

 ARL-TN-0860 ● DEC 2017

 US Army Research Laboratory

Source-Code Stylometry Improvements in
Python

by Gregory Shearer and Frederica Nelson

Approved for public release; distribution is unlimited.

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the
Army position unless so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official
endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

 ARL-TN-0860 ● DEC 2017

 US Army Research Laboratory

Source-Code Stylometry Improvements in
Python

by Gregory Shearer
ICF, Fairfax, VA

Frederica Nelson
Computational Information Sciences Directorate, ARL

Approved for public release; distribution is unlimited.

ii

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the
burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302.
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently
valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

December 2017
2. REPORT TYPE

Technical Note
3. DATES COVERED (From - To)

15 September 2017–31 October 2017
4. TITLE AND SUBTITLE

Source-Code Stylometry Improvements in Python
5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Gregory Shearer and Frederica Nelson
5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

US Army Research Laboratory
Computation Information Sciences Directorate(ATTN: RDRL-CIN-D)
Aberdeen Proving Ground, MD 21005

8. PERFORMING ORGANIZATION REPORT NUMBER

ARL-TN-0860

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

This technical note covers the work in rewriting existing source-code stylometry software into Python, and describes
improvements to performance and maintainability and validation of results. Source-code stylometry is the process of
attributing the authorship of source-code samples based on lexical, layout, and syntactic features extracted from code using
machine-learning techniques, specifically random forest classifiers. The original work was conducted as part of a
collaboration between the US Army Research Laboratory and Drexel University.

15. SUBJECT TERMS

source code, stylometry, attribution, machine learning, random forests, Python

16. SECURITY CLASSIFICATION OF:
17. LIMITATION
 OF
 ABSTRACT

UU

18. NUMBER
 OF
 PAGES

18

19a. NAME OF RESPONSIBLE PERSON

Gregory Shearer
a. REPORT

Unclassified
b. ABSTRACT

Unclassified

c. THIS PAGE

Unclassified

19b. TELEPHONE NUMBER (Include area code)

(301) 394-4617
 Standard Form 298 (Rev. 8/98)

 Prescribed by ANSI Std. Z39.18

Approved for public release; distribution is unlimited.
iii

Contents

List of Figures iv

List of Tables iv

1. Introduction 1

2. Motivation 3

3. Purpose 3

4. Tool Components 4

4.1 Dataset Definition 4

4.2 Feature Extraction 5

4.3 Feature Mapping 5

4.4 Learning and Prediction 6

5. Specific improvements 7

6. Validation 8

7. Conclusion 9

8. References 10

List of Symbols, Abbreviations, and Acronyms 11

Distribution List 12

Approved for public release; distribution is unlimited.
iv

List of Figures

Fig. 1 Sample code listing from code-stylometry paper made possible by a
US Army Research Office grant (Caliskan-Islam et al. 2015) 1

Fig. 2 Corresponding abstract syntax tree from de-anonymizing
programmers’ paper (Caliskan-Islam et al. 2015) 1

Fig. 3 Large-scale de-anonymization of 250–1600 code authors (Caliskan-
Islam et al. 2015)... 2

List of Tables

Table 1 Effect of obfuscation on de-anonymization from code-stylometry
baseline paper (Caliskan-Islam et al. 2015) .. 3

Table 2 Results of the validation experiment; time to complete depends on the
hardware used to run the processing ... 9

Approved for public release; distribution is unlimited.
1

1. Introduction

Code stylometry is a means of authorship attribution for source or binary code.
Much like a person can be identified via their handwriting or an author identified
by their style or prose, programmers can be identified by their code. Provided a
labelled training set of code samples (example in Fig. 1), the techniques used in
stylometry can identify the author of a piece of code or even a compiled binary by
utilizing the underlying structure of the code contained in the abstract syntax tree
(Fig. 2) produced by the code. This method of attribution does not rely on author
comments or whitespace features, and thus the features cannot be easily obfuscated
to protect the code author from de-anonymization. Furthermore, by recreating the
abstract syntax tree of compiled code using forensic processes, even compiled
binaries can be evaluated for characteristics of code structure.

