ii) & iii) The health status for Blue and Red decrease over time since they fire at 

each other continuously until one of them retreats or the time window closes. The time 

until the health level of Blue (Red) changes has an exponential distribution with rate 

( )HB jµ ( ( )HR jµ ), where the parameter j dictates the current risk level. The health rate of  

Blue (Red) corresponds to the effective firing rate of Red (Blue). That is Red's effective 

fire in risk level j is a Poisson process with rate ( )HB jµ . Recall Red’s effective firing rate 

corresponds to the overall rate Red fires rounds multiplied by the probability a round hits 

Blue.  Rather than defining one parameter for overall firing rate and one parameter for hit 

probability, for simplicity we just define Red’s effective firing rate, which corresponds to 

Blue’s health rate ( )HB jµ . These assumptions imply that one hit from Red fire decreases 

the health of Blue by one level. If multiple hits are required to decrease the health by one 

level, then we can, for example, define ( )HB jµ  as the Red effective firing rate divided by 

the number of hits per health level. A higher effective firing rate results in faster 

reduction of the other’s health. In higher risk states, the rate ( )µHB j  will be higher than 

for lower risk levels. As a result, the state (1, 1, 1, 1) can transit to (1, 2, 1, 1) with rate 

(1)HBµ  or (1, 1, 2, 1) with rate (1)HRµ . We treat health transitions as independent of risk 

transitions. A health transition corresponds to a direct hit by either side, which translates 

into potentially useful intelligence, which could result in an increased effective firing rate 

(and hence an increased risk level). Therefore, one could model a hit as changing both the 
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health level and risk level simultaneously. We do not model the system evolution in this 

fashion, but leave it as a suggestion for future work.   

iv) Eventually, the time window will close. We divide the time window into three 

levels; the time until the time component changes has an exponential distribution with 

mean 1/ Tµ . That is, the time component level increases from level j to j+l according to 

an exponential distribution with rate Tµ . The rate parameter Tµ  does not depend upon 

the risk level or health status of Red or Blue. For example, if the desired time window is 

60 minutes, then 1/ 20(min)Tµ = . With this assumption, the time until the window closes 

has a Gamma distribution with shape parameter 3 and rate parameter Tµ . As discussed in 

Chapter II, the finer we divide the time window into levels, the more deterministic it 

becomes. The computational complexity also grows significantly, however. The state (1, 

1, 1, 1) transitions to (1, 1, 1, 2) with rate Tµ . 

v) Blue moves to avoid high risk levels. The time until Blue moves has an 

exponential distribution with rate λ . The rate λ  is a decision variable for Blue. In 

Chapter II, λ  was a scalar. In this chapter, we still assume that Blue does not know the 

risk level and we also assume Blue does not know Red’s health status. Blue knows its 

own health status and Blue knows the current time, however. Thus, λ  is a function of 

Blue health status and time. For example, if Blue’s health is low and time is in the 

beginning, Blue may want to move frequently to avoid the enemy’s fire. On the other 

hand, if Blue’s health is high and time is at the end, Blue may want keep firing without 

moving to increase the chances of forcing Red to retreat. We will discuss this in more 

detail in Section D. As an example, the state (1, 1, 1, 1) transitions to (4, 1, 1, 1) with 

rate λ . 

Figure 13 illustrates the five possible transitions. It is only possible to have all 

five transition types when the system is in a “Low” or “Mid” risk transient state. 



 38 

 
Figure 13.  Transition diagram when the system is in “Low” or “Mid” risk 

transient states 

When the system is in the “High” risk level (i.e., (3, *, *, *)), there is no possible 

next risk level since we only have three levels of risk. Figure 14 shows the transition 

diagram reflecting these states. 

 
Figure 14.  Transition diagram when the system is in “High” risk transient states 

In addition, when the system is in “Travel” states, it can only go to the lowest risk 

level state or the next time horizon state. Figure 15 shows the transition diagram for these 

states. 
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Figure 15.  Transition diagram when the system is in “Travel” transient states 

The system only evolves in one way for health and time. Eventually, the system 

reaches one of the absorbing states, Win or Lose states, and the transitions stop. 

