

 CLEAR is a first of its kind framework which overcomes a major
challenge in the design of digital systems that are resilient to
reliability failures: achieve desired resilience targets at minimal costs
(energy, power, execution time, area) by combining resilience
techniques across various layers of the system stack (circuit, logic,
architecture, software, algorithm). CLEAR automatically and
systematically explores the large space of techniques and their
combinations (586 cross-layer combinations in this paper), derives
cost-effective solutions, and provides guidelines for designing new
techniques. Carefully optimized combinations of circuit-level
hardening, logic-level parity checking, and micro-architectural
recovery provide highly cost-effective soft error resilience for
general-purpose processor cores. 50× silent data corruption rate
improvement is achieved at 2.1% energy cost for out-of-order (6.1%
for in-order) cores, with no speed impact. Selective circuit-level
hardening alone, guided by thorough application benchmark analysis,
also provides cost-effective solutions (~1% additional energy cost for
the same 50× improvement).

This paper addresses the cross-layer resilience challenge for
designing robust digital systems: given a set of resilience techniques
at various abstraction layers (circuit, logic, architecture, software,
algorithm), how does one protect a given design from radiation-
induced soft errors using (perhaps) a combination of these
techniques, across multiple abstraction layers, such that overall soft
error resilience targets are met at minimal costs (energy, power,
execution time, area)? Specific soft error resilience targets addressed
in this paper are: Silent Data Corruption (SDC), where an error causes
the system to output an incorrect result without error indication; and,
Detected but Uncorrected Error (DUE), where an error is detected
(e.g., by a resilience technique or a system crash or hang) but is not
recovered automatically without user intervention.

The need for cross-layer resilience, where multiple error resilience
techniques from different layers of the system stack cooperate to
achieve cost-effective error resilience, is articulated in several
publications (e.g., [Carter 10, Gupta 14, Pedram 12]). There are
numerous publications on error resilience techniques, many of which
span multiple abstraction layers. However, these publications mostly
describe specific implementations (e.g., [Lu 82, Meaney 05, Sinharoy
11]. Cross-layer resilience implementations in commercial systems
are often
There exists no comprehensive framework to systematically address
the cross-layer resilience challenge. Creating such a framework is
difficult. It must encompass the entire design flow end-to-end, from
comprehensive and thorough analysis of various combinations of
error resilience techniques all the way to layout-level
implementations, such that one can (automatically) determine which
resilience technique or combination of techniques (at the same or
across different abstraction layers) should be chosen. Such a
framework is essential in order to answer important cross-layer
resilience questions such as:

1. Is cross-layer resilience the best approach for achieving a given
resilience target at low cost?

2. Are all cross-layer solutions equally cost-effective? If not, which
cross-layer solutions are the best?

3. How do cross-layer choices change depending on application-
level energy, latency, and area constraints?

4. How can one create a cross-layer resilience solution that is cost-
effective across a wide variety of application workloads?

5. Are there general guidelines for new error resilience techniques
to be cost-effective?

CLEAR (Cross-Layer Exploration for Architecting Resilience) is a
first of its kind framework, which addresses the cross-layer resilience
challenge [Cheng 16a, 16b]. In this paper, we focus on the use of

CLEAR for radiation-induced soft errors in terrestrial environments.
Although the soft error rate of an SRAM cell or a flip-flop stays

roughly constant or even decreases over technology generations, the
system-level soft error rate increases with increased integration [Mitra
14, Seifert 12] and can increase when lower supply voltages are used
to improve energy efficiency [Mahatme 13, Pawlowski 14]. We focus
on flip-flop soft errors because design techniques to protect them are
generally expensive. Coding techniques are routinely used for
protecting on-chip memories. Combinational logic circuits are
significantly less susceptible to soft errors and do not pose a concern
[Gill 09, Seifert 12]. We address both single-event upsets (SEUs) and
single-event multiple upsets (SEMUs) [Lee 10, Pawlowski 14]. While
CLEAR can address soft errors in various digital components of a
complex System-on-a-Chip (e.g., uncore [Cho 15], hardware
accelerators), this paper focuses on soft errors in processor cores.
 To demonstrate the effectiveness and practicality of CLEAR, we
explore 586 cross-layer combinations using ten representative error
detection/correction techniques and four hardware error recovery
techniques spanning various layers of the system stack: circuit, logic,
architecture, software, and algorithm (Fig. 1). Our exploration
encompasses over 9 million flip-flop soft error injections into two
diverse processor core architectures: a simple in-order SPARC Leon3
core (InO-core) [Leon] and a complex super-scalar out-of-order
Alpha IVM core (OoO-core) [Wang 04], across 18 benchmarks. Such
extensive exploration enables us to conclusively answer the above
cross-layer resilience questions:

1. For a wide range of error resilience targets, optimized cross-
layer combinations can provide low cost solutions for soft errors.

