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Abstract: In this article, we review the basic physics of an 
atom interferometer. We highlight the usefulness of atom 
interferometers for inertial navigation due to their high 
phase sensitivity to both linear acceleration and angular 
rotation, but also the drawback that a single atom 
interferometer cannot distinguish between the two sources 
of phase shifts. We describe a design for a dual atom 
interferometer to simultaneously measure acceleration and 
rotation and we describe the current status of our 
apparatus. 
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Introduction 
The years 1991-1992 saw the introduction of four novel 
atom interferometers. [1-4]. Two of these [3, 4] 
investigated rotational sensitivity and the measurement of 
local gravity. Since then, an entire field of study has 
emerged, investigating the use of atom interferometers as 
inertial sensors.   

The major promise of these devices is their inherent 
sensitivity which scales as the mass of the atom (or these 
days, molecules). Comparing an atom interferometer to an 
otherwise equal optical interferometer whose effective 
mass is given by the frequency of the light, an atom 
interferometer can be as much as 11 orders of magnitude 
more sensitive than the optical one [5]. Of course, there 
are some factors that make atom interferometers and 
optical interferometers otherwise not equal, including flux 
of the interfering particles and the ability of optical 
photons to be recycled. Still, atom interferometers can be 
3-4 orders of magnitude more sensitive than optical 
interferometers. In addition to sensitivity, atom 
interferometers are based on the well-defined and uniform 
characteristics of atoms leading to excellent bias and scale 
factor stability. 
 
This paper is organized as follows: we first describe the 
basic building blocks of the interferometer: beam splitters 
and mirrors. We then outline how these building blocks 
can be used in an interferometer configuration and we 
show how the phase of the interferometer can be derived. 
We describe our embodiment of a sensor that can give 
both acceleration and rotation information based on 
opposing atomic beams. We postulate the sensitivity of 
our device and provide a status of the current 
experiments. Finally, we conclude.  

Physics of an atom interferometer 
Basic building blocks: beam splitters and mirrors. The 
physics of an atom interferometer is very analogous to a 
Mach-Zehnder optical interferometer, with the roles of 
light and matter interchanged. An atom beam splitter 
splits the path on which an atom travels. Two mirrors then 
redirect the atom’s path back towards itself and a final 
beam splitter recombines the two arms. The number of 
atoms at the output port is measured and oscillations can 
be observed when the timing between the atom optics is 
varied. The phase of these oscillations shifts when the 
device is rotated or accelerated. 

In order to describe the atom optics, we consider a simple 
two level atom with two electronic states labeled |g> and 
|e> of energy spacing o , driven by a laser of 

frequency L . This problem can be found in many standard 

quantum optics textbooks e.g [6]. In textbooks, the two 
states are usually ground and excited electronic states. 
However, electronic states usually spontaneously decay 
very quickly, spoiling the coherence required for the 
interferometer. In atom interferometer realizations, the two 
states are typically two ground states separated by an 
energy whose associated frequency is in the radio 
frequency part of the spectrum and the driving laser is 
made up of two laser frequencies whose frequency 
separation is close to the ground state frequency difference. 
For simplicity, the discussion below assumes two 
electronic states and one laser frequency. Even so, the 
physics of the driven ground state atom is the same as the 
driven electronic state problem.  

When the atom is initially prepared in the ground state and 
then illuminated by a laser of frequency L and electric 

field amplitude , the probability )(tPe of finding the atom 

in the excited state is given by  
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where 

2

 is the zero detuning Rabi frequency,  is 

the atomic dipole moment, 22  g is the 

generalized Rabi frequency and oL   is the 

detuning of the laser from the atomic transition.  
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Equation (1) is plotted in Figure 1 for the parameter values 
listed in the caption. Its interpretation is simple: in the 
absence of any spontaneous emission or other decoherence 
mechanisms (which were ignored in the derivation of 
Equation (1)), the atomic population oscillates smoothly 
between the two states. For times satisfying  tg  (the 

so called ‘pi-pulse’), the atom fully transfers from the 
ground state to the excited state (or, if it were initially in the 
excited state, it would fully transfer to the ground state).  
The key to realizing the interferometer is the fact that the 
change in electronic state is accompanied by a change in 
momentum. The ground state receives a “kick” of k , 
where k  is the laser wavenumber in the direction of the 
drive laser. When the atom is in the excited state, the 
stimulated emission of the photon results in a momentum 
kick opposite to the direction of the driving laser. This type 
of pulse is a called an “atom mirror”. 

