
 

 

 

 
 
DETECTION AND LEARNING OF UNEXPECTED BEHAVIORS OF 
SYSTEMS OF DYNAMICAL SYSTEMS BY USING THE Q2 
ABSTRACTIONS 

 
 
NORTHEASTERN UNIVERSITY 
 
NOVEMBER 2017 
 
FINAL TECHNICAL REPORT 
 
 
 
 
 
 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
 
 
 
 

STINFO COPY 
 
 
 
 
 
 

AIR FORCE RESEARCH LABORATORY 
INFORMATION DIRECTORATE 

 
 
 
 
 
 
 
 
 

AFRL-RI-RS-TR-2017-219 

 UNITED STATES AIR FORCE  ROME, NY 13441  AIR FORCE MATERIEL COMMAND  



 

 

NOTICE AND SIGNATURE PAGE 
 
 
Using Government drawings, specifications, or other data included in this document for any purpose other 
than Government procurement does not in any way obligate the U.S. Government. The fact that the 
Government formulated or supplied the drawings, specifications, or other data does not license the holder 
or any other person or corporation;  or convey any rights or permission to manufacture, use, or sell any 
patented invention that  may relate to them.  
 
This report is the result of contracted fundamental research deemed exempt from public affairs security 
and policy review in accordance with SAF/AQR memorandum dated 10 Dec 08 and AFRL/CA policy 
clarification memorandum dated 16 Jan 09.  This report is available to the general public, including 
foreign nations.  Copies may be obtained from the Defense Technical Information Center (DTIC) 
(http://www.dtic.mil). 
 
 
 
AFRL-RI-RS-TR-2017-219   HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION IN 
ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT. 
 
 
 
 
FOR THE CHIEF ENGINEER: 
 
 
 / S /        / S / 
WILLIAM D. LEWIS      JULIE BRICHACEK 
Work Unit Manager      Chief, Information Systems Division 
        Information Directorate 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This report is published in the interest of scientific and technical information exchange, and its publication 
does not constitute the Government’s approval or disapproval of its ideas or findings. 
 



REPORT DOCUMENTATION PAGE Form Approved 
OMB No. 0704-0188 

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and 
maintaining the data needed, and completing and reviewing the collection of information.  Send comments regarding this burden estimate or any other aspect of this collection of information, including 
suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 
1204, Arlington, VA 22202-4302.  Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information 
if it does not display a currently valid OMB control number.   
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 
1. REPORT DATE (DD-MM-YYYY)

NOV 2017 
2. REPORT TYPE

FINAL TECHNICAL REPORT 
3. DATES COVERED (From - To)

May 2015 – May 2017 
4. TITLE AND SUBTITLE

DETECTION AND LEARNING OF UNEXPECTED BEHAVIORS OF 
SYSTEMS OF DYNAMICAL SYSTEMS BY USING THE Q2 
ABSTRACTIONS 

5a. CONTRACT NUMBER 
FA8750-15-1-0095 

5b. GRANT NUMBER 
N/A 

5c. PROGRAM ELEMENT NUMBER 
62788F 

6. AUTHOR(S)

Mitch Kokar, Shweta Singh, Shan Lu 

5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 
R1MP 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Northeastern University 
360 Huntington Avenue 
Boston MA  02115 

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Air Force Research Laboratory/RISC 
525 Brooks Road 
Rome NY 13441-4505 

10. SPONSOR/MONITOR'S ACRONYM(S)

AFRL/RI 
11. SPONSOR/MONITOR’S REPORT NUMBER

AFRL-RI-RS-TR-2017-219 
12. DISTRIBUTION AVAILABILITY STATEMENT
Approved for Public Release; Distribution Unlimited.  This report is the result of contracted fundamental research 
deemed exempt from public affairs security and policy review in accordance with SAF/AQR memorandum dated 10 Dec 
08 and AFRL/CA policy clarification memorandum dated 16 Jan 09 
13. SUPPLEMENTARY NOTES

14. ABSTRACT

This report describes the research on characterization and detection of emergent behaviors in groups of dynamical 
systems (agents) performing a common mission. The mission was related to monitoring of plume. The main objective of 
this research was the reduction of the complexity of emergence detection through the use of the theory of similitude and 
of qualitative abstractions of dynamical systems. 

