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1. SUMMARY

The current project titled “Deep Reading and Learning” explored several algorithms and ap-
proaches for knowledge base population from natural language texts. The central problem ad-
dressed is to extract and infer factual event data from natural texts in a form that can be asserted 
into a knowledge base. Building on some of the core natural language processing (NLP) technol-
ogy from Stanford and other places, we developed new algorithms and state-of-the-art software 
for many subtasks of NLP starting from lower level tasks such as part of speech tagging to higher 
level tasks such as script learning. We published our work in conferences such as ICML, AAAI, 
EMNLP and ACL and journals such as JAIR and JMLR.  

Our project takes to heart the point of view that understanding text consists of extracting facts 
and representing them in a formal language ready to be added to a knowledge base. Given various 
kinds of ambiguities of natural texts and the incomplete understanding of grammatical structure, 
semantics, and pragmatics of natural languages, this is indeed a daunting task. Nevertheless, we 
made significant progress on several subtasks of NLP including, part of speech tagging, chunking, 
named entity recognition, co-reference resolution, linking, event detection, event-argument extrac-
tion, and script learning. The key technology that enabled our success is our HC-Search algorithm 
based on search-based structured prediction. Almost all tasks in NLP can be viewed as mapping a 
structured input, e.g., a sentence or a document, into a structured output, e.g., a graph or a 
knowledge base. The problem of learning this mapping from supervisory training data is called 
structured prediction. In search-based structured prediction, this mapping is constructed incremen-
tally via search. HC-Search in particular formulates the problem as learning a cost function C and 
a heuristic function H such that the correct output has the least cost C and is reached by a search 
algorithm guided by the heuristic function H. Significant contributions of our project include the 
following.  

1. In an early paper in AAAI 2013 which received an outstanding paper award, we showed
the generality and effectiveness of the HC-Search framework in a number of tasks includ-
ing part of speech tagging and chunking obtaining state of the art results.

2. We advanced the state of the art in co-reference resolution using a pruning enhancement
of search-based structured prediction.

3. We formulated within-document and cross-document coreference problems as non-con-
vex optimization and solved them using a Majorization-Minimization algorithm.

4. We developed an approach to detect multi-word event nuggets using a novel forward-
backward recurrent neural network architecture with state of the art results.

5. We developed a new approach for script learning based on Hidden Markov Models.
6. We developed a new multi-task structured prediction framework and evaluated it in sev-

eral NLP tasks such as named entity recognition, co-reference resolution and entity link-
ing.

7. We participated in several TAC competitions including the last one in 2016 on Tri-lingual
Entity Discovery and Linking.
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2. INTRODUCTION

The goal of this project was to contribute to the next generation of software tools needed to 
perform deep understanding of natural language texts. Over the years, the natural language com-
munity has built an impressive array of tools that are routinely used by researchers and developers. 
Our own work leveraged and built upon a variety of NLP tools that are widely available, most 
importantly Stanford’s Core NLP toolkit (Manning et al., 2014). In spite of the availability of many 
tools, research and software in NLP is not at a stage that can be used by practitioners for extracting 
knowledge from texts and populating a knowledge base. The goal of our work was to develop new 
algorithms and software that can push the state of the art in higher level language processing tasks 
such as co-reference resolution, event detection, and script learning towards building formal mean-
ing representations that can be queried.    

Early work in natural language processing emphasized deep comprehension and underscored 
the need of commonsense world knowledge to understand text based on the context   (Wilks and 
Charniak, 1976; Schank and Abelson, 1977). However, in recent work, the emphasis shifted to 
learning-based approaches that exploit large amounts of data to learn parameters for solving rela-
tively lower-level tasks such as part-of-speech tagging, shallow parsing, word sense disambigua-
tion, and semantic role labeling. This focus was driven both by the empirical success of statistical 
learning methods and the challenges of formalizing and reasoning with large amounts of world 
knowledge.  Our project falls squarely in the empirical paradigm, but is also inspired by and con-
tributes to learning higher-level knowledge in the form of event scripts and explores computational 
frameworks that combine learning and search which can be employed in multiple NLP and non-
NLP tasks. 