2. Not all cross-layer solutions are cost-effective.
a. For general-purpose processor cores, a carefully optimized

combination of selective circuit-level hardening, logic-level parity
checking, and micro-architectural recovery provides a highly
effective cross-layer resilience solution.

b. When the application space is restricted to matrix operations,
a combination of Algorithm Based Fault Tolerance (ABFT)
correction, selective circuit-level hardening, logic-level parity
checking, and micro-architectural recovery can be highly effective.

c. Selective circuit-level hardening, guided by a thorough
analysis of the effects of soft errors on application benchmarks,
provides a highly effective soft error resilience approach.

3. The above conclusions about cost-effective soft error resilience
techniques largely hold across various application characteristics (e.g.,
latency constraints despite errors in soft real-time applications).

4. One must address the challenge of potential mismatch between
application benchmarks vs. applications in the field, especially when
targeting high degrees of resilience. We overcome this challenge
using various flavors of circuit-level hardening techniques (Sec. 4).

5. Cost-effective approaches discussed above provide bounds that
new soft error resilience techniques must achieve to be competitive.

 Figure 1 gives an overview of the CLEAR framework.

 We use flip-flop soft error injections for reliability analysis
(radiation test results confirm that injection of single bit-flips into flip-
flops closely models soft error behaviors in actual systems [Bottoni
14, Sanda 08]). Flip-flop-level error injection is crucial since naïve
high-level error injections can be highly inaccurate [Cho 13].
 We injected over 9 million flip-flop soft errors into the RTL of the
processor designs using three BEE3 FPGA emulation systems and
also using mixed-mode simulations on the Stampede supercomputer
(TACC at The University of Texas at Austin) (similar to [Cho 13,
Wang 04]). This ensures that error injection results have less than a
0.1% margin of error with a 95% confidence interval per benchmark.
Errors are injected uniformly into all flip-flops and application

CLEAR: Cross-Layer Exploration for Architecting Resilience

Eric Cheng1, Shahrzad Mirkhani1, Lukasz G. Szafaryn2, Chen-Yong Cher3,
Hyungmin Cho1, Kevin Skadron2, Mircea R. Stan2, Klas Lilja4,

Jacob A. Abraham5, Pradip Bose3, and Subhasish Mitra1
1Stanford University, 2University of Virginia, 3IBM Research, 4Robust Chip, Inc., 5University of Texas at Austin

 Abstract

1. Introduction

2. CLEAR Framework

2.1 Reliability Analysis

Distribution A: Approved for public release; distribution unlimited.

614

regions, to mimic real world scenarios.
 The SPECINT2000 [Henning 00] and DARPA PERFECT
[DARPA] benchmark suites are used for evaluation1. The PERFECT
suite complements SPEC by adding applications targeting signal and
image processing domains. We ran benchmarks in their entirety.

Flip-flop soft errors can result in the following outcomes [Cho 13,
Sanda 08, Wang 04]: Vanished - normal termination and output files
match error-free runs, Output Mismatch (OMM) - normal
termination, but output files are different from error-free runs,
Unexpected Termination (UT) - program terminates abnormally,
Hang - no termination or output within 2 the nominal execution
time, Error Detection (ED) - an employed resilience technique flags
an error, but the error is not recovered using hardware recovery.
 Any error that results in OMM causes SDC. Any error that results
in UT, Hang, or ED causes DUE (there are no ED outcomes if no error
detection technique is employed). The resilience of a protected (new)
design compared to an unprotected (original, baseline) design can be
defined in terms of SDC improvement (Eq. 1a) or DUE improvement
(Eq. 1b). Techniques that increase execution time or add flip-flops
increase the susceptibility of the design to soft-errors. To accurately
account for this situation, we calculate, based on [Schirmeier 15], a

accurate comparison2. Reporting SDC and DUE improvements allows
our results to be agnostic to absolute error rates.

 (Eq. 1a)

 (Eq. 1b)

1 11 SPEC / 7 PERFECT (InO), 8 SPEC / 3 PERFECT (OoO).
2 Research literature commonly considers =1. We use true values, but our

conclusions hold for as well (latter is optimistic).
3 Circuit and logic techniques have tunable costs/resilience
4 LLVM compiler no longer supports the Alpha architecture (OoO-core).

