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1. INTRODUCTION
Our	strategy	is	to	exploit	three	large	neuroimaging/neurobehavioral	datasets	in	order	to	identify	
brain-imaging	based	biomarkers	for	Autism	Spectrum	Disorders	(ASD),	including	1)	BrainMap,	
developed	and	maintained	by	Peter	Fox	at	the	University	of	Texas	Health	Science	Center	at	San	
Antonio	(UTHSCSA);	2)	the	Autism	Center	of	Excellence	(ACE)	neuroimaging	archive,	developed	
and	maintained	by	Eric	Courchesne	at	the	University	of	California	at	San	Diego	(UCSD);	and	3)	the	
Genetics	of	Brain	Structure	(GOBS)	neuroimaging	genetics	archive,	developed	and	maintained	by	
David	Glahn	at	Yale	University.	To	develop	ASD	biomarkers,	we	aim	to	(1)	develop	multi-regional	
functional-connectivity	models	of	networks	implicated	in	ASD	by	iterative	and	hierarchical	meta-
analyses	of	the	BrainMap	database;	(2)	test	the	ability	of	the	neural-system	functional-connectivity	
models	to	differentiate	between	ASD	and	TYP	children	in	a	cohort	previously	acquired	ACE	cohort;	
and	assess	the	heritability	and	pleitropy	of	the	these	functional	networks,	in	a	previously	imaged	
and	previously	genotyped	cohort	of	families	with	extended	pedigrees.		At	Yale,	we	focus	on	the	final	
aim,	estimating	heritability	of	putative	ASD	networks	and	testing	for	pleitropy	between	these	
networks	and	cognitive	and	behavioral	measures.			

Given	delays	associated	with	generating	whole	genome	sequence	data	on	the	GOBS	cohort,	we	
requested	and	received	a	1	year	no	cost	extension.			

2. KEYWORDS
Autism	spectrum	disorder	(ASD);	biomarker;	early	brain	development;	intrinsic	functional	brain	
networks;	functional	MRI	(fMRI);	clinical	outcome;	genomic;	heritability;	genetic	control;	pleitropy	

3. ACCOMPLISHMENTS

a. What	were	the	major	goals	of	the	Yale	site?
At	the	Yale	site,	we	focus	estimating	heritability	of	putative	ASD	functional	and	structural	networks,	
testing	for	pleitropy	between	these	networks	and	cognitive	and	behavioral	measures	and	training	
post-doctoral	associates	and	others	to	conduct	the	needed	analyses.		Below	we	outline	the	major	
tasks	identified	in	the	original	Scope	of	Work	(SOW)	relevant	for	this	reporting	period.		

Administrative	Tasks	(Prior	to	Aims)		
Major	Task	1	was	to	submit	and	obtain	ethics	approval	from	our	local	ethical	review	board.		We	

accomplished	this	goal	(Milestone	#1)	ahead	of	schedule:	Yale’s	Human	Research	
Protection	Program	board	approved	the	project	on	April	15,	2014	(HIC	1403013622).	

Major	Task	2	was	to	advertise,	interview,	hire	and	train	staff	dedicated	for	the	project.		After	several	
rounds	of	interviews	and	advertising	in	national	and	international	scientific	meetings,	
we	offered	a	post-doctoral	fellowship	to	Dr.	Karen	Hodgson	(see	section	7.	
Participants,	below).		Dr.	Hodgson	accepted	the	offer	and	joined	our	group	in	
February	of	2015.	Dr.	Hodgson	was	100%	dedicated	to	this	project	as	a	Postdoctoral	
Associate	at	Yale	University,	Department	of	Psychiatry,	from	February	1,	2015	to	
December	15,	2016.		Dr.	Hodgson	underwent	an	extensive	training	program	and	has	
mastered	the	methods	necessary	for	the	genetic	analyses	to	be	conducted	for	this	
project	(Milestone	#2).	She	is	currently	an	associate	research	scientist	at	King’s	
College	London.	

Tasks	In	support	of	Specific	Aim	3	(Yale	University	Site)	
Major	Task	1	involved	the	pre-processing	of	structural	and	functional	data	for	subjects	from	the	GOBS	

cohort.		Pre-processing	involved	a	number	of	quality	control	and	analytic	steps.	
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Quality	control,	preprocessing	and	neuroanatomic	parcellation	were	performed	on	
~1500	scans	from	individuals	in	randomly	ascertained	extended	pedigrees	by	
April/May	of	2015	(Subtask	1).		In	total,	1004	images	were	found	to	be	of	adequate	
quality	and	were	reliably	parcellated	using	FreeSurfer	5.1.		Similarly,	quality	control,	
preprocessing	and	functional	parcellation	was	conducted	on	~900	scans	from	
individuals	in	randomly	ascertained	extended	pedigrees	by	May	of	2015	(Subtask	2).		
In	total,	783	images	were	found	to	be	of	adequate	quality	and	were	reliably	
parcellated	into	functional	networks	using	ICA	tools.		Thus,	Milestone	#1	was	
accomplished	for	the	GOBS	cohort	by	May	of	2015.		

	

	
	
Major	Task	2	involved	conducting	intrinsic	connectivity	analyses	from	functional	networks	derived	

from	the	BrainMap	and	ACE	datasets.		Two	“agnostic”	intrinsic	connectivity	analyses	
were	conducted	by	August	of	2015.		The	first,	utilized	an	extension	of	the	methods	
initially	published	by	Power	and	colleagues	(Power	JD,	Schlaggar	BL,	Lessov-
Schlaggar	CN,	Petersen	SE.	Evidence	for	hubs	in	human	functional	brain	networks.	
Neuron.	2013	Aug	21;79(4):798-813.	PMID:	23972601).	This	approach	uses	over	250	
seed	regions	simultaneously	to	provide	regional	and	network-level	measures	of	brain	
connectivity.		Using	this	analytic	approach,	we	estimated	heritability	for	a	set	of	
structural	and	functional	networks,	examined	the	co-heritability	between	these	
different	modalities	and	searched	the	genome	for	chromosomal	loci	influencing	these	
networks.	In	Figure	1,	we	provide	examples	of	two	of	the	14	derived	networks,	based	
on	the	network	configuration	determined	in	the	Power	et	al.,	work.	For	our	current	
experiment,	we	defined	network	connections	as	either	short	or	long	(greater	or	less	
than	40mm).		In	Figure	2,	we	indicate	the	number	and	chromosomal	locations	of	loci	
that	influenced	network-based	connectivity	measures	found	to	be	significantly	
heritable.		Findings	from	these	analyses	were	presented	at	the	21st	annual	meeting	of	
the	Organization	for	Human	Brain	Mapping	in	Honolulu,	HI,	entitled	“Shared	and	
Unique	Genetic	Influences	on	Structural	and	Functional	Connectivity.”		
	

Figure	1.	Example	Functional	Connectivity	Networks	based	upon	methods	by	Power	et	al	(2013)	
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The	second	analytic	approach	involved	the	application	of	surface	based	analytic	
techniques	developed	by	the	Human	Connectome	Project	
(http://www.humanconnectome.org),	a	NIH	roadmap	initiative	designed	to	map	
normal	variation	in	brain	connectivity.		This	computationally	demanding	analytic	
strategy	derives	dense	connectivity	maps	for	each	subject	based	upon	a	surfaced	
based	parelation	and	then	combined	these	connectivity	maps	using	a	combined	
function-structure	alignment	strategy.		This	method	provides	similar	heritability	
estimates	as	those	derived	using	the	Power	et	al	method.	

	
After	a	prolong	QC	process,	we	searched	the	complete	exome	of	~900	subjects	for	
rare	functional	variants	influencing	the	fronto-parietal	and	auditory	networks.	
Unfortunately,	no	single	variant	reached	statistical	significance	in	this	analysis.		While	
this	result	is	disappointing,	our	findings	are	consistent	with	other	comparably	
powered	exome	sequencing	studies.		For	example,	analyses	in	a	sample	of	~2500	trio	
ASD	families	(e.g.	affected	child	and	both	parents)	demonstrated	that	de	novo	loss	of	
function	mutations,	often	coalescing	in	gene-networks	influencing	chromatin	
modifiers,	targets	of	fragile	X	mental	retardation	proteins	(FMRP)	and	embryonically	
expressed	genes,	are	strongly	associated	with	risk	for	autism	spectrum	disorder	
(Iossifov	et	al.,	Neuron,	2012,	PMID=	22542183;	Sanders	et	al.,	Nature,	2012,	PMID=	
22495306).	Based	upon	the	overall	mutation	rates,	current	estimates	suggest	that	
between	400	and	1000	genes	confer	risk	for	autism	spectrum	disorder	and	that	these	
genes	appear	to	coalesce	into	gene	networks	influencing	chromatin	modification,	
synaptic	function,	targets	of	FMRP,	targets	of	RBFOX	splicing	factors,	and	early	
embryonic	development	(Iossifov	et	al.,	Neuron,	2012,	PMID=	22542183;	Sanders	et	
al.,	Nature,	2012,	PMID=	22495306;	De	Rubeis	et	al.	Nature	2014,	PMID=	25363760;	
Iossifov	et	al.,	Nature	2014;	PMID:	25363768).		Yet,	despite	this	progress,	no	signle	

Figure	2.	Linkage-Manhattan	Plot	for	Structural	and	Functional	Connectivity	Analyses	
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variant	(or	gene)	has	been	defenitivly	identified.		This	pattern	of	results	is	completely	
consistent	with	recent	fidnings	in	schizophrenia.	Using	whoe	exome	sequence	data,	
Purcell	and	colleagues	(Purcell	et	al.,	Nature,	2014,	PMID=	24463508)	identified	
numerous	rare	mutations	across	many	genes,	that	when	considered	in	aggregate	are	
strongly	associated	with	schizophrenia	risk,	in	2,536	schizophrenia	cases	and	2,543	
controls,	and	appear	to	be	in	networks	that	directly	influence	neuronal	function,	
including	the	voltage-gated	calcium	ion	channel,	the	activity-regulated	cytoskeleton-
associated	scaffold	protein	(ARC),	and	the	N-methyl-D-aspartate	receptor	(NMDAR)	
postsynaptic	signaling	complex.		Many	of	these	gene	sets	were	previously	implicated	
in	schizophrenia	risk	through	CNV	analyses	(Kirov	et	al.,	Mol	Psychiatry,	2012,	PMID=	
22083728).	Furthermore,	based	on	exome	data	from	623	schizophrenia	trios,	de	novo	
mutations	are	over	represented	among	glutamatergic	postsynaptic	proteins	
comprising	the	ARC	and	NMDAR	complexes	in	affected	individuals	(Fromer	et	al.,	
Nature,	2014,	PMID=	24463507),	strikingly	consistent	with	the	much	larger	case-
control	results.	Similarly,	exome	sequencing	studies	in	schizophrenia	have	implicated	
genes	expressed	in	neurons	(Genovese	et	al.,	Nat	Neurosci,	2016;	PMID=	27694994)	
and	synapses	(Fromer	et	al.,	Nature,	2014,	PMID=	24463507)	and	shown	that	affected	
individuals	have	more	rare	protein-altering	loss-of-function	variants	than	unrelated	
controls.	However,	definitive	evidence	for	specific	genes	is	still	quite	limited.		Given	
these	results	and	evidence	for	substantial	polygenicity,	the	fields	of	autism	and	
schizophrenia	genetics	have	begun	to	focus	on	gene	networks	rather	than	one	single	
gene	effects.		We	too	have	begun	using	a	similar	approach	and	believe	that	our	study	
is	adequately	powered	to	either	identify	a	gene	network	associated	with	autism	
related	dysconnectivity	or	to	characterize	a	previously	identified	gene	set.		However,	
these	analyses	are	outside	of	the	scope	of	the	current	project.	
	
