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Abstract

A language called dmpl for programming distributed real-time, mixed-criticality software is
presented. dmpl supports a distributed system in which each node executes a set of peri-
odic real-time threads that are scheduled on the basis of their priority and criticality. Both
synchronous and asynchronous threads are allowed. The syntax and semantics of dmpl are for-
mally described. A compiler that generates c++ code from a dmpl program is presented. Two
methods of verification of properties of synchronous threads via sequentialization are proposed:
fully-automated bounded model checking, and deductive verification with manually-supplied
invariants. dmpl programming and verification are validated on several examples of collision
avoidance in multi-robot systems.
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1 Introduction

Development of verified distributed real-time software (DRTS) is becoming increasingly impor-
tant. A major driver is the movement of safety-critical real-time embedded domains—e.g., au-
tomotive, avionics, medical devices, and robotics—toward more distributed deployments where
multiple physically separated nodes communicate and coordinate to provide increased capability,
resilience to cyber-attacks, fault-tolerance etc. In other words, the traditional “air gap” between
real-time embedded devices is disappearing. For example, there is a push toward autonomous
vehicles, and intersection protocols [1] to reduce accidents. Robots are being deployed in teams
to achieve more complex tasks with increased fault-tolerance [20]. Even medical devices are
being connected in a plug-and-play manner for critical procedures [33].

DRTS brings together two software domains—distributed and real time—each with a rich history
for development, validation, and certification. However, they have been studied and developed
by different communities of researchers and engineers. Consequently, programming languages
have specialized for each domain. For example, languages for distributed systems focus on
parallelization and orchestration of tasks and their results, and average case performance. Dis-
tributed software is developed using a wide variety of languages, and thread scheduling to meet
hard real-time deadlines is not a first class concern. In contrast, real-time software is written
largely in C/C++ and executed on real-time operating systems, with explicit control on thread
scheduling and worst-case response times to meet hard deadlines in a predictable way. The
semantics of communication between nodes is poorly specified and dependent on middleware.
Neither approach is sufficient for producing verified DRTS.

Consequently, DRTS is developed today using languages and tools that neither have the right
concepts and abstractions nor support rigorous verification. In this technical report, we ad-
dress this challenge via a new domain-specific programming language, dmpl, for DRTS. dmpl
combines concepts from both disciplines—real-time via thread-scheduling and distributed via
inter-thread and inter-node communication semantics—in a precise way and supports specifica-
tion and verification of safety properties.

Roles. A dmpl program specifies a set of roles, each consisting of a set of real-time threads that
communicate via shared variables. At runtime, each node of the DRTS executes a specific role.
Each thread executes an infinite sequence of jobs (semantically, each job is a procedure) starting
at regular time intervals (its period). Each node has its own thread scheduler. dmpl supports
mixed-criticality scheduling [3], a form of real-time scheduling that allows threads which perform
tasks with different levels of importance (e.g., engine control vs. multimedia player) to share a
single CPU under normal and overload operating conditions.

Thread Scheduling. In particular, dmpl uses Zero-Slack Rate Monotonic (zsrm) scheduling.
Specifically, each thread is statically assigned a priority (using Rate-Monotonic assignment, i.e.,
threads with shorter period have higher priority) and a criticality (based on the importance of
the task performed by the thread). We assume that all threads are zsrm schedulable, i.e.,: (i)
under normal conditions, all jobs complete before their deadline (i.e., arrival time of the next
job); (ii) under overload conditions, low-criticality jobs are suspended if necessary to enable high-
criticality jobs to finish before their deadlines. In practice, this asymmetric temporal protection
is implemented by a combination of a static schedulability analysis and a runtime scheduler.
The details of zsrm are available elsewhere [9] and are beyond the scope of this paper.

Communication. dmpl threads (within and across nodes) communicate via shared vari-
ables. The state space explosion resulting from variable-based interaction between threads
is a major source of complexity for both programming and verification. dmpl uses two
complexity-reduction mechanisms to ameliorate this problem. First, each job has a transac-
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tional semantics—on arrival, the job reads all shared variables atomically into local copies, then
operates on these local copies to compute new values, and finally writes the new values back
atomically before terminating. This “read-execute-write” behavior reduces inter-thread interac-
tion and enables us to abstract away details of thread scheduling and network delays to better
understand the behavior of the program. It is implemented via locks supported by the zsrm
scheduler.

Synchronization. Second, dmpl supports two kinds of threads—synchronous and asyn-
chronous—each executing under the corresponding model of computation. Values written to a
share variable by jobs of an asynchronous thread are observed by other threads only under the
restriction that older writes cannot be observed after newer ones—no other memory consistency
is provided. In contrast, a synchronous thread executes in rounds. During each round, one job
of the thread executes on each node. Writes to shared variables in round i are guaranteed to
be observed during (and only during) round i + 1. This restricted communication further re-
duces the system state space and has been known to reduce verification complexity [22]. Shared
variables and synchronous jobs are implemented via the madara [12] middleware.

Semantics. When defining the semantics of dmpl, we have to incorporate the effects of both
zsrm scheduling and the synchronous model of computation. Interestingly, both can be mod-
eled by allowing jobs to abort their transactions non-deterministically (i.e., to behave like No
Operation (NOP) statements). For zsrm, a low-priority job that is suspended under overload
conditions is semantically a NOP. In the case of the synchronous threads, a job that cannot
proceed because other nodes are yet to complete the previous round is semantically a NOP.
Note that the transactive nature of jobs provides a natural way to convert them to NOPs. We
present this formally later.

Specification and Verification. dmpl also supports specification of safety (i.e., reachability)
properties of synchronous threads. Since jobs form the natural unit of computation in dmpl
programs, such properties are expressed as job assertions: conditions that must hold at the
beginning of each job of a synchronous thread. Since dmpl programs are distributed, assertions
in dmpl enable us to express conditions over multiple (e.g., pairs of) nodes. This is important
to capture requirements that involve more than one node (e.g., collision avoidance). Verification
is done through sequentialization. In essence, for the target synchronous thread, we construct
a semantically equivalent sequential program which is then verified via existing software verifi-
cation techniques. Both bounded verification (for bug finding) and deductive verification (for
proving correctness) are supported.

Legacy Components. We envision that dmpl will be used to implement the overall concurrency
(threading) and communication (shared variables) structure, as well as key protocols and al-
gorithms that must be verified formally. The rest of the system will be implemented by using
existing components and libraries (e.g., image processing, planning, sensing, and actuation) To
support this mode of development, dmpl threads can invoke external functions that are linked
to c++ libraries during compilation. dmpl also supports a limited set of c++ types to ease
programming and interaction with such external functions. Note, however, that such interaction
is restricted. In particular, the external functions can only return a value that could be stored
in a dmpl variable. No indirect modifications of dmpl variables (e.g., through pointers) is al-
lowed. In our experience, this provides a good tradeoff between ease of development, cleanliness
of semantics, and soundness of verification.

Code Generation and Validation. We show how to generate c++ code from dmpl programs.
We implemented this code generation (and sequentialization for verification purposes) in a com-
piler called dmplc. To validate dmplc, we ran several coordinated multi-robot mission ex-
amples on the Linux operating system, implemented a realistic physical environment with the
v-rep [29] simulator, and also employed publicly-available implementations of zsrm [35] and
madara [21]. Our examples use synchronous threads to implement a collision avoidance pro-
tocol and asynchronous threads to perform other mission-relevant tasks (such as path planning
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and self-adaptation). We show that bounded model checking is able to detect bugs in incorrect
versions of the protocol; deductive verification with manually supplied invariants proves the
correct version to be safe.