 Execution time is estimated using FPGA emulation and RTL
simulation. Applications are run to completion. Our design
methodology maintains clock speed.

 Synopsys design tools (Design Compiler, IC compiler, Primetime)
along with a commercial 28nm technology library (with
corresponding SRAM compiler) is used to perform synthesis, place-
and-route, and power analysis. Synthesis and place-and-route (SP&R)
was run for all configurations of the design (before and after adding
resilience techniques) to ensure all constraints of the original design
(e.g., timing and DRC) were met for the resilient designs.

 We carefully chose ten error detection and correction and four
hardware error recovery techniques. These techniques largely cover
the space of existing soft error resilience techniques. The
characteristics of each technique when used as a standalone solution
(e.g., an error detection / correction technique by itself or, optionally,
in conjunction with a recovery technique) are presented in Table 1.
 Circuit: The hardened flip-flops (LEAP-DICE, Light Hardened
LEAP) in Table 2 are designed to tolerate SEUs and SEMUs [Lee 10,
Lilja 13]. Error Detection Sequential (EDS) [Bowman 09, 11] can be
used to detect flip-flop soft errors (in addition to timing errors).

5 Some assertions (e.g., [Sahoo 08]) have false positives (i.e., error reported during
error-free run). Execution time impact reported discounts false positives.

6 EDDI with store-readback [Lin 14]. 3.3× SDC / 0.4× DUE improvement without.
7 Error detection checks may require computationally-expensive calculations.
8 EDS costs for the flip-flop only. Error signal routing, delay buffers increase cost.

Table 2. Resilient flip-flops.
Type Soft Error Rate Area Power Delay Energy

Baseline 1 1 1 1 1
Light Hardened LEAP (LHL) 2.5×10-1 1.2 1.1 1.2 1.3

LEAP-DICE 2.0× 10-4 2.0 1.8 1 1.8
EDS8 ~100% detect 1.5 1.4 1 1.4

Table 1. Individual resilience techniques: costs and improvements when implemented as a standalone solution.

Layer Technique Area
cost

Power
cost

Energy
cost

Exec. time
impact

Avg. SDC
improvement

Avg. DUE
improvement

False
positive

Circuit3

LEAP-DICE
(no additional recovery needed)

InO 0-9.3% 0-22.4% 0-22.4% 0% 1× - 5,000× 1× - 5,000× 0% OoO 0-6.5% 0-9.4% 0-9.4%
EDS

(without recovery - unconstrained)
InO 0-10.7% 0-22.9% 0-22.9% 0% 1× -

100,000× 0.1× - 1× 0% OoO 0-12.2% 0-11.5% 0-11.5%
EDS

(with IR recovery)
InO 0-16.7% 0-43.9% 0-43.9% 0% 1× -

100,000×
1× -

100,000× 0% OoO 0-12.3% 0-11.6% 0-11.6%

Logic3
Parity

(without recovery - unconstrained)
InO 0-10.9% 0-23.1% 0-23.1% 0% 1× -

100,000× 0.1× - 1× 0% OoO 0-14.1% 0-13.6% 0-13.6%
Parity

(with IR recovery)
InO 0-26.9% 0-44% 0-44% 0% 1× -

100,000×
1× -

100,000× 0% OoO 0-14.2% 0-13.7% 0-13.7%

Arch.

DFC
(without recovery - unconstrained)

InO 3% 1% 7.3% 6.2% 1.2× 0.5× 0% OoO 0.2% 0.1% 7.2% 7.1%
DFC

(with EIR recovery)
InO 37% 33% 41.2% 6.2% 1.2× 1.4× 0% OoO 0.4% 0.2% 7.3% 7.1%

Monitor core (with RoB recovery) OoO 9% 16.3% 16.3% 0% 19× 15× 0%

Soft-
ware4

Software assertions for general-purpose
processors (without recovery - unconstrained) InO 0% 0% 15.6% 15.6%5 1.5× 0.6× 0.003%

CFCSS (without recovery - unconstrained) InO 0% 0% 40.6% 40.6% 1.5× 0.5× 0%
EDDI (without recovery - unconstrained) InO 0% 0% 110% 110% 37.8×6 0.3× 0%

Alg.
ABFT correction (no additional recovery needed) InO

OoO 0% 0% 1.4% 1.4% 4.3× 1.2× 0%

ABFT detection (without recovery - unconstrained) InO
OoO 0% 0% 24% 1-56.9%7 3.5× 0.5× 0%

Figure 1. CLEAR Framework: (a) BEE3 emulation cluster / Stampede supercomputer injects over 9 million errors into two diverse processor
architectures running 18 full-length application benchmarks. (b) Accurate physical design evaluation accounts for resilience overheads. (c)

Comprehensive resilience library consisting of ten error detection / correction techniques + four hardware error recovery techniques. (d) Example
illustrating thorough exploration of 586 cross-layer combinations with varying energy costs vs. percentage of SDC-causing errors protected.

