

Generation of Controlled Analog Emissions from Embedded Devices
using Software Stress Methods

Oren Sternberg, Jonathan H. Nelson, Israel Perez, Kristopher Buchanan, Sara Wheeland
and John D. Rockway

Space and Naval Warfare Systems Center Pacific (SSC Pacific), San Diego, CA 92152-5001

Abstract: In this paper, we present a new method that
uses software diagnostic tools to study the generation of
induced spurious physical emissions from embedded
devices over air-gapped (remote) channels. With this
methodology, spurious emissions are induced during
controlled computer operations such as dynamic memory
allocation, hard disk writing and computations. Each
stressing operation creates a pulse in an amplitude shift
keying scheme. These software techniques can provide
repeatable measurements of embedded devices for mapping
unwanted emissions over air-gapped channels.

Keywords: air-gap; gnu radio; modem; sensors; software-
defined radio; spurious emission

Introduction
Communication using induced spurious physical
phenomena from computers secured via an air gap has been
demonstrated recently by harnessing both thermal signals
and electromagnetic signals [1,2]. Traditionally, covert
channel techniques focused on networked systems and are
widely discussed in the literature [1-5]. Other offensive
sideways channel techniques which focused on network-
induced physical phenomena to fingerprint a computer of
interest have also been demonstrated [6]. Additional
techniques using power differentials, side channel attacks,
or statistical power analysis retrieving information on
computers and embedded devices are widely discussed in
the literature [7-13].
As many embedded devices are now linked with software
control and diagnostics, defense against new types of
attacks warrants an understanding of unwanted signal
generation. We examine this connection by observing the
emission profile of an embedded device while executing
specific software commands.

The goal of this paper is to present a new methodology
[14] that uses software diagnostic tools to control the
generation of unwanted physical emissions [15,16] from
embedded devices over air-gapped channels. Such
emissions are induced via software stress testing and
diagnostic and security applications including StressLinux
(Linux) [17], KALI (Linux) [18] and a multitude of tools in
Windows [19]. Primarily, these tools monitor and address
load, stability, and environmental controls for personal
computers as well as mobile and embedded devices. Here,
we repurpose these tools to stress embedded devices, which

results in the occurrence of new induced emissions.
Further, these emissions are repeatable and appear around
the normal, background response of the device. We present
three different software stress techniques that induce new
and unwanted emissions over the background response of a
given device. To demonstrate the control available with this
methodology, a final software stress technique is devised to
induce a repeatable sequence of controlled emissions over
the embedded device. This novel method can be used to
calibrate the emission profile of a device, which can help
later in differentiating between normal operations and those
operations from an unwanted attack.

Analog Enablers (Hardware)
Spurious signals, also known as unwanted, unintended,

or out-of-band emissions, are regulated by over 119
countries without a concise definition [15-16]. These
emissions are inherent to powered electronic components,
subsystems and systems that might cause undesired
interference. As an example, Fig. 1 presents the measured
inherent broadband Radio Frequency (RF) response from
an embedded device, an Intel Galileo 2 (Quark SoC
X1000). Fig.1 shows the emission spectrum response
from the Intel Galileo 2 measured with a Tektronix Real
time Spectrum Analyzer (RTSA) 3408B [14]. We
observed two strong emission bands from the Intel
Galileo 2. One band from 385 MHz to 387 MHz is
observed for a duration of 7.2 seconds. An additional
band is observed from 397 to 400 MHz. These responses
range in magnitude from -58 to -54 dBm.

Digital Enablers (Software)
Software diagnostic tools monitor and address

computer load, stability, and environmental control across
a network. Fig. 2 demonstrates how these tools control
and measure stress of Central Processing Units (CPUs). In
this test, the command [20] was executed on a MacBook
Pro (Darwin Kernel 14.05) to stress the CPU load.

% stress –cpu 500 –t5

The stress code employs 500 CPU workers (e.g., square
root operations) for a duration of 5 seconds. A built-in
activity monitor reads and records the CPU load. As

Distribution A: Approved for public release; distribution unlimited.

559

expected, the CPU load spike is clearly observed under
this stress operation.