15. SUBJECT TERMS

Emergence, emergent behaviors, agents, UAVs, plume monitoring, similitude theory, qualitative abstractions of 
dynamical systems 
16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 

ABSTRACT 

UU 

18. NUMBER
OF PAGES 

19a. NAME OF RESPONSIBLE PERSON 
WILLIAM D. LEWIS 

a. REPORT 
U 

b. ABSTRACT 
U 

c. THIS PAGE
U 

19b. TELEPHONE NUMBER (Include area code) 

Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std. Z39.18

74



i 

Table of Contents 

Section Page 

List of Figures ................................................................................................................. iii 

List of Tables ............................................................................................................................ vi 

List of Algorithms .......................................................................................................... vi 

1 SUMMARY ......................................................................................................... 1 

2 INTRODUCTION ........................................................................................ 2 
2.1 Emergence/Emergent Properties ................................................................................... 2 
2.2 On Irreducibility in Mathematics ............................................................................... 6 
2.3 Computational Irreducibility ......................................................................................... 7 
2.4 Classification/Taxonomy of Emergent Behaviors......................................................... 9 
2.4.1 Fromm’s Taxonomy ................................................................................................................. 11 
2.5 Emergence in Swarms of UAVs...........................................................................................................12 

3 METHODS, ASSUMPTIONS AND PROCEDURE .............................. 13 
3.1 Targeting Emergence: EBS (Emergent Behavior System) Framework .................... 13 
3.1.1 Emergence in Levels of the System. .............................................................................. 13 
3.1.1.1 Agent. ................................................................................................................................... 15 
3.1.1.2 Interaction between Agents. ...................................................................................... 15 
3.1.1.3 Agent Environment. ...................................................................................................... 16 
3.1.1.4 System. ............................................................................................................................16 
3.1.1.5 External Entity - Commander (Observer). ............................................................... 17 
3.1.2 Emergence in Ontology ..................................................................................................17 
3.1.2.1 Ontology Basics. .............................................................................................................17 
3.1.2.2 Features of Emergent Behaviors. ................................................................................. 17 
3.1.3 EBS Simulation Framework......................................................................................... 19 
3.1.3.1 Behavior Model...............................................................................................................19 
3.1.3.2 Behavior Classifier. .........................................................................................................20 
3.1.3.3 Simulation Engine. ..........................................................................................................21 
3.1.3.4 Visualizer. ........................................................................................................................22 
3.1.3.5 Behavior Monitor. ..................................................................................................... 22 
3.2 Scenario Formalization: Undesirable Emergent Behaviors in Swarms of UAVs ...... 23 
3.2.1 Problem Specification. ....................................................................................................23 
3.2.2 Agent (UAV) Dynamics. ........................................................................................... 25 
3.2.3 Dimensionality Problem..................................................................................................26 
3.3 Qualitatively Different Behaviors ................................................................................ 27 
3.4 Quantitative-Qualitative (Q2) Approach ................................................................... 28 

4 RESULTS AND DISCUSSION ................................................................ 30 



 
ii 

4.1 Boids Flocking ................................................................................................................30 
4.2 Agent Based Modeling and Simulation of UAVs ................................................................. 30 
4.2.1 Single UAV representation. ....................................................................................... 30 
4.2.2 Extension to multiple UAVs. ......................................................................................................... 32 
4.2.3 Simulating Emergent Behavior Types. ....................................................................... 35 
4.3 Application of Q2  Approach ..................................................................................... 37 
4.3.1 A Test Case Scenario. .....................................................................................................37 
4.3.2 Generalized Q2  Conceptualization. ........................................................................... 39 
4.3.2.1 Partitioning of the Output Space and Qualitative Outputs. ................................ 39 
4.3.2.2 Partitioning of State Space and Qualitative States. .................................................. 40 
4.3.2.3 Partitioning of Input Space and Qualitative Inputs. ................................................. 43 
4.3.3 Proof of consistency constraints. ....................................................................................45 
4.3.4 Simulation in Qualitative Domain. ........................................................................... 47 
4.4 Detection and Classification of Emergent Behaviors ....................................................48 
4.4.1 Detection using Variety .................................................................................................... 48 
4.4.2 Detection using FSM. ............................................................................................... 49 
4.4.3 Classification using Ontology Inference. .......................................................................50 
4.5 Learning Hypersurfaces ..................................................................................................51 
4.6 Complexity Analysis .......................................................................................................55 