Non-Goals. Our contribution comes from the perspective of programming language design and
implementation (PLDI), following the principle that a well-defined language should drive de-
velopment and verification. We rely on results from several complementary disciplines. For
example, we use zsrm for schedulability, madara for communication and synchronization, se-
quentialization and software model checking for verification, Linux and v-rep for the platform
and environment, and c++ as the target language. Also, we assume that security, networking,
performance, timing verification (i.e., schedulability), and similar issues are handled separately.
These choices were guided by their natural support for implementing dmpl semantics, public
availability, and technical familiarity. We do not claim that they are optimal or that they were
made by discarding others. However, they do lead to an effective engineering process for verified
DRTS and identify key design decisions that must be made for verified DRTS development.

The rest of this report is organized as follows. In Section 2, we survey related work. In Section 3,
we present a DRTS as a motivating example. In Section 4 we present the syntax and semantics
of dmpl. In Section 5 we describe how c++ code can be generated from a dmpl program. In
Section 6 we present an approach for verifying safety properties over synchronous threads via
sequentialization. Finally, in Section 7 we evaluate our approach and in Section 8, we discuss
areas for future work and conclude.
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2 Related Work

Real-time systems comprise a very large area of research. Broadly, zsrm [9] falls into the
class of preemptive fixed-priority scheduling. This line of work originates as early as Rate-
Monotonic scheduling [19] with many subsequent refinements and variations, such as mutual
exclusion mechanisms [26]. zsrm also handles mixed-criticality [30], which is a more recent
concept emerging from the need to co-locate multiple software functions with different levels
of importance on a single hardware infrastructure to take advantage of features such as more
powerful processors. This area has spawned significant research [2, 3].

There is a very wide literature on languages for concurrent and distributed systems, such as
CSP [14], CCS [23], and the π-calculus [24]. Most of these languages are targeted towards
modeling and verifying concurrent systems (such as FDR [13] for CSP), not code generation.
The Occam-π [31] language blends CSP and the π-calculus, and supports code generation and
verification. However, it is not targeted toward the development of real-time systems and its
semantics has not been connected to periodic tasks with hard deadlines or mixed-criticality.
SystemJ [27] is aimed at programming distributed GALS systems. Although threads do not
have to be real-time, the system is partitioned into multiple asynchronous clock domains. This
means that, unlike dmpl, threads across clock domains cannot execute synchronous protocols.
Also, communication is based on message-passing, not shared variables.

Software verification is yet another wide research area [15]. Our work complements verification
techniques for sequential C programs since we reduce our verification problem to a sequential
one. Sequentialization has been widely used for concurrent program verification. However,
most of this work is targeted toward multi-threaded software [18, 28, 7] or real-time software [5]
executing on a single processor, not distributed ones. There has also been work on verifying
distributed algorithms [16], while our goal is to verify software.

dmpl is inspired by the language dasl [4] and its verification, but generalizes it significantly.
dasl allows only one synchronous thread per node, and has no support for mixed-criticality, or
deductive verification. dmpl supports multiple synchronous and asynchronous mixed-criticality
threads, transactive job semantics, and both bounded and deductive verification, which are
critical for real system development. The P language [10] is also a domain specific language
developed to facilitate programming and verification. However, it targets asynchronous event
driven programs.

We build on the work of Kyle et al. [17] but differ from it substantially. While they presented
dmpl in an ad-hoc manner and focused on the specification and verification of probabilistic
properties via statistical model checking [34], we give formal syntax and semantics of dmpl,
and focus on the specification and verification of non-deterministic behavior via software model
checking.
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3 An Example DRTS

Consider the distributed system shown in Figure 3.1, which consists of a fleet of five flying robots
(or nodes) on a two-dimensional grid. One node has the sensors critical for mission success, and
plays the role of the leader. The remaining four nodes provide defensive countermeasures and
play the role of protector. Their defenses rely on being positioned between the leader node and
any attackers. For the mission to succeed, the leader must follow a specific flight path and reach
a particular location by the end of the mission time T .

Protectors best cover the sensor node by flying close to it; however, this raises the chance of col-
lisions. Nodes execute a collision-avoidance protocol. The protocol slows down the overall speed
of the fleet. The degree of slowdown depends on the level of communication and coordination
needed by the protocol.

We assume that different areas present different levels of attack (i.e., hazards) to the leader. In
particular, the map is a 10 × 10 grid. For the upper right 5 × 5 cells, we assume high hazards
(between 0.5 and 0.9, inclusive, uniformly distributed). For the remaining cells, we assume low
hazards (between 0 and 0.4, inclusive, also uniformly distributed). In Figure 3.1, high hazard
cells are colored red and low hazard cells are colored gray.

The system has two formations: tight and loose. In tight formation, the protectors are closer to
the leader and provide better protection. However, the tight formation moves at about half the
speed of the loose formation. The leader executes a simple adaption system which selects which
formation to use based on the upcoming hazards and the remaining mission time in an attempt
to minimize danger, while maintaining a high probability of mission completion by time T .

The dmpl program for this DRTS consists of two roles—leader and protector. The runtime
instance of the program corresponding to the system consists of one node executing the leader
role, and the remaining four nodes executing the protector role. The leader node executes three
threads: (i) a synchronous thread with high criticality and low-priority that implements the
collision avoidance protocol; (ii) an asynchronous thread with low criticality and high priority
to run a path planning algorithm and compute the next waypoint; and (iii) an asynchronous
thread with low criticality and medium priority to run the adaptation algorithm and decide
when a formation change is needed. The adaptation algorithm itself is implemented in a sepa-
rate component, and invoked through an external function call. Each protector node runs only
two threads—the synchronous collision avoidance and the asynchronous path planning. On each
node, the path planning thread communicates with the collision avoidance thread by updating
the next waypoint coordinate. In addition, the adaptation thread on the leader node commu-
nicates with the waypoint thread (on all nodes) by updating a shared variable indicating the
formation type. Note that all features of dmpl are required to implement this system.

CMU/SEI-2016-TR-005 | SOFTWARE ENGINEERING INSTITUTE | Carnegie Mellon University 5

Distribution Statement A: Approved for Public Release; Distribution is Unlimited



High Hazard 
Area 

Low Hazard 
Area 

Loose 
Formation 

Tight 
Formation 

Figure 3.1: Example DRTS with a five-node reconnaissance mission
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4 The DMPL Language

A dmpl program is comprised of a triple (GV ,LV , R), where GV is a set of global variables, LV
is a set of local variables, and R is a set of roles. A role is comprised of a pair (S,A) where S is
a set of synchronous threads, and A is a set of asynchronous threads. A thread is comprised of a
triple (π, κ, f) where π is its period, κ is its criticality, and f is its job-function that is executed
in each period. The body of f is a set of statements that accesses local, global, temporary and
id variables.

dmpl supports calls to two types of functions: (i) internal functions declared as part of the dmpl
program; and (ii) external c++ functions. External functions operate on an external state and
cannot modify dmpl variables. However, they can return values that can be used by their caller
internal function to update dmpl variables. The job function of a thread must be internal. The
set of all internal and external functions are denoted IntFn and ExtFn, respectively. We write
Func to mean the set of all functions, i.e., Func = IntFn ∪ ExtFn.

