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CHAPTER 1
OVERVIEW

Robert Martin and Justin Koo

Contents
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Core Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Key Data-structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Basic Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1 Introduction
TURF development has been ongoing at AFRL/RQRS since late 2011 and has reached a level of development and
testing where the core data-structures, interface, and select operators are ready to be used by external collaborators
familiar with plasma physics and c++. To facilitate bringing these collaborators up to speed in writing modules
for TURF, the TURF Infrastructure Release (TURF-IR) has the capabilities in place to demonstrate kinetic and
fluid simulations, including several example input files to provide convenient starting points for the development
of additional physics capabilities. Though the framework has been designed in part to facilitate the creation of
modules that replicate the functionality of Coliseum/HPHall, it must be emphasized that the TURF-IR is intended
to stimulate academic collaboration and does not provide equivalent real-world capabilities to the Coliseum/HPHall
suite [1]–[3]. As such, this software by itself cannot be used to design or analyze real systems.

1.2 Core Structure
TURF is designed around a basic tree hierarchical object structure. TURF objects are built around this core
“General Service Object” or “GSObject” that facilitates construction of object trees and allows branches of the
tree to be recursively copied across disparate memory spaces such as from the CPU to GPU or across the message
passing interface (MPI) without losing their structural integrity. Because TURF objects are all derived from this
basic type, in addition to the core functionality required for this recursive data movement, the GSObject also
facilitates recursive auto-documentation of runtime object structure.

The objects of TURF can be divided between data objects and operation objects. The number of data objects
are intentionally restricted to provide a basic common skeleton of data storage on which a broad set of operations
can be applied. These basic data objects with minimal independent functionality facilitate code reuse by providing
a common basis though which operations interact. They also help simplify parallel communication by minimizing
the set of disparate objects that must be transferred. The operation objects define the key application programming
interface through which developers are encouraged to interact with the framework. They are intended to represent
compact mathematical operations and consist of 3 key components. Every operation includes an “init” function
that is passed a map of parameter-key values. It is the operation’s responsibility to parse this map to initialize all

Distribution A: Approved for public release; unlimited distribution; PA (Public Affairs) Clearance Number TBD.
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1.3. KEY DATA-STRUCTURES CHAPTER 1. OVERVIEW

the local information, create data-structures as needed, and query the existing object hierarchy for references to
additional required objects needed to function. For some operations, such as initial conditions, this initialization
is all that is required. For operations that evolve the problem solution, an “apply” function is defined. This
function is called as the framework iterates through a sequence of operations to perform a specific function on the
data. Whenever possible, this functionality should be further broken down into one or more “core” functions that
represent the functionality in a data independent parallel form that is designed to be agnostic to whether the core
is applied sequentially on a single process, in parallel through threads or as implemented by OpenMP, or in parallel
on an accelerator such as the GPU. The use of OpenMP and GPU are currently considered experimental and are
not widely implemented or tested.

Though additional data-structures may be created and inherited from those already included in the TURF-
IR, this practice is discouraged in favor of using existing data-structures to the greatest extent possible so that
operations apply in the largest context possible. Both the organizational layout of the data as well as the sequence of
operations performed on the data are then constructed at runtime facilitating rapid modular algorithm design. As
a result of this highly modular design, library modules of operations can be included or omitted without impacting
the functionality of other modules. This “plug-in” model implies that, if a particular release of TURF is missing
a module (e.g. a C-R physics module), there are no hooks to indicate that a particular module is missing. In
this way, reverse engineering the functionality of a module from the generic interfaces defined by the framework
is impossible. For an authorized developer, however, it is critical that the interfaces between their modules and
the framework are well-defined. Actually having a copy of the TURF-IR permits them to test the compatibility
of their modules within the framework and helps ensure data-structure compatibility and adherence to the module
interface for delivered code.

1.3 Key Data-structures
Creating modules that interface efficiently with TURF requires a detailed understanding of the layout of data in
memory (i.e. the data-structures). These underlying data-structures are largely tied to the sort of data being stored
(particle/field data) and the sort of mesh on which it is being stored (mesh-free/structured mesh/unstructured mesh)
but are all based on a custom multi-dimensional matrix object called gMatrix, a GSObject encapsulation and ex-
tension of the matrix objects used extensively in AFRL/RQRS’s prior research codes [4]–[8]. As a fundamental data
object, it is generic templated container class. The mesh classes of SMesh (structured) and UMesh (unstructured)
are compound objects of header information and gMatrix objects based on generic mesh classes used also exten-
sively by AFRL/RQRS over the last five years in numerous PhD and Masters theses. In addition to mesh objects,
the TURF-IR includes examples of basic particle and field data objects with similar header/gMatrix compound
structure.

1.4 Basic Functionality
For this version of the TURF-IR, the computational domain is centered around a constant spaced global Carte-
sian coordinate system. Though this “LogicalWorld” object is derived from a more general “World” object, the
current version of the framework assumes the existence of the global real to logical coordinate system to facilitate
domain patching automation while varying resolution. Active regions of the global coordinate system are defined
by “LogicalDomain” objects. These are essentially intended to be discrete axis aligned blocks for the sake of do-
main decomposition. Computation on every domain should be able to run independent of the others except for
discrete synchronization points at which time patches between domains are guaranteed to have completed. These
synchronization points are the end of computational stages.

Once the world and domains have been created, various “Operations” are applied. These operations can create
additional data objects to attach to the domain, set initial and boundary conditions, solve sets of equations, write
output, or any number of other manipulations of the data within the framework so long as they may be applied for
one domain at a time independently. Communication between domains is restricted to stage boundaries to preserve
this independence. The intent of this is two pronged. The first goal is to encourage as much fine grain parallelization
as possible. Extremely broad definition of an operation is also intended to avoiding locking the framework to a
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1.4. BASIC FUNCTIONALITY CHAPTER 1. OVERVIEW

specific set of applications due to more rigidly defined interfaces and phases of computation. The function of the
framework is then an extremely generic statement of, “There exists a set of data on which a sequence of parallel
operations may be applied that can be broken down into discrete stages between which communication between
the datasets may be performed.” In general, the world typically advances in computational time looping through
the operations, but this functionality is only included to assist in timestep synchronization between domains as
this is a commonly required functionality not easily obtainable in a domain independent manner. The form of the
time advancement, whether implicit, explicit, or iteration towards steady state, must be defined as built into the
sequence of operations rather than a pre-selected as a trait of the framework.
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2.1 Capabilities Robert Martin and Samuel J. Araki

TURF-IR v1.0 [9] included operators necessary to run four fundamental problems. These include a free-molecular
flow in a specular box (heatbath), a plasma in a grounded box, one-dimensional normal shock wave, and one-
dimensional collisionless electrostatic shock as summarized in Table 2.1. This level of functionality was originally
released to demonstrate the capabilities of the framework and provide a starting point for enabling collaborators
to develop new models and algorithms for the framework. For the 2016 release, the original tutorials have been
updated to remain consistent with the evolution of the overall framework while attempting to maintain backwards
compatibility to the greatest extent possible. Some of the operators included in 2016 have been superseded by newer
versions with enhanced capabilities as described in the TURF 2017a capabilities document. They are included to
maintain compatibility with the previous examples, but attempts should be made to migrate to the newer 2017a
capability if possible for enhanced functionality and performance in the future. The list of operators included in
TURF-IR v2016 is provided in Tables 2.2 and 2.3.

Table 2.1: Tutorials provided for TURF-IR v2016.
Folder Description of Problem Type of Solver Section
Heatbath Free molecular flow in a specular box Particle 2.2 and 2.3
GroundedBox Plasma in a grounded box PIC 2.4
1DShock One-dimensional normal shock wave DSMC 2.5
CollisionlessShock One-dimensional electrostatic shock Vlasov 2.6 and 2.7

Table 2.2: Summary of operations included in TURF-IR v2016.
Module Operation Description
DSMC SPDistDSMCConstantBCOp Injection of constant weight particles
DSMC SPDistDSMCConstantICOp Initial distribution of particles inside the domain
DSMC SPDistDSMCOp DSMC collision calculation
DSMC SPDistDSMCSample2Op Blend running average of field data
DSMC SPDistDSMCSampleOp Sample weights and number of particles
Field LogicalBCConstantOp Set value of cell centers in box every iteration
Field LogicalBCXtrapOp Set a physical boundary to extrapolation
Field LogicalFieldAddOp Add one field variable to another
Field LogicalFieldScalarMulOp Multiply field by scalar constant
Field LogicalFieldSetOp Set field values to constant
Field LogicalFieldVolumetricMulOp Multiply or divide by cell volume
Field LogicalGradientCellCenterOp Calculate the gradients of a field vector
Field LogicalNodeGradientOp Calculate node-centered gradient of cell center field
Field LogicalNormOp Calculate Lp-norm of field variable
Field LogicalPoissonBoltzmannStrip1DOp Solve for the electric field assuming a Boltzmann electrons
Field LogicalPoissonStripOp Red/Black line realxing Poisson solve
Field LogicalResidualOp Calculate residual of Poisson solve
Particle SPDistBCSpecOp Specularly reflecting boundary condition
Particle SPDistCellIDOp Find cell ID associated with particle location
Particle SPDistCombineOp Unify the particles from different distributions
Particle SPDistConstantBCOp Add Particles in box with uniform cell density via weights
Particle SPDistConstantICOp Create particle distribution & add particles via SPDistConstantBCOp
Particle SPDistDensityToFieldOp Sum real and computational particles/cell to field
Particle SPDistESPushOp Electrostatic particle push using node electric field
Particle SPDistMoveOp Linear particle push
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Table 2.3: Summary of operations included in TURF-IR v2016 (Continued).
Module Operation Description
Particle SPDistPatchOp Inter-domain particle patch
Particle SPDistSortOp Sort particles for cellID
Particle SPDistSplitOp Split particle distribution into two by cell ID flag
Particle SPDistToFieldOp Sum particle charges to field entry
Plotting LogicalFieldWrite1DOp Write to output files for line plots
Plotting LogicalFieldWriteVTKOp Write to output files for 3D plots in .vts format
Plotting LogicalFieldWriteVTKROp Export the field data in .vtr format
Plotting VolumeRenderOp Single cubic domain realtime volume rendering
Utility CriteriaStageOp Continue to next stage if quantity below criteria
Utility NextStageOp Continue to next stage
Vlasov CreateVlasovVariableOp Create new Vlasov fluid variable
Vlasov LogicalBCVlasovExtrapolateOp Set a velocity boundary conditions to extrapolation
Vlasov LogicalVlasov2DWriterOp Export a 2D phase-space plot
Vlasov LogicalVlasovCalcFluidVariablesOp Calculate field variables given a velocity distribution
Vlasov LogicalVlasovFluidBoltzmannSetOp Set initial conditions of a Vlasov field using a Boltzmann distribution
Vlasov LogicalVlasovFluidConstantICOp Create or initialize a new Vlasov fluid
Vlasov Vlasov1D1VSLOp Advect a Vlasov variable using the Semi-Lagrangian method
Vlasov VlasovMetricsOp Export Vlasov metric data for mass and energy conservation
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2.2 Heatbath 1: Initialization Jonathan Tran

2.2.1 Introduction
This tutorial is the first of two parts which gives an overview of the heatbath example in TURF. Prior to running
this example, you should already have installed TURF and verified that it was installed properly. For information on
this, please read README located in src-TURF. All relevant files can be located in tutorial-TURF/TURF-IR 2016
/Heatbath/Heatbath Part1. You should see several files with the .list extension, which act as the scripting files
for TURF. In addition to the TURF software you will also need a scientific visualization software that can read
VTK files such as Paraview1 or VisIt.2 Also useful is a text file comparison utility such as Meld3 or diff.

The heatbath example studies particles undergoing thermal expansion confined within a box. As mentioned
before, this tutorial is the first of two parts. We will discuss setting up a coordinate system, logical domain and
other necessary databases required for a TURF simulation in Section 2.2.2. Section 2.2.3 demonstrates the simplest
TURF simulation and explains the use of World-Rank.html for visualizing the simulation space. Lastly, Section 2.2.4
details the addition of particles to the domain and the operations necessary for TURF to output data compatible
with VisIt [10]. In TURF Heatbath Example Part 2, we will discuss the details of moving particles around the
domain and having these particles specularly reflect off the boundary of the domain. Lastly we will construct the
same simulation using multiple domains.

2.2.2 Defining Global Parameters
Running the TURF executable in the working directory will have TURF search for the default script file, world.list,
and parses it automatically. In this example, world.list is a symbolic link to the file world.heatbath.list. We
can take a look at the script by opening either file. We begin by defining the world and giving it a name. This name
is arbitrary and can be anything. We then have a block of commented lines which are calls to different operation
files. Each operation.list file when uncommented will run a different example, building on itself and adding
functionality. Over the course of this tutorial we would like to elaborate on the commands used to achieve this
functionality. The list of operations used in this tutorial is provided in Table 2.4.

DEFINE WORLD
NAME = Heatbath-Example

##########################################################
### Initially all turned off - Code does not advance ###
### ###
##########################################################
### Timestep advances but code does nothing ###
### OP_FILE = operations.null.list ###
##########################################################
### Add a particle distribution object with some ###
### particles in a box ###
### OP_FILE = operations.addparticles.list ###
##########################################################
### Write vtk field output files periodically ###
### OP_FILE = operations.writeoutput.list ###
##########################################################

We then define the world coordinate system, time step, field names and stages used in the example. TURF
is written to assume all units are in MKS. With this in mind, the cell size is 100 µm and our time step is 1 ns.
The length of the simulation is defined by the END TIME of 250 ns. Dividing END TIME by START DT will give us

1 www.paraview.org
2 https://visit.llnl.gov
3 http://meldmerge.org
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Table 2.4: Summary of operations listed in operations.writeoutput.list.
Stage Operation Description
INITIALIZE SPDistConstantICOp Initial particle distribution
MOVEOP NextStageOp Continue to next stage

SPDistDensityToFieldOp Sum particles per cell for field entry
SPDistSortOp Sort particles according to cell ID
LogicalFieldSetOp Initialize the field parameters

POSTOP LogicalFieldWriteVTKOp Write to output files for 3D plots

the number of iterations in the simulation, 250. The heatbath example uses two fields named as NHe and CNHe,
which store the physical and computational numbers of Helium particles per cell, respectively. This example also
has two stages named INITIALIZE and MOVE. A stage is a communication synchronization point after which all of
the domains within the simulation can vote on whether to proceed to the next stage or repeat the current stage.
This synchronization is important because different processes may finish operating on their domains before other
processes do. Failure to properly synchronize may cause the simulation to produce incorrect results. Note that the
names for fields and stages are only labels similarly to the world name and do not refer to any existing information
in the code. However, if used elsewhere in the code it is important to reference the same name.

COORDINATES = cartesian
ORIGIN = (0.0,0.0,0.0)
DELTA = (100.0e-6,100.0e-6,100.0e-6)
END_TIME = 250.0e-9
START_DT = 1.0e-9
FIELDS = [NHe, CNHe]
STAGES = [INITIALIZE, MOVE]

END WORLD

Lastly we define our domain. The location of the domain is relative to the origin of the world coordinate system.
The mesh spacing is global to the coordinate system and must be the same across all domains. In this example our
domain is a cube with a length of 3.2 mm with a mesh spacing of 0.1 mm in all directions.

############################################################################
## Domain Geometry
############################################################################
DEFINE DOMAIN DOM000

BOUND_LO = (0.0,0.0,0.0)
BOUND_HI = (3.2e-3,3.2e-3,3.2e-3)

END DOMAIN

2.2.3 Simulation with No Operations
operations.null.list

The first example details the creation of a domain, followed by 250 iterations of nothing. To run this case, we
uncomment the following line in the world.list file.

##########################################################
### Timestep advaces but code does nothing ###

OP_FILE = operations.null.list ###
##########################################################
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By doing so we call the operations.null.list file which defines the different operations used within the stages of
the simulation. You will notice that for both the initialize stage and the move stage, there exist only one operation
of the type NextStageOp. This operation simply tells the code to continue onto the next stage.

DEFINE STAGE INITIALIZE
DEFINE OPERATION
# Default Criteria to Proceed to the Next Stage

TYPE = NextStageOp
END OPERATION
END STAGE INITIALIZE
############################################################################

DEFINE STAGE MOVE
DEFINE OPERATION
# Default Criteria to Proceed to the Next Stage

TYPE = NextStageOp
END OPERATION
END STAGE MOVE

It is important to remember that the stage names initialize and move are just that, only names. Despite being
named initialize, this stage is called every iteration and the GPU cores must sync before moving onto the move
stage. Whether it is an initial operation or one that occurs iteratively is hard-coded in the operation source code.

World-Rank.html

When TURF is run, a html file named World-Rank.html is automatically generated. When opened, the user can
view the object hierarchy of the example. At the base of the tree is the logical world, which was named Heatbath-
Example. The branches include GSObject named GSMemberVector which have the functionality of a vector and
can be used by the GPU, there is a material database, a logical domain and the coordinate system defined by the
world.list file. It is possible to expand the hierarchy to investigate any underlying databases or arrays which are
automatically generated. Another useful feature is the visualization of the simulation environment. For this current
example, there exists only a single domain as shown by the blue cube. The surrounding gray region is a layer of
three ghost cells which are automatically generated when the domain is formed.

By selecting on the visualization and pressing the ’m’ key, we can cycle through volume view, line view and
point view. This is useful for visualizing objects within the domain as we will see in the later examples. The
usefulness of the World.Rank output will become evident as we add functionality to example. The object hierarchy
and visualization will allow us to directly see the changes we have made in the course of this tutorial.

Fig. 2.1: World-Rank(0).html with contracted database hierarchy.
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Fig. 2.2: World-Rank(0).html with expanded database hierarchy.

Fig. 2.3: World-Rank(0).html in line view.

2.2.4 Adding Particles
The following example creates a distribution of helium particles to fill a portion of the domain. We will then observe
the changes made in the World.Rank file and learn how to output the data in VTK format so it can be studied
using a visualization software such as VisIt.

operations.addparticles.list

To change the example we simply call a different operation.list file. We will do this by commenting out the previ-
ous op file operations.null.list and also uncommenting the next line named operations.addparticles.list
as shown below.

##########################################################
### Timestep advaces but code does nothing ###
### OP_FILE = operations.null.list ###
##########################################################
### Add a a particle distribution object with some ###
### particles in a box ###

OP_FILE = operations.addparticles.list ###
##########################################################

If we open both operations files with meld, we can directly compare changes between these two files, we can see that
there is one additional operation defined of the type SPDistConstantICOp shown below. This operation defines
a box with upper and lower boundary and distributes particles with a given number density and temperature.

10
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The particles themselves will have a given charge, mass (in units of proton mass) and drift velocity. This specific
operation creates an initial condition, so it will only do something when it is first read. Note that FILL RATIO is
roughly the percentage of particles to fill SPDist class object.

Fig. 2.4: World-Rank(0).html visualizing both the domain and region in which particles will be distributed. You
may notice the code automatically generated objects when SPDistConstantICOp is called.

DEFINE OPERATION
TYPE = SPDistConstantICOp
SPDIST_DATA_NAME = He-DST
MAX_NP = 1280000
FILL_RATIO = 0.25
BOUND_LO = (0.10e-3,0.10e-3,0.10e-3)
BOUND_HI = (2.32e-3,2.32e-3,2.32e-3)
TEMPERATURE = 11604.5059 # 1ev
NUMBER_DENSITY = 1.e14
Z = 0
MASS = 4.0 Mp
VEL = (0.,0.,0.)

END OPERATION

Since there are no push operations, the particles will remain at their locations for the length of the simulation.
Looking at the World-Rank.html we can see the bounding box for which the particles will be distributed within.

operations.writeoutput.list

To run the next example, open the world.list file again. Comment the line OP FILE = operations.addparticles.list
and uncomment the line OP FILE = operations.writeoutput.list, similarly as before. This simulation is exactly
the same as the previous except now we will output the particle density distribution in a VTK format compatible
with visualization software such as VisIt. This output is generated every five iterations. To do so we will use the
following operations in the move stage:

##############################
## Sum to Fields for Output ##
##############################
DEFINE OPERATION

TYPE = LogicalFieldSetOp
FIELD_DATA_NAME = FieldData
FIELD_NAME = CNHe
VALUE = 0.0
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END OPERATION
DEFINE OPERATION

TYPE = LogicalFieldSetOp
FIELD_DATA_NAME = FieldData
FIELD_NAME = NHe
VALUE = 0.0

END OPERATION
DEFINE OPERATION

TYPE = SPDistDensityToFieldOp
FIELD_DATA_NAME = FieldData
SPDIST_DATA_NAME = He-DST
PSORT_NAME = Sort_He-DST
FIELD_NAME = NHe CNHe # Computational and Physical Number per Cell

END OPERATION
######################
## Write VTK Output ##
######################
DEFINE OPERATION

TYPE = LogicalFieldWriteVTKOp
FIELD_DATA_NAME = FieldData
FILE_HEAD = heatbath_1/plt_
FIELD_NAME = NHe CNHe
SKIP = 5

END OPERATION

The operation LogicalFieldSetOp sets the value of the field to zero for the given field name; in this case, we have
an operation for CNHe and another for NHe. The current version of TURF uses F̈ieldDataäs the default name of
the field data. The operation SPDistDensityToFieldOp sums the quantity of helium for each cell and stores it into
CNHe and NHe. The last operation LogicalFieldWriteVTKOp outputs the field data for CNHe and NHe in VTK
format every five iterations.

Opening the VTK files with visualization software such as VisIt we notice TURF has created a cube with a
uniform density of helium particles just as we expected. As the simulation progresses in time, the particles remain
unchanged. In the next tutorial TURF Heatbath Example: Part 2 we will discuss how to push particles through
the domain and how to handle particles that leave the specified domain.

Fig. 2.5: The final state of the helium particles visualized in VisIt.
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2.3 Heatbath 2: Evolution Jonathan Tran

2.3.1 Introduction
This tutorial is the second of two parts which give an overview of the heatbath example in TURF. If you have not yet
gone over the first heatbath tutorial, it is advised that be done prior to running this example. You should already
have installed TURF and verified that it was installed properly. For information on this please read README lo-
cated in src-TURF. All relevant files can be located in tutorial-TURF/TURF-IR 2016/Heatbath/Heatbath Part2.
You should see several files with the .list extension, which act as the scripting files for TURF.

In the first part of the heatbath tutorial we discussed the basics of constructing a world coordinate system,
domain and the operations needed to add particles to the simulation. In this tutorial we plan on expanding our
simulation by adding a time dependence. Section 2.3.2 discusses how to thermally expand particles and how to
handle particles which have left the domain. In Section 2.3.3, we will impose boundary conditions which specularly
reflect incoming particles, thus completing the heatbath example. Lastly, we would like to construct the same
simulation with multiple domains requiring changes to both the world.list and operations.list files. The list of
operations used in this tutorial is provided in Table 2.5.

Table 2.5: Summary of operations used in this tutorial.
Stage Operation Description
INITIALIZE SPDistConstantIC Initial particle distribution
MOVEOP NextStageOp Continue to next stage

SPDistMoveOp Advancement of particles
SPDistDensityToFieldOp Sum particles per cell for field entry
SPDistSortOp Sort particles according to cell ID
LogicalFieldSetOp Initialize the field parameters
SPDistBCSpecOp Specularly reflecting boundary condition
SPDistCombineOp Unifies the particles from different distributions
SPDistCellIDOp Marks the cell ID in which particles reside
SPDistSplitOp Splits particle distribution into two by cell ID
SPDistPatchOp Transfers particles between domains

POSTOP LogicalFieldWriteVTKOp Write to output files for 3D plots

2.3.2 Particle Pushing
In TURF Part 1 of Heatbath example, our final example had particles which remained stationary for the length of
the simulation. The next logical step is to allow the particles to thermally expand.

operations.push-untrimmed.list

Pushing particles is quite simple, requiring one additional operation. We begin by running the operations.push-
untrimmed.list file the same way as before. In this case after initially distributing the particles in a cube, the
operation SPDistMoveOp will thermally expand the particle distribution over time. You may notice the total number
of particles in the simulation decreasing over time. This is due to a lack of boundary conditions for our domain;
particles continue on their trajectory beyond the bounds of the simulation.

DEFINE OPERATION
TYPE = SPDistMoveOp
SPDIST_DATA_NAME = He-DST

END OPERATION
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operations.push.list

Running this example shows an output identical to the push-untrimmed case however, it now has functionality to
sort through the particle list and explicitly remove those that have moved into the ghost cells as opposed to the
previous example where these particles would be ignored and continue on their trajectory. It does so using the
following operations:

DEFINE OPERATION
TYPE = SPDistConstantIC
SPDIST_DATA_NAME = He-GST
MAX_NP = 1280000

END OPERATION
###################################################
## Initial Sort Removes Particles Outside Domain ##
###################################################
DEFINE OPERATION

TYPE = SPDistCellIDOp
SPDIST_DATA_NAME = He-DST

END OPERATION
DEFINE OPERATION

TYPE = SPDistSortOp
NAME = Sort_He-DST
SPDIST_SRC_NAME = He-DST
SPDIST_DST_NAME = He-GST

END OPERATION

From the previous example we have added a distribution for helium named He-GST. The operation SPDistCell-
IDOp determines what cell every particle is in and the operation SPDistSortOp moves particles in ghost cells from
He-DST to He-GST.

2.3.3 Particle Heatbath
operations.heatbath.list

The final example is the particle heatbath, thermally expanding in a box. To do so, we impose boundary conditions
and have particles specularly reflect off the walls of the domain. By running operations.heatbath.list, we use
an operation named SPDistBCSpecOp which creates regions that share a surface with the domain. These regions
will reflect incoming particles in a given direction. An example of the use of this operation is shown below. The
code requires us to write this operation six times, one for every surface of the cubic domain. A visualization of
these regions can be seen in Fig. 2.6, and the final state visualized by VisIt is shown in Fig. 2.7. Taking a look at
the output in VisIt, we notice the total number of particles remains unchanged. If the simulation is run longer, it
will eventually approach steady state.

###############################
## 1-Walls reflect particles ##
###############################
DEFINE OPERATION

TYPE = SPDistBCSpecOp
SPDIST_DATA_NAME = He-DST
DIRECTION = xm
BOUND_LO = (-100.e-4,-100.e-4,-100.e-4)
BOUND_HI = ( 0.00001e-4, 132.e-4, 132.e-4)

END OPERATION
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Fig. 2.6: World-Rank(0).html visualizing both the domain and boundary condition region which specularly reflects
incoming particles.

Fig. 2.7: The final state of the helium particles visualized in VisIt for the heatbath example.
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Multiple Domain Case

The final example demonstrates the ability to use multiple domains. Doing this requires us to change the do-
main geometry in the world.list file. Luckily for us we already have a file we can change the pointer to named
world.heatbathx2.list. We first remove the previous pointer and create a new pointer with the same name to
world.heatbathx2.list.

tutorial-TURF/TURF-IR_2016/Heatbath/Heatbath_Part2> rm world.list
tutorial-TURF/TURF-IR_2016/Heatbath/Heatbath_Part2> ln -s world.heatbathx2.list world.list

Comparing the two world.list files the domain geometry is the only modification.

############################################################################
## Domain Geometry
############################################################################
DEFINE DOMAIN DOM000

BOUNT_LO = (0.0,0.0,0.0)
BOUND_HI = (1.6e-3,3.2e-3,3.2e-3)

END DOMAIN
DEFINE DOMAIN DOM001

BOUND_LO = (1.6e-3,0.0,0.0)
BOUND_HI = (3.2e-3,3.2e-3,3.2e-3)

END DOMAIN

When using multiple domains, it must be possible to exchange particles between the different domains. Looking at
the operations.list file we notice two significant differences between the single domain and multiple domain cases.
The first of which handles the exchange of particles from one domain to the other using a distribution named
He-EXC. The operation SPDistCombineOp unifies the particles from He-EXC distribution with He-DST at the
beginning of every loop.

DEFINE OPERATION
TYPE = SPDistConstantIC
SPDIST_DATA_NAME = He-EXC
MAX_NP = 1280

END OPERATION
##########################################################
## Combine EXC into DST from Patch at End of Move Stage ##
##########################################################
DEFINE OPERATION

TYPE = SPDistCombineOp
SPDIST_SRC_NAME = He-EXC
SPDIST_DST_NAME = He-DST

# VERBOSE = TRUE
END OPERATION

If a particle moves between the two domains, this particle is marked by assigning the maximum cell index to the
particle’s cell ID (SPDistCellIDOp). Then, the particle is temporarily removed from He-DST and placed into
the distribution He-EXC (SPDistSplitOp). Finally, the exchange distribution, He-EXC, is patched between the
domains (SPDistPatchOp), which takes place between the current and next stages.

###########################################################
## Split Particles Still Outside Active Domain for Patch ##
###########################################################
DEFINE OPERATION

TYPE = SPDistCellIDOp
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SPDIST_DATA_NAME = He-DST
END OPERATION
DEFINE OPERATION

TYPE = SPDistSplitOp
SPDIST_SRC_NAME = He-DST
SPDIST_DST_NAME = He-EXC

END OPERATION
DEFINE OPERATION

TYPE = SPDistPatchOp
SPDIST_SRC_NAME = He-EXC
SPDIST_DST_NAME = He-EXC

END OPERATION
DEFINE OPERATION

TYPE = NextStageOp
END OPERATION

Running the simulation we see that the output is similar to the single domain heatbath case as we would expect it
to be, do note however in the world.list file the overlapping ghost cells in the volume domain which are required
for the exchange of particles between domains.

Fig. 2.8: Volume domain split into two pieces.
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2.4 Grounded Box: 3D Electrostatic PIC Robert Martin

2.4.1 Introduction
This tutorial demonstrates running a simple 3D electrostatic particle in cell (PIC) case in the Thermophysics
Universal Research Framework (TURF). This tutorial assumes familiarity with the simple heatbath tutorials.
New users are referred to those tutorials for further explanation. The TURF input files can be located in
tutorial-TURF/TURF-IR 2016/GroundedBox/ES-PIC. You should see two files with the .list extension, which
act as the scripting files for TURF.

The grounded box test case was developed to verify TURF’s PIC algorithms with respect to AFRL/RD’s ICEPIC
particle in cell code running in electrostatic PIC mode [11]. The initial conditions are a uniform unit meter cube
of zero velocity protons at a density of 1010 m−3. In one octant of the cube, the proton charge is neutralized with
1010 m−3 electrons initially at stationary. The walls of the cube are set to a fixed 0-Volt potential. The electrons
are then accelerated by the field due to the charge of the non-neutralized protons in the remaining 7 octants of
the box. The field evolves as the electrons accelerate such that the cloud oscillates and evolves within the box.
Particles that hit the edge of the box are assumed to be neutralized and removed from the simulation.

2.4.2 world.list
There are two world files, world.single.list and world.multi.list, setup for single- and multi-domain sim-
ulations respectively. To run a simulation either link one of the existing world files to world.list, e.g. ln -s
world.single.list world.list, or run TURF with the -input option, e.g. TURF-o -input world.single.list.
For generality world.list is used instead of listing both world files. Running the TURF executable in the working
directory will have TURF search for the default script file, world.list, and parse it automatically. We can take a
look at the script by opening the file. The first block that defines the WORLD is shown below.

DEFINE WORLD
NAME = ICEPIC-Bench
OP_FILE = operations.list
COORDINATES = cartesian
ORIGIN = (0.0,0.0,0.0)
DELTA = (0.02,0.02,0.02)
END_TIME = 10.0e-6
START_DT = 2.50e-9
FIELDS = [rho, Enx, Eny, Enz, phi, residual_phi, Np+, Ne-, CNp+, CNe-]
STAGES = [INITIALIZE, SOLVE, MOVE, PLOT]

END WORLD

The options defined in this file should look familiar after completing the heatbath tutorial. In this example, the
world is named “ICEPIC-Bench” to denote that it was originally intended to serve as a benchmark verification run
against the ICEPIC code. The sample uses the operations.list operations file to define the simulation algorithm
which will be discussed below. The remainder of the world definition sets a global Cartesian coordinate system
with 2 cm cells along with 2.5 ns time steps up to a final simulation time of 10 µs. The next line defines 10 field
variables for charge density (rho), 3 node centered electric field components (En), the electrostatic potential (phi),
an auxiliary variable for calculating the residual of the potential during the field solve (residual phi), and proton
and electron physical and computational particle counts in cells (Np+,Ne-,CNp+,CNe-).

The example run is broken into 4 stages named INITIALIZE, SOLVE, MOVE, and PLOT. The two additional stages
compared to the heatbath example are to accommodate an iterative electrostatic potential solve stage (SOLVE) and
to ensure synchronization prior to the plotting operation stage (PLOT) though the latter is not strictly necessary.
In this tutorial, the operations file will be considered in stages (Section 2.4.3). List of operations defined in
operations.list are given in Table 2.6.

The last section of world.list defines the active domain for the simulation. In this example, it is simply a 1 m
unit cube starting from the coordinate origin. Using the global mesh spacing of 2 cm from the WORLD definition
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results in a 50 × 50 × 50 active cell cube with the default 3 “ghost”-cells added to the high and low side in each
direction for application of boundary conditions. For a single domain simulation the mesh bounds are defined via,

############################################################################
## Domain Geometry
############################################################################
DEFINE DOMAIN DOM000

BOUND_LO = (0.0,0.0,0.0)
BOUND_HI = (1.0,1.0,1.0)

END DOMAIN

and for the multi domain version

DEFINE DOMAIN DOM000
BOUND_LO = (0.0,0.0,0.0)
BOUND_HI = (1.0,1.0,1.0)
SUB_DOMAINS = (2,2,2)

END DOMAIN

Table 2.6: Summary of operations listed in operations.list.
Stage Operation Description
INITIALIZE SPDistConstantIC Initial particle distribution

SPDistCellIDOp Flag cell in which particle resides
SPDistSortOp Sort particles in cells by CellID
LogicalFieldSetOp Set field values to constant
SPDistDensityToFieldOp Sum real and computational particles/cell to field
SPDistToFieldOp Sum particle charges to field entry
NextStageOp Continue to next stage

SOLVE LogicalBCConstantOp Set value of cell centers in box every iteration
LogicalPoissonStripOp Red/Black line relaxing Poisson solve
LogicalResidualOp Calculate residual of Poisson solve
LogicalNormOp Calculate Lp-norm of field variable
CriteriaStageOp Continue to next stage if quantity below criteria

MOVE LogicalNodeGradientOp Calculate node-centered gradient of cell center field
SPDistESPushOp Electrostatic particle push using node electric field
SPdistSplitOp Split particle distribution by CellID flag

PLOT VolumeRenderOp Single cubic domain realtime volume rendering
LogicalFieldWriteVTKOp Write to output files for 3D plots
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2.4.3 operations.list
Stage: Initialize

This stage creates new particle electron and proton particle distributions. The SPDistConstantICOp operation
should be familiar from the heatbath example. Notable differences are that the charges, Z, are non-zero and the
electron mass is defined in units of electron mass instead of proton mass. Here, FILL RATIO is roughly the percentage
of particles to fill SPDist class object.

DEFINE STAGE INITIALIZE

####################################################################
## Initial Particle Distributions and Ghost/Exchange Distributions ##
####################################################################
DEFINE OPERATION

TYPE = SPDistConstantICOp
SPDIST_DATA_NAME = e-DST
MAX_NP = 2000000
FILL_RATIO = 1.0
BOUND_LO = (0.0,0.0,0.0)
BOUND_HI = (0.5,0.5,0.5)
TEMPERATURE = 0.0
NUMBER_DENSITY = 1.e10
Z = -1
MASS = 1.0 Me
VEL = (0.,0.,0.)

END OPERATION

DEFINE OPERATION
TYPE = SPDistConstantICOp
SPDIST_DATA_NAME = p+DST
FILL_RATIO = 0.0625
MAX_NP = 2000000
BOUND_LO = (0.0,0.0,0.0)
BOUND_HI = (1.0,1.0,1.0)
TEMPERATURE = 0.0
NUMBER_DENSITY = 1.e10
Z = 1
MASS = 1.0 Mp
VEL = (0.,0.,0.)

END OPERATION

Next, empty “ghost” particle distributions are created again using SPDistConstantICOp. These are empty
buffers where particles that have escaped the domain get copied later on in the sort.

DEFINE OPERATION
TYPE = SPDistConstantICOp
SPDIST_DATA_NAME = e-GST
MAX_NP = 2000000

END OPERATION

DEFINE OPERATION
TYPE = SPDistConstantICOp
SPDIST_DATA_NAME = p+GST
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MAX_NP = 2000000
END OPERATION

The next set of operations sort the particles by the cell in which they reside. Though still part of the
“INITIALIZE” stage, they will run every time the simulation loops back through that stage. The SPDistCellIDOp
operation identifies which cell the particle resides in and saves it to the “CellID” variable within the particle dis-
tribution. The SPDistSortOp operation sorts the particles by their “CellID” and any particle that has escaped the
domain gets separated into the ghost distribution.

