
 

 CLEAR is a first of its kind framework which overcomes a major 
challenge in the design of digital systems that are resilient to 
reliability failures: achieve desired resilience targets at minimal costs 
(energy, power, execution time, area) by combining resilience 
techniques across various layers of the system stack (circuit, logic, 
architecture, software, algorithm). CLEAR automatically and 
systematically explores the large space of techniques and their 
combinations (586 cross-layer combinations in this paper), derives 
cost-effective solutions, and provides guidelines for designing new 
techniques. Carefully optimized combinations of circuit-level 
hardening, logic-level parity checking, and micro-architectural 
recovery provide highly cost-effective soft error resilience for 
general-purpose processor cores. 50× silent data corruption rate 
improvement is achieved at 2.1% energy cost for out-of-order (6.1% 
for in-order) cores, with no speed impact. Selective circuit-level 
hardening alone, guided by thorough application benchmark analysis, 
also provides cost-effective solutions (~1% additional energy cost for 
the same 50× improvement). 

This paper addresses the cross-layer resilience challenge for 
designing robust digital systems: given a set of resilience techniques 
at various abstraction layers (circuit, logic, architecture, software, 
algorithm), how does one protect a given design from radiation-
induced soft errors using (perhaps) a combination of these 
techniques, across multiple abstraction layers, such that overall soft 
error resilience targets are met at minimal costs (energy, power, 
execution time, area)? Specific soft error resilience targets addressed 
in this paper are: Silent Data Corruption (SDC), where an error causes 
the system to output an incorrect result without error indication; and, 
Detected but Uncorrected Error (DUE), where an error is detected 
(e.g., by a resilience technique or a system crash or hang) but is not 
recovered automatically without user intervention. 

The need for cross-layer resilience, where multiple error resilience 
techniques from different layers of the system stack cooperate to 
achieve cost-effective error resilience, is articulated in several 
publications (e.g., [Carter 10, Gupta 14, Pedram 12]). There are 
numerous publications on error resilience techniques, many of which 
span multiple abstraction layers. However, these publications mostly 
describe specific implementations (e.g., [Lu 82, Meaney 05, Sinharoy 
11]. Cross-layer resilience implementations in commercial systems 
are often 
There exists no comprehensive framework to systematically address 
the cross-layer resilience challenge. Creating such a framework is 
difficult. It must encompass the entire design flow end-to-end, from 
comprehensive and thorough analysis of various combinations of 
error resilience techniques all the way to layout-level 
implementations, such that one can (automatically) determine which 
resilience technique or combination of techniques (at the same or 
across different abstraction layers) should be chosen. Such a 
framework is essential in order to answer important cross-layer 
resilience questions such as: 

1. Is cross-layer resilience the best approach for achieving a given 
resilience target at low cost? 

2. Are all cross-layer solutions equally cost-effective? If not, which 
cross-layer solutions are the best? 

3. How do cross-layer choices change depending on application-
level energy, latency, and area constraints? 

4. How can one create a cross-layer resilience solution that is cost-
effective across a wide variety of application workloads? 

5. Are there general guidelines for new error resilience techniques 
to be cost-effective?  

CLEAR (Cross-Layer Exploration for Architecting Resilience) is a 
first of its kind framework, which addresses the cross-layer resilience 
challenge [Cheng 16a, 16b]. In this paper, we focus on the use of 

CLEAR for radiation-induced soft errors in terrestrial environments. 
Although the soft error rate of an SRAM cell or a flip-flop stays 