5 CONCLUSION .................................................................................................. 56 
5.1 Future Direction ......................................................................................................... 58 

APPENDIX A - Publications and Presentations ............................................... 65 

APPENDIX B - Abstracts .................................................................................... 66 

LIST OF ACRONYMS ........................................................................................ 67 
 
 

 
 
 
 
 
 
 
 
 
 
 



 
iii 

List of Figures 
 

Figure Page 
 
1 Concept Lattice with Emergence Features and Corresponding Reference using Formal 

Concept Analysis ......................................................................................................................4 
2 Overlap of Features between Definitions ................................................................................5 
3 Taxonomy of Emergent Behaviors by Fromm [1] .................................................................. 12 
4 Relationship between Micro and Macro Levels .................................................................. 14 
5 Agent(s) in EBS ................................................................................................................. 15 
6 Proposed EBS Framework Showing OWL and Simulation Based Components ............. 19 
7 Behavior Modeling Concepts Based on Nuvio .....................................................................20 
8 Ontology Concepts for Representing Finite State Machine ............................................... 21 
9 Main Ontological Concepts for Representing Structure of a Multi-Agent System ......... 22 
10 Classification of Emergent Behaviors ...................................................................................23 
11 Surveillance Area (NetLogo Snapshot) .................................................................................24 
12 Q2: Quantitative-Qualitative Representation of a Dynamical System ............................ 29 
13 NetLogo Simulation - Boids Flocking ...................................................................................... 31 
14 Detection of Flocking Behavior using Similitude Theory ................................................. 31 
15 UAV and Information Age ................................................................................................ 32 
16 Pattern Emergence from Single UAV (Plume - Green Area) ............................................33 
17 Control Policies for Multiple UAVs (grey circle represent the S(t) of center UAV .......... 34 
18 NetLogo Simulation of persistent surveillance of square plume by 4 UAVs ...........................35 
19 NetLogo Simulation of persistent surveillance of circular plume by 4 UAVs ........................36 
20 Flocking Emergent Behaviors in Multi-UAV Plume Monitoring System ........................ 37 
21 Undesirable Emergent Behavior - Non-Covered Facility ......................................................... 38 
22 NetLogo Simulation of Persistent Surveillance by 4 UAVs of Square Plume (Green 

Region) - Minimization of Information Age (Right Plot) ..................................................39 
23 NetLogo Simulation of Persistent Surveillance by 4 UAVs of Square Plume (Green 

Region) - Undesirable Group Formation ................................................................................... 40 
24 Two UAVs Moving in Circular Motion (Opposite Directions) ........................................ 41 
25 Observation of Outputs ...................................................................................................... 41 
26 Transition through Qualitative Space ................................................................................ 42 
27 Invariance in Outputs ......................................................................................................... 42 
28 Partitioning of State Space [Red:  θ1, Yellow:  θ2, Magenta:  θ3, Cyan:  θ4, Green: 

θ5, Blue: θ6, Black: θ7, Light Blue: θ8] .............................................................................. 44 
29 Automaton: Qualitative State Transition Function …………………………………….. 45 
30 Partitioning of Input Space [Red: λ1, Yellow: λ2, Magenta: λ3, Cyan: λ4, Green: 

λ5, Blue: λ6, Black: λ7, Light Blue: λ8] ......................................................................... 46 
31 Consistency Constraint [Red:  ω1, Yellow:  ω2, Magenta:  ω3, Cyan:  ω4, Green:  ω5,  

Blue: ω6, Black: ω7, Light Blue: ω8] ................................................................................. 46 
32 MATLAB Simulation of Type IIa (left) and Type IIb (right) Emergent Behavior  

using Q2 .............................................................................................................................. 47 
33 Detection of Emergent Behavior using Variable-Based Approach (Variety Metric) ....... 49 
34 Detection using Variety with Dimensional Variables ........................................................ 50 



 
iv 

35 Detection using Variety with Dimensionless Variables ............................................................ 51 
36 Two Instances of FSM ....................................................................................................... 52 
37 Representation of Two FSM Instances in OWL .................................................................... 53 
38 Two Event Trace Examples ............................................................................................... 54 
39 UAV Flocking Example ..........................................................................................................54 
40 Accuracy of Learning Algorithm [2] ......................................................................................54 
41 Comparison between Prediction by Similarity and Traditional Approach ...................... 55 
42 Possible Automata for Four Traces .......................................................................................... 56 
43 Number of Comparisons for N Qualitative Partitions ..................................................... 57 
44 Comparison of  Number  of  States  with  Dimensional  and  Dimensionless   