Fig. 1 Sample code listing from code-stylometry paper made possible by a US Army
Research Office grant (Caliskan-Islam et al. 2015)

Fig. 2 Corresponding abstract syntax tree from de-anonymizing programmers’ paper
(Caliskan-Islam et al. 2015)

Approved for public release; distribution is unlimited.
2

Stylometry research has proven that anonymous code contributors can be
de-anonymized to reveal the original author, provided the author has published
code before. This potential for de-anonymization must be considered both a tool
and a threat, as stylometry is a technique that could be used by both friend and foe.
As a tool, stylometry may be useful for identifying code contributions, including
potentially identifying malware authorship. From an adversarial perspective,
techniques to mitigate de-anonymization should be studied to reduce the risk to
friendly authors. Other potential uses beyond de-anonymization include
ghostwriting detection, software forensics, copyright investigation, and authorship
verification.

Previous collaboration between Drexel University’s Privacy and Security
Laboratory and the Network Security Branch (NSB) of the US Army Research
Laboratory (ARL) produced a number of published papers, informed research and
transition efforts, and in general contributed to moving forward the state of the art.
This prior work has demonstrated the overall feasibility of the technique, showing
greater than 95% accuracy when attributing code from 1 author out of 250 (see Fig.
3) and accuracy greater than 90% identifying code authorship from a domain of
1600 authors in experimental datasets (Caliskan-Islam et al. 2015). In general, a
larger author set will reduce accuracy while a smaller author set will increase
accuracy. Inversely, more code samples per author increases accuracy, while fewer
code samples per author decreases accuracy.

Fig. 3 Large-scale de-anonymization of 250–1600 code authors (Caliskan-Islam et al. 2015)

These results are for the closed-world case; that is to say, picking 1 author out of a
known complete set. However, expanded open-world classification and
multiauthor classification have also been examined (Caliskan-Islam et al. 2015;
Stolerman et al. 2014). The research has been further expanded by considering
binary stylometry (Rosenblum et al. 2011) with positive results from compiled code
and encouraging results even when predicting attribution from obfuscating
compiler-compiled code (Caliskan-Islam et al. 2015).

Approved for public release; distribution is unlimited.
3

Table 1 Effect of obfuscation on de-anonymization from code-stylometry baseline paper
(Caliskan-Islam et al. 2015)

Obfuscator Programmers Language Results w/o
obfuscation

Results w/
obfuscation

Stunnix 20 C++ 98.89% 100.00%
Stunnix 20 C++ 98.89%a 98.89%a
Tigress 20 C 93.65% 58.33%
Tigress 20 C 95.91%a 67.22%a

a Information gain features

2. Motivation

During collaboration between Drexel University and ARL, data processing for code
stylometry has primarily been conducted by Drexel personnel on Drexel computers
while learning and analysis research was conducted collaboratively by both parties.
Thus, data-processing scripts resided primarily on Drexel hardware. Recently, a
requirement emerged to transition or develop an ARL internal code-stylometry
environment to demonstrate, share, and enhance or build upon the current state of
the art in code stylometry to continue research and perform operational evaluations
both individually and in conjunction with other available tools. In doing so, and to
create the stand-alone environment, the entire process of code stylometry must be
integrated, including data processing and learning and analysis.

The first path examined was a transition of code from the existing processing
framework onto ARL systems. This initially was considered the fastest and easiest
path. However, a number of compatibility issues were discovered during the effort
to transition existing code, including significant challenges in finding obsolete
versions of needed software dependencies, performance issues, and low readability
of the research code. As a result of these challenges, the possibility was examined
of simplifying and rewriting the code-stylometry software in Python on an ARL
platform. Because ARL collaborates with Drexel University in researching code
stylometry, the intent is to share the Python stylometry software with Drexel once
the initial development is completed and provide updates as necessary as the project
progresses.

3. Purpose

The new code-stylometry software aims to preserve the functionality of the original
software while accomplishing the objectives of increased performance, increased
readability, and better compatibility with existing operational and research
platforms. All newly written code is in the Python programming language to

Approved for public release; distribution is unlimited.
4

improve readability and interoperability. The number of dependencies required by
the tool has been reduced from 5 to 3 for source-code stylometry, improving
portability and ease of maintenance. All dependencies on nonpublically available
code have been removed. Performance in terms of data-processing time has been
improved by an estimated factor of 5 to 10 times by using a single initialization of
the database server rather than multiple initializations throughout the experiment,
reducing the amount of time required to process code.

The aim of the new software is to act as a base for new ARL internal research on
code stylometry and facilitate greater control over potential updates, patches, and
upgrades to the software. An independent codebase will allow greater flexibility in
designing experiments and enhanced interoperability with other applications as
needed. Additionally, the reduced dependency set and more interoperable design
allows for easier installation on computers within the ARL environment.
Transitions to other ARL branches or other organizations should also be
significantly easier with the new software compared to the old software.