In	addition	to	the	work	with	intrinsic	connectivity	traits	described	above,	we	have	
conducted	a	number	of	analyses	relevant	to	brain-behavior	changes	in	autism.		For	
example,	we	recently	examined	the	relationship	between	cortical	gyrification	and	
intelligence	in	our	large,	genetically	informative	population.		Gyrification	is	the	
process	of	forming	the	characteristic	folds	of	the	human	cerebral	cortex	and	there	are	
several	articles	indicating	aberrant	gyrification	patterns	in	children	and	adults	with	
autism	(e.g.	Wallace	et	al.,	Brain,	2013	PMID= 23715094;	Hardan	et	al.,	Psychiatry	Res,	
2004	PMID=	15465295;	Jou	et	al.,	J	Child	Neurol,	2010	PMID= 20413799).		
Furthermore,	it	appears	that	decreased	gyrification	in	prefrontal	cortex	is	associated	
with	deficit	functional	connectivity	in	children	with	autism	(Schaer	et	al.,	Front	Hum	
Neurosci,	2013;	PMID	=	24265612).		Finally,	there	is	some	evidence	that	gyrification	
patterns,	particularly	as	they	associate	with	IQ,	may	be	an	autism	endophenotype,	a	
trait	sensitive	to	genetic	liability	for	the	illness	(Kates	et	al.,	Autism	Res,	2009	PMID= 
19890876).		Thus,	examining	the	genetic	influences	the	relationship	between	cortical	
gyrification	and	intelligence	appears	to	be	an	interesting	new	way	to	dissect	genetic	
liability	for	autism.	
	
To	date,	our	analyses	have	focused	on	replicating	prior	findings	of	the	relationship	
between	local	gyrification	patterns	and	intelligence	(Gregory	et	al.,	Cur	Biol,	2016	
PMID=27133866).		In	two	large	cohorts,	Gregory	and	colleagues	found	that	general	
cognitive	ability	was	significantly	associated	with	increasing	gyrification	in	a	network	
of	neocortical	regions,	including	large	portions	of	the	prefrontal	cortex,	inferior	
parietal	lobule,	and	temporoparietal	junction,	as	well	as	the	insula,	cingulate	cortex,	
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and	fusiform	gyrus.		This	pattern	of	results	is	consistent	with	the	Parieto-Frontal	
Integration	Theory	of	intelligence	(Jung	and	Haier,	Behave	Brain	Sci,	2007	PMID=	
17655784)	and	with	brain	regions	implicated	in	autism.		Using	data	from	1004	
individuals	from	the	“Genetics	of	Brain	Structure	and	Function”	study,	we	generally	
replicate	these	findings.	Further,	we	demonstrate	that	common	genetic	factors	appear	
to	influence	local	gyrification	and	a	general	cognitive	ability	index.		Next,	we	plan	to	

determine	the	common	genetic	influences	on	gyrification/intelligence	and	risk	for	
autism	using	a	rare-variant	based	enrichment	score	developed	in	our	laboratory.		The	
goal	of	this	analysis	is	to	determine	if	genes	(variants)	associated	with	autism	risk	
also	influence	the	relationship	between	cortical	gyrification	and	intelligence.		If	such	a	
relationship	can	be	established,	then	it	is	possible	to	enumerate	some	of	the	biological	
pathways	through	which	risk	genes	give	rise	to	autism	risk.		Such	information	is	
invaluable	for	the	development	of	treatment	or	remediation	strategies.		
	
Finally,	given	evidence	that	both	genetic	and	epigenetic	factors	appear	to	be	
important	for	autism	risk	(Persico	&	Bourgeron,	2006,	Trends	Neurosci,	PMID:	
16808981),	we	extended	our	project	to	examine	epigenetic	effects	on	white	matter	
connectivity.		White	matter	microstructure	is	reduced	in	individuals	with	autism	
spectrum	disorders	(Barnea-Goraly	et	al.,	Biol	Psychiatry,	2004,	PMID:	14744477)	
and	appears	to	be	related	to	developmental	delays	in	language	dysfunction	(Herbert	
et	al.,	2004,	Ann	Neurol,	PMID=	15048892).		To	determine	if	epigenetic	influences	on	
white	matter	microstructure	(fractional	anisotropy)	as	measured	by	diffusion	tensor	
imaging,	we	conducted	a	set	of	experiments	to	model	the	impact	or	biological	or	
epigenetic	aging	on	MR-based	white	matter	measurement	in	GOBS	participants	
(Hodgson	et	al.,	J	Neurosci,	2017,	PMID=	28385874).	The	accurate	estimation	of	age	
using	methylation	data	has	proved	a	useful	and	heritable	biomarker,	with	
acceleration	in	epigenetic	age	predicting	a	number	of	age-related	phenotypes.	
Measures	of	white	matter	integrity	in	the	brain	are	heritable	and	highly	sensitive	to	
both	normal	and	pathological	aging	processes.	We	consider	the	phenotypic	and	
genetic	interrelationships	between	epigenetic	age	acceleration	and	white	matter	
integrity	in	humans.	Our	goal	was	to	investigate	processes	that	underlie	inter-
individual	variability	in	age-related	changes	in	the	brain.	Using	blood	taken	from	a	
Mexican-American	extended	pedigree	sample	(n	=	628;	age	=	23.28-93.11	years),	

Figure	3.	Association	between	Local	Gyrification	and	General	Cognitive	Ability	(n~1000)	
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epigenetic	age	was	estimated	using	the	method	developed	by	Horvath	and	colleagues	
(Horvath,	Genome	Biol,	2013,	PMID=	24138928).	For	n	=	376	individuals,	diffusion	
tensor	imaging	scans	were	also	available.	The	interrelationship	between	epigenetic	
age	acceleration	and	global	white	matter	integrity	was	investigated	with	variance	
decomposition	methods.	To	test	for	neuroanatomical	specificity,	16	specific	tracts	
were	additionally	considered.	We	observed	negative	phenotypic	correlations	
between	epigenetic	age	acceleration	and	global	white	matter	tract	integrity	(ρpheno	
=	-0.119,	p	=	0.028),	with	evidence	of	shared	genetic	(ρgene	=	-0.463,	p	=	0.013)	but	
not	environmental	influences.	Negative	phenotypic	and	genetic	correlations	with	age	
acceleration	were	also	seen	for	a	number	of	specific	white	matter	tracts,	along	with	
additional	negative	phenotypic	correlations	between	granulocyte	abundance	and	
white	matter	integrity.	These	findings	(i.e.,	increased	acceleration	in	epigenetic	age	in	
peripheral	blood	correlates	with	reduced	white	matter	integrity	in	the	brain	and	
shares	common	genetic	influences)	provide	a	window	into	the	neurobiology	of	aging	
processes	within	the	brain	and	a	potential	biomarker	of	normal	and	pathological	
brain	aging.	Our	results	were	published	in	the	Journal	of	Neuroscience	earlier	this	year	
(Hodgson	et	al.,	J	Neurosci,	2017,	PMID=	28385874).		Our	goal	is	to	apply	this	method	
to	study	white-matter	abnormalities	in	autism	spectrum	disorders	in	the	future.		
	
These	analyses	fulfill	Milestone	#2.		

	
	b.	What	was	accomplished	under	these	goals	at	the	Yale	University	site?		

All	of	the	work	described	above	was	conducted	at	the	Yale	site.		In	addition,	a	conceptually	similar	
analysis	was	conducted	using	neuroanatomic	networks	disrupted	in	schizophrenia.		Specifically,	we	
used	source-based	morphometry,	a	multivariate	technique	optimized	for	structural	MRI,	in	a	large	
sample	of	randomly	ascertained	pedigrees	(N	=	887)	to	derive	an	insula-medial	prefrontal	cortex	
(mPFC)	component	and	to	investigate	its	genetic	determinants.	First,	we	replicated	the	insula-mPFC	
grey	matter	component	as	an	independent	source	of	grey	matter	variation	in	the	general	
population,	and	verified	its	relevance	to	schizophrenia	in	an	independent	case-control	sample.	
Secondly,	we	showed	that	the	neuroanatomical	variation	defined	by	this	component	is	largely	
determined	by	additive	genetic	variation	(h2	=	0.59),	and	genome-wide	linkage	analysis	resulted	in	
a	significant	linkage	peak	at	12q24	(LOD	=	3.76).	This	region	has	been	of	significant	interest	to	
psychiatric	genetics	as	it	contains	the	Darier’s	disease	locus	and	other	proposed	susceptibility	genes	
(e.g.	DAO,	NOS1),	and	it	has	been	linked	to	affective	disorders	and	schizophrenia	in	multiple	
populations.	Thus,	in	conjunction	with	previous	clinical	studies,	our	data	imply	that	one	or	more	
psychiatric	risk	variants	at	12q24	are	co-inherited	with	reductions	in	mPFC	and	insula	grey	matter	
concentration.	The	results	of	these	analyses	were	reported	in	a	manuscript	recently	accepted	for	
publication	in	a	peer-reviewed	journal.		This	article	was	published:	Sprooten	E,	Gupta	CN,	Knowles	
EE,	McKay	DR,	Mathias	SR,	Curran	JE,	Kent	JW	Jr,	Carless	MA,	Almeida	MA,	Dyer	TD,	Göring	HH,	
Olvera	RL,	Kochunov	P,	Fox	PT,	Duggirala	R,	Almasy	L,	Calhoun	VD,	Blangero	J,	Turner	JA,	Glahn	DC.	
Genome-wide	significant	linkage	of	schizophrenia-related	neuroanatomical	trait	to	12q24.,	Am	J	
Med	Genet	B	Neuropsychiatr	Genet.	2015	Dec;168(8):678-86.	PMID:	26440917.		The	success	of	this	
similar	project	speaks	to	the	feasibility	and	potential	for	success	of	the	ASD	project.		
	

c.	What	opportunities	for	training	and	professional	development	has	the	project	
provided	at	the	Yale	University	site?	
Although	Dr.	Karen	Hodgson	joined	the	team	with	considerable	molecular	genetics	experience,	she	
did	not	have	formal	training	in	quantitative	or	statistical	genetics.	Thus,	in	order	for	Dr.	Hodgson	to	
perform	the	analyses	needed	for	the	current	project,	she	learned	a	new	skill	set	involving	the	use	of	
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complex	analytic	methods	in	the	service	of	furthering	our	understanding	of	human	brain	
connectivity	in	general	and	how	connectivity	is	disrupted	in	ASD.		

d.	How	were	the	results	disseminated	to	communities	of	interest?		

We	have	presented	preliminary	analyses	at	the	2015	annual	meeting	for	the	Organization	for	
Human	Brain	Mapping.		A	manuscript	describing	a	conceptually	similar	analysis	was	published	in	
the	American	Journal	of	Medical	Genetics	Part	B	(2015).	Finally,	our	epigenetic	aging	article	
appeared	in	the	Journal	of	Neuroscience	in	2017.		These	abstracts	and	paper	appear	in	the	
appendices.		

e.	What	do	you	plan	to	do	during	the	next	reporting	period	to	accomplish	the	goals?		

