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OUTLINE

1 BACKGROUND & REVIEW OF METHOD

2 MULTI-SPECIES TEST CASES

3 FUTURE WORK

4 CONCLUSION
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FRC THRUSTER OVERVIEW

Field-Reversed Configuration:

Concept from Fusion Energy
- Scaled Down for Propulsion

Electrodeless
- Limits Erosion
- Enables Flexible Fuels

Pulsed Operation
- Tunable Thrust/ISP
- Coupled Dynamics

Challenges Common to Pulsed EM

Complex to Design
Significant Modeling Challenge

RP3X FRC Thruster
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Field-Reversed Configuration:

Concept from Fusion Energy
- Scaled Down for Propulsion

Electrodeless
- Limits Erosion
- Enables Flexible Fuels

Pancotti, et al, “Adaptive Electric Propulsion for ISRU Missions”, 20th Adv. Space Prop., 11/2014
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- Tunable Thrust/ISP
- Coupled Dynamics
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Complex to Design
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RP3X FRC Thruster

ROBERT MARTIN (AFRL/RQRS) DISTRIBUTION A: APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED; PA #17517 3 / 21



FRC THRUSTER OVERVIEW

Field-Reversed Configuration:

Concept from Fusion Energy
- Scaled Down for Propulsion

Electrodeless
- Limits Erosion
- Enables Flexible Fuels

Pulsed Operation
- Tunable Thrust/ISP
- Coupled Dynamics

Challenges Common to Pulsed EM

Complex to Design
Significant Modeling Challenge

RP3X FRC Thruster

ROBERT MARTIN (AFRL/RQRS) DISTRIBUTION A: APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED; PA #17517 3 / 21



FRC THRUSTER OVERVIEW

Field-Reversed Configuration:

Concept from Fusion Energy
- Scaled Down for Propulsion

Electrodeless
- Limits Erosion
- Enables Flexible Fuels

Pulsed Operation
- Tunable Thrust/ISP
- Coupled Dynamics

Challenges Common to Pulsed EM

Complex to Design
Significant Modeling Challenge

RP3X FRC Thruster

ROBERT MARTIN (AFRL/RQRS) DISTRIBUTION A: APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED; PA #17517 3 / 21



FRC THRUSTER OVERVIEW

Field-Reversed Configuration:

Concept from Fusion Energy
- Scaled Down for Propulsion

Electrodeless
- Limits Erosion
- Enables Flexible Fuels

Pulsed Operation
- Tunable Thrust/ISP
- Coupled Dynamics

Challenges Common to Pulsed EM

Complex to Design

Significant Modeling Challenge

RP3X FRC Thruster

ROBERT MARTIN (AFRL/RQRS) DISTRIBUTION A: APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED; PA #17517 3 / 21



FRC THRUSTER OVERVIEW

Field-Reversed Configuration:

Concept from Fusion Energy
- Scaled Down for Propulsion

Electrodeless
- Limits Erosion
- Enables Flexible Fuels

Pulsed Operation
- Tunable Thrust/ISP
- Coupled Dynamics

Challenges Common to Pulsed EM

Complex to Design
Significant Modeling Challenge

RP3X FRC Thruster

ROBERT MARTIN (AFRL/RQRS) DISTRIBUTION A: APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED; PA #17517 3 / 21



PHASES OF FRC OPERATION

Dominant Physics Varies with Cycle:

1 Neutral Fill
- Rarefied Kinetic Flow

2 Preionization Chemistry
- CR-Excitation/Ionization

3 Driver Pulse
- Ionization+Electromagnetics

4 Field Reversal
- Magnetic Reconnection

5 Plasmoid Ejection
-~j× ~B, Neutral Entrainment

Continuous Cycle: 5 impacts 1

Adapted from “Annular FRC” PhD Proposal, C. (Niemela) Hill
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IMPORTANCE OF COLLISION PHYSICS

Important Collisions in Spacecraft Propulsion:

Discharge and Breakdown in FRC
Collisional Radiative Cooling/Ionization
Combustion Chemistry

Common Features in Spacecraft Collisions:
Relevant Densities Spanning
Many Orders of Magnitude — 6+
Transitions from Collisional to Collisionless
Tiny Early e− or Radical Populations Critical
to Induction Delay
Many types of Inelastic Collisions with
Unknown Effects on Distribution Shapes

Need Low Noise & High Dynamic Range
Collision Algorithms

Shock Ionization

Kapper & Cambier, J. Appl. Phys. 109, (2011)
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STANDARD COLLISION MODELS

Previous Collision Methods:

Monte Carlo Collisions (MCC)
- Particles Collide with Background “Fluid”
- Often Used in Plasma/PIC Simulation
- Ion-e− Collisions Assume Stationary Ions
- No Conservation/Detailed Balance

Direct Simulation Monte Carlo Collisions (DSMC)
- Most Modern Versions use No-Time Counter (NTC) Method
- Conservative/Reversible Collision
- Satisfies Detailed Balance
- Subset of Possible Collisions Sampled
- Random Selection vs Zij for All/Nothing Collision

All Random Flip vs Number of Collisions: Zij =
ninj

2 〈σv〉 dt
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VARIABLE WEIGHTS FOR DYNAMIC RANGE

Continuum to Discrete Representation:

Many Particles →̃ Continuous Distribution

Discretized VDF Yields Vlasov
But Collision Integral Still a Problem

Particle Methods VDF to Delta Function Set

Collisions between Discrete Velocities

But Poorly Resolved Tail
(Tail Critical to Inelastic Collisions)

Variable Weights Permit Extra DOF in Tails

Variable Weight “All-or-Nothing” Collisions?
Physically Inconsistent!

(Mixing Violates Momentum/Energy Conservation)
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SWPM COLLISIONS

Stochastic Weighted Particle Method:

Developed by Rjasanow & Wagner

Adapted as Modified NTC/MCF

Assures Post-Collision wi ≥ 0

Converges to NTC for wi=const

Only Adds 1-particle/collision for
∆w = min(wi,wj)

Adds 2-particles/collision for
∆w = min(wi,wj)/f

Still Requires Merge wi 6= const

Attempted Collisions/Cell:
ν = f (2w̄−wmin)Np(Np−1) 〈σv〉max dt

Select Pair (i,j) if:
Rand < wi+wj−wmin

Np(Np−1)(2w̄−wmin)
-or-

Rand < wi+wj−wmin

(2wmax−wmin)

Collide If:
Rand <

〈σv〉ij
〈σv〉max

f max(wi,wj)
wi+wj−wmin

Perform Standard VHS Collisions

Generate/Modify Particles with:
±∆w/f = ±min(wi,wj)/f

Update 〈σv〉max
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REVIEW OF CONSERVATIVE MERGE

Merge to Pair→ DOF for Conservation:

(n+2):2 yields Exact Mass,
Momentum, and Kinetic Energy
Conservation

Applied Spatially also Shown to
Conserve Electrostatic Energy

Though Energy Conserving,
Still Thermalizes VDF

Selection of Near Neighbors in VDF
Limits Thermalization

Merge via Separate Octree/Species
Only Change for Mixtures!

wcell =
∑(n+2)

i wi

~v = 1
wcell

∑(n+2)
i wi~vi

V2 = 1
wcell

∑(n+2)
i wi

(
~vi −~v

)2

w(a/b) = wm/2

~v(a/b) = ~v± R̂
√

V2

Similarly:~x(a/b) =~x± R̂
√

X2
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Conserve Electrostatic Energy

Though Energy Conserving,
Still Thermalizes VDF

Selection of Near Neighbors in VDF
Limits Thermalization

Merge via Separate Octree/Species
Only Change for Mixtures!

wcell =
∑(n+2)

i wi

~v = 1
wcell

∑(n+2)
i wi~vi

V2 = 1
wcell

∑(n+2)
i wi

(
~vi −~v

)2

w(a/b) = wm/2

~v(a/b) = ~v± R̂
√

V2

Similarly:~x(a/b) =~x± R̂
√

X2
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Momentum, and Kinetic Energy
Conservation

Applied Spatially also Shown to
Conserve Electrostatic Energy

Though Energy Conserving,
Still Thermalizes VDF

Selection of Near Neighbors in VDF
Limits Thermalization

Merge via Separate Octree/Species
Only Change for Mixtures!