roughly constant or even decreases over technology generations, the 
system-level soft error rate increases with increased integration [Mitra 
14, Seifert 12] and can increase when lower supply voltages are used 
to improve energy efficiency [Mahatme 13, Pawlowski 14]. We focus 
on flip-flop soft errors because design techniques to protect them are 
generally expensive. Coding techniques are routinely used for 
protecting on-chip memories. Combinational logic circuits are 
significantly less susceptible to soft errors and do not pose a concern 
[Gill 09, Seifert 12]. We address both single-event upsets (SEUs) and 
single-event multiple upsets (SEMUs) [Lee 10, Pawlowski 14]. While 
CLEAR can address soft errors in various digital components of a 
complex System-on-a-Chip (e.g., uncore [Cho 15], hardware 
accelerators), this paper focuses on soft errors in processor cores. 
 To demonstrate the effectiveness and practicality of CLEAR, we 
explore 586 cross-layer combinations using ten representative error 
detection/correction techniques and four hardware error recovery 
techniques spanning various layers of the system stack: circuit, logic, 
architecture, software, and algorithm (Fig. 1). Our exploration 
encompasses over 9 million flip-flop soft error injections into two 
diverse processor core architectures: a simple in-order SPARC Leon3 
core (InO-core) [Leon] and a complex super-scalar out-of-order 
Alpha IVM core (OoO-core) [Wang 04], across 18 benchmarks. Such 
extensive exploration enables us to conclusively answer the above 
cross-layer resilience questions: 

1. For a wide range of error resilience targets, optimized cross-
layer combinations can provide low cost solutions for soft errors. 

2. Not all cross-layer solutions are cost-effective. 
a. For general-purpose processor cores, a carefully optimized 

combination of selective circuit-level hardening, logic-level parity 
checking, and micro-architectural recovery provides a highly 
effective cross-layer resilience solution.  

b. When the application space is restricted to matrix operations, 
a combination of Algorithm Based Fault Tolerance (ABFT) 
correction, selective circuit-level hardening, logic-level parity 
checking, and micro-architectural recovery can be highly effective. 

c. Selective circuit-level hardening, guided by a thorough 
analysis of the effects of soft errors on application benchmarks, 
provides a highly effective soft error resilience approach. 

3. The above conclusions about cost-effective soft error resilience 
techniques largely hold across various application characteristics (e.g., 
latency constraints despite errors in soft real-time applications). 

4. One must address the challenge of potential mismatch between 
application benchmarks vs. applications in the field, especially when 
targeting high degrees of resilience. We overcome this challenge 
using various flavors of circuit-level hardening techniques (Sec. 4). 

5. Cost-effective approaches discussed above provide bounds that 
new soft error resilience techniques must achieve to be competitive. 

 Figure 1 gives an overview of the CLEAR framework. 
 

 
 We use flip-flop soft error injections for reliability analysis 
(radiation test results confirm that injection of single bit-flips into flip-
flops closely models soft error behaviors in actual systems [Bottoni 
14, Sanda 08]). Flip-flop-level error injection is crucial since naïve 
high-level error injections can be highly inaccurate [Cho 13]. 
 We injected over 9 million flip-flop soft errors into the RTL of the 
processor designs using three BEE3 FPGA emulation systems and 
also using mixed-mode simulations on the Stampede supercomputer 
(TACC at The University of Texas at Austin) (similar to [Cho 13, 
Wang 04]). This ensures that error injection results have less than a 
0.1% margin of error with a 95% confidence interval per benchmark. 
Errors are injected uniformly into all flip-flops and application 
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regions, to mimic real world scenarios. 
 The SPECINT2000 [Henning 00] and DARPA PERFECT 
[DARPA] benchmark suites are used for evaluation1. The PERFECT 
suite complements SPEC by adding applications targeting signal and 
image processing domains. We ran benchmarks in their entirety. 

Flip-flop soft errors can result in the following outcomes [Cho 13, 
Sanda 08, Wang 04]: Vanished - normal termination and output files 
match error-free runs, Output Mismatch (OMM) - normal 
termination, but output files are different from error-free runs, 
Unexpected Termination (UT) - program terminates abnormally, 
Hang - no termination or output within 2  the nominal execution 
time, Error Detection (ED) - an employed resilience technique flags 
an error, but the error is not recovered using hardware recovery.  
 Any error that results in OMM causes SDC. Any error that results 
in UT, Hang, or ED causes DUE (there are no ED outcomes if no error 
detection technique is employed). The resilience of a protected (new) 
design compared to an unprotected (original, baseline) design can be 
defined in terms of SDC improvement (Eq. 1a) or DUE improvement 
(Eq. 1b). Techniques that increase execution time or add flip-flops 
increase the susceptibility of the design to soft-errors. To accurately 
account for this situation, we calculate, based on [Schirmeier 15], a 

accurate comparison2. Reporting SDC and DUE improvements allows 
our results to be agnostic to absolute error rates. 
 