Many tasks in natural language processing can be formulated as structured prediction, which 
transforms a structured input to a structured output using a mapping function learned from training 
data.  Examples include detecting mentions of noun phrases from the document, identifying co-
reference relationships between mentions, linking them to entities in the knowledge base, detecting 
events in the document, identifying their types and arguments, and so on. Importantly, the learning 
system does not produce a single label as in a typical classification application such as face recog-
nition, but needs to construct a coherent structured output based on structured input. In general, 
the task involves making many small decisions to produce a structured output that is globally co-
herent and consistent with the input, which in itself is structured, noisy, and ambiguous.    

3. METHODS, ASSUMPTIONS AND PROCEDURES

Our general approach is in the framework of search-based structured prediction, which em-
ploys search algorithms to construct a suitable output that optimizes a global coherence score. In 
addition to the coherence score, the search algorithms require heuristics to guide the search. We 
developed a search-based framework called HC-Search that employs a combination of a heuristic 
and a scoring function in the context of limited discrepancy search and achieved state of the art 
results in a number of domains including part of speech tagging and chunking (Doppa et al. 2013). 
We later extended this work with a pruning heuristic under the name of Prune-and-Score and ap-
plied it to within-document co-reference resolution with state-of-the-art results (Ma et al. 2014). 
We also studied cross-document and within-document co-reference resolution in the Easy First 
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search-based structured prediction with state of the art results (Xie, et al. 2015). The novelty here 
is its formulation based on convex-concave constrained programming (CCCP) which can be 
solved by a majorization-minimization approach.  

A second class of problems we addressed is related to detecting events in texts and learning 
patterns among them. We developed a new neural architecture based on recurrent neural networks 
to detect event nuggets that span across multiple words (Ghaeini et al. 2016). Our architecture 
employed a novel recurrent neural network that is processed in both forward and backward direc-
tions around the potential nugget words. We also investigated a novel algorithm for learning mod-
els of scripts or stereotypical event sequences in the form of Hidden Markov Models using an EM-
style algorithm (Orr et al. 2014). The novelty here is to appropriately account for missing obser-
vations which are common in most natural language texts. Our approach was the first use of HMMs 
for representing and learning scripts, and it improved upon several baselines on a benchmark da-
taset.  
       In more recent work, we developed a new multitask structured prediction framework and ap-
plied it to simultaneously solve multiple NLP tasks, including named entity recognition, co-refer-
ence resolution, and entity linking. The key idea here is to cycle through different structured pre-
diction tasks one after another until they all converge to a locally optimal solution. This takes 
advantage of relative independence between different tasks to speed up the search while also ex-
ploiting their mutual constraints to improve global coherence of the solution (Ma et al. 2017).  
       In addition to these research works, we also participated in several TAC competitions on entity 
detection and linking, and event-argument extraction, culminating in the trilingual entity detection 
and linking task in 2016. 

4. RESULTS AND DISCUSSION

In this section, we detail our different research contributions and the results on multiple problems 
addressed in the project.  

4.1. Search-based Structured Prediction 

As noted earlier, many tasks in natural language processing, from part of speech tagging to entity 
linking, can be formulated as structured prediction, or transforming structured inputs to structured 
outputs (Daumé et al. 2009). Our version of the search-based approach to structured prediction, 
called HC-Search, involves first defining a combinatorial search space over complete structured 
outputs that allows for traversal of the output space (Doppa et al. 2012). Next, given a structured 
input, say a sequence of natural language words, a state-based search strategy (e.g., best-first or 
greedy search) is employed to explore the space of possible outputs, e.g., sequence of part of 
speech tags, for a specified time bound. The least cost output uncovered by the search according 
to a learned cost function C is then returned as the prediction. 

Our learning approach is motivated by our observation that for a variety of structured prediction 
problems, if we use the true loss function of the structured prediction problem to guide the search, 
the high-quality outputs are found very quickly. This suggests that similar performance might be 
achieved if we could learn an appropriate cost function to guide the search in place of the true loss 
function (because the true cost function is not available at the time predictions are computed). An 
advantage of our search-based approach, compared to most structured-prediction approaches like 
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conditional random fields (CRFs) is that it scales gracefully with the complexity of the cost func-
tion dependency structure.  In addition to the cost function used to evaluate the final solutions, the 
search is guided by a heuristic function H to explore more promising states (Doppa et al. 2013, 
Doppa et al. 2014a, Doppa et al. 2014b). 