(b) Physical design evaluation

Synopsys
Design

Compiler

IC
Compiler

PrimeTime

28nm

Library
cells

SRAM
compiler

(a) Reliability analysis /
execution time evaluation

Emulation
cluster FPGA

BEE3
FPGA

FPGAFPGA
FPGAFPGA

FPGAFPGAFPGA

BEE3
FPGA

FPGAFPGA
FPGAFPGA

FPGAFPGAFPGA

BEE3
FPGA

FPGAFPGA
FPGAFPGA

FPGAFPGA

Stampede
supercomputer RTLRTLRTLRTL

Reliability, area, power, energy,
clock frequency, execution time

Alg. (1) ABFT correction [Chen 05, Huang 84]
(2) ABFT detection [Tao 93]

SW (3) Assertions [Sahoo 08, Hari 12]
(4) CFCSS [Oh 02a]
(5) EDDI [Oh 02b]

Arch. (6) DFC [Meixner 07]
(7) Monitor core [Austin 99]

Logic (8) Parity checking [Spainhower 99]

Circuit (9) LEAP-DICE [Lee 10, Lilja 13]
(10) EDS [Bowman 09, 11]

(c) Resilience library

RTL

Error detection / correction techniques Recovery techniques

(d) Cross-layer evaluation

Benchmarks

586 total combinations

Energy
cost (%)

% SDC-causing errors protected

300

100
30

0

3

6

9

0 20 40 60 80 100

(1) Instruction Replay (IR)
[Meaney 05]

(2) Extended IR (EIR)

(3) Flush [Racunas 07]

(4) Reorder Buffer (RoB)
[Wang 05]

2.2 Execution Time Evaluation

2.3 Physical Design Evaluation

2.4 Resilience Library

615

 Logic: Parity checking detects errors by checking flip-flop inputs
and outputs [Spainhower 99]. Our design heuristics ([Cheng 16b])
reduce the cost of parity and ensure that clock frequency is maintained
as in the original design. SEMUs are minimized through layouts that
ensure a minimum spacing (the size of one flip-flop) between flip-
flops checked by the same parity checker [Amusan 09].
 Architecture: Our implementation of Data Flow Checking (DFC)
includes Control Flow Checking (CFC), and resembles [Meixner 07].
Monitor cores are specialized checker cores that validate instructions
executed by the main core [Austin 99, Lu 82]. We analyze monitor
cores similar to [Austin 99] and confirmed (via IPC estimation) that
our monitor core implementation does not stall the main core.
 Software: Software assertions for general-purpose processors
check program variables to ensure their values are valid. We combine
assertions from [Hari 12, Sahoo 08]. Control Flow Checking by
Software Signatures (CFCSS) [Oh 02a] and Error Detection by
Duplicated Instructions (EDDI) [Oh 2b] are implemented via
compiler modification. We utilize EDDI with store-readback [Lin 14].
 Algorithm: Algorithm Based Fault Tolerance (ABFT) can detect
(ABFT detection) or detect and correct errors (ABFT correction)
through algorithm modifications [Chen 05, Huang 84, Tao 93].
 Recovery: We consider two recovery scenarios: bounded latency,
i.e., an error must be recovered within a fixed period of time after its
occurrence, and unconstrained, i.e., where no latency constraints exist
and errors are recovered externally once detected (no hardware
recovery is required). Bounded latency recovery requires one of the
following hardware recovery techniques (Table 3): flush or Reorder
Buffer (RoB) recovery (flushing non-committed instructions followed
by re-execution) [Racunas 07, Wang 05]; instruction replay (IR) or
extended instruction replay (EIR) recovery (instruction checkpointing
to rollback and replay instructions) [Meaney 05]. EIR is an extension
of IR with additional buffers required by DFC for recovery. Flush and
RoB are unable to recover from errors detected after the memory write
stage of InO-cores or after the reorder buffer of OoO-cores,
respectively (these errors will have propagated to architecture visible
states). Hence, LEAP-DICE is used to protect flip-flops in these
pipeline stages when using flush/RoB recovery.

