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Abstract: Lead zirconate titanate (PZT) based thin films
play a key role in a wide variety of applications due to its
ferroelectric, piezoelectric, and pyroelectric properties.
This work provides information on the effects of “Co
radiation at different total ionization doses (TID) on the
ferroelectric, dielectric, and piezoelectric properties of PZT
PiezoMEMS actuator devices with two different top
electrodes. Overall, the devices with IrO; top electrode
were less impacted by the irradiation compared to the Pt
top electrode devices.
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Introduction

Ferroelectric thin films and devices are vital
components for numerous applications such as non-volatile
memory', sensors and actuators”, RF devices®, and energy
harvesting systems’. The multifunctional properties of
ferroelectric materials: dielectric, piezoelectric,
pyroelectric, and electrostrictive material properties make
these ideal for microelectromechanical system (MEMS)
devices. Of specific interest are lead zirconate titanate
(PZT) thin films, which have been used for filters’, infrared
radiation (IR) detectors’, mechanical logic relays’, digital
computation elements for low power systems™, and
millimeter-scale  robotics™®  applications. With  the
decreasing size in satellite technology™ and the
functionality of these devices, the Department of Defense
can utilize these components for Satellite Communications,
Intelligence Surveillance and Reconnaissance, Space
Control, Space Environmental Monitoring, Satellite
Operations, as well as safety monitoring and security
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applications in other radiation rich environments, such as
nuclear reactors. Previous work has been focused on
evaluating the radiation effects on ferroelectric properties
for ferroelectric memory’'?, however little research has
been performed in understanding the effects of radiation on
the electromechanical properties of materials and devices,
therefore this is of the upmost importance for the
advancement of this technology in extreme hazardous
environments.

The large dielectric and piezoelectric response in PZT thin
films, are largely due to the presence of hysteretically and
non-linearly mobile internal interfaces, e.g. domain walls
and eventual phase boundaries. Radiation exposure is
expected to largely affect such defect-defect interactions
(e.g. pinning/unpinning of domain walls on point defects,
grain boundaries, etc.) through both displacement and
ionization events. However, prior research has primarily
concentrated only on the effects of irradiation as
polarization degradation in ferroelectric memory devices,
while a more complete and complex picture of interaction
of radiation with the functional material stacks in MEMS
device configuration has been missing. The goal of this
work to address the mechanisms of radiation interaction
with ferroelectric Pb[Zrg5,Tig45]O5 thin films deposited on
platinized silicon wafers, with IrO, or Pt top electrodes.
All samples were irradiated with 0.2, 0.5, 1, 2, 5, and 10
Mrad (Si), using a “°Co gamma radiation source at a dose
rate of approximately 600 rad (Si)/sec at the Naval
Research Laboratory (NRL). The ferroelectric, dielectric,
and piezoelectric response of the material stack and
actuator devices were characterized, as a function of top
electrode stack material (IrO, or Pt).
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Results

In Figure 1, a comparison of polarization hysteresis loops
before and after exposure of the maximum dose of this
study is shown. A ‘pinching’ characteristic at low voltages
is observed in both irradiated samples, with the Pt electrode
devices displaying a higher level of ‘pinching’ while the
switching polarization rate appears to be more affected in
the oxide electrode capped structure.
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Figure 1. Comparison of P-E hysteresis loops before
(black) and after (red) 10 Mrad ®Co exposure of actuator
devices with a IrO. (top) and Pt (bottom) top electrode.

In Figure 2, the maximum polarization (P,y) of the device
is plotted vs radiation dose. Although the polarization
values of IrO, capped devices are less than those of Pt, IrO,
devices are less affected throughout the varying doses.
Figure 3 shows a comparison of relative permittivity (€) as
a function of electric field before and after 10 Mrad “Co
exposure of actuator devices with IrO, and Pt top electrode.
The presence of a third peak corroborates the ‘pinching’
characteristic seen in Figure 1. Figure 4 shows the
maximum relative permittivity trend as a function of dose.
Since the PZT film performance varied between wafers, a
percentage change from baseline was used to evaluate the
radiation effects. Relative permittivity for IrO, electrode
devices appear to be less affected throughout the different
doses and the percent change follows a similar pattern.
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While Pt electrode devices have a smaller relative
permittivity, the percent change show an improvement at
low doses and significantly deteriorates at higher doses.
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Figure 2. Trend of Pnax vs radiation dose of actuator
devices with a IrO, (blue) and Pt (green) top electrode
shows less variation for IrO, samples.
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Figure 3. Comparison of relative permittivity as a function of
electric field before (black) and after (red) 10 Mrad *°Co
exposure of actuator devices with IrO» and Pt top electrode
respectively. Presence of third peaks suggest pinching.
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Figure 4. Trend of maximum permittivity values (top) and
percent change of the relative permittivity (bottom) in
reference to the baseline versus dose for devices with a
IrO, (blue) and Pt (green) top electrode devices.

In addition to examining reversible and irreversible
contributions to the dielectric response, the piezoelectric
response of released cantilevers was tested for each of the
dose levels in the study as seen in Figure 5. This data
showed similar degradation in performance for both Pt-
capped and IrO, capped cantilever structures, contrary to
previous experiments. Interestingly, it appears that the
majority of the degradation of the film performance appears
below 500 krad (Si) and higher dose levels appear to have a
more limited effect, especially in IrO,-capped devices.

Conclusion

Overall, the oxide electrode capped structures and devices
were less impacted by irradiation, than their metallic
electrode counterparts. In examining the TID dose study,
the irreversible contribution to the ferroelectric and
piezoelectric effects appears to be contributing the majority
of the change, while also showing large changes even at
100 krad (Si).
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Figure 5. Comparison of actuator relative strain vs electric

field after 10 Mrad Co®® exposure (top) and trend of relative
strain vs radiation dose (bottom) of actuator devices with a

IrO; (blue) and Pt (green) top electrode.
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