The goals of the heuristic function and cost function learning are to rank the solutions as if they 
were using the true loss function for ranking the intermediate and final outputs. We formulate and 
solve this problem in the framework of imitation learning by viewing the search algorithm as an 
expert to imitate to produce the target output. For example, the heuristics function learns to rank 
states that lead to the correct target output before the ones that lead to incorrect outputs during 
search. The cost function learns to rank the correct target outputs ahead of incorrect target outputs. 

We obtained competitive results for part of speech tagging with the state of the art systems based 
on Conditional Random Fields (CRFs) (96.93% vs. 96.84%) and for chunking (94.66% vs. 
94.77%) on benchmark datasets.  

One of the key insights that came out of this work is that limited discrepancy search—which ex-
plores a space of possible outputs starting with a greedy initialization, introducing a limited number 
of discrepancies and propagating them through local inference–is very effective in combining 
search and knowledge to quickly find good outputs. Another surprising lesson is that although both 
our cost function and our heuristic function are based on the same set of features, and both operate 
on complete outputs, the distributions of ranking problems that they encounter are different enough 
that it works better to learn two different functions rather than sharing the same function for both 
guiding the search and selecting the final output.   

4.2 Co-reference Resolution via Prune-and-Score 

Co-reference resolution can be viewed as clustering sets of mentions such that the mentions in the 
same cluster refer to the same entity (Ng, 2010).  In our search-based formulation, the mentions 
are processed incrementally from left to right. Each search state corresponds to the set of clusters 
created by the prefix of mentions already processed.  Each action adds the next mention to an 
existing cluster or starts a new cluster with that mention. We employ a greedy search which adds 
the next mention to the cluster that yields the highest additional score.  

In the Prune-and-Score approach to greedy co-reference resolution, we learn two heuristic func-
tions, one for pruning the bad merge actions and the other to select the best among the remaining 
merge actions (Ma et al. 2014). Both of these heuristics are learned by imitating the decisions of 
the loss function. The merge actions that have the highest loss according to the training data are 
the candidates for pruning, and all merge decisions that contribute zero loss are considered good 
for selection. Learning occurs by adjusting weights of the heuristic and the pruning functions so 
that the decisions made by the learned heuristic functions are  consistent with the training data.  

The Prune-and-Score approach gave competitive results with the state of the art on co-reference 
resolution with gold mentions in multiple datasets. The numbers in Table 1 show the CoNLL 
AVG-F1 scores, which is the standard metric for this competition, for our system compared to our 
system without the pruning (Score-only) and to the prior state of the art. The results show that our 
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scores are competitive with the state of the art in ACE 2014 (Culotta test set) and Ontonotes and 
improve upon the state of the art on ACE 2014 (Newswire) and MUC6 by 2 and 5 percentage 
points respectively. Interestingly, pruning improves upon the score-only approach in all tests by 
0.9 to 3.3 percentage points. This shows that the additional expressive power to learn two functions 
rather than one is worth the cost and mirrors the lesson learned from HC-search in other domains. 

Table 1: Comparison of Prune-and-Score to prior state of the art on 
benchmark coref datasets. 

Dataset Prune-and-Score Score-
only 

Prior State-of-the-Art 

Ontonotes 80.26 78.24 80.16 (Durett and Klein 2013) 
ACE 2014 (Culotta test set)  80.35 78.24 79.91 (Chang et al. 2013) 
ACE 2014 (Newswire) 81.23 80.31 79.16 (Lee et al. 2013) 
MUC6 78.56 75.26 73.16 (Lee et al. 2013) 

4.3 Easy-First Cross-document Co-reference Resolution 

In this work, we address cross-document co-reference of events (verbs) in addition to entities 
(nouns). The left-to-right processing of mentions is sometimes too restrictive and is inapplicable 
when co-reference resolution is required across multiple documents. In the “easy first’’ approach 
to co-reference resolution, we make high confidence decisions first, which then make other deci-
sions easier via propagation of constraints (Stoyanov and Eisner 2012). Each search state corre-
sponds to a clustering of all mentions, where the initial state corresponds to the most refined clus-
tering with each mention in its own cluster. The actions correspond to merging pairs of clusters 
based on a heuristic evaluation function until a Halt decision is made. We follow the greedy heu-
ristic where the cluster pair with the highest score (or the Halt action) is chosen at each search step. 