We	have	largely	met	the	goals	of	our	project.		We	clearly	documented	that	functional	connectivity	
alterations	found	in	ASD	is	under	genetic	control.		Although	we	were	not	able	to	definitively	identify	
a	gene	for	ASD	connectivity	deficits,	this	goal	was	an	extension	of	our	initial	aims.		Furthermore,	our	
efforts	to	link	autism	related	dysconnectivity	to	either	empirically	derived	gene	sets	or	to	further	
characterize	ASD	related	gene	networks	is	ongoing.		We	are	actively	working	to	secure	funding	for	
these	analyses.		

4. IMPACT	
a. What	is	the	impact	on	understanding	ASD	brain	development	of	the	project?		

As	outlined	above,	we	have	a	number	of	results	that	are	directly	relevant	to	the	proposed	project,	
further	demonstrate	the	plausibility	of	the	proposed	analyses	and	improve	our	understanding	of	
the	neurogenetics	of	human	brain	connectivity.	

	
b. What	was	the	impact	of	the	project	results	on	other	disciplines,	technology	

transfer,	or	society	beyond	science	and	technology?		

Other	Disciplines:	Neurogenetics.		Thus	far,	our	project	has	estimated	the	genetic	control	over	
functional	and	structural	connectivity	measures,	documented	that	independent	genetic	factors	
appear	to	influence	these	traits,	localized	chromosomal	loci	influencing	either	functional,	structural	
or	both	structural	and	functional	connectivity,	and	demonstrated	that	epigenetic	factors	influence	
white	matter	coherence.		These	results	are	relevant	for	ASD,	although	work	to	create	exact	imaging	
biomarkers	is	ongoing.		

Technology	Transfer:	Our	initial	findings	were	reported	in	an	international	scientific	meeting	in	May	
2015.	A	manuscript	describing	a	conceptually	similar	analysis	was	published	in	the	American	
Journal	of	Medical	Genetics	Part	B	(2015).	Finally,	our	epigenetic	aging	article	appeared	in	the	
Journal	of	Neuroscience	in	2017.		This	abstract	and	papers	appear	in	the	appendices.		

Society:	Nothing	to	Report	

	
5. CHANGES/PROBLEMS	

No	scientific,	design,	or	experiment	problems	have	occurred	and	thus	no	significant	changes	to	the	
project	are	proposed.		As	described	above,	we	completed	pre-processing	of	functional	and	
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structural	connectivity	measures	using	the	originally	proposed	methods.		However,	newer	surface-
based	methods	developed	by	the	Human	Connectome	Project	have	become	available	to	the	
scientific	community.		Thus,	we	have	implemented	these	methods	as	well	and	will	conduct	all	
analyses	in	parallel.			

	
6. PRODUCTS	

The	products	resulting	from	the	project	during	the	reporting	period	include	the	following	
conference	paper:		

• Glahn	et	al.,	“Shared	and	Unique	Genetic	Influences	on	Structural	and	Functional	
Connectivity,”	21st	annual	meeting	of	the	Organization	for	Human	Brain	Mapping,	Honolulu,	
HI	

• Sprooten	E,	Gupta	CN,	Knowles	EE,	McKay	DR,	Mathias	SR,	Curran	JE,	Kent	JW	Jr,	Carless	MA,	
Almeida	MA,	Dyer	TD,	Göring	HH,	Olvera	RL,	Kochunov	P,	Fox	PT,	Duggirala	R,	Almasy	L,	
Calhoun	VD,	Blangero	J,	Turner	JA,	Glahn	DC.	Genome-wide	significant	linkage	of	
schizophrenia-related	neuroanatomical	trait	to	12q24.,	Am	J	Med	Genet	B	Neuropsychiatr	
Genet.	2015	Dec;168(8):678-86.	PMID:	26440917.			

• Hodgson	K,	Carless	MA,	Kulkarni	H,	Curran	JE,	Sprooten	E,	Knowles	EE,	Mathias	S,	Göring	
HHH,	Yao	N,	Olvera	RL,	Fox	PT,	Almasy	L,	Duggirala	R,	Blangero	J,	Glahn	DC.	Epigenetic	Age	
Acceleration	Assessed	with	Human	White-Matter	Images.	J	Neurosci.	2017	May	
3;37(18):4735-4743.	PMID:	28385874	
	

	
7. PARTICIPANTS	AND	OTHER	COLLABORATING	ORGANIZATIONS	

a.		 What	individuals	have	worked	on	the	project?	  	

Work	on	this	project	has	been	limited	to	David	C	Glahn,	PhD,	the	PD/PI,	and	Dr.	Karen	Hodgson,	
post-doctoral	associate.	

David	C.	Glahn,	Ph.D.	(0.6	calendar	months),	years	1-2.	Partnering	Principal	Investigator	is	an	expert	
in	the	application	of	neurocognitive	and	neuroimaging	phenotypes	in	large-scale	behavioral	and	
molecular	genetic	studies	of	psychiatric	illnesses.	He	is	a	Professor	in	the	Department	of	Psychiatry,	
Yale	University	School	of	Medicine,	and	an	Olin	Neuropsychiatric	Research	Center	Scholar	where	he	
directs	the	Imaging	Genomics	laboratory.	As	outlined	in	the	Scope	of	Work,	Dr.	Glahn	has	ultimate	
responsibility	for	conducting	neurocognitive,	neuroimaging	and	behavioral	genetic	analyses	in	
support	of	Specific	Aim	3.	

Karen	Hodgson	(7.2	calendar	months,	or	60%	effort),	years	1-2.	Under	the	supervision	of	Dr.	Glahn,	
this	Dr.	Hodgson	has	conduct	neurocognitive,	neuroimaging	and	behavioral	genetic	analyses	in	
support	of	Specific	Aim	3.	In	addition,	she	liaisons	with	other	investigators	involved	in	the	project.	

b.		Has	there	been	a	change	in	the	active	other	support	of	the	PD/PI(s)	or	senior/key	
personnel	since	the	last	reporting	period?		

Nothing	to	Report	

c.		 What	other	organizations	were	involved	as	partners?		
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As	per	the	original	application,	the	other	organizations	involved	as	partners	are	the	University	of	
Texas	Health	Science	Center	San	Antonio	(Dr.	Fox,	the	overall	project	P.I.)	and	the	University	of	
California	San	Diego	site	(Dr.	Courchesne,	P.I.	at	that	site).		

8. SPECIAL	REPORTING	REQUIREMENTS	

COLLABORATIVE	AWARD:		This	project	is	part	of	a	Collaborative	Award	and	this	Progress	Report	is	
from	the	Yale	University	site	(Glahn).	Comparable	progress	reports	from	Dr.	Peter	Fox	at	the	
University	of	Texas	Health	Science	Center	San	Antonio	and	Dr.	Eric	Courchesne	at	University	of	
California	San	Diego	will	be	submitted	separately.	

9. APPENDICES	

Attached	is	the	published	abstract	for	Glahn	et	al.,	“Shared	and	Unique	Genetic	Influences	on	
Structural	and	Functional	Connectivity,”	21st	annual	meeting	of	the	Organization	for	Human	Brain	
Mapping,	Honolulu,	HI	

Sprooten	E,	Gupta	CN,	Knowles	EE,	McKay	DR,	Mathias	SR,	Curran	JE,	Kent	JW	Jr,	Carless	MA,	
Almeida	MA,	Dyer	TD,	Göring	HH,	Olvera	RL,	Kochunov	P,	Fox	PT,	Duggirala	R,	Almasy	L,	Calhoun	
VD,	Blangero	J,	Turner	JA,	Glahn	DC.	Genome-wide	significant	linkage	of	schizophrenia-related	
neuroanatomical	trait	to	12q24.,	Am	J	Med	Genet	B	Neuropsychiatr	Genet.	2015	Dec;168(8):678-86.	
PMID:	26440917	(pdf)	

Hodgson	K,	Carless	MA,	Kulkarni	H,	Curran	JE,	Sprooten	E,	Knowles	EE,	Mathias	S,	Göring	HHH,	Yao	
N,	Olvera	RL,	Fox	PT,	Almasy	L,	Duggirala	R,	Blangero	J,	Glahn	DC.	Epigenetic	Age	Acceleration	
Assessed	with	Human	White-Matter	Images.	J	Neurosci.	2017	May	3;37(18):4735-4743.	PMID:	
28385874	(pdf)	
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Glahn	et	al.,	“Shared	and	Unique	Genetic	Influences	on	Structural	and	Functional	Connectivity,”	21st	
annual	meeting	of	the	Organization	for	Human	Brain	Mapping,	Honolulu,	HI	

Abstract:	The	relationship	between	in	vivo	measures	of	structural	connectivity,	often	indexed	with	
diffusion-weighted	imagining,	and	functional	connectivity,	typically	measured	with	resting-state	
functional	MRI,	appears	to	be	complex.		While	structural	connections	appear	to	facilitate	some	
aspects	of	functional	connectivity,	functional	relationship	may	include	multiple	structural	
pathways.		However,	most	systems	neuroscience	models	of	brain	connectivity	suggest	that	
anatomical	and	physiological	processes	are	dependent,	in	part,	upon	common	neurobiological	
mechanisms.		While	there	is	growing	evidence	that	measures	of	functional	and	structural	
connectivity	are	influenced	by	genetic	factors,	little	is	known	about	potential	pleiotropy	(e.g.	the	
same	genes	influencing	both	structural	and	functional	connectivity).		Using	1606	individuals	from	
extended	pedigrees	with	both	resting-state	and	diffusion	weighted	scans,	we	(1)	establish	the	
heritability	of	structural	and	functional	connectivity	in	previously	defined	brain	networks,	(2)	use	
genetic	correlations	to	show	statistical	evidence	that	common	genes	influence	both	types	of	
measures,	and	(3)	show	that	specific	chromosomal	loci	influence	both	structural	and	functional	
connectivity.		
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Abstract

The insula and medial prefrontal cortex (mPFC) share functional, histological, transcriptional and 

developmental characteristics and they serve higher cognitive functions of theoretical relevance to 

schizophrenia and related disorders. Meta-analyses and multivariate analysis of structural 

magnetic resonance imaging (MRI) scans indicate that gray matter density and volume reductions 

in schizophrenia are the most consistent and pronounced in a network primarily composed of the 

insula and mPFC. We used source-based morphometry, a multivariate technique optimized for 

structural MRI, in a large sample of randomly ascertained pedigrees (N = 887) to derive an insula-

mPFC component and to investigate its genetic determinants. Firstly, we replicated the insula-

mPFC gray matter component as an independent source of gray matter variation in the general 
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population, and verified its relevance to schizophrenia in an independent case-control sample. 

Secondly, we showed that the neuroanatomical variation defined by this component is largely 

determined by additive genetic variation (h2 = 0.59), and genome-wide linkage analysis resulted in 

a significant linkage peak at 12q24 (LOD = 3.76). This region has been of significant interest to 

psychiatric genetics as it contains the Darier’s disease locus and other proposed susceptibility 

genes (e.g. DAO, NOS1), and it has been linked to affective disorders and schizophrenia in 

multiple populations. Thus, in conjunction with previous clinical studies, our data imply that one 

or more psychiatric risk variants at 12q24 are co-inherited with reductions in mPFC and insula 

gray matter concentration.