CLEAR uses a top-down approach to explore the cost-effectiveness
of various cross-layer combinations. For example, resilience
techniques at upper layers of the system stack (e.g., ABFT correction)
are applied before moving down the stack to lower layers (e.g., an

9 Costs generated per benchmark and averaged. Relative std. deviation: 0.6-3.1%.
10 DUE improvements not possible when detection-only techniques are used in an

optimized combination of logic parity checking, circuit-level LEAP-
DICE, and micro-architectural recovery). This approach (example
shown in Fig. 2) ensures that resilience techniques from various layers
of the stack effectively interact with one another. Resilience
techniques from the algorithm, software, and architecture layers of the
stack generally protect multiple flip-flops (determined using error
injection); however, a designer typically has little control over the
specific subset protected. Using multiple resilience techniques from
these layers can lead to situations where a given flip-flop may be
protected (sometimes unnecessarily) by multiple techniques. At the
logic and circuit layers, fine-grained protection is available since these
techniques can be applied selectively to individual flip-flops (those
not sufficiently protected by higher-level techniques).

Among the 586 cross-layer combinations explored using CLEAR,
a highly promising approach combines selective circuit-level
hardening using LEAP-DICE, logic parity, and micro-architectural
recovery (flush recovery for InO-cores, RoB recovery for OoO-
cores). Thorough error injection using application benchmarks is
critical in selecting flip-flops protected using these techniques.
[Cheng 16b] details the methodology for creating this combination.

When the application space targets specific algorithms (e.g., matrix
operations), a cross-layer combination of LEAP-DICE, parity, ABFT
correction, and micro-architectural error recovery (flush/RoB)
provides additional energy savings (Table 4). Since ABFT correction
performs in-place error correction, no separate recovery mechanism
is required for ABFT correction. When targeting DUE improvement,
ABFT correction provides no energy savings for the OoO-core. This
is because ABFT correction performs checks at set locations in the
program (e.g., a DUE resulting from an invalid pointer access can
cause an immediate program termination before a check is invoked).
 Since most applications are not amenable to ABFT correction, the
flip-flops protected by ABFT correction must also be protected by
techniques such as LEAP-DICE or parity (or combinations thereof)
for processors targeting general-purpose applications. This requires
circuit hardening techniques (e.g., [Mitra 05, Zhang 06]) with the
ability to selectively operate in an error-resilient mode (high
resilience, high energy) when ABFT is unavailable, or in an economy
mode (low resilience, low power mode) when ABFT is available.
However, the overheads outweigh benefits (details in [Cheng 16b]).

Relative benefits seen in Table 4 are consistent across benchmarks
and over the range of SDC/DUE improvements. Overheads in Table
4 are small because we reported the most energy-efficient resilience
solutions. Most of the 586 combinations are far costlier.

unconstrained recovery scenario.

Table 3. Hardware error recovery costs.
Core Type Area Power Energy Recovery

latency

InO
Instruction Replay (IR) recovery 16% 21% 21% 47 cycles

EIR recovery 34% 32% 32% 47 cycles
Flush recovery 0.6% 0.9% 1.8% 7 cycles

OoO
Instruction Replay (IR) recovery 0.1% 0.1% 0.1% 104 cycles

EIR recovery 0.2% 0.1% 0.1% 104 cycles
Reorder Buffer (ROB) recovery 0.01% 0.01% 0.01% 64 cycles

Figure 2. Cross-layer methodology example for combining ABFT

correction, LEAP-DICE, logic parity, and micro-architectural recovery.

Unprotected design Perform error injection to
determine percentage of

errors resulting in SDC/DUE
per flip-flop when application
running with ABFT correction

Protected
design

Apply ABFT correction

Apply LEAP-DICE, parity, and recovery
to flip-flops until required SDC/DUE

improvement is achieved [Cheng 16b]

Table 49. Costs vs. SDC and DUE improvements for efficient resilience techniques.
A (area cost %), P (power cost %), E (energy cost %)

Bounded latency recovery Unconstrained recovery10 Exec.

time
impact

SDC improvement DUE improvement SDC improvement DUE improvement
2 5 50 500 max 2 5 50 500 max 2 5 50 500 max 2 5 50 500 max