         (Eq. 1a) 

 

     (Eq. 1b) 
 
 

                                                                                              
1 11 SPEC / 7 PERFECT (InO), 8 SPEC / 3 PERFECT (OoO). 
2 Research literature commonly considers =1. We use true  values, but our 

conclusions hold for  as well (latter is optimistic). 
3 Circuit and logic techniques have tunable costs/resilience  
4 LLVM compiler no longer supports the Alpha architecture (OoO-core). 

 Execution time is estimated using FPGA emulation and RTL 
simulation. Applications are run to completion. Our design 
methodology maintains clock speed. 
 

 Synopsys design tools (Design Compiler, IC compiler, Primetime) 
along with a commercial 28nm technology library (with 
corresponding SRAM compiler) is used to perform synthesis, place-
and-route, and power analysis. Synthesis and place-and-route (SP&R) 
was run for all configurations of the design (before and after adding 
resilience techniques) to ensure all constraints of the original design 
(e.g., timing and DRC) were met for the resilient designs. 
  

 We carefully chose ten error detection and correction and four 
hardware error recovery techniques. These techniques largely cover 
the space of existing soft error resilience techniques. The 
characteristics of each technique when used as a standalone solution 
(e.g., an error detection / correction technique by itself or, optionally, 
in conjunction with a recovery technique) are presented in Table 1. 
 Circuit: The hardened flip-flops (LEAP-DICE, Light Hardened 
LEAP) in Table 2 are designed to tolerate SEUs and SEMUs [Lee 10, 
Lilja 13]. Error Detection Sequential (EDS) [Bowman 09, 11] can be 
used to detect flip-flop soft errors (in addition to timing errors). 
 

 

5 Some assertions (e.g., [Sahoo 08]) have false positives (i.e., error reported during 
error-free run). Execution time impact reported discounts false positives. 

6 EDDI with store-readback [Lin 14]. 3.3× SDC / 0.4× DUE improvement without. 
7 Error detection checks may require computationally-expensive calculations. 
8 EDS costs for the flip-flop only. Error signal routing, delay buffers increase cost. 

Table 2. Resilient flip-flops. 
Type Soft Error Rate Area Power Delay Energy 

Baseline 1 1 1 1 1 
Light Hardened LEAP (LHL) 2.5×10-1 1.2 1.1 1.2 1.3 

LEAP-DICE 2.0× 10-4 2.0 1.8 1 1.8 
EDS8 ~100% detect 1.5 1.4 1 1.4 

Table 1. Individual resilience techniques: costs and improvements when implemented as a standalone solution. 

Layer Technique Area 
cost 

Power 
cost 

Energy 
cost 

Exec. time 
impact 

Avg. SDC 
improvement 

Avg. DUE 
improvement 

False 
positive 

Circuit3 

LEAP-DICE 
(no additional recovery needed) 

InO 0-9.3% 0-22.4% 0-22.4% 0% 1× - 5,000× 1× - 5,000× 0% OoO 0-6.5% 0-9.4% 0-9.4% 
EDS 

(without recovery - unconstrained) 
InO 0-10.7% 0-22.9% 0-22.9% 0% 1× - 

100,000× 0.1× - 1× 0% OoO 0-12.2% 0-11.5% 0-11.5% 
EDS 

(with IR recovery) 
InO 0-16.7% 0-43.9% 0-43.9% 0% 1× - 

100,000× 
1× - 

100,000× 0% OoO 0-12.3% 0-11.6% 0-11.6% 

Logic3 
Parity 

(without recovery - unconstrained) 
InO 0-10.9% 0-23.1% 0-23.1% 0% 1× - 

100,000× 0.1× - 1× 0% OoO 0-14.1% 0-13.6% 0-13.6% 
Parity 

(with IR recovery) 
InO 0-26.9% 0-44% 0-44% 0% 1× - 

100,000× 
1× - 

100,000× 0% OoO 0-14.2% 0-13.7% 0-13.7% 

Arch. 