Octree Velocity Bins

Efficient Neighbor Selection
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FROM RGD30: MACH 2 ARGON SHOCK

1D Normal Argon Shock Test
Simple Verification vs. DS1V
Initial Conditions:
T0 = 293K, n0 = 1E22/m3, v0 = 637.4(m/s)

Initial Jump to Post-Shock at 1cm
VHS Collisions:
Tref =273K, dref =4.17Å, ωVHS=0.81

Time Average:
n̄ from t∈ [80, 100)µs

Error (Normalized L1):
err=|n− n̄|/n̄

Error Controlled: err ∝
√

N/cell

Target N/Cell Quadrupled per Line
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FROM RGD30: MACH 8 ARGON BOW SHOCK

2D Argon Shock Test
Initial Conditions like M=2 Except:
v0 = 2550m/s

Specular: x=5− 5.04mm with y=±2mm
Half Domain Modeled:
80µm × 80µm Cells

Time Average:
n̄ from t∈ [80, 100)µs

SWPM Similar to Standard DSMC
Despite Different Np/Cell

TURF: n - Standard DSMC

TURF: n - SWPM+Octree

TURF Np/Cell - Standard DSMC

TURF Np/Cell - SWPM+Octree
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ROBERT MARTIN (AFRL/RQRS)

TURF Np/Cell - SWPM+Octree
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HE:XE MIXTURE SHOCK

1D Normal He:Xe Shock Test
Mach 3.89 with He:Xe of 97:3
(i.e. Bird ’94 Fig 12.35)

Highlights Species Separation
Separation Peak at ρHe ≈ ρXe

DSMC needs 33x He:Xe Macroparticles
(From mXe/mHe)
Reduced Particle Count Introduces Error
Error in Time Average at Baseline
Instantaneous: Dramatic Noise in Xe

Noise Reduction via Variable Weights?

Converged 100x Baseline
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Error in Time Average at Baseline
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Noise Reduction via Variable Weights?

Comparison 10x vs. 100x

ROBERT MARTIN (AFRL/RQRS) DISTRIBUTION A: APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED; PA #17517 12 / 21



HE:XE MIXTURE SHOCK

1D Normal He:Xe Shock Test
Mach 3.89 with He:Xe of 97:3
(i.e. Bird ’94 Fig 12.35)
Highlights Species Separation
Separation Peak at ρHe ≈ ρXe

DSMC needs 33x He:Xe Macroparticles
(From mXe/mHe)
Reduced Particle Count Introduces Error
Error in Time Average at Baseline

Instantaneous: Dramatic Noise in Xe

Noise Reduction via Variable Weights?

Comparison Baseline vs. 100x

ROBERT MARTIN (AFRL/RQRS) DISTRIBUTION A: APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED; PA #17517 12 / 21



HE:XE MIXTURE SHOCK

1D Normal He:Xe Shock Test
Mach 3.89 with He:Xe of 97:3
(i.e. Bird ’94 Fig 12.35)
Highlights Species Separation
Separation Peak at ρHe ≈ ρXe

DSMC needs 33x He:Xe Macroparticles
(From mXe/mHe)
Reduced Particle Count Introduces Error
Error in Time Average at Baseline
Instantaneous: Dramatic Noise in Xe

Noise Reduction via Variable Weights?

