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Abstract: Lead zirconate titanate (PZT) based thin films 
play a key role in a wide variety of applications due to its 
ferroelectric, piezoelectric, and pyroelectric properties. 
This work provides information on the effects of 60Co 
radiation at different total ionization doses (TID) on the 
ferroelectric, dielectric, and piezoelectric properties of PZT 
PiezoMEMS actuator devices with two different top 
electrodes. Overall, the devices with IrO2 top electrode 
were less impacted by the irradiation compared to the Pt 
top electrode devices.      
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Introduction 
Ferroelectric thin films and devices are vital 

components for numerous applications such as non-volatile 
memory1, sensors and actuators2, RF devices3, and energy 
harvesting systems4. The multifunctional properties of 
ferroelectric materials: dielectric, piezoelectric, 
pyroelectric, and electrostrictive material properties make 
these ideal for microelectromechanical system (MEMS) 
devices. Of specific interest are lead zirconate titanate 
(PZT) thin films, which have been used for filters5, infrared 
radiation (IR) detectors6, mechanical logic relays3, digital 
computation elements for low power systems2,3, and 
millimeter-scale robotics2,3 applications. With the 
decreasing size in satellite technology7,8 and the 
functionality of these devices, the Department of Defense 
can utilize these components for Satellite Communications, 
Intelligence Surveillance and Reconnaissance, Space 
Control, Space Environmental Monitoring, Satellite 
Operations, as well as safety monitoring and security 

applications in other radiation rich environments, such as 
nuclear reactors. Previous work has been focused on 
evaluating the radiation effects on ferroelectric properties 
for ferroelectric memory9-12, however little research has 
been performed in understanding the effects of radiation on 
the electromechanical properties of materials and devices, 
therefore this is of the upmost importance for the 
advancement of this technology in extreme hazardous 
environments.   

The large dielectric and piezoelectric response in PZT thin 
films, are largely due to the presence of hysteretically and 
non-linearly mobile internal interfaces, e.g. domain walls 
and eventual phase boundaries. Radiation exposure is 
expected to largely affect such defect-defect interactions 
(e.g. pinning/unpinning of domain walls on point defects, 
grain boundaries, etc.) through both displacement and 
ionization events. However, prior research has primarily 
concentrated only on the effects of irradiation as 
polarization degradation in ferroelectric memory devices, 
while a more complete and complex picture of interaction 
of radiation with the functional material stacks in MEMS 
device configuration has been missing. The goal of this 
work to address the mechanisms of radiation interaction 
with ferroelectric Pb[Zr0.52Ti0.48]O3 thin films deposited on 
platinized silicon wafers, with IrO2 or  Pt top electrodes. 
All samples were irradiated with 0.2, 0.5, 1, 2, 5, and 10 
Mrad (Si), using a 60Co gamma radiation source at a dose 
rate of approximately 600 rad (Si)/sec at the Naval 
Research Laboratory (NRL). The ferroelectric, dielectric, 
and piezoelectric response of the material stack and 
actuator devices were characterized, as a function of top 
electrode stack material (IrO2 or Pt). 
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