################################################
## Initial Sort Sets Cell Edges for Fast Sums ##
################################################

DEFINE OPERATION
TYPE = SPDistCellIDOp
SPDIST_DATA_NAME = e-DST

END OPERATION

DEFINE OPERATION
TYPE = SPDistCellIDOp
SPDIST_DATA_NAME = p+DST

END OPERATION

DEFINE OPERATION
TYPE = SPDistSortOp
NAME = Sort_e-DST
SPDIST_SRC_NAME = e-DST
SPDIST_DST_NAME = e-GST

END OPERATION

DEFINE OPERATION
TYPE = SPDistSortOp
NAME = Sort_p+DST
SPDIST_SRC_NAME = p+DST
SPDIST_DST_NAME = p+GST

END OPERATION

The next sections accumulates particle quantities into the cell field variables. Before the data can be accu-
mulated, the field variables must be cleared using the LogicalFieldSetOp. In future version of TURF, these
operations may be optionally fused, but the separate combination is more general. The actual accumulation of
field data is performed by the SPDistDensityToFieldOp and SPDistToFieldOp. The first is used to set diagnostic
fields for number of real (Nx) and computational (CNx) particles per cell. It is worth noting that these numbers are
both raw sums. To obtain the density “n” from particle count N, LogicalFieldVolumetricMulOp simply divides
the particle count by the cell volume. This usage can be seen in the Vlasov collisionless shock tutorial. The second
operation multiples by particle charge while doing the accumulation such that the charge density is computed. More
computationally efficient calculations can now be performed using field multiplication and summation operations,
but the example in this tutorial was created using an early version of TURF that existed before those operations
had been completed. This functionality can also be seen in the Vlasov collisionless shock tutorial.

###################
## Sum to Fields ##
###################

# Clear Variables First
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DEFINE OPERATION
TYPE = LogicalFieldSetOp
FIELD_DATA_NAME = FieldData
FIELD_NAME = CNe-
VALUE = 0.0

END OPERATION

DEFINE OPERATION
TYPE = LogicalFieldSetOp
FIELD_DATA_NAME = FieldData
FIELD_NAME = CNp+
VALUE = 0.0

END OPERATION

DEFINE OPERATION
TYPE = LogicalFieldSetOp
FIELD_DATA_NAME = FieldData
FIELD_NAME = Ne-
VALUE = 0.0

END OPERATION

DEFINE OPERATION
TYPE = LogicalFieldSetOp
FIELD_DATA_NAME = FieldData
FIELD_NAME = Np+
VALUE = 0.0

END OPERATION

# Accumulate

DEFINE OPERATION
TYPE = SPDistDensityToFieldOp
FIELD_DATA_NAME = FieldData
SPDIST_DATA_NAME = e-DST
PSORT_NAME = Sort_e-DST
FIELD_NAME = Ne- CNe-

END OPERATION

DEFINE OPERATION
TYPE = SPDistDensityToFieldOp
FIELD_DATA_NAME = FieldData
SPDIST_DATA_NAME = p+DST
PSORT_NAME = Sort_p+DST
FIELD_NAME = Np+ CNp+

END OPERATION

DEFINE OPERATION
TYPE = LogicalFieldSetOp
FIELD_DATA_NAME = FieldData
FIELD_NAME = rho
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VALUE = 0.0
END OPERATION

DEFINE OPERATION
TYPE = SPDistToFieldOp
FIELD_DATA_NAME = FieldData
SPDIST_DATA_NAME = e-DST
FIELD_NAME = rho

END OPERATION

DEFINE OPERATION
TYPE = SPDistToFieldOp
FIELD_DATA_NAME = FieldData
SPDIST_DATA_NAME = p+DST
FIELD_NAME = rho

END OPERATION

Finally, the “INITIALIZE” stage is completed with the NextStageOp operation to proceed to the “SOLVE” stage.

DEFINE OPERATION
# Default Criteria to Proceed to the Next Stage

TYPE = NextStageOp
END OPERATION

END STAGE INITIALIZE

############################################################################

Stage: Solve

This stage iterates on solving for the electrostatic potential until the residual is small enough to proceed. The first
step of the iterative field solve is to set the boundary condition potential to 0 on all six faces of the box. This is
done using the LogicalBCConstantOp operation. The operation is relatively straightforward. The phi variable of
the default FieldData object is set to a potential of 0 Volts inside of the box defined by BOUND LO and BOUND HI.
In this configuration of TURF, the potential is assumed to be cell centered. More specifically, the potential is
set to 0 for every cell which has a cell center inside the physically defined box. This may lead to errors on the
order of ∆x on the location of the application of the boundary condition, but with the boundary conditions defined
physically, the solution should converge to the exact solution with grid refinement without manual reconfiguration
of the operations. This same approach is used when creating the domains which snap to the nearest approximation
of cells based on the physical constraints independent of the underlying mesh resolution. Once again, the NAME
variable for the operation is simply a designator label for output readability and the value in the NAME is not
evaluated by the code to influence application of the operation. Boundary condition boxes are chosen to be large
enough to contain at a minimum the first few layers of cell centers even at the coarsest resolutions run. In regions
where the physical boundary conditions overlap, the value will be set repeatedly.

############################################################################

DEFINE STAGE SOLVE

DEFINE OPERATION
TYPE = LogicalBCConstantOp
NAME = Electrode-X-
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FIELD_DATA_NAME = FieldData
FIELD_NAME = phi
VALUE = 0.0
BOUND_LO = (-0.1,-0.1,-0.1)
BOUND_HI = (0.0,1.1,1.1)

END OPERATION

DEFINE OPERATION
TYPE = LogicalBCConstantOp
NAME = Electrode-X+
VALUE = 0.0
FIELD_DATA_NAME = FieldData
FIELD_NAME = phi
BOUND_LO = (1.0,-0.1,-0.1)
BOUND_HI = (1.1,1.1,1.1)

END OPERATION

DEFINE OPERATION
TYPE = LogicalBCConstantOp
NAME = Electrode-Y+
VALUE = 0.0
FIELD_DATA_NAME = FieldData
FIELD_NAME = phi
BOUND_LO = (-0.1,1.0,-0.1)
BOUND_HI = (1.1,1.1,1.1)

END OPERATION

DEFINE OPERATION
TYPE = LogicalBCConstantOp
NAME = Electrode-Y-
VALUE = 0.0
FIELD_DATA_NAME = FieldData
FIELD_NAME = phi
BOUND_LO = (-0.1,-0.1,-0.1)
BOUND_HI = (1.1,0.0,1.1)

END OPERATION

DEFINE OPERATION
TYPE = LogicalBCConstantOp
NAME = Electrode-Z+
VALUE = 0.0
FIELD_DATA_NAME = FieldData
FIELD_NAME = phi
BOUND_LO = (-0.1,-0.1,1.0)
BOUND_HI = (1.1,1.1,1.1)

END OPERATION

DEFINE OPERATION
TYPE = LogicalBCConstantOp
NAME = Electrode-Z-
VALUE = 0.0
FIELD_DATA_NAME = FieldData
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FIELD_NAME = phi
BOUND_LO = (-0.1,-0.1,-0.1)
BOUND_HI = (1.1,1.1,0.0)

END OPERATION

After the boundary conditions have been set, the actual Poisson solve can be performed. Currently, the set of
elliptic solvers in TURF is relatively minimal and includes only red-black Gauss-Seidel and tri-diagonal ADI-type
solvers as indicated below by the LogicalPoissonStripOp operation. There is also degenerate 1D version of the
solver that can be used in fundamentally 1D problems or as an accelerated initial guess for solutions that are
primarily one dimensional. The only non-default options for the solver selected were to not cycle sweep directions
and to sub-cycle the operation 3 times before continuing. The operation is also applied in a red-black checkerboard
in the iterative directions so that the solution is independent of the order in which the line relaxation sweeps are
performed.

DEFINE OPERATION
TYPE = LogicalPoissonStripOp
FIELD_DATA_NAME = FieldData
FIELD_NAME = phi
SOURCE_NAME = rho
MESH_NAME = SMesh
DIRECTION = 0 # Start with X-sweep
SUBCYCLE = 3
DIRCYCLE = FALSE # Default TRUE

END OPERATION

The last part of the SOLVE stage is defining the criteria to iterate the stage or continue to the next. First,
the residual of phi is computed in every cell and stored in residual phi using the LogicalResidualOp. The
LogicalNormOp operation calculates the norm of the residual. The NORM parameter defines the power p for any
Lp-norm. The operation creates a new scalar variable SUMresidual phi L2.00e+00 based off the name of the
field in which the residual resides and the power of the norm to store the accumulated total residual. Finally, the
CriteriaStageOp evaluates whether the summed residual is below the required threshold CRITERIA. Each domain
applies this operation independently. At the end of each stage, every process collects one vote from every domain
as to whether or not to proceed to the next stage or to loop to iterate on the stage. These votes are broadcast
across all processes and evaluated by the world when determining whether or not to proceed.

DEFINE OPERATION
TYPE = LogicalResidualOp
FIELD_NAME = phi
RESIDUAL_NAME = residual_phi
SOURCE_NAME = rho

END OPERATION

DEFINE OPERATION
TYPE = LogicalNormOp
FIELD_NAME = phi
RESIDUAL_NAME = residual_phi
NORM = 2.0

END OPERATION

DEFINE OPERATION
# Threshold Criteria to Proceed to the Next Stage

TYPE = CriteriaStageOp
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QUANTITY_NAME = SUMresidual_phi_L2.00e+00
CRITERIA = 5.0e-4 # High Density!

END OPERATION

END STAGE SOLVE

############################################################################

Stage: Move

In the next section, the particle positions are updated using the field solved in the prior step. To do this,
the node centered electric field, En, is evaluated first using the LogicalNodeGradientOp operator. Because
the field is the negative gradient of the potential, the FIELD MULTIPLY CONSTANT of -1.0 is included. The
FIELD GRADIENT DIRECTIONS are suffixes attached to the root name En that the operator uses to construct the
three components of the field names needed to store the result.

############################################################################

DEFINE STAGE MOVE

DEFINE OPERATION
TYPE = LogicalNodeGradientOp
FIELD_DATA_NAME = FieldData
FIELD_POTENTIAL_NAME = phi
FIELD_GRADIENT_PREFIX = En
FIELD_MULTIPLY_CONSTANT = -1.0
FIELD_GRADIENT_DIRECTIONS = [x, y, z]

END OPERATION

The next two operations use the field to advance the electron and ion positions. The inputs are similar to the
basic linear push described in the heatbath tutorials with extra field options so that the operator knows which field
data to use for the acceleration.

DEFINE OPERATION
TYPE = SPDistESPushOp
FIELD_DATA_NAME = FieldData
FIELD_EN_PREFIX = En
FIELD_EN_DIRECTIONS = [x, y, z]
SPDIST_DATA_NAME = e-DST

END OPERATION

DEFINE OPERATION
TYPE = SPDistESPushOp
FIELD_DATA_NAME = FieldData
FIELD_EN_PREFIX = En
FIELD_EN_DIRECTIONS = [x, y, z]
SPDIST_DATA_NAME = p+DST

END OPERATION

After the push, the particle distribution is split between particles that remain within the domain and particles
that escaped into the grounded wall. Particle that escape are marked with a CellID flag set within the push. This
push does not actually test boundary intersections during the push which is a fast method for simple boundary
conditions. Triangulated boundary surface intersecting pushes with and without field are still in testing and will
appear in future revisions of the TURF-IR. The last operation in the stage is another NextStageOp.
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DEFINE OPERATION
TYPE = SPDistSplitOp
SPDIST_SRC_NAME = e-DST
SPDIST_DST_NAME = e-GST

END OPERATION

DEFINE OPERATION
TYPE = SPDistSplitOp
SPDIST_SRC_NAME = p+DST
SPDIST_DST_NAME = p+GST

END OPERATION

##############################################

DEFINE OPERATION
# Default Criteria to Proceed to the Next Stage

TYPE = NextStageOp
END OPERATION

END STAGE MOVE
############################################################################

Stage: Plot

The last stage of the simulation is plotting. The first operation in the plotting section is the CUDA accelerated
real-time volume ray tracing operation, VolumeRenderOp. The code is primarily a wrapped version of the NVIDIA
CUDA SDK’s VolumeRender example. The infrastructure launches that set of code in a separate window. When
the operation is applied during the code’s main thread loop, a second buffer is filled from the field variable specified
by the FIELD DATA NAME and FIELD NAME parameters. It then signals the visualization thread to swap buffers. It
is restricted to single cubic domains in this version of the infrastructure because it uses the rendering kernels from
the example with few modifications to apply in other geometries. Most of the settings for producing the coloring
and view were obtained by interacting with the visualization to determine a “good” view. This mode of interaction
is described below the file listing. Other options include the commented FILE HEAD and SAVE IMG options. If
re-enabled, the operation outputs a ‘.ppm’ image file for every iteration that is drawn. Iteration skipping can be
adjusted by the SKIP parameter to reduce the number of files. The VIEW ORBIT parameter tells the visualization to
rotate by the indicated number of degrees once per iteration automatically in addition to the interactive rotations
to help make the 3D nature of the volume rendering more intuitive.

############################################################################
DEFINE STAGE PLOT

DEFINE OPERATION
TYPE = VolumeRenderOp
FIELD_DATA_NAME = FieldData

# FILE_HEAD = VolViz0T
# SAVE_IMG = TRUE

FIELD_NAME = Ne-
SKIP = 1

# INVERT = TRUE
DENSITY = 0.04
BRIGHTNESS = 1.7
TRANSFERUPPERBOUND = 3.8e5
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TRANSFERLOWERBOUND = 2.5e3
LOG_PLOT = FALSE
INVERT = FALSE
VIEW_TRANSLATION = (0.0,0.0,-3.6)
VIEW_ROTATION = (0.4,51.6,0.0)
VIEW_ORBIT = (0.0,-2.0,0.0)
WINDOW_SIZE = (960,960)

END OPERATION

An example of the output displayed with the default settings by the realtime visualization can be seen in Fig. 2.9.
This shows the electron cloud density in the box after 828 timesteps using the default visualization parameters.

Fig. 2.9: Volume rendering example output of electron density in grounded box

Left-clicking and dragging the mouse rotates the visualization. Right-clicking and dragging the mouse scales
the view. Center or simultaneous left and right clicking while dragging the mouse pans the viewport. The ’-+’ keys
adjust the density for the ray tracing. Lower values make the electron cloud more translucent and higher makes
the rendering thicker and only values closer to the surface of the cloud are visible. The square bracket keys, ’[]’,
adjust the ’brightness’ of the display. The keys on the next row down, ’;’’, adjust the ’transferUpperBound’, which
is essentially the top edge of the colormap. The next row down from there, the ’,.’ keys adjust the ’transferLower-
Bound’. This is similarly the bottom edge of the colormap. The ’i’ key inverts the coloring of the display to a
black box on a white background. As the keys adjust the settings, the visualizer displays the adjusted parameters
interwoven with normal output from the infrastructure. Once a good view has been determined, the options can
then be fed back into the operation’s parameters for future runs. The output of holding the ’-’ is shown below with
some additional whitespace for clarity while a similar line is produced by the mouse adjustments as well.

Iteration 1747: Time=4.367510e-06 dt=2.500000e-09 [Wall Clock:477.743864]
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density = 0.07, brightness = 2.10, transferUpperBound = 3.45e+05,
transferLowerBound = 1.39e+04, invert = F

density = 0.06, brightness = 2.10, transferUpperBound = 3.45e+05,
transferLowerBound = 1.39e+04, invert = F

density = 0.05, brightness = 2.10, transferUpperBound = 3.45e+05,
transferLowerBound = 1.39e+04, invert = F

NORM: 4.386121e-04
Iteration 1748: Time=4.370010e-06 dt=2.500000e-09 [Wall Clock:478.055719]

The last additional operations are a commented version of the LogicalFieldWriteVTKOp which writes the field
data to output files rather than relying on the realtime visualization. This is necessary for running the tutorial on
systems that do not include NVIDIA GPU’s that are compatible with the direct OpenGL interface used by the
volume renderer. The options are similar to those of the heatbath tutorial. The last operation is a final NextStageOp
to tell the code to advance to the next stage, or in this case, loop back to the first stage.

# DEFINE OPERATION
# TYPE = LogicalFieldWriteVTKOp
# FIELD_DATA_NAME = FieldData
# FILE_HEAD = plt/plt_
# FIELD_NAME = Ne- CNe- Np+ CNp+ phi rho
# SKIP = 5
# # FORMAT = BINARY # Won’t open!
# HELP = TRUE
# END OPERATION

DEFINE OPERATION
# Default Criteria to Proceed to the Next Stage

TYPE = NextStageOp
END OPERATION

END STAGE PLOT
############################################################################

2.4.4 Results
The example in this tutorial was originally developed to verify TURF functionality with respect to the ICEPIC code.
Using as similar parameters as possible between the two codes, the example was run and visualized in ParaView
as shown in Fig. 2.10. The setup was nearly identical to what was outlined above except more particles were used
to provide smoother output. In particular, a FILL RATIO of 4.0 was used with the e-DST, and the default value
of 0.5 was used for the p+DST to ensure a similar number of particles were used in TURF as in ICEPIC. For the
realtime visualization, the low proton numbers make little difference in the electron density visualization, but they
make charge density plots like those used to compare the code much more noisy. The agreement between the two
codes was very reasonable considering all the particle trajectories are coupled to the field solution and vice versa.
A major difference is the appearance of more charge neutrality on the surface of the ICEPIC result, but this is
essentially a difference due to node-centered versus cell-centered output between the two codes. The background
in ICEPIC is slightly noisier as well because the ratio of real to computational weights of particles in TURF are
modified to ensure the intended cell densities rather than randomly inserting equal weight particles throughout
the domain. On longer timescales after the protons have had the opportunity to move further, the noise level in
TURF would appear more similar to that in the ICEPIC result. The SPDistBoxICOp available in the TURF-DEV
development package would provide a more directly comparable initialization with constant particle weights, but
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it was added after the original verification runs were performed and will not be included in the infrastructure core
until the next revision.

Fig. 2.10: Comparison of ICEPIC (left) and TURF (right) grounded box results
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2.5 One Dimensional Normal Shock: DSMC Samuel J. Araki

2.5.1 Introduction
This tutorial provides steps in setting up the DSMC example provided in the following directory:
tutorial-TURF/TURF-IR 2016/1DShock/DSMC/TURF. This folder contains two subfolders, DS1V and TURF. The DS1V
contains reference cases for Argon shocks using the DS1V code described in Section 2.5.5 below. The TURF folder
contains input files to run the same Argon shock cases within TURF. For example, the TURF/M1.2 folder contains
the input files for running the Mach 1.2 shock test case. Once in the specific case directory, world.list should be
pointed to the file world.dsmc1Dshock.list by typing

tutorial-TURF/TURF-IR_2016/1DShock/DSMC/TURF> ln -s world.dsmc1Dshock.list world.list

in the command line, as in other examples. The script file world.dsmc1Dshock.list will execute the DSMC
operations listed in operations.dsmc1Dshock.list to simulate the 1D normal shock problem using the DSMC
method. In order to run DSMC simulations properly, the value for FNUM must be set to the same value for all
the DSMC operations defined in operations.dsmc1Dshock.list, where FNUM is the number of physical particles
represented by a single simulation particle. Therefore, when introducing particles into the domain, operations
that require the user specified FNUM must be used; these operations are named as SPDistDSMCConstantICOp and
SPDistDSMCConstantBCOp. The operation SPDistDSMCConstantICOp distributes particles uniformly inside the sim-
ulation domain. On the other hand, the operation SPDistDSMCConstantBCOp creates particles outside the domain,
and a fraction of these particles flow into the domain. The DSMC collision calculation is done in SPDistDSMCOp,
and the same FNUM used in the other operations must be used. Furthermore, SPDistDSMCSampleOp triggers the
mixing of the field values between iterations, allowing a smoother distribution at the end of simulation. These
DSMC operations are explained in this tutorial.

2.5.2 Description of the Example Problem
In a fluid, disturbance information is communicated within a medium at the speed of sound, allowing the upstream
flow field to adjust accordingly. However, when the flow velocity is greater then the speed of sound, the distur-
bance information cannot be communicated fast enough, resulting in a formation of a shock. The shock creates a
“discontinuity” or a sudden change in flow properties such as velocity, pressure, and temperature. Across a shock,
the pressure and temperature always increase while the velocity always decreases from upstream to downstream.
The example to simulate with the DSMC part of TURF is the 1D normal shock problem, in which the shock forms
in a plane perpendicular to the flow direction. In this problem, the flow properties at upstream and downstream
regions with respect to the shock location are related through the following equations [12].

ρ1u1 = ρ2u2

p1 + ρ1u
2
1 = p2 + ρ2u

2
2 (2.1)

h1 + 1
2u

2
1 = h2 + 1

2u
2
2

where ρ is the density, u is the velocity, p is the pressure, h is the enthalpy, and subscripts 1 and 2 denote upstream
and downstream, respectively. Equation (2.1) is obtained by integrating the Euler equations, a set of conservation
equations for mass, momentum, and energy that are applicable for such flows [13]. In a perfect gas, the speed of
sound, a, can be determined using the isentropic relation.

a2 =
(
∂p

∂ρ

)
s

= γp

ρ
= γRsT (2.2)

where γ is the heat capacity ratio defined as γ = 1 + 2/f , f is the degree of freedom (i.e. 3 for a monatomic gas
and 5 for a diatomic gas), Rs is the specific gas constant (i.e. 208.13 J/kg·K for argon), and T is the temperature.
Using Eq. (2.1) and the perfect gas assumption, the downstream flow properties can be determined if the upstream
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flow properties are known [12].

M2
2 =

1 + γ−1
2 M2

1

γM2
1 −

γ−1
2

(2.3)
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1 + 2 (2.4)

T2
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(γ + 1)2
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M2

1

(
M2

1 − 1
)

(2.5)

where M is the Mach number defined as M = u/a and n is the number density. In setting up the 1D normal shock
problem, the downstream flow properties need to be evaluated and input in operations.list prior to running
TURF.

Table 2.7: Downstream flow properties for upstream Mach number of 1.2, 1.4, 2.0, and 8.0. The values are for
argon gas.

Downstream Upstream Mach Number, M1
Flow Property Symbol Unit 1.2 1.4 2.0 8.0
Velocity u2 m/s 294.9 282.3 278.9 667.3
Speed of Sound a2 m/s 348.4 376.0 459.4 1456
Mach Number M2 - 0.85 0.75 0.61 0.46
Number Density n2 1/m3 1.30× 1022 1.58× 1022 2.29× 1022 3.82× 1022

Temperature T2 K 350.1 407.8 608.9 6116

2.5.3 Setting up the DSMC Example
One way to set up the 1D normal shock problem is to introduce uniformly distributed gases upstream and down-
stream of the shock location. Given the upstream flow properties, appropriate downstream flow properties are
determined by Eqs. (2.3) to (2.5). Table 2.7 provides the downstream flow properties for argon gases of T1 = 293,
n1 = 1× 1022 m−3, and a1 = 318.8 m/s at M1 of 1.2, 1.4, 2.0, and 8.0. The upstream flow velocities corresponding
to the Mach number of 1.2, 1.4, 2.0, and 8.0 are 382.4, 446.2, 637.4, and 2549.6 m/s, respectively. In order to
maintain the gas density and the shock location, the gas should also be flowing into the domain from the upstream
boundary according to the flow 1. At the interface between the two gases at different flow properties, the properties
are initially discontinuous, while they will develop smooth profiles as time evolves. These profiles can be compared
with the profiles obtained by other DSMC models or fluid models. Examples of shock profiles are also provided in
Ref. [14].

The script file world.dsmc1Dshock.list includes important parameters that define the problem, including the
information related to computational grid, time-step, species, etc, as shown below. Referring to world.dsmc1D-
shock.list, the number of interior cells can be found by dividing (BOUND HI-BOUND LO) by DELTA for each direction.
In this example, the grid contains 1000 cells in x-direction and a single cell for both the y- and z-directions. The
gas species is argon. Furthermore, the parameters to be output are the number of computational and physical
particles which are specified as NAr and CNAr, respectively. This example uses three stages: INITIALIZE, MOVE,
and POSTOP. The script file operations.dsmc1Dshock.list contains all the operations within each of the three
stages, as listed in Table 2.8. This tutorial only covers the DSMC operations including SPDistDSMCConstantICOp,
SPDistDSMCConstantBCOp, SPDistDSMCOp, and SPDistDSMCSampleOp. Descriptions of the other operations can be
found in other tutorials.

DEFINE WORLD
NAME = DSMC_example
OP_FILE = operations.dsmc1Dshock.list
COORDINATES = cartesian
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ORIGIN = (0.0,0.0,0.0)
DELTA = (2.0e-5,2.0e-3,2.0e-3)
END_TIME = 1.0e-4
START_DT = 1.0e-8
FIELDS = [NAr, CNAr]
SPECIES = [Ar]
STAGES = [INITIALIZE, MOVE, POSTOP]
START_ITERATION = 0 # Number of Poisson Iteration Before Start

END WORLD

############################################################################
## Domain Geometry
############################################################################
DEFINE DOMAIN DOM000

BOUND_LO = (0.0,0.0,0.0)
BOUND_HI = (2.0e-2,2.0e-3,2.0e-3)

END DOMAIN

Table 2.8: Summary of operations listed in operations.dsmc1Dshock.list.
Stage Operation Description
INITIALIZE SPDistDSMCConstantICOp Initial distribution of particles inside the domain

SPDistConstantICOp Null particle distribution in ghost cells
MOVEOP SPDistDSMCConstantBCOp Injection of particles

SPDistMoveOp Advancement of particles
SPDistBCSpecOp Specular boundary condition
SPDistCellIDOp Find cell ID associated with particle location
SPDistSortOp Sort particles according to cell ID
SPDistDSMCOp DSMC collision calculation
LogicalFieldSetOp Initialize the field parameters
SPDistDensityToFieldOp Sum real and computational particles/cell to field
LogicalFieldVolumetricMulOp Multiplies or divides field data by cell volumes
SPDistDSMCSample2Op Blend running average of field data

POSTOP LogicalFieldWriteVTKOp Write to output files for 3D plots
LogicalFieldWrite1DOp Write to output files for line plots

2.5.4 DSMC Operations
SPDistDSMCConstantICOp

This operation sets up uniformly distributed particles within a box placed inside the simulation domain. An example
of inputs for SPDistDSMCConstantICOp are shown below. Unlike SPDistConstantICOp, the real to computational
particle wieght ratio, FNUM, is specified as an input. The box to be filled with particles is bounded by BOUND LO and
BOUND HI, in which the lower and higher bounds in Cartesian coordinate are specified, respectively. The gas species
is argon, and the corresponding mass of each molecule is 39.659 times the proton mass, Mp. In order to set up the
1D shock problem properly, the upstream and downstream regions inside the computational domain are filled with
particles according to flow properties 1 and 2. The initial particle distribution obtained by the DSMC example is
shown in Fig. 2.11. This example corresponds to the case with M1 = 1.2, where the downstream flow properties are
given in Table 2.7. Note that NAr is related to the number density n such that n =NAr/∆V where ∆V is the size
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of a cell in m−3. There is a statistical noise associated with the number of computational particles as the particle
locations are determined using the random number generator; the noise can be reduced by increasing the number
of simulation particles.

DEFINE OPERATION
TYPE = SPDistDSMCConstantICOp
SPDIST_DATA_NAME = Ar-DST
MAX_NP = 12800000
BOUND_LO = (0.0,0.0,0.0)
BOUND_HI = (1.0e-2,2.0e-3,2.0e-3)
TEMPERATURE = 293.0
Z = 0
MASS = 39.659 Mp
NUMBER_DENSITY = 1.0e22
FNUM = 9.1892e8
VEL = (382.447,0.0,0.0)

END OPERATION

Fig. 2.11: Initial particle distribution.

SPDistDSMCConstantBCOp

This operation sets up uniformly distributed particles within a box placed outside the simulation domain. The size
of box is modified such that it lies within the ghost cell region. An example of inputs for SPDistDSMCConstantBCOp
are shown below. Similar to SPDistDSMCConstantICOp, the box to be filled with particles is bounded by BOUND LO
and BOUND HI.
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In the DSMC example, particles flowing out the simulation domain from ±x boundaries are simply discarded,
while fraction of particles created in the box flows into the simulation domain. When the simulation is at steady-
state, the particle counts flowing in and out the domain are maintained to be nearly equal.

DEFINE OPERATION
TYPE = SPDistDSMCConstantBCOp
SPDIST_DATA_NAME = Ar-DST
TEMPERATURE = 293.0
NUMBER_DENSITY = 1.0E22
FNUM = 9.1892e8
VEL = (382.447,0.0,0.0)
BOUND_LO = (-0.01e-2, 0.0e-3, 0.0e-3)
BOUND_HI = ( 0.00e-2, 2.0e-3, 2.0e-3)

END OPERATION

SPDistDSMCOp

This operation finds the number of collisions to perform within all the grid cells and apply collisions based on
the DSMC method. The variable hard sphere (VHS) molecular model is used to determine the deflection of
particles which requires inputs of ALPHA and DIAM where ALPHA and DIAM are the empirical factors that determine
the diameter variation and reference diameter of the molecule, respectively. The DIAM is the reference molecular
diameter at 273K such that a hard sphere of that diameter would have the correct fluid viscosity and ALPHA is
viscosity-temperature power law coefficient, ω, minus the hard sphere value of 0.5. It is important to note that
ALPHA should not be confused with the variable soft sphere (VSS) model’s α parameter. These parameters can be
found in Ref. [14].

DEFINE OPERATION
TYPE = SPDistDSMCOp
SPDIST_DATA_NAME = Ar-DST
MASS = 39.659 Mp
ALPHA = 0.31
FNUM = 9.1892e8
KOVERM = 208.132
DIAM = 4.17e-10
FREQUENCY_TO_RESAMPLE_MFS = 2000
SORT_OP_NAME = Sort_Ar-DST

END OPERATION

SPDistDSMCSampleOp

This operation is similar to SPDistDensityToFieldOp except that it starts to mix the fields after the time specified
as an input. An example of inputs for SPDistDSMCSampleOp is shown below. In the DSMC example, the fields
NAr and CNAr are computed from the particle distribution at the computational grid. After the time given to
MIX START TIME, mixing between iterations is initiated. MIX START TIME should be set to the time when the
simulation becomes steady-state. This operation allows a smooth field distribution at the end of simulation without
using a very large number of simulation particles. The field distributions at 2,000 and 10,000 time-steps are shown in
Figs. 2.12 and 2.13, respectively. In this example, mixing has been performed after 8,000 time-steps; the distribution
is smoothed out significantly after mixing the field parameters for the last 2,000 iterations.

DEFINE OPERATION
TYPE = SPDistDSMCSampleOp
FIELD_DATA_NAME = FieldData
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SPDIST_DATA_NAME = Ar-DST
PSORT_NAME = Sort_Ar-DST
FIELD_NAME = NAr CNAr
MIX_START_TIME = 8.0e-5

END OPERATION

SPDistDSMCSample2Op

This operation is another version of SPDistDSMCSampleOp needed for long sampling times. Because TURF uses
single precision floating point numbers for particles and fields for the sake of GPU performance, the direct DSMC
sampling starts to loose accuracy for large numbers of samples. For the direct sample operation, the value of the
sampled average field is first scaled by (nsample−1)/nsample and then particle weights are accumulated into the sample
average scaled by wp/nsample. This means that in each cell, a number of order (particles/cell)∗nsample smaller than
the total is added for each particle during the accumulation phase. At approximately O(1, 000 − particles/cell)
and O(10, 000) samples, the added pieces are O(1e7) times smaller than the total resulting in lost single precision
digits and bulk fluctuation of the sample values. Instead, the SPDistDSMCSample2Op uses two density buffers to
help alleviate this issue, NAr and NbarAr (along with particle/cell counterparts). The instantaneous density is first
accumulated in NAr using the standard SPDistDensityToFieldOp operation, and then the sample averaged value is
updated via N̄Ar = (NAr + (nsample − 1)N̄Ar)/nsample for each cell. Furthermore, all calculations on the right hand
side are performed in double precision prior to rounding to attempt to help retain as many digits of precision as
possible during the calculation which is impossible with the sum updated in memory per particle as in the original
version. The example shown also demostrates the use of the LogicalFieldVolumetricMulOp to divide the value of
NAr by the cell volume to convert absolute number of real particles per cell into number density. These modifications
are not necessary for the simple tutorial versions of the shock case because of the minimal sampling performed, but
help in converging the results to the DS1V solution as part of the code verification process in the next section.

DEFINE OPERATION
TYPE = SPDistDensityToFieldOp
FIELD_DATA_NAME = FieldData
SPDIST_DATA_NAME = Ar-DST
FIELD_NAME = NAr CNAr # Computational and Physical Number per cell

END OPERATION

DEFINE OPERATION
TYPE = LogicalFieldVolumetricMulOp
FIELD_DATA_NAME = FieldData
FIELD_NAME = NAr
OP_OPTION = DIV # Divide by Volume (Default is Multiply)
RUN_AT_INIT = true

END OPERATION

DEFINE OPERATION
TYPE = SPDistDSMCSample2Op
FIELD_DATA_NAME = FieldData
SPDIST_DATA_NAME = Ar-DST
PSORT_NAME = Sort_Ar-DST
SRC_FIELD_NAME = NAr CNAr # Instantaneous Computational and Physical Number/Cell
DST_FIELD_NAME = NbarAr CNbarAr # Sampled Average Computational and Physical Number/Cell
MIX_START_TIME = 8.0e-5
SKIP = 5

END OPERATION
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Fig. 2.12: Particle distribution after 2,000 steps.

2.5.5 Comparison of Shock Profiles with Bird’s DSMC Code
The 1D shock profiles from the DSMC part of TURF can be compared with other DSMC programs for code
verification; in this tutorial, the results are compared with the 1D DSMC code, DS1V, developed by G. A. Bird
(available at www.gab.com.au). The DS1V code along with input files (ds1vd.dat) for the cases with M1 =1.2, 1.4,
2.0, and 8.0 are also provided in this tutorial. In order to obtain a smooth distribution at the end of simulaiton,
DS1V is run twice; first, the simulation is started using the “new run” (#3) option in the terminal, the simulation
is then stopped at a time greater than 2 × 10−5 sec, and finally the simulation is restarted using “new sample”
(#2) followed by the “adapt the cells” (#1) option. The resulting profile of density as a function of position can
be extracted from the output file, “PROFILE.DAT.”

Figure 2.14 compares the shock profiles computed with TURF and DS1V for the upstream Mach number of 1.2
and 2.0. The values are normalized according to,

ρ̃ = ρ− ρ1

ρ2 − ρ1
(2.6)

The original profile obtained by TURF fluctuated considerably compared to the profile by DS1V when time averaged
only over the last 20µs as shown in Figure 2.12. With the modification to the sampling procedure for 720µs of
time averaging (similar to DS1V) as described in Section 2.5.4, Figure 2.14 show the agreement between the two
programs is quite satisfactory.
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Fig. 2.13: Particle distribution after 10,000 steps.

(a) M=1.2 (b) M=2.0

Fig. 2.14: Normalized density computed by TURF and DS1V.
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2.6 Collisionless Electrostatic Shock 1: Experimental Setup
David Bilyeu

2.6.1 Introduction
The purpose of this tutorial is to provide information on the setup of the collisionless electrostatic shock test case.
By this point it is assumed that you already have an basic understanding of how the operators in TURF work and
the purpose of both the world.list and the various operations.*.list files. For a review of the purpose of these
files please refer to the heatbath example tutorials. Instead this tutorial will focus on aspects that are specific to
this simulation and will only provide a cursory overview of basic topics. This tutorial is divided up into three main
sections, Section 2.6.2 provides an overview of the collisionless electrostatic shock experiment.

2.6.2 The Collisionless Electrostatic Shock
The collisionless electrostatic shock simulation is based on the experiment by Taylor et.al [15]. Figure 2.15 shows
the experimental setup as planned for upcoming validation experiments at AFRL/RQRS including a pulse shape
needed to drive a solution used a related problem also originally performed in the same experimental device [16].
In this experiment, Argon gas is fully ionized and separated into driver and target sections of a vacuum chamber.
The separation is maintained by a negatively biased grid held at a fixed potential. The number density of the
driver side is higher then the target but they share the same ion and electron temperature. At the start of the
experiment a ramp potential is applied to the driver side and a shock moves into the target side. For all cases the
ion temperature and driven number density was held at 0.2 eV and 109 cm−3 respectively. A sweep of parameter
space was accomplished by varying the electron temperature and the density of the driver gas. The electron to ion
temperature varies between 6 and 20 while the density varies from 1 to 20 percent. The initial setup that saw the
most study was at a density jump of 25 percent and an electron temperature of 7.5 and 15 eV.