C. WINNING PROBABILITY 

To compute the win probability, we need to compute the probability the system 

next transitions to each state. Suppose that T1 and T2 are independent exponential random 

variables with rate 1µ  and 2µ  respectively. Then the probability that T1 is less than T2 is 

 
1

1 2
1 2

( )P T T µ
µ µ

< =
+

  

 

Likewise, if T1,…, Tn are independent exponential random variables with rates 1µ ,…, nµ  

respectively, then the probability that T1 is smaller than the others (i.e., T1 is the 

minimum) is 

 
1

1 1

1

( min( ,..., ))n n
ii

P T T T µ
µ

=

= =
∑

 

 

See chapter 5 of Ross (2014) for details. 

For example, in our model, the probability that the system transitions from state 

(1, 1, 1, 1) to state (1, 1, 1, 2) is 

 

(1,1,1,1)

{(1,1,1,1) (1,1,1,2)}
(1) (1)

T

R HB HR T

P µ
µ µ µ µ λ

→ =
+ + + +
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and the probability that the system transitions to state (4, 1, 1, 1) is 

 
(1,1,1,1)

(1,1,1,1)

{(1,1,1,1) (4,1,1,1)}
(1) (1)R HB HR T

P
λ

µ µ µ µ λ
→ =

+ + + +
 

 

where (1,1,1,1)λ  is the moving rate in state (1, 1, 1, 1). We define the probability that the 

system transitions from state i to state j as Pij, which is the standard Markov transition 

probability. 

Blue chooses its move strategy (i.e., its λ  vector: (1,1,1,1) (1,1,1,2) (3,3,3,3)( , , , )λ λ λ ) to 

maximize the probability that Blue wins. We compute this win probability for a fixed λ  

vector in this section. To compute the probability, we set up a system of equations. In this 

system, we assign each state to one of three categories: Blue Win, Blue Lose, or “Neutral.” 

The Neutral category denotes that the battle is still ongoing. ( )P s  is the probability Blue 

eventually wins, given the system is currently in state s. Thus, ( ) 1P s =  if s is a win state 

and ( ) 0P s =  if s is a lose state. If s is a Neutral, however, we need to consider the next 

state and condition on it. Using the Law of Total Probability, we have 

 
( ) [ | ]si

i states
P s P P win s i s Neutral

∈

= × → ∀ ∈∑
  

 

where siP  is the transition probability from state s to state i. By the Markov property, we 

can say that [ | ] ( )P win s i P i→ = . Thus, for all neutral states s we have 

 
( ) ( )si

i states
P s P P i

∈

= ×∑
 

                    
( )si si

i Win i Neutral
P P P i s Neutral

∈ ∈

= + × ∀ ∈∑ ∑
 

 

We can write out a matrix equation for this system of equations.  

win n w D winP P P P→= + ×   
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where Pwin is a vector containing ( )P s  for all neutral states s and PD is the part of the 

transition matrix that just tracks transitions among neutral states. Also, Pn→w is a vector 

representing the probability of transitioning from a given neutral state to a win state in 

one transition. We can solve for the desired win probabilities using the following formula: 

 
1( )win D n wP I P P−

→= −  
 

The vector Pwin is a function of the state s, but it is also a function of all the other 

parameters, such as the rates of the exponential distributions. Most importantly for our 

purposes, Pwin depends upon the λ  vector. Our goal is to determine the optimal move 

policy via the λ  vector to maximize the win probability. 

D. OPTIMIZATION 

Blue may want to consider an objective that accounts for ( )P s  for multiple 

states s. We focus on the first state, (1, 1, 1, 1), however, because we assume that the 

engagement starts with 100% health and enough time to conduct a mission at time 0. 

Denote P(1, 1, 1, 1) as the probability of Blue winning starting in state (1, 1, 1, 1), that is, 

at the beginning of the battle. In order to maximize the probability P(1, 1, 1, 1), as 

mentioned previously, we must solve for the optimal λ  vector. It is realistic that Blue 

knows its health level and the time spent in battle. In other words, we assume Blue can 

vary the moving rate λ  depending on its current health level and the current time 

window. If some states have the same Blue health level and time window, the optimal 

moving rate λ  should be the same in those states even if the risk level and Red health 

level vary. For instance, Blue may want to move infrequently and spend more in firing 

states (i.e., risk levels 1, 2, 3) when Blue has a high health level and limited time because 

these are the only states that can decrease Red’s health. On the other hand, Blue may 

want to move quickly when Blue’s health level is low even though the risk to Blue may 

be low because this limits the possibility that Blue’s health will decrease further. 