InO

Selective hardening using
LEAP-DICE

A
P
E

0.8
2
2

1.8
4.3
4.3

2.9
7.3
7.3

3.3
8.2
8.2

9.3
22.4
22.4

0.7
1.5
1.5

1.7
3.8
3.8

3.8
9.5
9.5

5.1
12.5
12.5

9.3
22.4
22.4

0.8
2
2

1.8
4.3
4.3

2.9
7.3
7.3

3.3
8.2
8.2

9.3
22.4
22.4

0.7 1.7 3.8 5.1 9.3
0% 1.5 3.8 9.5 12.5 22.4

1.5 3.8 9.5 12.5 22.4
LEAP-DICE + logic parity

(+ flush recovery)
A
P
E

0.7 1.7 2.5 3 8 0.6 1.5 3.6 4.4 8 0.7 1.6 2.4 2.8 7.6
- - - - - 0% 1.9 3.9 6.1 6.7 17.9 1.5 3.4 8.4 10.4 17.9 1.9 3.8 5.9 6.5 17.2

1.9 3.9 6.1 6.7 17.9 1.5 3.4 8.4 10.4 17.9 1.9 3.8 5.9 6.5 17.2
ABFT correction +

LEAP-DICE + logic parity
(+ flush recovery)

A
P
E

0
0

1.4

0.4
0.7
2.2

1.0
1.7
3.1

1.2
1.8
3.2

8
17.9
19.6

0.3
1

2.4

0.4
1

2.4

1.5
3.3
4.8

2.7
5.7
7.2

8
17.9
19.6

0
0

1.4

0.4
0.7
2.2

0.9
1.6
3

1.1
1.8
3.2

7.6
17.2
18.8

- - - - - 1.4%

OoO

Selective hardening using
LEAP-DICE

A
P
E

1.1 1.3 2.2 2.4 6.5 1.3 1.6 3.1 3.6 6.5 1.1 1.3 2.2 2.4 6.5 1.3 1.6 3.1 3.6 6.5
0% 1.5 1.7 3.1 3.5 9.4 2 2.3 4.2 5.1 9.4 1.5 1.7 3.1 3.5 9.4 2 2.3 4.2 5.1 9.4

1.5 1.7 3.1 3.5 9.4 2 2.3 4.2 5.1 9.4 1.5 1.7 3.1 3.5 9.4 2 2.3 4.2 5.1 9.4
LEAP-DICE + logic parity

(+ ROB recovery)
A
P
E

0.06 0.1 1.4 2.2 4.9 0.5 0.7 2.6 3 4.9 0.06 0.1 1.4 2.2 4.9
- - - - - 0% 0.1 0.2 2.1 2.4 7 0.1 0.1 2 1.8 7 0.1 0.2 2.1 2.4 7

0.1 0.2 2.1 2.4 7 0.1 0.1 2 1.8 7 0.1 0.2 2.1 2.4 7
ABFT correction +

LEAP-DICE + logic parity
(+ ROB recovery)

A
P
E

0
0

1.4

0.01
0.01
1.5

0.3
0.5
1.9

0.5
0.8
2.2

4.9
7

8.5

0.4
0.1
1.5

0.6
0.1
1.5

2.1
3

4.2

3
1.6
3

4.9
7

8.5

0
0

1.4

0.01
0.01
1.5

0.3
0.5
1.9

0.5
0.8
2.2

4.8
6.9
8.4

- - - - - 1.4%

3. Cross-Layer Combinations

616

 The most cost-effective resilience techniques are guided by error
injection using application benchmarks. What happens when the
applications in the field do not match application benchmarks? We
refer to this situation as application benchmark dependence. To
quantify this dependence, we randomly selected 4 (of 11) SPEC
benchmarks as a training set, and used the remaining 7 as a validation
set. Resilience is implemented using the training set and the resulting

ermined using the validation set. We used 50
training/validation pairs. Table 5 indicates that validated SDC
improvement is generally underestimated. Fortunately, when
targeting <10× SDC improvement, the underestimation is <4%. This
is due to the fact that the most vulnerable 10% of flip-flops (i.e., the
flip-flops that result in the most SDCs or DUEs) are consistent across
benchmarks. Benchmark sensitivity may be minimized by training
using additional benchmarks or through better benchmarks (e.g.,
[Mirkhani 15]). An alternative approach is to apply our CLEAR
framework using available benchmarks, and then replace all
remaining unprotected flip-flops using LHL (Table 2). This enables
our resilient designs to meet (or exceed) resilience targets at <1.2%
additional cost for SDC improvements >10×.

 CLEAR is a first of its kind cross-layer resilience framework that
enables effective exploration of a wide variety of resilience
techniques and their combinations across several layers of the system
stack. Our extensive cross-layer resilience studies demonstrate:

1. A carefully optimized combination of selective circuit-level
hardening, logic-level parity checking, and micro-architectural
recovery provides a highly cost-effective soft error resilience solution
for general-purpose processors.