4.1 Abstract Syntax

Let TV be a set of temporary variables, IV be a set of id variables, and id be a distinguished
variable such that GV , LV , TV , IV and {id} are mutually disjoint. The body of a function is
a statement. The abstract syntax of statements, lvalues and expressions is given by the BNF
grammar in Figure 4.1. Intuitively, skip is a NOP, l = e is an assignment, ite is an if-then-else
statement, while is a while loop, all(v, st) executes st iteratively by substituting v for the ID
of each node, 〈st1 ; . . . ; stk〉 executes st1 through stk in sequence, ν(v, st) introduces a fresh
temporary variable v in scope of st , ∼ is an unary operator, and � is a binary operator. all
enables iteration over all node IDs without knowing the exact number of such IDs a priori.
In addition, the special expression � denotes the void value. An internal function f with k
arguments is a triple (p, b, r) where p ∈ TV k is the list of its arguments, b ∈ stmt is a statement
denoting its body, and r ∈ exp is an expression denoting its return value.

4.1.1 Types and Operations

All dmpl variables are typed. These types and operations on them have the same interpretation
as in c++. The following numeric types are supported: int and char (both signed and
unsigned variants), double, bool. Array types are also allowed. Given a type τ and a positive
integer n, the array type with n elements of type τ is denoted by τ [n]. Only numeric and bitwise
operations over the supported types are allowed (e.g., the address of a variable cannot be taken).
The void type is allowed as the return type of functions. The set of all types is denoted T. The
type of variable v is denoted typ(v).

4.1.2 Scoping and Assumptions

We assume that: (i) variables in GV ∪ LV ∪ {id} are always in scope; (ii) for each statement
all(v, st) and ν(v, st), variable v is in scope of st ; (iii) scoping is unambiguous, and only
variables in scope are used in expressions; (iv) id and id variables do not appear on the LHS
of assignments, i.e., they are read-only; (v) functions are called with arguments of proper type,
and their return values (if any) are also stored into variables of proper type, where “proper”
means allowed by the semantics of c++. Note that these assumptions do not limit expressivity.
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(Statements) stmt := skip | lval = exp

| ITE(exp, stmt , stmt)

| WHILE(exp, stmt)

| ALL(IV , stmt)

| 〈stmt ; . . . ; stmt〉
| Func(exp, . . . , exp)

| TV = Func(exp, . . . , exp)

| ν(TV , stmt)

(LValues) lval := GV | LV | TV

(Expressions) exp := Z | lval | GV @IV

| id | IV |∼ exp | exp � exp

Figure 4.1: Grammar of statements and expressions

4.2 Program Instance

An instance of a dmpl program P of size n, denoted Pn, is a finite mapping from ids in the range
[0, n) to roles. This induces a mapping from ids to threads in a natural manner, if Pn(i) = (S,A),
then S(i) = S and A(i) = A. In essence, Pn is a collection of n nodes, each with a distinct id in
the range [0, n) where the node with id i, denoted Ni, executes the role Pn(i).

4.2.1 Global Variable Expansion and Ownership

Nodes use global variables to communicate. dmpl enforces every global variable to have a single
writer node, as follows. In the program instance Pn, each global variable v of type τ is expanded
to an array ṽ of type τ [n]. Then, node Ni only writes to the element ṽ[i], but reads from all

elements of ṽ. We write G̃V to mean the set of all expanded global variables, i.e.,

G̃V = {ṽ | v ∈ GV }

As we shall see later, this restriction will be useful to define the semantics of synchronous threads.

4.3 Semantics

Semantically, the program instance Pn is a distributed system with n communicating nodes. We
define this semantics formally in stages, starting with functions and threads, then proceeding to
individual nodes, and finally defining the semantics of a complete program instance. The set of
values over the supported types T is denoted D. The type of a value d is denoted typ(d).

4.3.1 Variable Valuation

Given a set of variables V , let V(V ) be the set of partial mappings from V to values of appropriate
type. In other words:

∀s ∈ V(V ) � ∀v ∈ Dom(s) � typ(v) = typ(s(v))
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Var(e) =



{ẽ} if e ∈ GV
{e} if e ∈ LV ∪ TV ∪ IV ∪ {id}

{ṽ1, v2} if e .
= v1@v2 ∈ GV @IV

Var(e′) if e .
=∼ e′

Var(e1) ∪Var(e2) if e .
= e1 � e2

∅ otherwise

Figure 4.2: Variables appearing syntactically in expressions

e . s =



z if z ∈ Z
s(ẽ)[i] if e ∈ GV
s(e) if e ∈ LV ∪ TV ∪ IV ∪ {id}

s(ṽ1)[s(v2)] if e .
= v1@v2 ∈ GV @IV

∼ (e′ . s) if e .
=∼ e′

(e1 . s) � (e2 . s) if e .
= e1 � e2

Figure 4.3: Evaluation of expressions for node Ni

For any non-void type τ , the initial value I(τ) is 0 cast to τ as per the semantics of c++. Let
I(V ) ∈ V(V ) be the special initial mapping that maps each variable v ∈ V of type τ to I(τ).
We use the terms state and valuation interchangeably.

Let Var(e) denote the set of variables appearing syntactically in expression e, as defined in
Figure 4.2. Let e be an expression and s be a state such that Var(e) ⊆ Dom(s). The evaluation
of e under s, denoted e . s, is defined inductively over the structure of e in a natural manner,
as shown in Figure 4.3. Note that operators are interpreted as in c++, and global variables
evaluate to the i-th element of their expanded version. Also note that e . s is well-defined under
our assumption Var(e) ⊆ Dom(s) since we always apply the mapping s to a variable in its
domain. We write s |= e to mean that the value e . s would be converted to true under the
Boolean conversion rules of c++. The void expression � evaluates to itself under all states,
i.e., � . s = �. If an array is read out of bounds, the result is 0 cast to the type of the array
element. If an array is written out of bounds, it is a NOP.

We define three operations on states: (i) Update: given a state s, variable v, and value d, the
updated state s[v 7→ d] is identical to s except that it maps v to d; (ii) Extension: given a state
s and a variable v 6∈ Dom(s) of type τ , s⊕ v is that state such that:

Dom(s⊕ v) = Dom(s) ∪ {v}
∀v′ ∈ Dom(s) � (s⊕ v)(v′) = s(v′)

(s⊕ v)(v) = I(τ)

and (iii) Restriction: given a state s and a variable v ∈ Dom(s), s	 v is that state such that:

Dom(s	 v) = Dom(s) \ {v}
∀v′ ∈ Dom(s	 v) � (s	 v)(v′) = s(v′)

Thus, s⊕ v extends s with a new variable v set to its initial value, while s	 v projects away v.
We write s ⊕ (v, d) to mean the state (s ⊕ v)[v 7→ d], i.e., the state obtained from s by adding
a new variable v initialized to value d. We use state update to handle assignments, and state
extension and restriction to handle temporary variables. Given a state s and a set of variables
V , we obtain s\V by removing from s mappings for variables in V and s∩V by removing from s
mappings for variables not in V . Given two states s1 and s2 such that Dom(s1)∩Dom(s2) = ∅,
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the state s1 ⊕ s2 denotes their union:

Dom(s1 ⊕ s2) = Dom(s1) ∪Dom(s2)

∀i ∈ [1, 2] � ∀v ∈ Dom(si) � (s1 ⊕ s2)(v) = si(v)

4.3.2 Thread Jobs

Threads in dmpl execute periodically in a read-execute-write manner. Semantically, a thread
t = (π, κ, f) consists of an infinite sequence of jobs that activate at times 0, π, 2π, . . . etc. Each
job atomically copies local and global variables at the beginning into temporary variables, then
operates over these temporary variables to update their values by executing function f , and
finally atomically writes the new values back to the corresponding local and global variables.
Note that due to thread scheduling, a job may not start execution immediately on activation.
It may also be preempted by other jobs during execution.