Because Blue only accounts for its health and the time when choosing the move 

strategy, there are 9 possible moving rates. We group these rates in a vector 



 42 

11 12 21 13 22 31 23 32 33( , , , , , , , , )Tλ λ λ λ λ λ λ λ λ λ=  where ijλ  is the moving rate in states (*, i, *, j) 

for all 1, 2,3i =  and 1, 2,3j = . We use an iterative backward method to find the optimal 

vector of rate λ . We start with 3i = , 3j =  and compute 33λ . If we knew which 

particular (*, 3, *, 3) state we first transition into (e.g., (1, 3, 2, 3)), then we could 

compute the probability of Blue winning starting from that (*, 3, *, 3) state using the 

approach from Section C, and optimize with respect to 33λ . Unfortunately, there are 12 

possible (*, 3, *, 3) states: (1, 3, 1, 3), (1, 3, 2, 3), (1, 3, 3, 3), …, (4, 3, 1, 3), (4, 3, 2, 3) 

and (4, 3, 3, 3). We do not know which of these 12 (*, 3, *, 3) states the system will first 

transition to starting from (1, 1, 1, 1). Using a similar approach to Section C, however, we 

can compute the probability that starting from (1, 1, 1, 1) the system will first transition 

to, for example, (4, 3, 1, 3) out of all the (*, 3, *, 3) states. Using these first-passage 

probabilities, we assign a weight to each (*, 3, *, 3) state. For example, let u be a 

particular (*, 3, *, 3) state. Then we set the weight in state u as follows. 

 
( ) ( )

( ) ( )
(*,3,*,3)

1,1,1,1
1,

( ) , (*,3,*3
,

)
1 1,1

v

P state state
P state sta

u
we

t
ight u u

ve
∈

  = ∀ ∈
 

→

→ ∑
 

 

Consequently, the optimization problem becomes  

 

33 (*,3,*,3)
max ( ) ( )
λ

∈

= ×∑
u

z weight u P u   

 

where P(u) is the probability to win given the system is in state u. To compute weight(u) 

requires knowledge of all λij , which is what we are trying to compute. This is where the 

iterative aspect of the algorithm comes into play. In the first round, we initialize all 

0λ =ij . This allows us to compute weight(u) for all (*, 3, *, 3) states, and hence optimize 

33λ . Once we have *
33λ , we determine the optimal rate *

23λ  in states (*, 2, *, 3) by 

computing P(u) and weight(u) for all (*, 2, *, 3) states. We compute P(u) by using the 
*
33λ  computed earlier, and we compute weight(u) by assuming all other 0λ =ij . We 
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continue working our way backwards in this fashion to determine *λ ij  for all 1, 2,3i =  

and 1, 2,3j = : 

 

(*, ,*, )
max ( ) ( )

ij u i j
z weight u P u

λ
∈

= ×∑   

 

where ijλ  is the moving rate in states (*, i, *, j) and P(u) is the probability to win when 

the system is in state u. We illustrate the algorithm in Figure 16. 

 
*
ijλ : optimal moving rate in states (*, i, *, j) 

Figure 16.  The optimization algorithm 

To compute the optimal rate *
11λ , we do not weight all (*, 1, *, 1) states; we know 

the system starts in state (1, 1, 1, 1). Thus, we optimize *
11λ  with respect to only state (1, 

1, 1, 1) by computing P(1, 1, 1, 1) directly.  

After one round, we have estimates *λ ij . We compute these rates by using 

weight(u) derived from assuming 0λ =ij , however. In round 2 we compute the weight(u) 

by using the *λ ij  calculated in round 1, which generates new estimates of *λ ij  in round 2. 

We continue this iterative approach until the optimal vector *λ  converges.  