There are several favorable parameters unique to this experiment that makes it an ideal test-case for a Vlasov-
Poisson simulation.

• Ion-Ion collisions can be neglected because the mean-free-path between collisions is on the order of 300 Debye
lengths (λD) and the total domain of the chamber is about 1000λD.

• There are no applied magnetic fields and induced currents can be assumed to be negligible which obviate the
need to solve the full Maxwell equations.

• The spatial symmetries of the experiment limit variations to be in only one direction so that a 1D1V Vlasov
simulation of the flow is sufficient.

In addition to these parameters, several additional assumptions are made which will be tested throughout the
upcoming TURF code validation and verification campaign.

• Modeling ion kinetic effects is important due to the collisionless nature of the plasma. This is to be validated
through comparison of kinetic and fluid solutions.

• The electrons can be accurately modeled as a Boltzmann equilibrium fluid so that the fastest time scale that
needs to be resolved is the ion plasma frequency. This will be tested through comparison with experimental
results as well as future fully kinetic simulations which include electron kinetic effects.

• The flow is robust against spontaneously generated transverse modes so that the one-dimensional character
of the flow is preserved far enough from the boundaries.
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Fig. 2.15: Design of AFRL/RQRS double plasma device experiments.
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2.7 Collisionless Electrostatic Shock 2: Vlasov David Bilyeu

2.7.1 Introduction
The purpose of this tutorial is to provide an overview of how to setup and run a Vlasov simulation in the Ther-
mophysics Universal Research Framework (TURF). By this point it is assumed that you already have an basic
understanding of how the operators in TURF work and the purpose of both the world.list and the various
operations.*.list files. For a review of the purpose of these files please refer to the heatbath example tutorials.
Instead this tutorial will focus on aspects that are specific to this simulation and will only provide a cursory overview
of basic topics. This tutorial is divided up into three main sections, Part 1 of this tutorial provides an overview of
the collisionless electrostatic shock experiment, Section 2.7.2 provides an explanation of the world.list file, and
finally Section 2.7.3 details the operators necessary to run the collisionless electrostatic shock simulation with the
Vlasov solver within TURF.

2.7.2 World.list
The world.list file defines important parameters that are not unique to any one particular operator. This
includes information about the mesh, the time step and total run time, as well as the global variables. The only
new information included in the world.list that is unique to Vlasov solvers is the definition of the velocity space
origin and mesh spacing. These variables are defined via:

VELOCITY_ORIGIN = (0.0,-0.5,-0.5)
VELOCITY_DELTA = (15.625,1.0,1.0)

At this time each species can have its own unique bounds in velocity space but they must share the same mesh
spacing and origin.

This simulation uses seven different field variables including the electron and ion densities, the electric field
vector, the electric potential, a density for the electric field solver, mean Velocity, and temperature and are defined:

FIELDS = [rhoE, rhoI, Ex, Ey, Ez, phi, rho_source]
FIELDS = [Vmeanx, Vmeany, Vmeanz, Temperature]

Furthermore, this example uses three stages, INIT, MOVE, and POSTOP which are responsible for the initialization,
solvers, and plotting, respectively. The operations used in each of the three stages are listed in Table 2.9.

2.7.3 operations.vlasov.list
This section explains how to solve this problem using Vlasov methods within TURF. It is assumed that the reader
has a basic understanding of how to setup a simulation in TURF and only the information relevant to Vlasov and
this simulation in particular are detailed. The operations.vlasov.list file are broken up into three stages just as
defined in world.list.

Stage: Initialization

In the initialize stage it is necessary to set the initial conditions which includes defining a new phase-space variable.
The phase space variable, fAR+, is defined using:

DEFINE OPERATION
TYPE = CreateVlasovVariableOp
DATA_NAME = VlasovFluidData
VBOX_LO = (-6000.0,-0.5,-0.5)
VBOX_HI = ( 6000.0, 0.5, 0.5)
VBOX_NGHOST = [3 0 0]
SPECIES_NAMES = fAr+
SPECIES_COMPOSITION = Ar
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Table 2.9: Summary of operations listed for the collisionless shock Vlasov example.
Stage Operation Description
INITIALIZE CreateVlasovVariableOp Create a Vlasov variable

LogicalVlasovFluidBoltzmannSetOp Sets initial conditions of a Vlasov variable using a
Boltzmann distribution

MOVE LogicalVlasovCalcFluidVariablesOp Calculate field variables given a velocity distribution
LogicalBCVlasovExtrapolateOp Sets a velocity boundary conditions to extrapolation,

i.e. simple non-reflecting
Vlasov1D1VSLOp Advects a Vlasov variable using the Semi-Lagrangian

method
LogicalVlasovCalcDensityOp Calculates the density given a velocity distribution
LogicalFieldSetOp Set field values to constant
LogicalFieldAddOp Adds one field variable to another
LogicalFieldScalarMulOp Multiplies field by scalar constant
LogicalFieldVolumetricMulOp Multiplies or divides field data by cell volumes
LogicalBCXtrapOp Sets a physical boundary to extrapolation
LogicalBCConstantOp Sets a physical boundary to be a constant
LogicalPoissonBoltzmannStrip1DOp Solves for the electric filed assuming a Boltzmann elec-

tron
LogicalGradientCellCenterOp Calculates the gradient of a field vector

POSTOP LogicalVlasov2DWriterOp Exports a 2D phase-space plot
LogicalFieldWriteVTKROp Exports the filed data, e.g, density, velocity,. . .
VlasovMetricsOp Exports Vlasov metrics data e.g., mass and energy

conservation

END OPERATION

The different fields are relatively self explanatory, but it should be noted that VBOX LO/HI are in units of meters
per second and the unused dimensions, Vy and Vz, need to have a length of one. Another important parameter is
the VBOX NGHOST which set the number of ghost cells in each velocity direction. If left unset, the default value of 3
ghost cells in the unused direction increases memory requirements by a factor of 49. The variable name is defined in
SPECIES NAMES, multiple species can be defined in this field. At a minimum the solver needs to know the mass and
charge of each species. This is accomplished in one of two ways. The preferred method is to define the individual
species that makes up each SPECIES NAMES. This is defined in SPECIES COMPOSITION. SPECIES COMPOSITION will
parse a chemical formula and calculate its mass and charge using an internal database of elements. Any values
defined in M and Z will be ignored. The second method is to manually set the mass and charge via M in kg and Z
respectively. For this method to work you must set the SPECIES COMPOSITION to None. These two methods can be
used together, but place holder will be needed in M and Z for the species defined via their SPECIES COMPOSITION.
For example the following code will use the internal database to calculate the mass and charge of fAr+ and fAr
but will set FakeVar using the values in M and Z. Note that place holders in M and Z are required.

SPECIES_NAMES = fAr+, FakeVar, fAr
SPECIES_COMPOSITION = Ar, None, Ar
M = -1.0, 1.0e-12, 23.3
Z = 1, -2, 0

This operator will not set the initial value of fAR+ so we will need to call another operator to set the distribution.
This is accomplished by:

DEFINE OPERATION
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TYPE = LogicalVlasovFluidBoltzmannSetOp
PHASESPACE_TYPE = VlasovFluidData
BOUND_LO = (-100.0e-3,-0.5,-0.5)
BOUND_HI = ( 0.0e-3, 0.5, 0.5)
PHASESPACE_NAME = fAr+
TEMPERATURE_K = 2320.8 # 1.5ev
NUMBER_DENSITY = 1.25e15
INIT_ONLY = true
NUMBER_OF_DIMENSIONS = 1

END OPERATION

This sets up the initial VDF with a Boltzmann distribution for the driver side. The target side is set using the
same operator but with different BOUND LO/HI values and density. The important parameters are TEMPERATURE K
and NUMBER DENSITY which sets the temperature in Kelvin and the total number density per cell in m−3. It should
be noted that the molecular mass does not need to be defined because that information is stored within the variable
fAr+. Another important parameter is INIT ONLY which tells the operator that it should only run once at the
beginning of the simulation. Otherwise the operation will overwrite the update with the initial conditions, though
this could also be used as Dirichlet boundary condition at domain edges in other simulations.

Stage: Move

The next stage to run is the MOVE stage. This stage contains the advection of the fluid in phase space as well
as the electric field solver and is broken up into four main steps: (1) X-advection (half ∆t), (2) Electric field
solver, (3) Vx-advection (full ∆t), (4) X-advection (half ∆t). This dimensionally split procedure was originally
developed for the Vlasov equation by Cheng and Knorr and provides a second order integration in time [17]. The
advection in phase space uses a Semi-Lagrangian method with WENO style interpolation and was developed by
Qiu and Christlieb [18]. This method was chosen because it was found to be an accurate and efficient solver. The
X-advection consists of two different operations, the first sets the ghost cells while the second advects the fluid in
the X direction.

DEFINE OPERATION
TYPE = LogicalBCVlasovExtrapolateOp
NAME = PeriodicBCX1
DATA_NAME = VlasovFluidData
FIELD_NAME = fAr+
DIRECTION = X

END OPERATION

DEFINE OPERATION
TYPE = Vlasov1D1VSLOp
NAME = Vlasov1D1VSL_X1
DIRECTION = X
VARIABLE_NAME = fAr+
TIME_SCALE = 0.5
VARIABLE_TYPE = VlasovFluidData

END OPERATION

It should be noted that TIME SCALE is set to 0.5 which indicates that only a half time step should be taken.
The next set of operations are used to calculate the electric field using Boltzmann equilibrium electrons. Many

of the variables are self explanatory but one parameter, RUN AT INIT, needs further explanation. RUN AT INIT
signifies that the apply function of the operator should also be run during the initialization stage. Typically, during
the initialization stage the operator will only parse the input file, create the required memory, and if necessary set
the initial conditions. In most cases this is enough, but some variables, such as the electric filed, its value is not

43



2.7. COLLISIONLESS ELECTROSTATIC SHOCK: VLASOV CHAPTER 2. TURF-IR 2016

explicitly known and a routine must be used to calculate it. Since the method used to calculate the initial electric
field is the same used during the simulation it is more practical to define these operators once during the MOVE stage
and set the RUN AT INIT to true.

DEFINE OPERATION
## Calculates several useful field variables from a velocity distribution
## including density, mean velocity and temperature. This routine may be used
## instead of LogicalVlasovCalcDensityOp

TYPE = LogicalVlasovCalcFluidVariablesOp
NAME = CalcFluidVariables
PHASESPACE_TYPE = VlasovFluidData
PHASESPACE_NAME = fAr+
DENSITY_TYPE = FieldData
DENSITY_NAME = rho_tmp
MEAN_V_PREFIX = Vmean
TEMPERATURE_NAME = Temperature
MEAN_V_DIRECTIONS = [x, y, z]
RUN_AT_INIT = true

END OPERATION

DEFINE OPERATION
## Calculates Density by integrating over velocity space

TYPE = LogicalVlasovCalcDensityOp
PHASESPACE_TYPE = VlasovFluidData
PHASESPACE_NAME = fAr+
DENSITY_TYPE = FieldData
DENSITY_NAME = rhoI
RUN_AT_INIT = true

END OPERATION

DEFINE OPERATION
## Sets electric potential (phi) to zero

TYPE = LogicalFieldSetOp
DATA_NAME = FieldData
VALUE = 0.0
FIELD_NAME = phi
INIT_ONLY = false
RUN_AT_INIT = true

END OPERATION

DEFINE OPERATION
## Add electron and ion density

TYPE = LogicalFieldAddOp
DATA_NAME = FieldData
FIELD_SRCB_NAME = rhoE
FIELD_SRCC_NAME = rhoI
FIELD_DST_NAME = rhoE
RUN_AT_INIT = true

END OPERATION

DEFINE OPERATION
## Multiples the ion density by the mass of an electron to convert
## from number density to mass density and set to rho_source
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TYPE = LogicalFieldScalarMulOp
DATA_NAME = FieldData
FIELD_SRC_NAME = rhoI
FIELD_DST_NAME = rho_source
SCALAR = 1.602189200e-19
RUN_AT_INIT = true

END OPERATION

DEFINE OPERATION
## Finds mass of ions in each cell, i.e., no longer density

TYPE = LogicalFieldVolumetricMulOp
DATA_NAME = FieldData
FIELD_NAME = rho_source
RUN_AT_INIT = true

END OPERATION

DEFINE OPERATION
## Sets Electric field boundary conditions on the left hand side

TYPE = LogicalBCXtrap
NAME = Neumann-X-
DATA_NAME = FieldData
FIELD_NAME = phi
BOUND_LO = (-120.0e-3,-1.0,-1.0)
BOUND_HI = (-95.0e-3, 1.0, 1.0)

END OPERATION

DEFINE OPERATION
## Sets Electric field boundary conditions on the right hand side

TYPE = LogicalBCConstantOp
NAME = Electrode-X+
value = 0.0 #
DATA_NAME = FieldData
FIELD_NAME = phi
BOUND_LO = ( 95.0e-3,-1.0,-1.0)
BOUND_HI = ( 120.0e-3,1.0, 1.0)

END OPERATION

DEFINE OPERATION
## Solves the Poison equation assuming Boltzmann electrons and 1D

TYPE = LogicalPoissonBoltzmannStrip1DOp
FIELD_NAME = phi
SOURCE_NAME = rho_source
NUMBER_DENSITY_REF_CGS = 1.0e9
ELECTRON_TEMPERATURE_CGS = 3.0
ELECTRON_DENSITY_NAME = Ne-
NEUMANN_LEFT = TRUE

SUBCYCLE = 1
# INIT_ONLY = TRUE
END OPERATION

DEFINE OPERATION
## Finds the electric filed from the gradient of the electric
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## potential and multiplies by a constant
TYPE = LogicalGradientCellCenterOp
FIELD_DATA_NAME = FieldData
FIELD_POTENTIAL_NAME = phi
FIELD_GRADIENT_PREFIX = E
FIELD_MULTIPLY_CONSTANT = -2.415365e6 #ec/(MW*amu) -2.415365e6
FIELD_GRADIENT_DIRECTIONS = [x, y, z] ## Ex,Ey,Ez
RUN_AT_INIT = true
BOUNDARY_TYPE = EXTRAPOLATE

END OPERATION

The Vx-advection consists of two different operations, the first sets the ghost cells while the second advects the
fluid in the Vx direction.

DEFINE OPERATION
TYPE = LogicalBCVlasovExtrapolateOp
NAME = PeriodicBCY
DATA_NAME = VlasovFluidData
FIELD_NAME = fAr+
DIRECTION = VX

END OPERATION

DEFINE OPERATION
TYPE = Vlasov1D1VSLOp
NAME = Vlasov1D1VSL_Vx
DIRECTION = VX
VARIABLE_NAME = fAr+
WAVE_SPEED_NAME = Ex
TIME_SCALE = 1.0
VARIABLE_TYPE = VlasovFluidData

END OPERATION

The final step of the MOVE stage is the second advection in the X-direction, which uses the same two operations
used before.

DEFINE OPERATION
TYPE = LogicalBCVlasovExtrapolateOp
NAME = PeriodicBCX2
DATA_NAME = VlasovFluidData
FIELD_NAME = fAr+
DIRECTION = X

END OPERATION

DEFINE OPERATION
TYPE = Vlasov1D1VSLOp
NAME = Vlasov1D1VSL_X2
DIRECTION = X
VARIABLE_NAME = fAr+
TIME_SCALE = 0.5
VARIABLE_TYPE = VlasovFluidData

END OPERATION
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Stage: Postop

The third and final stage is the POSTOP stage. This stage is responsible for preparing and saving the results to
various output files.

The first output file is a two-dimensional phase-space plot. The purpose of this operator is to take any two
dimensions, X,Y, Z, Vx, Vy, or Vz and a coordinate in phase space and slice along those planes. This is controlled
by the following variables, SPACE CORD, VELOCITY CORD, X PLOT DIRECTION, and Y PLOT DIRECTION which sets the
spatial coordinate, phase space coordinate the coordinate to plot along the “X” axis and the phase space coordinate
to plot along the “Y” axis respectively. This operator looks like:

DEFINE OPERATION
INCLUDE_GHOST = false
TYPE = LogicalVlasov2DWriterOp
DATA_NAME = VlasovFluidData
FILE_HEAD = shockdata/phase_
FIELD_NAME = fAr+
SKIP = 20
SPACE_CORD = (0.0, 0.0, 0.0)
VELOCITY_CORD = (-5.0, 0.0, 0.0)
X_PLOT_DIRECTION = X
Y_PLOT_DIRECTION = VX
BINARY = false
RUN_AT_INIT = true

END OPERATION

The next plotting operator is a bit of a hack and could be changed in future releases. The operator is designed
to save the spatial data, e.g., density, electric field, and it is desirable to use the same operator regardless of the
number of spatial dimensions. Unfortunately the VTK file format does not have a convenient mechanism to save
one-dimensional data. To get around this an additional parameter SAVE AS CSV was added that saves the data in
csv file format rather than the standard VTR format. The operator is set via:

DEFINE OPERATION
TYPE = LogicalFieldWriteVTKROp
DATA_NAME = FieldData
FILE_HEAD = shockdata/field_data
FIELD_NAME = rhoI, phi, Ex, rho_source, Vmeanx, Vmeany, Vmeanz, Temperature, Ne-
SKIP = 10
DIMENSIONS = 2
nFIELD_NAME = 4
RUN_AT_INIT = true
SAVE_AS_CSV = true

END OPERATION

The final operator in this stage is used to save various metrics including the density, energy, entropy and electric
filed norms over time. The operator is set up via:

DEFINE OPERATION
TYPE = VlasovMetricsOp
PHASESPACE_TYPE = VlasovFluidData
SPACE_TYPE = FieldData
PHASESPACE_NAME = fAr+
DENSITY_NAME = rhoI
E_FIELD_PREFIX = E
E_FIELD_DIRECTIONS = [x, y, z]
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FILE_NAME = shockdata/norms.csv
SKIP = 1
RUN_AT_INIT = true

END OPERATION
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3.1 Capabilities Samuel J. Araki

Table 3.1 summarizes the tutorials added for TURF-IR v2017a, and Table 3.2 provides the list of newly added
operations. The major difference of v2017a from 2016 is the introduction of MSPDist class object that is upgraded
from SPDist. Unlike SPDist, MSPDist holds species ID, enabling multi-species simulation with a single MSPDist
class object. This capability is particularly important for a spacecraft integration simulation that involves several
different gas species from an electric propulsion (EP) device and spacecraft walls caused by high-energy heavy
particles impact. In addition to species ID, MSPDist now holds particle tag, particle position from one time-step
earlier, and species mass and charge. The particle tag is useful when displaying particle trajectories in ParaView (see
Section 3.7). By storing the particle position at the previous time-step, intersection of particle and geometry surface
can be more easily and rigorously determined. Many of the SPDist operations were rewritten to be compatible
with MSPDist. TURF-IR v2017a contains the same tutorials as v2016 such as heatbath, grounded box, and one-
dimensional normal shock except that the SPDist operators are replaced with MSPDist operators.

TURF-IR v2017a also includes several MSPDist class operations that are useful for EP plume simulations.
These include charge deposition (MSPDistChargeDepositionOp), elastic collision including momentum- and charge-
exchange collisions (MSPDistMCCElasticFitOp), output of the particle distribution (MSPDistWriteVTKOp), numer-
ical probes (MSPDistProbeFixedOp and MSPDistProbeStageSphericalOp), and so on. With these newly added
operators, TURF-IR can be used to perform a simplified EP plume simulation. However, TURF-IR lacks an im-
portant physics modules that enables the real-world plume simulations. In particular, TURF-IR does not include
an interface to extract particles from a high fidelity thruster model such as HPHall. The alternative approach is
to inject charged species according to the pre-defined current distribution using MSPDistSourceRPAOp, which is
demonstrated in the EP plume tutorial.

Table 3.1: Tutorials provided for TURF-IR v2017a.
Folder Description of Problem Type of Solver Section
Heatbath MS Free molecular flow in a specular box Particle 3.2
GroundedBox MS Plasma in a grounded box PIC 3.3
1DShock MS One-dimensional normal shock wave DSMC 3.4
Plume Electric propulsion plume simulation PIC 3.5-3.7
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Table 3.2: Summary of operations included in TURF-IR v2017a.
Module Operation Description
DSMC MSPDistDSMCOp DSMC collision calculation
Field FieldArithmeticOp Perform arithmetic operation to two fields
Field FieldBlendTimeOp Blend two fields over time
Field FieldSetOp Set unstructure or structure field data
Field LogicalFieldPatchOp Write to output files for 3D plots in .vts format
Field LogicalPotentialBoltzmannOp Find potential from Boltzmann relations
Field LogicalPotentialSetInsideGeometryOp Integer flag for regions in/out body to select potential solver
Field UFieldMSInitOp Create unstructured field data
Geometry LogicalMeshGlobalRecolorOp Complete sugarcubing for multi-domain simulation
Geometry LogicalMeshSurfaceSugarcubeOp Create sugarcube surface mesh/structured mesh intersection
Geometry MSPDistSugarcubeSurfIntersectionOp Determine if particles intersect with surface elements
Geometry SurfaceComponentSetOp Add component list to surface mesh object
Geometry SurfaceMeshMergerOp Merge two or more surfaces meshes
Geometry UMeshImporterOp Read unstructured volume or surface mesh file
Particle MSPDistBCSpecOp Specular boundary condition for particles
Particle MSPDistBoxICOp Initialize particles uniformly in physical box
Particle MSPDistCellIDOp Find cell ID associated with particle location
Particle MSPDistChargeDepositionOp Accumulate charge to cells
Particle MSPDistCombineOp Combine particles from different distributions
Particle MSPDistConstantICOp Create uniform constant number of particles/cell within a box
Particle MSPDistCopyOp Copy srcdist to dstdist, and set srcdist particle count to zero
Particle MSPDistESPushOp Electrostatic particle push using node electric field
Particle MSPDistInitOp Create new particle distribution of MSPDist class
Particle MSPDistMCCElasticFitOp Apply MCC elastic collision
Particle MSPDistMoveOp Advance particles
Particle MSPDistParticleCountOp Obtain global count of particles
Particle MSPDistReadVTKOp Read MSPDist from MSPDistWriteVTKOp VTK output
Particle MSPDistRemovePartOp Remove particles in MSPDist with w=0 or cel-

lID>mesh->Ncells
Particle MSPDistSampleOp Sample particles to obtain field data.
Particle MSPDistSortOp Sort MSPDist particles for cellID
Particle MSPDistSplitOp Split particle distributions
Particle SampleFieldReadVTKOp Read sample field data from SampleFieldWriteVTKOp output
Particle SampleFieldWriteVTKOp Write MSPDistSampleOp field data to VTK file format
Plotting LogicalFieldWriteVTK2DOp Plot 2D slice of 3D data
Plotting MSPDistWriteVTKOp Output complete MSPDist data for restart capability
Plotting UFieldWriteVTKOp General unstructured field writer
Probe MSPDistProbeFixedOp Faraday/RPA numerical probes attached to a surface
Probe MSPDistProbeStageSphericalOp Faraday/RPA numerical probes on a virtual spherical stage
Probe ProbeFixedWriteOp Write fixed probe data
Probe ProbeStageWriteOp Write spherical stage probe data
SourceModel MSPDistNormalMaxwellianOp Inject particle Maxwellian from surface mesh or virtual sur-

face
SourceModel MSPDistNormalMaxwellianStreamOp Maxwellian stream source from triangulated surfaces
SourceModel MSPDistSourceRPAOp Inject particle according to the current density profile
Surface MSPDistSurfaceInteractionOp Perform reflection and sputtering particle-surface interactions
Surface UFieldMSComputeOp Compute surface field
Utility GSOPatchOp Inter-domain particle patch
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3.2 Heatbath with Multi-Species Particle Data Samuel J. Araki

3.2.1 Introduction
This tutorial is the simplest among all the other examples in the Thermophysics Universal Research Framework
(TURF) version 2017a and should be the first one to be covered. This tutorial replaces the heatbath example
for TURF version 2016 provided in tutorial-TURF/TURF-IR 2016/Heatbath and only uses operators that utilize
MSPDist class object1. In the directory tutorial-TURF/TURF-IR 2017a /Heatbath MS/Particle, there are seven
files ending with .list extension. These files serve as script files on TURF. The script files starting with world
in their file names, world.*.list, include the global parameters that define the entire simulation such as the
simulation size, the number of stages, etc. These files point to one or more operation.*.list files that contain
individual TURF operations within each stage.

In this example, the complexity of the problem is incremented in stages to help readers understand how to build
a simulation in TURF. In particular, this example demonstrates how to create, move, remove, output particles,
and apply boundary condition to them. With all the operators turned on, it will simulate a free molecular flow
in a specular box; we will call this the “heatbath” example. Initially, thermal particles are uniformly distributed
within a box smaller than the simulation domain. These particles fill the empty space and eventually be distributed
uniformly within the whole simulation domain. This tutorial also demonstrates how to extend the simulation to
multi-domain simulation.

3.2.2 Setting up a simulation
When a simulation starts, TURF always looks for a file named as world.list, while this tutorial has two world
scripts with slightly different names, world.heatbath.list and world.heatbathx2.list. Without world.list,
TURF terminates immediately with an error message. In this situation, a symbolic link between world.list and
one of two file can be made, such that world.list is routed to the proper world file. A symbolic link in the Linux
terminal can be created by

tutorial-TURF/TURF-IR_2017a/Heatbath_MS/Particle> ln -s world.*.list world.list

where * can be “heatbath” or “heatbathx2” for this example. When world.list already exists in the directory,
-sf option can be used to force replacing the existing link.

Once the proper world script is linked to world.list, TURF can be run from the directory. For a single
domain/single MPI process simulation, simply typing the binary name with its absolute or relative path from the
directory will start the simulation. For multiple MPI processes simulation, mpiexec command can be used before
the binary. Assuming that the binary, TURF-o, is created in bin directory under TURF folder, the command to run
TURF is,

tutorial-TURF/TURF-IR_2017a/Heatbath_MS/Particle> mpiexec -n x ./../../../../bin/TURF-o

where x is the number of cores to run.
The world script contains inputs for a “World” object such as global information about the simulation as well

as a list of sub-domains in which the computational domain has been partitioned. Each MPI process possesses one
World object, and each World object possesses one or more sub-domains. The script file, world.heatbath.list, is
shown below. In order to run a case, an input to OP FILE should be changed to coincide with one of the operation
file listed in Table 3.3. In this script, simulation time-step (START DT), end time (END TIME), origin of the coordinate
system (ORIGIN), and volume mesh cell size (DELTA) are defined. TURF is written to assume all units are in MKS.
With this in mind, the number of iterations is 250 for all the examples in this tutorial. In TURF, the number of
grid cells is determined by finding how many DELTAs fit in the user-defined domain bounds (BOUND HI-BOUND LO),
and the domain bounds are redefined such that the coordinates of the lowest corner of the domain box are placed at
ORIGIN. Therefore, the domain box may not necessarily be bounded by the user-defined BOUND HI-BOUND LO. In this
example, the grid contains 32 interior cells in each directions. On top of this, layers of ghost cells are added around

1MSPDist class object is similar to SPDist but holds additional information such as species ID, particle index, and position from
last time-step
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the interior mesh2. Here, BOUND HI is set to slightly larger numbers than intended; this ensures that the domain size
is not reduced by one cell due to the rounding down of the number of cells. Only helium gas (He@g) is used in this
simulation, and the field parameters to be computed are N, NC, and NP as defined in Table 3.4. This example uses
two stages (INITIALIZE and MOVE), and MPI communication and synchronization is performed between the stages.
Note that the names for fields and stages are only labels and do not refer to any existing information in the code.
On the other hand, the material name must correspond to the name or composition defined in the material database
file provided in src-TURF/src/Materials/database/materials.list. However, it is important to reference the
same name if they are used elsewhere in the code . Finally, there are more options for the world script such as
PRINT STATS SKIP3, PRINT PROFILE INFO4, and SAVE PROFILE INFO5.

DEFINE WORLD
NAME = Heatbath-Example
OP_FILE = operations.list # Replace the file name with the one to run
COORDINATES = cartesian
ORIGIN = (0.0,0.0,0.0)
DELTA = (100.0e-6,100.0e-6,100.0e-6)
END_TIME = 250.1e-9
START_DT = 1.0e-9
FIELDS = [ NC NP N ]
MATERIALS = [ He@g ]
STAGES = [INITIALIZE, MOVE]

END WORLD

############################################################################
## Domain Geometry
############################################################################
DEFINE DOMAIN DOM000

BOUND_LO = (0.0,0.0,0.0)
BOUND_HI = (3.2001e-3,3.2001e-3,3.2001e-3)

END DOMAIN

3.2.3 Operations
Table 3.5 lists all the operations used in this tutorial for the complete heatbath example. In this tutorial, a
combination of operations is added in stages in the order listed in Table 3.3. Text file comparison utilities such
as Meld6 are very useful in finding the new operations added between the examples. Outputs from TURF are
typically in Visualization ToolKit (VTK) format. Therefore, it is recommended that users have access to scientific
visualization software such as ParaView [19] and VisIt [20]. Some of the ParaView commands to visualize TURF
output files are introduced in Section 3.7.

(A) Go to Next Stage

The first example, operations.nextstage.list, demonstrates a case with minimal number of operations. In
this example, TURF constructs the World object but performs nothing else until the simulation reaches the final
iteration. Within each stage, an operation that tells TURF to advance to next stage is required. This example
uses an operation NextStageOp, and TURF advances to next stage when all the operations defined in the stage are
executed. If all the operations within the stage are to be repeated until a certain criterion is met, CriteriaStageOp
can be used in place of NextStageOp. It is important to note that, without one of the two operations in each

2 Three ghost layers are added by default, but this can be changed by defining GHOST CELLS in the DEFINE DOMAIN block.
3 PRINT STATS SKIP: Prints timing info every x number of iteration, where x is defined by PRINT STATS SKIP
4 PRINT PROFILE INFO: Prints profiling information at the end of simulation if defined as TRUE
5 SAVE PROFILE INFO: Saves profiling information if defined as TRUE
6 http://meldmerge.org
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Table 3.3: Operation list files and added operations from the last.
Operation List File Description of the Simulation Example
operations.nextstage.list Time advances but code does nothing A
operations.addparticles.list Add particles in a box B
operations.writeoutput.list Write vtk field output files periodically C
operations.push-untrimmed.list Push particles forward in Time D
operations.push.list Trim escaped particles from distribution E
operations.heatbath.list Add Reflecting Boundary Conditions at Domain Bound F
operations.heatbathx2.list Particle patching between sub-domains G

Table 3.4: Volume mesh fieldsa computed in this heatbath example.
Field Name Description
NC Number of simulation particles.
NP Number of physical particles.
N Density.
a For multi-species simulations, field data for each species can be obtained by adding species name followed by a underscore. For

example, if there are two species A@g and B@g, partial densities for species A@g and B@g and total density are named as N A@g,
N B@g, and N, respectively.

Table 3.5: List of operations used in this tutorial.
Stage Operation Description
INITIALIZE MSPDistInitOp Create MSPDist objects (P-DST, P-GST, and P-EXC)

MSPDistBoxICOp Fill a box with particles and add to P-DST
MSPDistCombineOp Combine P-DST and P-EXC to complete patching
MSPDistCellIDOp Find cell ID associated with particle location. Particles outside the

sub-domain are marked, but there should not be any here in this
example.

MSPDistRemovePartOp Remove particles outside of entire simulation domain
NextStageOp Go to next stage

MOVE MSPDistWriteVTKOp Write P-DST particle data to a VTK file
MSPDistSampleOp Sample P-DST particles and compute volume mesh field data
LogicalFieldWriteVTKOp Output 3D field data to a VTK file
MSPDistMoveOp Advancement of P-DST particles
MSPDistBCSpecOp Apply specular boundary condition
MSPDistCellIDOp Find cell ID associated with particle location. Particles outside the

sub-domain are marked.
MSPDistSplitOp Split the P-DST particles outside of sub-domain to P-EXC
GSOPatchOp Pass P-EXC across sub-domains via MPI communication
MSPDistParticleCountOp Output particle count
NextStageOp Go to next stage
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stage, TURF never gets out of the stage, causing the program to simply hang. It should also be noted that the
stage names INITIALIZE and MOVE are only names. Despite being named “INITIALIZE,” this stage is called every
iteration.

############################################################################
DEFINE STAGE INITIALIZE
###############################
## Proceed to the Next Stage ##
###############################
DEFINE OPERATION

TYPE = NextStageOp
END OPERATION

END STAGE INITIALIZE

############################################################################
DEFINE STAGE MOVE
###############################
## Proceed to the Next Stage ##
###############################
DEFINE OPERATION

TYPE = NextStageOp
END OPERATION

END STAGE MOVE

############################################################################

(B) Add Particles

The second example, operations.addparticles.list, creates a MSPDist object that holds particle informa-
tion (MSPDistInitOp) and adds particles uniformly within a user-specified box (MSPDistBoxICOp). When calling
MSPDistInitOp, its name (MSPDIST DATA NAME), the buffer size (MAX NP), and species held by the MSPDist ob-
ject (SPECIES NAMES) are required. It is important to ensure that the number of particles does not exceed the
buffer size, otherwise TURF crashes with an error message in the course of the simulation. The second operation,
MSPDistBoxICOp, defines the bounds of a box (BOUND LO and BOUND HI) and distributes particles with a given tem-
perature (TEMPERATURE) and drift velocity (VEL) inside it such that it fulfills the number density (NUMBER DENSITY).
When the INIT ONLY option is on, particles are created only during the first iteration. The MSPDistBoxICOp, by
default, truncates the user-defined box such that it fits within the simulation domain, which can be turned off by
enabling the BOX OUTSIDE DOMAIN option.

#################################
## Create Particle Distibution ##
#################################
DEFINE OPERATION

TYPE = MSPDistInitOp
MSPDIST_DATA_NAME = P-DST
MAX_NP = 1280000
SPECIES_NAMES = He@g

END OPERATION

###############################
## Fill a Box with Particles ##
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###############################
DEFINE OPERATION

TYPE = MSPDistBoxICOp
MSPDIST_DATA_NAME = P-DST
SPECIES = He@g
BOUND_LO = (0.10e-3,0.10e-3,0.10e-3)
BOUND_HI = (2.32e-3,2.32e-3,2.32e-3)
TEMPERATURE = 11604.5059
NUMBER_DENSITY = 1.0e14
REAL_TO_COMPUTATIONAL = 10.0
VEL = (0.0,0.0,0.0)
INIT_ONLY = TRUE
BOX_OUTSIDE_DOMAIN = FALSE

END OPERATION

(C) Output Field Data and Particles

The third example, operations.writeoutput.list, samples particles to compute volume mesh field data
(MSPDistSampleOp) and outputs field data (LogicalFieldWriteVTKOp), particle information (MSPDistWriteVTKOp),
and the number of particles (MSPDistParticleCountOp). No other operation is applied to particles such that
particles remain to be exactly as the initial state. MSPDistSampleOp samples mass, momentum, and kinetic
energy from a particle distribution and computes volume mesh field data from these sampled quantities. The
quantity to be sampled depends on FIELD NAMES defined in the input. The frequencies of sampling and field
calculation are defined by STEPS PER SAMPLING and STEPS PER FIELD CALCULATION. STEPS PER SAMPLING is typ-
ically set to a value greater than one to remove the correlation of the flow field caused by numerics (e.g. par-
ticle injection). STEPS PER FIELD CALCULATION should match with the output frequency defined by SKIP in
LogicalFieldWriteVTKOp. After the time defined by MIX START TIME, sampled quantities are blended between
iterations in order to improve the statistics. Therefore, this operation allows a smooth field distribution at the end
of simulation without using a very large number of simulation particles. Here, MIX START TIME, should be set to
the time when the simulation becomes steady-state.

In TURF, layers of ghost cells are added to the domain, but the field data within this region are not computed
by MSPDistSampleOp. Although LogicalFieldWriteVTKOp outputs the data within the ghost region as well as the
interior region, it can be turned off by setting PLOT GHOST to FALSE. The output of the ghost region can be useful for
debugging purpose. MSPDistWriteVTKOp is used to output particle information such as particle position, velocity,
index, and species. The VTK files are output every some number of iteration defined by SKIP, and the corresponding
iteration number is added to the file name. The same file can be overwritten by turning the OVERWRITE option on
such that the disk space can be saved. Any of the output from this operation can be used to restart the simulation
by MSPDistReadVTKOp. The particle output can be written in ASCII or binary format by specifying one for FORMAT.
If some fraction of the particles are to be output, PARTICLE SKIP can be set to a value larger than one. Figure 3.1(a)
shows the initial particle distribution. The particle distribution remains the same at the final time in this example.