4.3.3 Thread Scheduling

All dmpl threads are real-time—that is, they have worst case execution times (WCETs) and
deadlines. We assume that threads which belong to a node execute on a single CPU. Threads
are scheduled based on their priorities (π) and criticalities (κ) using Zero-Slack Rate Mono-
tonic (zsrm) scheduling [9]. At a high level, this means that threads with higher priority are
preemptively allocated the CPU during normal operating conditions, while threads with higher
criticality are preemptively allocated the CPU during overload operating conditions. We assume
that threads are schedulable—that is, a job that starts at time i× π completes execution before
time (i + 1) × π under the worst case interference from the other threads. This is achieved by
using an offline zsrm schedulability analysis [9]. WCET estimation is a challenging problem in
its own right [32], especially in the presence of caches and other components. As is common in
schedulability, we assume that WCET estimation is handled through a separate procedure that
covers both code generated from dmpl and external libraries.

4.3.4 External Function Semantics

For each external function f with k parameters, we assume a semantics [[f ]] ⊆ Dk×D. Formally,
(d1, . . . , dk, d) ∈ [[f ]] if and only if the invocation of f with arguments d1, . . . , dk could return
with value d.

4.3.5 Statement Semantics

Let V = G̃V ∪ LV ∪ TV ∪ IV ∪ {id} be the set of all variables, and Vs = G̃V ∪ LV be the
set of shared (i.e., global and local) variables. The semantics of a statement st is given by the
way it updates the values of variables, and the shared variables to which it writes. Formally, it
is the relation [[st ]] ⊆ V(V) × V(V) × 2Vs defined inductively over structure of st . Let us write
{s}[[st ]]{s′, w} to mean (s, s′, w) ∈ [[st ]]. Then, [[·]] is the smallest relation satisfying the rules in
Figure 4.4. A high-level description of the proof-rules is as follows:

• skip: The skip statement has no effect on the state.

• asgn-global: Assignment to a global variable v is semantically an assignment to the i-th
element of its expanded version ṽ.
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• asgn-loc and asgn-tmp: Assignments to local and temporary variables update the lhs
based on the evaluation of the rhs in the current state.

• ite-if and ite-then: If-then-else statements execute the appropriate branch based on the
evaluation of their condition in the current state.

• while-exit and while-loop: A while loop either terminates immediately if the loop
condition fails, or executes the body once and repeats.

• all: The iteration statement executes the body repeatedly, assigning values [0, n) to the
fresh id variable.

• seq: A sequence of statements operates as expected, updating the state by executing its
components one after the other.

• ext-func1 and ext-func2: External functions optionally return a value which is stored
in a temporary variable.

• int-func1 and int-func2: Internal functions update local and global variables only.
They also optionally return a value which is stored in a temporary variable.

• new-var: Fresh variables exist only within the scope of their definition.

• function: The arguments of a function determine its semantics. From the perspective of
its caller, a function updates local and global variables and returns a value.

4.3.6 Thread Semantics

Each thread t = (π, κ, f) ∈ S ∪ A executes an infinite sequence of jobs j0, j1, . . . , with each
job having an arrival time (when it becomes active) and a departure time (when it completes
execution of its function or aborts). In addition, each job ji reads all shared variables before
executing f , and writes the updated values of shared variables back after executing f . Recall
that Vs = G̃V ∪ LV is the set of shared (global and local) variables. We denote the arrival of
a job with the symbol ↑, the departure of a job with the symbol ↓, and the abort of a job with
the symbol †. Thus, an execution of t is an infinite sequence:

〈 (0, ↑, c0, s0, ∅), (0, e0, c
′
0, s
′
0, w

′
0),

(1, ↑, c1, s1, ∅), (1, e1, c
′
1, s
′
1, w

′
1), . . . 〉

such that the following conditions hold:

• Events, timestamps, and states have the correct type:

∀i ≥ 0 � ei ∈ {↓, †} ∧ ci, c′i ∈ R ∧ si, s′i ∈ V(Vs) ∧ w′i ⊆ Vs

• Jobs arrive periodically, require positive time to execute, and timestamps are non-
decreasing:

∀i ≥ 0 � ci ∈ [i× π, (i+ 1)× π) ∧ ci < c′i ∧ c′i ≤ (i+ 1)× π

• The state is properly initialized: s0 = I(Vs).

• If a job aborts, it leaves the state unchanged. Otherwise, it updates the state according
to the semantics of its function:

∀i ≥ 0� (ei =↓ =⇒ {si}[[f ]]{s′i, w′i}) ∧
(ei = † =⇒ (s′i = si ∧ w′i = ∅))
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Intuitively, job ji starts executing at time ci, reads state si, and either updates it to s′i by
executing function f , or aborts and leaves the state unchanged, and finally departs at time
c′i. Moreover, the first job reads the initial values of all variables. The semantics of thread t,
denoted [[t]], is the set of all its executions.

4.3.7 Role Semantics

Next, we combine the executions of all threads into an execution of the role. In doing so, we
must ensure that threads are scheduled correctly based on their priorities, and that states are
observed and updated in a sequentially consistent manner, i.e., when a job arrives, its reads the
most recently written values of local variables. Note that we do not restrict values of global
variables since these are shared across nodes and hence their values are determined by the
inter-node communication. Consider role ρ = (S,A). An execution of ρ is an infinite sequence:

η = 〈(ι0, e0, c0, s0, w0, t0), (ι1, e1, c1, s1, w1, t1), . . .〉

such that the following conditions hold:

• Each ti ∈ S ∪A is a thread.

• For each thread t ∈ S ∪A, the projection of η on t, i.e., the subsequence of η consisting of
elements with ti = t, is an execution of t.

• Timestamps are non-decreasing, i.e., ∀i ≥ 0 � ci ≤ ci+1.

• A lower priority thread tl can only preempt a higher priority thread th when it is in
overload and has higher criticality than th. In zsrm, a thread is said to be in overload if
it has an active job and the current time is no less than the job’s zero-slack instant (ZSI).
Informally, the ZSI of a job is the latest time at which it can be started (or resumed) so
that it completes its remaining execution before its deadline. Given a thread t and a job
index ι, we write ZSI (t, ι) to denote the ZSI of the ι-th job of t. We note that ZSI (t, ι)
is statically computable via the zsrm schedulability analysis. Thus, whenever η has a
sub-sequence:

〈(ι1, e1, c1, s1, t1), (ι2, e2, c2, s2, t2), (ι3, e3, c3, s3, t3)〉

such that:
t1 = t3 ∧ ι1 = ι3 ∧ π(t1) > π(t2)

then the following must be true:

κ(t2) > κ(t1) ∧ c2 ≥ ZSI (t1, ι1)

• Each arriving job reads the value of local variables written by the most recently success-
fully completed job. For each i ≥ 0, and v ∈ LV , let PrWr(i, v) be the set of indices
corresponding to previous successfully completed jobs that wrote to v, i.e.,

PrWr(i, v) = {j < i | ej =↓ ∧v ∈ wj}

Then:

∀i ≥ 0 � ei =↑ =⇒ ∀v ∈ LV � si(v) = sm(v),

where m = max({0} ∪ PrWr(i))

Note that in the absence of prior writes to v, m evaluates to 0, and the initial value of v
is read.
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4.3.8 Program Instance Semantics

Finally, we obtain the semantics of a program instance by combining the semantics of all the
roles. In doing so, we must ensure that the values of global variables are propagated across
nodes in a consistent manner. Since dmpl nodes communicate over unreliable networks with
no synchronized clocks and no guaranteed order of message delivery, we do not have any total
sequential consistency between nodes in terms of how global variables are modified and observed.
Informally, when a job reads a global variable v, it must observe a value no earlier than the last
time it read v. However, if the reader and writer nodes are the same, the most recent write is
observed since no network messages are involved in this case. Figure 4.5 shows two executions to
highlight this situation. Formally, consider a program instance Pn. Recall that Pn is a mapping
from [0, n) to roles. An execution of Pn is an infinite sequence

η = 〈(ι0, e0, c0, s0, w0, t0, ρ0), (ι1, e1, c1, s1, w1, t1, ρ1), . . .〉

such that the following conditions hold:

• Each ρi is a role.