2. Selective circuit-level hardening alone, guided by thorough
analysis of the effects of soft errors on application benchmarks, also
provides a cost-effective soft error resilience solution (with ~1%
additional energy cost for the same 50× SDC improvement).

3. Algorithm Based Fault Tolerance (ABFT) correction combined
with selective circuit-level hardening, logic-level parity checking, and
micro-architectural recovery can further improve soft error resilience
costs. However, existing ABFT correction techniques can only be
used for a few applications limiting the applicability of this approach.

4. We can derive bounds on energy costs vs. degree of resilience
(SDC or DUE improvements) that new soft error resilience techniques
must achieve to be competitive (shown in Fig. 3).

5. It is crucial that the benefits and costs of new resilience
techniques are evaluated thoroughly and correctly. Detailed analysis
(e.g., flip-flop-level error injection or layout-level cost quantification)
identifies hidden weaknesses that are often overlooked.

 This research is supported in part by DARPA, DTRA, NSF, and SRC.

[Amusan 09] Amusan, O. A. -event-induced charge sharing in sub-

Vanderbilt University Dissertation, 2009.
[Austin 99] Austin, T. M. a reliable substrate for deep submicron

microarchitecture d IEEE/ACM Intl. Symp. Microarchitecture, 1999.
[Bottoni 14] Bottoni, C., et al. est result on a 65nm sparc-v8 radiation-

hard m IEEE Intl. Reliability Physics Symp., 2014.
[Bowman 09] Bowman, K. A., et al. -efficient and metastability-immune resilient

circuits for dynamic variation t IEEE Journal Solid-State Circuits, 2009.
[Bowman 11] Bowman, K. A., et al. icroprocessor core for

dynamic variation t IEEE Journal Solid-State Circuits, 2011.
[Carter 10] Carter, N. P., H. Naeimi, and D. S. Gardner techniques for cross-

layer r Design, Automation, & Test in Europe, 2010.
[Chen 05] Chen, Z. and J. Dong table real number codes based on

random m Lecture Notes in Computer Science, 2005.
[Cheng 16a] Cheng, E., et al. ross-layer exploration for architecting

resilience - combining hardware and software techniques to tolerate soft errors in
processor c ACM/EDAC/IEEE Design Automation Conf., 2016.

[Cheng 16b] Cheng, E., et al. -layer exploration for architecting
resilience - combining hardware and software techniques to tolerate soft errors in

[Cho 13] Cho, H., et al. evaluation of soft error injection techniques for

robust system d ACM/EDAC/IEEE Design Automation Conf., 2013.
[Cho 15] Cho, H., et al. Understanding soft errors in uncore components

ACM/EDAC/IEEE Design Automation Conf., 2015.
[DARPA] DARPA PERFECT benchmark suite, http://hpc.pnl.gov/PERFECT.
[Gill 09] Gill, B., N. Seifert, and V. Z -particle and neutron-

IEEE Intl. Reliability Physics Symp., 2009.
[Gupta 14] Gupta, M. S., et al. -

IEEE Intl. Reliability Physics Symp., 2014.
[Hari 12] Hari S. K. S., S. V. Adve, and H. Naeimi, Low-cost program-level detectors

for reducing silent data corruptions, IEEE/IFIP Intl. Conf. Dependable Systems &
Networks, 2012.

[Henning 00] Henning, J. L CPU performance in the new
millennium IEEE Computer, 2000.

[Huang 84] Huang, K.-H. and J. A. -based fault tolerance for
IEEE Trans. Computers, 1984.

[Lee 10] Lee, H.-H. K., et al. LEAP: layout design through error-aware transistor
positioning for soft-error resilient sequential cell design, IEEE Intl. Reliability
Physics Symp., 2010.

[Leon]
[Lilja 13] Lilja, K., et al. ingle-event performance and layout optimization of flip-

flops in a 28-nm bulk technology, IEEE Trans. Nuclear Science, 2013.
[Lin 14] Lin, D., et al., -silicon validation of system-on-chips using quick

IEEE Trans. Computer-Aided Design of Integrated Circuits and
Systems, 2014.

[Lu 82] Lu, D. J. processor and structural integrity c IEEE Trans.
Computers, 1982.

[Mahatme 13] Mahatme, N. N., et al. supply voltage and frequency on the
soft error rates of logic c IEEE Trans. Nuclear Science, 2013.