4. Tool Components

The code-stylometry tool is composed of several parts that constitute a general
workflow for code or binary processing, feature extraction, and learning/prediction.

4.1 Dataset Definition

The first step of the tool workflow is the extraction of samples from a labelled
dataset. Notionally, this extraction could include the entire dataset or any smaller
portion of it. In the current build of the Python version of the stylometry tool, the
extraction is handled via a script that accepts as input constraints on which and/or
how many authors and/or files should be drawn from a larger dataset for use in a
smaller subset of the dataset.

The required dataset format is indexed as follows:

1) Dataset main directory

a. Author directories

i. Individual files

The script iterates through the dataset’s top-level directory and selects a subset of
authors that matches the input criteria for number of authors and required problems
per author. It then creates a new directory in the same format as the original dataset
directory, containing only the authors and problems of interest.

Approved for public release; distribution is unlimited.
5

4.2 Feature Extraction

The next step is to create a feature set from all of the samples within the given
dataset. The feature set must capture enough information about the code to be
informative in terms of authorship attribution, but should not be so large as to make
machine learning on the feature set computationally infeasible.

In general, there are 3 types of features that can be drawn from source code: 1)
Lexical features deal with the word vocabulary used in the source code, 2) layout
features deal with whitespace formatting, and 3) syntactic features are drawn from
the layout and content of the abstract syntax tree. Syntactic features are the most
resilient to obfuscation, whereas layout can be trivially altered and both layout and
lexical features do not survive the compilation process. For lexical and layout
features, the source code is read directly and processed by a function within the
processing script. For syntactic features related to the abstract syntax tree, a more
complex process is needed to parse the code. Both the original research code and
this Python implementation use a tool called “Joern”, a fuzzy parser designed
specifically for processing code that may be incomplete (Yamaguchi et al. 2014).

Joern inserts the abstract syntax-tree layout of the code sample set into a “Neo4j”
graph database. In essence, the structure of the graph in the database is a large tree,
with a root node of the main data directory, ascending through author directory and,
finally, an abstract syntax tree for each individual problem. The abstract syntax tree
(as shown in Fig. 2) decomposes complex operations into smaller parts, finally
resulting in leaf nodes. This syntactic structure information can be drawn from the
Neo4j database through queries using the Python library “Py2Neo” as an interface.

For the validation experiment later in this technical note (Section 6), we used the
following:

 • source-code word unigram’s term frequency,

• source-code word unigram’s average position within the document
(measured as 0 at start, 1 at end),

• abstract syntax-tree-node types’ term frequency,

• abstract syntax-tree-node types’ average depth (depth within
abstract syntax tree hierarchy), and

• abstract syntax-tree-node bigrams’ term frequency.

4.3 Feature Mapping

Next, the processing script maps features on a per-sample basis to form a feature-
to-sample mapping. Each code sample has feature information collected from both

Approved for public release; distribution is unlimited.
6

the original source file (for lexical and layout features, if any) and the
corresponding abstract syntax tree for that sample file (for syntactic features). The
unique features for each sample are also added to an experiment-wide corpus
aggregator. This aggregator collects all unique features from each sample to create
a single, unified, experiment feature set that includes all features arising from
samples in the dataset. This unified feature set will be used to create and format the
data for the machine-learning model.

The experiment feature set can be reduced depending on experiment parameters.
For example, features that appear only once in a corpus are useless for prediction,
as these features could never correlate 2 separate samples within the corpus;
accordingly, in the validation experiment in Section 6, the final feature set includes
only features that appeared more than once in the overall corpus.

After feature reduction, the samples are assigned a feature data array based on
which features they possess from the overall corpus-feature dataset. Features from
the corpus-feature set that do not exist in the sample features are filled in with zeros
in the feature data for each sample.

4.4 Learning and Prediction

Finally, the script applies a random forest classifier—implemented in the Python
machine-learning library’s Scikit-learn (Pedregosa et al. 2011)—to create a model
of how the mapped features per sample are associated with author labels. Once a
model has been created, the script can attempt to predict the authorship of new
samples whose authorship is unknown, provided we know the author is within the
known set of authors. So long as the features used for stylometry are informative
as to authorship attribution, prediction of unknown authors within a set should be
possible. We can validate the results of the prediction using a technique called
cross-validation (discussed in Section 6).

