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Abstract: Counterfeiters seeking financial gain can 
introduce misrepresented or recycled microelectronic 
components to both government and commercial supply 
chains. This reduces system reliability and trust, and 
currently has few comprehensive and practical solutions. 
The SICADA methodology was developed to detect such 
counterfeit microelectronics by collecting power side 
channel data and applying machine learning to identify 
counterfeits. This methodology has been extended to 
include a two-step automated feature selection process and 
now uses a one-class SVM classifier. We describe this 
methodology and show results for empirical data collected 
from several types of Microchip dsPIC33F 
microcontrollers. 
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Introduction and Background 
Many government programs outlast the typical support 
lifetimes of their required components. Untrusted third 
parties can target this disparity for financial gain by selling 
counterfeits of obsolete and rare parts. These counterfeits 
may be similar devices modified to look like the desired 
part, or could be a recycled part. We initially developed and 
described the Side Channel Authenticity Discriminate 
Analysis (SICADA) [1] methodology to classify 
counterfeit devices using power side channels and detect 
such types of misrepresented parts. SICADA has 
advantages over many typical counterfeit detection 
methods in that it does not require device destruction, can 
be used on legacy devices, and is not overly expensive and 
time consuming [2]. This methodology has been improved 
with an automated feature selection process and a one-class 
unsupervised counterfeit identification method. 

SICADA works by comparing features derived from the 
power waveforms of a suspect device to those from known 
authentic devices (referred to as the golden set). It attempts 
to classify the unknown device as counterfeit or legitimate 
based on differences in these observations. The goal is to 
have a practical system that can be deployed in the 
environments where the authenticity of a device needs to be 
determined, such as distribution centers and end users. This 
analysis approach is a machine learning process that 
involves four main parts: data collection, feature 
generation, feature selection, and classification. The first 

two steps are described in [1], and our methods for feature 
selection and classification are described in this work. 

Machine learning classification methods can be incredibly 
sensitive to the features provided to them. A good 
algorithm can produce bad results if it is supplied with too 
many, noisy, or highly correlated features. Feature 
reduction techniques can be separated into two main 
categories: selection and projection. Projection techniques 
involve transforming features into a lower-dimensional 
subspace, whereas selection involves choosing individual 
features without transformation. A popular projection 
technique, PCA (Principle Component Analysis), is often 
used to produce a smaller set of transformed features. PCA 
involves a transformation that maximizes variation among 
given data points. While this provides good separation 
between data points, this variation maximization occurs 
indiscriminately, and can separate data within the same 
class. Further, projection techniques in general provide 
transformed features, which can make it difficult to 
interpret which original features are causing the separation 
of the data points. 

Feature selection instead determines the most important 
features to separate a given dataset. This can provide 
insight into the features themselves. In our case, it allows 
for analysis on the best discriminating features in our set 
and provides insight into the physical phenomena that 
define the differences. This further allows for fine-tuning 
the data collection process for more accurate counterfeit 
identification.  

Once the final feature set is determined, the classification 
step itself is a challenge. Not only is this an anomaly 
detection problem, but the model must not assume it has 
seen all possible types of counterfeits in its training data or 
that any counterfeits it has seen are necessarily 
representative of those it may come in contact with in the 
future. SICADA assumes that a “golden set” (a set of 
known legitimate devices) exists, and therefore lends itself 
well to unsupervised one-class classifiers. 

In the remaining sections, we first describe in more detail 
our new methodology for feature selection and 
classification. We then describe how we tested our methods 
and discuss the results from those experiments.  
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Methodology 
Data Collection: Empirical power measurements are 
gathered by monitoring electrical current fluctuations on 
device power inputs. This is done by observing voltage 
drop across a sense resistor with an oscilloscope. Other 
inputs to the device include a fixed test program and an 
external clock. Our test program was designed to exercise 
different parts of the device circuit, and the external clock 
is used to provide measurement consistency. 

Feature Generation: We process the collected data using 
the same feature generation approach described in [1] and 
adapted from [3]. Power traces are broken down by clock 
cycle and transformed into Hilbert analytical signals, from 
which the instantaneous amplitude, phase, and frequency 
are derived. The first four statistical moments (mean, 
variance, kurtosis, and skewness) are gathered from each of 
these waveforms. This creates 12 distinct features for each 
clock cycle. For example, one feature is the mean 
instantaneous amplitude of the 10th clock cycle.  In this 
way, we can enumerate the shape characteristics of the 
clock events of our test program.  

Feature Selection: There are two challenges that arise from 
the large number of features produced by SICADA during 
feature generation: the many highly linearly correlated 
features and sheer number of features, many of which play 
a minimal role in discriminating unlike devices. Therefore, 
we have two steps in SICADA’s automated feature 
selection: first the removal of highly correlated features and 
second the selection of features that separate the known and 
unknown devices.  

