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Abstract: In this paper, we present a new method that 
uses software diagnostic tools to study the generation of 
induced spurious physical emissions from embedded 
devices over air-gapped (remote) channels. With this 
methodology, spurious emissions are induced during 
controlled computer operations such as dynamic memory 
allocation, hard disk writing and computations. Each 
stressing operation creates a pulse in an amplitude shift 
keying scheme. These software techniques can provide 
repeatable measurements of embedded devices for mapping 
unwanted emissions over air-gapped channels. 
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Introduction 
Communication using induced spurious physical 
phenomena from computers secured via an air gap has been 
demonstrated recently by harnessing both thermal signals 
and electromagnetic signals [1,2]. Traditionally, covert 
channel techniques focused on networked systems and are 
widely discussed in the literature [1-5]. Other offensive 
sideways channel techniques which focused on network-
induced physical phenomena to fingerprint a computer of 
interest have also been demonstrated [6]. Additional 
techniques using power differentials, side channel attacks, 
or statistical power analysis retrieving information on 
computers and embedded devices are widely discussed in 
the literature [7-13]. 
As many embedded devices are now linked with software 
control and diagnostics, defense against new types of 
attacks warrants an understanding of unwanted signal 
generation. We examine this connection by observing the 
emission profile of an embedded device while executing 
specific software commands. 

The goal of this paper is to present a new methodology 
[14] that uses software diagnostic tools to control the 
generation of unwanted physical emissions [15,16] from 
embedded devices over air-gapped channels. Such 
emissions are induced via software stress testing and 
diagnostic and security applications including StressLinux 
(Linux) [17], KALI (Linux) [18] and a multitude of tools in 
Windows [19]. Primarily, these tools monitor and address 
load, stability, and environmental controls for personal 
computers as well as mobile and embedded devices. Here, 
we repurpose these tools to stress embedded devices, which 

results in the occurrence of new induced emissions. 
Further, these emissions are repeatable and appear around 
the normal, background response of the device. We present 
three different software stress techniques that induce new 
and unwanted emissions over the background response of a 
given device. To demonstrate the control available with this 
methodology, a final software stress technique is devised to 
induce a repeatable sequence of controlled emissions over 
the embedded device. This novel method can be used to 
calibrate the emission profile of a device, which can help 
later in differentiating between normal operations and those 
operations from an unwanted attack. 

Analog Enablers (Hardware) 
Spurious signals, also known as unwanted, unintended, 

or out-of-band emissions, are regulated by over 119 
countries without a concise definition [15-16]. These 
emissions are inherent to powered electronic components, 
subsystems and systems that might cause undesired 
interference. As an example, Fig. 1 presents the measured 
inherent broadband Radio Frequency (RF) response from 
an embedded device, an Intel Galileo 2 (Quark SoC 
X1000). Fig.1 shows the emission spectrum response 
from the Intel Galileo 2 measured with a Tektronix Real 
time Spectrum Analyzer (RTSA) 3408B [14]. We 
observed two strong emission bands from the Intel 
Galileo 2. One band from 385 MHz to 387 MHz is 
observed for a duration of 7.2 seconds. An additional 
band is observed from 397 to 400 MHz. These responses 
range in magnitude from -58 to -54 dBm. 

 

Digital Enablers (Software) 
Software diagnostic tools monitor and address 

computer load, stability, and environmental control across 
a network. Fig. 2 demonstrates how these tools control 
and measure stress of Central Processing Units (CPUs). In 
this test, the command [20] was executed on a MacBook 
Pro (Darwin Kernel 14.05) to stress the CPU load. 

% stress –cpu 500 –t5      

 

The stress code employs 500 CPU workers (e.g., square 
root operations) for a duration of 5 seconds.  A built-in 
activity monitor reads and records the CPU load. As 
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expected, the CPU load spike is clearly observed under 
this stress operation. 

 
Figure 1: Inherent spurious emission from and Intel 

Galileo 2, scale in dBm 

 

 
Figure 2: CPU performance of a Darwin kernel before 

(top) and after (bottom) harmonic stressing using 
command % stress –cpu 500 –t5  

To repurpose this type of stress technique for an 
embedded computer, we used the wrapper diagnostic tool, 
“workload generator for POSIX systems” [20].  This tool 
allows the user to control the stress across memory, file 
and CPU operations. We then performed a similar CPU 
operation but on Portable Operating System Interface 
(POSIX) embedded devices running Linux kernels. Fig. 3 
presents measurements for the above stress command, % 
stress –cpu 500 –t5, executed on the aforementioned Intel 
Galileo 2.   