The random forest classifier is an ensemble learner built from a collection of
decision trees. Each decision tree is created by randomly sampling training samples
with replacement from the sample set. During classification, each test example is
classified by each of the trained decision trees and the results are subsequently
aggregated. In essence, the trees “vote” on the overall classification of each sample,
with the eventual label being the most popular classification from the individual
trees. The random forest model as used by the learning script uses 500 decision
trees as estimators to form an ensemble classifier.

Approved for public release; distribution is unlimited.
7

5. Specific improvements

Compared to the original research code in which the Joern tool was run on each file
individually, only 1 instantiation of Joern is needed to process all of the sample files
using the new methodology. This reduces the amount of time needed for
processing, and allows for a single Neo4j database to be used rather than repeatedly
creating new databases.

Similar to Improvement 1, the new methodology only requires 1 instantiation of
Neo4j during the entire experiment, rather than 1 instantiation per file. This is
achieved by reading in all Joern data at the beginning of the experiment, then
searching for specific subtrees within the database as the author files are iterated
over. This vastly reduces the amount of time needed for server startup and
shutdown.

The Python source-code stylometry rewrite reduced the number of dependencies
from 5 to 3. This was accomplished by using the native functionality of Py2Neo to
read from the Neo4j database rather than a collection of 3rd-party Python and shell
scripts. In addition, the dependencies it does require are the newest public versions
of the dependencies, rather than old versions. This should make the code more
flexible and more easily movable to different platforms.

The new data-processing methodology preserves dataset integrity by not writing
any new files to the experimental dataset. The research code wrote several files to
the dataset for each sample problem examined. This ensures the dataset has not
been altered in any way and can be used again without cleanup for subsequent
experiments with new processing methods. It also reduces the file input/output
overhead, leading to reduced time to process files.

The new Python stylometry code significantly streamlines the overall codebase by
deleting out-of-date functions and functions that may have been used for research
but are now deprecated. Only 3 key scripts are required for the entire Python source-
code stylometry workflow. This should help ensure the codebase is more readable
and more easily maintained.

The migration to Python language scripts improves compatibility with the ARL
environment. We faced many challenges setting up an environment with the
requisite dependencies of the research code. This upgrade to code stylometry
should not only serve as an enhancement but ensures future research and
development on stylometry integrates more smoothly with other efforts.

Approved for public release; distribution is unlimited.
8

6. Validation

As with the original research in code stylometry, the validation experiments for this
work will use the Google Code Jam dataset, a collection of C, C++, and Python
source-code samples labelled by author and problem number. This dataset
originates from the Google Code Jam challenge, a programming competition to
write code to solve a series of programming problems.

All accuracy evaluations for both the original work and new work use the k-fold
cross-validation method, where data were split into training and test sets stratified
by class (in this case, author). The number of code samples per author in the training
and test sets was identical for all authors. The parameter k is the number of
segments the data are split into, with k-1 segments used for training and the
remaining segment tested upon.

A baseline demonstration used earlier in the stylometry project uses a small subset
of the larger Google Code Jam dataset containing 10 specified authors with 9 files
each. Using this dataset, 9-fold cross validation is performed to obtain a score from
the machine-learning classifier, meaning that for each author class 8 samples will
be used for training the model and 1 sample will be used for testing. This process
will be repeated until all combinations (or folds) of the dataset have been tested.

The feature set for the original and Python stylometry versions is different as are
the exact parameters of the learning mechanism. Thus, results are not anticipated
to be exactly the same; however, they should be similar enough for comparison.
For the initial validation, we will only examine closed-world source-code
stylometry rather than binary stylometry or open-world attribution situations.

In testing, the original code stylometry demo obtained a 9-fold cross-validation
accuracy of 92.9% averaged over 5 runs. (See Table 2.) The new code-stylometry
tool using the same data obtained a 9-fold cross-validation accuracy of 93.6%
averaged over 5 runs. This suggests that for the basic authorship-attribution task,
the Python-based implementation is capable of achieving comparable results.

To further validate the reproduction of results, we used a dataset of 250 authors
who had completed at least 9 problems from the 2012 Google Code Jam problem
set. Each author has exactly 9 of their completed problems from the 2012 problem
set assigned to them as samples. From the de-anonymizing programmers’ paper the
best result obtained for this dataset was 96.83% (Caliskan-Islam et al. 2015, table
5) after information gain was applied. The average (3 repeated runs) result from the
Python version of the stylometry tool using the same data without information gain
features was 96.77%.