##############################
## Sum to Fields for Output ##
##############################
DEFINE OPERATION

TYPE = MSPDistSampleOp
FIELD_DATA_NAME = FieldData
MSPDIST_DATA_NAME = P-DST
FIELD_NAMES = NC NP N
MIX_START_TIME = 1.0e-2
STEPS_PER_SAMPLING = 1
STEPS_PER_FIELD_CALCULATION = 5
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END OPERATION

######################
## Write Field Data ##
######################
DEFINE OPERATION

TYPE = LogicalFieldWriteVTKOp
FIELD_DATA_NAME = FieldData
FILE_HEAD = plot3D/plt_
FIELD_NAMES = NC NP N
PLOT_GHOST = FALSE
SKIP = 5

END OPERATION

######################
## Output Particles ##
######################
DEFINE OPERATION

TYPE = MSPDistWriteVTKOp
MSPDIST_DATA_NAME = P-DST
SPECIES = ALL
FILE_HEAD = particle/MSPDist_
SKIP = 5
PARTICLE_SKIP = 1
OVERWRITE = FALSE

END OPERATION

############################
## Output particle count ##
############################
DEFINE OPERATION

TYPE = MSPDistParticleCountOp
MSPDIST_DATA_NAME = P-DST
LOG_FILE = ParticleCount.csv
VERBOSE = FALSE
GLOBAL = TRUE

END OPERATION

(D) Move Particles

The fourth example, operations.move.list, advances particles to the time corresponding to the next iteration
(MSPDistMoveOp)7. MSPDistMoveOp is the simplest particle time integrator that uses the explicit first-order Euler
method and does not take into account the external force such as electric and magnetic fields. If charged particles
are to be advanced in an electric field, MSPDistESPushOp should be used instead. Other methods for pushing
particles can be implemented in TURF easily. Figure 3.1(b) shows the particle distribution at the final time. In
this example, the particle distribution thermally expands over time after initializing the particles inside a cube, as
there is not an operation to remove or force particles to stay within the domain.

################################
## Advance Particle Positions ##

7 The time to advance a particle is computed by ti + ∆t − tp where ti is the current iteration time, ∆t is the time-step between
iterations i + 1 and i, and tp is the particle time at the current position.
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################################
DEFINE OPERATION

TYPE = MSPDistMoveOp
MSPDIST_DATA_NAME = P-DST
SPECIES_NAMES = He@g

END OPERATION

(E) Remove Particles

The fifth example, operations.remove.list, determines the volume mesh cell that particles reside
(MSPDistCellIDOp) and removes particles from the MSPDist object based on the cell ID (MSPDistRemovePartOp).
Without these operations, particles can fly out of the simulation domain and are never deleted from the particle
list. MSPDistCellIDOp marks particles outside the interior domain by assigning a large integer, typically the
maximum cell index plus one. Then, MSPDistRemovePartOp gets rid of these particles from the MSPDist object if
REMOVE CELLID GT MAX option is turned on. The particles can also be removed based on their weights by turning
REMOVE ZERO WEIGHT option on. In order to remove particles, the particle list is first copied from P-DST to P-GST,
and then only the ones to be kept are copied back to P-DST. In this way, the operation can be executed in parallel
with OpenMP or CUDA. The deletion of particles can also be done with MSPDistSortOp, but this operation sorts
particles based on their cell IDs in addition to removing particles8. Figure 3.1(c) shows the particle distribution at
the final time.

#####################################################
## Setting cellID==Max for the ones out of domain ##
#####################################################
DEFINE OPERATION

TYPE = MSPDistCellIDOp
MSPDIST_DATA_NAME = P-DST

END OPERATION

############################################
## Remove particles if outside the domain ##
############################################
DEFINE OPERATION

TYPE = MSPDistRemovePartOp
MSPDIST_SRC_NAME = P-DST
MSPDIST_DST_NAME = P-GST
REMOVE_ZERO_WEIGHT = FALSE
REMOVE_CELLID_GT_MAX = TRUE
DISCARD_REMOVED_PARTICLE = TRUE
VERBOSE = FALSE

END OPERATION

(F) Apply Boundary Condition

The previous example demonstrated how to remove particles leaving the simulation domain. However, the two
operations, MSPDistCellIDOp and MSPDistRemovePartOp, are not necessarily required for a heatbath simulation
if particle boundary condition is applied properly. The sixth example, operations.heatbath.list, demonstrates
the use of the simplest particle boundary condition implemented in TURF (MSPDistBCSpecOp). This operation
reflects particles specularly from one of the six surfaces of a box defined by BOUND LO and BOUND HI. The surface

8 The Direct Simulation Monte Carlo collision calculation can be more efficient when particles are sorted in advance. For this case,
MSPDistSortOp is used in place of MSPDistRemovePartOp
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to reflect particles is defined by DIRECTION, which can be specified as xm, xp, ym, yp, zm, and zp, and the ‘m’ and
‘p’ in these directions refer to “minus” (from negative to positive direction) and “plus” (vise versa), respectively.
In the heatbath example, particles are reflected off six different surfaces such that MSPDistBCSpecOp is required
to be defined six times, each with different inputs for DIRECTION, BOUND LO, and BOUND HI. It is important to
note that particles may escape the domain if they never land within these boxes defined for MSPDIstBCSpecOp.
In order to prevent this situation, the box has to be sufficiently large and/or the particle time-step has to be
sufficiently small. Furthermore, the box is placed such that it slightly overlaps the simulation domain. This is
to prevent particles landing exactly on the domain edge to be lost. The specular reflection can also be applied
by MSPDistSurfaceInteractionOp, but this operation requires a surface mesh. Figure 3.1(d) shows the particle
distribution at the final time. By introducing the boundary condition, particles are distributed nearly uniformly at
the end of simulation.

#########################
## Boundary Conditions ##
#########################
# Specular boundary for +x to make the problem 1D
DEFINE OPERATION

TYPE = MSPDistBCSpecOp
MSPDIST_DATA_NAME = P-DST
SPECIES_NAMES = He@g
DIRECTION = xm
BOUND_LO = (-10.0e-4,-10.0e-4,-10.0e-4)
BOUND_HI = (0.00001e-4, 42.0e-4, 42.0e-4)

END OPERATION
# Specular boundary for -x to make the problem 1D
DEFINE OPERATION

TYPE = MSPDistBCSpecOp
MSPDIST_DATA_NAME = P-DST
SPECIES_NAMES = He@g
DIRECTION = xp
BOUND_LO = (31.9999e-4,-10.0e-4,-10.0e-4)
BOUND_HI = (42.0e-4, 42.0e-4, 42.0e-4)

END OPERATION

(G) Particle Patching with MPI Communication

The last example, operations.heatbathx2.list, demonstrates how to extend the single domain heatbath example
to two sub-domains. In order to run this example, world.heatbathx2.list should be linked to world.list. In
world.heatbathx2.list, the simulation domain is set up as follows.

DEFINE DOMAIN DOM
BOUND_LO = (0.0,0.0,0.0)
BOUND_HI = (3.2001e-3,3.2001e-3,3.2001e-3)
SUB_DOMAINS = (2,1,1)

END DOMAIN

This simply divides the domain evenly by the integer number input for SUB DOMAINS in each direction. The same
domain decomposition can be achieved by manually defining each domain.

DEFINE DOMAIN DOM000
BOUND_LO = (0.0,0.0,0.0)
BOUND_HI = (1.6e-3,3.2e-3,3.2e-3)
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(a) Initial particle distribution (C). (b) Particles at the final iteration (D).

(c) Particles at the final iteration (E). (d) Particles at the final iteration (F).

Fig. 3.1: Initial and final particle positions from different examples. These outputs are from ParaView.

END DOMAIN
DEFINE DOMAIN DOM001

BOUND_LO = (1.6e-3,0.0,0.0)
BOUND_HI = (3.2001e-3,3.2001e-3,3.2001e-3)

END DOMAIN

When running with multiple sub-domains, additional operations are required to properly exchange particle
information between the sub-domains. In TURF, the sub-domains do not overlap with each other. However,
the ghost cell layers around a sub-domain can overlap with other sub-domains or ghost layers. TURF passes the
information stored in the ghost layers to a sub-domain through MPI communications. Since MPI communication is
performed between stages, particle patching is performed across at least two stages. In performing particle patching,
a new particle distribution (P-EXC) is required. The buffer size for P-EXC should be sufficient but small for efficient
communication between processes. If a particle moves between the two domains, MSPDistSplitOp moves it from
P-DST and temporarily places it into the P-EXC distribution until the beginning of the next iteration. The particles
in P-EXC can be within ghost cell region which overlaps with a sub-domain, and for those particles, GSOPatchOp
tells TURF to pass them to a process that owns the sub-domain. The actual communication is done at the end of
stage where GSOPatchOp is defined. Now, P-EXC contains particles that reside in the actual sub-domain (not in a
ghost region or outside the whole domain). Finally, these particles are combined with the main particle distribution,
P-DST, through MSPDistCombineOp. Finally, MSPDistRemovePartOp is called afterward to get rid of particles that
escaped from the entire domain.

#####################################################

60



3.2. HEATBATH WITH MSPDIST DATA CHAPTER 3. TURF-IR 2017A

## Setting cellID==Max for the ones out of domain ##
#####################################################
DEFINE OPERATION

TYPE = MSPDistCellIDOp
MSPDIST_DATA_NAME = P-DST

END OPERATION

#########################################
## Move cellID==Max particles to P-EXC ##
#########################################
DEFINE OPERATION

TYPE = MSPDistSplitOp
MSPDIST_SRC_NAME = P-DST
MSPDIST_DST_NAME = P-EXC

END OPERATION

####################
## Patch MSPDist ##
####################
DEFINE OPERATION

TYPE = GSOPatchOp
SRC_NAME = P-EXC
DST_NAME = P-EXC

END OPERATION

####################################
## Combine MSPDist after patching ##
####################################
DEFINE OPERATION

TYPE = MSPDistCombineOp
MSPDIST_SRC_NAME = P-EXC
MSPDIST_DST_NAME = P-DST
VERBOSE = FALSE

END OPERATION
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3.2.4 Useful Tools

Fig. 3.2: Schematic of GSObject. Fig. 3.3: Tree-hierarchy structure of objects with
GSObject.

Fig. 3.4: Screenshot of World-Rank.html.

Visualizing TURF Tree-Hierarchical Structure

In TURF, a CPU core can perform calculations for multiple sub-domains. Every CPU has its own “World” object
that contains global information about the simulation as well as the list of sub-domains. Then, every sub-domain
contains a list of objects (i.e. particle distributions, fields, and operations) in addition to its size and index. This
tree-hierarchy structure is a key element of the framework, which is attained using the General Service Object
(GSObject) or a branching double-linked list with member functions as shown in Fig. 3.2. A GSObject includes
“name” and “type-name” information to enable high-level search and access routine. In TURF, most of class objects
are inherited from GSObject to form the tree-hierarchy structure with the World object as a common ancestor (see
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Fig. 3.3).
When TURF is run, a html file named World-Rank.html is automatically generated, in which, the user can

view the object hierarchy of the example (See Fig. 3.4). At the base of the tree is the logical world, which was
named Heatbath-Example. The branches include GSObject named GSMemberVector (which have the functionality
of a vector and can be used by the GPU), a material database, a logical domain, and the coordinate system defined
by the world.list file. It is possible to expand the hierarchy to investigate any underlying databases or arrays
which are automatically generated.

Another useful feature is the visualization of the simulation environment as shown in Fig. 3.4. The green cubic
box represents the simulation domain, and the surrounding gray region is a layer of three ghost cells which are
automatically generated when the domain is formed. By selecting the visualization and pressing the ‘m’ key, the user
can cycle through volume view, line view, and point view. Figure 3.5(a) also shows the region where particles are
distributed during the first iteration (Example B). Furthermore, Fig. 3.5(b) shows the boxes used for the specular
reflection of particles (Example F).

(a) Boxes representing the simulation domain (green) and the
region particles are created (blue).

(b) Boxes for specular reflection are in red.

Fig. 3.5: Figures from World-Rank.html.

Graphical User Interface (In Development)

As TURF runs through “initialization” of class objects, it gathers the input parameters available for each object from
the source code. TURF also parses actual inputs from world.list and operations.list files. With these data,
a html file named index.html is created, which is essentially a Graphical User Interface (GUI) to generate/modify
TURF input files, world.list and operations.list. TURF has gone through a large number of changes since
the first release of the GUI. For that reason, the GUI is currently broken and is subjected to be fixed in the near
future.
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3.3 Grounded Box: 3D Electrostatic PIC with Multi-Species Particle
Data Samuel Araki and Robert Martin

3.3.1 Introduction
This tutorial demonstrates running a simple 3D electrostatic particle in cell (PIC) case in the Thermophysics
Universal Research Framework (TURF). This tutorial assumes familiarity with the simple heatbath tutorial. New
users are referred to the tutorial for further explanation. The TURF input files can be located in tutorial-TURF
/TURF-IR 2017a/GroundedBox MS/ES-PIC. You should see two files with the .list extension, which act as the
scripting files for TURF.

The grounded box test case was developed to verify TURF’s PIC algorithms with respect to AFRL/RD’s ICEPIC
particle in cell code running in electrostatic PIC mode [11]. The initial conditions are a uniform unit meter cube
of zero velocity protons at a density of 1010 m−3. In one octant of the cube, the proton charge is neutralized with
1010 m−3 electrons initially at stationary. The walls of the cube are set to a fixed 0 Volt potential. The electrons
are then accelerated by the field due to the charge of the non-neutralized protons in the remaining 7 octants of
the box. The field evolves as the electrons accelerate such that the cloud oscillates and evolves within the box.
Particles that hit the edge of the box are assumed to be neutralized and removed from the simulation.

3.3.2 world.list
Running the TURF executable in the working directory will have TURF search for the default script file, world.list,
and parse it automatically. The first block that defines the WORLD is shown below. The options defined in this file
should look familiar after completing the heatbath tutorial. In this example, the world is named “ICEPIC-Bench”
to denote that it was originally intended to serve as a benchmark verification run against the ICEPIC code. The
example uses the operations.list operations file to define the simulation algorithm which will be discussed below.
The remainder of the world definition sets a global cartesian coordinate system with 2 cm cells along with 2.5 ns
time steps up to a final simulation time of 10 µs. The next line defines 10 field variables for charge (Q), charge
density (rho), 3 node-centered electric field components (En), the electrostatic potential (phi), an auxiliary variable
for calculating the residual of the potential during the field solve (residual phi), and proton and electron physical
and computational particle counts in cells (NP H+, NP e-, NC H+, and NC e-).

The example run is broken into 4 stages named INITIALIZE, FIELD, MOVE, and PLOT. The two additional stages
compared to the heatbath example are to accommodate an iterative electrostatic potential solve stage (FIELD)
and to ensure synchronization prior to the plotting operation stage (PLOT), though the latter is not strictly nec-
essary. In this tutorial, the operations file will be considered in stages (Section 3.3.3). List of operations defined
in operations.list are given in Table 3.6. The last section of world.list defines the active domain for the
simulation. This example is simply a 1m unit cube starting from the coordinate origin. Using the global mesh
spacing of 2 cm from the WORLD definition results in a 50× 50× 50 active cell cube with the default 3 “ghost”-cells
added to the high and low side in each direction for application of boundary conditions.

DEFINE WORLD
NAME = ICEPIC-Bench
PLOT_FILE = plots.list
OP_FILE = operations.list
COORDINATES = cartesian
ORIGIN = (0.0,0.0,0.0)
DELTA = (0.02,0.02,0.02)
START_DT = 2.50e-9
END_TIME = 10.0e-6
FIELDS = [Q, rho, Enx, Eny, Enz, phi, residual_phi, NC_e- NC_H+ NP_e- NP_H+ ]
MATERIALS = [e-, H+@g]
STAGES = [INITIALIZE, FIELD, MOVE, PLOT]
START_ITERATION = 0 # Number of Poisson Iteration Before Start
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END WORLD

############################################################################
## Domain Geometry
############################################################################
DEFINE DOMAIN DOM000

BOUND_LO = (0.0,0.0,0.0)
BOUND_HI = (1.0,1.0,1.0)

END DOMAIN

Table 3.6: Summary of operations listed in operations.list.
Stage Operation Description
INITIALIZE MSPDistInitOp Create particle distribution

MSPDistBoxICOp Initialize particle distribution within the domain
MSPDistCellIDOp Flag cell in which particle resides
MSPDistSortOp Sort particles in cells by CellID
MSPDistSampleOp Sum particles to cells
FieldSetOp Set field values to constant
FieldArithmeticCoeffOp Compute total charge
NextStageOp Continue to next stage

FIELD LogicalBCConstantOp Set value of cell centers in box every iteration
LogicalPoissonStripOp Red/Black line relaxing Poisson solve
LogicalResidualOp Calculate residual of Poisson solve
LogicalNormOp Calculate Lp-norm of field variable
CriteriaStageOp Continue to next stage if quantity below criteria

MOVE LogicalNodeGradientOp Calculate node-centered gradient of cell center field
MSPDistESPushOp Electrostatic particle push using node electric field

PLOT VolumeRenderOp Single cubic domain realtime volume rendering
LogicalFieldWriteVTKOp Write to output files for 3D plots

3.3.3 operations.list
Stage: Initialize

This stage creates MSPDist objects that hold electron and proton macro-particles, distributes these particles uni-
formly within a box, and removes particles that are outside of the simulation domain. The MSPDistInitOp and
MSPDistBoxICOp operations should be familiar from the heatbath example. “Ghost” particle distributions are also
created, again using MSPDistInitOp. These are empty buffers where particles that have escaped the domain get
copied later on in the sort.

DEFINE STAGE INITIALIZE

####################################################################
## Initial Particle Distibutions and Ghost/Exchange Distributions ##
####################################################################
DEFINE OPERATION

TYPE = MSPDistInitOp
MSPDIST_DATA_NAME = P-DST
MAX_NP = 4000000
SPECIES_NAMES = e- H+@g

65



3.3. GROUNDED BOX: 3D ES-PIC WITH MSPDIST DATA CHAPTER 3. TURF-IR 2017A

END OPERATION
DEFINE OPERATION

TYPE = MSPDistInitOp
MSPDIST_DATA_NAME = P-GST
MAX_NP = 4000000
SPECIES_NAMES = e- H+@g

END OPERATION

###############################################
### Distribute Particles in a Box Uniformly ###
###############################################
DEFINE OPERATION

TYPE = MSPDistBoxICOp
MSPDIST_DATA_NAME = P-DST
SPECIES = e-
BOUND_LO = (0.0,0.0,0.0)
BOUND_HI = (0.5,0.5,0.5)
TEMPERATURE = 0.0
NUMBER_DENSITY = 1.0e10
REAL_TO_COMPUTATIONAL = 1.25e3
VEL = (0.0,0.0,0.0)
INIT_ONLY = TRUE

END OPERATION
DEFINE OPERATION

TYPE = MSPDistBoxICOp
MSPDIST_DATA_NAME = P-DST
SPECIES = H+@g
BOUND_LO = (0.0,0.0,0.0)
BOUND_HI = (1.0,1.0,1.0)
TEMPERATURE = 0.0
NUMBER_DENSITY = 1.0E10
REAL_TO_COMPUTATIONAL = 8.0e4
VEL = (0.0,0.0,0.0)
INIT_ONLY = TRUE

END OPERATION

The next set of operations sort the particles by the cell in which they reside. Though still part of the
“INITIALIZE” stage, they will run every time the simulation loops back through that stage. The MSPDistCellIDOp
operation identifies which cell the particle resides in and saves it to the “CellID” variable within the particle dis-
tribution. The MSPDistSortOp operation sorts the particles by their CellIDs and any particle that has escaped the
domain gets separated into the ghost distribution, P-GST.

#########################################
## Remove Particles Leaving the Domain ##
#########################################
DEFINE OPERATION

TYPE = MSPDistCellIDOp
MSPDIST_DATA_NAME = P-DST

END OPERATION
DEFINE OPERATION

TYPE = MSPDistSortOp
NAME = Sort_P-DST
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MSPDIST_SRC_NAME = P-DST
MSPDIST_DST_NAME = P-GST

END OPERATION

The next section accumulates particle quantities into the cell field variables. The accumulation of field data is
performed by MSPDistSampleOp. It sets the diagnostic fields for number of computational (NC x) and real (NP x)
particles per cell. It is worth noting that these numbers are both raw sums. Before the data can be accumulated,
the field variable “Q” (charge) must be cleared using FieldSetOp, and then FieldArithmeticCoeffOp calculates
the total charge by multiplying the real particle counts, NP x, by their respective charges and summing the values.

###################
## Sum to Fields ##
###################

DEFINE OPERATION
TYPE = MSPDistSampleOp
FIELD_DATA_NAME = FieldData
MSPDIST_DATA_NAME = P-DST
FIELD_NAMES = NC_e- NC_H+ NP_e- NP_H+
MIX_START_TIME = 1.0 # Don’t mix
STEPS_PER_SAMPLING = 1
STEPS_PER_FIELD_CALCULATION = 1

END OPERATION
DEFINE OPERATION

TYPE = FieldSetOp
FIELD_DATA_NAME = FieldData
FIELD_NAME = Q
VALUE = 0.0
OPERATION = SET

END OPERATION
DEFINE OPERATION

TYPE = FieldArithmeticCoeffOp
FIELD_DST_NAME = Q
FIELD_SRCB_NAME = NP_e-
FIELD_SRCC_NAME = NP_H+
COEFFICIENT_B = -1.602189200e-19
COEFFICIENT_C = 1.602189200e-19
OPERATION = ADD

END OPERATION

Finally, the “INITIALIZE” stage is completed with the NextStageOp operation to proceed to the “SOLVE” stage.

DEFINE OPERATION
# Default Criteria to Proceed to the Next Stage

TYPE = NextStageOp
END OPERATION

END STAGE INITIALIZE

############################################################################
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Stage: Field

This stage iterates on solving for the electrostatic potential until the residual is small enough to proceed. The first
step of the iterative field solve is to set the boundary condition potential to 0 on all six faces of the box. This is
done using the LogicalBCConstantOp operation. The operation is relatively straightforward. The phi variable of
the default FieldData object is set to a potential of 0 Volts inside of the box defined by BOUND LO and BOUND HI.
In this configuration of TURF, the potential is assumed to be cell centered. More specifically, the potential is
set to 0 for every cell which has a cell center inside the physically defined box. This may lead to errors on the
order of ∆x on the location of the application of the boundary condition, but with the boundary conditions defined
physically, the solution should converge to the exact solution with grid refinement without manual reconfiguration
of the operations. The same approach is used when creating the domains which snap to the nearest approximation
of cells based on the physical constraints independent of the underlying mesh resolution. Once again, the NAME
variable for the operation is simply a designator label for output readability. The value in the NAME is not evaluated
by the code to influence application of the operation. Boundary condition boxes are chosen to be large enough to
contain at a minimum the first few layers of cell centers even at the coarsest resolutions run. In regions where the
physical boundary conditions overlap, the value will be set repeatedly.

DEFINE STAGE FIELD
DEFINE OPERATION

TYPE = LogicalBCConstantOp
NAME = Electrode-X-
FIELD_DATA_NAME = FieldData
FIELD_NAME = phi
BOUND_LO = (-0.1,-0.1,-0.1)
BOUND_HI = (0.0,1.1,1.1)
VALUE = 0.0

END OPERATION
DEFINE OPERATION

TYPE = LogicalBCConstantOp
NAME = Electrode-X+
FIELD_DATA_NAME = FieldData
FIELD_NAME = phi
BOUND_LO = (1.0,-0.1,-0.1)
BOUND_HI = (1.1,1.1,1.1)
VALUE = 0.0

END OPERATION
DEFINE OPERATION

TYPE = LogicalBCConstantOp
NAME = Electrode-Y+
FIELD_DATA_NAME = FieldData
FIELD_NAME = phi
BOUND_LO = (-0.1,1.0,-0.1)
BOUND_HI = (1.1,1.1,1.1)
VALUE = 0.0

END OPERATION
DEFINE OPERATION

TYPE = LogicalBCConstantOp
NAME = Electrode-Y-
FIELD_DATA_NAME = FieldData
FIELD_NAME = phi
BOUND_LO = (-0.1,-0.1,-0.1)
BOUND_HI = (1.1,0.0,1.1)
VALUE = 0.0
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END OPERATION
DEFINE OPERATION

TYPE = LogicalBCConstantOp
NAME = Electrode-Z+
VALUE = 0.0
FIELD_DATA_NAME = FieldData
FIELD_NAME = phi
BOUND_LO = (-0.1,-0.1,1.0)
BOUND_HI = (1.1,1.1,1.1)
VALUE = 0.0

END OPERATION
DEFINE OPERATION

TYPE = LogicalBCConstantOp
NAME = Electrode-Z-
FIELD_DATA_NAME = FieldData
FIELD_NAME = phi
BOUND_LO = (-0.1,-0.1,-0.1)
BOUND_HI = (1.1,1.1,0.0)
VALUE = 0.0

END OPERATION

After the boundary conditions have been set, the actual potential solver is performed. In this example, Logical-
PoissonStripOp is used to solve Gauss’s Law (the integral form of Poisson’s equation).∮

s

E · dn = Q

ε0
(3.1)

where E is the electric field given as E = ∇φ, φ is the electric potential, n is the normal vector, Q is the charge,
and ε0 is the free space permittivity. Equation (3.1) is applied to every cell, and the right hand side of Eq. (3.1) is
approximated with finite difference equations. Currently, the set of elliptic solvers in TURF is relatively minimal
and includes only red-black Gauss-Seidel and tri-diagonal ADI-type solvers. There is also degenerate 1D version
of the solver that can be used in fundamentally 1D problems or as an accelerated initial guess for solutions that
are primarily one dimensional. LogicalPoissonStripOp also has an option to sub-cycle the calculation multiple
times before continuing (SUBCYCLE). The operation is applied in a red-black checkerboard in the iterative directions
so that the solution is independent of the order in which the line relaxation sweeps are performed. Note that this
operation requires the charge Q instead of the charge density rho as it solves the Gauss’s equation instead of the
Poisson equation.

DEFINE OPERATION
TYPE = LogicalPoissonStripOp
FIELD_DATA_NAME = FieldData
FIELD_NAME = phi
SOURCE_NAME = Q
SMESH_NAME = SMesh
SUBCYCLE = 3

END OPERATION

The last part of the FIELD stage is defining the criteria to iterate the stage or continue to the next. First, the
residual of phi is computed in every cell and stored in residual phi using the LogicalResidualOp. Next, the
LogicalNormOp operation calculates the norm of the residual and stores in NORM NAME named as SUMresidual phi L2.
The NORM parameter defines the power p for any Lp-norm. Finally, the CriteriaStageOp evaluates whether the
summed residual is below the required threshold CRITERIA. Each domain applies this operation independently. At
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the end of each stage, every process collects one vote from every domain as to whether or not to proceed to the
next stage or to loop to iterate on the stage. These votes are broadcast across all processes and evaluated by the
world when determining whether or not to proceed.

DEFINE OPERATION
TYPE = LogicalResidualOp
FIELD_DATA_NAME = FieldData
FIELD_NAME = phi
SOURCE_NAME = Q
SMESH_NAME = SMesh
RESIDUAL_NAME = residual_phi

END OPERATION
DEFINE OPERATION

TYPE = LogicalNormOp
FIELD_DATA_NAME = FieldData
FIELD_NAME = phi
RESIDUAL_NAME = residual_phi
NORM = 2.0
NORM_NAME = SUMresidual_phi_L2

END OPERATION

DEFINE OPERATION
# Default Criteria to Proceed to the Next Stage

TYPE = CriteriaStageOp
QUANTITY_NAME = SUMresidual_phi_L2
CRITERIA = 5.0e-4

END OPERATION

END STAGE FIELD

############################################################################

Stage: Move

In this stage, the particle positions are updated using the potential solved in the prior step. To do this, the node cen-
tered electric field, En, is evaluated first using the LogicalNodeGradientOp operator. Because the field is the nega-
tive gradient of the potential, the FIELD MULTIPLY CONSTANT of -1.0 is included. The FIELD GRADIENT DIRECTIONS
are suffixes attached to the root name En that the operator uses to construct the three components of the field
names needed to store the result.

DEFINE STAGE MOVE

DEFINE OPERATION
TYPE = LogicalNodeGradientOp
FIELD_DATA_NAME = FieldData
FIELD_POTENTIAL_NAME = phi
FIELD_GRADIENT_PREFIX = En
FIELD_MULTIPLY_CONSTANT = -1.0
FIELD_GRADIENT_DIRECTIONS = [x, y, z]

END OPERATION

The next operation uses the electric field to advance the electron and proton positions. The inputs are similar
to the basic linear push described in the heatbath tutorials, but with extra field options so that the operator knows
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which field data to use for the acceleration. This push does not actually test boundary intersections during the
push, which is a fast method for simple boundary conditions. After the particle push, the last operation in the
stage, NextStageOp, tells TURF to proceed to next stage.

DEFINE OPERATION
TYPE = MSPDistESPushOp
FIELD_DATA_NAME = FieldData
FIELD_EN_PREFIX = En
FIELD_EN_DIRECTIONS = [x, y, z]
MSPDIST_DATA_NAME = P-DST
FIELD_POTENTIAL_NAME = phi
SPECIES_NAMES = e- H+@g

END OPERATION

DEFINE OPERATION
TYPE = NextStageOp

END OPERATION

END STAGE MOVE
############################################################################

Stage: Plot

The last stage of the simulation is plotting. The first operation is the CUDA accelerated real-time volume ray
tracing operation, VolumeRenderOp. In order to use this operation, TURF has to be built with USE CUDA and USE GL
options. The operation is primarily a wrapped version of the NVIDIA CUDA SDK’s VolumeRender example. The
infrastructure launches that set of code in a separate window. When the operation is applied during the code’s
main thread loop, a second buffer is filled from the field variable specified by the FIELD DATA NAME and FIELD NAME
parameters. It then signals the visualization thread to swap buffers. It is restricted to single cubic domains in this
version of the infrastructure because it uses the rendering kernels from the example with few modifications to apply
in other geometries. Most of the settings for producing the coloring and view were obtained by interacting with
the visualization to determine a ’good’ view. This mode of interaction is described below the file listing. Other
options include the FILE HEAD and SAVE IMG options. If enabled, the operation outputs a ’.ppm’ image file for every
iteration that is drawn. Iteration skipping can be adjusted by the SKIP parameter to reduce the number of files.
The VIEW ORBIT parameter tells the visualization to rotate by the indicated number of degrees once per iteration
automatically in addition to the interactive rotations to help make the 3D nature of the volume rendering more
intuitive. An example of the output displayed with the default settings by the realtime visualization can be seen
in Fig. 3.6. This shows the electron cloud density in the box after 828 timesteps using the default visualization
parameters.

DEFINE STAGE PLOT

DEFINE OPERATION
TYPE = VolumeRenderOp
FIELD_DATA_NAME = FieldData
FIELD_NAME = Ne-
SKIP = 1
DENSITY = 0.04
BRIGHTNESS = 1.7
TRANSFERUPPERBOUND = 3.8e5
TRANSFERLOWERBOUND = 2.5e3
LOG_PLOT = FALSE
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INVERT = FALSE
VIEW_TRANSLATION = (0.0,0.0,-3.6)
VIEW_ROTATION = (0.4,51.6,0.0)
VIEW_ORBIT = (0.0,-2.0,0.0)
WINDOW_SIZE = (960,960)

END OPERATION

Fig. 3.6: Volume rendering example output of electron density in grounded box

Left-clicking and dragging the mouse rotates the visualization. Right-clicking and dragging the mouse scales
the view. Center or simultaneous left and right clicking while dragging the mouse pans the viewport. The ‘-+’ keys
adjust the density for the ray tracing. Lower values make the electron cloud more translucent and higher makes
the rendering thicker and only values closer to the surface of the cloud are visible. The square bracket keys, ‘[]’,
adjust the ‘brightness’ of the display. The keys on the next row down, ‘;’’, adjust transferUpperBound, which is
essentially the top edge of the colormap. The next row down from there, the ‘,.’ keys adjusttransferLowerBound.
This is similarly the bottom edge of the colormap. The ‘i’ key inverts the coloring of the display to a black box on a
white background. As the keys adjust the settings, the visualizer displays the adjusted parameters interwoven with
normal output from the infrastructure. Once a good view has been determined, the options can then be fed back
into the operation’s parameters for future runs. The output of holding the ‘-’ is shown below with some additional
whitespace for clarity while a similar line is produced by the mouse adjustments as well.

Iteration 1747: Time=4.367510e-06 dt=2.500000e-09 [Wall Clock:477.743864]
density = 0.07, brightness = 2.10, transferUpperBound = 3.45e+05,

transferLowerBound = 1.39e+04, invert = F
density = 0.06, brightness = 2.10, transferUpperBound = 3.45e+05,

transferLowerBound = 1.39e+04, invert = F

72



3.3. GROUNDED BOX: 3D ES-PIC WITH MSPDIST DATA CHAPTER 3. TURF-IR 2017A

density = 0.05, brightness = 2.10, transferUpperBound = 3.45e+05,
transferLowerBound = 1.39e+04, invert = F

NORM: 4.386121e-04
Iteration 1748: Time=4.370010e-06 dt=2.500000e-09 [Wall Clock:478.055719]

The last additional operations are a commented version of the LogicalFieldWriteVTKOp which writes the field
data to output files rather than relying on the realtime visualization. This is necessary for running the tutorial on
systems that do not include NVIDIA GPU’s that are compatible with the direct OpenGL interface used by the
volume renderer. The options are similar to those of the heatbath tutorial. The last operation is a final NextStageOp
to tell the code to advance to the next stage, or in this case, loop back to the first stage.

# DEFINE OPERATION
# TYPE = LogicalFieldWriteVTKOp
# FIELD_DATA_NAME = FieldData
# FILE_HEAD = Plot3D/plt_
# FIELD_NAMES = Ne- CNe- Np+ CNp+ phi rho
# SKIP = 5
# HELP = TRUE
# END OPERATION

DEFINE OPERATION
TYPE = NextStageOp

END OPERATION

END STAGE PLOT
############################################################################

3.3.4 Results
The example in this tutorial was originally developed to verify TURF functionality with respect to the ICEPIC code.
Using as similar parameters as possible between the two codes, the example was run and visualized in ParaView as
shown in Fig. 3.7. The setup was nearly identical to what was outlined above except more particles were used to
provide smoother output. In particular, particle specific weights of 1.25 × 103 and 1.0 × 104 are used for electron
and proton, respectively, to ensure a similar number of particles were used in TURF as in ICEPIC. For the realtime
visualization, the low proton numbers make little difference in the electron density visualization, but they make
charge density plots like those used to compare the code much more noisy. The agreement between the two codes
was very reasonable considering all the particle trajectories are coupled to the field solution and vice versa. A major
difference is the appearance of more charge neutrality on the surface of the ICEPIC result, but this is essentially a
difference due to node-centered versus cell-centered output between the two codes. On longer timescales after the
protons have had the opportunity to move further, the noise level in TURF would appear more similar to that in
the ICEPIC result.
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Fig. 3.7: Comparison of ICEPIC (left) and TURF (right) grounded box results
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3.4 One Dimensional Normal Shock: DSMC with Multi-Species Par-
ticle Data Samuel J. Araki

3.4.1 Introduction
This tutorial demonstrates running a DSMC case for one-dimensional (1D) normal shock problem in the Thermo-
physics Universal Research Framework (TURF). In the directory tutorial-TURF/TURF-IR 2017a/1DShock MS/DSMC,
you should see two sub-directories named as DS1V and TURF. The DS1V directory contains Bird’s DS1V program [14]
and input files for four different inflow conditions. The results from the program serve as the reference when verify-
ing the correctness of TURF results. In the TURF directory, there should be five files with the .list extension, which
act as the scripting files for TURF. The script, world.list, defines the simulation size, the number of stages, and
available materials, etc. This file also points to another script, operations.Mxx.list9, containing all the TURF
operations with their inputs. This tutorial first covers the fundamental equation that governs the 1D normal shock
problem in Section 3.4.2. Section 3.4.3 then explains how to set up 1D normal shock problem in TURF, providing
the global parameters defined in world.list. Individual operations defined in operations.Mxx.list are described
in Section 3.4.4. Finally, the results from TURF and DS1V are compared in Section 3.4.5.

3.4.2 Description of the Example Problem
In a fluid, disturbance information is communicated within a medium at the speed of sound, allowing the upstream
flow field to adjust accordingly. However, when the flow velocity is greater then the speed of sound, the disturbance
information cannot be communicated fast enough, resulting in a formation of a shock. The shock creates a “dis-
continuity” or a sudden change in flow properties such as velocity, pressure, and temperature. Across a shock, the
pressure and temperature always increase while the velocity always decreases from upstream to downstream. The
example to simulate with the DSMC module of TURF is the 1D normal shock problem, in which the shock forms
in a plane perpendicular to the flow direction. In this problem, the flow properties at upstream and downstream
regions with respect to the shock location are related through the following equations [12].