 
Figure 1: Plot of the probability of the atom being in the 
excited state as a function of scaled time t  for .0  

 
For times satisfying 2/ tg  (the so called ‘pi/2-

pulse’), the atom is in a coherent superposition of ground 
and excited states. The portion of the atomic wave function 
that corresponds to the excited state receives a momentum 
kick as described above, while the portion remaining in the 
ground state does not. The two states of the atom actually 
realize spatial separation. The action of this pulse is 
analogous to the action of a glass plate on an optical beam 
and therefore is called an “atom beam splitter”. Present day 
interferometers have been demonstrated to have extremely 
large separations [7].  
 
The action of the so called  pulse sequence making 
up a basic interferometer is depicted in Figure (2). A /2 
pulse is applied to atoms prepared in the ground state and 
initially traveling with some velocity v. After the pulse, the 
atoms are allowed to evolve “in the dark” for a period of 
time, denoted by T, and then encounter a  pulse. After a 
second free evolution period (of time T), the atoms are 

subjected to a final /2 pulse. The number of atoms in the 
excited state are read out with a detecting laser. As 
illustrated in the next section, the probability of finding 
atoms in the excited state is interferometrically sensitive to 
the free evolution time T, which ultimately leads to inertial 
sensitivity. 

 
Figure 2: Depiction of the action of a standard 

2/2/    pulse sequence on a stream of atoms 
(after [8, 9]). 

 
Phase of the interferometer: For illustrative purposes, we 
will consider atoms moving in a gravitational potential. 
There is a similar treatment for atoms on a rotating frame, 
whose result we merely quote at the end of this section.  By 
the nature of the interferometer, the atoms moving through 
the interferometer are treated like waves and they acquire a 
phase given by [8, 9]  

 
path

tLdt ,)(      (2) 

where L(t) is the Lagrangian given by the difference of the 

kinetic 2)]([
2

1
)( tvmtK  and potential )()( tmgztU   

energies L(t)=K-U integrated over the path followed by the 
atoms. The action of the first beam splitter causes the atoms 
to follow two different trajectories, which must be handled 
separately. The action of the last beam splitter is essentially 
to take the difference of the phases acquired in each arm. 
The trajectories need to include the fact that the laser pulses 
cause momentum kicks as described in the previous sub-
section, which in the simplest form can be considered as 
instantaneous velocity changes. Although not especially 
difficult, the calculations can be tedious and finally result in 
the phase difference between the two trajectories being 
given by: 
 

,012        (3) 

 
which is to say that the phase difference due to the motion 
along the classical path is zero.  
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However, there is a second contribution to the phase of the 
interferometer. If we assume the laser pulse duration is 
much shorter than the free evolution time, then the phase of 
the laser at the time of the pulse at the location of the atom 
is “imprinted” on the atom. Taking into account all three 
laser pulses, the phase difference then becomes 
 

)2()(2)0( TtTtt   ,  (4a) 

 
which, when referenced to a fixed point becomes 
 

.2kgT       (5) 

 
The action of the laser pulses effectively takes a “picture” 
of the atoms’ location at three positions using the laser’s 
wavelength as the “ruler”, from which the acceleration due 
to gravity can be extracted.  
 
An analogous argument can be followed for an atom 
moving on a platform rotating with angular velocity W. In 
that case (and in the absence of linear motion), the phase 
difference is given by 
 

AW 

m2  ,    (6) 

where W is the rotation vector and A is the area vector. 
 

Dual atom interferometer concept 
Prior work: As developed in the previous section, atom 
interferometers have extreme sensitivity to both the rotation 
and acceleration of a platform. When a sensor using an 
atom interferometer experiences linear acceleration, a 
phase shift can be read-out from the interferometer and 
equation (5) can be used to calculate the acceleration. 
Similarly, when the platform is rotated, equation (6) can be 
used to infer the rotation. However, most platforms very 
rarely experience perfectly linear or perfectly rotational 
motion: usually, the platform trajectory is a combination of 
both types of motion.   It is impossible for a single atom 
interferometer to distinguish between the two types of 
phase shifts. 
  
While a single interferometer cannot yield useful 
information about either linear or rotational motion, a dual 
interferometer using opposing atom beams can provide 
information about both types of motion.   Such an 
interferometer is depicted in Figure (3), which utilizes two 
atomic sources and common atom optics. The phase shift   
observed in one interferometer e.g. the interferometer 
comprised of atoms moving left to right, is given by the 
sum of equations (5) and (6).  