Our contribution to easy first co-reference resolution is a principled approach to learn the weights 
of the greedy heuristic function. Our learning algorithm is based on adjusting the weights of a 
linear classifier using an online passive aggressive update. The search algorithm makes clustering 
decisions greedily in the order suggested by a ranking function. A clustering decision is “bad” if 
it is not consistent with the training data and “good” otherwise. A previous online approach to easy 
first co-reference updates the weights to encourage ranking the best (highest scoring) good deci-
sion ahead of the best (highest scoring) bad decision (Goldberg and Elhadad 2010). We call this 
approach best good vs. best bad (BGBB). One problem with this update is that it ignores the other 
bad decisions that are still ranked above the good decision, requiring many more future updates. 
Our best good vs. violated bad (BGVB) takes a more principled approach by encouraging the best 
good decision to lead all bad decisions that rank higher so that the good decision is preferred. The 
update rule is derived by formulating an appropriate convex-concave optimization problem and 
solving it using the Majorization-Minimization scheme (Hunter and Lange, 2004).   

We evaluated our method on cross-document co-reference for both event and entity co-reference. 
As shown in Table 2, our results are significantly better than BGBB and slightly better than the 
prior results of (Lee et al 2012) on predicted mentions of their benchmark dataset.  
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Table 2: Comparison of cross-document coreference results on predicted mentions. 

Dataset (EECB Corpus) BGVB BGBB Lee et al. (2012) 
Entities only 54.40 50.31 54.21 
Events only 47.88 40.70 46.50 
Entities and Events 55.80 49.83 55.74 

4.4 Event Detection via Forward-Backward Recurrent Neural Networks 

Most work we described so far has assumed labor-intensive feature engineering. Recent work in 
language processing employed deep neural networks for a variety of tasks from low level tasks 
such as parsing (Chen and Manning, 2014) to more semantic tasks such as question answering 
(Zhang et al. 2017). The neural networks avoid feature engineering by embedding words in a se-
mantic vector space based on the contexts of their use (Pennington et al., 2014). Words used in 
similar contexts have similar embeddings.  

Our group has pioneered the use of recurrent neural networks for detecting multi-word phrases 
that indicate the presence of events of predefined types (Ghaeini et al. 2016).  Our recurrent neural 
network architecture, called Forward-Backward Recurrent Neural Network (FB-RNN), divides the 
sentence into three parts, where the part in the middle looks for the phrase that denotes the event, 
and the left and the right parts capture the corresponding contexts. Each word is replaced by its 
word embedding learned from a corpus. The relative position of the word in the sentence is cap-
tured separately as “branch embedding” and concatenated with the word embedding. The embed-
dings of the left and the middle parts of the sentence are processed in the forward direction by a 
recurrent neural network (a Gated Recurrent Unit or GRU) while the right part is processed in the 
backward direction. The outputs of the GRUs are concatenated and passed through a fully con-
nected neural network with a softmax output node that classifies the event into one of predefined 
types or the `none’ type.   

Figure 1: A  Forward-Backward RNN for event detection applied to the sentence “An un-
known man had broken into a house last November.” 
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FBRNN was evaluated on ACE 2015 and Rich ERE 2015. It performed competitively on ACE 
2015 compared to the CNN-based system of (Nguyen and Grishman 2015) (F1 of 67.4 % vs 
67.6%).  Its performance on Rich ERE 2015 was about 0.8% less than the top ranking system (F1 
of 57.61% vs. 58.41%) and was higher than all other submissions to the TAC-KBP competition.  
Compared to previous CNN based approach, FBRNN also has the advantage that it is capable of 
detecting multi-token events (event nuggets). 

4.5 Learning Scripts via Hidden Markov Models 

It has long been noted that natural language understanding is a knowledge-intensive task (Wilks 
and Charniak, 1976). Peoples’ understanding of narrative texts is vastly enhanced by their 
knowledge of stereotypical scripts such as restaurants and birthday parties (Schank and Abelson, 
1977). Scripts capture a stereotypical sequence of events that typically occur in a given context 
while allowing for variations. There has been a resurgence of interest in learning scripts from nat-
urally occurring texts (Chambers 2013). One of our main contributions was to formally connect 
scripts to the formalism of Hidden Markov Models (HMM) (Rabiner 1990) and derive algorithms 
for learning them from simple natural language texts that describe various scenarios. In our frame-
work, the states of the HMM correspond to the events in the text, and the state transitions corre-
spond to event transitions (Orr et al. 2014).  