 
Figure 3: Induced emission from Intel Galileo 2, scale in 

dBm 

The results indicates the stress –cpu flag ramping the 
CPU, inducing new responses around the clock 
frequencies of these devices, see Fig 3. A wider emission 

response was observed ranging from 380 MHz to 420 
MHz for a duration of 7.2 seconds. The previous two 
bands of 385 MHz to 387 MHz and 397 MHz to 400 MHz 
were also observed to have an increase in peak magnitude 
from -54dBm to -48dBm. 
 
Emission Inducing Stress Loading 

In this section, a series of experiments are now 
presented for three different stress loading techniques 
executed on a Beagle Bone Rev C device (ARM Cortex-
A8 processor). The resulting induced emissions are 
characterized and the different techniques are compared. 
 
Stress Loading Scripts 

Each of the following three scripts employs a digital 
enabler technique to trigger emissions by brute force on 
an embedded Beagle Bone Black Rev C device running a 
Linux kernel. 

 
(1) File operation, hard drive (HDD) [21] –The write() 

function writes bytes from the buffer to the file referenced 
by the file descriptor (). The unlink() function deletes a 
name from the file system. We induce stress using the 
following execution code: 

 

% stress -d 1 –timeout 5s  (HDD stress) 
 

(2) Memory allocation [21] – The malloc()/free() 
function allocates size in bytes and returns a pointer to the 
allocated memory. If the size is 0, then malloc() returns 
either NULL or a unique pointer value that can be passed 
to free(). The free() function frees the memory space 
indicated by a pointer, i.e. what is returned by malloc(). 
We execute this command using the following script: 

 
% stress – m 1 –timeout 5s     (Memory stress) 

  
(3) CPU operation [21] – The sqrt() function simply 

returns the nonnegative square root of x. The compiled 
stress code performs 500 sqrt() operations for 5s with the 
following command: 
 

% stress – cpu 500 –timeout 5s  (CPU stress) 
 
Experimental Setup 

The experimental setup for the measurements uses a 
150A EMC Probe Amplifier and EMC probe that is 
positioned near the device to collect the emissions. A 
USRP N210 software-defined radio receives the data. 
Table 1 lists the hardware and software components used 
in the series of experiments.   
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Table 1: Hardware and Software Tools 

HARDWARE 
Device Model 

Software Defined Radio USRP N210 
EMC Probes 100 Series 

EMC Probe amplifier 105A 
Development Platform Beagle Bone Black Rev C 

MacBook Pro  2015 
Desktop HP Xeon 

SOFTWARE (embedded device) 
Stress[20], CRON (job scheduler), python, c, bash 

SOFTWARE (receiver end) 
GNU RADIO [21] , c, python, OCTAVE, MATLAB 

  
The software defined radio source and probes used the 

following parameters for the tests: Center Frequency Fc = 
1 GHz, Bandwidth BW = 1 MHz, Sample Rate SR = 
500,000 Samples/Second, FFT Size = 8192, and probe 
distance d = 2 cm. Fig. 4 presents the flow diagram for the 
data collection procedure coded in GNU Radio. Where in 
the GNU radio interface the USRP N210 acts as a source 
for transferring the recorded data into a binary file for 
post processing (File Sink). 

For each experiment, we monitor and record a 1 MHz 
band signal with the probe as a function of the three stress 
types. 

 
Experimental Results 

The following plots present the emission measurements 
from the Beagle Bone Black Rev C. using the three 
different stress scripts. In all three cases, we observed the 
emission from the clock frequency of the device at fClock = 

1.0000 GHz and a controlled induced emission behavior 
at fI = 1.0000367 GHz (Figs. 5-6).    

 

 
Figure 4: Graphical illustration of collection using  
GNU RADIO [21] 

Fig. 6 presents the RF response of the Beagle Bone 
Black under the CPU operation stress script. Fig. 6 (top) 
shows the normal emission spectrum response from the 
Beagle Bone Black Rev C  measured with a Tektronix 

RTSA 3408B [14]. We observed an induced emission at 
1.00000 GHz (bandwidth ~30 MHz). The magnitude of 
the peak is -76 dBm and the noise floor is -88 dBm. Fig. 6 
(bottom) shows the response of the device under the CPU 
operation stress script. The induced stress emission is 
clearly visible at a magnitude of -83 dBm. The significant 
rise in the noise envelope in the stressed case is 
characteristic of the CPU workload technique. 