Keywords

Extended pedigrees; magnetic resonance imaging; insula; medial prefrontal cortex; quantitative 
trait locus

1. Introduction

Schizophrenia is a heritable disorder (Sullivan et al., 2003) but the genetic variation 

accounting for its inheritance is complex and difficult to characterize. Many genetic 

markers, both common and rare, are thought to contribute to genetic risk for schizophrenia 

and related disorders (Gratten et al., 2014). Efforts to localize susceptibility variants and 

investigate their downstream effects on protein synthesis and interactions are hindered by 

the heterogeneity and complexity of the clinical phenotype, and by the small effect sizes of 

the common variants typically identified by large-scale association studies. Family-based 

designs offer increased power to identify genetic variants, especially rare variants with 

potentially larger effect sizes (Williams and Blangero 1999). In addition, intermediate 

phenotypes that are heritable and genetically associated with a clinical diagnosis can 

facilitate variant localization, both because of their quantitative nature and because of their 

assumed proximity to the genetic effects (Glahn et al., 2007; Gottesman and Gould 2003). 

Simultaneously, these endophenotypes (Gottesman and Gould 2003) provide insights into 

the variants’ influences on biological processes, yielding clues to pathological mechanisms 

that contribute to the expression of the clinical phenotype.

Neuroanatomical traits derived from magnetic resonance imaging (MRI) are logical 

endophenotypes as their selection can be informed by a large body of literature in clinical 

samples, and they are likely to be biologically intermediate between genes’ functions and 

their more remote effects on behavioral phenotypes (Glahn et al., 2007). Despite marked 

clinical and methodological heterogeneity, multiple meta-analyses of voxel-based 

morphometry studies in schizophrenia have identified the insula and the medial prefrontal 

cortex (mPFC) as the neuroanatomical regions most consistently associated with 

schizophrenia across all published case-control studies (Bora et al., 2011; Fornito et al., 

2009; Glahn et al., 2008; Palaniyappan et al., 2012; Shepherd et al., 2012).

Source-based morphometry (SBM) (Xu et al., 2009) is a multivariate method that 

decomposes gray matter concentration images, derived from T1-weighted MRI scans, into 

spatially independent sources. The outcome is a matrix of weights for each individual on 
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each source map, which can be used as dependent variables instead of voxel-wise values. As 

such, SBM dramatically reduces the number of comparisons typically performed in voxel-

based analyses. SBM also addresses other common problems in MRI analysis, including the 

choice of smoothness kernel and the non-stationarity of image smoothness (Hayasaka and 

Nichols 2003). Remarkably, the application of SBM has repeatedly identified a single 

component comprising the mPFC and the insula – the same regions as the case-control 

meta-analyses (15-19) – as the most affected anatomical network in schizophrenia patients 

(Gupta et al., In Press; Kasparek et al., 2010; Turner et al., 2012; Xu et al., 2009). Thus, 

following an endophenotype strategy, quantification and localization of the genetic 

influences on this schizophrenia-associated neuroanatomical trait could provide testable 

candidate genes and generate novel hypotheses about mechanisms underlying susceptibility 

for schizophrenia.

Here, we used SBM in a large sample of randomly ascertained pedigrees. Our aims were 

threefold: (1) to replicate the schizophrenia-associated insula-mPFC source as a spatially 

independent component in a new sample representative of the general population; (2) to 

estimate its heritability; and (3) to localize this genetic influence to specific genomic regions 

using linkage analysis.

2. Materials and Methods

2.1 GOBS extended pedigree sample

Participants were individuals of Mexican American ancestry who took part in the Genetics 

Of Brain Structure and Function Study (GOBS) (McKay et al., 2014; Olvera et al., 2011), 

which is an extension of the San Antonio Family study (Mitchell et al., 1996). Individuals 

were randomly selected from the community with the only constraints that they were part of 

a large family of Mexican-American ancestry and lived within the San Antonio region. For 

the present analysis, subjects were excluded for MRI contraindications, documented medical 

history of neurological illness, or any neurological event visible on the T1-weighted scans 

(see section 2.3). Of the participants in the final analysis, 22 self-reported history of a 

neurological event or illness (18 stroke, 1 Parkinson’s disease, 3 multiple sclerosis, 1 brain 

surgery), but excluding these individuals did not change the pattern of results presented. 

After quality control procedures (see below) T1-weighted scans were available for 887 

individuals (532 female), from 69 pedigrees ranging from 2 to 90 family members, and 46 

singletons. Participants were between 18 and 85 years old (mean= 44; standard 

deviation(SD)=15).

History of axis-1 disorders was assessed using the Mini International Neuropsychiatric 

Interview (Sheehan et al., 1998). Of the individuals included in the main analysis, four had a 

diagnosis of schizophrenia, fifteen of bipolar disorder, and four of schizoaffective disorder. 

For our main results, we performed additional analyses excluding these individuals (see 

results section). Additionally, 297 participants had a history of major depression, and 118 

had a history of an anxiety disorder, and we performed additional analyses co-varying for 

these diagnoses.
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2.2 MR imaging and processing in GOBS

An MRI protocol optimized for cortical gray matter measurements (Kochunov and Davis 

2009), with a retrospective motion correction technique (Kochunov et al., 2006), was used. 

For each participant, seven T1-weighted scans were obtained in a Siemens 3 Tesla Trio 

scanner located at the Research Imaging Institute, University of Texas Health Science 

Center, using a magnetization prepared sequence with an adiabatic inversion contrast-

forming pulse (scan parameters: TE/TR/TI=3.04/2100/785 ms, flip angle=11 degrees). As in 

(Kochunov et al., 2006), for each subject the seven volumes were coregistered and averaged.

Upon visual inspection, five individuals were excluded for neurological abnormalities, and 

one for a scanner artifact. The resulting images were further processed in SPM5 (http://

www.fil.ion.ucl.ac.uk/spm/software/spm5/), using the same parameters as in Turner et al. 

(Gupta et al., In Press; Turner et al., 2012) and Xu et al. (Xu et al., 2009). Gray matter maps 

were nonlinearly normalized, resliced to a 2mm3 MNI template and segmented into gray 

matter, white matter and cerebrospinal fluid (Ashburner and Friston 2000). The accuracy of 

the segmentations and normalizations was ensured by visual inspection and by calculating 

correlations with the average normalized gray matter map for the entire sample. Five 

individuals were excluded because of segmentation or normalization problems.

2.3 Source-based morphometry

SBM (Kasparek et al. 2010, ; Xu et al., 2009) (http://mialab.mrn.org/software/gift/) is a 

multivariate method that decomposes structural images into spatially distinct sources using 

independent component analysis (Bell and Sejnowski 1995). The decomposition of the 

subject-by-voxel matrix (X) results in a subject-by-component mixing matrix (W), which 

contains the weights of the subjects on each component; and a component-by-voxel source 

matrix (C), which contains the loadings of each voxel for each component. This 

decomposition1 can be noted as follows (Calhoun et al., 2001):

And therefore:

For a subject i, the weight of a component j reflects the overall gray matter concentration for 

that component map of n voxels. More quantitatively, the weight can be conceived of as the 

sum of each voxel’s observed gray matter value multiplied by each voxel’s loading on the 

component:

1In practice this decomposition of interest is preceded by an initial principal component analysis step on the subject-by-voxel matrix 
X to obtain a square matrix RX, as explained in Calhoun et al. (32). For clarity we have omitted this step from the current explanation 
and also note the inverse of C as C−1 even though it would technically be non-square if we omitted the PCA step.
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These weights can be used as dependent variables in subsequent analyses.

The optimal number of components for our data was estimated according to an information 

criteria algorithm (Li et al., 2007). To determine the stability of the decomposition, ICASSO 

(Himberg et al., 2004) was used, with random value initiation and bootstrapping options, for 

20 repetitions.2 The stability indices for all components were higher than 0.97.

2.4 Relevance to schizophrenia: application to an independent case-control cohort

While we had strong a priori evidence for the involvement of insula and mPFC gray matter 

in schizophrenia (Bora et al., 2011; Fornito et al., 2009; Glahn et al., 2008; Palaniyappan et 

al., 2012; Shepherd et al., 2012; Turner et al., 2012), we also directly verified the relevance 

of the currently derived component to brain morphology of schizophrenia in a separate 

dataset of 936 healthy control participants (HC) and 784 patients with schizophrenia (SCZ), 

aggregated from 8 independent studies. More detailed information about the case-control 

sample are presented in the Supplementary Materials and in Gupta et al. (Gupta et al., In 

Press).

Using spatial-temporal regression, a method available in the SBM toolbox, we obtained 

weighting scores for each individual in the case-control dataset for the components 

identified using the GOBS data. By entering these as the dependent variable in a regression 

with study site, diagnosis and their interactions as factors, we tested directly whether gray 

matter concentration defined by the component extracted from the GOBS dataset was 

reduced in patients with schizophrenia.

In addition, we quantified the similarity between the components derived from the GOBS 

and the case-control datasets by calculating (1) pairwise correlations of the voxel loading 

values across maps from both datasets; and (2) Dice coefficients of the thresholded maps at 

z>3, where the Dice coefficient is defined as twice the number of voxels with the same value 

in both maps divided by total number of voxels (within the masks).

2.5 Heritability analysis

All quantitative genetics analyses were performed in SOLAR (Almasy and Blangero 1998), 

which decomposes the variance of a trait into genetic and environmental components by 

modeling the covariance between individuals as a function of their genetic proximity. 

Typically, the trait variance is decomposed into an additive genetic effects (heritability), 

covariate effects (sex, age, age2, age × sex, age2 × sex), and residual environmental effects. 

We also tested for cubic effects of age, but these were negligible (p > 0.9) and dropped from 

the model. The significance of each variance component is assessed by a likelihood-ratio 

test comparing the final model to the model without the variable of interest. Using the 

subject’s weights on the insula-mPFC component as a trait, this method yielded an index of 

the overall heritability (h2) of gray matter concentration within the anatomical regions of the 

component. Prior to running SOLAR, eight outliers (mean+− 3*SD) were removed from the 

2Note that in this case bootstrapping is applied to estimate the degree of variability across iterations, and not – as commonly is the 
case - to estimate a null-distribution, which would require many more iterations.
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data and the remaining weights were transformed using an inverse normalization 

transformation.

2.6 Linkage and association analyses

Linkage analysis was performed in SOLAR, by adding location-specific identity-by-descent 

(IBD) information to the above heritability model. IBD means that two individuals within 

the same pedigree not only share the same genotype, but also inherited it from the same 

founder. Here, for the GOBS pedigrees the IBD matrices were estimated as in Curren et al. 

(2013), using the Loki package (Heath et al., 1997). In brief, for 15,000 SNPs3 across the 

genome, which were selected to be in linkage equilibrium (r<0.2), Loki applies Marcov 

Chain Monte Carlo sampling methods to empirically estimate the pairwise IBD probabilities 

for each SNP between each individual (Heath et al., 1997).

The significance of the contribution of each locus is quantified by a LOD score, defined as 

the logarithm (base 10) of the ratio of the likelihood of the model with the locus-specific 

IBD matrix to the model without this component (i.e. the same model used to test 

heritability). The LOD threshold for genome-wide significance was determined a priori for 

the complex pedigree structure of GOBS. This calculation is based on Gaussian models of 

the probability of crossover rates under the null distribution (Feingold et al., 1993), given 

our pedigree structure, the number of SNPs in our IBD matrix and known Haldane maps. 