Instantaneous Baseline vs. 100x

ROBERT MARTIN (AFRL/RQRS) DISTRIBUTION A: APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED; PA #17517 12 / 21



HE:XE MIXTURE SHOCK

1D Normal He:Xe Shock Test
Mach 3.89 with He:Xe of 97:3
(i.e. Bird ’94 Fig 12.35)
Highlights Species Separation
Separation Peak at ρHe ≈ ρXe
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HE:XE MIXTURE SHOCK - FRACTIONAL DSMC

1D He:Xe Shock with SWPM+Octrees
Xe Noise Controlled by 1:1 Target
He:Xe Noise Comparable

Direct Noise Control by Target Ratio
Converged Error Finite! (1:1 Target)
Error Source Still Unidentified...
Potentially Sensitivity to He Tails?
-Merge Impacts Higher Moments
-TBD Error vs. He-Noise Level
-Improvement Merge to Preserve Tails
Adaptation of SWMP Incorrect?
-# of Collisions Sampled as WDF Varies?
-Collision Pair Rule Wrong, wi � wj?

Error Identification in Future Work

100x vs. FDSMC 1:1
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ROTHE’S HE:AR FREE-JET EXPERIMENT

Helium-Argon Mixture

Expanded through Nozzle to Vacuum

e-Beam Concentration Measurements

Jet Flow Layout

r=96mm

x=−24mm

r=96mm

r

x

Chamber Stream

Fixed
Pressure
Outflow

Chamber
Stream

Barrel Shock
Mach
Disc

Axis of Symmetry

Expansion

Jet Boundary

x=248mm

Re=533
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PRIOR RESULTS FROM DS2V AND CONTINUUM

Case Tested in PhD & RGD27:

Disc
Mach

∞P XAr

XAr
∞P

∞

∞

v
in =0

T

∞P v
in =0 ∞T

∞T

XAr
∞P

∞
d  v/dx=0ρ

∞T

∞T

dXAr /dx=0
∞P

d  v/dx=0ρ

∞T

dXAr /dx=0
∞P

d  v/dx=0ρ

XAr∞

Jet Boundary

x=−24mm

x=−112mm x

r

Monte Carlo Boundary Conditions

Axis of Symmetry

Barrel Shock

x=248mm

∞
, ,

, ,,

Continuum Boundary Conditions

,d  v/dr=0ρ

r =96mm

r =96mm

Surrogate for FRC Injection

Dynamic Range� Shocks

Solution from DS2V

Solution from SPARTAN
(Navier-Stokes + Diffusion Velocity)
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FEATURES FOUND VIA SIMULATIONS

1 Wing Increases near Nozzle Edge

2 Lower Radial Boundary Edge Concentration
3 Deeper Jet Edge Concentration Drop

Experimental DS2V SPARTAN
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CHALLENGES FOR JET IN TURF

TURF Naturally 3D Cartesian

Considered 2D-Axisymmetric TURF

Simple DSMC but Merge Complex
(Conservation on v‖v⊥-Quadtrees?)

Opted to Run Coarse Full 3D
(Simplified Boundary Conditions)

3D Expensive at Tractable Resolution

Added Collision Sub-Cells to TURF

Fractional DSMC Controls Np/Cell

Linear Density Obscures Results

Issue Clearer with NpAr/Cell

XAr to RX-Plane→ for Detailed Results...

Standard 3D DSMC

Multi-Species Fractional
DSMC
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PRELIMINARY TURF RESULTS: HE:AR JET

1 Standard DSMC Poor Results

2 2x2x2 Collision Cell Improves Standard DSMC
3 SWPM+Octree Significantly Better (2x2x2 Collision Cell)

Experimental DS2V
TURF

1:1 - Collision:Sample
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Experimental DS2V
TURF
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FUTURE DIRECTIONS: HYBRID ∂f

The ∂f -Boltzmann for f = f eq + f dev

∂f - Concept Old

How to make ∂f cheaper than full-f
(Must adapt DOF Usage..?)