Variables (z = 12) .......................................................................................................... 58 
45 General Dynamical System - GDS (Left) versus Qualitative Dynamical System - 

QDS (Right) ....................................................................................................................... 59 
 

 
List of Tables 

 
Table Page 
 
1 Different Classifications and their Criteria ....................................................................... 11 
 
2 Features of Emergent Behaviors ..............................................................................................18 
 

 
List of Algorithms 

 
Algorithm Page 
 
1 Agent Logic .................................................................................................................................. 34 
 
2 System Logic ...........................................................................................................................34 
 
3 Hypersurface Learning ...........................................................................................................53 
 
 
 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
1 

1 SUMMARY 

Many studies have shown that swarms of collaborating autonomous agents, e.g., UAVs 
(Unmanned Aerial Vehicles) performing a specific mission, can solve problems better than 
collections of agents that are controlled centrally. However, controlling a large number of 
such agents is not only very complicated, but also requires many humans to be part of the 
control loop. Additionally, studies have also shown that swarms of autonomous agents can 
exhibit unpredictable, and often undesirable, behaviors, termed emergent behaviors. 
Consequently, before giving control over their missions to such swarms of agents, it is 
necessary to establish some mechanisms to (1) detect (and if possible predict) that an 
undesirable behavior is imminent, and (2) provide ways to control such swarms so that 
such behaviors can be avoided. In the current work, we address such issues and present 
techniques to analyze undesirable behaviors in swarms of autonomous agents. These research 
efforts focus specifically on swarms of UAVs performing a specified mission. We formalized 
a specific scenario of persistent surveillance where the aim is to provide monitoring of the 
plume (targeted search area) such that the metric of “information age” is minimized. 

Our approach relies on the theory of similitude (or physical similarity). This theory 
has been used extensively in physics and engineering, in particular to model behaviors of 
phenomena that occur due to the interactions of particles, e.g., in heat and mass exchange. 
We apply similar methods to the modeling and analysis of behaviors of multiple UAVs, as 
a whole treated as a complex dynamical system. The main idea of the similitude theory 
is that similar behaviors occur when the values of the system variables are in a specific 
relation. Such relations can be captured by the so called dimensionless quantities. Each such 
relation defines a hypersurface in the space spanned over the system variables. We represent 
such relationships canonically, and then show how any description of a hypersurface can be 
generated automatically. Moreover, we also show how such relationships can be learned by 
machine learning algorithms. Knowing such relationships will allow the system to measure 
the distance to potentially undesirable behaviors, alerting the central controller, which in 
turn can provide the agents with policies for avoiding such behaviors. The approach also uses 
the structure, termed the Q2 system, that integrates a quantitative dynamical system with a 
qualitative dynamical system (represented by an automaton). The use of this structure lowers 
the computational complexity of the algorithms for detecting and predicting undesirable 
behaviors by two orders of magnitude with respect to a more traditional approach based on 
just a general quantitative dynamical system. 

One of the tasks of this work is also to study the concept of emergent behavior in general 
(desirable or undesirable) and develop the taxonomy of such behaviors in OWL (Web 
Ontology Language). The ontology includes a classification of behaviors, their 
characteristics, as well as the relationships among the behaviors and the characteristics. 

The outcomes of this research include: (1) An ontology of emergent behaviors, a 
taxonomy of definitions of emergence and analysis of definitions of emergence and the 
semantics of the terms that they use. (2) Simulations exemplifying undesirable behaviors in 
swarms of UAVs for the specified scenario of plume monitoring by swarms of UAVs. (3) 
Global control policies that result in the emergence of different types of behaviors, including 
both desirable and undesirable. (4) Algorithms for learning critical hypersurfaces for 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
2 

partitioning the system spaces into qualitative inputs, states and outputs and for constructing 
qualitative state machines. (5) Results of formal analysis of the complexity and efficiency of 
the approach. 
 