DFC 
(without recovery - unconstrained) 

InO 3% 1% 7.3% 6.2% 1.2× 0.5× 0% OoO 0.2% 0.1% 7.2% 7.1% 
DFC 

(with EIR recovery) 
InO 37% 33% 41.2% 6.2% 1.2× 1.4× 0% OoO 0.4% 0.2% 7.3% 7.1% 

Monitor core (with RoB recovery) OoO 9% 16.3% 16.3% 0% 19× 15× 0% 

Soft-
ware4 

Software assertions for general-purpose 
processors (without recovery - unconstrained) InO 0% 0% 15.6% 15.6%5 1.5× 0.6× 0.003% 

CFCSS (without recovery - unconstrained) InO 0% 0% 40.6% 40.6% 1.5× 0.5× 0% 
EDDI (without recovery - unconstrained) InO 0% 0% 110% 110% 37.8×6 0.3× 0% 

Alg. 
ABFT correction (no additional recovery needed) InO 

OoO 0% 0% 1.4% 1.4% 4.3× 1.2× 0% 

ABFT detection (without recovery - unconstrained) InO 
OoO 0% 0% 24% 1-56.9%7 3.5× 0.5× 0% 

 
Figure 1. CLEAR Framework: (a) BEE3 emulation cluster / Stampede supercomputer injects over 9 million errors into two diverse processor 
architectures running 18 full-length application benchmarks. (b) Accurate physical design evaluation accounts for resilience overheads. (c) 

Comprehensive resilience library consisting of ten error detection / correction techniques + four hardware error recovery techniques. (d) Example 
illustrating thorough exploration of 586 cross-layer combinations with varying energy costs vs. percentage of SDC-causing errors protected. 
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 Logic: Parity checking detects errors by checking flip-flop inputs 
and outputs [Spainhower 99]. Our design heuristics ([Cheng 16b]) 
reduce the cost of parity and ensure that clock frequency is maintained 
as in the original design. SEMUs are minimized through layouts that 
ensure a minimum spacing (the size of one flip-flop) between flip-
flops checked by the same parity checker [Amusan 09]. 
 Architecture: Our implementation of Data Flow Checking (DFC) 
includes Control Flow Checking (CFC), and resembles [Meixner 07]. 
Monitor cores are specialized checker cores that validate instructions 
executed by the main core [Austin 99, Lu 82]. We analyze monitor 
cores similar to [Austin 99] and confirmed (via IPC estimation) that 
our monitor core implementation does not stall the main core. 
 Software: Software assertions for general-purpose processors 
check program variables to ensure their values are valid. We combine 
assertions from [Hari 12, Sahoo 08]. Control Flow Checking by 
Software Signatures (CFCSS) [Oh 02a] and Error Detection by 
Duplicated Instructions (EDDI) [Oh 2b] are implemented via 
compiler modification. We utilize EDDI with store-readback [Lin 14].  
 Algorithm: Algorithm Based Fault Tolerance (ABFT) can detect 
(ABFT detection) or detect and correct errors (ABFT correction) 
through algorithm modifications [Chen 05, Huang 84, Tao 93]. 
 Recovery: We consider two recovery scenarios: bounded latency, 
i.e., an error must be recovered within a fixed period of time after its 
occurrence, and unconstrained, i.e., where no latency constraints exist 
and errors are recovered externally once detected (no hardware 
recovery is required). Bounded latency recovery requires one of the 
following hardware recovery techniques (Table 3): flush or Reorder 
Buffer (RoB) recovery (flushing non-committed instructions followed 
by re-execution) [Racunas 07, Wang 05]; instruction replay (IR) or 
extended instruction replay (EIR) recovery (instruction checkpointing 
to rollback and replay instructions) [Meaney 05]. EIR is an extension 
of IR with additional buffers required by DFC for recovery. Flush and 
RoB are unable to recover from errors detected after the memory write 
stage of InO-cores or after the reorder buffer of OoO-cores, 
respectively (these errors will have propagated to architecture visible 
states). Hence, LEAP-DICE is used to protect flip-flops in these 
pipeline stages when using flush/RoB recovery. 
 