Given our pedigree structure and distribution of markers, a LOD of 2.9 is required for 

genome-wide significant linkage (genome-wide α < 0.05).

To further determine whether any specific SNPs were driving the observed linkage, 

association analysis was performed for all common SNPs under the linkage peak (defined as 

all consecutive loci with LODs greater than half the maximum LOD). DNA was extracted 

from lymphocytes, genotyped using Illumina beadchips (Human1M-Duo Beadchip; or 

HumanHap550 BeadChip in tandem with HumanHap450S Beadchip), and checked for 

accordance with Mendelian consistency as described previously (Sprooten et al., 2014). To 

account for pedigree structure, association analysis was performed in SOLAR, using 

methods identical to (Sprooten et al., 2014). In brief, the minor allele dosage of each tagging 

SNP is added as a covariate to the model used for heritability. A corrected p-value was 

calculated according to family-wise error rate at 5%, by calculating in SOLAR the effective 

number of independent SNPs under the peak, adjusted for linkage disequilibrium (LD) 

(Moskvina and Schmidt 2008).

3. Results

3.1 Identification and validation of insula-mPFC component

The method of Li (Li et al., 2007) estimated that the GOBS gray matter images were 

optimally explained by 21 independent sources.

3Note that here the SNPs are not used to test for association testing, but merely to represent an independent locus for IBD estimation 
to perform linkage.
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As hypothesized, one component (Figure 1) closely resembled the insula-mPFC clusters 

resulting from the aforementioned voxel-based morphometry meta-analyses (Bora et al., 

2011 ; Palaniyappan et al., 2012; Shepherd et al., 2012), as well as previous SBM studies 

(Gupta et al., In Press; Turner et al., 2012; Xu et al., 2009). The bilateral insular parts of this 

component contained voxels in the insula and temporal pole, extending to the inferior 

frontal, orbitofrontal, opercular and superior temporal gyri. The frontal cluster of the 

component contained voxels in the anterior cingulate and paracingulate gyrus, frontal pole, 

medial frontal cortex and superior frontal gyrus. A small number of voxels were negatively 

correlated with the mPFC and insula, mostly containing white matter in the superior parietal 

lobes and splenium.

In line with qualitative comparisons to the literature, spatio-temporal regression in the case-

control dataset revealed that the weights on this insula-mPFC component were highly 

significantly different between schizophrenia patients and healthy participants (F = 292.69, 

p = 1.19*10−60), in the absence of site-by-diagnosis interactions (F=1.24, p=0.22). The 

correlation coefficient of the loadings across voxels between this map and the map derived 

from the case-control data was 0.58 and the Dice coefficient was 0.97, both indicating a high 

degree of overlap.

The present paper focuses on the insula-mPFC cluster. We provide information about all 21 

component maps including heritability estimates and case-control statistics in the 

Supplementary Materials.

3.2 Quantitative trait localization

The polygenic model in SOLAR using the weights of the insula-mPFC component as 

quantitative trait revealed that gray matter in this region is significantly heritable (h2=0.59; 

p=1.78*10−15). Linkage analysis resulted in a genome-wide significant peak on 

chromosome 12 at 12q24 (12q24.11-12q24.23; maximum LOD=3.76; Figure 2).

The linkage peak contained 392 tagging SNPs. Taking into account LD, the peak-wide 

corrected p-value for SNP associations was 1.64*10−4. None of the SNPs were peak-wide 

significant (Supplementary Figure 2). The strongest association (p=7.71*10−4) was found 

for rs7133582, an intronic SNP in a transcription factor binding site in KSR2. Several other 

nearby SNPs had modest to strong associations with the insula-mPFC trait, altogether 

spanning 12q24.21 to 12q24.23.

Pedigree-specific LODs were all <1, indicating that linkage was not driven by any specific 

pedigree. The heritability and the linkage results remained similar when excluding 

individuals with self-reported history of neurological events or illness, schizophrenia, 

schizoaffective disorder and bipolar disorder (h2=0.52; LOD=3.19); and when co-varying 

for history of anxiety disorders (h2 = 0.60; LOD=3.06) and major depressive disorder 

(h2=0.60; LOD=2.97). There were no significant effects of history of major depression (p > 

0.8) or anxiety disorders (p>0.3) on the component’s weights.

To further assess the value of the SBM approach, we also extracted gray matter 

concentration averages within a binarized mask of the component map (z > 3) for each 
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individual. This univariate phenotype was less heritable (h2=0.47, p=3.08*10−11), and the 

maximum LOD score on chromosome 12 was found at the same marker at 12q24 as the 

multivariate phenotype, but was much lower (LOD = 1.82).

4. Discussion

We used multivariate analyses of MRI images to extract a gray matter component 

comprising the insula and the mPFC, which have previously been shown be the most 

pronounced (Gupta et al., In Press; Turner et al., 2012) and most consistently implicated 

gray matter regions in schizophrenia (Bora et al., 2011; Fornito et al., 2009; Glahn et al., ; 

Palaniyappan et al., 2012; Shepherd et al., 2012). We directly confirmed that gray matter 

defined by our empirically derived component was reduced in patients with schizophrenia 

from an independent case-control sample. Next, we found that the overall gray matter 

concentration in this component is heritable, and following genome-wide linkage analysis, 

we identified a quantitative trait locus for this component at 12q24.

4.1 Replication and interpretation of insula-mPFC component

So far, SBM has been predominantly applied to case-control studies in schizophrenia (Gupta 

et al., In Press; Turner et al., ; Xu et al., 2009). Together these studies investigated three 

independent samples, in four separate analyses, all of which highlight the insula-mPFC 

component as the most important gray matter component in association with schizophrenia. 

The replication and heritability of this component in a sample representative of the general 

population supports the reliability of this technique, and indicates that gray-matter variation 

in this network is influenced by genetic factors.

The notion of the mPFC-insula as a coherent network is consistent with histological, 

anatomical, functional and developmental similarities between these regions. The insula and 

the mPFC display similarly high rates of cortical thickening during neonatal development 

(Lyall et al., 2014) and throughout childhood (Sowell et al., 2004). Histologically they are 

also similar, most notably because of the distinct and exclusive presence of von Economo 

neurons in these regions (Butti et al., 2013). As key regions of the limbic system, and more 

specifically the “salience network” (Seeley et al., 2007), the mPFC and insula interact 

intensely to serve higher-order cognitive processes such as social and self-awareness, 

intuition, error monitoring and interoception. As such, their dysfunction has been postulated 

to lie at the core of the experience of psychotic symptoms (Kapur 2003; Palaniyappan et al., 

2012; Pu et al., 2012). In a complimentary theory, interactions between superior temporal, 

inferior frontal regions and the mPFC have long been hypothesized as key to the experience 

of auditory verbal hallucinations (Fletcher et al., 1999; Stephan et al., 2009).

4.2 Locus 12q24

We identified a 10Mb region at 12q24 linked to the insula-mPFC gray matter phenotype. 

This region has been of great interest to psychiatric genetics since Craddock et al. (Craddock 

et al., 1994) reported a cosegregation of bipolar disorder and Darier’s disease, a skin disease 

that is caused by mutations in ATP2A2 (Bashir et al., 1993; Craddock et al., 1993) 

(Supplementary Figure 2). Subsequently, dozens of studies reported linkage of 12q24 to 
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affective disorders in the UK, Ireland, Germany, Denmark, Canada, Iceland and Finland in 

locations spanning from 12q22 to 12q24 (Ekholm et al., 2003; Ewald et al., 2003; Jones et 

al., 2002; McInnis et al., ; Morissette et al., 1999). Fewer but better powered studies have 

linked schizophrenia to 12q24 with loci mostly concentrated in 12q24.11-12q24-31 

(113-128 Mb; Assembly GRCh37/hg19) (Bulayeva et al., 2007; DeLisi et al., 2002; Faraone 

et al., 2006; Holmans et al., 2009; Moises et al., 1995; Williams et al., 2003). This narrowed 

region matches our mPFC-insula locus, as well as another linkage result in relation to 

neurocognitive performance in schizophrenia patients (Lien et al., 2010).

In our association study we were unable to localize our linkage signal to any specific 

variants. The strongest association was found for rs7133582, a SNP in a transcription factor 

binding site of KSR2, a functionally poorly characterized gene that is involved in the MAPK 

and ERK signaling pathways (Dougherty et al., 2009). Similarly, despite the considerable 

interest in the region, previous studies have not been able to unequivocally identify specific 

genes that may drive linkage results at 12q24. Although in the most recent genome-wide 

association analysis of schizophrenia the Psychiatric Genomics Consortium identified a top 

SNP in the Darier’s gene ATP2A2 with p < 10−9 (Schizophrenia Working Group of the 

Psychiatric Genomics 2014), in the original Darier’s disease pedigrees risk for psychiatric 

disorders did not map to ATP2A2 itself (Jacobsen et al., 2001) and the co-segregation of 

psychiatric symptoms with Darier’s disease was thought to be due to nearby variation in LD 

(Jones et al., 2002). Other efforts to identify specific neuropsychiatric risk genes at 12q24 

overall yielded inconclusive results (Dawson et al., 1995; Green et al., 2005; Green et al., 

2009; Jacobsen et al., 1996; Shink et al., 2005). Several large-scale family studies highlight 

the genetic heterogeneity at 12q24 (Bulayeva et al., 2007; McInnis et al., 2003; Shink et al., 

2005), and it has been suggested that the wider 12q23-12q24 region contains multiple genes 

that may influence neuropsychiatric phenotypes (Barden et al., 2006; Shink et al., 2005). 

The original fine-mapping studies suggested CUX2, FAM109A (or FLJ32356) (Glaser et al., 

2005), P2RX7, CAMKK2, (Barden et al., 2006), and LINC00944 (“Slynar gene”) 

(Buttenschon et al., 2010; Kalsi et al., 2006). However 12q24 also contains the 

schizophrenia candidate genes DAO (Verrall et al., 2010) and NOS1 (Cui et al., ; Silberberg 

et al., 2010; Wockner et al., 2014). Interestingly, during fetal development NOS1 is 

transiently highly expressed in the mPFC and insula only (Funk and Kwan 2014), and 

variants in NOS1 have been associated with prefrontal morphology and function (Rose et al., 

2012). Finally, rs7294919, the genome-wide association with hippocampal volume 

identified by the ENIGMA and CHARGE consortia (Bis et al., 2012; Stein et al., 2012) also 

lies under our peak.

4.3 Strengths and limitations

An advantage of our multivariate voxel-based analysis is that it gave rise to a reliably 

identifiable and data-driven single trait that was known to be relevant to schizophrenia based 

on a large body of pre-existing literature. However, a limitation of all voxel-based 

techniques is that the concentration values bear an indirect relationship to the physiological, 

morphological and cellular properties within each voxel. Both regional thickness and surface 

area contribute independently to voxel-wise gray matter concentrations (Rimol et al., 2012; 

Winkler et al., 2010), and likely local cortical curvature and white matter morphology also 
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play a role. As such, an understanding of the biological mechanisms of the genetic effects 

we identified requires further specification of the morphological properties that contribute to 

the schizophrenia-related phenotype we investigated here.