Approved for public release; distribution is unlimited.
9

Table 2 Results of the validation experiment; time to complete depends on the hardware
used to run the processing

10 authors’ 9
files (demo

dataset)

250 authors’ 9 files CPPa
2012 from Google Code

Jam dataset

250 authors’ 9 files
CPPa 2014 from Google

Code Jam dataset
Target 9-fold cross-
validation accuracy

(from Caliskan-
Islam et al. 2015)

92.9% 96.83% 95.07%

Python 9-fold
stratified cross-

validation accuracy
93.6% 96.77% 97.56%

Time to create
experiment dataset 1.0 s ~12.0 s ~12.0 s

Time to process
code and extract

features
548.8 s

(9 min 8.8 s) 17151 s (4 h 45 min 51 s) 17739 s
(4 h 55 min 39 s)

Time to run learning
and evaluation 24.8 s 3587.1 s (59 min 47.1 s) 3503.9 s (58 min 23.9 s)

a C Plus: C++

It appears 9-fold cross-validation accuracy is similar between the original work and
the Python implementation. This is somewhat surprising considering the relative
simplicity of the initial feature set used by the Python implementation for source-
code stylometry. The original paper (Caliskan-Islam et al. 2015) remarks that in
many cases the abstract syntax-tree bigram’s features are enough to achieve similar
results to the full feature set. It may be the case that for these datasets this simpler
feature set is sufficient. We also note the random forest model used for this
validation experiment used a higher number of classifiers, 500 rather than 300,
which may have allowed for more precise model creation.

7. Conclusion

It is intended that the improvements listed here to the code-stylometry tool will be
used by ARL researchers to further research in the code-stylometry field.
Additionally, the tool may form the basis of an operational prototype for code
stylometry. By rewriting the tool in Python and revising the workflow for certain
aspects of data processing, we obtained a 5–80-times reduction in data-processing
time, reduced the number of dependencies for source-code stylometry from 5 to 3,
reduced the number of external dependencies, and streamlined the existing research
code into a straightforward tool. We anticipate continued development to integrate
features such as attribution from binaries via binary disassembly and recompilation,
open-world case handling, and multi-author handling.

Approved for public release; distribution is unlimited.
10

8. References

Caliskan-Islam A, Harang R, Liu A, Narayanan A, Voss C, Yamaguchi F,
Greenstadt R. De-anonymizing programmers via code stylometry. Proceedings
of the 24th USENIX Security Symposium; 2015 Aug 12–15; Washington
(DC). USENIX.

Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel
M, Prettenhofer P, Weiss R, Dubourg V, et al. Scikit-learn: machine learning
in Python. J Machine Learn Res. 2011;12:2825–2830.

Rosenblum NE, Zhu X, Miller BP. Who wrote this code? Identifying the authors
of program binaries. Proceedings of the Computer Security ESORICS 2011;
2011 Sep 12–14; Leuven, Belgium. p. 172–189.

Stolerman A, Overdorf R, Afroz S, Greenstadt R. Classify, but verify: breaking the
closed-world assumption in stylometric authorship attribution. Presented at:
10th IFIP Working Group 11.9 on Digital Forensics. International Federation
for Information Processing; 2014 Jan; Philadelphia, PA.

Yamaguchi F, Golde N, Arp D, Rieck K. Modeling and discovering vulnerabilities
with code property graphs. Proceedings of IEEE Symposium on Security and
Privacy (S&P); 2014 May 18–21; Washington (DC). IEEE Computer Society;
p. 590-604.

Approved for public release; distribution is unlimited.
11

List of Symbols, Abbreviations, and Acronyms

ARL US Army Research Laboratory

CPP C Plus, C++

NSB Network Security Branch

Approved for public release; distribution is unlimited.
12

 1 DEFENSE TECHNICAL
 (PDF) INFORMATION CTR
 DTIC OCA

 2 DIR ARL
 (PDF) IMAL HRA
 RECORDS MGMT
 RDRL DCL
 TECH LIB

 1 GOVT PRINTG OFC
 (PDF) A MALHOTRA

 2 DIR ARL
 (PDF) RDRL CIN D
 G SHEARER
 F NELSON

	List of Figures
	List of Tables
	1. Introduction
	2. Motivation
	3. Purpose
	4. Tool Components
	4.1 Dataset Definition
	4.2 Feature Extraction
	4.3 Feature Mapping
	4.4 Learning and Prediction

	5. Specific improvements
	6. Validation
	7. Conclusion
	8. References
	List of Symbols, Abbreviations, and Acronyms