Figure 1: Inherent spurious emission from and Intel

Galileo 2, scale in dBm

Figure 2: CPU performance of a Darwin kernel before

(top) and after (bottom) harmonic stressing using
command % stress –cpu 500 –t5

To repurpose this type of stress technique for an
embedded computer, we used the wrapper diagnostic tool,
“workload generator for POSIX systems” [20]. This tool
allows the user to control the stress across memory, file
and CPU operations. We then performed a similar CPU
operation but on Portable Operating System Interface
(POSIX) embedded devices running Linux kernels. Fig. 3
presents measurements for the above stress command, %
stress –cpu 500 –t5, executed on the aforementioned Intel
Galileo 2.

Figure 3: Induced emission from Intel Galileo 2, scale in

dBm

The results indicates the stress –cpu flag ramping the
CPU, inducing new responses around the clock
frequencies of these devices, see Fig 3. A wider emission

response was observed ranging from 380 MHz to 420
MHz for a duration of 7.2 seconds. The previous two
bands of 385 MHz to 387 MHz and 397 MHz to 400 MHz
were also observed to have an increase in peak magnitude
from -54dBm to -48dBm.

Emission Inducing Stress Loading

In this section, a series of experiments are now
presented for three different stress loading techniques
executed on a Beagle Bone Rev C device (ARM Cortex-
A8 processor). The resulting induced emissions are
characterized and the different techniques are compared.

Stress Loading Scripts

Each of the following three scripts employs a digital
enabler technique to trigger emissions by brute force on
an embedded Beagle Bone Black Rev C device running a
Linux kernel.

(1) File operation, hard drive (HDD) [21] –The write()

function writes bytes from the buffer to the file referenced
by the file descriptor (). The unlink() function deletes a
name from the file system. We induce stress using the
following execution code:

% stress -d 1 –timeout 5s (HDD stress)

(2) Memory allocation [21] – The malloc()/free()
function allocates size in bytes and returns a pointer to the
allocated memory. If the size is 0, then malloc() returns
either NULL or a unique pointer value that can be passed
to free(). The free() function frees the memory space
indicated by a pointer, i.e. what is returned by malloc().
We execute this command using the following script:

% stress – m 1 –timeout 5s (Memory stress)

(3) CPU operation [21] – The sqrt() function simply

returns the nonnegative square root of x. The compiled
stress code performs 500 sqrt() operations for 5s with the
following command:

% stress – cpu 500 –timeout 5s (CPU stress)

Experimental Setup

The experimental setup for the measurements uses a
150A EMC Probe Amplifier and EMC probe that is
positioned near the device to collect the emissions. A
USRP N210 software-defined radio receives the data.
Table 1 lists the hardware and software components used
in the series of experiments.

560

Table 1: Hardware and Software Tools

HARDWARE
Device Model

Software Defined Radio USRP N210
EMC Probes 100 Series

EMC Probe amplifier 105A
Development Platform Beagle Bone Black Rev C

MacBook Pro 2015
Desktop HP Xeon

SOFTWARE (embedded device)
Stress[20], CRON (job scheduler), python, c, bash

SOFTWARE (receiver end)
GNU RADIO [21] , c, python, OCTAVE, MATLAB

The software defined radio source and probes used the

following parameters for the tests: Center Frequency Fc =
1 GHz, Bandwidth BW = 1 MHz, Sample Rate SR =
500,000 Samples/Second, FFT Size = 8192, and probe
distance d = 2 cm. Fig. 4 presents the flow diagram for the
data collection procedure coded in GNU Radio. Where in
the GNU radio interface the USRP N210 acts as a source
for transferring the recorded data into a binary file for
post processing (File Sink).

For each experiment, we monitor and record a 1 MHz
band signal with the probe as a function of the three stress
types.