 44 

E. NUMERICAL DEMONSTRATION 

To implement this model, we use the R: A language and environment for 

statistical computing (R core team, 2016). We use the optimize() function to find the 

optimal solutions in R. At any time, we are only ever computing one optimal parameter 

so the optimization is straightforward. First, we discuss the values of the parameters we 

use in this section and then demonstrate the algorithm. 

1. Parameters 

For the purpose of comparison with the numerical demonstration result of the 

long-run risk model in Chapter II, we use the same travel rate δ  and expected time T to 

transition from low risk to high risk, when Blue does not move (i.e., 0λ = ) as follows: 

 
1 , 30

10
Tδ = =  

 

Consequently, we use the risk transition rate 1
15Rµ =  to keep the time 30T = . We add a 

constraint to make our problem more realistic. Blue has to fire at least one shot after 

arriving at a new position since Blue’s primary purpose is firing at Red. We enforce this 

by placing a maximum value on ijλ . In the following experiments, we assume  

 

max
1
5

λ =  

 

which implies it requires on average at least 5 minutes to fire one shot (mission) and be 

ready to move. For the health transition rates ( )HB jµ  and ( )HR jµ , we assume the 

expected time to transition from the high health status to retreat, when there is no Blue 

movement ( 0λ = ), is the same for both Blue and Red. We assume the specific µ  values 

differ for each side, however. Blue has a lower health transition rate than Red in the low 

risk state but a higher health transition rate in the high risk state. This is reasonable 

because we assume that Red does not know Blue’s location before Blue fires in a new 

position; hence, in the low risk state, Red has little chance to decrease Blue’s health. As 
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Blue fires, however, Red’s threats increase as Red pinpoints Blue’s location. In this 

example, Blue’s accuracy does not improve when it shoots successively from the same 

location. With this assumption, we use the following parameters. 

 
1 1 1(1) , (2) , (3)

30 20 10

1( ) , 1, 2,3
20

HB HB HB

HR j j

µ µ µ

µ

= = =

= ∀ =

 

 

Lastly, we assume the limited time is 2 hours (120 minutes), which makes the rate Tµ  as 

follows. 

 
1 1

/ 3 40T timelimit
µ = =   

 

2. Algorithms 

To compute the optimal solutions, we initialize our vector λ  to the 0 vector. This 

represents the situation when Blue does not move. We next compute the optimal rate *
33λ . 

Thus, the objective function for the rate 33λ  is 

 

33 (*,3,*,3)
max ( ) ( )

u
z weight u P u

λ
∈

= ×∑  

 

We use the approach described in Section D to solve for *λ . In the first round of the 

algorithm we initialize 0λ = . The weight(u) and P(u) in (*, 3, *, 3) states at the beginning 

of the algorithm when all 0λ =  appear in Table 3. Figure 17 displays the updated 33λ

value, which we compute in the first part of round 1. 
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Table 3.   The weights and win probabilities in (*, 3, *, 3) states when 0λ =  

State: u (1,3,1,3) (1,3,2,3) (1,3,3,3) (2,3,1,3) (2,3,2,3) (2,3,3,3) 

weight(u) 0.0294 0.0336 0.0240 0.0607 0.0827 0.0677 
P(u) 0.0631 0.1675 0.4230 0.0400 0.1224 0.3602 

State: u (3,3,1,3) (3,3,2,3) (3,3,3,3) (4,3,1,3) (4,3,2,3) (4,3,3,3) 

weight(u) 0.1634 0.2728 0.2659 0 0 0 
P(u) 0.0233 0.0816 0.2857 0.0505 0.1340 0.3384 

 

 
Figure 17.  The solution for 33λ  in round 1 

We replace the rate 33 0λ =  in (*, 3, *, 3) states with the updated rate *
33 0.045λ =

from the first round. With the same repetitive method, following the algorithm described 

earlier provides us with the values of the updated vector *λ  in round “1” (Table 4). 

Table 4.   The updated vector *λ  after round “1” 

*
ijλ  *

11λ  *
12λ  *

21λ  *
13λ  *

22λ  *
31λ  *

23λ  *
32λ  *

33λ  

value 0.0118 0 0.1367 0 0.0703 0.2 0.2 0 0.0449 

 

We iterate this algorithm updating the vector *λ  until the maximum absolute 

difference between the λ  vector in one round and the previous round is less than 10-6. 