One key missing feature in the standard algorithms for HMMs is to account for missing observa-
tions, which are quite common in text. We adapt the learning and inference algorithms for HMMs 
to text by allowing any event to be missing with some probability. This requires the algorithms to 
maintain two indices at every point in the text, one that corresponds to the place of the event in the 
narration and the other that corresponds to the place of the event in the complete script that includes 
all observations. The resulting learning and inference algorithms are general and applicable to 
other contexts such as bioinformatics where missing observations are also common (Krogh, et. al 
1994). 

Another innovation of ours is to learn the structure of the HMM through bottom up merging of 
event sequences extracted from individual texts. The merging is guided by a structure search pro-
cedure that merges states and removes edges and scores the resulting structures by a combination 
of data likelihood and model simplicity. Each step in structure search is followed by parameter 
estimation, which is heuristically optimized to minimize the number of repeated calculations. For 
further efficient processing, we divided the documents into mini-batches, merged them separately 
and merged the results with the full script.  

We evaluated the script learning algorithm on the OMICS corpus of simple narrative texts about 
multiple domains collected by Honda Research Institute (Gupta and Kochenderfer 2004). We se-
lected 74 domains, each of which has at least 50 narratives and events of at least 3 types. Our 
algorithm significantly outperformed the other baselines that did not take into account the missing 
observations (46.0% accuracy vs. 42.1%). Thanks to our scoring function that penalizes the com-
plexity, the scripts learned by our algorithm are simpler and are more intuitive than the other base-
lines.  
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Our work has renewed the interest of NLP community in script learning. Some recent papers in-
clude (Chaturvedi et. al 2017; Iyyer et. al. 2016; Chaturvedi et. al 2016; Ferraro and Van Durme 
2016; Pichotta and Mooney 2016).  

4.6 Multitask Structured Prediction 

In this ongoing work, we are exploring several search-based approaches to the problem of multi-
task structured prediction (MTSP) in the context of multiple entity analysis tasks in natural lan-
guage processing including named entity recognition, coreference resolution, and entity linking.   

We have studied three different search architectures for multi-task structured prediction that make 
different tradeoffs between speed and accuracy (Ma et al. 2017). The fastest approach to multi-
task structured prediction is the independent architecture, where each task is solved independently 
of others. While it has the advantages of simplicity and reduced search space, the independent 
architecture does not benefit from mutual constraints that arise between different tasks. 

The second natural candidate is the joint architecture, where we treat the MTSP problem as a single 
task and search the joint space of multi-task structured outputs. Although it offers an elegant uni-
fied framework, the joint architecture poses a major challenge. The branching factor of the joint 
search space increases in proportion to the number of tasks, making the search too expensive. Even 
single tasks such as co-reference resolution involve large branching factors. We address this prob-
lem by learning pruning functions as in our Prune-and-Score approach.  

Finally, we studied a third search architecture referred to as cyclic, which is intermediate in com-
plexity between the above two architectures. The different tasks are done in a sequence, and re-
peated in a cycle as long as the current scoring function shows improvements. The cyclic architec-
ture has the advantage of not increasing the branching factor of the search beyond that of a single 
task, while taking advantage of mutual constraints between different tasks.   

We evaluated search-based multi-task structured prediction for entity analysis by jointly solving 
named entity recognition, co-reference, and entity linking tasks on multiple benchmark datasets, 
namely ACE 2005 and TAC-KBP 2015 in these three architectures. The results are summarized 
in Table 3, where the best results in each column are shown in bold. For the NER and LINK tasks, 
we show the accuracy percentages, and for Coref we measure the CoNLL score. The joint archi-
tecture not only outperforms the performance of independent tasks, but it also improves over the 
prior state-of-the-art approach based on belief propagation in graphical models (Durrett and Klein 
2014). The cyclic architecture offers competitive performance at a reduced computational cost 
compared to the joint architecture with pruning. The last column for each dataset shows the train-
ing time in minutes and seconds. The joint architecture with pruning is the most expensive, while 
the cyclic architecture takes a relatively modest amount of time more than the independent tasks.  
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Table 3: Comparison of the Independent, Joint and Cyclic architectures for NER, link-
ing and coreference resolution on ACE 2005 and TAC-EKBP 2015. 