The first step addresses the first challenge, the large 
number of highly correlated features. This step occurs 
immediately after the features for the golden set are 
generated, and only needs to be performed once for each 
golden set. We remove the strongly linearly correlated 
features by calculating the absolute value of the correlation 
coefficient, |ρ|, for each pair of features using data from the 
golden set. The value of |ρ| can be calculated as follows: 

! = !"#(!! ,!!)
!!!!

 

where !"#(!! ,!!) is the sample covariance of features 
!! ,!!, and !! ,!! are the standard deviations of  !! ,!!, 
respectively. The correlation coefficient is a number 
between -1 and 1, which measures the linear correlation 
between two random variables. Correlation coefficients 
close to 1 indicate strong positive correlation, close to -1 
indicate strong negative correlation, and correlation 
coefficients close to 0 imply little to no linear correlation 
between random variables. After the correlation 
coefficients are calculated, one feature from each pair of 
features with |ρ| greater than some threshold is eliminated. 
With a threshold of .9, we remove roughly 85% of the 
features, depending on the chosen golden set device type. 

The second feature selection step selects the final features 
that will be used for classification. Essentially, we grow a 
decision tree on both the data from the golden and suspect 
devices, labeling the golden and suspect device data as two 
separate classes, and use the features chosen for the 
decision tree as our final feature set. Since this involves 
data from both the golden set and the suspect device, it 
must be done once for each suspect device. 

The basic properties of decision trees make them a good 
way to quickly select discriminating features. Decision 
trees fundamentally operate by selecting the features that 
best separate data given class labels. At each point in the 
tree, a true/false question is asked about one feature of the 
data that arrives there. All the data points for which the 
result is true go down one branch, and the remaining go 
down the other branch. During training, the choice of 
which true/false question asked at any given node will be 
one that best separates the training data that arrives at that 
node. Training is complete when each training data point 
is successfully classified, if possible, and so only features 
required to fully separate the data will be used in the 
decision tree. Decision trees have long been shown to 
produce good feature subsets for classification [4]. We 
therefore use the features chosen in the decision tree as 
our final feature set for the classifier. 

 
Figure 1: Basic SICADA Methodology. Data collection 

and feature generation is the first step for both the known 
authentic parts and the part in question. Following that is 
the feature selection process and the classification steps. 

Classification: We previously investigated several 
classifiers for SICADA, and have settled on an 
unsupervised one-class Support Vector Machine (SVM) 
classifier. It is primarily an outlier detection method, and it 
works best when finding a small number of outliers in a 
larger dataset, as described in [5] and shown in [6]. This 
property suits our problem well, where we have a few 
samples from a suspect device that we are comparing to 
samples from multiple golden devices. The one-class SVM 
generates a boundary around the majority of the data (this 
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is a percentage specified by the user) and gives each point a 
score: positive scores for points within the boundary, with 
larger positive scores for points closer to the center, and 
negative scores for those outside the boundary, larger in 
magnitude for those further from the boundary. 

SICADA uses the one-class SVM by inputting both golden 
and suspect data into the classifier, and setting the outlier 
percentage to the percentage of suspect samples out of the 
total number of samples. We can make a counterfeit 
declaration based on the relative distributions of the 
resulting scores. Intuitively, we can say a device is 
counterfeit if most of the scores for its samples are negative 
or lower than the majority of the scores for the known 
device. However, if the scores of the suspect and golden 
device samples are similarly distributed, the two devices 
are indistinguishable, and the suspect device could be 
legitimate (see Figure 1). Specifically, we declare a 
counterfeit device if the !!! quantile of the suspect scores is 
less than the !!! quantile of the golden scores, where ! > !. 
Otherwise, we say the device is legitimate. 

Experimental Setup 
Data used in this paper is identical to the data collected for 
[1]. Empirical measurements were taken from Microchip’s 
dsPIC33F family of microcontrollers (Table 1). We used 
j12 parts as the base device, while j32 and j128 parts had 
larger memory sizes. The j128 devices have more 
comparators, DACs, and timers compared to either j12 or 
j32 devices. Each type is further broken down by grade, 
where I-type parts are standard industrial grade and E-type 
parts are extended temperature grade parts. Most device 
types had samples from different date codes to avoid 
matching against only specific lots. Note that we have 
made a differentiation between the j12i and j12ib devices. 
The j12i parts are several years older and are a different 
silicon revision than the other parts used in this study. 

Power information was collected via custom sensing 
circuits and captured on an oscilloscope. Each 
microcontroller was loaded with a program to execute 1000 
iterations of a consistent operational loop utilizing a 
mixture of arithmetic, register, and memory operations. 

This operational loop comprised 53 individual clock cycles. 
Each device was clocked via an external pulse generator at 
10 MHz to avoid timing inconsistencies in factory 
calibration settings. To reduce the possibility of temporary 
environmental factors affecting the results of our 
evaluation, we collected data on three separate dates. The 
average results mentioned are averages of the evaluation 
metrics of these separate datasets. 