 

CLEAR uses a top-down approach to explore the cost-effectiveness 
of various cross-layer combinations. For example, resilience 
techniques at upper layers of the system stack (e.g., ABFT correction) 
are applied before moving down the stack to lower layers (e.g., an 

                                                                                              
9 Costs generated per benchmark and averaged. Relative std. deviation: 0.6-3.1%. 
10 DUE improvements not possible when detection-only techniques are used in an 

optimized combination of logic parity checking, circuit-level LEAP-
DICE, and micro-architectural recovery). This approach (example 
shown in Fig. 2) ensures that resilience techniques from various layers 
of the stack effectively interact with one another. Resilience 
techniques from the algorithm, software, and architecture layers of the 
stack generally protect multiple flip-flops (determined using error 
injection); however, a designer typically has little control over the 
specific subset protected. Using multiple resilience techniques from 
these layers can lead to situations where a given flip-flop may be 
protected (sometimes unnecessarily) by multiple techniques. At the 
logic and circuit layers, fine-grained protection is available since these 
techniques can be applied selectively to individual flip-flops (those 
not sufficiently protected by higher-level techniques). 

 

 
 

Among the 586 cross-layer combinations explored using CLEAR, 
a highly promising approach combines selective circuit-level 
hardening using LEAP-DICE, logic parity, and micro-architectural 
recovery (flush recovery for InO-cores, RoB recovery for OoO-
cores). Thorough error injection using application benchmarks is 
critical in selecting flip-flops protected using these techniques. 
[Cheng 16b] details the methodology for creating this combination. 

When the application space targets specific algorithms (e.g., matrix 
operations), a cross-layer combination of LEAP-DICE, parity, ABFT 
correction, and micro-architectural error recovery (flush/RoB) 
provides additional energy savings (Table 4). Since ABFT correction 
performs in-place error correction, no separate recovery mechanism 
is required for ABFT correction. When targeting DUE improvement, 
ABFT correction provides no energy savings for the OoO-core. This 
is because ABFT correction performs checks at set locations in the 
program (e.g., a DUE resulting from an invalid pointer access can 
cause an immediate program termination before a check is invoked). 
 Since most applications are not amenable to ABFT correction, the 
flip-flops protected by ABFT correction must also be protected by 
techniques such as LEAP-DICE or parity (or combinations thereof) 
for processors targeting general-purpose applications. This requires 
circuit hardening techniques (e.g., [Mitra 05, Zhang 06]) with the 
ability to selectively operate in an error-resilient mode (high 
resilience, high energy) when ABFT is unavailable, or in an economy 
mode (low resilience, low power mode) when ABFT is available. 
However, the overheads outweigh benefits (details in [Cheng 16b]). 

Relative benefits seen in Table 4 are consistent across benchmarks 
and over the range of SDC/DUE improvements. Overheads in Table 
4 are small because we reported the most energy-efficient resilience 
solutions. Most of the 586 combinations are far costlier.  
 

unconstrained recovery scenario. 

Table 3. Hardware error recovery costs. 
Core Type Area Power Energy Recovery 

latency 

InO 
Instruction Replay (IR) recovery 16% 21% 21% 47 cycles 

EIR recovery 34% 32% 32% 47 cycles 
Flush recovery 0.6% 0.9% 1.8% 7 cycles 

OoO 
Instruction Replay (IR) recovery 0.1% 0.1% 0.1% 104 cycles 

EIR recovery 0.2% 0.1% 0.1% 104 cycles 
Reorder Buffer (ROB) recovery 0.01% 0.01% 0.01% 64 cycles 

 

 
Figure 2. Cross-layer methodology example for combining ABFT 

correction, LEAP-DICE, logic parity, and micro-architectural recovery. 