• For each role ρ ∈ R, the projection of η on ρ, i.e., the subsequence of η consisting of
elements with ρi = ρ, is an execution of ρ.

• Each arriving job reads the value of a global variable that is no older than the last value
that was read. Formally, this means that for each global variable ṽ ∈ G̃V , each writer
node Nw, w ∈ [0, n), and each reader node Nr, r ∈ [0, n), there is a monotonic mapping
Φ(ṽ, w, r) : N 7→ N from each position where a value of ṽ[w] is read by Nr to the position
where the corresponding value was written by Nw. Thus:

∀i ∈ N � ρi = Pn(r) ∧ ei =↑ =⇒
ρΦ(i) = Pn(w) ∧ eΦ(i) =↓ ∧si(ṽ)[w] = sΦ(i)(ṽ)[w]

The mapping is monotonic, thus older writes are never observed after newer ones:

∀i < i′ � ρi = ρi′ = Pn(r) ∧ ei = ei′ =↑ =⇒ Φ(i) ≤ Φ(i′)

Note that the mapping Φ(ṽ, w, r) varies with ṽ, w and r. Thus, due to network delays,
writes to the same variable could be observed in different order by different readers, and
writes to different variables could be observed by the same reader in different order. How-
ever, if the reader and writer nodes are the same, then there are no network messages
involved, and the most recent write is observed (as for local variables). Formally, for

each i ≥ 0, global variable ṽ ∈ G̃V , and node Nr, let PrWr(i, ṽ, r) be the set of indices
corresponding to previous successfully completed jobs of Nr that wrote to ṽ[r], i.e.,

PrWr(i, ṽ, r) = {j < i | ej =↓ ∧ṽ[r] ∈ wj}

Then:

∀i ∈ N � ρi = Pn(r) ∧ ei =↑ =⇒
Φ(ṽ, r, r)(i) = max({0} ∪ PrWr(i, ṽ, r))

Note that in the absence of prior writes to ṽ[r], Φ(ṽ, r, r)(i) evaluates to 0, and the initial
value of ṽ[r] is observed.

• Each synchronous thread t executes in rounds. Let S(t) be the ids of the nodes that
execute t, i.e.,

S(t) = {j | Pn(j) = (S,A) ∧ t ∈ S}
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For each round i ≥ 0, and node id j ∈ S(t), let Round+(t, i, j) be the index in η corre-
sponding to the start of the i-th job of thread t in node Nj that completes successfully,
and Round−(t, i, j) be the index in η corresponding to the end of the i-th job of thread t
in node Nj that completes successfully. Then:

∀j′ ∈ S(t) � Round−(t, i, j′) < Round+(t, i+ 1, j)

Moreover, the value of a global variable read at the beginning of round i + 1 equals the
value written at the end of round i. Recall the definition of Φ(ṽ, w, r). Thus:

Φ(ṽ, w, r)(Round+(t, i+ 1, r)) = Round−(t, i, w)

4.4 Property Specification

As mentioned, we have explored verification of properties implemented by synchronous threads.
Such properties are expressed as round invariants: conditions that must hold at the beginning
of each round of execution of a synchronous thread. Formally, a specification is a pair (t, f)
where t is a synchronous thread, and f is an internal function that evaluates the round invariant,
and returns it as a bool. Internal functions used in properties (a.k.a. property functions) are
distinguished from other internal functions in two ways:

1. They do not modify any shared variables.

2. They can refer to local variables of arbitrary nodes. This is necessary because a property
function has to evaluate relations over the states of multiple nodes. For instance, in the
case of collision avoidance in our example, the property function checks that every pair of
distinct nodes occupies different cells (i.e., each pair has different values of x or y).

Property functions are evaluated over program instance states. A program instance state is a
pair (sl, sg) such that sl : [0, n) 7→ V(LV ) and sg ∈ V(G̃V ). Informally, sl maps each node id i
to the value of local variables at Ni, while sg is a mapping from global variables to their values.
In general, since Pn is distributed, it may not have a well-defined program instance state at
all times during an execution. In particular, the value of a global variable may be different at
different nodes. However, at the beginning of each round of a synchronous thread, there is a
unique program instance state since all nodes must agree on the value of each global variable.
We denote by Ŝ(π, t, i) the program instance state at the beginning of round i of t in execution
η.

Given a program instance state ŝ = (sl, sg), and a property function f , we write f(ŝ) to denote
the value returned by f when invoked from ŝ. This is defined similarly to a normal internal
function, except that sl[i] is used to lookup the value of local variables for Ni, while sg is used
to lookup the value of global variables. Finally, we say that a program instance Pn satisfies a
specification (t, f), denoted Pn |= (t, f), if for every execution η of Pn, we have:

∀i ≥ 0 � f(Ŝ(η, t, i)) = >

4.5 Concrete Syntax

The concrete syntax of dmpl consists of declarations for GV and LV plus definitions of func-
tions, threads, roles, and properties. For example, Figure 4.6 shows a fragment of the dmpl
program corresponding to our example described in Chapter 3. Note the following:
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• The syntax is similar to c++. This provides familiarity to practitioners and simplifies
code generation and sequentialization.

• Platform-specific code is included at the top inside %%{ ... %%} blocks. This feature is
used to include code (header files, helper functions, etc.) needed to generate compilable
c++. This code is not subjected to any analysis. It is emitted verbatim during code
generation. The programmer should ensure that this code does not conflict with the code
generated from the rest of the dmpl program (e.g., no variable name clashes) or cause
other compilation problems (e.g., syntax errors). This code is ignored during verification.
In Figure 4.6, this code is used to initialize the hazard levels in each grid cell randomly,
and to periodically access hazard levels and compute the total exposure faced by the leader
at runtime.

• Constant definitions (lines 14–15) are allowed for readability.

• Multi-dimensional array variables are supported.

• External functions are declared using the extern keyword. External functions can also
be labeled pure (e.g., line 19). This is a hint that the function should not modify the
external system state. It is not checked or enforced in any way. In our case, we expect
that the GET_HAZARD() function should be read-only. External functions are also declared
or defined in c++ within the code included via the %%{...%%} block.

• Shared variables can be initialized to non-zero values. This is done either via direct
assignment (line 26), or via constructors (line 34).

• Shared variables can also be labeled as input and constraints can be imposed on their
initial values (lines 28–29). For example, variable x is constrained to be between 0 and
X-1 initially. Input variables are treated dually as follows: (i) the generated code allows
their initial values to be specified from the command line, but performs a runtime check
that any such value respects specified constraints; and (ii) during verification, their initial
values are assumed to be non-deterministic subject to the constraints. This ensures that
our verification is sound.

• Threads are defined with the thread keyword. The @BarrierSync annotation indicates
a synchronous thread. Other annotations (@Period for period, @Criticality for criti-
cality, @WCExecTimeNominal for WCET under normal execution, @WCExecTimeOverload
for WCET under overload) are used to specify parameters used for thread schedulability
analysis and scheduling. Time parameters are specified in microseconds.