ρ1u1 = ρ2u2

p1 + ρ1u
2
1 = p2 + ρ2u

2
2 (3.2)

h1 + 1
2u

2
1 = h2 + 1

2u
2
2

where ρ is the density, u is the velocity, p is the pressure, h is the enthalpy, and subscripts 1 and 2 denote upstream
and downstream, respectively. Equation (3.2) is obtained by integrating the Euler equations, a set of conservation
equations for mass, momentum, and energy that are applicable for such flows [13]. In a perfect gas, the speed of
sound, a, can be determined using the isentropic relation.

a2 =
(
∂p

∂ρ

)
s

= γp

ρ
= γRsT (3.3)

where γ is the heat capacity ratio defined as γ = 1 + 2/f , f is the degree of freedom (i.e. 3 for a monatomic gas
and 5 for a diatomic gas), Rs is the specific gas constant (i.e. 208.13 J/kg·K for argon), and T is the temperature.
Using Eq. (3.2) and the perfect gas assumption, the downstream flow properties can be determined if the upstream
flow properties are known [12].
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1 − 1
)
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9A number corresponding to a different inflow Mach number is used in place of “xx”.
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where M is the Mach number defined as M = u/a and n is the number density. In setting up the 1D normal shock
problem, the downstream flow properties need to be evaluated and input in operations.Mxx.list prior to running
TURF.

3.4.3 Setting up the DSMC Example
One way to set up the 1D normal shock problem is to introduce uniformly distributed gases upstream and down-
stream of the shock location. Given the upstream flow properties, appropriate downstream flow properties are
determined by Eqs. (3.4) to (3.6). Table 3.7 provides the downstream flow properties for argon gases of T1 = 293,
n1 = 1× 1022 m−3, and a1 = 318.8 m/s at M1 of 1.2, 1.4, 2.0, and 8.0. The upstream flow velocities corresponding
to the Mach number of 1.2, 1.4, 2.0, and 8.0 are 382.4, 446.2, 637.4, and 2549.6 m/s, respectively. In order to
maintain the gas density and the shock location, the gas should also be flowing into the domain from the upstream
boundary according to the flow 1. At the interface between the two gases at different flow properties, the properties
are initially discontinuous, and they will develop smooth profiles as time evolves. These profiles can be compared
with the profiles obtained by other DSMC models or fluid models. Examples of shock profiles are also provided in
Ref. [14] (Chapter 12).

The script file world.list (shown below) includes global parameters that define the problem such as compu-
tational grid size, time-step, species, etc. In TURF, the number of grid cells is determined by finding how many
DELTAs fit in the user-defined domain bounds (BOUND HI-BOUND LO), and the domain bounds are redefined such that
the coordinates of the lowest corner of the domain box are placed at ORIGIN. Therefore, the domain box may not
necessarily be bounded by the user-defined BOUND LO and BOUND HI. In this example, the grid contains 1000 cells in
x-direction and a single cell for both the y- and z-directions. Here, BOUND HI is set to slightly larger numbers than
intended; this ensures that the domain size is not reduced by one cell due to the rounding down of the number of
cells. Only argon gas (Ar@g) is used in this simulation, and the field parameters to be computed are NC, NP, N, VX,
and T as defined in Table 3.8. This example uses three stages (INITIALIZE, MOVE, and PLOT), and the script file
operations.Mxx.list contains all the operations within each of the three stages, as listed in Table 3.9. It should
be noted that the field and stage names are not case sensitive.

DEFINE WORLD
NAME = DSMC_example
OP_FILE = operations.Mxx.list
COORDINATES = cartesian
ORIGIN = (0.0,0.0,0.0)
DELTA = (2.0e-5,2.0e-3,2.0e-3)
END_TIME = 8.00001e-4
START_DT = 1.0e-8
FIELDS = [NC NP N VX T]
MATERIALS = [Ar@g]
STAGES = [INITIALIZE, MOVE, PLOT]
PRINT_PROFILE_INFO = true
SAVE_PROFILE_INFO = true

END WORLD

############################################################################
## Domain Geometry
############################################################################
DEFINE DOMAIN DOM000

BOUND_LO = (0.0,0.0,0.0)
BOUND_HI = (2.00001e-2,2.00001e-3,2.00001e-3)

END DOMAIN
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Table 3.7: Downstream flow properties for upstream Mach number of 1.2, 1.4, 2.0, and 8.0. The values are for
argon gas.

Downstream Upstream Mach Number, M1
Flow Property Symbol Unit 1.2 1.4 2.0 8.0
Velocity u2 m/s 294.9 282.3 278.9 667.3
Speed of Sound a2 m/s 348.4 376.0 459.4 1456
Mach Number M2 - 0.85 0.75 0.61 0.46
Number Density n2 1/m3 1.30× 1022 1.58× 1022 2.29× 1022 3.82× 1022

Temperature T2 K 350.1 407.8 608.9 6116

Table 3.8: Volume mesh fieldsa computed in this DSMC example.

Field Name Description
NC Number of simulation particles.
NP Number of physical particles.
N Density.
V Velocity. VX, VY, VZ are the x-, y-, and z-components.
T Temperature. TX, TY, TZ are the x-, y-, and z-components.
a For multi-species simulations, field data for each species can be obtained by adding species name followed by a underscore. For

example, if there are two species A@g and B@g, partial densities for species A@g and B@g and total density are named as N A@g,
N B@g, and N, respectively.

Table 3.9: List of operations in operations.Mxx.list.

Stage Operation Description
INITIALIZE MSPDistInitOp Create MSPDist object that contains particle distribution

MSPDistBoxICOp Fill particle inside a box
MOVEOP MSPDistNormalMaxwellianOp Injection of particles at Maxwellian distribution

MSPDistMoveOp Advancement of particles
MSPDistBCSpecOp Specular boundary condition
MSPDistCellIDOp Find cell ID associated with particle location
MSPDistSortOp Sort particles according to cell ID and remove particles out-

side the simulation domain
MSPDistDSMCOp DSMC collision calculation
MSPDistSampleOp Sample particles and compute volume mesh field data

POSTOP LogicalFieldWriteVTKOp Output to a vtk file for a 3D plot
LogicalFieldWrite1DOp Output to a csv file for a line plot
MSPDistParticleCountOp Output particle count
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3.4.4 Operations
Stage: Initialize

In this stage, MSPDistInitOp creates a MSPDist object containing particle information, and MSPDistBoxICOp
uniformly distributes particles within a box placed inside the simulation. The buffer size of the MSPDist object
is specified by MAX NP in MSPDistInitOp. Users must be careful when choosing a value for MAX NP; if the particle
count exceeds the buffer size, TURF may crush with a segmentation error, although we try to add warning/error
messages as much as possible when this situation could happen. In addition, SPECIES NAMES must be the ones
already defined for MATERIAL in world.list. In this example, two MSPDist particle distributions named as P-DST
and P-GST are created. P-GST is a temporary MSPDist object that is used when deleting particles in a later stage.

DEFINE OPERATION
TYPE = MSPDistInitOp
MSPDIST_DATA_NAME = P-DST
MAX_NP = 1280000
SPECIES_NAMES = Ar@g

END OPERATION

The operation, MSPDistBoxICOp, then adds particles into P-DST. An example of inputs for MSPDistBoxICOp is
shown below. The box to be filled with particles is bounded by BOUND LO and BOUND HI, in which the lower and
higher bounds in Cartesian coordinate are specified, respectively. In this operation, only one gas species can be
added at a time, and for this particular case, the gas species to be added is argon. The real to computational
particle weight ratio is defined by FNUM. Furthermore, TEMPERATURE, NUMBER DENSITY, and VEL are the temperature
of the gas species, density, and the streaming velocity of the particles at Maxwellian distribution, respectively. In
order to set up the 1D shock problem properly, the upstream and downstream regions inside the computational
domain are filled with particles according to flow properties 1 and 2. The initial density distribution obtained by the
DSMC example is shown in Fig. 3.8. This example corresponds to the case with M1 = 1.2, where the downstream
flow properties are given in Table 3.7.

DEFINE OPERATION
TYPE = MSPDistBoxICOp
MSPDIST_DATA_NAME = P-DST
SPECIES = Ar@g
BOUND_LO = (0.0,0.0,0.0)
BOUND_HI = (1.0e-2,2.0e-3,2.0e-3)
TEMPERATURE = 293.0
NUMBER_DENSITY = 1.0e22
FNUM = 9.1892e8
VEL = (382.447,0.0,0.0)
INIT_ONLY = TRUE

END OPERATION

Stage: Move

The MOVE stage includes several operations including MSPDistNormalMaxwellianOp, MSPDistMoveOp, MSPDistBC-
SpecOp, MSPDistCellIDOp, MSPDistSortOp, MSPDistDSMCOp, and MSPDistSampleOp. MSPDistNormalMaxwellianOp
injects particles at Maxwellian distribution from a virtual surface. If the surface mesh name (SURFACE NAME) and
component name (SURFACE GROUP NAME) are specified in this operation, the particles are injected from the surface
mesh elements. Otherwise, the virtual surface is defined by its center (SOURCE SURFACE CENTER), normal vector
(SOURCE NORMAL VECTOR), tangent vector (SOURCE TANGENT VECTOR), length (SOURCE SURFACE LENGTH), and type
(SOURCE SURFACE TYPE). For the surface type, only ”SQUARE” and ”CIRCLE” surfaces are implemented in the
current version. Other input parameters are similar to the ones in MSPDistBoxICOp.
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Fig. 3.8: Initial density distribution.

DEFINE OPERATION
TYPE = MSPDistNormalMaxwellianOp
MSPDIST_DATA_NAME = P-DST
SPECIES = Ar@g # Can only inject one species
TEMPERATURE = 293.0
NORMAL_VELOCITY = 382.447
NUMBER_DENSITY = 1.0E22
REAL_TO_COMPUTATIONAL = 9.1892e8
SOURCE_SURFACE_CENTER = ( 0.0, 1.0e-3, 1.0e-3 )
SOURCE_NORMAL_VECTOR = ( 1.0, 0.0, 0.0 )
SOURCE_TANGENT_VECTOR = ( 0.0, 1.0, 0.0 )
SOURCE_SURFACE_LENGTH = 2.0e-3
SOURCE_SURFACE_TYPE = SQUARE
VERBOSE = FALSE

END OPERATION

MSPDistMoveOp simply advances particles by one time-step. In this operations, only the species defined by
SPECIES NAMES in P DST is advanced; in this particular example, only one species exist, which is argon gas.

DEFINE OPERATION
TYPE = MSPDistMoveOp
MSPDIST_DATA_NAME = P-DST
SPECIES_NAMES = Ar@g

END OPERATION

MSPDistBCSpecOp applies specular boundary conditions to the particles. This operation uses a simple operation
that utilizes a box defined by BOUND LO and BOUND HI. The specular reflection is applied to particles that lie within
the box, and particle positions are altered based on the box surface corresponding to the direction specified in
DIRECTION. The directions that can be specified are xm, xp, ym, yp, zm, and zp, and the ’m’ and ’p’ in these
directions refer to “minus” (from negative to positive direction) and “plus” (vise versa), respectively. Since the
operator is applied to only the particles within the box, it is important to use a box size large enough to capture
faster particles.
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DEFINE OPERATION
TYPE = MSPDistBCSpecOp
MSPDIST_DATA_NAME = P-DST
DIRECTION = ym
BOUND_LO = (-0.1e-2,-1.0e-3,-1.0e-3)
BOUND_HI = ( 2.1e-2, 0.0e-3, 3.0e-3)

END OPERATION

The particles leaving the simulation domain are removed by the combination of two operations, MSPDistCellIDOp
and MSPDistSortOp. MSPDistCellIDOp determines the volume mesh cell ID based on where a particle resides. Then,
MSPDistSortOp sorts the particle distribution in the order of cell ID. For the particles outside the simulation domain,
particle cell ID is set to the maximum value, and these particles are copied to P-GST in MSPDistSortOp and thrown
away later. Although removing the particle outside the simulation domain can be done by MSPDistRemovePartOp,
MSPDistSortOp is used instead since the additional operation of sorting the particle distribution makes the DSMC
algorithm more efficient.

DEFINE OPERATION
TYPE = MSPDistCellIDOp
MSPDIST_DATA_NAME = P-DST

END OPERATION
DEFINE OPERATION

TYPE = MSPDistSortOp
NAME = Sort_P-DST
MSPDIST_SRC_NAME = P-DST
MSPDIST_DST_NAME = P-GST

END OPERATION

MSPDistDSMCOp finds the number of collisions to perform within all the grid cells and applies the DSMC method.
Compared to the Monte Carlo Collision (MCC) method, the DSMC method performs a detailed balance collision in
a way that the overall momentum is conserved within the whole system. The variable hard sphere (VHS) molecular
model is used to determine the deflection of particles, and the VHS parameters are defined in materials.list.
The VHS parameters include the reference temperature (Tref), an empirical factor for the variable cross-section
(α), and the reference diameter (d), and these parameters can be found in Ref. [14]. For the details of the DSMC
method, readers should refer to Ref. [14].

DEFINE OPERATION
TYPE = MSPDistDSMCOp
MSPDIST_DATA_NAME = P-DST
SPECIES_NAMES = Ar@g
FNUM = 9.1892e8
INIT_TEMPERATURE = 350.074
FREQUENCY_TO_RESAMPLE_MFS = 2000
SORT_OP_NAME = Sort_P-DST

END OPERATION

MSPDistSampleOp samples mass, momentum, and kinetic energy from a particle distribution and computes vol-
ume mesh field data from these sampled quantities. The quantity to be sampled depends on FIELD NAMES defined in
the input. For example, if the temperature field T does not need to be determined, the kinetic energy is not sampled
from the particle distribution. In this way, the time to perform the sampling calculation can be reduced when less
field data are only needed. The frequencies of sampling and field calculation are defined by STEPS PER SAMPLING
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(a) 8.0 × 10−5 sec, 8,000 Steps (b) 2.0 × 10−4 sec, 20,000 Steps

Fig. 3.9: Density distribution at different time-steps. Mixing is started at 8,000th time-step.

and STEPS PER FIELD CALCULATION. STEPS PER SAMPLING is typically set to a value greater than one to remove the
correlation of the flow field caused by numerics (e.g. particle injection). STEPS PER FIELD CALCULATION is typically
set to be the same as the output frequency defined by SKIP in operations such as LogicalFieldWriteVTKOp and
LogicalFieldWrite1DOp. After the time defined by MIX START TIME, sampled quantities are mixed between iter-
ations in order to improve the statistics. Therefore, this operation allows a smooth field distribution at the end of
simulation without using a very large number of simulation particles. Here, MIX START TIME should be set to the
time when the simulation becomes steady-state. The field distributions at 8,000 and 20,000 time-steps are shown
in Figs. 3.9(a) and 3.9(b), respectively. In this example, mixing has been performed after 8,000 time-steps; the
distribution is smoothed out significantly after mixing the field parameters for the last 12,000 iterations.

DEFINE OPERATION
TYPE = MSPDistSampleOp
FIELD_DATA_NAME = FieldData
MSPDIST_DATA_NAME = P-DST
FIELD_NAMES = NC NP N VX T
MIX_START_TIME = 8.0e-5
STEPS_PER_SAMPLING = 5
STEPS_PER_FIELD_CALCULATION = 100

END OPERATION

Stage: Plot

In this tutorial, two different operations to output field data are used. LogicalFieldWriteVTKOp writes field data in
vtk format such that the data can be loaded in visualization software like Paraview and VisIt. LogicalFieldWrite1DOp
writes 1D field data along x-axis in a csv file to simplify the data extraction for post-processing. For both of these
operators, the plotting frequency can be defined by SKIP. LogicalFieldWriteVTKOp has an additional input pa-
rameter, PLOT GHOST, providing users with options to plot the field data within ghost layers.

DEFINE OPERATION
TYPE = LogicalFieldWriteVTKOp
FIELD_DATA_NAME = FieldData
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FILE_HEAD = Plot3D_M12/plt_
FIELD_NAMES = NC NP N VX T
PLOT_GHOST = FALSE
SKIP = 100

END OPERATION
DEFINE OPERATION

TYPE = LogicalFieldWrite1DOp
FIELD_DATA_NAME = FieldData
FILE_HEAD = Plot1D_M12/plt_
FIELD_NAMES = NC NP N VX T
SKIP = 100

END OPERATION

The last operator is unnecessary to run this simulation but is very useful in setting up the simulation. MSPDist-
ParticleCountOp may print the number of particles per species and domain to the terminal (VERBOSE=TRUE) and/or
csv file (LOG FILE). If the particle count reaches nearly constant between iterations, then the simulation has reached
steady-state. Otherwise, necessary operations may be missing, or there may be a bug in an operation. If GLOBAL is
set to true, TURF prints out the total number of particles across all the sub-domains for a multi-domain simulation.

TYPE = MSPDistParticleCountOp
MSPDIST_DATA_NAME = P-DST
QUANTITY_NAME = ParticleCount
LOG_FILE = ParticleCount/M12.csv
VERBOSE = FALSE
GLOBAL = TRUE

END OPERATION

3.4.5 Comparison of Shock Profiles with Bird’s DSMC Code
The 1D shock profiles from the DSMC module of TURF can be compared with other DSMC programs for code
verification; in this tutorial, the results are compared with the 1D DSMC code, DS1V, developed by G. A. Bird
(available at www.gab.com.au). The DS1V source code along with input files (ds1vd.dat) for the cases withM1 =1.2,
1.4, 2.0, and 8.0 are also provided in this tutorial. In order to obtain a smooth distribution at the end of simulaiton,
DS1V is run twice; first, the simulation is started using the “new run” (#3) option in the terminal, the simulation
is then stopped at a time greater than 2 × 10−5 sec, and finally the simulation is restarted using “new sample”
(#2) followed by the “adapt the cells” (#1) option. The resulting profile of density as a function of position can
be extracted from the output file, “PROFILE.DAT.”

Figure 3.10 compares the shock profiles computed with TURF and DS1V for the upstream Mach number of 1.2
and 2.0 at 8.0× 10−4 sec (80,000 time-steps in TURF). The values are normalized according to,

ñ = n− n1

n2 − n1
(3.7)

It is readily seen from Fig. 3.10 that the agreement between the two programs is quite satisfactory.
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(a) M=1.2 (b) M=2.0

Fig. 3.10: Normalized density computed by TURF and DS1V.
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3.5 Electric Propulsion Plume Simulation 1: Setup
Samuel J. Araki and Kari A. Kawashima

3.5.1 Introduction
This tutorial can be used as a guide to set up an electric plume (EP) simulation. In the directory tutorial-TURF
/TURF-IR 2017a/Plume/PlumeExample, there are six files necessary to run this example, and these files are briefly
described in Table 3.10. The directory also contains two additional files, world.restart.list and operations
.restart.list, to demonstrate the use of TURF restart capability. TURF uses a tree-hierarchy structure which
has the World object at the top level for each MPI process. The World file (world.sat.list) contains the
global parameters that define the World as well as the Domain object attached underneath the World object.
Here, each World object can hold one or more sub-domains or Domain objects. Individual operators defined in
operations.sat.list are attached under the Domain object such that all of these operators are applied to each
domain. A simplified list of steps to set up a new simulation is provided below:

1. Get or create a CAD drawing of a spacecraft.
2. Mesh the geometry and export in an abaqus file format.
3. Modify highlighted entries in world.list.
4. Update component TURF.txt. Use component names from the surface mesh file and specify material and

potential for each component (if they are different from default values).
5. Identify relevant surface interaction and sputtering mechanisms, obtain coefficients for surface interaction

models, and include in surf int.txt.
6. Modify highlighted entries in operations.sat.list.
7. Run TURF simulation
8. Evaluate results.

This tutorial consists of three parts. The first part (this document) covers the operations available in TURF for
a plume simulation and demonstrates how to alter the input files to suit the needs of various simulations, which
corresponds to Steps 3 to 6 in the list above. Part Two of this tutorial demonstrates how to create a surface mesh
file using Cubit [21] (Steps 1 and 2), and Part Three covers the ParaView [19] functions to visualize TURF outputs
(Step 8). In order to run a single MPI process simulation with TURF (Step 7), a symbolic link to world.list
needs to be created first.

tutorial-TURF/TURF-IR_2017a/Plume/PlumeExample> ln -s world.sat.list world.list

TURF always looks for a file named as world.list, which is routed to world.sat.list by the command shown
above. If a symbolic link to world.list already exists in the directory, -sf option can be used to force replacing
the existing link. Once world.list is linked to the proper file, TURF can be run by simply typing the name of
the binary file including its absolute or relative path from the folder where the input files are located.

tutorial-TURF/TURF-IR_2017a/Plume/PlumeExample> ./../../../../bin/TURF-o

You can also add a line in .bashrc for a search path such that the path does not need be included.

Table 3.10: Description of files in this example.
File Description
world.sat.list TURF script file containing global parameters defining the entire simulation.
operations.sat.list TURF script file containing individual operations and inputs.
jaysat2.inp Surface mesh file.
component TURF.txt Parameters associated with surface mesh components.
surf int.txt Parameters for particle-surface interaction calculations.
RPA HCT1.csv RPA probe data used for ion source.
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export PATH = $PATH:"/Path_To_TURF_Binary/bin"

Multi-domain simulations can be performed by redefining the domain in world.list and running the TURF binary
with mpirun. Refer to the Heatbath example for setting up and running the two domain simulation. This document
first explains the World file, and then provides the details of the component (Section 3.5.3) and surface interaction
files (Section 3.5.4), followed by a thorough description of the TURF operations and variables (Section 3.5.5).

3.5.2 Defining the World
In order to establish the starting parameters and conditions of the simulation, the TURF calls the World file named
as world.list. This file contains the name of the simulation, points to an input file that contains the operators,
the global parameters of the simulation, etc, and these are assigned to the World object in TURF. Highlighted
below are variables in the world file which are most commonly modified for different simulations. Note that the
parameter names can either be lower or upper case.

DEFINE WORLD
NAME = plume_example
OP_FILE = operations.sat.list
COORDINATES = cartesian
ORIGIN = ( 0.0, 0.0, 0.0 )
DELTA = ( 0.25, 0.25, 0.25 )
END TIME = 4.00001e-3
START DT = 2.0e-6
FIELDS = [ pflag, rho, rho avg, phi, Enx, Eny, Enz]
FIELDS = [ V, V Xe, V Xe+, V Xe+2, VX, VY, VZ, T, NP, NC]
FIELDS = [ VOL, n, n Xe, n Xe+, n Al, n Fe, bc ]
MATERIALS = [Xe@g Xe+@g Al@g Fe@g Al@s Fe@s Cu@s]
STAGES = [INITIALIZE, FIELD, MOVE, POSTMOVE]
PRINT_PROFILE_INFO = true
SAVE_PROFILE_INFO = true

END WORLD

############################################################################
## Domain Geometry
############################################################################
DEFINE DOMAIN DOM

BOUND LO = (-2.5, -2.5, -2.5)
BOUND HI = ( 5.0, 2.5, 5.5)
SUB DOMAINS = (1,1,1)

END DOMAIN

• NAME creates a label for the simulation world.
• OP FILE is the file containing all the individual operations.
• ORIGIN is the coordinates of node with index i = 0, j = 0, and k = 0.
• DELTA determines the size of a cell in the simulation’s domain.
• END TIME and START DT dictate the point at which the simulation stops and the time interval for which the

simulation advances, respectively.10

• FIELD NAMES names and creates different data sets which will be collected and saved during the simulation.
10 These values are determined by particle velocity, cell size, and the time required for the particles to reach steady-state. The

simulation ends when the TURF time becomes greater than or equal to END TIME. TIP: Use a slightly larger END TIME to account for
possible round-off and ensure the simulation completes the last desired step.
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• MATERIALS establishes all the material types that will be used for the simulation.11

• STAGES assigns names to the blocks of operations of TURF simulation.12

• BOUND LO and BOUND HI set the lower and upper bounds of the simulation’s domain.
• SUB DOMAINS partitions the simulation region into multiple sub-domains.13

Table 3.11: Volume mesh fieldsa,b,c computed in this plume example.
Field Name Description
pFlag Flag to indicated which potential solver to use.
rho Charge density.
rho avg Time-averaged charge density.
phi Electric potential.
Enx, Eny, Enz Components of node-centered electric field in x-, y-, and z-directions.
V Flow speed.
VX, VY, VZ Components of flow velocity in x-, y-, and z-directions.
T Temperature.
NC Number of simulation particles.
NP Number of physical particles.
n Density.
VOL Cell volume.
bc Sugarcubing info primarily used for debugging purpose.
a Field data for each species can be obtained by adding species name followed by a underscore. For example, if there are two species

A@g and B@g, partial densities for species A@g and B@g and total density are named as N A@g, N B@g, and N, respectively.
b FIELD NAMES are not case sensitive.
c All fields are cell-centered otherwise noted.

3.5.3 Geometry Components
The parameters associated with each component of the spacecraft geometry can be specified in a component file
(named as component TURF.txt in this example). The file contains a list of components with associated parameters
in a JavaScript Object Notation (JSON) like format.

component{name:SC_BODY, material:Fe@s, potential:0.0, temperature:300.0}

The JSON format is chosen to retain the flexibility as TURF capability is expanded. In this format, there are
multiple pairs of keys and values separated by colon associated with a component. The keys are used within TURF
operations to access the data when needed, and there is no distinction between upper or lower case for the keys.
On the other had, the values of different data type are stored as a TURF string object14, and they are converted to
integer, float, double, or string data type when they are accessed within TURF. The values as string format have
to match exactly when referring to them in other parts of inputs; it distinguishes lower and upper case letters.

In the component file, the current version takes the name of the component (name) and associated material,
potential, and temperature. The material and temperature are used when performing the surface interaction
calculations and potential is used as Dirichlet boundary condition for the potential calculations within free-space.
The file must use the names given in the surface mesh file; the names also corresponds to the “blocks” defined in
Cubit when generating the surface mesh file. If the names do not match exactly, the component specific inputs will

11 “@g”, “@l”, and “@s” denote gas particles, liquids, and solids, respectively. The names defined here must coincide with the material
“name” or “composition” defined in src-TURF/src/Materials/database/materials.list.

12 MPI communication is performed between these stages.
13 Each sub-domain can be assigned to different MPI processes for parallel computing.
14 Stored as GSPrime<string> such that it can be attached to a component object.
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not be read, and the default values established in the Initialization stage will be assigned. Similarly, the specified
material must be one listed in the materials field in the World file.

3.5.4 Particle-Surface Interaction
The surface interaction file, surf int.txt, informs the simulation what to do when gas particles come into contact
with the surface of the spacecraft. Both the surface reflection and sputtering are integrated in the current version
of TURF. The incident particles can stick to the surface or reflect off the surface specularly or diffusely. These
particles can also cause sputtering of surface material. The surface interactions are defined in surf int.txt in the
JSON like format also used for component TURF.txt.

surface_impact{source:Xe@g, target:Al@s, product:Xe@g, spwt_ratio:1.0, c_stick:1.0, c_rest:1.0,
c_accom:0.9, c_diff:1.0}

sputtering{model:yama, source:Xe@g, target:Al@s, product:Al@g, spwt_ratio:0.005, sput_c0:3.39,
sput_c1:1.0, sput_c2:2.17, sput_c3:2.5, sput_c4:1.8, sput_c5:2.56, emission:zhang,
emit_c0:72.25, emit_v:5000}

For both the surface reflection and sputtering, source, target, and product materials are specified. The specific
weight ratio (spwt ratio) is the ratio of product to source particle weight, where the particle weight is the ratio of
physical to computational particles.

For surface reflection, four coefficients are defined; Cstick, Crest, Caccom, and Cdiff are coefficients of sticking,
restitution, thermal accommodation, and diffuse reflection, respectively. If U < Cstick where U is a random number
between 0 and 1, then the particle is killed and is no longer tracked. Otherwise, the particle is reflected off the
surface. The rest of coefficients are used to smoothly mix the velocity direction (v̂) and magnitude (v) between
specular and diffuse reflections.

v̂ = v̂spec + Cdiff(v̂diff − v̂spec) (3.8)
v = Crestvspec + Caccom(vdiff − Crestvspec) (3.9)

Here, the velocity due to the diffuse reflection, v̂diff, is computed based on the wall temperature and by the Box-
Muller algorithm.

When adding sputtering for different combination of materials, a sputtering model and an emission models are
required in surf int.txt. In the current version of TURF, seven models for total sputter yield and two models
for angular distribution of sputtered particles are implemented and are listed in Tables 3.12 and 3.13 along with
the coefficients required to be defined in surf int.txt. The equations for total yield and angular distribution are
provided in Sections 3.5.7 and 3.5.8.
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Table 3.12: Sputtering models incorporated in TURF. Section 3.5.7 shows how the coefficients are used in total
yield calculation.

Model Key Required Coefficients Reference
Constant CONST C0

Matsunami MATSU C0 and C1 [22], [23]
Yamamura YAMA C0, C1, C2, C3, C4, and C5 [24], [25]
Kannenberg KANNEN C0, C1, C2, C3, and C4 [26]
Roussel ROUSSEL C0 and C1 [27]
Garnier GARNIER C0, C1, C2, C3, C4, and C5 [28]
Pencil PENCIL C0 and C1 [29]

Table 3.13: Emission models incorporated in TURF. Section 3.5.8 shows how the coefficients are used in emission
angular distribution calculation.

Model Key Required Coefficients Reference
Cosine COS V

Zhang ZHANG V and C0 [30]

Table 3.14: Summary of operations in stage INITIALIZE.
Operation Description
UMeshImporterOp Loads unstructured surface mesh (UMesh)
SurfaceComponentSetOp Creates a database for geometry components
LogicalMeshSurfaceSugarcubeOp Performs sugarcubing to determine the relationship between UMesh and

a structured volume mesh (SMesh)
UFieldMSInitOp Creates a UMesh field object class
MSPDistInitOp Creates a MSPDist object class
MSPDistCombineOp Combines particle distributions - only needed for multiple sub-domain

simulations
MSPDistCellIDOp Determines SMesh cell IDs based on particle positions
MSPDistSortOp Sorts particles in the order of cell ID (particles outside the domain are

removed)
MSPDistNormalMaxwellianStreamOp Injection of particles at a Maxwellian distribution
MSPDistSourceRPAOp Injection of particles according to RPA data
MSPDistSampleOp Samples MSPDist data to compute SMesh fields
SampleFieldWriteVTKOp Writes sampling field data in VTK format
MSPDistWriteVTKOp Writes MSPDist data in VTK format
FieldSetOp Set a SMesh field to a value
MSPDistChargeDepositionOp Deposits particle charges to a grid
FieldArithmeticOp Divides by cell volumes to get charge densities
LogicalFieldPatchOp Patches field data across sub-domains
NextStageOp Goes to next stage
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3.5.5 TURF Operations
Stage: Initialize

The INITIALIZE stage consists of operations which import objects and create parameters necessary for the simu-
lation. The operations are listed and briefly described in Table 3.14.

The operation UMeshImporterOp imports the mesh file containing the spacecraft geometry. The spacecraft
components can be made up of different materials and have parameters specific to those components as spec-
ified in an input file. The operation SurfaceComponentSetOp imports user-input parameters and values and
creates a database. Then, the relationship between the surface mesh and the volume mesh is determined by
LogicalMeshSurfaceSugarcubeOp. This operation can also initiate UMeshImporterOp and SurfaceComponentSet-
Op by defining these parameters within the block of LogicalMeshSurfaceSugarcubeOp.

DEFINE STAGE INITIALIZE
#############################################
## Load and Initialize Spacecraft Geometry ##
#############################################
DEFINE OPERATION

TYPE = UMeshImporterOp
UMESH FILES = jaysat2.inp
SCALE = 0.012
TRANSFORM CENTER = 0.0, 0.0, 0.0
TRANSLATE = -0.15, 0.0, 0.0
ROTATION AXIS = 0.0, 0.0, 1.0
ROTATION DEGREES = 0.0
UMESH_TYPE = Surface
UMESH_FILE_TYPE = abaqus
UMESH_NAME = UMesh
WRITE_VTK_MESH = FALSE

END OPERATION
DEFINE OPERATION

TYPE = SurfaceComponentSetOp
SURFACE_NAME = UMesh
DEFAULT COMPONENT MATERIAL NAME = Al@s
DEFAULT COMPONENT POTENTIAL = 0.0
DEFAULT COMPONENT TEMPERATURE = 300.0
COMPONENT MATERIAL FILE = component TURF.txt
VERBOSE = TRUE

END OPERATION
DEFINE OPERATION

TYPE = LogicalMeshSurfaceSugarcubeOp
SURFACE_NAME = UMesh
SUGARCUBE_NAME = SC_UMesh
SMESH_NAME = SMesh
FIELD_NAME = bc
EXTERIOR PTS = 0.0, 0.0, 4.0
WRITE_VTK_MESH = TRUE

END OPERATION

• SURFACE FILE points to the file of the desired satellite geometry.
• SCALE allows the user to account for unit conversions if the geometry was not built in meters.
• The Transform, Translate, and Rotation commands determine the position and orientation of geometry.
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Table 3.15: Surface mesh field available in TURF.
Variable Name Description
NC Number of simulation particle impacting a surface element, particle.
NPFLUX Particle flux to a surface, particle/m2/s.
MFLUX Mass flux, kg/m2/s.
PRES Pressure, N/m2.
TAU Shear stress, N/m2.
QFLUX Heat flux, J/m2/s.

• DEFAULT COMPONENT MATERIAL NAME sets the default material for all parts of the geometry.15

• DEFAULT COMPONENT POTENTIAL sets the default potential for all parts of the geometry.
• COMPONENT MATERIAL FILE calls on the file containing information about the geometry components.16

• EXTERIOR PTS are the x, y, and z coordinates of points exterior to the geometry. Multiple points can be
defined as EXTERIOR PTS = x1, y1, z1, x2, y2, z2, ...

A new unstructured mesh data field is created with UFieldMSInitOp.

############################
## Initialize UMesh Field ##
############################
DEFINE OPERATION

TYPE = UFieldMSInitOp
UFIELD_DATA_NAME = SurfaceField
UMESH_NAME = UMesh
FIELD_NAMES = NC NCIN NCOUT NPFLUX NPFLUX-IN NPFLUX-OUT MFLUX PRES TAUX TAUY TAUZ QFLUX
SPECIES NAMES = Xe+@g Xe@g Al@g Fe@g

END OPERATION

• SPECIES NAME indicates particle species to be sampled and saved to the data fields

The MSPDist class objects that store particle information are created by MSPDistInitOp. P-DST is the primary
particle distribution, P-GST and P-DEL are the temporary particle distributions, and P-EXC is the exchange particle
distribution only used for particle patching between sub-domains.

###############################################
## Particle and Ghost/Exchange Distributions ##
###############################################
DEFINE OPERATION

TYPE = MSPDistInitOp
MSPDIST_DATA_NAME = P-DST
MAX NP = 1024000
SPECIES NAMES = Xe@g Xe+@g Al@g Fe@g

END OPERATION
DEFINE OPERATION

TYPE = MSPDistInitOp
MSPDIST_DATA_NAME = P-GST
MAX NP = 1024000
SPECIES NAMES = Xe@g Xe+@g Al@g Fe@g

15 The value should be one of the materials named in the world file.
16 If this command is used in addition to the default component initializations, values for components named in the material file have

their default values overwritten.
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END OPERATION
DEFINE OPERATION

TYPE = MSPDistInitOp
MSPDIST_DATA_NAME = P-DEL
MAX NP = 1024000
SPECIES NAMES = Xe@g Xe+@g Al@g Fe@g

END OPERATION
DEFINE OPERATION

TYPE = MSPDistInitOp
MSPDIST_DATA_NAME = P-EXC
MAX NP = 50000
SPECIES NAMES = Xe@g Xe+@g Al@g Fe@g

END OPERATION

• MAX NP sets the maximum number particles to be used in the simulation.17

• SPECIES NAMES loads gas species that will be available in the particle distribution.

Particles existing within ghost cells and stored in P-EXC are patched to an appropriate sub-domain from the
previous stage. At this point, the particles still in ghost cells are essentially outside of the simulation domain, and
the rest of particles are within non-ghost region of one of the sub-domains. MSPDistCombineOp combines P-EXC
with the primary distribution P-DST. The combination of MSPDistCellIDOp and MSPDistSortOp removes them
from the particle distribution.

######################################################
## Combine Particles in Ghost Cells from Prior Step ##
######################################################
DEFINE OPERATION

TYPE = MSPDistCombineOp
MSPDIST_SRC_NAME = P-EXC
MSPDIST_DST_NAME = P-DST
VERBOSE = FALSE

END OPERATION
# Update CellID
DEFINE OPERATION

TYPE = MSPDistCellIDOp
MSPDIST_DATA_NAME = P-DST

END OPERATION
# Sort removes particles with CellID>max
DEFINE OPERATION

TYPE = MSPDistSortOp
NAME = Sort_P-DST
MSPDIST_SRC_NAME = P-DST
MSPDIST_DST_NAME = P-GST

END OPERATION

Neutral atoms are injected from one-sided Maxwellian distribution, while ions are injected according to the
current density distribution measured by the Retarded Potential Analyzer (RPA).