Unprotected design Perform error injection to 
determine percentage of 

errors resulting in SDC/DUE 
per flip-flop when application 
running with ABFT correction

Protected 
design

Apply ABFT correction

Apply LEAP-DICE, parity, and recovery 
to flip-flops until required SDC/DUE 

improvement is achieved [Cheng 16b]

Table 49. Costs vs. SDC and DUE improvements for efficient resilience techniques. 
A (area cost %), P (power cost %), E (energy cost %) 

 
Bounded latency recovery Unconstrained recovery10 Exec. 

time 
impact 

SDC improvement DUE improvement SDC improvement DUE improvement 
2 5 50 500 max 2 5 50 500 max 2 5 50 500 max 2 5 50 500 max 

InO 

Selective hardening using 
LEAP-DICE 

A 
P 
E 

0.8 
2 
2 

1.8 
4.3 
4.3 

2.9 
7.3 
7.3 

3.3 
8.2 
8.2 

9.3 
22.4 
22.4 

0.7 
1.5 
1.5 

1.7 
3.8 
3.8 

3.8 
9.5 
9.5 

5.1 
12.5 
12.5 

9.3 
22.4 
22.4 

0.8 
2 
2 

1.8 
4.3 
4.3 

2.9 
7.3 
7.3 

3.3 
8.2 
8.2 

9.3 
22.4 
22.4 

0.7 1.7 3.8 5.1 9.3 
0% 1.5 3.8 9.5 12.5 22.4 

1.5 3.8 9.5 12.5 22.4 
LEAP-DICE + logic parity 

(+ flush recovery) 
A 
P 
E 

0.7 1.7 2.5 3 8 0.6 1.5 3.6 4.4 8 0.7 1.6 2.4 2.8 7.6 
- - - - - 0% 1.9 3.9 6.1 6.7 17.9 1.5 3.4 8.4 10.4 17.9 1.9 3.8 5.9 6.5 17.2 

1.9 3.9 6.1 6.7 17.9 1.5 3.4 8.4 10.4 17.9 1.9 3.8 5.9 6.5 17.2 
ABFT correction + 

LEAP-DICE + logic parity 
(+ flush recovery) 

A 
P 
E 

0 
0 

1.4 

0.4 
0.7 
2.2 

1.0 
1.7 
3.1 

1.2 
1.8 
3.2 

8 
17.9 
19.6 

0.3 
1 

2.4 

0.4 
1 

2.4 

1.5 
3.3 
4.8 

2.7 
5.7 
7.2 

8 
17.9 
19.6 

0 
0 

1.4 

0.4 
0.7 
2.2 

0.9 
1.6 
3 

1.1 
1.8 
3.2 

7.6 
17.2 
18.8 

- - - - - 1.4% 

OoO 

Selective hardening using 
LEAP-DICE 

A 
P 
E 

1.1 1.3 2.2 2.4 6.5 1.3 1.6 3.1 3.6 6.5 1.1 1.3 2.2 2.4 6.5 1.3 1.6 3.1 3.6 6.5 
0% 1.5 1.7 3.1 3.5 9.4 2 2.3 4.2 5.1 9.4 1.5 1.7 3.1 3.5 9.4 2 2.3 4.2 5.1 9.4 

1.5 1.7 3.1 3.5 9.4 2 2.3 4.2 5.1 9.4 1.5 1.7 3.1 3.5 9.4 2 2.3 4.2 5.1 9.4 
LEAP-DICE + logic parity 

(+ ROB recovery) 
A 
P 
E 

0.06 0.1 1.4 2.2 4.9 0.5 0.7 2.6 3 4.9 0.06 0.1 1.4 2.2 4.9 
- - - - - 0% 0.1 0.2 2.1 2.4 7 0.1 0.1 2 1.8 7 0.1 0.2 2.1 2.4 7 

0.1 0.2 2.1 2.4 7 0.1 0.1 2 1.8 7 0.1 0.2 2.1 2.4 7 
ABFT correction + 

LEAP-DICE + logic parity 
(+ ROB recovery) 