Secondly, there is a multitude of a priori evidence and a strong rationale for the relevance of 

our quantitative trait to schizophrenia, which we also directly confirmed in an independent 

case-control dataset. However, a limitation of our study, as of most intermediate phenotype 

studies, is that neither endophenotype-disease associations nor quantitative genetics analyses 

directly test the assumption that the endophenotype lies on the causal pathway from genetic 

risk variants to development of disease. This is a general limitation of the field that can only 

truly be addressed by longitudinal designs, which are difficult to obtain to the same quantity 

as the data we present here, and to this date lack the statistical power and/or suitable 

pedigree structures for gene localization and identification.

Thirdly, while our linkage peak was not driven by any specific families within our sample, 

the detection of a genetic signal that is potentially obscured by locus heterogeneity (whether 

caused by rare or common variants) is likely facilitated by the use of a quantitative 

intermediate phenotype and the recruitment of large pedigrees. However, as discussed, we 

were unable to localize the genetic effects to any specific genes or variants. Large-scale 

family-based analysis of deep sequence data may be necessary to obtain more definitive 

answers regarding which and to what extent specific genes at 12q24 influence brain 

morphology and neuropsychiatric phenotypes.

4.4 Conclusions

There is compelling evidence that gray matter concentration in the insula and mPFC is 

reduced in patients with schizophrenia and in their unaffected family members. The genomic 

region 12q24 has been linked to psychiatric disorders in multiple populations worldwide and 

contains many genes of interest for neuropsychiatric phenotypes. Our findings indicate that 

genetic variation in this region also contributes to gray matter concentration in the insula and 

mPFC in the general population. Thus, mPFC and insula morphology are likely 

neuroanatomical correlates of schizophrenia that are co-inherited with schizophrenia 

susceptibility variants at 12q24.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. The insula-mPFC component derived from SBM analysis in GOBS
Insula-mPFC component map showing the voxels that primarily contribute to the component 

of interest, and that covary highly with one another across individuals in the GOBS sample. 

Voxels loading positively (z > 2.5) on the component are colored red-to-yellow, and voxels 

loading negatively (z < −2.5) are colored blue-to-light blue. Images are in radiological 

convention.
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Figure 2. Linkage peak on chromosome 12 at 12q24 for weights on the insula - medial prefrontal 
cortex component
LOD scores plotted against location on chromosome 12. The maximum LOD is 3.76 at 

12q24. The threshold for genome-wide significance is at 2.9, as indicated by the dashed line.
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White-Matter Images
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The accurate estimation of age using methylation data has proved a useful and heritable biomarker, with acceleration in epigenetic age
predicting a number of age-related phenotypes. Measures of white matter integrity in the brain are also heritable and highly sensitive to
both normal and pathological aging processes across adulthood. We consider the phenotypic and genetic interrelationships between
epigenetic age acceleration and white matter integrity in humans. Our goal was to investigate processes that underlie interindividual
variability in age-related changes in the brain. Using blood taken from a Mexican-American extended pedigree sample (n � 628; age �
23.28 –93.11 years), epigenetic age was estimated using the method developed by Horvath (2013). For n � 376 individuals, diffusion
tensor imaging scans were also available. The interrelationship between epigenetic age acceleration and global white matter integrity was
investigated with variance decomposition methods. To test for neuroanatomical specificity, 16 specific tracts were additionally consid-
ered. We observed negative phenotypic correlations between epigenetic age acceleration and global white matter tract integrity (�pheno �
�0.119, p � 0.028), with evidence of shared genetic (�gene � �0.463, p � 0.013) but not environmental influences. Negative phenotypic
and genetic correlations with age acceleration were also seen for a number of specific white matter tracts, along with additional negative
phenotypic correlations between granulocyte abundance and white matter integrity. These findings (i.e., increased acceleration in epigenetic age
in peripheral blood correlates with reduced white matter integrity in the brain and shares common genetic influences) provide a window into the
neurobiology of aging processes within the brain and a potential biomarker of normal and pathological brain aging.

Key words: aging; epigenetics; genetics; white matter integrity

Introduction
The human population is aging at a rapid rate as the number of
older persons have increased sharply within recent years (United

Nations Department of Economic and Social Affairs Population
Division, 2015). Between 2014 and 2060, the U.S. population of
individuals over 65 year is expected to more than double, from
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Significance Statement

Epigenetic measures can be used to predict age with a high degree of accuracy and so capture acceleration in biological age, relative
to chronological age. The white matter tracts within the brain are also highly sensitive to aging processes. We show that increased
biological aging (measured using epigenetic data from blood samples) is correlated with reduced integrity of white matter tracts
within the human brain (measured using diffusion tensor imaging) with data from a large sample of Mexican-American families.
Given the family design of the sample, we are also able to demonstrate that epigenetic aging and white matter tract integrity also
share common genetic influences. Therefore, epigenetic age may be a potential, and accessible, biomarker of brain aging.
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46.2 million to 98 million (Mather et al., 2015). An aging popu-
lation brings with it an increasing urgency to understand the
processes that lead to normal age-related decline in both physical
and mental abilities as well as in age-associated illness. Given
individual differences in the rate of age-related changes, the iden-
tification of biomarkers for vulnerability to deleterious aging ef-
fects and improved understanding of the mechanisms involved in
healthy aging is invaluable. Among the more successful age-
related biomarkers to date are indices based upon epigenetic vari-
ation (Fraga et al., 2005; Horvath et al., 2012; Hannum et al.,
2013; Horvath, 2013; Teschendorff et al., 2013; Weidner et al.,
2014; Jones et al., 2015), particularly the pan-tissue “epigenetic
clock” developed by Horvath (2013). This clock is highly accurate
in predicting age across a large number of different tissues, can be
applied to data obtained for both the 27K and 450K Illumina
Methylation BeadChips and has been shown to be predictive of a
number of age-associated phenotypes (Horvath and Ritz, 2015;
Marioni et al., 2015a, b).

The brain is of particular interest in aging, as cognitive decline
is one of the greatest health threats of old age (van Boxtel et al.,
1998). Additionally, the brain indirectly regulates aging re-
sponses in various organs (Bishop et al., 2010). Among in vivo
measures of brain aging, white matter tract integrity (as indexed
by fractional anisotropy [FA] from diffusion weighted MR im-
ages) is highly sensitive to both healthy and pathological aging
(Moseley, 2002; Sullivan and Pfefferbaum, 2006; Giorgio et al.,
2010; Teipel et al., 2010; Cox et al., 2016). Although FA measures
are heritable (Jahanshad et al., 2013; Sprooten et al., 2014; Koc-
hunov et al., 2015) and known to decline with age, Glahn et al.
(2013) showed that genetic influences on white matter do not
vary as a factor of age (no evidence for a gene by age interaction
was found), in contrast with analyses for cognitive traits. Addi-
tionally, the specific biological mechanisms that influence white
matter integrity are not yet known.

To determine whether variation in white matter integrity is
associated with acceleration in epigenetic age, we analyzed their
interrelationship in large, randomly ascertained pedigrees. Spe-
cifically, we calculated an estimator of epigenetic age for each
subject, using a weighted average across 353 CpG sites (after Hor-
vath) captured from blood samples. We then determined
whether variation in this epigenetic age was correlated with vari-
ation in tract-based FA measures while controlling familial rela-
tionships (and after accounting for covariates of age, sex, and
blood cell composition effects on epigenetic profiles). By using a
family-based cohort, we considered not only phenotypic rela-
tionships, but also any underlying genetic correlations between
these two heritable traits. We observed that accelerated epigenetic
age was associated with reduced white matter integrity both glob-
ally and in a number of specific brain regions. This relationship
was underpinned by shared genetic influences. We additionally
investigated the relationship between epigenetic age acceleration
and white matter hyperintensities, to consider the specificity of
the relationship with FA.

Materials and Methods
Subjects. The Genetics of Brain Structure and Function study includes
individuals recruited from large multigeneration Mexican-American
families within San Antonio, Texas (Olvera et al., 2011). This is a subset
of the San Antonio Family Study cohort, which was recruited pseudo-
randomly with the constraints that participants must live within the San
Antonio region, be Mexican-American in ancestry, and have at least six
first-degree relatives (Mitchell et al., 1996; Puppala et al., 2006). In this
study, we considered the 628 individuals with epigenetic age estimates,

from 38 families (containing between 2–72 subjects, mean pedigree
size � 14.25) and an additional 14 genetically unrelated spouses. Of these
628 subjects with epigenetic age estimates, 376 had diffusion tensor im-
aging (DTI) data also available. DTI scans were obtained on average 3.77
years (SD 1.61 years) after blood samples were drawn for the assessment
of epigenetic methylation profiles. In all cases, the chronological age used
is age at blood draw, but results are not substantially altered if this is
substituted for age at DTI scan. Numbers reflect final totals after any
individuals were removed during QC steps.

Epigenetic measures. Full details of methylation assays and preprocess-
ing were described previously (Kulkarni et al., 2015). Briefly, peripheral
blood samples were used to obtain 500 ng of DNA. Bisulfite conversion
was performed; then methylation profiling was undertaken using the
Infinium HumanMethylation450 BeadChip assay (Illumina). At each
CpG site, methylation was quantified on a scale from 0 (fully unmethyl-
ated) to 1 (fully methylated). Probes that were located on the sex chro-
mosomes (n � 11,648), in non-CpG loci (n � 2994), or contained SNPs
(n � 65) were excluded.

Calculating epigenetic age and age acceleration. The method developed
by Horvath (2013) was used to calculate epigenetic age for each individ-
ual using the available online age calculator (https://dnamage.genetics.
ucla.edu). This approach uses DNA methylation levels of 353 age-
predictive CpG sites (originally identified by Horvath, 2013, using an
elastic net penalized regression model). This method has been shown to
generate a predicted epigenetic age (labeled “DNAmAge” within the soft-
ware) that correlates highly with chronological age and is accurate across a
wide range of different cell and tissue types (Horvath, 2013), as well as being
predictive of a number of age-associated phenotypes (Horvath and Ritz,
2015; Marioni et al., 2015a, b). Thus, epigenetic age, as captured with this
method, is proposed to indicate the methylation-based age of a tissue.

In each model, the covariates of age, sex, age � sex, age 2, age 2 � sex,
and the cell count estimates described below were applied to the epige-
netic age (“DNAmAge”) variable. Throughout the manuscript, we de-
scribe the variation in the epigenetic age that remains after accounting for
these covariates as epigenetic age acceleration. Increased epigenetic age
acceleration indicates that the individual is epigenetically older than
would be expected given their chronological age and other covariates.

The epigenetic age calculator also calculated the predicted sex of each
sample; 5 samples were excluded because of inconsistencies in reported
and epigenetically predicted sex.

Estimating cell composition of whole blood samples. To consider the cell
composition of the whole blood samples, previously developed methods
for estimated cell counts (Houseman et al., 2012; Horvath, 2013) were
used within the epigenetic calculator software, as recommended by Hor-
vath (2013). Estimates of CD8 �CD28 �CD45RA � T cells, naive CD8 T
cells, CD4 T cells, plasmablasts, natural killer cells, monocytes, and gran-
ulocytes were obtained and included as covariates when calculating epi-
genetic age acceleration.