2 INTRODUCTION 
Systems with large numbers of components and intricate interactions are pervasive, including 
natural systems, ranging from animal flocks [3] to socio-ecological systems [4] as well as 
sophisticated artificial systems such as the Internet [5], social networks [6] and large scale 
distributed computer systems [7]. These systems, commonly termed as Complex Adaptive 
Systems (CAS), may exhibit emergent behaviors due to the various non-linear spatiotemporal 
interactions among large numbers of components and subsystems [8]. These interactions 
may lead to some properties that are not derivable from the properties of individual 
components. These properties are often termed as emergent properties or emergence. 
Emergent behavior, by its name, is a behavior or pattern emergent from its constituents 
(or parts). Whether this “emergence” is traceable to its constituents is a question that has 
caused a more than two decade-long debate and resulted in several definitions of emergent 
behaviors [9]. Emergence makes a system harder to analyze and design, and requires a formal 
approach for detecting and reasoning about its causes and nature [1, 10, 11]. This section 
presents our literature review of emergence and its definitions. We also present a review of 
the different classifications/ taxonomy of emergent behaviors and emergence in swarms of 
UAVs. 
 
2.1 Emergence/Emergent Properties 
The term “emergence” is used in the literature to refer to a kind of behavior observed in a wide 
spectrum of phenomena. The term “emergent” was coined by philosopher G. H. Lewes [12] in 
1875, who wrote: 
 

“Every resultant is either a sum or a difference of the co-operant forces; their sum, when 
their directions are the same – their difference, when their directions are contrary. 
Further, every resultant is clearly traceable in its components, because these are 
homogeneous and commensurable. It is otherwise with emergents, when, instead of 
adding measurable motion to measurable motion, or things of one kind to other 
individuals of their kind, there is a co-operation of things of unlike kinds. The emergent 
is unlike its components insofar as these are incommensurable, and it cannot be reduced 
to their sum or their difference.” 

 
Emergence has been studied in many disciplines, including philosophy, physics, biology, 

economics, computer science and engineering. Many attempts to define the meaning of this 
term have been documented. Each of these fields has their own understanding and 
interpretation of what emergence means. However, no agreed upon definition exists till 
now. In this section, we attempt to study and categorize different definitions that exist in 
literature. 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
3 

Generally, the existing definitions of emergence define the concept in three categories: (1) 
define emergence as properties that are not localized in one component but result from the 
component interactions [13, 14, 15, 16]; (2) define emergence by pointing to the difficulties 
of predicting the emergent properties [17, 18]; (3) define emergence as the difference between 
the predicted and the realized design of software system, without revealing the nature of the 
emergent properties and their essence [19, 20]. Presented below is the small sampling of the 
definitions from literature that support the above mentioned three categories: 

• Chalmers (1996): “an interesting property that is unexpected, given the underlying 
principles governing the system.” [21] 

• G. Dyson (1998): “Emergent behavior is that which cannot be predicted through analysis 
at any level simpler than that of the system as a whole. Explanations of emergence, like 
simplifications of complexity, are inherently illusory and can only be achieved by 
sleight of hand. This does not mean that emergence is not real. Emergent behavior, by 
definition, is what’s left after everything else has been explained.” [22] 

• Holland (1998): “Emergence is above all a product of coupled, context-dependent 
interactions. Technically these interactions, and the resulting system, are nonlinear: 
The behavior of the overall system cannot be obtained by summing the behaviors of 
its constituent parts.” [23] 

• J. Goldstein (1999): “The arising of novel and coherent structures, patterns and 
properties during the process of self-organization in complex systems” [24]. Goldstein 
further elaborated to describe the common properties to identify system or computer 
simulations as emergent: (1) radical novelty; (2) coherence or correlation; (3) global or 
macro level; (4) dynamical; and (5) ostensive. 

• J. Fromm (2005): Fromm provides the following definition of emergent property: “A 
property of a system is emergent, if it is not a property of any fundamental element, 
and emergence is the appearance of emergent properties and structures on a higher 
level of organization or complexity.” [1]. 