############################
## Injection of Particles ##
############################

17 It is important to ensure not to exceed memory availability. If the particle count ever exceeds these values, TURF will crash with
an error message
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# Inject neutral atoms from surface
DEFINE OPERATION

TYPE = MSPDistNormalMaxwellianStreamOp
MSPDIST_DATA_NAME = P-DST
TEMPERATURE = 24920.0
NORMAL VELOCITY = 5000.0
MASS FLOW RATE = 1.0e-4
REAL TO COMPUTATIONAL = 1.0e13
SPECIES = Xe@g
SURFACE_NAME = UMesh
SURFACE GROUP NAME = HCT1 INJ
VERBOSE = FALSE

END OPERATION
# Inject ions from surface
DEFINE OPERATION

TYPE = MSPDistSourceRPAOp
MSPDIST_DATA_NAME = P-DST
SURFACE_NAME = UMesh
COMPONENT AT SPHERE CENTER = HCT1 INJ
SPECIES = Xe+@g
INPUT CSV FILE NAME = RPA HCT1.csv
INJECTION RADIUS = 0.3
MASS FLOW RATE = 1.0e-4
REAL TO COMPUTATIONAL = 1.0e13
VERBOSE = FALSE

END OPERATION

• TEMPERATURE refers to the inflow temperature of the injected neutral atoms. Measured in Kelvin.
• NORMAL VELOCITY is the streaming velocity with respect to injection surface in m/s.18

• MASS FLOW RATE dictates how many particles of each species are injected. Measured in kg/s.
• REAL TO COMPUTATIONAL is the ratio which allows the simulation to scale the number of particles to a man-

ageable quantity as a realistic particle count would be too large for a reasonable simulation time.
• SPECIES determines what kinds of particles are injected by each operation. Only one species can be injected

for each block of operation.
• SURFACE GROUP NAME establishes where the particles are injected. It should be the name given to the thruster

face’s block in the geometry file.
• COMPONENT AT SPHERE CENTER places the RPA source at the center of the given component. It should be the

name given to the thruster face’s block in the geometry file.
• INPUT CSV FILE NAME calls on the csv file containing the RPA data and imports the information to provide

an injection source.
• INJECTION RADIUS sets the size of the RPA injection sphere.

The operation MSPDistSampleOp samples particle count, velocity, and kinetic energy and converts them to the
various field data defined in the World file.

##############################
## Sum to Fields for Output ##
##############################
# Sampling of neutral atom is done more frequently for elastic collision calculation

18 Neutral atoms should nearly be thermal and are not likely to have a driven normal velocity, but the streaming velocity is set to a
large value to accelerate the simulation in this example.
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DEFINE OPERATION
TYPE = MSPDistSampleOp
FIELD_DATA_NAME = FieldData
MSPDIST_DATA_NAME = P-DST
FIELD NAMES = n Xe
MIX START TIME = 2.0e-3
STEPS PER SAMPLING = 1
STEPS PER FIELD CALCULATION = 1

END OPERATION
# Other fields only need to be computed when output
DEFINE OPERATION

TYPE = MSPDistSampleOp
NAME = Sample_P-DST
FIELD_DATA_NAME = FieldData
MSPDIST_DATA_NAME = P-DST
FIELD NAMES = VOL n n Xe n Xe+ n Al n Fe
MIX START TIME = 2.0e-3
STEPS PER SAMPLING = 1
STEPS PER FIELD CALCULATION = 100

END OPERATION

• MIX START TIME should be set to approximately the time when particle steady-state is reached. This is to
improve the statistics by taking the time-average through multiple time-steps.

• STEPS PER SAMPLING is the number of iterations conducted before sample data is collected.
• STEPS PER CALCULATION is the number of iterations conducted before sample data is used for field calcula-

tions. Value should be equal to or a multiple of the operation’s STEPS PER SAMPLING value.

SampleFieldWriteVTKOp writes the restart file for volume mesh sampling field, and MSPDistWriteVTKOp outputs
particle data which can be used as a restart file.

########################
## Output for Restart ##
########################
DEFINE OPERATION

TYPE = SampleFieldWriteVTKOp
SAMPLE_OP_NAME = Sample_P-DST
MSPDIST_DATA_NAME = P-DST
FILE_HEAD = Restart/sampleA
SKIP = 500
FORMAT = Binary
COMPRESS_DATA = TRUE
LAST_ONLY = FALSE

END OPERATION
DEFINE OPERATION

TYPE = MSPDistWriteVTKOp
MSPDIST_DATA_NAME = P-DST
SPECIES = ALL
FILE_HEAD = Restart/particleA
SKIP = 500
PARTICLE_SKIP = 1.0
FORMAT = Binary
COMPRESS_DATA = TRUE

93



3.5. EP PLUME SIMULATION 1: SETUP CHAPTER 3. TURF-IR 2017A

OVERWRITE = TRUE
END OPERATION

• SKIP tells how frequently the restart file should be written.
• FORMAT is the format of written data. Both ASCII and Binary are supported.
• COMPRESS DATA is set TRUE to compress the binary data with zlib routine.
• OVERWRITE is set TRUE if only one restart file to be kept.

These operations compute the charge density. When the first order weighting scheme is used for charge deposi-
tion, the charge density field needs to be patched across the sub-domains using LogicalFieldPatchOp.

##################################
## Deposit Charge for Boltzmann ##
##################################
DEFINE OPERATION

TYPE = FieldSetOp
FIELD_DATA_NAME = FieldData
FIELD_NAME = rho
VALUE = 0.0
OPERATION = SET

END OPERATION
DEFINE OPERATION

TYPE = MSPDistChargeDepositionOp
FIELD_DATA_NAME = FieldData
FIELD_NAME = rho
MSPDIST_DATA_NAME = P-DST
ORDER = 1

END OPERATION
# Divide by cell volume to get charge density
DEFINE OPERATION

TYPE = FieldArithmeticOp
FIELD_DATA_NAME = FieldData
FIELD_DST_NAME = rho
FIELD_SRC_NAME = rho
OPERATION = DIV
USE_VOLUME = TRUE

END OPERATION
########################################
### Patch Rho before Boltzmann Solve ###
########################################
DEFINE OPERATION

TYPE = LogicalFieldPatchOp
FIELD_NAME = rho
PATCH_OP = PATCH_SUM

END OPERATION

###############################
## Proceed to the Next Stage ##
###############################
DEFINE OPERATION

TYPE = NextStageOp
END OPERATION
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END STAGE INITIALIZE

############################################################################

Stage: Field

The FIELD stage contains operations which unify the contiguous region across sub-domains, solve for electric po-
tential via Boltzmann inversion, compute electric field, and output data. The list of operations used in this stage
is shown in Table 3.16. The operation LogicalFieldPatchOp is called again to terminate patching after the
INITIALIZE stage.

DEFINE STAGE FIELD

############################################
### Stop Patching After INITIALIZE Stage ###
############################################
DEFINE OPERATION

TYPE = LogicalFieldPatchOp
FIELD_NAMES = rho
PATCH_OPS = PATCH_NULL

END OPERATION

The following operations add the lower bound for the charge density field, set the electric potential within the
satellite geometries, and compute potential via Boltzmann inversion.

#############################################
## Potential Solve via Boltzmann Inversion ##
#############################################
# Adding background density for Boltzmann solve
DEFINE OPERATION

TYPE = FieldArithmeticConstOp
FIELD_DATA_NAME = FieldData
FIELD_SRC_NAME = rho
FIELD_DST_NAME = rho
CONSTANT = 1.602e-7 # Minimum density
OPERATION = Add

Table 3.16: Summary of operations in stage FIELD
Operation Description
LogicalFieldPatchOp Stops patching of field data
FieldArithmeticConstOp Adds the minimum density such that the density is greater than

zero everywhere in the domain for a Boltzmann potential solve
FieldBlendTimeOp Time-averages charge density
LogicalPotentialSetInsideGeometryOp Sets potential within a geometry
LogicalPotentialBoltzmannOp Potential solve by a Boltzmann inversion
LogicalNodeGradientOp Computes electric fields at nodes
LogicalFieldWriteVTKOp Writes 3D data in VTK format
LogicalFieldWriteVTK2DOp Writes 2D data in VTK format
MSPDistWriteVTKOp Writes MSPDist data in VTK format
MSPDistCopyOp Copies data in a MSPDist to other MSPDist
NextStageOp Goes to next stage
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USE_GPU = False
END OPERATION
# Time average rho after TIME_START_AVERAGING
# rho_avg can be used for later calculations or just for plotting
DEFINE OPERATION

TYPE = FieldBlendTimeOp
FIELD_DATA_NAME = FieldData
FIELD_SRC_NAME = rho
FIELD_DST_NAME = rho_avg
OPERATION = AVERAGE
TIME START AVERAGING = 2.0e-3

END OPERATION
# Set potential inside geometries and flag poisson region
DEFINE OPERATION

TYPE = LogicalPotentialSetInsideGeometryOp
SUGARCUBE_NAME = SC_UMesh
FIELD_DATA_NAME = FieldData
FIELD_CHARGE_DENSITY_NAME = rho
FIELD_POTENTIAL_NAME = phi
POTENTIAL_MODEL = BOLTZMANN
TEMPERATURE_MODEL = POLY # CONST
REFERENCE GAMMA = 1.3
REFERENCE ELECTRON DENSITY = 3.11135E17
REFERENCE ELECTRON TEMPERATURE = 8.01663
REFERENCE POTENTIAL = 35.7182
ADD_FLAG_TO_FIELD = TRUE
FIELD_POTENTIAL_FLAG_NAME = pflag

END OPERATION
# Compute potential using Boltzmann relations
DEFINE OPERATION

TYPE = LogicalPotentialBoltzmannOp
FIELD_DATA_NAME = FieldData
FIELD_CHARGE_DENSITY_NAME = rho
FIELD_POTENTIAL_NAME = phi

# These parameters can be defined here if not using LogicalPotentialSetInsideGeometryOp
# TEMPERATURE_MODEL = POLY # CONST
# REFERENCE_GAMMA = 1.3
# REFERENCE_ELECTRON_DENSITY = 3.11135E17
# REFERENCE_ELECTRON_TEMPERATURE = 8.01663
# REFERENCE_POTENTIAL = 35.7182
END OPERATION

• TIME START AVERAGING should be the same value as the MIXING START TIME, the approximate beginning of
particle steady state.

• REFERENCE GAMMA is the effective polytropic specific heat ratio.
• REFERENCE ELECTRON DENSITY is the reference electron density in Boltzmann relations in m−3.
• REFERENCE ELECTRON TEMPERATURE is the reference electron temperature in Boltzmann relations in eV.
• REFERENCE POTENTIAL is the reference potential in Boltzmann relations in V.

Based on the electric potential at the cell-center locations, the electric field is computed at the nodes by simply
applying the finite difference equation.
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############################
## Compute Electric Field ##
############################
DEFINE OPERATION

TYPE = LogicalNodeGradientOp
FIELD_DATA_NAME = FieldData
FIELD_POTENTIAL_NAME = phi
FIELD_GRADIENT_PREFIX = En
FIELD_MULTIPLY_CONSTANT = -1.0
FIELD_GRADIENT_DIRECTIONS = [x, y, z]

END OPERATION

The initial data for all the fields will be saved before the simulation begins to move particles. The particle data
are overwritten every 100 iterations, which can be used to restart the simulation from the particle state that TURF
is terminated.

########################################################################
## Write VTK Output - Moved Pre-Push for Consistent Patched Particles ##
########################################################################
# 3D data
DEFINE OPERATION

TYPE = LogicalFieldWriteVTKOp
FIELD_DATA_NAME = FieldData
FILE_HEAD = Plot3D/plt_
FIELD NAMES = VOL bc pflag rho rho avg phi Enx Eny Enz n n Xe n Xe+ n Al n Fe
SKIP = 100
HELP = TRUE
PLOT_GHOST = FALSE

END OPERATION
# Particle trajectories
# *** To view in Paraview, use "Temporal Particles To Pathline" filter,
# *** and change "Id Channel Array" to index
DEFINE OPERATION

TYPE = MSPDistWriteVTKOp
MSPDIST_DATA_NAME = P-DST
SPECIES = ALL
FILE_HEAD = PlotTraj/plt_
SKIP = 100
PARTICLE_SKIP = 1.0
OVERWRITE = FALSE

END OPERATION

• Data for the fields specified in FIELD NAMES will be exported into a folder named by FILE HEAD.

These operations prepare the particles for movement before proceeding with the simulation and beginning the
MOVE stage. MSPDistCopyOp copies particles stored to P-DST to P-GST and is required before performing the particle-
surface interaction calculation in TURF. The last operation in this stage again directs TURF to proceed to the
next stage.

#########################################
## Prep for Advance Particle Positions ##
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#########################################
# Copy the distribution from P-DST to P-GST (P-DST is initialized)
DEFINE OPERATION

TYPE = MSPDistCopyOp
MSPDIST_SRC_NAME = P-DST
MSPDIST_DST_NAME = P-GST

END OPERATION

###############################
## Proceed to the Next Stage ##
###############################
DEFINE OPERATION

TYPE = NextStageOp
END OPERATION

END STAGE FIELD

############################################################################

Fig. 3.11: Flowchart of stage MOVE

Stage: Move

The MOVE stage has operations which advance particles in an electric field and perform surface interaction calcula-
tions. This stage also performs calculations for numerical probes in order to compare the result with experimental
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data. The list of operations in MOVE stage is given in Table 3.17. Furthermore, the general flow of the surface
interaction calculation in TURF is illustrated in Fig. 3.11.

The first operation of stage MOVE pushes particles using the electric field stored at the nodes.

DEFINE STAGE MOVE
#####################################################################
## Keep Advancing Particles Until Reaching the Final Time Per Step ##
#####################################################################
# Advance P-GST for a full time-step
DEFINE OPERATION

TYPE = MSPDistESPushOp
FIELD_DATA_NAME = FieldData
FIELD_EN_PREFIX = En
FIELD_EN_DIRECTIONS = [x, y, z]
MSPDIST_DATA_NAME = P-GST
SPECIES NAMES = Xe@g Xe+@g Al@g Fe@g
USE_CFL_TIME_STEP = FALSE
CFL_NUMBER = 0.5

END OPERATION

• SPECIES NAMES specifies which particles are to be moved with the particle distribution during each time step.

TURF is able to mimic Faraday and RPA probes to measure current densities and energy distributions. These
pseudo probes can be placed at any component of the spacecraft or along a virtual spherical surface and told to
begin collecting data at any point in time in the simulation.

Probes using MSPDistProbeStageSphericalOp operations take measurements across a virtual sphere, and both
the Faraday and RPA type probes can be used.

# Probe sweeping
# *** This needs to be done before MSPDistSugarcubeSurfIntersectionOp
# *** since particles in P-GST are marked for deletion by setting the
# *** weight to zero in that routine, but the weight is needed for
# *** probe measurement
DEFINE OPERATION

TYPE = MSPDistProbeStageSphericalOp
NAME = FARADAY_Axi
MSPDIST_DATA_NAME = P-GST
PROBE_TYPE = FARADAY # FARADAY or RPA

Table 3.17: Summary of operations in stage MOVE
Operation Description
MSPDistESPushOp Advances particles using node-centered electric fields
MSPDistProbeStageSphericalOp Spherical stage probe
MSPDistSugarcubeSurfIntersectionOp Determines if particles intersect with surface mesh during a time-step
MSPDistProbeFixedOp Probe fixed to a surface
MSPDistSurfaceInteractionOp Performs sputtering and surface reflections
MSPDistRemovePartOp Removes particles that stuck to a surface or reached the final time

within the stage
MSPDistParticleCountOp Particle count
CriteriaStageOp Repeats this stage until particle count becomes zero

99



3.5. EP PLUME SIMULATION 1: SETUP CHAPTER 3. TURF-IR 2017A

SURFACE_NAME = UMesh
COMPONENT AT SPHERE CENTER = HCT1 INJ
SWEEP RADIUS = 0.1
PROBE POLAR ANGLE = 1.0
SWEEP POLAR ANGLE START = 0.0
SWEEP POLAR ANGLE END = 120.0
NUMBER OF POLAR ANGLE BINS = 120
VIEW ANGLE = 30.0 # in degrees
START TIME = 2.0e-3
STEPS PER SAMPLING = 1 # Samples every (SAMPLING) iteration
VERBOSE = FALSE

END OPERATION
DEFINE OPERATION

TYPE = MSPDistProbeStageSphericalOp
NAME = RPA_Axi
MSPDIST_DATA_NAME = P-GST
PROBE_TYPE = RPA # FARADAY or RPA
SURFACE_NAME = UMesh
COMPONENT AT SPHERE CENTER = HCT1 INJ
SWEEP RADIUS = 0.1
PROBE POLAR ANGLE = 10.0
SWEEP POLAR ANGLE START = 0.0
SWEEP POLAR ANGLE END = 120.0
NUMBER OF POLAR ANGLE BINS = 12
MINIMUM ENERGY = -0.5 # in eV - only for RPA
MAXIMUM ENERGY = 500.5 # in eV - only for RPA
NUMBER OF ENERGY BINS = 501 # - only for RPA
VIEW ANGLE = 15.0 # in degrees
START TIME = 2.0e-3
STEPS_PER_SAMPLING = 1 # Samples every (SAMPLING) iteration
VERBOSE = FALSE

END OPERATION

• COMPONENT AT SPHERE CENTER specifies the geometry component that the measurement sphere is referenced
to. The center of the spherical surface collecting currents is placed at the center of component specified here.

• SWEEP RADIUS specifies the radius of the measurement sphere.
• SWEEP PROBE ANGLE START and SWEEP PROBE ANGLE END are the first and last polar angles of the measure-

ment sphere to sweep the probe.
• NUMBER OF BINS divides the range of angles into the desired number of equally-sized sections. Measurements

are taken at the center of each bin, and the thickness of each bin is determined by PROBE POLAR ANGLE.
• Current is only collected if the incident angle is smaller than the VIEW ANGLE.
• START TIME specifies the time to start the probe measurement.
• Measurements of current are only collected at multiples of the STEPS PER SAMPLING value.
• MAXIMUM ENERGY and MINIMUM ENERGY set the energy detection limits (in eV) for the RPA probe.
• NUMBER OF ENERGY BINS divides the range of energies into the desired number of equally-sized sections.

The operation MSPDistSugarcubeSurfIntersectionOp determines whether particles impact surface mesh ele-
ments and moves these particle data to P-DST. The list of particle impacting elements is stored here and used when
performing the surface reflection and/or sputtering calculations.

# Find intersection of particle trajectories with UMesh
# *** Starting from P-GST, particles are copied to P-DST once reaching the final time
# *** Then, P-GST contains particles bouncing at surface during the time-step
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# *** And, P-DST contains particles making it to the final time per iteration
DEFINE OPERATION

TYPE = MSPDistSugarcubeSurfIntersectionOp
NAME = Intersection_P-GST
MSPDIST_SRC_NAME = P-GST
MSPDIST_DST_NAME = P-DST
MSPDist_ERROR_NAME = P-EXC
SUGARCUBE_NAME = SC_UMesh
SURFACE_NAME = UMesh
SURFACE_TEST = FALSE
VERBOSE = FALSE

END OPERATION

The other kind of probe operations are MSPDistProbeFixedOp operations, which attach an unmoving probe
to a component of the spacecraft surface mesh. The surface component can be specified as a virtual surface by
specifying the material as “virtual” (material:virtual) in component TURF.txt, and using this surface for this
operation. In this way, particles can fly through this surface while probe measurement is taken.

# Fixed probe
DEFINE OPERATION

TYPE = MSPDistProbeFixedOp
NAME = RPA_Fixed
URFACE_NAME = UMesh
MSPDIST_DATA_NAME = P-GST
SURF_INTERSECTION_OP_NAME = Intersection_P-GST
COMPONENT NAMES = SP E1
PROBE_TYPE = RPA # FARADAY or RPA
VIEW ANGLE = 90.0 # in degrees
MINIMUM ENERGY = -0.5 # in eV - only for RPA
MAXIMUM ENERGY = 500.5 # in eV - only for RPA
NUMBER OF ENERGY BINS = 501 # - only for RPA
START TIME = 2.0e-3
STEPS_PER_SAMPLING = 1 # Samples every (SAMPLING) iteration
VERBOSE = FALSE

END OPERATION

• COMPONENT NAMES dictates which spacecraft component the probe is attached to.
• Current is only collected if the incident angle is smaller than the VIEW ANGLE.
• MAXIMUM ENERGY and MINIMUM ENERGY set the energy detection limits (in eV) for the RPA probe.

The operation MSPDistSugarcubeSurfInteractionOp performs surface reflection and sputtering for different
combinations of source and target species defined in surf int.txt.

# Surface interaction - Reflection, sticking, and sputtering
DEFINE OPERATION

TYPE = MSPDistSurfaceInteractionOp
NAME = Interaction_P-GST
SURFACE_NAME = UMesh
MSPDIST_DATA_NAME = P-GST
UFIELD_DATA_NAME = SurfaceField
SURF_INTERSECTION_OP_NAME = Intersection_P-GST
FILE_NAME = surf_int.txt
STEPS_PER_SAMPLING = 1
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VERBOSE = FALSE
END OPERATION

While MSPDistSugarcubeSurfIntersectionOp moves particles reaching the end time within each time-step to
P-GST, these particles still need to be deleted from P-DST. This is done by marking them in P-DST by setting their
weights to be zero and actually removing them from P-DST by calling MSPDistRemovePartOp.

# Remove particles with zero weight
DEFINE OPERATION

TYPE = MSPDistRemovePartOp
MSPDIST_SRC_NAME = P-GST
MSPDIST_DST_NAME = P-DEL
REMOVE_ZERO_WEIGHT = TRUE
REMOVE_CELLID_GT_MAX = FALSE
DISCARD_REMOVED_PARTICLE = TRUE

END OPERATION

The following operations monitor the particle count in P-GST and proceed to the next stage if the particle count
becomes zero, otherwise this stage is repeated.

######################################################
## Quantity Needs To Be Smaller Than CRITERIA_LONG ##
######################################################
# Obtain particle count in P-GST
DEFINE OPERATION

TYPE = MSPDistParticleCountOp
MSPDIST_DATA_NAME = P-GST
QUANTITY_NAME = MSPDistCount
VERBOSE = FALSE

END OPERATION

#########################################################
## Proceed to the Next Stage If Criterion is Satisfied ##
#########################################################
# Go to next stage if P-GST->Nparts is smaller than 1
DEFINE OPERATION

TYPE = CriteriaStageOp
QUANTITY_NAME = MSPDistCount
CRITERIA_LONG = 1 #Go to next stage if P-GST->Nparts is smaller than 1
MAX_ITERATION = 100 #Max number of subcycles to prevent stuck particles

END OPERATION

END STAGE MOVE

############################################################################

Stage: Postmove

The stage POSTMOVE contains operations that implement effects of elastic collisions between particles, initiate the
particle patching across sub-domains, compute surface field data, and send calculation data to various output files.

The first operation in this stage is MSPDistMCCElasticFitOp, which performs the elastic collision calculations
between high energy ions and the background neutral atoms via Monte Carlo Collision model. Here, the elastic
collision calculations are split into two mechanisms, i.e. momentum exchange (MEX) and charge exchange (CEX)
interactions, and each interaction is approximated independently by MSPDistMCCElasticFitOp.
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DEFINE STAGE POSTMOVE

############################
## Collision Calculations ##
############################
DEFINE OPERATION

TYPE = MSPDistMCCElasticFitOp
MSPDIST_DATA_NAME = P-DST
SPECIES = Xe+@g
FIELD_DATA_NAME = FieldData
FIELD NAME = n Xe
TEMPERATURE OF TARGET SPECIES = 300.0
MEX_OR_CEX = MEX
SIGMA COEFFS = -27.2 171.13 1.0e-20
FIRST FIT EXPONENT DIFF SIGMA = -2.02
SECOND FIT EXPONENT DIFF SIGMA = 3.24
FIT ANGLE DIFF SIGMA = 3.526E-5

END OPERATION
DEFINE OPERATION

TYPE = MSPDistMCCElasticFitOp
MSPDIST_DATA_NAME = P-DST
SPECIES = Xe+@g
FIELD_DATA_NAME = FieldData
FIELD NAME = n Xe
TEMPERATURE OF TARGET SPECIES = 300.0
MEX_OR_CEX = CEX
SIGMA COEFFS = -27.2 171.13 1.0e-20
FIRST FIT EXPONENT DIFF SIGMA = -1.098
SECOND FIT EXPONENT DIFF SIGMA = 1.53
FIT ANGLE DIFF SIGMA = 1.375E-3

END OPERATION

• SPECIES is the species of the incident particle.
• FIELD NAME dictates the density of the target gas.
• SIGMA COEFFS represent the coefficients of the CEX collision cross-section, c0, c1, and c2 in Eq. (3.10).
• FIRST FIT EXPONENT DIFF SIGMA is the fitting parameter for differential cross-section, A in Eq. (3.11).

Table 3.18: Summary of operations in stage POSTMOVE
Operation Description
MSPDistMCCElasticFitOp Performs MCC elastic collisions
MSPDistSplitOp Splits MSPDist class object into two. Particles in ghost cells are copied into P-EXC

that are later moved to P-DST in the other sub-domain
GSOPatchOp Patches MSPDist across sub-domains
UFieldMSComputeOp Computes surface mesh field
UFieldWriteVTKOp Writes surface mesh field in VTK format
ProbeStageWriteOp Writes spherical stage probe data to a csv file
ProbeFixedWriteOp Writes fixed probe data to a csv file
NextStageOp Goes to next stage

103



3.5. EP PLUME SIMULATION 1: SETUP CHAPTER 3. TURF-IR 2017A

• SECOND FIT EXPONENT DIFF SIGMA is the fitting parameter for differential cross-section, B in Eq. (3.11).
• FIT ANGLE DIFF SIGMA is the cut-off angle for differential cross-section.

In this model, the CEX collision cross-section is typically used for the MEX collision cross-section, so the
coefficients that feed into MSPDistMCCElasticFitOp (SIGMA COEFF) are the same. This is a fair assumption since
the CEX cross-section is sufficiently large to capture all the impact parameters that yield large angle scattering. The
equation for the total cross-section is solely dependent on the relative velocity vrel and requires three independent
parameters.

σ = {c0 log(vrel) + c1} c2 (3.10)

In using this model, the differential cross-section for a specific combination of ion and atom at a given energy has to
be available in literature. The differential cross-section can also be theoretically derived if the interaction potential
between the incident and target species is available. Once obtaining the differential cross-section, fitting parameters
are determined according to the following equation.

dσ

dΩ

∣∣∣∣
LAB

= θAMEX10BMEX + (90− θ)ACEX10BCEX (3.11)

Here, when an angle is smaller than the cut-off value, it is assumed that the differential cross-section is constant
beyond the angle for the MEX collision. For the CEX collision, the same assumption is made when an angle is
greater than the cut-off value. The cut-off angles are determined such that the integrated differential cross-section
matches with the experimentally determined total cross-section. For more details of this model and implementation,
readers should refer to Ref. [31].

As covered briefly in the INITIALIZE stage, particle patching is performed across two stages, and this stage is
the first part of the particle patching. In an ideal simulation, particles can only move to, at most, the neighboring
volume mesh cell. Therefore, particles can only be within a sub-domain or ghost cell region and cannot jump to
outside of the ghost cell region. These particles are split into a separate particle distribution by MSPDistSplitOp.
When a particle is in the ghost cell region, this particle can either be within the next sub-domain or outside the
whole simulation domain. The next operation GSOPatchOp passes the particles to the corresponding sub-domain or
keep it in the current sub-domain if they do not belong to any. Then, in the INITIALIZE stage, particles outside of
simulation domain are deleted.

############################
## Perform Particle Patch ##
############################
# Particle CellID greater than maximum is copied to P-EXC
DEFINE OPERATION

TYPE = MSPDistSplitOp
MSPDIST_SRC_NAME = P-DST
MSPDIST_DST_NAME = P-EXC

END OPERATION
# Patch particles outside sub-domains
DEFINE OPERATION

TYPE = GSOPatchOp
SRC_NAME = P-EXC
DST_NAME = P-EXC

END OPERATION

These operations compute and output the surface mesh field though the data sampled in MSPDistSurface-
InteractionOp.

##############################
## Sum to Fields for Output ##
##############################
# Compute UField quantities
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# *** This needs to be after surface interaction
DEFINE OPERATION

TYPE = UFieldMSComputeOp
UFIELD_DATA_NAME = SurfaceField
SURF_INTERACTION_OP_NAME = Interaction_P-GST
MIX START TIME = 2.0e-3
STEPS PER FIELD CALCULATION = 100

END OPERATION
DEFINE OPERATION

TYPE = UFieldWriteVTKOp
UFIELD_DATA_NAME = SurfaceField
FILE_HEAD = PlotSurf/pltSurf_
FIELD NAME = NPFLUX-IN Xe@g NPFLUX-IN Xe+@g NPFLUX-IN Fe@g NPFLUX-OUT Al@g NPFLUX-OUT Fe@g
SKIP = 100

END OPERATION

• MIX START TIME is the time to start averaging between iterations for the surface fields in order to improve
statistics.

• FIELD NAME specifies which fields are exported into the FILE HEAD folder.
• SKIP tells TURF how many iterations to wait/skip before the field information is exported. This value should

be equal to (or a multiple of) the STEPS PER CALCULATION value in the UFieldMSComputeOp operation pre-
ceding it.

The following operations export the data collected by the pseudo probes from the MOVE stage to csv files named
in FILE HEAD.

#######################
## Output probe data ##
#######################
DEFINE OPERATION

TYPE = ProbeStageWriteOp
PROBE_OP_NAME = FARADAY_Axi
STEPS PER OUTPUT = 100 # Averages out OUTPUT/SAMPLING data
TIME_DEPENDENT_DATA = FALSE # Overwrites the same file if false
RESET_SAMPLING = FALSE
FILE_HEAD = Probe/FARADAY_Axi

END OPERATION
DEFINE OPERATION

TYPE = ProbeStageWriteOp
PROBE_OP_NAME = RPA_Axi
STEPS PER OUTPUT = 100 # Averages out OUTPUT/SAMPLING data
TIME_DEPENDENT_DATA = FALSE # Overwrites the same file if false
RESET_SAMPLING = FALSE
FILE_HEAD = Probe/RPA_Axi

END OPERATION
DEFINE OPERATION

TYPE = ProbeFixedWriteOp
PROBE_OP_NAME = RPA_Fixed
STEPS PER OUTPUT = 100 # Averages out OUTPUT/SAMPLING data
TIME_DEPENDENT_DATA = FALSE # Overwrites the same file if false
RESET_SAMPLING = FALSE
FILE_HEAD = Probe/RPA_Fixed
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END OPERATION

• Current measurements are collected very frequently in the MOVE stage. A larger STEPS PER OUTPUT value
smooths out the data.

Before the end of iteration, the particle count is accumulated across sub-domains to obtain the global values
(total as well as per species). This information is useful when determining whether the simulation has reached
steady-state. The particle count information can be output on the terminal by enabling VERBOSE option and can
be written to a file by specifying LOG FILE.

########################################
## Count Particles Prior to Injection ##
########################################
DEFINE OPERATION

TYPE = MSPDistParticleCountOp
MSPDIST_DATA_NAME = P-DST
QUANTITY_NAME = ParticleCount
LOG_FILE = ParticleCount.csv
VERBOSE = TRUE
GLOBAL = TRUE

END OPERATION

###############################
## Proceed to the Next Stage ##
###############################
DEFINE OPERATION

TYPE = NextStageOp
END OPERATION

END STAGE POSTMOVE

############################################################################

3.5.6 Restart
In TURF-IR version 2017a, TURF simulation can only be restarted through particle data output by MSPDistWrite-
VTKOp and sampling field data output by SampleFieldWriteVTKOp. Both of these operations are used in the electric
propulsion plume example demonstrated in Section 3.5.5. While the simulation in Section 3.5.5 is run, restart files
are output in the Restart folder. This section demonstrates how to perform a restart from these restart files. In
order to run a simulation with restart, we will update the symbolic link to world.list.

tutorial-TURF/TURF-IR_v017a/Plume/PlumeExample> ln -sf world.restart.list world.list

The World file, world.restart.list, is essentially the same as world.sat.list except for the simulation end
time and operations file. The operations file used in this simulation is operations.restart.list, which has two
additional operations, MSPDistReadVTKOp and SampleFieldReadVTKOp. MSPDistReadVTKOp reads the particle data
stored in MSPDist class object, and SampleFieldReadVTKOp reads the sampling field data.

#############################################
## Extract Particle Data from Restart File ##
#############################################
DEFINE OPERATION

TYPE = MSPDistReadVTKOp
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MSPDIST_DATA_NAME = P-DST
FILE_HEAD_PVTP = Restart/particleA
UPDATE_WORLD_TIME = TRUE
ADVANCE_TIME_BY_DT = TRUE
REINDEX = FALSE

END OPERATION

################################
## Restart Sampled Field Data ##
################################
DEFINE OPERATION

TYPE = SampleFieldReadVTKOp
SAMPLE_OP_NAME = Sample_P-DST
MSPDIST_DATA_NAME = P-DST
FILE_HEAD = Restart/sampleA
UPDATE_WORLD_TIME = FALSE #Taken care of by MSPDistReadVTKOp
ADVANCE_TIME_BY_DT = FALSE
RESET_SAMPLING = FALSE

END OPERATION

• UPDATE WORLD TIME is set TRUE if the simulation time is updated with the time specified in the restart file.
• ADVANCE TIME BY DT is set TRUE if the simulation time needs to be advanced by one time-step. Whether to

advance the time depends on which stage the restart files are written.
• REINDEX is set TRUE if particle indices are to be redefined. Particle index is redefined by the domains that

a particle resides, but this will be meaningless if number of domains is changed after the restart.
• RESET SAMPLING is set TRUE if sampling is reset.

In order to perform a restart for sampling field, the domains have to be set up exactly in the same way between
the restarts. However, the particle restart does not have such a requirement that the simulation domain can be
partitioned differently and grid resolution can be changed between restarts.

3.5.7 Total Yield
Constant

This is the simplest among all the sputter models implemented in TURF. The total yield Y is simply a constant
value specified in the input.

Y = C0

Matsunami

Although we call this model “Matsunami”, the original work was actually published by Yamamura, Matsunami,
and Itoh [22]. Only two inputs (C0 and C1) are required for the model. When initializing TURF, four constants
(A0, A1, A2, and A3) are precomputed based off the inputs and material properties.

A0 = 0.03255
Z1Z2(Z2/3

1 + Z
2/3
2 )1/2

M2

M1 +M2

A1 = 0.079(M1 +M2)2/3

M
3/2
1 M

1/2
2

Z
2/3
1 Z

1/2
2

(Z2/3
1 + Z

2/3
2 )3/4

A2 = Us
(
1.9 + 3.8(M2/M1)−1 + 0.134(M2/M1)1.24)

A3 = α∗QK
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where

α∗ = 0.08 + 0.164(M2/M1)0.4 + 0.0145(M2/M1)1.29

K = 8.478 Z1Z2

(Z2/3
1 + Z

2/3
2 )1/2

M1

M1 +M2

Here Us and Q are used in place of C0 and C1, respectively, in order to keep the symbols used in the original
reference. These parameters can be found in Ref. [22]. Z is the atomic number in amu and M is the atomic mass in
amu. Subscripts 1 and 2 denote source and target particles. Then, the total yield is computed for each sputtering
event by

Y = 0.42 A3sn
Us(1 + 0.35Usse)

[
1−

√
A2

E

]2.8

where sn and se are

sn = 3.441
√
ε ln(ε+ 2.718)

1 + 6.355
√
ε+ ε(−1.708 + 6.882

√
ε)

se = A1
√
ε

where ε = A0E and E is the energy of incident particle in electronvolt.