WA
m

kgTLR 
22      (7) 

We note that the phase difference given by equation (6) 
depends on the dot product of the rotational vector with the 
area vector of the interferometer, which acquires a minus 
sign when the area vector flips. Therefore, the phase shift 
measured by the atoms moving from right to left is given 
by  

.
22 WA

m
kgTRL 

     (8) 

By measuring the phase shift in both interferometers 
simultaneously, the acceleration can be extracted by adding 
the shifts and the rotation can be extracted by taking the 
difference of the phase shifts.  A dual 
accelerometer/gyroscope based on opposing flying atom 
clouds has already been demonstrated in [10, 11].  
 
 

 
Figure 3: Depiction of our dual accelerometer/gyroscope 
based on opposing atomic beams.  

 
Our design: Previous works [10, 11] suffer from two 
drawbacks that our design seeks to circumvent. The first 
drawback is that the system is pulsed. Atoms are caught in 
a 3-dimensional atom trap and launched towards each 
other. The clouds of atoms experience the  and /2 pulses 
as the light beams are flashed on and the timing depends on 
the launch velocity of the two clouds. The 3-dimensional 
trap is loaded from an atomic beam emerging from a 2-
dimensional trap. The 2D trap is used solely for the rapid 
loading of the 3D trap (20 milliseconds in the case of [11]). 
The other drawback of this design is the complexity and 
power requirements, especially for the 3-dimensional traps. 
Laser beams need to be turned on and impinge on atoms 
from six sides. Furthermore, the ability to pulse all the 
lasers at the appropriate times requires the use of acousto-
optic modulators, which can require up to a watt of radio-
frequency power per modulator. The timing sequence is 
connected to the launch velocity of the atoms. 
 
Our design eliminates the use of the 3-dimensional trap 
entirely, therefore greatly reducing the complexity of 
apparatus (compare our figure (3) to figure (1) of [11]). It 
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also eliminates the need to use modulators on the trapping 
beams, reducing the power requirements.  Our design also 
uses 2 two-dimensional atom traps, but as a sources of slow 
moving atoms that are quasi-mono-energetic. Our atom 
optics beams are left on continuously (further eliminating 
modulators on the atom optics lasers) and we rely on the 
transit time of the atoms through the laser beams to form 
the atom optics “pulses”.  
 
Sensitivity 
The sensitivity of an atom interferometer can be 
characterized by several parameters. For a gyroscope, these 
parameters are usually the angle random walk of the device 
and the bias stability. Bias stability is a function of the 
stability of the design and will be measured at a future time. 
Angle random walk can be calculated from first principles 
from the shot-noise limited fluctuations in the rotation 
signal. The phase fluctuations, denoted by  , are given by 

[12] 
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where C is the (measured) contrast and )( bo nn is the total 

(background) atom flux and  is the sampling time. In 
deriving Eq. (9), we assume that we maintain a lock on the 
side of a fringe. Otherwise, the fluctuations would be 

2 larger.  The fluctuations in the rotation signal (denoted 
by W ) from Equation (6) is then 
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Similarly, the fluctuations in the acceleration signal a  
can be derived from Equation (5) and (9) and are given by 











o

b

o n

n

nCT
a 1

11

2 2 


.  (11) 

 Our design goals are to demonstrate of 

hrreesx /deg102 4  angle random walk and 

hrondmetersx /sec/103 4 velocity random walk. 

These sensitivities require a flux of at least 

ondatomsx sec/102 7 , which we have demonstrated. 

 
Current status 
To date, we have constructed an apparatus and 
demonstrated most of the ingredients discussed in this 
article. Specifically, we have demonstrated: 

 An apparatus with two opposing atom beams, each of 

which has a flux of approximately ondatoms sec/109  

which is two orders of magnitude larger than required. 
 The ability to drive Raman resonances (which are the 

resonances described in the Physics of An Atom 
Interferometer section). This is shown in figure (4), 
where we scan the driving laser’s frequency over the 
so-called “clock” transition and the first (positive and 
negative) magnetic Raman transitions.  
 

 
Figure 4: Measured Spectrum of resonances useful for 
the atom gyroscope/accelerometer. 

Conclusions 
In conclusion, in this article, we have reviewed the basic 
theory leading to the working of an atom interferometer 
and how an atom interferometer can be used as an 
accelerometer and a gyroscope. We discussed using 
opposing atomic beams to be able to simultaneously 
measure acceleration and rotation. We then compared and 
contrasted our design with state of the art dual 
accelerometer/gyroscope designs. We presented our design 
goals for sensitivity and finally presented the current status 
of the apparatus.  
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