• Iterators are available to: (i) execute a statement over all nodes (forall_node), all pairs
of distinct nodes (forall_distinct_node_pair), etc.; and (ii) evaluate an expression dis-
junctively over nodes that have a lower id (exists_lower), a higher id (exists_higher),
etc. They are all “syntactic sugar” defined formally using all in a natural manner.

• A role can use threads defined in the global scope. For example, the COLLISION_AVOIDANCE
thread is used by both the Leader (line 71) and Protector (line 90) roles. A role can
redefine timing parameters of imported threads. For example, the Leader roles redefines
the WCET estimates (lines 73–74) of the WAYPOINT thread. A role can also define new
threads. For example, the ADAPTATION_MANAGER thread is defined by the LEADER roles,
since the functionality implemented by this thread is required only by the leader node.

• A role can redefine (or override) the initialization of shared variables. For example, the
Leader role redefines variables xt and yt to be inputs. This is necessary since the final
target cell of the leader is part of the mission parameters and is supplied as as input to
the system. Note that these variables are initialized to the default value 0 (line 30) for the
Protector role. This makes sense since the target cell for a protector changes over time
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as the leader moves because each protector tries to move to a specific position relative to
the leader in order to maintain the overall formation (cf. Figure 3.1).

• A role can override the definition of an internal function, and invoke the base function
if needed. For example, the Leader role overrides the REACHED_NEXT_XY function (line 66)
since the leader must execute additional code (compared to a protector) once it reaches the
next waypoint. It invoked the base definition of REACHED_NEXT_XY (line 68) to implement
functionality common with the protectors.

• Internal functions can be labeled pure (e.g., NoCollisions at line 98). Such functions
may not modify shared variables. This is checked by the compiler, and compilation aborts
if a violation is detected. Since there is no aliasing in dmpl, this check simply ensures that
no shared variables are on the lhs of assignments in the body of the function, and that
all internal functions invoked by this function are also labeled pure. Recall that external
functions cannot modify shared variables indirectly.

• Properties are defined via the require keyword (line 107). The property function (in this
case NoCollisions) must be pure to ensure that it has no side effects on the program
state. Note that in our example, the property function does indeed refer to local variables
x and y of multiple nodes.

Since dmpl is an experimental language, the concrete syntax presented here is not final. How-
ever, the concepts presented above should persist since they emerged from the need to program
a realistic system, and we expect them to be useful for programming DRTS in general.
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{s}[[skip]]{s, ∅}
[SKIP]

v ∈ GV w = {ṽ[i]}
{s}[[v = e]]{s[ṽ[i] 7→ e . s], w}

[ASGN-GLOBAL]

v ∈ LV w = {v}
{s}[[v = e]]{s[v 7→ e . s], w}

[ASGN-LOC]
v ∈ TV

{s}[[v = e]]{s[v 7→ e . s], ∅}
[ASGN-TMP]

s |= e {s}[[st1]]{s′, w}
{s}[[ITE(e, st1, st2)]]{s′, w}

[ITE-THEN]
¬(s |= e) {s}[[st2]]{s′, w}
{s}[[ITE(e, st1, st2)]]{s′, w}

[ITE-ELSE]

¬(s |= e)

{s}[[WHILE(e, st)]]{s, ∅}
[WHILE-EXIT]

s |= e {s}[[st ]]{s′, w′} {s′}[[WHILE(e, st)]]{s′′, w′′} w = w′ ∪ w′′

{s}[[WHILE(e, st)]]{s′′, w}
[WHILE-LOOP]

v 6∈ Dom(s) s0 = s⊕ v
{s0[v 7→ 0]}[[st ]]{s1, w1} {s1[v 7→ 1]}[[st ]]{s2, w2} . . . {sn−1[v 7→ n− 1]}[[st ]]{sn, wn}

s′ = sn 	 v w = w1 ∪ · · · ∪ wn

{s}[[ALL(v, st)]]{s′, w}
[ALL]

{s0}[[st1]]{s1, w1} . . . {sk−1}[[stk]]{sk, wk} w = w1 ∪ · · · ∪ wk

{s0}[[〈st1; . . . ; stk〉]]{sk, w}
[SEQ]

f ∈ ExtFn (e1 . s, . . . , ek . s, d) ∈ [[f ]]

{s}[[f(e1, . . . , ek)]]{s, ∅}
[EXT-FUNC1]

f ∈ ExtFn (e1 . s, . . . , ek . s, d) ∈ [[f ]] s′ = s[v 7→ d]

{s}[[v = f(e1, . . . , ek)]]{s′, ∅}
[EXT-FUNC2]

f ∈ IntFn d1 = e1 . s, . . . , dk = ek . s
s1 = s \ TV {s1}[[f(d1, . . . , dk)]]{s2, d, w} s′ = s2 ⊕ (s ∩ TV )

{s}[[f(e1, . . . , ek)]]{s′, w}
[INT-FUNC1]

f ∈ IntFn d1 = e1 . s, . . . , dk = ek . s
s1 = s \ TV {s1}[[f(d1, . . . , dk)]]{s2, d, w} s′ = s2 ⊕ (s ∩ TV )[v 7→ d]

{s}[[v = f(e1, . . . , ek)]]{s′, w}
[INT-FUNC2]

v 6∈ Dom(s) s1 = s⊕ v {s1}[[st ]]{s2, w} s′ = s2 	 v
{s}[[ν(v, st)]]{s′, w}

[NEW-VAR]

f = (p, b, r) ∈ IntFn s ∈ V(G̃V ∪ LV ) p = 〈v1, . . . , vk〉
s1 = s⊕ (v1, d1)⊕ . . .⊕ (vk, dk) {s1}[[b]]{s2, w} s′ = (s2 	 v1 	 . . .	 vk) d = r . s2

{s}[[f(d1, . . . , dk)]]{s′, d, w}
[FUNCTION]

Figure 4.4: Execution semantics of statements and functions for node Ni in program instance
Pn
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Figure 4.5: Two executions of a program instance P3. Time flows from top to bottom; r(ṽ[i], d)
= value d was read from ṽ[i]; w(ṽ[i], d) = value d was written to ṽ[i]. The execution on the left
is legal even though N2 reads a stale value d1, since it observed no previous writes to v. The
execution on the right is illegal for two reasons: (i) once N1 reads value d2, it can no longer
read the older value d1; and (ii) N0 must always read the most recent write to v.
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1 %%{
2 #include <map >
3 #include "adaptation_manager.h"
4 double accumulated_risk = 0.0;
5 map <int ,map <int ,double > > hazard_map;
6
7 void INIT_HAZARDS(int _X,int _Y ,
8 int tx,int ty) {...}
9 double GET_HAZARD(int x,int y) {...}

10 double update_risk(double risk) {...}
11 %%}
12
13 /*** constants ***/
14 const X = 20; const Y = 20;
15 const INITS = 0; const NEXT = 1; ...
16
17 /*** external function declarations */
18 extern void INIT_HAZARDS (...);
19 extern pure double GET_HAZARD (...);
20 extern double update_risk (...);
21 extern bool adaptation_manager (...);
22 extern int GRID_MOVE(unsigned char _xp ,
23 unsigned char _yp , double _z);
24
25 /* shared variables & initialization */
26 local unsigned char state = INITS;
27 //current , next and target coordinates
28 local unsigned char input x~(0<=x && x<X);
29 local unsigned char input y~(0<=y && y<Y);
30 local unsigned char xp = x, yp = y;
31 local unsigned char xt, yt;
32 // current formation
33 global bool input formation;
34 global bool lock[X][Y] = { lock[x][y] = 1; };
35
36 /*** internal functions ***/
37 //-- compute the next grid on path
38 bool NEXT_XY () { ... }
39 //-- stuff once next waypoint reached
40 void REACHED_NEXT_XY () { ... }
41
42 /*** threads ***/
43 @BarrierSync;
44 @Period (100000); @Criticality (4);
45 @WCExecTimeNominal (15000);
46 @WCExecTimeOverload (30000);
47 thread COLLISION_AVOIDANCE {
48 if(state == INITS) { ... state = NEXT; }
49 if(state == NEXT) {
50 if(NEXT_XY ()) return; state = REQUEST;
51 } ...
52 else if(state == MOVE) {
53 if(GRID_MOVE(xp ,yp ,0.5)) return;
54 REACHED_NEXT_XY (); ... state = NEXT;
55 }
56 }