A 
P 
E 

0 
0 

1.4 

0.01 
0.01 
1.5 

0.3 
0.5 
1.9 

0.5 
0.8 
2.2 

4.9 
7 

8.5 

0.4 
0.1 
1.5 

0.6 
0.1 
1.5 

2.1 
3 

4.2 

3 
1.6 
3 

4.9 
7 

8.5 

0 
0 

1.4 

0.01 
0.01 
1.5 

0.3 
0.5 
1.9 

0.5 
0.8 
2.2 

4.8 
6.9 
8.4 

- - - - - 1.4% 

3. Cross-Layer Combinations 
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 The most cost-effective resilience techniques are guided by error 
injection using application benchmarks. What happens when the 
applications in the field do not match application benchmarks? We 
refer to this situation as application benchmark dependence. To 
quantify this dependence, we randomly selected 4 (of 11) SPEC 
benchmarks as a training set, and used the remaining 7 as a validation 
set. Resilience is implemented using the training set and the resulting 

ermined using the validation set. We used 50 
training/validation pairs. Table 5 indicates that validated SDC 
improvement is generally underestimated. Fortunately, when 
targeting <10× SDC improvement, the underestimation is <4%. This 
is due to the fact that the most vulnerable 10% of flip-flops (i.e., the 
flip-flops that result in the most SDCs or DUEs) are consistent across 
benchmarks. Benchmark sensitivity may be minimized by training 
using additional benchmarks or through better benchmarks (e.g., 
[Mirkhani 15]). An alternative approach is to apply our CLEAR 
framework using available benchmarks, and then replace all 
remaining unprotected flip-flops using LHL (Table 2). This enables 
our resilient designs to meet (or exceed) resilience targets at <1.2% 
additional cost for SDC improvements >10×. 
 

 

 CLEAR is a first of its kind cross-layer resilience framework that 
enables effective exploration of a wide variety of resilience 
techniques and their combinations across several layers of the system 
stack. Our extensive cross-layer resilience studies demonstrate: 

1. A carefully optimized combination of selective circuit-level 
hardening, logic-level parity checking, and micro-architectural 
recovery provides a highly cost-effective soft error resilience solution 
for general-purpose processors. 

2. Selective circuit-level hardening alone, guided by thorough 
analysis of the effects of soft errors on application benchmarks, also 
provides a cost-effective soft error resilience solution (with ~1% 
additional energy cost for the same 50× SDC improvement). 

3. Algorithm Based Fault Tolerance (ABFT) correction combined 
with selective circuit-level hardening, logic-level parity checking, and 
micro-architectural recovery can further improve soft error resilience 
costs. However, existing ABFT correction techniques can only be 
used for a few applications limiting the applicability of this approach. 

4. We can derive bounds on energy costs vs. degree of resilience 
(SDC or DUE improvements) that new soft error resilience techniques 
must achieve to be competitive (shown in Fig. 3). 

5. It is crucial that the benefits and costs of new resilience 
techniques are evaluated thoroughly and correctly. Detailed analysis 
(e.g., flip-flop-level error injection or layout-level cost quantification) 
identifies hidden weaknesses that are often overlooked. 
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Table 5. SDC improvement, cost before and after applying LHL to 
otherwise unprotected flip-flops. 

Core 
SDC improvement Cost before LHL 

insertion 
Cost after LHL 

insertion 
Train Validate After LHL Area Power / 

Energy Area Power / 
Energy 

InO 
5× 4.8× 19.3× 1.6% 3.6% 3.1% 5.7% 

50× 38.9× 152.3× 2.4% 5.7% 3.3% 6.9% 
500× 433.1× 1,326.1× 2.9% 6.3% 3.4% 7.1% 
Max 5,568.9× 5,568.9× 8% 17.9% 8% 17.9% 

OoO 
5× 4.8× 35.1× 0.1% 0.2% 0.9% 1.8% 

50× 32.1× 204.3× 1.4% 2.1% 1.9% 2.7% 
500× 301.4× 1084.1× 2.2% 2.4% 2.4% 2.8% 
Max 6,625.8× 6,625.8× 4.9% 7% 4.9% 7% 

 
Figure 3. New resilience techniques must have cost and improvement 
tradeoffs that lie within the shaded regions bounded by LEAP-DICE + 

parity + micro-architectural recovery. 
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