Yamamura

Yamamura and Tawara [24] upgraded the model originally developed by Yamamura, Matsunami, and Itoh (referred
as Matsunami model herein). Six inputs (C0 to C5) are required for this model, and seven constants are stored
during the initialization stage.19

B0 = 0.42α∗QK/Us
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B3 = 0.03255
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(
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M2

)h]2

B6 = (a/R0)1.5
√
Z1Z2/(Z2/3

1 + Z
2/3
2 )1/2

B7 = fs

where
19Yamamura’s paper has typo in his equation where the coefficient should be 0.042 in the equation for Y (E)
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α∗ =
{

0.249(M2/M1)0.56 + 0.0035(M2/M1)1.5 M1 ≤M2
0.0875(M2/M1)−0.15 + 0.165(M2/M1) Otherwise

K = 8.478 Z1Z2
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1 + Z
2/3
2 )1/2

Otherwise

Here Us, Q, W , s, fs, R0 are used in place of C0, C1, C2, C3, C4, and C5, respectively. The input parameter for
various combinations of source and target materials can be found in Table 4 and 17 of Ref. [22] and Table 1 of
Ref. [24]. Then, the yield for every incident particle is computed by

Y (E) = β
B0sn

1 +B1ε0.3

(
1−

√
B2

E

)B4

where

ε = B3E, sn = 3.441
√
ε log(ε+ 2.718)

1.0 + 6.355
√
ε+ ε(−1.708 + 6.882

√
ε)

ν = 1−
√
B5/E, f = B7

1 + 2.5(1− ν)
ν

σ = f cos(θopt), θopt = 0.5π − 4.9916(B6/
√
E)0.45

β = exp(−σ(1/ cos θi − 1))
cosf θi

Here, E is the incident particle energy in electronvolt.

Kannenberg

The Kannenberg sputter yield [26] is modeled as a function of energy, E, and incident angle, β. The total yield in
atoms/ion is given as follows.

Y (E, β) = S(E)g(β)
S(E) = C0 + C1E

g(β) = C2 cos θ + C3 cos2 θ + C4 cos3 θ

If the energy threshold(Eth = −a/b) is negative, the fit is rejected on physical grounds and is instead constrained
to be zero. The reference paper shows a lot of data for ITO but has no coefficients in it at all. Assume that all
AFRL Kannenberg data fits are Lockheed proprietary.

Roussel

The sputtering yield of standard coverglass (cerium-doped borosilicate) as a function of incidence angle, β, was
measured and fit to a polynomial (for energy 300 eV) [27]. This resulted in the following yield Where β is in degrees
and Y is in atoms/ion:

Y (E = 300eV, β) = 0.42− 0.0053β + 0.0015β2 − 7× 10−6β3 − 10−7β4
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The coverglass had a normal yield of 0.42 for 300 eV impact ions and a linear dependence from a threshold energy
of 50 eV. This allows for separation of the yield into

Y (E, β) = S(E)g(β)

where S(E) = −0.084 + 0.0017E. This form is generalized as follows.

Y (E, β) = S(E)g(β)
S(E) = C0 + C1E

g(β) = 1− 0.723β + 11.724β2 − 3.13β3 − 2.57β4

where β is redefined to be in radians. Unlike the Kannenberg sputter model, g(β) is a polynomial function in β
instead of cosβ. Therefore, the set of coefficients may not yield a sputter yield of zero at β = 90◦.

Garnier

The Garnier sputtering algorithm performs yield calculations according to Garnier, et al for Boron Nitride [28].
Garnier yield fits are simplified equations from Yamamura which have a separate angle dependence and energy
dependence, both of which are multiplied together to find the total yield. The angular yield has a polynomial
dependence on incident angle making it easier to fit experimental data. The equations for the total yield, Y, in
atoms/ion is given as

Y (e, β) = S(E)g(β)C6

S(E) =
√
E(1−

√
Eth
E

)2.5

g(β,E) = C1 + C2β + C3β
2 + C4β

3

Where Eth is the threshold energy and is another input parameter defined by C5. This model also uses a polynomial
function in β instead of cosβ such that the set of coefficients may not yield a sputter yield of zero at β = 90◦.

Pencil

In the work by Pencil at NASA Glenn Research Center, an SPT-100 thruster was used as a contamination source [29].
There were a lot of data about coated CMX, a ceria-doped borosilicate which is used as a cover slide material for
silicon solar cells (but no coefficients for CMX). The materials with coefficients from Ref. [29] are

• Normal incidence: Ag, Fe, Si, Borosil, (Quartz coverglass is studied as Si2). The normal yield for Si must be
multiplied by 0.57 to recover the normal yield for Si02.)

• Angular incidence: Ag, Fe, Si02 and Borosil. These are not implemented in the code.)

The general form for the Pencil model is as follows.

Y (E, β) = S(E)g(β)

S(E) = C0E
0.25

(
1− C1

E

)3.5

g(β) = 1 + C2(1− cos(C3β))C4

Sputter yields below the threshold energy, C1, are zero.
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3.5.8 Angular Distribution
Cosine

The Cosine angular distribution results in peak atom fluxes along the surface normal of the target. In the Cosine
model, angles are randomly sampled using the equation [32]

sinφ =
√
U1

cosφ =
√

1− sin2 φ

θ = 2πU2

Where U1 and U2 are random numbers. This results in the polar angular probability distribution function,

g(φ) = sin 2φ

This model requires the sputtered particle speed V as an input.

Zhang

This model uses a modification to the redeposition algorithm developed by Zhang [30]. The particular feature of
the modified Zhang model is that it assumes a data-driven fit for the E∗ coefficient rather than using a physically
motivated sputtering threshold energy. This is a relatively minor change so it is possible to use the modified Zhang
sampling model to replicate the results of classical Yamamura sputtering by simply using the physically motivated
E∗ coefficient instead.

f(E, β, α, φ) = 1

1− cos(β)
√

E∗

E

cos(α)
π

[
1− 1

4

√
E∗

E

(
cos(β)γ(α) + 3

2π sin(β) sin(α) cos(φ)
)]

γ(α) = 3 sin2(α)− 1
sin2(α)

+ cos2(α)(3 sin2(α) + 1)
2 sin3(α)

ln
(

1 + sin(α)
1− sin(α)

)
where β is the polar angle of incident particle with respect to surface normal, α is the polar angle of ejected particle
with respect to the surface normal, and φ is the azimuthal angle of the ejected particle.
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3.6 Electric Propulsion Plume Simulation 2: Cubit Kari A. Kawashima

3.6.1 Introduction
This document is the second of three parts in creating and running an electric propulsion plume simulation using
the Thermophysics Universal Research Framework (TURF). The steps to set up a plume simulation are:

1. Get or create a CAD drawing of a spacecraft.
2. Mesh the geometry and export in an abaqus file format.
3. Modify highlighted entries in world.list.
4. Update component TURF.txt. Use component names from the surface mesh file, and specify material and

potential for each component (if they are different from default values).
5. Identify relevant surface interaction and sputtering mechanisms, obtain coefficients for surface interaction

models, and include in surf int.txt.
6. Modify highlighted entries in operations.sat.list.
7. Run TURF simulation
8. Evaluate results.

Part two is a guide to creating and exporting a mesh geometry of a spacecraft to be used in a simulation (Steps
1 and 2). TURF requires a triangulated surface mesh in order to handle spacecraft geometries; while TURF can
handle several different formats including abaqus, exodus, gambit, and off, only the abaqus format (.inp filetype) is
fully supported in the current version. The abaqus format file can be exported from a CAD meshing program such
as Cubit [21], which is used for the purposes of this example.

First a general overview of Cubit’s functions and capabilities will be explained in the context of creating the initial
CAD model. Depending on the kind of thruster and injection source, additional steps may be necessary to create
an accurate geometry. Three generic spacecraft CAD files are provided in /tutorial-TURF/Plume/CubitExample/
to give the user optional geometries to start with. Then, the surface mesh will be created, grouped and named
appropriately, and the file will be ready to be exported for use in a simulation.

Fig. 3.12: The overall interface of Cubit
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3.6.2 General Geometry
Cubit’s interface layout is pictured in Fig. 3.12. The highlighted Area 1 is a set of visual settings buttons which
change the transparency and presentation of volumes. Area 2 determines which kinds of entities can be selected
when clicking on the geometry: volumes, surfaces, curves, or vertices. Area 3 highlights the three management
modes used for this tutorial: geometry, mesh, and blocks. The buttons in Area 4 are similar in function to those
in Area 2, but they are specific to the creation and manipulation of specific entities. The other useful tools are the
command line located at the bottom of Cubit’s interface shown in Area 5 and the tree summarizing the entities in
the Power Tools toolbar on the left side as highlighted in Area 6.

To make a new volume, select the Volume management buttons in Areas 3 and 4, then click the first option
“Create volumes.” Options for the kind of volume to be created appear in a dropdown menu.

Manipulating an entity uses the Transform button under the Action toolbar. There are several particularly
useful commands that will help make the desired geometry more quickly and accurately. One command is “copy,”
found as the last option under “create volumes” list, which allows the user to make a duplicate of selected volumes
and move, rotate, etc., the copy without displacing the original volume. Another command is “reflect,” found in
the “transform” list, which moves an entity to its mirror position across a plane.

Also useful are the functions under the “webcutting operations” tab, which allow you to use entities to cut a
volume into pieces. For example, Fig. 3.13 depicts one face of a cube “chopping” a hollow sphere into two half-dome
volumes shown in Fig. 3.14. This is done by selecting the sphere as the “Webcut Target” and the cube as the
“Cutting Tool,” leaving separate halves of the sphere.

Note as well that commands can be entered in the command line directly. For the sake of accuracy, commands
such as “Measure between surface 3 5” will respond with the measured distance between surface 3 and surface
5, and the graphics display will show a red 3D arrow to indicate which measurement was taken.

Once the desired satellite geometry has been created just as the one shown in Fig. 3.15, all the shapes must
be combined to make a single volume entity and eliminate overlapping parts. The “Unite” function is under the
“boolean operations for volumes” tab, as shown in Fig. 3.15. Type “all” into the Volume ID box. The result is
a single volume, indicated by a change of the entire geometry to be the same color (unless there are unattached
volumes floating in space). The united spacecraft geometry shown in Fig. 3.16 has been saved as example1.cub for
the user’s convenience, and can be found in /tutorial-TURF/Cubit/CubitExample/.

If the geometry must be altered after the volumes have been united, surfaces must be separated from the rest
of the geometry so the changes can be made. “Separate” is found under the Modify toolbar for Surface selection.
The chosen surfaces will form a separate “Sheet Body” volume which can be manipulated in the same manner as
a normal volume.

3.6.3 Mesh
After the satellite geometry is properly united, its surfaces can be meshed. Select the “Specify meshing schemes
and attributes” function under Mesh Mode, as shown in Fig. 3.17 (left) and change the meshing scheme from
“Automatic” to “Trimesh” for best results. Tell Cubit to mesh all surfaces20, click “Apply Scheme”, then hit
“Mesh.” The results should resemble the geometry shown in Fig. 3.17 (right).

It is important to adjust the mesh resolution in order to maximize the TURF simulation efficiency. Too coarse
surface mesh does not represent the curved surfaces accurately, while increasing the resolution will require more
triangles to scan through in determining particle-surface intersections in TURF. The mesh resolution can be adjusted
in Action “Define intervals and sizes.”

3.6.4 Blocks
When all surfaces of the spacecraft geometry have been meshed, they must be organized into groups and named
so they can be specified in TURF’s input files. Cubit refers to such groups as Blocks. To create blocks, select
the Exodus Mode in the command panel, select Block, and choose the Add function under the Manage operation.
Give the new block an ID number not already in use and select the surfaces desired for the block. Group surfaces

20 TIP: Instead of typing out all the surface IDs, all can be used in “Select Entities to Mesh” to point to all the surfaces.
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Fig. 3.13: Sphere and cube to be used in the ”chop” function

Fig. 3.14: The halves resulting from the chop operation shown in Fig. 3.13

Fig. 3.15: Satellite geometry before volumes are united
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Fig. 3.16: United satellite geometry. Note the tree in the sidebar lists only one volume.

Fig. 3.17: Left: Apply the desired mesh to the surfaces of the satellite geometry. Right: Meshed satellite geometry.

Fig. 3.18: The surfaces of one solar array are grouped into a block.
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into blocks in a logical way (e.g. the surfaces of a solar array, the main body of the spacecraft, etc.), as shown in
Fig. 3.18. When the block is created, change the name of the block in the component tree (Area 6 in Fig. 3.12) to
describe the part (e.g. SatelliteDish). TURF’s input files refer to these block names, so make them distinct and
straightforward.

When creating blocks for the spacecraft, make separate blocks for the thruster’s face and body. Doing so allows
them to be assigned separate material properties for a simulation in the input files. It also allows injection sources
and probes to be placed at specific locations, which is explained in greater detail in Part One of this tutorial.

The other groups can be as general or as specific as desired. It is beneficial to make separate blocks for satellite
components which will either have distinct electric potentials for the simulation, or have a high level of concern
with respect to damage due to ion sputtering and flyback.

3.6.5 Export
After the geometry is meshed, blocked, and named as necessary, the file is ready to be exported in an abaqus file
format (.inp) compatible with TURF. A dialogue box with export options will pop up when the user hits save.
Uncheck the option to export the file using Cubit IDs; the option will refer to the blocks by the ID numbers used
in Cubit rather than the names the user has assigned, which is undesirable.

Make sure all surfaces of the geometry are in a block before the geometry is exported. If a surface is forgotten,
there will be a hole in the exported mesh geometry that will cause the simulation to crash.

3.6.6 Advanced Examples
Ion Thruster Grid

For a spacecraft using an ion thruster, a special geometry consideration may need to be taken into account.
Conventional ion thrusters of the size greater than 10 cm in diameter use curved grids in order to increase the
structural integrity. Although the beam divergence is typically much less compared to Hall Thrusters, the ion beam
still expands due to the potential field within the grids. On top of this, the curvature of the grids contributes
significantly to the beam divergence.

A surface with the appropriate curvature can be created by using the chop function with a sphere and a cone.
When creating a cone, its bottom face needs to be extended past the sphere such that the cone volume can be
chopped using the sphere volume. The process is displayed in Figs. 3.19(a) to 3.19(c).

Rescale, move, separate, and unite volumes and surfaces as necessary until the curve is properly assimilated into
the satellite geometry. Then apply the surface mesh. An unmeshed geometry file with this thruster face has been
saved as example2.cub for the user’s convenience.

RPA Source

Particle injection using a Retarding Potential Analyzer (RPA) source occurs at a certain distance from the thruster
face. Essentially, ions are injected from a sphere above the thruster face rather than the thruster face itself.
Because of this injection sphere, there is a volume of empty space underneath it. The size of the injection sphere
is determined by the size of the thruster and the maximum angle to which the RPA data is provided: its radius
must be large enough to ensure particles are not injected within the thruster’s geometry, but small enough so the
injection sphere does not interfere with other components nearby.

Due to the empty space underneath the spherical injection surface, the electric field establishes at the edge,
possibly pulling slow ions toward the thruster face. In order to prevent this, a physical representation of the
vacuum space under the injection sphere is useful for simulation purposes. This geometry is used solely in setting
the potential within such that electric field does not establish within the region. Once an appropriate size for the
injection sphere is determined, add a slightly smaller sphere centered at the thruster face to the geometry. However,
the mesh of the sphere should be kept independent of the satellite’s geometry. In other words, do not unite the
spacecraft volume with the vacuum sphere volume. The correct setup is saved as example3.cub, and also shown
in Fig. 3.20.
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(a) Chop a slightly-oversized cone. (b) The resulting volume. Note the slight curve on the
cone’s bottom face.

(c) The curved thruster face as part of the satellite’s surface mesh. (d) Another view of the thruster face to better
display the slight curve of the surface mesh.

Fig. 3.19: Using Chop feature in Cubit.

Fig. 3.20: A vacuum space sphere placed over a thruster face using an RPA source. Note that the sphere mesh
overlaps the satellite mesh and is not a part of the entity.
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3.7 Electric Propulsion Plume Simulation 3: ParaView
Kari A. Kawashima and Samuel J. Araki

3.7.1 Introduction
This document is the third of three parts in creating and running an electric propulsion plume simulation using the
Thermophysics Universal Research Framework (TURF). The steps to set up a plume simulation are:

1. Get or create a CAD drawing of a spacecraft.
2. Mesh the geometry and export in an abaqus file format.
3. Modify highlighted entries in world.list.
4. Update component TURF.txt. Use component names from the surface mesh file, and specify material and

potential for each component (if they are different from default values).
5. Identify relevant surface interaction and sputtering mechanisms, obtain coefficients for surface interaction

models, and include in surf int.txt.
6. Modify highlighted entries in operations.sat.list.
7. Run TURF simulation
8. Evaluate results.

Part Three is a guide to displaying the simulation results in ParaView [19] (Step 8).

Table 3.19: Folders created by various TURF operations to output results.
File/Folder TURF Operation Type of Data
UMesh.vtu LogicalMeshSurfaceSugarcubeOp Surface mesh loaded to TURF
UMesh sugarcube.pvtr LogicalMeshSurfaceSugarcubeOp Points to UMesh sugarcube DOM.vtr

files output by each sub-domain
UMesh sugarcube DOM.vtr LogicalMeshSurfaceSugarcubeOp Sugarcube information
Plot3D LogicalFieldWriteVTKOp 3D volume mesh field data
PlotSurf UFieldWriteVTKOp Surface mesh field data
PlotTraj MSPDistWriteVTKOp Particle data
PlotXZ LogicalFieldWriteVTK2DOp 2D volume mesh field data
Probe ProbeStageWriteOp/ProbeFixedWriteOp Probe data

Once started the EP plume simulation from tutorial-TURF/Plume/PlumeExample/, various files and folders
are created as listed in Table 3.19. The newly created folders (except Probe) contain files with extensions of .pvts,
.pvtu, .pvtp, .vtm, .vts, .vtu, and .vtp. For the case of structured grid, TURF output one .pvts file and
multiple .vts files, which the number of .vts files correspond to the number of sub-domains at a given iteration.
The .vts file contains the data that belongs to a single sub-domain, and the .pvts file points to multiple .vts
files, representing the whole simulation domain. There is an additional file with .vtm extension, which can be read
in place of .pvts file.21 The viewing of these files requires software compatible with the VTK format files; this
tutorial uses ParaView [19] as the viewing software, but VisIt [20] is a program with similar functionality.

3.7.2 ParaView
When TURF runs a simulation, it will indicate when the imported surface mesh has been successfully sugarcubed.22

This means that the geometry mesh has been fully imported and the output geometry file (UMesh.vtu) can be opened
for viewing in ParaView, even before the time steps begin advancing. When opened and clicking “Apply” in the

21 Loading .pvts file to the visualization software generally works, but some visualization software may work better with .vtm file.
22 Once the surface mesh is loaded, the relationship between this mesh and the volume mesh is determined. This includes the number

of surface elements contained within each volume mesh cell, cells that are inside and outside of geometries, etc. We call this process,
“Sugarcubing” in this document.
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sidebar, the satellite geometry should appear on the interface as shown in Fig. 3.21. The bounds of the domain
can also be made visible by importing the UMesh sugarcube.pvtr file. Figure 3.21 also highlights five areas in
ParaView. Area 1 allows the user to display a specific frame of data in the simulation. Area 2 is the Active Variable
Controls toolbar, Area 3 is the Common toolbar, Area 4 displays a tree listing all the existing entities, and Area 5
is the Properties sidebar.

Fig. 3.21: Display of satellite geometry and a box representing the simulation domain. Some of ParaView’s basic
functions are highlighted in yellow.

Particle Trajectory

To see the progression of particles for the duration of the simulation, open the plt ..pvtp collection of files inside
the PlotTraj folder. With the plt 0* in Area 4 selected, go to the Filters tab in the taskbar and apply the
“Temporal Particles To Pathlines” filter to the data. This filter should be able to be found under “Alphabetical”
category under the Filters tab or by using “Search...” tool.

In the Properties bar, change the “Mask Points” value to 1 so the simulation does not inflate the number of
particles in the display.23 Also change “Id Channel Array” to “Index” to ensure the progression of particles is based
on the correct position data. Small dots should appear on the face of the simulation’s injection surface once the
filter is applied (by clicking “Apply” button in Area 4). It is useful to change the colors of the particles depending
on their gas species. Selecting Particles in the tree and changing the color display to “ispc” gives different colors to
the neutral atoms and ions, as shown in Fig. 3.22.24

The buttons in Area 1 can be used to display the simulation frame-by-frame, skip to the end or beginning,
or simply play them chronologically as a short video. For a clearer display of the particles, the visibility of the

23 This value can be set to larger number if too many particles are displayed.
24 As shown in Fig. 3.22(a), the color display is under “coloring” in Area 5 which is by default chosen to be “Solid Color”.
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(a) First frame. (b) Last frame.

Fig. 3.22: Particle output from this tutorial simulation. Different colors are assigned to neutral (red) and charged
particles (blue).

pathways can be turned off by clicking the eye icon next to its name in the tree, and vice versa. Figure 3.22(b)
displays the particles at the end of simulation.

Surface Field Data

Data collected at the surface mesh, such as particle flux, can also be displayed. This can be particularly useful if
there is concern that, for example, ion flyback could potentially damage mission-critical equipment mounted to the
spacecraft.

Import the pltSurf ..pvtu file collection from the PlotSurf folder and hit “Apply”. For clearer viewing of the
flux, turn off the visibility of data from other files. Then, change the display to show the flux of the desired particle
in Area 2 (e.g. NPFLUX-IN Xe+@g). Go to the last time-step by clicking the forward button in Area 1. In case the
color map does not cover the appropriate range for the flux data, click “Rescale” in Area 5. At this point, the
surface flux of xenon ions should be displayed as shown in Fig. 3.23. Click “Show” in Area 5 or Area 2 to display
the legend for the color gradient. “Edit” should also be used to manipulate the colormap as necessary

Volume Mesh Field Data

In order to visualize the volume mesh field data, first import the plt ..vts file collection from the Plot3D folder
and hit “Apply”. Select the corresponding plt 0* that appears in the tree, and then click the Slice button in
the Common toolbar (Area 3). The command will create a plane within the domain at a specified location. For
this geometry’s orientation, a plane defined by the Y Normal shows the feature of plume. Change the Coloring
from “Solid Color” to the field data of choice. Figure 3.24 shows the xenon ion density along the mid-plane of the
simulation domain.

Alternatively, the files from the plotXZ folder can be imported instead of loading and slicing the 3D data.
However, the plane of data output by LogicalFieldWriteVTK2DOp snaps to the plane of cell-centers. Therefore,
for this particular example in which even number of cells is used along y-axis, the plane displayed in this folder
would be half a cell off from the mid-plane.
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Fig. 3.23: The inward surface flux of Xe+ ions displayed on a spacecraft.

Fig. 3.24: Xenon ion density along the mid-plane of the simulation domain.
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4.1 Extended Capabilities Robert S. Martin and Samuel J. Araki

Beyond the material covered in the tutorials, several additional tutorials are currently being developed. These
include a PIC and Fluid versions of the collisionless shock tutorial using the same problem setup (Section 2.6),
ionizing breakdown using MCC collisions with particle merging and splitting, 1D Euler shock tube and 3D Euler
shock-bubble fluid test cases, 3D DSMC bow-shock examples for both geometrically prescribed bodies as well as
triangulated surface meshes, and a GPU accelerated version of the heatbath tutorial. Many of the Operations
required for development of these tutorials are already complete but are not yet ready to be incorporated into
the infrastructure release. The intent is to transition many of these Operations into the infrastructure in the
future infrastructure releases. These operations may nevertheless be available to select developers as part of the
Thermophysics Universal Research Framework development (TURF-DEV) package on a case-by-case basis. Brief
descriptions of the operations are provided in Tables 4.1 and 4.2.

In addition to the TURF-DEV operations nearing incorporation in the infrastructure, another class of TURF-
DEV operations are available that are still in experimental phases of development or are potentially too specific
and research problem dependent to warrant inclusion in the infrastructure. Brief descriptions of these operations
are included in Table 4.3 as reference for some future areas of development.

Distribution A: Approved for public release; unlimited distribution; PA (Public Affairs) Clearance Number TBD.
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Table 4.1: Summary of operations included in TURF-DEV.
Module Operation Description
DSMC MSPDistDSMCCPUOp DSMC collision calculation
DSMC SPDistDSMCBoxICOp Uniformly distribute particles within a box
DSMC SPDistDSMCCPUOp Default RMS x&v random sign merge
Field BCFaceXtrapOp Extrapolate field over face direction
Field FieldArithmeticCoeffOp Perform arithmetic operation to two fields with two coefficients
Field FieldArithmeticConstOp Perform arithmetic operation to one field and one scalar value
Field FieldEvaluateEqnOp Evaluate a math equation and assign the result to field data
Field FieldMathFunctionOp Apply math function on one unstructure or structure field
Field FieldMathFunctionTwoArgOp Apply math function that requires two unstructure/structure fields
Field FieldScalarMulOp Multiply a field by a constant value
Field LogicalBCMirrorMoveInOp Move and add field ghost data over reflecting surface
Field LogicalBCPeriodicOneDomOp Copy ghost data for single domain periodic BC
Field LogicalDensityBoltzmannOp Find potential from Boltzmann relations
Field LogicalFieldBCEvaluateOp Adds one field variable to another
Field LogicalFieldBinaryCalcOp Binary field operations: C=A/B, C=A+B, or C=A-B
Field LogicalFieldBlendOp Blend two arrays over time
Field LogicalFieldEvaluateOp Adds one field variable to another
Field LogicalFieldFloorCeilingOp Apply a floor and ceiling value to a field
Field LogicalFieldLogOp Apply natural log to field
Field LogicalFieldMulOp Multiply or divide field by another field
Field LogicalGradientOp Calculate cell centered gradient
Field LogicalICConstantOp Set field values in box to constant
Field LogicalPoissonOp Red/Black Gauss-Seidel Poisson Solve
Field LogicalPoissonPeriodicStripOp Solve Poisson equation with periodic boundary conditions, requires cuFFT
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Table 4.2: Summary of operations included in TURF-DEV (Continued).
Module Operation Description
Field LogicalPoissonStrip1DOp Red/Black 1D strip Poisson solve w/o transverse cells
Field UFieldConstantICOp Set unstructured field data to constant value
Field UFieldICByComponentOp Set UField data by component
Fluid FluidConstantICOp Set field parameters based off fluid definition
Fluid FluidESPushOp Advance fluid state with electrostatic forcing
Fluid FluidSphereICOp Set fluid parameters for cells within a sphere
Fluid IntegrateFluxOp Sum flux variables to advance fluid state
Fluid LinearSemiLagrangianOp Linear advection using semi-Lagrangiaan advance
Fluid RoeFluxCalc2Op Calculate 2nd order Roe flux
Fluid RoeFluxCalcHLLE2Op Calculate 2nd order Roe flux with HLLE2 limiter
Fluid RoeFluxCalcHLLEPOp Calculate 2nd order Roe flux with HLLEP limiter
Fluid RoeFluxCalcOp Calculate 1st order Roe flux
Fluid TVDFluxCalcOp Calculate total variation diminishing flux
Geometry MSPDistSugarcubeSurfBCMoveOp Perform particle surface reflection
Geometry SPDistBCSurfBoxICOp Add particles outside sugarcubed surface only
Geometry SPDistSugarcubeBCMoveOp Linear particle advance with specular reflection of marked

cells
Particle MSPDistEmptyOp Set particle count to be zero
Particle MSPDistSortTwoOp Sort MSPDist for cellID then speciesID
Particle MSPDistVSortOp Sort particles by cell and velocity octant
Particle SPDistBCBoxICOp Initialize particles uniformly in physical box except flagged

cells
Particle SPDistBCDiffuseOp Apply diffuse reflection
Particle SPDistBoxICOp Initialize particles uniformly in physical box
Particle SPDistDirectCellMergeOp Default RMS x&v random sign merge
Particle SPDistDirectCellSplitOp Default RMS x&v random sign split
Particle SPDistESPhiCNPushOp Crank Nicolson electrostatic particle potential push
Particle SPDistESPhiNCNPushOp Nonlinear Crank Nocolson electrostatic particle potential

push
Particle SPDistESPhiPushOp Explicit electrostatic potential particle push
Particle SPDistFractionalSplitBoxOp Split particles in box in place by fraction on w
Particle SPDistMCCOp Monte Carlo Collision Operator
Particle SPDistPerturbedCellIDOp Particle cell ID with added perturbation for smoothing
Particle SPDistScaleWeightByFieldOp Scales SPDist density FIELD BASE by FIELD DELTA
Particle SPDistSortedStatToFieldOp Accumulate cell velocity moments from sorted distribution
Particle SPDistTemperatureToFieldOp Calculate cell temperature from distribution
Particle SPDistToEMFieldOp Accumulate cell charge and current from distribution
Particle SPDistToFieldLinear1DOp Accumulate 1D linear weight charge to cells
Particle SPDistToFieldLinearOp Accumulate linearly weighted charge to cells
Particle SPDistVSortOp Sort particles by cell and velocity octant
Plotting LogicalFieldReadVTKOp Read LogicalField data from LogicalFieldWriteVTKOp out-

put
Plotting LogicalFieldStatWriteVTKOp Write accumulated statistic data to VTK file
Plotting LogicalFieldWriteVTKUOp Write unstructured field data to .vtu file
Plotting LogicalVlasovFluidWrite1DProbeVDFOp Write particle VDF from particles in probe region
Plotting ProbePointOp Outputs field data time series from a given point
Plotting UPCWriteVTKOp Outputs UPC PIC data to vtk file
SourceModel MSPDistSourceCosineOp Cosine distribtuion particle source for rarefied flows
SourceModel SPDistNormalMaxwellianStreamOp Maxwellian stream source from triangulated surfaces
Surface MSPDistOutgassingOp Outgassing from surfaces
Utility ConfigurationTestOp Collects accuracy test results for operator combinations
Vlasov LogicalBCPeriodicOneDomVlasovOp Periodic BC for Vlasov
Vlasov LogicalFluidToLogicalVlasovFluidOp Create Vlasov VDF from Fluid Variables
Vlasov LogicalVlasovFieldVolumetricMulOp Multiply or divide Vlasov data by cell volumes
Vlasov LogicalVlasovFluidSetOp Set Vlasov field data to constant
Vlasov SPDistToLogicalVlasovFluidOp Accumulate particle weights to Vlasov VDF124
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Table 4.3: Summary of additional experimental (E) and research (R) operations included in TURF-DEV.
Module Operation Description
DSMC SPDistDirectDSMCCellMergeOp (R) Default RMS x&v random sign merge
DSMC SPDistDSMCCPUB2BOp (R) Default RMS x&v random sign merge
Field LogicalICFunctionOp (E) Set field value using external function
Field CalculateHallMHDOp (R) Calculate perpendicular and cross-flow components of mobility.
Field CalculateHallMHDRHSOp (R) RHS for Ohm’s law solve (IEPC-2015-314)
Field CalculateIonizationRateOp (R) Calculates ionization rates from field data.
Field CalculateMobilityComponentsOp (R) Evaluate Mobility Components (IEPC-2015-314)
Field ConstantAnnulusPotentialOp (R) Apply annularly symmetric potential to field
Field ConstantSphericalPotentialOp (R) Apply spherically symmetric potential to field
Field ConstantWellPotentialOp (R) Apply constant parabolic well potential to field
Field SetEFieldOp (R) Impose a constant vector everywhere
Geometry LogicalMeshSurfaceBBoxSplotchOp (E) Mark surface triangle bounding box on cells
Particle SPDistBCChildLangmuirOp (E) Child Langmuir surface emission
Particle SPDistBCSCLOp (E) Space charged limited flux boundary
Particle SPDistBCSecondaryOp (E) Secondary emission boundary condition
Particle SPDistBCTransOp (E) Linear Convection BC for Neutrals (IEPC-2015-314)
Particle SPDistCFEBCOp (E) Fowler-Nordheim cold field emission BC
Particle SPDistCopyPosBoxICOp (E) Initialize particles with VDF but positions from second dist
Particle SPDistDirectCellMergeXxVOp (E) Angular momentum preserving merge
Particle SPDistESPhiPushVerletHalfOp (E) Verlet electrostatic potential particle push
Particle MSPDistMCCElasticTableOp (R) Apply MCC elastic collision
Particle SPDistDirectCellMergeMixOp (R) Position sign from xv moment merge
Particle SPDistDirectCellMergeMixXVOp (R) Position sign from xv moment merge
Particle SPDistDirectCellMergePCAOp (R) Principle Component Eigendecomposition Merge
Particle SPDistDirectCellSplitMixOp (R) Position sign from xv moment split
Particle SPDistDirectCellSplitMixXVOp (R) Position sign from xv moment split
Particle SPDistDirectCellSplitPCAOp (R) Principal component analysis split
Particle SPDistDirectCellSplitXxVOp (R) Angular momentum preserving split
Particle SPDistESPhiNCNSpherePushOp (R) Nonlinear Crank Nicolson in spherical ES-potential push
Particle SPDistOrbiterICOp (R) Period synchronized particle initial condition
Plotting LogicalFieldCatalystOp (E) Kitware Catalyst plotting connection
Utility ConstantOperatorOp (E) Work to allow generic constant parsing
Utility FromGPUOp (E) Recursive GSObject transfer from GPU
Utility ToGPUOp (E) Recursive GSObject transfer to GPU
UPC SPDistConstantVlasBCOp (R) Constant boundary conditions for VlasovPIC
UPC SPDistConstantVlasICOp (R) Constant initial conditions for VlasovPIC
UPC SPDistVlas2wOp (R) Density to weights for VlasovPIC
UPC SPDistVlasDensityToFieldOp (R) Integrate density to field data for VlasovPIC
UPC SPDistw2VlasOp (R) Weight to density for VlasovPIC
Vlasov LogicalVlasovFluidFunctionICOp (E) Initialize Vlasov data using external function
Vlasov LogicalVlasovBGKOp (R) Apply the BGK collision operator to a Vlasov variable
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4.2 Weak Landau Vlasov Test Case David Bilyeu

4.2.1 Introduction
This example sets up the Landau dampening test case in the Thermophysics Universal Research Framework
(TURF). This tutorial assumes that the user has a basic understanding of how to setup a TURF simulation,
for a review please refer to the heatbath tutorial. The Landau test case is a standard simulation used to determine
the accuracy of a Vlasov simulation. By default the simulation is setup to perform the “weak” or “linear” Landau
dampening simulation but can be switched to the “strong” or “non-linear” case by changing a parameter in the
operations.fluid.listfile.

The necessary files can be found in tutorial-TURF/TURF-DEV/WeakLandau/Vlasov and consist of

1. world.list
2. operations.fluid.list
3. Makefile
4. landau ic.cu

The world.list and operation.fluid.list file are similar to other examples but the Makefile and landau ic.cu file are
new for this simulation. The landau ic.cu file is a c/c++ sourcecode file that contains an externally defined c
function, used to set the initial conditions for the simulation. The Makefile contains the proper commands to build
a shared library that will be linked with TURF during runtime. As a result users are required to run the make
command before running this simulation.

Also new to this tutorial is the Vlasov variable. These variables exist in a six-dimensional phase-space, having
values that are dependent on both its physical location, x,y,z, and its velocity, Vx, Vy, Vz. Unlike a field variable
that are defined in the world.list file, these variables are defined in the operations.fluid.listfile.

4.2.2 Problem Setup
In addition to the standard requirements in the world.list file the origin and delta values for the velocity mesh also
needs to be defined. This is accomplished via:

VELOCITY_ORIGIN = (0.0,-0.5,-0.5)
VELOCITY_DELTA = (0.09375,1.0,1.0)

It is important to note that the delta values for the “y” and “z” component are unity. This is a requirement for a
1D1V Vlasov simulation to work properly.

This simulation uses 12 different filed variables,

FIELDS = [rhoE, rhoI, Ex, Ey, Ez, phi, rho_source, rho_total]
FIELDS = [Vmean_totalx, Vmean_totaly, Vmean_totalz, Temperature_total]

These variables are, electron density, ion density, the x, y, z components of the electric field, electric potential,
temporary variable, and total density respectively. The second line contains the mean velocity in the x, y, and z
direction and the temperature.

The following operators are broken up into three stages, INITIALIZE, PREOP, and MOVE and are listed
in Table 4.4.