Table 1: Microchip dsPIC33F Type List 

Label Device Quantity 
j12i J12GP-202 I 9 

j12ib J12GP-202 I 5 
j12e J12GP-202 E 6 
j32i J32GP-202 I 18 
j32e J32GP-202 E 6 
j128i J128GP-802 I 22 
j128e J128GP-802 E 15 

Our evaluation scheme involves many pairwise 
comparisons. Four representative parts for each device type 
(shown above in Table 1) are chosen to make up the golden 
models. This is because we had as few as five or six 
devices for some types, and through testing it seemed that 
at least four devices were required for good performance. 
Then, for each golden set, we run the feature selection and 
classification steps for each of the remaining devices. This 
yields 539 pairwise comparisons, 486 of which are 
different-type comparisons and should be identified as 
counterfeit, and 53 same-type comparisons that should be 
classified as legitimate. 

For the first step of feature selection, we use a correlation 
coefficient threshold of 0.9, which removes about 85% of 
the generated features. The further number of features 
removed during the decision tree feature selection varies 
between each pairwise comparison. However, the number 
of features remaining for legitimate test devices tends to be 
much higher than the number of features remaining for 
counterfeit test devices. The reason for this is fairly 
intuitive: a legitimate device is much harder to differentiate 
from the golden set, and so requires a large, severely overfit 
tree to classify. The suspect and golden set score quantiles 
(! and !) used for comparison are 52.5% and 65%, 

Figure 2: SVM Score Comparisons. Each figure shows boxplots of the SVM scores. Here, we are declaring a counterfeit if the 
median (50th quantile) of the suspect device SVM scores is less than the 25th quantile of the golden device set SVM scores. 
On the left, the suspect device is correctly declared legitimate, while the device tested on the right is declared a counterfeit. 

381



 

respectively. These were chosen from a series of ROC 
curves sweeping these thresholds looking to maximize the 
true positive rate (catching a counterfeit), minimize false 
positive rate (misclassifying a legitimate part as a 
counterfeit), and be somewhat robust to changes in the 
data. 

The SICADA methodology, starting with feature 
generation, was implemented using MATLAB ®, and uses 
decision tree and SVM included in the Statistics Toolbox. 

Results 
We evaluate the results in terms of identifying a true 
counterfeit as a positive detection. Below in Table 2, we 
show results broken down by golden type, or the known 
authentic part type. This table includes results from the first 
data collection, however these results are typical for each 
collection. Table 3 shows the overall results from the three 
collections. 

Table 2: Results for one data collection summarized for 
each golden device type. 

Golden 
Type 

Total 
Counterfeit 

Total 
Legitimate 

True 
Positive 

Rate 

False 
Positive 

Rate 
j12i 72 5 98.61% 0.00% 

J12ib 76 1 94.74 0.00 
j12e 75 2 100.00 0.00 
j32i 63 14 90.48 0.00 
j32e 75 2 76.00 0.00 
j128i 59 18 77.97 0.00 
j128e 66 11 66.67 0.00 

In general, it seems that counterfeits imitating the j12 parts 
are most successfully detected, followed by j32 devices, 
and finally j128 devices. This was consistent across all 
three data collections. Further, the counterfeits that were 
missed when compared to the j12ib devices were all j12i 
parts, which are an older version of the same device. 

Most missed counterfeits involved differentiating between 
environmental grades of the j128 and j32 devices. This 
could be because there are twice as many or more these 
than the others, across a couple more date codes, and so 
have more opportunity for varying signatures. In this first 
run, all but ten of the missed counterfeit suspect parts were 
of these types, and mainly are missed when compared with 
their environmental grade (I-type vs. E-type) counterpart. It 
is possible that a larger golden set for these device types or 
separating out the date codes as individual types will 
improve finding counterfeits of these types. More work can 
be done on differentiating the environmental grades. 

Overall, in each collection on the three separate dates, we 
catch over 80% of the counterfeits, and on average capture 
88.96% of the counterfeits. Our false positive rate is very 
low, so we rarely misclassify legitimate devices as 
counterfeits. 

Table 3: Overall results for each data collection. 

Data 
Collection 

True 
Positive 

Rate 

False 
Positive 

Rate 
1 86.83% 0.00% 
2 96.50 9.43 
3 83.54 0.00 

Conclusion 
We have extended the SICADA methodology to include an 
automated feature selection process and one-class SVM 
classification. The two-step feature selection process allows 
us to eliminate feature pairs that are highly correlated, and 
adaptively select features to use for each new suspect 
device. By using an unsupervised one-class SVM, we are 
able to identify counterfeits with only four known devices 
for training. Through our experiments, where similar, but 
different-type devices are used to represent counterfeits, we 
found we were able to successfully identify these 
counterfeits 88.86% of the time on average and miss-
classified legitimate devices 3.14% of the time. 
In future work, we look to test this methodology on a wider 
range of microelectronics parts, namely FPGAs. We aim to 
conduct more thorough analysis on the features that are 
important discriminators of different parts, and identify 
those that cause us to misidentify a legitimate device. 
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