The results are shown in Figure 18 and Figure 19. 
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The 6 sets of family states have positive rate ijλ  but others have zero in all iterations. 
The rates have no big variation after round 3. It converges at round 7. 

Figure 18.  The changes of the rate ijλ  during 10 rounds 

 
Figure 19.  The changes of the objective value: P(1,1,1,1) during 10 rounds 

After two rounds, we have a near optimal solution and it converges at round 7. 

The probability Blue wins increases from 0.357 with no moving to 0.408 by taking the 

optimal vector *λ . Utilizing this model provides Blue with a 5% greater chance to win 

than if Blue uses a stationary artillery approach without moving. The probability Blue 

wins is less than 0.5 because if the time window closes, Blue loses. The final converged 

values of the optimal vector *λ  appear in Table 5. 

Table 5.   The converged optimal vector *λ  

*
ijλ  *

11λ  *
12λ  *

21λ  *
13λ  *

22λ  *
31λ  *

23λ  *
32λ  *

33λ  

value 0.0108 0 0.1406 0 0.04 0.2 0 0.1335 0 
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When the time window closes soon (i.e., in state (*, *, *, 3)), Blue should not 

move ( 0λ = ). By staying in the same position Blue can achieve a higher firing rate, 

which increases Blue’s win probability when time is running out. On the other hand, 

when Blue has a lower health but (probabilistically) plenty of time (i.e., in states (*, 2, *, 

1), (*, 3, *, 1) and (*, 3, *, 2)), Blue should move frequently. The optimal rates ijλ  for 

these states lie in the interval (0.1335, 0.2), which represents that Blue moves on average 

every (5, 7.5) minutes. By moving frequently Blue can avoid Red’s shells, which 

decreases Blue’s firing rate. Survivability is more important for Blue in this situation, 

however. Especially, in state (*, 3, *, 1), where Blue has the maximum moving rate (i.e., 
*
31 max 0.2λ λ= = ), Blue should move very frequently as there is little to gain for Blue by 

exposing itself to more risk early in the battle. In addition, when Blue is at its maximum 

health (i.e., in state (*, 1, *, *)), Blue should move very infrequently. The time window 

component has a negligible impact on this result. The optimal rates ijλ  are distributed in 

(0, 0.0108), which implies that Blue moves on average every (92.6, ∞) minutes. Blue has 

a higher health and thus can endure some risk for the benefit of a higher firing rate in the 

same position.  

We conclude this chapter by examining the situation where Blue’s accuracy 

increases at higher risk levels. Instead of the constant health transition rate for Red, 

( ) 1/ 20HR jµ = , Red transitions quickly to “Retreat” in the higher risk level. With this 

additional assumption, the health transition rates are 

 
1 1 1(1) , (2) , (3)

30 20 10

1 1 1(1) , (2) , (3)
25 20 15

HB HB HB

HR HR HR

µ µ µ

µ µ µ

= = =

= = =

 

 

We still hold other assumptions, however, that i) Blue has a lower health transition rate 

than Red in the low risk state and a higher health transition rate in the high risk state, and 

ii) the expected time from the high health state to the retreat state is the same. Table 6 
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shows the results. Blue wins with probability 0.399 in this scenario, which is very similar 

to the original example.  

Table 6.   A result with increasing ( )HR jµ  

*
ijλ  *

11λ  *
12λ  *

21λ  *
13λ  *

22λ  *
31λ  *

23λ  *
32λ  *

33λ  

value 0 0 0.0734 0 0 0.1999 0 0.0468 0 

 

Blue does not move in 6 of the 9 categories. Blue moves frequently only in (*, 3, 

*, 1) states. Even if Blue’s health is low (i.e., in states (*, 3, *, 2) and (*, 3, *, 3)), Blue 

stays in the same position and continues firing at Red to achieve a higher accuracy. If 

Blue has an ability to increase its accuracy during firing, for example adjusting aims with 

some feedback, Blue should spend more time firing before moving to another position. 
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IV. CONCLUSION 

A. SUMMARY 

In this thesis, we describe two models to analyze shoot-and-scoot policies for 

artillery forces. The shoot-and-scoot tactic is important, but there appears to be limited 

quantitative analysis on the move decision. Currently, commanders use their experience 

and intuition to determine when the artillery should change locations. Most commanders 

are risk averse, so they tend to move frequently to avoid the enemy’s counter-fire. 