Neuroimaging measures. White matter integrity was assessed using
DTI. Scanning was performed using a multichannel head coil and Trio
3T system (Siemens) at the Research Imaging Institute, University of
Texas Health Science Center (San Antonio, TX). The DTI acquisition
protocol used a single-shot spin-echo, EPI sequence with a spatial reso-
lution of 1.7 � 1.7 mm (repetition time/echo time � 8000/87 ms, FOV
200 mm, 55 nonparallel gradient directions b � 700 s/mm 2 and three
non– diffusion-weighted images b � 0).

DTI scans were preprocessed using standard FSL pipelines (http://fsl.
fmrib.ox.ac.uk/fsl/fslwiki/FDT). The resulting FA images were processed
with tract-based spatial statistics (Smith et al., 2006). Images were non-
linearly registered to standard space, then averaged, and skeletonized to
create a study-specific tract-based spatial statistics template (binarized at
FA � 0.2). Next, the maximum nearby FA voxel was projected onto the
skeleton, resulting in one skeleton image per subject, reflecting FA values
of the centers of the white matter structure for that individual. The mean
FA from the whole white matter skeleton was extracted for each individ-
ual to give a global measure of white matter integrity. In addition, for
each subject, mean FA values were extracted from each region and aver-
aged across hemispheres for 16 specific tracts as defined by the Johns
Hopkins White Matter Atlas (Mori et al., 2008).
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Fluid Attenuated Inversion Recovery images were obtained using the
following parameters: TR/TE/TI/flip angle/ETL � 5 s/353 ms/1.8 s/180°/
221. Preprocessing involved the removable of nonbrain tissue, registra-
tion to the Talairach frame, and RF inhomogeneity correction. Then, an
experienced neuroanatomist used in-house software (http://ric.uthscsa.
edu/mango) to manually delineate white matter hyperintensities. This
was completed with high (r � 0.9) test-retest reliability. These methods
have been previously described in detail (Kochunov et al., 2010). Whole
brain white matter hyperintensity volumes were used.

Statistical analysis. Using SOLAR (Sequential Oligogenic Linkage
Analysis Routines), first the heritability of epigenetic age acceleration and
each DTI trait was calculated. As the global measure of white matter
integrity includes FA estimates across the brain, including more periph-
eral FA not captured by the 16 specific Johns Hopkins White Matter Atlas
tracts, our primary outcome was the phenotypic correlation between
epigenetic age acceleration and global white matter tract integrity, as
determined within a bivariate model. This phenotypic relationship was
decomposed to give genetic and environmental correlations. To assess
neuroanatomical specificity, we then examined the relationship between
epigenetic age acceleration and each of the 16 specific DTI tracts. Pheno-
typic correlations where p�0.05 were considered suggestive, and we applied
a false discovery rate (FDR) correction (Benjamini and Hochberg, 1995)
across the 16 specific tracts to account for multiple hypothesis testing (phe-
notypic correlations where FDR � 0.05 was considered significant). All phe-
notypic correlations reaching at least suggestive significance were
decomposed into genetic and environmental components.

Covariates in each model were age, sex, age � sex, age 2, and age 2 �
sex. Additionally, for epigenetic age acceleration, covariates of cell
marker abundance were also applied (given the effect of cell heterogene-
ity on methylation data from whole blood).

Results
Epigenetic age
The estimated epigenetic age (“DNAmAge”) of the sample
ranged between 20.42 and 86.48 years (mean � SD, 48.12 �
11.49 years). At the time of blood draw, the chronological age of
the sample ranged between 23.28 and 93.11 years (45.45 � 13.30
years). These two variables show a high correlation (�pheno �
0.932, p � 1.82 � 10�285), as depicted in Figure 1A. The average
difference between epigenetic and chronological age is 2.67 years
(so epigenetic age is typically higher than chronological age in this
sample) When we consider females and males separately, the
average difference between epigenetic and chronological age is
2.47 years in females and 3.04 years in males; but this difference
does not reach significance in our sample (previous findings sug-
gest the epigenetic aging rate of men is significantly higher than
for women) (Horvath et al., 2016a). For the whole sample, the
median absolute difference between epigenetic and chronologi-
cal age is 3.68 years, indicating that epigenetic and chronological
age differs by �3.68 years for 50% of the subjects. However, for
some individuals, differences between epigenetic and chronolog-
ical age were substantial; 7.00% of the sample have an absolute
difference of �10 years, and the maximum absolute difference
between epigenetic and chronological age is 15.96 years.

Epigenetic age acceleration index
As detailed in Materials and Methods, the epigenetic age acceler-
ation measure captures variation in epigenetic age (“DNAm-
Age”) estimates, after accounting for covariates of chronological
age, sex, age � sex, age 2, and age 2 � sex, and cell composition in
the blood. Positive values for epigenetic age acceleration indicate
that an individual is epigenetically older than would be expected
given these covariates, whereas negative values for epigenetic age
acceleration indicate that an individual is epigenetically younger
than expected. The measure is (by definition) uncorrelated with

age. The distribution of epigenetic age acceleration within the
sample is shown in Figure 1B, and the trait heritability estimate
(n � 628, h 2 � 0.374, p � 6.00 � 10�7, SE � 0.097) is in line with
previous findings (Horvath, 2013; Marioni et al., 2015a; Lu et al.,
2016). The proportion of variance accounted for by covariates in
this model was 0.864. We note that, in our sample, sex is not a
significant covariate (p � 0.305) but is retained in the model
nonetheless.

White matter integrity and chronological age
As has been previously shown, global white matter tract integrity
was heritable in the sample (h 2 � 0.506, p � 1.65 � 10�5). There
was no evidence of sex differences in white matter tract integrity
(sex is not a significant covariate in the model, p � 0.597), but we
did observe a strong age effect; age was a significant covariate in
the heritability model (p � 2.75 � 10�13) and there was a signif-
icant negative phenotypic correlation between global white mat-
ter integrity and age (Fig. 2). For the specific white matter tracts,
all were heritable and all, except the cingulum (hippocampus),
showed a significant negative phenotypic correlation with age.
Statistics are shown in Table 1.

Global white matter integrity and epigenetic age acceleration
Given that the integrity of white matter is correlated across the
brain and the global measure of white matter integrity includes
peripheral FA estimates not captured in specific tracts, we used
the global measure as an omnibus test, before examining specific
tract-based variation. The global index was negatively phenotyp-
ically correlated (�pheno � �0.119, p � 0.028) with the blood-
based epigenetic index of age acceleration, showing that
individuals with blood samples that are epigenetically older than
expected have reduced global FA in the brain. We decomposed
this phenotypic correlation into genetic and environmental in-
fluences, finding evidence for common genetic (�gene � �0.460,
p � 0.014), but not environmental (�env � 0.222, p � 0.174),
factors. As the genetic correlation was negative, it suggests that
the genes that increase epigenetic age acceleration in blood are
also associated with reduced white matter integrity in brain.

Both diabetes and hypertension are age-linked traits that have
been associated with changes in white matter tract integrity. We
confirmed that the relationship between epigenetic age accelera-
tion and global white matter tract integrity remained significant
when covarying for either diabetes (�pheno � �0.112, p � 0.038)
or hypertension (�pheno � �0.116, p � 0.031).

Specific tract-based white matter integrity and epigenetic
age acceleration
To determine neuroanatomic specificity of this effect, we next
examined FA in individual tracts. Seven of the 16 tracts were
phenotypically correlated with epigenetic age acceleration where
p � 0.05 (the anterior and posterior corona radiata, the genu,
body and splenium of the corpus callosum, the posterior tha-
lamic radiation, and the superior frontal-occiptal fasciculus).
Three of these (the posterior corona radiata and the body and
splenium of the corpus callosum) remain significant when using
an FDR correction of �0.05 across all 16 tracts. Results are shown
in Table 1. In all cases, the phenotypic relationship between age
acceleration and white matter integrity is negative, matching the
direction of effects observed with the global white matter measure.

For the seven tracts where the phenotypic correlation with
epigenetic age acceleration reached the nominal significance
threshold of p � 0.05, we decomposed the correlations into
genetic and environmental influences. Five tracts gave genetic
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Figure 1. Epigenetic age measures. Top, Chronological age compared with epigenetic age estimates; correlation slope shown. Light gray represents females. Dark gray represents males. Bottom,
Distribution of epigenetic age acceleration measure (i.e., epigenetic age covarying for age, sex, age � sex, age 2, and age 2 � sex, and cell composition in blood). If values are �0 (to the right of
the vertical line), this indicates individuals have epigenetic age estimates that are older than would be expected given the covariates; if values are �0, this indicates that epigenetic age estimates
are younger than expected.
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correlations where p � 0.05 (i.e., all traits except the posterior
thalamic radiation and superior frontal-occipital fasciculus). In
each case, the genetic correlation was negative, as with the global
FA measure.

Only the anterior corona radiata shows evidence of shared
environmental influences with age acceleration (�environ � 0.428,
p � 0.013), but in this case the relationship is positive, indicating
that environments that are linked to increased epigenetic age
acceleration are also associated with increased white matter in-
tegrity in this tract.

White matter hyperintensity
There is evidence that white matter hyperintensity lesions may
also track with age. However, in our sample, there was not a linear
relationship with age across adulthood; instead, we observed that
larger hyperintensity volumes only appear beyond the fifth de-
cade of life (Fig. 3), in line with previous findings (Habes et al.,
2016). Reflecting this, the phenotypic correlation with age, while
still highly significant (�pheno � 0.426, p � 1.12 � 10�15), is lower
for white matter hyperintensity volume than for white matter
integrity. Reflecting this weaker relationship with age across
adulthood, the phenotypic correlation between white matter hy-

perintensity volume and epigenetic age acceleration is not signif-
icant (�pheno � 0.097, p � 0.063).

Cell count estimates
In light of a previous study, which observed that both epigenetic
age acceleration and granulocyte cell counts are related to Parkin-
son’s disease (Horvath and Ritz, 2015), we undertook a second-
ary analysis examining the relationship between cell count
estimates and our phenotypes of interest (Table 2).

Briefly, we find that the phenotypic correlations between
cell counts and epigenetic age acceleration broadly reflect
those seen with age in this sample. When considering cell
counts in relation to global white matter tract integrity, the
strongest phenotypic correlation that we see is with granulo-
cyte count, which is negative in direction (�pheno � �0.170,
p � 1.29 � 10 �3). The effect appears to be independent of any
age- or epigenetic age acceleration-related effects.

Discussion
Both epigenetic age acceleration and white matter tract integrity
traits are heritable in this sample, with estimates aligning closely
with previous findings (Horvath, 2013; Jahanshad et al., 2013;
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Figure 2. Relationship between chronological age and global white matter integrity. Light gray represents females. Dark gray represents males.
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Kochunov et al., 2015; Marioni et al., 2015a). We observe nega-
tive phenotypic correlations between these two traits both glob-
ally and within a number of specific white matter tracts in the
brain. Decomposition of each of these phenotypic correlations
reveals negative genetic correlations between epigenetic age ac-
celeration and white matter integrity. Only one white matter tract
(anterior corona radiata) showed significant (positive) environ-
mental correlation with epigenetic age acceleration. Therefore,
our results show that, when epigenetic age estimates in blood are
older than would be expected, this is associated with reduced
white matter tract integrity, and there are common genetic influ-
ences acting on both phenotypes.

While the relationship between age acceleration and tract in-
tegrity did not reach significance for a number specific white
matter tracts tested, all showed the same pattern of negative phe-
notypic correlations with epigenetic age acceleration, suggesting
that further examination in larger samples with greater statistical
power would be of interest to establish whether the observed
relationship with epigenetic age acceleration is global or focused
in specific brain tracts.