Experimental Results

The following plots present the emission measurements
from the Beagle Bone Black Rev C. using the three
different stress scripts. In all three cases, we observed the
emission from the clock frequency of the device at fClock =

1.0000 GHz and a controlled induced emission behavior
at fI = 1.0000367 GHz (Figs. 5-6).

Figure 4: Graphical illustration of collection using
GNU RADIO [21]

Fig. 6 presents the RF response of the Beagle Bone
Black under the CPU operation stress script. Fig. 6 (top)
shows the normal emission spectrum response from the
Beagle Bone Black Rev C measured with a Tektronix

RTSA 3408B [14]. We observed an induced emission at
1.00000 GHz (bandwidth ~30 MHz). The magnitude of
the peak is -76 dBm and the noise floor is -88 dBm. Fig. 6
(bottom) shows the response of the device under the CPU
operation stress script. The induced stress emission is
clearly visible at a magnitude of -83 dBm. The significant
rise in the noise envelope in the stressed case is
characteristic of the CPU workload technique.

Figure 5: Background response from Beagle Bone (top)
and CPU stress-induced response showing new peak and
a rise in the noise envelope (bottom), scale in dBm

Fig. 6 compares the measurements for the three stress

techniques in a spectrum plot. Each technique has a unique
signal response and induced noise envelope. The memory
allocation stress process has the longest RF response, Fig
6(middle) (~8 seconds), while the HDD stress has the
shortest (~3 seconds). The RF emission from memory
allocation exhibits greater control with induced emission;
however the HDD process, Fig. 7 (top) has a higher signal
to noise ratio (SNR).

The SNR is defined as the mean power at the peak tone
frequency fr = 1.000367 GHz divided by the mean noise
spectrum.

S

r

N

FS
SNR

)(
 (1)

The SNR for HDD stress, CPU stress and dynamic
memory allocation was experimentally calculated as
18.336, 34.744, and 30.68 dB, respectively.

561

Figure 6: RF response using HDD (top), memory
allocation (middle), and CPU (bottom) stress operations,
scale in dBm

The malloc() memory allocation process speed suggests
that the mean noise level is higher than the CPU and
HDD process (~ -80dBm vs ~ -85dBm (i.e. faster to
access memory than disk)). However the SNR values at
peak tone are higher by ~12dB and ~15dB for HDD and
CPU respectively, making CPU and HDD stress better
candidates at the peak tone frequency. In the next section
we employ the CPU stress process to demonstrate an
experiment that repeatedly induces the desired unwanted
emission.

Controlled Stress Loading Emission Experiment
 To investigate the repeatability and control of the
software bad induced emissions, a sequence of stress
scripts is executed as a binary string, see Fig. 7 for the
process. A binary string of value ‘00011001001’ is
encoded (Fig. 8 – Randomize String) using CPU stress
techniques and sent over the embedded system with a
controlled spurious emission for reconstruction. A while-
loop pushes 0’s and 1’s with a 750 sample spacing
between digits (Fig 8 – Function WrapStress). For these
tests, a ‘0’ string equals one event and the corresponding
induced emission is observed over 150 samples with a
750 sample spacing. A ‘1’ string includes three events and
the corresponding induced emission is observed over 150
samples and a spacing of < 200 samples between events.
A reconstruction of the string is shown in Fig. 8 as
waterfall (top) and logic plots (bottom).

Figure 7: Sequence for inducing string emission

Figure 8: Reconstruction of the ‘00011001001’ in
waterfall (top) and logic (bottom) plots transmitted using
square root operations

Conclusion
This paper presented a method to induce RF spurious

emissions over an embedded device using software stress
techniques. The transmitting POSIX board does not
require additional hardware for transmission. The receiver
employs a probe and a software-defined radio to record
generated emissions in a very short range of ~2 cm with a
few milliseconds per byte using the malloc() stress
process.

While our effort focuses on a new methodology to
generate unwanted emissions, which could be used as a
diagnostic tool, the question of protection against
undesired data retrieval arises. Requirements for the
control of electromagnetic interference characteristics of
subsystems and equipment, MIL-STD-461, MIL-HDBK-
1195 and others are mostly sufficient in shielding and
characterizing unwanted spurious emissions. However,
there is a gap in understanding the linkage between
software operations and unwanted emission, which this
paper sought to address. Future work will focus on other
characterization techniques such as floating point, integer,
bit manipulation, cache access and control flow for single
and multi-core systems, in addition to finding other
techniques to correlate power consumption with function
execution.