Datasets  ACE 2005  TAC-KBP 2015 
Tasks NER Link Coref Time NER  Link Coref Time 
Berkeley 85.60 76.78 76.35 31m 88.90 74.80 82.98 6m29s 
Independent 82.24 75.36 75.04  9 m 87.30 76.20 81.21 2m41s 
Joint w pruning  87.18 80.28 77.85 37 m 89.33 77.68 83.17 9m2s 
Cyclic 84.18 80.67 77.29 11 m 89.57 77.68 82.08 3m52s 

4.7 Cross-lingual Entity Linking 

We also participated in the TAC-KBP competitions every year starting from 2013 in the entity 
linking and event-argument extraction tasks, culminating in our final system for the Trilingual 
Entity Discovery and Linking (TEDL) task in 2016.  

The TEDL task consists of assigning the corresponding entities in the knowledge base (KB) to 
the query mentions in each document, and cluster the mentions into corefering sets when there is 
no corresponding entity (KB). This task is quite challenging because the coreference clusters 
span multiple documents in possibly different languages.  

Our system is based on a cross-lingual entity linking model in which we use deep learning tech-
niques to make the performance less sensitive to language specifics. Our proposed cross-lingual 
entity linker consists of mention and context models. The mention model captures the lexical 
compatibility between the mentions and the entities in the English language. Following (Durrett 
and Klein 2014), we also define a latent query variable for each mention that represents the most 
likely prefix that generates the mention. The mention model is a loglinear model that computes a 
lexical compatibility score between a mention and an entity marginalized on the query variable. 
The model uses transliteration to obtain the mention-entity features for non-English languages. 
The context model leverages the contextual information encoded in mention and entity embed-
dings to make mention model less sensitive to English-specific features. For each mention and 
K=6 of its closest mentions in the embedding space, we compute and sum the dot products be-
tween their embeddings to get the context model score.  The final score of a mention-entity pair 
is the product of the scores of the mention model and the context model.  

We cluster the mentions that do not have a corresponding entity in the KB into corefering sets 
using within-document and cross-document coreference techniques. For within-document coref-
erence, we use the Prune-and-Score system described in Section 3.2. The cross-document coref-
erence is done by a rule-based agglomerative clustering algorithm similar to Stanford’s multi-
sieve system (Lee et al., 2011). However, unlike the Stanford’s system, which applies rules se-
quentially, our system computes a score for each cluster pair based on rules that judge the com-
patibility of each pair of mentions. The score of the cluster pair is the fraction of compatible pairs 
of mentions in the two clusters. We sequentially merge the pairs of clusters whose score exceeds 
a preset threshold. More details can be found at (Shahbazi et. al 2016).  
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Our system was ranked 6th among 12 systems in the first window of evaluation of TADL task in 
KBP-2016 according to the mention CEAF measure (Ji et al. 2016). This measure finds the opti-
mal alignment between system and gold standard clusters, and then evaluates the precision and 
recall, micro-averaged over mentions. We ranked 8th in the second window of evaluation, alt-
hough the performance of our system has improved beyond the first window. However, as the 
systems were allowed to use the other systems’ outputs in the second window, the relative rank-
ings are less meaningful.  

5. CONCLUSIONS AND FUTURE WORK

In summary, our research shows that search-based structured prediction has good potential in 
multiple subtasks of language understanding and is competitive with other methods based on 
graphical models and optimization. Our latest work on multi-task structured prediction shows 
that the search-based approach makes it easy to combine multiple subtasks into a unified frame-
work and yields superior performance at only a modest cost. We have also begun to explore neu-
ral network-based models that avoid extensive feature engineering and yield highly competitive 
results. We point out the following opportunities for future research, some of which we have al-
ready begun. 

1. Combine the neural network models with search-based structured prediction to jointly
solve multiple tasks to enable superior performance without feature engineering.

2. Explore other architectures for multi-task structured prediction that improve accuracies
further with little loss in computational efficiency. The cyclic architecture we developed
is very promising in this regard and could lead to greater gains with further optimizations,
e.g., change propagation.

3. Integrate the entity discovery and linking task with the event-argument extraction task to
build a more comprehensive language understanding system.

4. Investigate ways to combine inference and learning in multiple modalities such as lan-
guage and vision.

5. Systematically integrate our system into a knowledge based system framework by com-
bining the inferences from different subsystems in a principled manner while taking into
account the confidences of their predictions. This problem of building an integrated AI
systems in a principled manner is a woefully under-studied problem with a few notable
exceptions (Dietterich and Bao, 2008).
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