57 @Period (100000);
58 @Criticality (3);
59 thread WAYPOINT;
60
61 /*** roles ***/
62 role Leader {
63 override local unsigned char input xt,
64 input yt;
65
66 override void REACHED_NEXT_XY ()
67 {
68 base.REACHED_NEXT_XY (); ...
69 }
70
71 thread COLLISION_AVOIDANCE;
72
73 @WCExecTimeNominal (10000);
74 @WCExecTimeOverload (20000);
75 thread WAYPOINT { ... }
76
77 @Period (4000000);
78 @Criticality (2);
79 @WCExecTimeNominal (10000);
80 @WCExecTimeOverload (20000);
81 thread ADAPTATION_MANAGER
82 {
83 ...
84 formation = adaptation_manager (...);
85 ...
86 }
87 }
88
89 role Protector {
90 thread COLLISION_AVOIDANCE;
91
92 @WCExecTimeNominal (10000);
93 @WCExecTimeOverload (20000);
94 thread WAYPOINT { ... }
95 }
96
97 /*** properties ***/
98 pure bool NoCollisions ()
99 {

100 forall_distinct_node_pair (id1 ,id2) {
101 if (x@id1 == x@id2 && y@id1 == y@id2)
102 return false;
103 }
104 return true;
105 }
106
107 require COLLISION_AVOIDANCE => NoCollisions;

Figure 4.6: DMPL program for 5-robot reconnaissance example
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5 Code Generation

In this section, we describe how c++ code can be generated from a dmpl program, given a
mapping from node ids to roles. Figure 5.1 shows a fragment of the c++ code generated from
the dmpl program shown in Figure 4.6. Notable features of this c++ code are:

• Code within the %%{...%%} block is emitted verbatim.

• Constant definitions are converted to #define macros.

• External function declarations are eliminated since these functions are assumed to be
declared or defined within the code included via the %%{...%%} block.

• The number of nodes (available from the mapping from ids to roles) is defined as a macro
(line 18).

• A new variable id is introduced to store the value of the node’s id. The value of this
variable is supplied from the command line.

• Shared variables are represented using containers provided by the madara middle-
ware [12]. For example a local variable of type unsigned char is represented as a madara
variable of type madara::UnsignedChar (line 23). Global variables are expanded to ar-
rays, again using madara containers. For example, variables formation and lock are
represented as 1-dimensional (line 25) and 3-dimensional (line 26) vectors, respectively.

• A function (line 29) is generated to initialize input variables and the node’s id from com-
mand line arguments. Recall that whether a variable is an input or not may depend on
the role.

• A function (line 35) is generated to initialize the remaining shared variables.

• Internal functions defined are generated (lines 42-43). The translation from the dmpl
function is syntax directed. However, (i) iterators such as forall_node, forall_higher,
exists_lower etc. are appropriately based on the value of id and N; and (ii) access to
global variable v is replaced by access to v[id]. Function names are used to distinguish
between those defined at the top level and those defined within roles. A good example is
REACHED_NEXT_XY and Leader_REACHED_NEXT_XY.

• A madara context is declared. The context is a collection of variables of which madara
maintains distributed copies on each node, and provides the consistency required by the
semantics of dmpl. In particular, madara attaches a Lamport clock with each variable
v. The clock is initialized to 0 and incremented with each assignment to v. If v is a global
variable, and it is assigned, then the new value of v and its clock are sent to other nodes
via network messages. Each receiver node records the Lamport clock of the last version
of v received, and discards a received value of v if it comes with an older Lamport clock.
Note that this implements the consistency of global variables required by the semantics of
dmpl. For local variables, the sequential consistency provided by the hardware directly
implements dmpl’s semantics.

• Thread functions are generated. For asynchronous threads, the function repeatedly uses
the zsrm scheduler (via wait_for_next_period) to suspend till the arrival time of the
next job, reads the shared variables atomically (via read_context), executes the job,
and writes the shared variables back atomically (via write_context). Thread functions
are named based on whether they are defined globally or within a role. A good exam-
ple of an asynchronous thread function is Leader_ADAPTATION_MANAGER. The functions
read_context and write_context use a special mutex provided by the zsrm scheduler
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1 #include <map >
2 #include "adaptation_manager.h"
3 double accumulated_risk = 0.0;
4 map <int ,map <int ,double > > hazard_map;
5
6 void INIT_HAZARDS(int _X,int _Y ,
7 int tx,int ty) {...}
8 double GET_HAZARD(int x,int y) {...}
9 double update_risk(double risk) {...}

10
11 /*** constants ***/
12 #define X 20
13 #define Y 20
14 #define INITS 0
15 #define NEXT 1
16 ...
17
18 #define N 5 // number of nodes
19 int id; // variable to store node id
20
21 /*** shared variables declaration */
22 #include <madara.h>
23 madara :: UnsignedChar state = INITS;
24 madara :: UnsignedChar x, y, xp, yp , xt , yt;
25 madara ::Vector <Bool > formation(N);
26 madara ::Vector3 <Bool > lock(X,Y,N);
27
28 /** get input variable values from command line */
29 void initInputs () {
30 /* Initialize id, x, y, formation. Initialize
31 xt, yt if id corresponds to a leader role. */
32 }
33
34 /** shared variable initialization */
35 void initShared ()
36 {
37 state = INITS; xp = x; yp = y;
38 lock.set(x,y,id ,1);
39 }
40
41 /*** internal functions ***/
42 bool NEXT_XY () { ... }

43 void REACHED_NEXT_XY () { ... }
44 void Leader_REACHED_NEXT_XY () {
45 ... REACHED_NEXT_XY (); ...
46 }
47
48 madara :: Context context; //the MADARA context
49
50 /*** threads ***/
51 void COLLISION_AVOIDANCE () {
52 int s = 0;
53 for (;;) {
54 wait_for_next_period ();
55 if(s == 0 && barrier ()) s = 1;
56 if(s == 1) { read_context (); s = 2; }
57 if(s == 2) {
58 //-- code generated from body of thread
59 //-- from DMPL program goes here
60 if(! job_missed_deadline ()) s = 3;
61 }
62 if(s == 3) { write_context (); s = 4; }
63 if(s == 4 && barrier ()) s = 0;
64 }
65 }
66
67 void Leader_ADAPTATION_MANAGER ()
68 {
69 for (;;) {
70 wait_for_next_period ();
71 read_context ();
72 ... formation[id] = adaptation_manager (...); ...
73 if(job_missed_deadline ()) continue;
74 write_context ();
75 }
76 }
77
78 int main()
79 {
80 initInputs (); initShared ();
81 registerThreads ();
82 startThreads ();
83 waitForThreads (); return 0;
84 }

Figure 5.1: Generated C++ code for example DMPL program. In practice, local variables (lines
23–26) are duplicated for each thread.

to protect access to the madara context. This mutex is designed to prevent priority-and-
criticality inversion (i.e., a higher priority thread being blocked by a lower priority thread
for unbounded time on trying to acquire the lock).