562

References

[1] M. Guri, G. Kedma, A. Kachlon and Y. Elovici,

"AirHopper: Bridging the Air-Gap between Isolated
Networks and Mobile Phones using Radio
Frequencies," in 9th IEEE International Conference on
Malicious and Unwanted Software (MALCON 2014),
Puero Rico, Fajardo, 2014.

[2] Guri, Mordechai, et al. "BitWhisper: Covert Signaling
Channel between Air-Gapped Computers using
Thermal Manipulations." arXiv preprint
arXiv:1503.07919 (2015).

[3] Z. Z. X. a. H. W. Wu, "Whispers in the Hyper-space:
High-speed Covert Channel Attacks in the Cloud," in
USENIX Security symposium, 2012.

[4] G. V. Jie Chen, "CC-Hunter: Uncovering Covert
Timing Channels on Shared Processor Hardware," in
MICRO-47 Proceedings of the 47th Annual
IEEE/ACM International Symposium on
Microarchitecture, 2014.

[5] H. W. a. H. W. Ki Suh Lee, "PHY Covert Channels:
Can you see the Idles?," in 11th USENIX Symposium
on Networked Systems Design and Implementation
(NSDI '14) , Seattle, 2014.

[6] Kohno, Tadayoshi, Andre Broido, and Kimberly C.
Claffy. "Remote physical device fingerprinting." IEEE
Transactions on Dependable and Secure Computing
2.2 (2005): 93-108.

[7] Murdoch, “Hot or Not: Revealing hidden services by
Their Clock Skew”, http://www.clc.cam.ac.uk/~sjm217

[8] Kocher, C., Jaffe, J., Jun, B., Differential Power
Analysis, Advances in Cryptology-CRYPTO’ 99,
LNCS1666, (1999), 388–397. Iokibe, Kengo, Tetsuo
Amano, and Yoshitaka Toyota. "On-board decoupling
of cryptographic FPGA to improve tolerance to side-
channel attacks." Electromagnetic Compatibility
(EMC), 2011 IEEE International Symposium on.
IEEE, 2011.

[9] Lawson, Nate. "Side-channel attacks on cryptographic
software." Security & Privacy, IEEE 7.6 (2009): 65-68.

[10] P. Kocher, “Timing Attacks on Implementations of
Diffie-Hellman, RSA, DSS, and Other Systems,”
Cryptography Research, 1995;
www.cryptography.com/resources/
whitepapers/TimingAttacks.pdf

[11] D. Brumley and D. Boneh, “Remote Timing Attacks
Are Practical,” Proc. 12th Conf. Usenix Security
Symp., Usenix Assoc., 2003, p. 1.

[12] Brier, Eric, Christophe Clavier, and Francis Olivier.
"Correlation power analysis with a leakage model."
Cryptographic Hardware and Embedded Systems-
CHES 2004. Springer Berlin Heidelberg, 2004. 16-29.

[13] Clavier, Christophe, Jean-Sébastien Coron, and Nora
Dabbous. "Differential power analysis in the presence
of hardware countermeasures." Cryptographic
Hardware and Embedded Systems—CHES 2000.
Springer Berlin Heidelberg, 2000.

[14] Patent Pending U.S. NAVY CASE# 103418 “Method
of Wireless Transferring Data by Driving and
Controlling Electronic Components Power
Emissions,” 2/2015.

[15] https://www.fcc.gov/encyclopedia/rules-regulations-
title-47 (Title 47, Chapter I, Subchapter A-H , Part 15)

[16] https://transition.fcc.gov/mb/audio/bickel/world-govt-
telecom.html worldwide government
telecommunication sites

[17] http://www.stresslinux.org/sl/
[18] https://www.kali.org/
[19] https://www.raymond.cc/blog/test-system-stability-by-

putting-heavy-load-on-system-resources
[20] http://people.seas.harvard.edu/~apw/stress/stress-

1.0.4.tar.gz
[21] http://man7.org/linux/man-pages/man3/malloc.3.html
[22] Monti, Giuseppina, et al. "Resonant energy scavenger

for sensor powering by spurious emissions from
compact fluorescent lamps." Sensors Journal, IEEE
14.7 (2014): 2347-2354

563