Recent Progress using ±δ-weight Particles

Requires Remapping due to Particle Growth

SWPM has Similar Issue
(Basis for Octree B2B Collisions)

Octree: Bin Moments, Mi → Particles

Root Bin Sum→ Equilibrium Moments

∂Mi from MBin
i -MEq

i

B2B Collision Recast with δw Particles

Collision Work ∝ ∂f , not f

Valid at Adaptive Tree Depths

Entropy Estimate for DOF Distribution

Strong Landau Damping

P-P: v+,w+ → v’+,w’+
P-N: v+,w- → 2v+,v’-,w’-
N-N: v-,w- → 2v-,2w-,v’+,w’+
P-M: M,v+ → M,w-,v’+,w’+
N-M: M,v- → M,w+,v’-,w’-
M-M: ∅

Yan, JCP 309 (2016) 18-36Combine with 26-Tree
XV→Multigrid Solves?
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(Basis for Octree B2B Collisions)

Octree: Bin Moments, Mi → Particles

Root Bin Sum→ Equilibrium Moments

∂Mi from MBin
i -MEq

i

B2B Collision Recast with δw Particles

Collision Work ∝ ∂f , not f

Valid at Adaptive Tree Depths

Entropy Estimate for DOF Distribution

Strong Landau Damping

P-P: v+,w+ → v’+,w’+
P-N: v+,w- → 2v+,v’-,w’-
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N-M: M,v- → M,w+,v’-,w’-
M-M: ∅

Yan, JCP 309 (2016) 18-36

Combine with 26-Tree
XV→Multigrid Solves?

ROBERT MARTIN (AFRL/RQRS) DISTRIBUTION A: APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED; PA #17517 19 / 21



FUTURE DIRECTIONS: HYBRID ∂f

The ∂f -Boltzmann for f = f eq + f dev

∂f - Concept Old

How to make ∂f cheaper than full-f
(Must adapt DOF Usage..?)

Recent Progress using ±δ-weight Particles

Requires Remapping due to Particle Growth

SWPM has Similar Issue
(Basis for Octree B2B Collisions)

Octree: Bin Moments, Mi → Particles

Root Bin Sum→ Equilibrium Moments

∂Mi from MBin
i -MEq

i

B2B Collision Recast with δw Particles

Collision Work ∝ ∂f , not f

Valid at Adaptive Tree Depths

Entropy Estimate for DOF Distribution

Strong Landau Damping

P-P: v+,w+ → v’+,w’+
P-N: v+,w- → 2v+,v’-,w’-
N-N: v-,w- → 2v-,2w-,v’+,w’+
P-M: M,v+ → M,w-,v’+,w’+
N-M: M,v- → M,w+,v’-,w’-
M-M: ∅

Yan, JCP 309 (2016) 18-36

Combine with 26-Tree
XV→Multigrid Solves?

ROBERT MARTIN (AFRL/RQRS) DISTRIBUTION A: APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED; PA #17517 19 / 21



FUTURE DIRECTIONS: HYBRID ∂f

The ∂f -Boltzmann for f = f eq + f dev

∂f - Concept Old

How to make ∂f cheaper than full-f
(Must adapt DOF Usage..?)

Recent Progress using ±δ-weight Particles

Requires Remapping due to Particle Growth

SWPM has Similar Issue
(Basis for Octree B2B Collisions)

Octree: Bin Moments, Mi → Particles

Root Bin Sum→ Equilibrium Moments

∂Mi from MBin
i -MEq

i

B2B Collision Recast with δw Particles

Collision Work ∝ ∂f , not f

Valid at Adaptive Tree Depths

Entropy Estimate for DOF Distribution

Stochastic Weight Particle Method
(SWPM)

wi=wi −∆wij & wj=wj −∆wij

w(Np+1)=∆wij & w(Np+2)=∆wij

+2 Particles/Collision
RGD30

Combine with 26-Tree
XV→Multigrid Solves?

ROBERT MARTIN (AFRL/RQRS) DISTRIBUTION A: APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED; PA #17517 19 / 21



FUTURE DIRECTIONS: HYBRID ∂f

The ∂f -Boltzmann for f = f eq + f dev

∂f - Concept Old

How to make ∂f cheaper than full-f
(Must adapt DOF Usage..?)