• J. C. Mogul (2006): “Complex systems often behave in unexpected ways that are not 
easily predictable from the behaviors of components – emergent behavior. List of 
properties common to some or all instances of emergent misbehavior: Inherently hard- 
to predict behavior, Sudden changes in behavior, Amplification of seemingly minor 
behaviors” [18]. 

• G. Marsh (2009): “The emergent properties of the collective whole do not in any 
transparent way derive from the underlying rules governing the interaction of the 
system’s components” [15]. 

• C. Szabo and Y.M. Teo (2013): “Complex systems often exhibit properties that 
are not easily predictable by analyzing the behavior of their individual, interacting 
components. These properties, called emergent properties, are increasingly becoming 
important as software systems grow in complexity, coupling and geographic 
distribution” [14]. 

• O’Toole e t  a l .  (2014): “Emergence can only occur in systems composed of 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
4 

autonomous parts, agents, who interact in dynamic, non-deterministic ways” [25]. 

Although the above definitions differ significantly, there exist some common 
characteristics covered by the different pairs of definitions. One of the tasks for us in this 
research was to study the different definitions of emergence and identify the various 
features that characterize emergence and then represent them in an ontology that includes 
a taxonomy of the features and definitions. In our literature review, we found many features 
of emergence which are used by authors to present their ideas. Figure 1 presents a concept 
lattice with emergence features (gray shaded rectangle) and referenced authors (empty 
rectangle). We used the technique of Formal Concept Analysis (FCA) [26] to develop 
this lattice to represent the mesh of definitions existing in the literature. The eight features 
included in the review are: Levels, Interactions, Radical Novelty, Unpredictability, 
Irreducibility, Dynamical, Coherence and Decentralized. These features appear in the 
definitions in [12, 27, 21, 22, 23, 24, 28, 29, 30, 1, 13, 19, 18, 17, 8, 15, 31, 32, 11, 25, 33]. 
Some of these definitions are presented above. Below we describe these features. Some of 
them are relatively simple to explain in intuitive way. But then some others are quite involved 
and even not well defined. 
 

 
 

Figure 1.  Concept Lattice with Emergence Features and Corresponding 
Reference using Formal Concept Analysis 

 
 
 

 
 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
5 

 

Figure 2.  Overlap of Features between Definitions 
 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
6 

 
 

• Levels:  This feature refers to the idea that for emergence to exist, there must be at 
least two levels: (1) the level of a collection of agents, and (2) a higher level that is 
above the agents which interacts with the agents, but also has some attributes that are 
associated with the whole systems of agents, and not with any of the single agents. In 
general, there may be more than two levels. 

• Interactions: This feature refers to an exchange of information, and possibly actions, 
between the agents and between the levels. Interactions may be passive, like taking 
measurements (observing) of the agents, or active - passing messages between agents 
and between levels. 

• Radical Novelty: This feature refers to something that is “genuinely new”, like new 
structures, patterns of behavior or properties. 

• Unpredictability: It means that there is no prediction possible that is more efficient 
than simulation. 

• Irreducibility: A behavior is irreducible if a property cannot be deduced from the 
properties of its constituent parts. This concept seems to be semantically equivalent 
to the concept of unpredictability. Since this is a very crucial concept to the 
understanding of emergence, we devote a whole section to it later in the report. 

• Dynamical: This feature refers to the fact that interacting agents are (often non-linear) 
dynamical systems and thus emergence is the result of changes that take place over 
time. 

• Coherence: Logical consistency or quantitative continuation (no erratic jumps). 

• Decentralized: This feature refers to decentralized control, i.e., the agents are not 
controlled by a central controller. 

 
We also present the overlap between these definitions. Figure 2 shows the number of 

features in each definition (number in black box), along with the overlaps, i.e., same number 
of features two definitions used (numbers in red, with more than two overlaps in green box). 
Based on the above definitions of features, it seems that at least three of the features can 
be combined into one: Irreducibility, Unpredictability and Radical Novelty. We will term 
this group simply “Irreducibility”. In the following subsection, we discuss the notion of 
Irreducibility in more detail. 

 
2.2 On Irreducibility in Mathematics 
In this research, we have been seeking explanations to the concept of emergence with the 
objective of expressing emergence in formal terms, i.e., terms that are grounded in 
mathematics and logic. Mathematics provides a number of examples of irreducibility. We 
mention some of them below. 