In either case, these phenotypic and genetic correlations pro-
vide an interesting window into the neurobiology of aging pro-
cesses within the brain. While the observed pleiotropic influences
provide a causal genetic anchor linking epigenetic age accelera-
tion with white matter integrity, evidence of genetic correlation is
not sufficient to determine the processes that link these two traits,
there are number of possible causal models that could be underlie
this shared genetic etiology. Further work is necessary to deter-
mine the biological pathways linking these two processes and lead
toward the delineation of the mechanisms involved in normal
and pathological brain aging. Identification of the specific genes
involved offers a useful starting point.

In terms of the biological meaning of the epigenetic age esti-
mation, Horvath (2013) suggests that, as the measure seems to be
distinct from cellular senescence and mitotic age, the epigenetic

clock captures work done by an epigenetic maintenance system,
which works to maintain epigenetic stability. Further work also
shows that telomere length changes are also independent of
changes in the epigenetic clock (Breitling et al., 2016; Lowe et al.,
2016; Marioni et al., 2016).

Looking beyond cellular processes, epigenetic age acceleration
has also been indicated as a biomarker for a number of other
age-related traits; for example, among older individuals, relation-
ships between accelerated epigenetic aging in blood and physical
fitness, cognitive fitness, Parkinson’s disease, and all-cause mor-
tality have been reported (Horvath and Ritz, 2015; Marioni et al.,
2015a, b; Chen et al., 2016). In samples that span adulthood,
associations between epigenetic age acceleration in the blood and
stress exposure and post-traumatic stress disorder have also been
found (Boks et al., 2015; Zannas et al., 2015).

In this study, we also assess epigenetic aging in the blood with
reference to brain-based traits. There have been several studies
looking at different disorders linked to accelerated aging (includ-
ing Huntingdon’s disease, Down’s syndrome, and HIV infection)
that have shown the relationship to increased epigenetic aging
can be seen in both blood and brain tissue samples (Horvath and
Levine, 2015; Horvath et al., 2015a, 2016b). When multiple sam-
ples from the same individual have been available for compari-
son, there has been good consistency between epigenetic age
estimates from different tissues, including blood and brain (Hor-
vath, 2013; Horvath et al., 2015b). Additionally, evidence indi-
cates that there is high convergence between epigenetic profiles in
different tissues from the same individual, and correlations be-
tween blood and brain methylation levels are notably higher than
those observed for gene expression (Horvath et al., 2012; Hor-
vath, 2013).

Nevertheless, there are also examples of tissue-specific acceler-
ated aging processes (Horvath et al., 2014). The phenotypic correla-
tions reported here are modest; their magnitude is comparable with
that previously reported between epigenetic age acceleration as mea-

Table 1. White matter integrity measures and correlations with chronological age and epigenetic age accelerationa

Chronological age
Epigenetic age acceleration

Heritability Phenotypic correlation Phenotypic correlation Genetic correlation
Environmental
correlation

DTI trait h 2 p FDR � p FDR � p FDR � p � p

Global white-matter tract integrity 0.506* 1.65E-05* NA �0.542* 5.13E-32* NA �0.119* 0.028* NA �0.463* 0.013* 0.213 0.223
Corpus callosum (body) 0.502* 1.12E-05* 2.24E-05* �0.464* 1.06E-22* 3.39E-22* �0.167* 0.002* 0.011* �0.571* 1.35E-03* 0.243 0.102
Corona radiata (posterior) 0.470* 6.70E-06* 1.53E-05* �0.458* 6.94E-22* 1.23E-21* �0.166* 0.002* 0.011* �0.512* 4.67E-03* 0.153 0.307
Corpus callosum (splenium) 0.652* 2.00E-07* 1.60E-06* �0.429* 4.91E-20* 7.86E-20* �0.164* 0.002* 0.011* �0.452* 7.21E-03* 0.219 0.279
Corona radiata (anterior) 0.563* 2.00E-06* 6.40E-06* �0.505* 3.98E-27* 3.18E-26* �0.118* 0.029* 0.091* �0.588* 6.89E-04* 0.428* 0.013*
Corpus callosum (genu) 0.666* 4.00E-07* 2.13E-06* �0.459* 2.61E-22* 6.13E-22* �0.112* 0.037* 0.091* �0.453* 7.32E-03* 0.375 0.072
Posterior thalamic radiation 0.450* 5.49E-05* 7.99E-05* �0.502* 2.41E-26* 1.29E-25* �0.114* 0.036* 0.091* �0.329 0.107 0.009 0.703
Superior frontal-occipital fasciculus 0.521* 6.00E-07* 2.40E-06* �0.393* 1.77E-15* 2.18E-15* �0.109* 0.04* 0.091* �0.333 0.072 0.086 0.561
Corona radiata (superior) 0.634* 1.00E-07* 1.60E-06* �0.398* 1.38E-15* 1.84E-15* �0.064 0.226 0.278 — — — —
Sagittal stratum 0.378* 1.26E-03* 1.44E-03* �0.464* 2.68E-22* 6.13E-22* �0.091 0.097 0.162 — — — —
Internal capsule (retrolenticular) 0.410* 6.61E-04* 8.14E-04* �0.434* 5.74E-19* 8.35E-19* �0.096 0.082 0.162 — — — —
Internal capsule (anterior limb) 0.473* 3.90E-04* 5.20E-04* �0.379* 8.31E-15* 9.50E-15* �0.088 0.101 0.162 — — — —
Cingulum (cingulate gyrus) 0.526* 1.45E-05* 2.58E-05* �0.457* 3.25E-22* 6.50E-22* �0.08 0.143 0.208 — — — —
Cingulum (hippocampus) 0.374* 3.39E-03* 3.62E-03* �0.058 0.270 0.270 �0.061 0.223 0.278 — — — —
Superior longitudinal fasciculus 0.496* 2.87E-05* 4.59E-05* �0.514* 7.09E-29* 1.13E-27* �0.049 0.406 0.46 — — — —
External capsule 0.583* 3.70E-06* 9.87E-06* �0.544* 2.47E-25* 9.88E-25* �0.048 0.431 0.46 — — — —
Internal capsule (posterior limb) 0.331* 9.77E-03* 9.77E-03* �0.308* 1.06E-09* 1.13E-09* �0.022 0.63 0.63 — — — —
aThe primary outcome was global white matter tract integrity. Further investigation was then undertaken to look at the 16 specific DTI tracts available; an FDR threshold was applied across these 16 traits. Decomposition of phenotypic
correlations with epigenetic age acceleration into genetic and environmental influences is shown for all traits where phenotypic correlations p � 0.05. No decomposition was undertaken for phenotypic correlations with chronological age
as this is not heritable.

*p � 0.05.
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sured in dorsolateral prefrontal cortex tissue and neuropathological
measures associated with Alzheimer’s disease (Levine et al., 2015).
Given examples of tissue-specific accelerated aging, it could be spec-
ulated that stronger associations between epigenetic age acceleration
and white matter integrity might be observed if age acceleration was

measured using brain tissue rather than blood. However, there is a
distinct advantage in being able to use an easily accessible tissue, such
as blood, for this potential biomarker of healthy and pathological
brain aging, including that the biomarker can be assessed at multiple
points throughout the lifespan.
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Figure 3. Relationship between chronological age and white matter hyperintensity volume. Light gray represents females. Dark gray represents males.

Table 2. Cell abundance estimations and correlations with traits of interesta

Chronological age
Epigenetic age acceleration Global white-matter tract integrity

Heritability Phenotypic correlation Phenotypic correlation
Genetic
correlation

Environmental
correlation Phenotypic correlation

Genetic
correlation

Environmental
correlation

Cell types h 2 p FDR � p FDR � p FDR � p � p � p FDR � p � p

Naive CD8 T 0.628* 5.45E-15* 1.91E-14* �0.580* 4.43E-67* 3.10E-66* �0.146* 9.17E-04* 2.14E-03* 0.010 0.950 �0.312* 0.014* 0.091 0.111 0.155 — — — —
CD4 T 0.359* 2.80E-06* 2.80E-06* �0.117* 3.27E-03* 5.72E-03* �0.164* 1.05E-04* 7.35E-04* �0.059 0.780 �0.219* 0.029* 0.105* 0.043* 0.086* 0.135 0.521 0.085 0.565
Granulocytes 0.519* 1.61E-11* 2.82E-11* 0.015 0.712 0.712 0.010 0.814 0.814 — — — — �0.170* 1.29E-03* 9.03E-03* �0.292 0.125 �0.049 0.758
Monocytes 0.394* 6.00E-07* 7.00E-07* 0.072 0.072 0.101 0.046 0.274 0.320 — — — — �0.024 0.658 0.658 — — — —
Natural killer 0.656* 3.27E-24* 2.29E-23* 0.342* 1.49E-23* 5.22E-23* 0.053 0.214 0.300 — — — — 0.116* 0.026* 0.086* 0.214 0.160 �0.010 0.952
Plasmablast 0.512* 1.97E-12* 4.60E-12* 0.016 0.683 0.712 0.066 0.124 0.217 — — — — �0.108* 0.049* 0.086* �0.264 0.168 0.044 0.780
CD8 �

CD28-
CD45RA-T

0.410* 1.00E-07* 1.40E-07* 0.306* 9.06E-15* 2.11E-14* 0.149* 4.02E-04* 1.41E-03* 0.193 0.339 0.125 0.206 �0.045 0.398 0.464 — — — —

aAn FDR correction was applied across the 7 cell types considered. Phenotypic correlations between cell abundances and epigenetic age acceleration or global white matter tract integrity were decomposed into genetic and environmental
influences when phenotypic correlations p � 0.05. No decomposition was undertaken for phenotypic correlations with chronological age as this is not heritable.

*p � 0.05.
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The evidence to date suggests that, although there may be
some pathological processes leading to tissue-specific age accel-
eration, in general blood can serve as a useful surrogate tissue for
the development of aging biomarkers, particularly when the most
relevant tissue is not easily accessible, as is the case when looking
at brain traits.

We also performed a secondary analysis examining cell count
estimates in the blood and how these relate to both age and white
matter integrity. We find a negative correlation between granu-
locytes and white matter integrity that is independent of age-
related effects. This pattern of results echoes the relationship
observed previously in Parkinson’s disease using similar meth-
ods, whereby patients were observed to not only show increased
epigenetic accelerated aging but also have more granulocytes
than controls (Horvath and Ritz, 2015). Although we are unable
to distinguish between granulocyte subtypes, given that neutro-
phils are far more prevalent than eosinophils or basophils (ac-
counting for 60%–70%, 2%– 4%, and 0.5%–1% of white blood
cells, respectively), it is likely that they are driving the observed
association. But clearly, further work is needed to understand this
relationship with white matter integrity. As we are using indi-
rectly estimating relative cell abundance measures from epige-
netic data, replication with direct measurements of cell types is
also needed.

In conclusion, acceleration in epigenetic aging shows negative
phenotypic and genetic correlations with white matter integrity
both globally and within a number of specific tracts within the
brain. This suggests that the epigenetic clock may prove a useful
biomarker of normal and pathological brain aging across the
adult lifespan. The shared genetic influences on these two traits
offer a method by which researchers can begin to unpick the
neurobiological processes underpinning variation in age-related
changes in the brain.
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