Recent Progress using ±δ-weight Particles

Requires Remapping due to Particle Growth

SWPM has Similar Issue
(Basis for Octree B2B Collisions)

Octree: Bin Moments, Mi → Particles

Root Bin Sum→ Equilibrium Moments

∂Mi from MBin
i -MEq

i

B2B Collision Recast with δw Particles

Collision Work ∝ ∂f , not f

Valid at Adaptive Tree Depths

Entropy Estimate for DOF Distribution

Octree ∂f -Boltzmann
Bin-to-Bin Collisions

Sample Collisions using
∆w: for P-P, P-N, N-N, P-M, N-M

M-M:∅
Combine with 26-Tree

XV→Multigrid Solves?

ROBERT MARTIN (AFRL/RQRS) DISTRIBUTION A: APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED; PA #17517 19 / 21



FUTURE DIRECTIONS: HYBRID ∂f

The ∂f -Boltzmann for f = f eq + f dev

∂f - Concept Old

How to make ∂f cheaper than full-f
(Must adapt DOF Usage..?)

Recent Progress using ±δ-weight Particles

Requires Remapping due to Particle Growth

SWPM has Similar Issue
(Basis for Octree B2B Collisions)

Octree: Bin Moments, Mi → Particles

Root Bin Sum→ Equilibrium Moments

∂Mi from MBin
i -MEq

i

B2B Collision Recast with δw Particles

Collision Work ∝ ∂f , not f

Valid at Adaptive Tree Depths

Entropy Estimate for DOF Distribution

Octree ∂f -Boltzmann
Bin-to-Bin Collisions

Sample Collisions using
∆w: for P-P, P-N, N-N, P-M, N-M

M-M:∅
Combine with 26-Tree

XV→Multigrid Solves?

ROBERT MARTIN (AFRL/RQRS) DISTRIBUTION A: APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED; PA #17517 19 / 21



FUTURE DIRECTIONS: HYBRID ∂f

The ∂f -Boltzmann for f = f eq + f dev

∂f - Concept Old

How to make ∂f cheaper than full-f
(Must adapt DOF Usage..?)

Recent Progress using ±δ-weight Particles

Requires Remapping due to Particle Growth

SWPM has Similar Issue
(Basis for Octree B2B Collisions)

Octree: Bin Moments, Mi → Particles

Root Bin Sum→ Equilibrium Moments

∂Mi from MBin
i -MEq

i

B2B Collision Recast with δw Particles

Collision Work ∝ ∂f , not f

Valid at Adaptive Tree Depths

Entropy Estimate for DOF Distribution

Octree ∂f -Boltzmann
Bin-to-Bin Collisions

Sample Collisions using
∆w: for P-P, P-N, N-N, P-M, N-M

M-M:∅
Combine with 26-Tree

XV→Multigrid Solves?

ROBERT MARTIN (AFRL/RQRS) DISTRIBUTION A: APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED; PA #17517 19 / 21



FUTURE DIRECTIONS: HYBRID ∂f

The ∂f -Boltzmann for f = f eq + f dev

∂f - Concept Old

How to make ∂f cheaper than full-f
(Must adapt DOF Usage..?)

Recent Progress using ±δ-weight Particles

Requires Remapping due to Particle Growth

SWPM has Similar Issue
(Basis for Octree B2B Collisions)

Octree: Bin Moments, Mi → Particles

Root Bin Sum→ Equilibrium Moments

∂Mi from MBin
i -MEq

i

B2B Collision Recast with δw Particles

Collision Work ∝ ∂f , not f

Valid at Adaptive Tree Depths

Entropy Estimate for DOF Distribution

Octree ∂f -Boltzmann
Bin-to-Bin Collisions

Sample Collisions using
∆w: for P-P, P-N, N-N, P-M, N-M

M-M:∅

Combine with 26-Tree
XV→Multigrid Solves?