[Meaney 05] Meaney, P. J., et al. soft error detection and r IEEE
Trans. Device and Materials Reliability, 2005.

[Meixner 07] Meixner, A., M. E. Bauer, and D. J. Sorin low-cost
comprehensive error detection in simple c IEEE/ACM Intl. Symp.
Microarchitecture, 2007.

[Mirkhani 15] Mirkhani, S., B. Samynathan, and J. A. soft error
vulnerability analysis using synthetic b IEEE VLSI Test Symp., 2015.

[Mitra 05] Mitra S., et al. system design with built-in soft error r
IEEE Computer, 2005.

[Mitra 14] Mitra, S., et al. esilience wall: cross-layer solution strategies," Intl.
Symp. VLSI Technology, Systems and Applications, 2014.

[Oh 02a] Oh, N., P. P. Shirvani, and E. J. McCluskey Control flow checking by
software signatures, IEEE Trans. Reliability, 2002.

[Oh 02b] Oh, N., P. P. Shirvani, and E. J. McCluskey, Error detection by duplicated
instructions in super-scalar processors, IEEE Trans. Reliability, 2002.

[Pawlowski 14] Pawlowski, R., et al. radiation-induced SRAM
and logic soft e IEEE Custom Integrated
Circuits Conf., 2014.

[Pedram 12] Pedram, M., et al. the NSF workshop on cross-layer power
optimization and m NSF, 2012.

[Racunas 07] Racunas P., et al. - IEEE Intl. Symp.
High Performance Computer Architecture, 2007.

[Sahoo 08] Sahoo S. K., et al., Using likely program invariants to detect hardware
 IEEE/IFIP Intl. Conf. Dependable Systems & Networks, 2008.

[Sanda 08] Sanda, P. N., et al. -
IBM Journal of Research and Development, 2008.

[Schirmeier 15] Schirmeier, H., C. Borchert, and O. Spinczyk pitfalls in
fault-injection based comparison of program susceptibility to soft e IEEE/IFIP
Intl. Conf. Dependable Systems & Networks, 2015.

[Seifert 12] Seifert N., et al. Soft error susceptibilities of 22 nm tri-gate devices, IEEE
Trans. Nuclear Science, 2012.

[Sinharoy 11] Sinharoy, B., et al. IBM
Journal of Research and Development, 2011.

[Spainhower 99] Spainhower, L. and T. A. parallel enterprise server
G5 fault tolerance: a IBM Journal of Research &
Development, 1999.

[Tao 93] Tao, D. L. and C. R. P.
IEEE Trans. Parallel and Distributed Systems, 1993.

[Wang 04] Wang N. J., et al. -
 IEEE/IFIP Intl. Conf. Dependable Systems &

Networks, 2004.
[Wang 05] Wang, N. J. and S. J. ased soft error detection in

m IEEE/IFIP Intl. Conf. Dependable Systems & Networks, 2005.
[Zhang 06] Zhang, M., et al. esign with built-in soft error

r IEEE Trans. VLSI, 2006.

Table 5. SDC improvement, cost before and after applying LHL to
otherwise unprotected flip-flops.

Core
SDC improvement Cost before LHL

insertion
Cost after LHL

insertion
Train Validate After LHL Area Power /

Energy Area Power /
Energy

InO
5× 4.8× 19.3× 1.6% 3.6% 3.1% 5.7%

50× 38.9× 152.3× 2.4% 5.7% 3.3% 6.9%
500× 433.1× 1,326.1× 2.9% 6.3% 3.4% 7.1%
Max 5,568.9× 5,568.9× 8% 17.9% 8% 17.9%

OoO
5× 4.8× 35.1× 0.1% 0.2% 0.9% 1.8%

50× 32.1× 204.3× 1.4% 2.1% 1.9% 2.7%
500× 301.4× 1084.1× 2.2% 2.4% 2.4% 2.8%
Max 6,625.8× 6,625.8× 4.9% 7% 4.9% 7%

Figure 3. New resilience techniques must have cost and improvement
tradeoffs that lie within the shaded regions bounded by LEAP-DICE +

parity + micro-architectural recovery.

2 5 50 500 max
0

6

12

18

Energy
cost (%)

Improvement

DUE (InO)
SDC (InO)

DUE (OoO)
SDC (OoO)

(Our solutions incur no clock frequency impact)

New resilience techniques must lie in shaded regions
InO OoO

4. Application Benchmark Dependence

5. Conclusions

6. Acknowledgment

7. References

617