Frequently moving limits the potential benefits of a higher firing rate and improved 

accuracy. 

A primary component of our models is “risk,” which increases over time when 

Blue stays in the same position. In Chapter II, we develop a long-run risk model, which 

only considers risk and assumes the battle goes on for a long period of time. We examine 

several different objective functions that consider both risk and firing rate. The main 

objective of this model is to limit Blue’s exposure to higher risk. In Chapter III, we 

construct the win-probability model in a limited time window scenario. In this model, we 

incorporate other factors such as “Health” and “Time in battle.” The battle does not go on 

for an arbitrarily long time, but instead Blue must win within a finite time window. The 

objective of this model is maximizing the probability Blue wins. The decision variables 

in both models are the rates at which Blue moves. 

Although we examine only one representative scenario in each model, the 

parameters are reasonable according to the author's experience. The general result is that 

in most situations Blue should spend a reasonable amount of time engaging with Red in 

artillery fire from the same location. When we account for time and health (Chapter III), 

this result becomes even more pronounced. Blue should never move in certain states 

(e.g., high Blue health, later in the battle). Moving frequently reduces risk to Blue, but 

limits Blue’s ability to inflict damage on Red. This result may run counter to the 

approach of some commanders, who believe they should move frequently to survive and 
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win the battle. Our result should provide the commanders with some insight about shoot-

and-scoot tactics. 

Another contribution of this thesis is that the models can offer a method to 

evaluate the best strategy for the artillery forces. The parameters we use in this thesis may 

not be realistic in all scenarios. Our models are transparent and straightforward, however, 

so users can input their own parameters based on, for example, estimates using real battle 

data.  

B. FUTURE WORK 

In our model, time is the metric for risk. Red's firing rate increases with time as 

Red obtains more intelligence about Blue's location. Implicitly we assume this occurs 

primarily as Red reacts to Blue’s artillery fire. However, it may also increase in time for 

other reasons such as surveillance reports from UAVs. Future work could model risk as 

being explicitly connected to the number of Blue rounds fired rather than just time.  

Currently we have one measure of risk, which increases in time. We could model risk to 

Blue ("Blue risk") and risk to Red ("Red risk") separately. Blue would want to be in low 

Blue risk states and high Red risk states, which correspond to a high relative effective 

firing rate. Finally, in the win-probability model, the risk and health levels evolve 

independently. In reality both are tied to accurate fire, so future work could model the 

interaction between health and risk. 

One of the limitations of this thesis is that we consider mainly exponential 

distributions in order to leverage Markov models. In many real situations, the exponential 

may not be realistic. Although we use reward renewal process approaches to use other 

distributions, more general methods could be used to look at other distributions. We 

suggest a simulation model be developed, which would allow great flexibility for 

probability distributions and finer resolution of modeling detail. It would be interesting to 

compare the results from simulation analysis to our model. 

Another limitation is that we explore just one scenario in each model. This limits 

our ability to generalize our insights. Future work could perform more rigorous 

sensitivity analysis, perhaps taking a design of experiments approach. This would 
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generate more general insights about shoot-and-scoot tactics. For example, a study that 

varies the expected time it takes to move positions would provide insight into how much 

training should be done to potentially reduce the time required to move. There are 

numerous possible scenarios to analyze and the results would offer the effective strategy 

recommendations for artillery forces. 

Future work could incorporate more complicated, but realistic, aspects. Examples 

include feedback or reinforcements. For example, Blue may receive better feedback 

about its aimpoint accuracy when the assets that provide information about the target and 

impact points (e.g., surveillance UAVs) can operate effectively. If these support assets 

can operate freely close to Red, then Blue’s accuracy can increase quickly. If Red takes 

measures to eliminate those assets, however, then Blue’s accuracy may not improve 

much by staying at the same location. If Blue can receive reinforcements, then it is 

possible that Blue’s health could increase during the course of the battle. Currently in 

Chapter III, Blue’s health only decreases. 
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