ROBERT MARTIN (AFRL/RQRS) DISTRIBUTION A: APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED; PA #17517 19 / 21



FUTURE DIRECTIONS: HYBRID ∂f

The ∂f -Boltzmann for f = f eq + f dev

∂f - Concept Old

How to make ∂f cheaper than full-f
(Must adapt DOF Usage..?)

Recent Progress using ±δ-weight Particles

Requires Remapping due to Particle Growth

SWPM has Similar Issue
(Basis for Octree B2B Collisions)

Octree: Bin Moments, Mi → Particles

Root Bin Sum→ Equilibrium Moments

∂Mi from MBin
i -MEq

i

B2B Collision Recast with δw Particles

Collision Work ∝ ∂f , not f

Valid at Adaptive Tree Depths

Entropy Estimate for DOF Distribution

Octree ∂f -Boltzmann
Bin-to-Bin Collisions

Sample Collisions using
∆w: for P-P, P-N, N-N, P-M, N-M

M-M:∅

Combine with 26-Tree
XV→Multigrid Solves?

ROBERT MARTIN (AFRL/RQRS) DISTRIBUTION A: APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED; PA #17517 19 / 21



FUTURE DIRECTIONS: HYBRID ∂f

The ∂f -Boltzmann for f = f eq + f dev

∂f - Concept Old

How to make ∂f cheaper than full-f
(Must adapt DOF Usage..?)

Recent Progress using ±δ-weight Particles

Requires Remapping due to Particle Growth

SWPM has Similar Issue
(Basis for Octree B2B Collisions)

Octree: Bin Moments, Mi → Particles

Root Bin Sum→ Equilibrium Moments

∂Mi from MBin
i -MEq

i

B2B Collision Recast with δw Particles

Collision Work ∝ ∂f , not f

Valid at Adaptive Tree Depths

Entropy Estimate for DOF Distribution

Octree ∂f -Boltzmann
Bin-to-Bin Collisions

Sample Collisions using
∆w: for P-P, P-N, N-N, P-M, N-M

M-M:∅

Combine with 26-Tree
XV→Multigrid Solves?

ROBERT MARTIN (AFRL/RQRS) DISTRIBUTION A: APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED; PA #17517 19 / 21



FUTURE DIRECTIONS: HYBRID ∂f

The ∂f -Boltzmann for f = f eq + f dev

∂f - Concept Old

How to make ∂f cheaper than full-f
(Must adapt DOF Usage..?)

Recent Progress using ±δ-weight Particles

Requires Remapping due to Particle Growth

SWPM has Similar Issue
(Basis for Octree B2B Collisions)

Octree: Bin Moments, Mi → Particles

Root Bin Sum→ Equilibrium Moments

∂Mi from MBin
i -MEq

i

B2B Collision Recast with δw Particles

Collision Work ∝ ∂f , not f

Valid at Adaptive Tree Depths

Entropy Estimate for DOF Distribution

Octree ∂f -Boltzmann
Bin-to-Bin Collisions

Sample Collisions using
∆w: for P-P, P-N, N-N, P-M, N-M

M-M:∅
Combine with 26-Tree

XV→Multigrid Solves?

ROBERT MARTIN (AFRL/RQRS) DISTRIBUTION A: APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED; PA #17517 19 / 21



CONCLUSION

Current Results:

SWPM+Octree Option for Variable Weight Mixture Collisions

Multiple Octree Merge only Modification for Multi-Species

Initial Verification vs. Standard Shock Cases

Merge/Target Enables Direct Control of Noise

Unidentified Systematic Error with 1:1 Target

Initial Testing on 3D Mixture Expansion Better with SWPM+Octree

Future Efforts:

Additional Investigation of Error Source for Disparate Weights

Improved Merge/Control of Tails

Apply to Reacting Flow

Adaptation for δf
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END

Thank You
This material is based upon work supported by the Air Force Office of

Scientific Research under award number FA9550-17RQCOR465.
Any opinions, finding, and conclusion or recommendations expressed in this material are those of the author and

do not necessarily reflect the views of the United States Air Force.

Questions?
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