• For synchronous thread functions (e.g., COLLISION_AVOIDANCE) we develop and use a real-
time implementation of the 2bsync protocol [4]. The key idea behind this protocol is to
use two barriers, at the beginning and end of each job respectively, across all the nodes to
enforce the synchronous model of computation. However, in our case, since threads must
respect their WCET estimates, a barrier cannot be implemented by an unbounded loop
within a job function. Instead, we abort a job whenever the barrier condition is violated
(lines 55 and 63) and retry at the next period. Logically this is equivalent to an unbounded
loop, and hence the correctness of our implementation follows from that of the original
2bsync protocol [4]. Note also that we use the zsrm scheduler API (line 60) to detect if
the current job missed its deadline due to overload, and abort it in this case.

• Finally, the main function (lines 80–83) initializes variables from command line arguments,
initializes remaining shared variables, registers all threads with the zsrm scheduler using
timing parameters specified in the dmpl file and the Zero-Slack Instants computed via
zsrm schedulability analysis, starts all the threads, and waits for them to complete. In
addition to the threads corresponding to the role specified in the dmpl program, function
registerThreads (line 81) also registers a (high priority) madara reader thread that
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periodically receives new global variable values and clocks from other nodes and updates
the madara context appropriately.
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6 Verification via Sequentialization

In this section, we present an approach for verifying the reachability properties of synchronous
threads. Consider such a property ϕ = (t, f) where t is a synchronous thread and f is a property
function. Since t respects the synchronous model of computation, it can be shown [4] that Pn

is over-approximated by a sequential program that:

1. Maintains two copies of all global shared variables – G̃V 0 and G̃V 1, and one copy of local
shared variables per node LV 0, . . . ,LV 1.

2. For each DMPL function and thread f , for each node n, produces two versions: fn→ and

fn←. For each n, fn→ reads from G̃V 0 and writes to G̃V 1, while function fn← reads from

G̃V 1 and writes to G̃V 0. Both versions read and write the same set of local variables. A
given version of a function or thread calls the same version of all sub-functions.

3. Initializes G̃V 0, G̃V 1, LV 0, . . . ,LV 1 as per constructors.

4. Executes an infinite loop. In each iteration, it: (i) executes the thread→ version of t once
for each node, i.e., n times with the node id set to 0, 1, . . . , n − 1; (ii) sets the values of
variables that can be modified by other threads non-deterministically (to over-approximate
interference from them); and (iii) repeats (i), but with the ← version of all functions.

Informally, G̃V 0 stores the values of global variables at the start of a round; G̃V 1 stores their
values at the end. Thus, every program instance state Ŝ(π, t, i) is reachable at the start of
the i-th iteration of the loop for some execution of this sequential program. To verify whether
ϕ = (t, f) holds, we can prove that f invoked at the beginning of the loop always returns true.

6.1 Implementing Sequentialization

Our actual implementation of sequentialization has the following features:

• Local variables are expanded to arrays so we can represent their values for all nodes. This
also simplifies generation of the internal and thread functions.

• Input variables are initialized non-deterministically. However, we assume that the property
holds at startup. The assume command is supported in some form by most state-of-the-art
software model checkers. It semantically cuts off all executions that reach the command
in a state where the argument to the command evaluates to false.

• This program is written in the C programming language and can therefore be verified
using software model checkers that target C programs.

6.2 Bug Finding and Full Verification

For bug finding, we use bounded model checking. To this end, we change the infinite loop (Step 4
above) into one that executes k times for some target bound k. We verify the resulting C program
with a software model checker. For complete verification, we prove that the property f (or as
is typically the case, a strengthening of it) is inductive. To this end, we create a program that:
(i) initializes all variables non-deterministically but assumes that f returns true; (ii) executes
the body of the loop (Step 4 above) once; and (iii) asserts that f returns true. We then verify
this program.
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7 Evaluation

We have implemented a compiler, called dmplc, that performs both code generation and se-
quentialization of dmpl programs. The size of the generated code is linear in the size of the input
dmpl program. We validated dmplc on five examples we developed, each consisting of a group
of robots coordinating to achieve some goal. We used the v-rep [29] simulator to implement
robots and their movement in a physical environment. In particular, we used quadcopter models
provided by v-rep to represent each node. dmplc generates appropriate glue code to use the
v-rep API. A copy of dmpl, the examples, and instructions for generating and verifying code
are available at https://db.tt/W153VDg6. All experiments were done on a quad-core 2.90GHz
laptop with 16 gigabytes of RAM running Kubuntu 14.04 and a publicly-available implementa-
tion of the zsrm schedulability analysis and scheduler [35]. The dmplc-generated c++ code
was compiled with g++.

7.1 Reconnaissance example

We implemented the five-node reconnaissance example in about 1300 lines of dmpl code. In ad-
dition, we used an external adaptation manager component that was implemented in about 1000
lines of c++ code. The adaptation technique used by this manager is described elsewhere [25]
and is orthogonal to this paper. We also analyzed collision avoidance in two ways:

• Bug Finding: First, the cbmc [6] tool was used to perform bounded model checking
of the sequentialized code. For this, the assume command was implemented by the
__CPROVER_assume function supported by cbmc. This approach is incomplete, but was
very effective for finding bugs. We found several bugs due to programming errors (e.g.,
mistyped variable names, missing checks) in a few seconds with a bound of 5.

• Full Verification: Next we proved correctness by showing that the property is inductive
over each execution of the COLLISION_AVOIDANCE function. Again we used cbmc for model
checking. Since the collision avoidance property is not inductive by itself, we manually
strengthened it by adding extra invariants, and were able to prove inductiveness. In all,
10 new invariants were added over a 1-person-day effort, and verification by cbmc at the
end took a few seconds.

7.2 Other examples

We implemented several other examples, including the following: (i) three robots moving from
predefined starting points to ending points on a grid while avoiding collisions; (ii) five robots
moving in a tight formation from a starting to an ending point while avoiding collisions; (iii) nine
robots moving in a loose formation from a starting to an ending point while avoiding collisions;
and (iv) nine robots moving from random initial positions and coming together at the grid center
to form a 3 × 3 square structure. In each example, the generated code demonstrated expected
behavior during simulation; collision avoidance was verified. In two cases, the collision avoidance
implementation initially had bugs. (We had copied the dmpl code from other examples that
we had previously verified, but subtle differences in other threads were unaccounted for). In all
cases, our approach found a counter-example that we used to find and fix the errors.

Overall, we believe dmpl provides a good tradeoff between programmability and verifiability of
DRTS. Additional examples and videos are available at the dmpl [11] and dart [8] web sites.
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8 Future Work and Conclusion

We see several directions for ongoing and future work: (i) developing techniques to construct
inductive invariants for synchronous threads; (ii) verification techniques for liveness properties,
and properties over asynchronous threads; (iii) implementing an infrastructure to enforce the
isolation between code generated by dmpl and external functions; currently since everything
executes in the same process and the external functions can execute arbitrary code, we have no
way to ensure this; (iv) handling faults and intrusions; this is important especially because one
promising application of DRTS is in autonomous systems where human intervention is limited;
(v) abstraction and compositional verification techniques.

In summary, DRTS is a promising area for pushing the frontier of computer science and engi-
neering. A programming language that has well-defined semantics and also supports verification
is critical to develop high-assurance software for such systems. The language must deal with
timing and schedulability as a first class concern, and support tasks with different levels of crit-
icality. Finally, to facilitate adoption, it must play well with existing legacy components since
very few DRTS will be built from scratch. While by no means the final answer, we believe that
dmpl represents a promising start in this direction.
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