 

 
Figure 5: Background response from Beagle Bone (top) 
and CPU stress-induced response showing new peak and 
a rise in the noise envelope (bottom), scale in dBm 

 
Fig. 6 compares the measurements for the three stress 

techniques in a spectrum plot. Each technique has a unique 
signal response and induced noise envelope. The memory 
allocation stress process has the longest RF response, Fig 
6(middle) (~8 seconds), while the HDD stress has the 
shortest (~3 seconds). The RF emission from memory 
allocation exhibits greater control with induced emission; 
however the HDD process, Fig. 7 (top) has a higher signal 
to noise ratio (SNR). 
 

The SNR is defined as the mean power at the peak tone 
frequency fr = 1.000367 GHz divided by the mean noise 
spectrum.  

S

r
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)(
                                 (1) 

 
The SNR for HDD stress, CPU stress and dynamic 
memory allocation was experimentally calculated as 
18.336, 34.744, and 30.68 dB, respectively.  
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Figure 6: RF response using HDD (top), memory 
allocation (middle), and CPU (bottom) stress operations, 
scale in dBm 

The malloc() memory allocation process speed suggests 
that the mean noise level is higher than the CPU and 
HDD process (~ -80dBm vs ~ -85dBm (i.e. faster to 
access memory than disk)). However the SNR values at 
peak tone are higher by ~12dB and ~15dB for HDD and 
CPU respectively, making CPU and HDD stress better 
candidates at the peak tone frequency. In the next section 
we employ the CPU stress process to demonstrate an 
experiment that repeatedly induces the desired unwanted 
emission. 
 
Controlled Stress Loading Emission Experiment 
    To investigate the repeatability and control of the 
software bad induced emissions, a sequence of stress 
scripts is executed as a binary string, see Fig. 7 for the 
process. A binary string of value ‘00011001001’ is 
encoded (Fig. 8 – Randomize String) using CPU stress 
techniques and sent over the embedded system with a 
controlled spurious emission for reconstruction. A while-
loop pushes 0’s and 1’s with a 750 sample spacing 
between digits (Fig 8 – Function WrapStress). For these 
tests, a ‘0’ string equals one event and the corresponding 
induced emission is observed over 150 samples with a 
750 sample spacing. A ‘1’ string includes three events and 
the corresponding induced emission is observed over 150 
samples and a spacing of < 200 samples between events. 
A reconstruction of the string is shown in Fig. 8 as 
waterfall (top) and logic plots (bottom). 

 

 
Figure 7: Sequence for inducing string emission 

 

 
 

 
Figure 8:  Reconstruction of the ‘00011001001’ in 
waterfall (top) and logic (bottom) plots transmitted using 
square root operations  

Conclusion 
This paper presented a method to induce RF spurious 

emissions over an embedded device using software stress 
techniques. The transmitting POSIX board does not 
require additional hardware for transmission. The receiver 
employs a probe and a software-defined radio to record 
generated emissions in a very short range of ~2 cm with a 
few milliseconds per byte using the malloc() stress 
process.  

While our effort focuses on a new methodology to 
generate unwanted emissions, which could be used as a 
diagnostic tool, the question of protection against 
undesired data retrieval arises. Requirements for the 
control of electromagnetic interference characteristics of 
subsystems and equipment, MIL-STD-461, MIL-HDBK-
1195 and others are mostly sufficient in shielding and 
characterizing unwanted spurious emissions. However, 
there is a gap in understanding the linkage between 
software operations and unwanted emission, which this 
paper sought to address. Future work will focus on other 
characterization techniques such as floating point, integer, 
bit manipulation, cache access and control flow for single 
and multi-core systems, in addition to finding other 
techniques to correlate power consumption with function 
execution. 
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