4.2.3 Operations
This section explains how to solve this problem using Vlasov methods within TURF. It is assumed that the reader
has a basic understanding of how to setup a simulation in TURF and only the information relevant to Vlasov and
this simulation in particular are detailed. The operations.fluid.listfile are broken up into three stages as defined in
world.list.
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Table 4.4: Summary of operations listed for the Landau Dampening Vlasov example.
Stage Operation Description
INITIALIZE CreateVlasovVariableOp Create new Vlasov fluid variable

LogicalVlasovFluidFunctionICOp EXPERIMENTAL - Initialize Vlasov data using ex-
ternal function

LogicalFieldSetOp Set field values to constant
PREOP LogicalVlasov2DWriterOp Exports a 2D phase-space plot

LogicalFieldWriteVTKROp Exports the field data in .vtr format
VlasovMetricsOp Exports Vlasov metric data for mass and energy con-

servation
MOVE LogicalBCPeriodicOneDomVlasovOp Periodic BC for Vlasov

Vlasov1D1VSLOp Advects a Vlasov variable using the Semi-Lagrangian
method

LogicalVlasovCalcFluidVariablesOp Calculate field variables given a velocity distribution
LogicalFieldSetOp Set field values to constant
LogicalFieldSetOp Set field values to constant
LogicalFieldAddOp Adds one field variable to another
FieldScalarMulOp This operator multiples a field by a constant value
LogicalFieldVolumetricMulOp Multiplies or divides by cell volume
LogicalPoissonStrip1DOp Red/Black 1D strip Poisson solve w/o transverse cells
LogicalGradientCellCenterOp Calculates the gradients of a field vector
LogicalBCVlasovExtrapolateOp Sets a velocity boundary conditions to extrapolation
Vlasov1D1VSLOp Advects a Vlasov variable using the Semi-Lagrangian

method
LogicalBCPeriodicOneDomVlasovOp Periodic BC for Vlasov
Vlasov1D1VSLOp Advects a Vlasov variable using the Semi-Lagrangian

method

Stage: Initialization

In the initialize stage it is necessary to set the initial conditions which includes defining a new phase-space variable.
The phase space variable, vFe, is defined using:

DEFINE OPERATION
TYPE = CreateVlasovVariableOp
DATA_NAME = VlasovFluidData
VBOX_LO = (-6.0,-0.5,-0.5)
VBOX_HI = ( 6.0, 0.5, 0.5)
SPECIES_NAMES = vFe
SPECIES_COMPOSITION = NONE
M = 1.0
Z = -1
VBOX_NGHOST = [3 0 0]

END OPERATION

The keys are DATA NAME which stores a group of Vlasov variables and other relevant data, VBOX LO and VBOX HI
which sets the velocity bounds, SPECIES NAMES which gives names to the Vlasov variables, and VBOX NGHOST sets
the number of ghost cells in each velocity direction. The last set of variables associates a species with it’s molec-
ular weight and charge. This is accomplished in one of two ways, the first is to provide the elemental makeup
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along with its charge, e.g. Ar+@g, CH3@g, . . . , through the SPECIES COMPOSITION key, the second is to set the
SPECIES COMPOSITION to NONE and provide it’s atomic mass weight, M, and charge Z. If multiple species are defined
than SPECIES COMPOSITION for each species is required. For example

DEFINE OPERATION
TYPE = CreateVlasovVariableOp
DATA_NAME = VlasovFluidData
VBOX_LO = (-6.0,-0.5,-0.5)
VBOX_HI = ( 6.0, 0.5, 0.5)
SPECIES_NAMES = vFe, vFAr, vFAr+, vFunky
SPECIES_COMPOSITION = e-@g, Ar@g, Ar+, NONE
M = 18.0E-19
Z = 0
VBOX_NGHOST = [3 0 0]

END OPERATION

This operator has optional parameters including, VELOCITY DELTA and VELOCITY ORIGIN, these parameters defines
the velocity spacing and the velocity origin. If they are not provided then the default values defined in the world.list
file are used instead. LOCAL VELOCITY COORDINATE can also be set to True which allows for a local definition of the
velocity coordinates.

The next operator used in this simulation is the Logical Vlasov Fluid Function IC Op. This is an externally
defined c function that provides more flexibility in providing initial conditions. A Makefile is provided to that will
compile the function into a shared library which will be loaded during run time.

DEFINE OPERATION
TYPE = LogicalVlasovFluidFunctionICOp
DATA_NAME = VlasovFluidData
EXT_LIB = libinitial.so
EXT_FCN = weaklandau
VARIABLE = vFe
FCN_ARGS = (al= 0.01, k= 0.5) #Weak
NUMBER_OF_DIMENSIONS = 1

END OPERATION

The keywords in this operations are: DATA NAME which stores the group of Vlasov variables, EXT LIB which is the
name of the shared library, EXT FCN which is the name of the function in the shared library, Variable is the Vlasov
variable name, FCN ARGS is a list of arguments to be provided to the function, and NUMBER OF DIMENSIONS which
is the number of velocity dimensions. In the right hand side of the FCN ARGS keyword are first parsed by commas,
then parsed by equal signs. Therefore the al and k will be removed leaving a list containing 0.01 and 0.5.

The function for this operator takes the form,

extern "C" {
double weaklandau(double x, double y, double z, double vx, double vy, double vz,

int Nin, double *Args){
double rtn;
double PI = 2.0*asin(1.0);
double al = Args[0];
double k = Args[1];
double tmp = 1.0 + al*cos(k*x);

rtn = tmp/sqrt(2.0*PI)*exp(-vx*vx/2.0);
return rtn;

}
}
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The parameters in the function call are: the x, y, and z coordinates, x, y, and z velocity coordinates, length of
double array, and the double array. Note that the length of the double array will be determined by the operator
and is not provided by the user. It is recommended but not required to use the same compiler that was used to
compile TURF.

The next three operators are in the PREOP stage. These operators include LogicalVlasov2DWriteOp,
LogicalFieldWriteVTKROp, and VlasovMetricsOp. Since LogicalFieldWriteVTKROp has been defined elsewhere
it will be skipped in this discussion.

The LogicalVlasov2DWriteOp operator will take two directions in phase-space and plot them in a two-dimensional
field.

DEFINE OPERATION
INCLUDE_GHOST = false
TYPE = LogicalVlasov2DWriterOp
DATA_NAME = VlasovFluidData
FILE_HEAD = weak_landau/phase_
FIELD_NAME = vFe
SKIP = 10
SPACE_CORD = (0.0, 0.0, 0.0)
VELOCITY_CORD = (-5.0, 0.0, 0.0)
X_PLOT_DIRECTION = X
Y_PLOT_DIRECTION = VX
BINARY = true
RUN_AT_INIT = true

END OPERATION

The keywords in this simulation are: INCLUDE GHOST which plots the ghost cells, DATA NAME the object that holds the
Vlasov variables, FILE HEAD the name of the out put files, excluding the time step and file extension, FIELD NAME the
name of the Vlasov variable, SKIP how many iteration to skip in between saving, SPACE CORD a spatial coordinate
that exist in the plane to save, X PLOT DIRECTION the phase space coordinate to plot along the horizontal, x, axis,
Y PLOT DIRECTION the phase space coordinate to plot along the vertical, y, axis, BINARY save the VTK file in
binary format, and RUN AT INIT which will run this operator during the init stage. An optional unused parameter
is PRINT BEFORE UPDATE which adjust the iteration number based on if the plotting is done before or after the
variable is updated. It is False by default.

The VlasovMetricsOp operators provides metrics over the entire domain for a single Vlasov species. It includes,
iteration, time, density, entropy, energy, electric field, and momentum in the x, y, and z direction. The density,
entropy, and momentum are calculated by taking moments of the velocity distribution, than integrating over
physical space. The energy is the sum of the kinetic energy, via moments of the velocity distribution, and the
electric field energy. The electric field is calculated by integrating the square of the electric filed over space. To
improve accuracy the moment calculation uses Kahan summation to reduce round off errors, this was found to have
a noticeable impact quality of the simulation as the velocity domain increased in size. The operator is setup via:

DEFINE OPERATION
TYPE = VlasovMetricsOp
PHASESPACE_TYPE = VlasovFluidData
SPACE_TYPE = FieldData
PHASESPACE_NAME = vFe
DENSITY_NAME = rhoE
E_FIELD_PREFIX = E
E_FIELD_DIRECTIONS = [x, y, z] ## Need all three for this to work
FILE_NAME = weak_landau/norms.csv
SKIP = 1
RUN_AT_INIT = false

END OPERATION
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PHASESPACE TYPE the object that holds the Vlasov variable, SPACE TYPE the object that holds the field variables,
PHASESPACE NAME the Vlasov variable, DENSITY NAME [UNUSED] the field name that holds the density variable,
E FIELD PREFIX the prefix for the electric field, E FIELD DIRECTIONS the directional suffixes for the x, y, and z
directions of the electric field, FILE NAME the name of the out put files, excluding the time step and file extension,
SKIP the number of iteration to skip in between saves, RUN AT INIT run the apply method during the init stage.

The next stage is MOVE. This is the final stage of the simulation and sets up the evolution of the simulation in
time. Due to the complexity of the stage a more detailed overview is provided before a more in depth explanation
of each of the operators. The stage consists of the following operators: LogicalBCPeriodicOneDomVlasovOp,
Vlasov1D1VSLOp, LogicalVlasovCalcFluidVariablesOp, LogicalFieldSetOp, FieldScalarMulOp,
LogicalFieldVolumetricMulOp, LogicalPoissonStrip1DOp, LogicalGradientCellCenterOp, and
LogicalBCVlasovExtrapolateOp. Most of these operators are unique to Vlasov simulation and will be discussed
in detail. Only the LogicalFieldSetOp, FieldScalarMulOp, and LogicalFieldVolumetricMulOp will be skipped.

The overall strategy for this simulation is to use a second order directional splitting algorithm to decouple the
advection in the x and Vx directions. Each direction is solved using a fifth order semi-Lagrangian with WENO
weighting to advance the solution in each of the directions. The electric field is assumed to be static so the Poisson
Equation is used. In this case the ions are assumed to be constant and are not modeled. To start, the solution
advances for half a time step in the x direction by applying periodic boundary conditions Vlasov1D1VSLOp and the
semi-Lagrangian method Vlasov1D1VSLOp. The next step is to calculate the electric filed using the updated Vlasov
variable. The first step in the process is the calculation of the field variable, LogicalVlasovCalcFluidVariablesOp,
which takes moments of the distribution function to calculate density, velocity, and temperature at each spatial
location. The second step is to initialize rho source and phi, which is a temporary variable and electric potential
respectively, using LogicalFieldSetOp. This is followed by calculating the electron charge density, rhoE, by adding
the ion density, rhoI, and total density, rho total , via the LogicalFieldAddOp op. The next steps multiples the
electron charge density by the permittivity of free space and by the cell volume to get the total charge instead
instead of the charge density. It is necessary to multiple by the permittivity to counter act dividing by this
value in the LogicalPoissonBoltzmannStrip1D op. This is only needed for certain test cases as they normalize
the variables. The next step is to solve the Poisson equation to calculate the electric potential, phi, via the
LogicalPoissonBoltzmannStrip1D. And is followed by taking the negative gradient of phi to find the electric
filed, Ex, Ey, and Ez. The next step in the calculation is to advance the solution by a full time step in the
Vx direction. This is accomplished by first applying the periodic boundary condition Vlasov1D1VSLOp in the Vx
direction followed by applying the semi-Lagrangian method in the Vx direction Vlasov1D1VSLOp. Both of these are
done over a full time step. To finish a single time step requires advancing the solution for half a time step in the x
direction. This is accomplished by applying periodic boundary conditions Vlasov1D1VSLOp and the semi-Lagrangian
method Vlasov1D1VSLOp.
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A.1 Introduction
The purpose of this document is to provide a set of guidelines to ensure uniformity across the entire code. This
will ease the difficult task of code maintenance especially when the original developer has found greener pastures.
These guidelines are not designed to restrict functionality of the code and in cases where the established guidelines
interfere with the functionality of the code the guidelines should be ignored. This document will be split into three
main sections; the first deals with the appearance of the code, the second addresses code compliance, and the third
deals with software testing.

A.2 Coding Standards
A.2.1 Naming Convections
When editing an existing file a programmer should follow the naming convections of the existing file when starting
an new file the following convections should be used.

• Classes: Its name will be CamelCase, should be descriptive, no abbreviations and should be short, i.e. 2-3
words.

– Classes that define an operator must end with Op, e.g. SpecularPICBCOp.

Distribution A: Approved for public release; unlimited distribution; PA (Public Affairs) Clearance Number TBD.
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– Classes that operate on logical fields should begin with Logical. Logical fields are those that operates on
three-dimensional structured data, i.e., SMesh meshes. E.g., LogicalFieldNormOp would calculate the
norm of a field variable that exists on an SMesh, preferably written to handle curvilinear meshes.

– Classes that operate on both a UMesh and SMesh field data cannot contain the word Logical, e.g.
FieldNormOp would compute the norm of either a variable stored on either a UField or SField.

• Functions: Its name will be lower camel case, descriptive and short, e.g. thisIsAFunction

• Macros/enums: and other constants name is ALL CASSES WITH UNDERSCORES. The use of macros
to define constants, e.g. PI for 3.141592653589, is discouraged because they have a global scope and cannot
be encapsulated.

• Variables: Their name will be all lowercase with underscores (when necessary) and will be defined in the
scope in which it is used.

– Member and function variables should be greater than 3 letters and have a name that is descriptive.
There is nothing wrong with long, descriptive variable names, e.g., ion temperature is favorable over
ion temp or i temp.

– Iterators should start with i-n and be less than 4 letters
– Temporary should start with “tmp ” or “itmp” and should be set and used in close proximity to each

other.
– When a class is used as a variable their naming convection should follow the variable naming convection.

E.g., std::vector<double> imAnArray;

A.2.2 Documentation
• All technical documentation will be done with Doxygen.

• The header file is the preferred location for class documentation and will contain the tags noted in Appendix
C.1.

• Each function will have documentation that contains, input, output, returns variables

• Each variable must be commented, preferably inlined.

• Algorithms and schemes will have a citation to its origin. This could either be a journal paper or some internal
document that includes its derivation.

• Keywords in comments should be used as needed, e.g.: TODO, XXX, and FIXME. Where XXX and FIXME
implies that there is a bug to be fixed while todo implies that a feature should be added but there are no
bugs present.

A.2.3 Classes
• Will have one and only one associated source file and header file.

• Variables should be protected and setters and getters are used to set and get their values. In the case when
direct access to a variable is needed for speed a friend class can be used to provide direct access to it. This
should still be done via a function call, e.g. getPointerCellVolume().

A.2.4 Generic File Stuff
• Less than 80 characters per line

• Each source file should only contain one class.

• Spaces are always used, tabs are forbidden
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A.3 Code Compliance
A.3.1 Memory Management
• Arrays that will be used as part of the “core” routine should be allocated during the init routine and not

deleted until the end of the simulation. This is to avoid the creation and destruction of large amount of
memory as the simulation progresses.

• Smaller arrays, designed to store a few cells ( 7 cells) worth of data, may be created on the stack at the start
of the core and deleted at the end. The amount should be kept small to avoid stack smashes.

A.3.2 Variable/Function encapsulation
• Class members are private with public getter/setter functions

• Variables will be declared in the scope that they are used.

• When possible variables should be initialized when they are declared.

• Do not import an entire namespace, e.g.

python
BAD: from numpy import *
BETTER: from numpy import sqrt
BEST: import numpy as np

c++
BAD: using namespace std
BETTER: using namesapce std::cout
BEST: std::cout << ‘‘Sample’’;

A.3.3 External Libraries
• TURF “core functionality” may not rely upon external libraries. Only exception is MPI and gtest or small

libraries that allow for their source code to be embedded in another source code. An example is the base64
encoder/decoder which consists of one header and source code file and the author allowed redistribution.

• When external libraries are used TURF must still be compilable without them. This is accomplished by using
#DEFINES. Example is the exodus mesh importer that uses the netcdf libraries.

• Header files associated with external libraries also need to be surrounded by #ifdef.

• Libraries that require copy left copyright statement cannot be used. For example, the GNU license has a copy
left copyright statement that requires programs that link to their libraries to all use the GNU license. The
GNU license provides an exception to the copy left statement for system libraries such as libc.

• The preferred license for external libraries is the BSD and others like it.

A.3.4 Language standards
• The use of c99 standards is required for TURF versions up to 2017a. Starting with TURF-2017b c11 is the

new standard.

• The use of the auto variable from c11 is not recommended and should be limited to cases of incompatibly
between Mac and Linux or for very long iterator declarations.
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• Compiler specific features may not be used and proper compiler warnings should be used to ensure compliance
with c99/c11 standards. This exception to this is CUDA specific directives and #ifdef must be used to partition
the code, e.g.

#ifdef USE_NVCC
some_cuda_code

#endif

• The target compilers for TURF-2017a are CUDA nvcc 5.5 and gnu g++ 4.7. Starting with TURF-2017b
the required CUDA compiler is nvcc 8.0 and gnu g++ 4.9. Newer versions of nvcc or gnu may be used but
features introduced in newer versions may not be used. Other compilers such as Intel and clang are not
directly supported by AFRL/RQRS, any discovered incompatibilities should be submitted to AFRL/RQRS
as bug fixes or fixed by the user and submitted to AFRL/RQRS as a patch.

A.3.5 Errors and Warnings
As mentioned in the previous section, sufficient warnings should be used to alert the programmer when compiler
specific function/capabilities are used. A list of suggested compiler flags are:

compiler flags

gnu
required 2017a -std=c++98 -Wpedantic
required 2017b -std=c++11 -Wpedantic

suggested -Wall -Wextra -Wshadow -Weffc++

intel
required 2017a -std=c99 (does this work with c++?)
required 2017b -std=c++11

suggested -Wall -w2 (or -w3)
CUDA required -std

Table A.1: A list of compiler flags required and suggested compiler flags. (Work in progress)

The CUDA compilers only supports the c++11 standard check; to check for code compliance it is recommended
to compile with the gnu or other compiler that does. The compiler options listed under suggested tend to lead to
better, more consistent code and should be used when compiling. That being said these warnings will highlight
formatting errors that don’t affect the quality of the compiled code and can be safely ignored.

A.4 Software Testing
This section details how the operators in TURF should be tested. There are two main types of tests, unit tests and
configuration tests. These tests are run daily to ensure that updates to the code doesn’t change already accepted
solutions. To automate this process our group uses Jenkins to pull changes, build a new version of TURF, run the
test suite and report any failed tests. This last step is crucial to ensure that errors are found early and reduce the
time required to fix new bugs. Although these tests can be used to validate the various operators that is not their
primary purpose; instead the main purpose is to alert the developers when TURF produces results that differ from
previous versions.

Unit tests are used to ensure that a single operator or routine is working correctly. To do this a test is generated
using the gtest framework in which the inputs to an operator or simulated and selected such that the routine
produces a known output. For example when testing a root finding algorithm an equation with known roots could
be used. Typically these unit tests are included in the source code and are only compiled into executable if certain
compiler flags are set. A unit test template is included at the end of the example file TempalteOp.cu in Section
C.2.
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TEST(MSPDistCombineOp_test_case, two_distributions)
{
// Create a dummy world and domain below it

World* theWorld = new World();
LogicalDomain* theDom = new LogicalDomain();
theWorld->addMember(theDom); // Some of constructors require the parent of theDom

// Particle distribution
MSPDist* srcdist = new MSPDist();
MSPDist* dstdist = new MSPDist();
long MaxNparts = 100;
int MaxNspecies = 1;
int Nparts1 = 10; int Nparts2 = 20;
srcdist->init(theWorld->Materials, MaxNparts, MaxNspecies);
dstdist->init(theWorld->Materials, MaxNparts, MaxNspecies);
srcdist->setName("source");
dstdist->setName("destination");
srcdist->Nparts = Nparts1;
dstdist->Nparts = Nparts2;
for (int id=0; id<dstdist->Nparts; id++){

(*dstdist->cellID)(id) = id; // 0, 1, 2, 3, ... , 19
}
for (int is=0; is<srcdist->Nparts; is++){

(*srcdist->cellID)(is) = is + Nparts2; // 20, 21, 22, 23, ... , 29
}

// Init MSPDistCombineOp
MSPDistCombineOp* combine = new MSPDistCombineOp();
combine->init( srcdist, dstdist );
combine->apply();

// Test
EXPECT_EQ( dstdist->Nparts, Nparts1+Nparts2 );
for (int id=0; id<dstdist->Nparts; id++){

EXPECT_EQ( (*dstdist->cellID)(id), id );// 0, 1, 2, 3, ... , 29
}

}

A configuration test combines multiple operators together and are tested together. These tests are designed to
ensure that various operators work together correctly and can also be used to test operators that are not easily
tested through a unit test. To create one of these tests a full TURF simulation is setup and run and the results
are saved to a file. These results are then compared against a known solution. A known simulation could be an
analytical solution, a standard test case (e.g. Blastwave, Shu-Osher,. . . ), experimental results, or a simulation
previously generated by TURF. An analytical solution is the preferable known solution but is not always possible.
The final method, comparison with previous TURF simulations, isn’t used to validate the code but to alert the
developers when the solution changes.
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B.1 Directory
When adding a new tutorial example in tutorial-TURF, first make a folder representing the physics problem.
Within the directory, there should be two folders with documentation and TURF input files, and they should be
named as Doc * and type of solver.

Examples:
Heatbath MS − Doc Heatbath and Particle
CollisionlessShock − Doc Vlasov and Vlasov

B.2 Title Page
Title and authors should be added with the following command.

• \title [Short Title]{Full Title}

• \author [F. Author]{First Author, Organization1}

• \author [S. Author]{Second Author, Organization2}

• \author [T. Author and F. Author]{Third Author and Fourth Author, Organization3}

The title and authors given in the square and curly brackets are displayed in the header and title page, respectively.
The title should be always start with “TURF TUTORIAL”, followed by problem name, number, and solver/de-
scription.

Distribution A: Approved for public release; unlimited distribution; PA (Public Affairs) Clearance Number TBD.
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B.3 General Structure
1. Introduction

2. Description of the problem explaining world.list

3. Operations used in operations.list. This section should be divided by stages or the operations covered in
the tutorial.

4. Results if any

5. Conclusions if any

The list of the operations should be included in the section describing world.list.

B.4 Main
B.4.1 Text
• Spell out the entire word, e.g. Helium instead of He. or one-dimension rather than 1D.

B.4.2 Labels
Include labels for all sections, subsection, and tables:

• Section: \label{sec:some unique keyword}

• Subsection: \label{subsec:some unique keyword}

• Equations: \label{eqn:some unique keyword}

• Figure: \label{fig:some unique keyword}

• Table: \label{tab:some unique keyword}

• Lists: \label{lst:some unique keyword}

Lists are a bit different in that you can also provide a list for each item in a list. Also if you do not reference the list
elsewhere in your document, don’t worry about coming up with a label for it. When referencing them, use \cref
command to ensure the format is consistent across the tutorials.

B.4.3 Figures
• Make sure the texts are readable.

• Use descriptive captions.

• Always put figures top or bottom of a page just as in standard journals.
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C.1 Header File

/**
* \file TemplateOp.h
*
* \class TemplateOp
* \ingroup
* \date Apr 11, 2017
* \author Your Name
* \brief
* \details
* \note
*
* \copyright
* Produced at the Air Force Research Laboratory, AFRL/RQR
* All rights reserved.
* \n\n
* DISTRIBUTION F. Not STINFO Approved.
* Further dissemination only as directed by AFRL/RQRS,
* 5 Pollux Drive, Edwards AFB, CA 93524-7048 or higher DoD authority;
* premature dissemination, July 2013.
* \n\n
* THIS CODE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL ERC INC., THE AIR FORCE RESEARCH
* LABORATORY, OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
* TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS CODE,
* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/

Distribution A: Approved for public release; unlimited distribution; PA (Public Affairs) Clearance Number TBD.
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#ifndef TEMPLATEOP_H_
#define TEMPLATEOP_H_

#include "Operator.h"
#include "LogicalWorld.h"
#include "LogicalDomain.h"

class TemplateOp: public GSOBJECT_DERIVED(Operator )
public:
// Default constructor

TemplateOp(){
world=NULL; dom=NULL; mesh=NULL;
gbx=Box(make_int3(0,0,0),make_int3(0,0,0));

};

// Main functions
virtual void init(map<string,GSObject*>* initMap, Domain* thisDomain, int this_stage);
virtual void apply();
HDV virtual ˜TemplateOp(){};

// Utility functions (NOT FULLY IMPLEMENTED YET)
HDV void reconnect(){}
virtual TemplateOp* cloneType(){return new TemplateOp(*this);}
HDV virtual size_t my_size(){return 0;}

// Unique integers that correspond to core numbers
enum{ // TASK_DEFAULT = 0

TASK_ONE = 1,
TASK_TWO = 2

};

// Cores
HDV inline void core(int dim, int4 idx, float time=0.0, float dt=0.0){ //TASK_DEFAULT

int pi=idx.x;
// Calculation on each particle or cell of unstructured mesh

}
HDV inline void core1(int dim, int4 idx, float time=0.0, float dt=0.0){ //TASK_ONE

int i=idx.x;
int j=idx.y;
int k=idx.z;
// Calculation on each cell of 3D structured mesh

}
HDV inline void core2(int dim, int4 idx, float time=0.0, float dt=0.0){ //TASK_TWO

int i=idx.x;
int j=idx.y;
int k=idx.z;
// Calculation on each cell of 3D structured mesh

}

private:
World* world; ///< \brief pointer to world object
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Domain* dom; ///< \brief pointer to local domain
gSMesh* mesh; ///< \brief Cartesian volume mesh

Box gbx; ///< \brief Extent that includes both the interior and ghost regions
};
#endif /* TEMPLATEOP_H_ */
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C.2 Source Code

/*
* \file TemplateOp.cu
*
* \class TemplateOp
* \ingroup
* \date Apr 11, 2017
* \author Your Name
*
* \copyright
* Produced at the Air Force Research Laboratory, AFRL/RQRS
* All rights reserved.
* \n\n
* DISTRIBUTION F. Not STINFO Approved.
* Further dissemination only as directed by AFRL/RQRS,
* 5 Pollux Drive, Edwards AFB, CA 93524-7048 or higher DoD authority;
* premature dissemination, July 2013.
* \n\n
* THIS CODE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL ERC INC., THE AIR FORCE RESEARCH
* LABORATORY, OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
* TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS CODE,
* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/

#include "TemplateOp.h"

void TemplateOp::init(map<string,GSObject*>* initMap, Domain* thisDomain, int this_stage){
// Inputs

READ_PARAMETER_DEFAULT(NAME,string,inname,"TemplateOp","Default Operation Object Name")
READ_PARAMETER_DEFAULT(USE_GPU,string,inUseGPU,"FALSE","Use GPU/CUDA for Computation [FALSE]")
READ_PARAMETER_DEFAULT(VERBOSE,string,inverb,"FALSE","Print Info [FALSE]")
READ_PARAMETER_DEFAULT(HELP,string,doHelp,"FALSE","Display Help Text [FALSE]")

// End read of parameters

// Set flags and display help if true
verbose = false;
if(Jstring(inverb->get()).toUpperCase().contains("T")) verbose = true;
if(Jstring(doHelp->get()).toUpperCase().contains("T")) this->DisplayHelp();
if(Jstring(inUseGPU->get()).toUpperCase().contains("T")) setUseGPU(true);
else setUseGPU(false);

// Return if the domain does not exist or not active
if(thisDomain==NULL || !thisDomain->isActive()){

setName(inname->get());
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return;
}

// Save the world and domain pointers to class for future reference
world = thisDomain->getParent()->thisAs(World::WORLD_TYPE);
dom = thisDomain->thisAs(dom);

// Get SMesh object
mesh = (gSMesh*) thisDomain->thisAs(LogicalDomain::LOGICAL_DOMAIN_TYPE)->getMesh();
gbx = thisDomain->thisAs(LogicalDomain::LOGICAL_DOMAIN_TYPE)->getGBx();

// Link the object to the one in the domain
addLink((GSObject**)&mesh,(GSObject*)mesh);

// Activate if apply() is to be performed. Then, set name in order to access
// this operation later if necessary.

active = true;
setName(inname->get());

}

void TemplateOp::apply(){
ApplyCore3D<>(this,&gbx,TASK_ONE,getWorldTime(),getWorldDt());
ApplyCore3D<>(this,&gbx,TASK_TWO,getWorldTime(),getWorldDt());

}

//----------------------------------------------------------------------------------------
/***********************************************
* GTEST
***********************************************/

/*
#include "gtest.h"
TEST(TemplateOp_test_case, test_name)
{
// Unit test
}
*/
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References
[1] J. Fife, M. Gibbons, D. VanGilder, and D. Kirtley, “The development of a flexible, usable plasma interaction

modeling system,” in 38th AIAA Joint Propulsion Conference, vol. AIAA 2002-4267, 2002.
[2] J. M. Fife, “Hybrid-PIC modeling and electrostatic probe survey of hall thrusters,” PhD Dissertation, Mas-

sachusetts Institute of Technology, 1998.
[3] L. Brieda, R. Kafafy, J. Pierru, and J. Wang, “Development of the DRACO code for modeling electric

propulsion plume interactions,” in 40th AIAA Joint Propulsion Conference, vol. AIAA 2004-3633, 2004.
[4] M. G. Kapper, “Development of advanced numerical algorithms for modeling complex flows,” Master’s thesis,

San Jose State University, 2005.
[5] ——, “A high-order transport scheme for collisional radiative and nonequilibrium plasma,” PhD Dissertation,

The Ohio State University, 2009.
[6] H. Le, “Development of a chemically reacting flow solver on the graphic processing unit,” Master’s thesis, San

Jose State University, 2011.
[7] L. Cole, “Combustion and magnetohydrodynamic processes in advanced pulse detonation rocket engines,”

PhD Dissertation, University of California, Los Angeles, 2012.
[8] H. Le, “Hydrodynamic models for multicomponent plasmas with collisional-radiative kinetics,” PhD Disser-

tation, University of California, Los Angeles, 2011.
[9] R. Martin and J. Koo, Thermophysics universal research framework - infrastructure release, Version 1.0, Air

Force Research Laboratory (AFRL/RQRS), 2015.
[10] B. Whitlock, Getting data into visit, Version 2.0.0, LLNL-SM-446033, Lawrence Livermore National Labora-

tory, 2010, ch. 5. Instrumenting a simulation code.
[11] M. Bettencourt and A. Greenwood, “Performance improvements for efficient electromagnetic particle-in-cell

computation on 1000s of CPUs,” IEEE Transactions on Antennas and Propagation, vol. 56, no. 8, pp. 2178–
2186, Aug. 2008.

[12] H. W. Liepmann and A Roshko, Elements of Gasdynamics. Mineola, New York: Dover Publications, 1957.
[13] J. D. J. Anderson, Modern Compressible Flow with Historical Perspective, 3rd. New York, New York: McGraw-

Hill, 2003.
[14] G. A. Bird, Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Oxford: Clarendon Press, 1994.
[15] R. J. Taylor, D. R. Baker, and H. Ikezi, “Observation of collisionless electrostatic shocks,” Physics Review

Letters, vol. 24, no. 5, pp. 206–208, Feb. 1970.
[16] H. Ikezi, R. J. Taylor, and D. R. Baker, “Formation and interaction of ion-acoustic solitons,” Physics Review

Letters, vol. 25, no. 1, pp. 11–14, Jul. 1970.
[17] C. Cheng and G. Knorr, “The integration of the vlasov equation in configuration space,” Journal of Computa-

tional Physics, vol. 22, no. 3, pp. 330–351, Nov. 1976, issn: 0021-9991. doi: 10.1016/0021-9991(76)90053-X.
[Online]. Available: http://www.sciencedirect.com/science/article/pii/002199917690053X (visited
on 01/17/2013).

[18] J.-M. Qiu and A. Christlieb, “A conservative high order semi-lagrangian WENO method for the vlasov
equation,” Journal of Computational Physics, vol. 229, no. 4, pp. 1130–1149, Feb. 2010, issn: 0021-9991. doi:
10.1016/j.jcp.2009.10.016. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0021999109005610 (visited on 01/17/2013).

[19] U. Ayachit, The ParaView guide, version Version 5.0, Avalable at www.paraview.org, Kitware Inc., 2015,
233 pp.

[20] VisIt user’s manual, version Version 1.5, UCRL-SM-220449. Avalable at https://visit.llnl.gov, Lawrence
Livermore National Laboratory, 2005, 356 pp.

143

http://dx.doi.org/10.1016/0021-9991(76)90053-X
http://www.sciencedirect.com/science/article/pii/002199917690053X
http://dx.doi.org/10.1016/j.jcp.2009.10.016
http://www.sciencedirect.com/science/article/pii/S0021999109005610
http://www.sciencedirect.com/science/article/pii/S0021999109005610
www.paraview.org
https://visit.llnl.gov


C.2. SOURCE CODE APPENDIX C. CODE TEMPLATES

[21] T Blacker, S. J. Owen, M. L. Staten, et al., Cubit: Geometry and mesh generation toolkit. 15.2 user documen-
tation. SAND2016-1649, Sandia National Laboratory, 2016, 976 pp.

[22] Y. Yamamura and N. I. N. Matsunami, “Theoretical studies on an empirical formula for sputtering yield at
normal incidence,” Radiation Effects, vol. 71, 1983.

[23] N. Matsunami, Y. Yamamura, Y Itikawa, N Itoh, Y Kazumata, S Miyagawa, K Morita, R Shimizu, and H
Tawara, “Energy dependence of the ion-induced sputtering yields of monatomic solids,” Nuclear Data Tables,
vol. 31, pp. 1–80, 1984.

[24] Y Yamamura and H Tawara, “Energy dependence of the ion-induced sputtering yields of monatomic solids
at normal incidence,” Nuclear Data Tables, vol. 62, pp. 149–253, 1996.

[25] “Computational modeling of a hall thruster plasma plume in a vacuum tank,” Master’s thesis, Massachusetts
Institute of Technology, 2002.

[26] K Kannenberg, V Khayms, B Emgushov, L Werthman, and J Pollard, “Validation of hall thruster plume
sputter model,” in 37th Joint Propulsion Conference, AIAA 2001-3986, Salt Lake City, Utah, 2001.

[27] J.-F. Roussel, J Bernard, and Y Garnier, “Numerical simulation of induced environment, sputtering, and
contamination of satellite due to electric propulsion,” in Proceedings Second European Spacecraft Propulsion
Conference, Aug. 1997, pp. 517–522.

[28] Y Garnier, V Viel, J.-F. Roussel, and J Bernard, “Low-energy xenon ion sputtering of ceramics investigated
for stationary plasma thrusters,” Journal of Vacuum Science and Technology A, vol. 17, no. 6, pp. 3246–3254,
Nov. 1990.

[29] E. J. Pencil, T Randolph, and D Manzella, “End-of-life stationary plasma thruster far-field plume character-
ization,” in 32nd Joint Propulsion Conference, AIAA 1996-2709, Lake Buena Vista, Florida, 1996.

[30] Z. L. Zhang and L Zhang, “Anisotropic angular distributions of sputtered atoms,” Radiation Effects and
Defects in Solids, vol. 159, pp. 301–307, 2004.

[31] M. K. Scharfe, J. W. Koo, and G. Azarnia, “DSMC implementation of experimentally-based Xe+ + Xe
differential cross sections for electric propulsion modeling,” in AIP Conference Proceedings, vol. 1333, AIP,
2011, pp. 1085–1090.

[32] J Greenwood, “The correct and incorrect generation of a cosine distribution of scattered particles for monte-
carlo modelling of vacuum systems,” Vacuum, vol. 67, pp. 217–222, 2002.

144


	17-186_OT.pdf
	Overview
	Introduction
	Core Structure
	Key Data-structures
	Basic Functionality

	TURF-IR 2016
	Capabilities
	Heatbath 1: Initialization
	Introduction
	Defining Global Parameters
	Simulation with No Operations
	Adding Particles

	Heatbath 2: Evolution
	Introduction
	Particle Pushing
	Particle Heatbath

	Grounded Box: 3D ES-PIC
	Introduction
	world.list
	operations.list
	Results

	1D Normal Shock: DSMC
	Introduction
	Description of the Example Problem
	Setting up the DSMC Example
	DSMC Operations
	Comparison of Shock Profiles with Bird's DSMC Code

	Collisionless Electrostatic Shock: Setup
	Introduction
	The Collisionless Electrostatic Shock

	Collisionless Electrostatic Shock: Vlasov
	Introduction
	World.list
	operations.vlasov.list


	TURF-IR 2017a
	Capabilities
	Heatbath with MSPDist Data
	Introduction
	Setting up a simulation
	Operations
	Useful Tools

	Grounded Box: 3D ES-PIC with MSPDist Data
	Introduction
	world.list
	operations.list
	Results

	1D Normal Shock: DSMC with MSPDist Data
	Introduction
	Description of the Example Problem
	Setting up the DSMC Example
	Operations
	Comparison of Shock Profiles with Bird's DSMC Code

	EP Plume Simulation 1: Setup
	Introduction
	Defining the World
	Geometry Components
	Particle-Surface Interaction
	TURF Operations
	Restart
	Total Yield
	Angular Distribution

	EP Plume Simulation 2: Cubit
	Introduction
	General Geometry
	Mesh
	Blocks
	Export
	Advanced Examples

	EP Plume Simulation 3: ParaView
	Introduction
	ParaView


	TURF-DEV
	Extended Capabilities
	Weak Landau Vlasov Test Case
	Introduction
	Problem Setup
	Operations 


	Programming Style Guide
	Introduction
	Coding Standards
	Naming Convections
	Documentation
	Classes
	Generic File Stuff

	Code Compliance
	Memory Management
	Variable/Function encapsulation
	External Libraries
	Language standards
	Errors and Warnings

	Software Testing

	Tutorial Style Guide
	Directory
	Title Page
	General Structure
	Main
	Text
	Labels
	Figures


	Code Templates
	Header File
	Source Code