 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
7 

1. Irreducible element, e.g., a polynomial – not a product of other elements. 
2. In representation theory, an irreducible representation is a nontrivial representation 

with no nontrivial proper subrepresentations. 
 

2.1. A representation makes an abstract algebraic object more concrete by describing 
its elements by matrices and the algebraic operations in terms of matrix addition 
and matrix multiplication. 

2.2. The algebraic objects to which representation theory applies can be viewed as 
particular kinds of categories, and the representations as functors from the object 
category to the category of vector spaces. 

 
3. An irreducible fraction (or fraction in lowest terms) is a vulgar fraction in which the 

numerator and denominator are smaller than those in any other equivalent fraction. 

4. In universal algebra, irreducible can refer to the inability to represent an algebraic 
structure as a composition of simpler structures using a product construction; for 
example, subdirectly irreducible. 

5. A topological space is irreducible if it is not the union of two proper closed subsets. 
This notion is used in algebraic geometry, where spaces are equipped with the Zariski 
topology; it is not of much significance for Hausdorff spaces. See also irreducible 
component, algebraic variety. 

6. There are more examples of irreducibility in mathematics, but the above ones look 
more like independent, while the rest seem to be just special cases of the above. 

 
2.3 Computational Irreducibility 
We are devoting a subsection to another idea of irreducibility that has been developed by 
Stephen Wolfram [34]. 

The concept of computational irreducibility (that some complex computations are not 
amenable to short-cuts and cannot be “reduced”), is ultimately the reason why 
computational models of nature must be considered in addition to traditional mathematical 
models. Wolfram terms the inability to shortcut a program (e.g., a system), or otherwise 
describe its behavior in a simple way, “computational irreducibility”. The empirical fact is 
that the world of simple programs contains a great diversity of behavior, but, because of 
undecidability, it is impossible to predict what they will do before essentially running them. 
The idea demonstrates that there are occurrences where theory’s predictions are effectively 
not possible. Wolfram states several phenomena are normally computationally irreducible. 

The main aspect of this theory is that nature is a computation. This idea seems 
appropriate to discussing emergence. After all, when we analyze various phenomena, we 
always look at a progression, e.g., in time, of the phenomenon/system state. In our 
simulations of UAVs, we were representing agents as dynamical systems evolving over 
time. While the UAVs were changing their locations and other parameters, the value of the 
“next” parameter was actually computed. So there was a computational process behind all of 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
8 

the assessments of the physical parameters. 
Wolfram’s idea of “computational irreducibility” is analogous to irreducibility in 

mathematics. He considers program instructions, executed one-by-one in a sequence. He 
claims that some of the programs consist of simple instructions, but still produce very complex 
behaviors. The issue is whether the state of computation can be predicted using a mathematical 
formula that could take in the initial state and one number, n, which is the number of 
computation steps, and would output the value of state after the n steps. In some cases, this is 
possible, but in many, perhaps most, not possible. Our understanding is that this is what 
Wolfram calls “computational irreducibility”. 

An example of a formula for predicting the state after n is a look-up table. Intuitively, it is 
related to automata that have repetitive pattern. And clearly related to the idea of using the 
metric of variety – since only some of the states are visited during the execution of a process. 

Wolfram links computational irreducibility with undecidability. However, it is not clear 
what that link is precisely. In particular, it is not very clear how it is different from the notions 
of irreducibility in mathematics where irreducibility always implies some type closure, i.e., 
first a class (a structure) S is defined and then a proof is sought to show that a specific 
structure s is not within the class S. The question is whether an extension of the language 
is needed to capture the intuition behind emergence. 

The notion of undecidability in the theory of computation is related to the notion of 
incompleteness in logic. Historically, first, Gödel proved two incompleteness theorems, which 
can be paraphrased as follows: 
 

1. Any consistent formal system F within which a certain amount of elementary arithmetic 
can be carried out is incomplete; i.e., there are statements of the language of F within 
which a certain amount of elementary arithmetic can be carried out is incomplete; i.e., 
there are statements of F that can neither be proved nor disproved in F. 

2. Assume F is a consistent formalized system which contains elementary arithmetic. 
Then while it is possible to express a statement 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝐹𝐹) (meaning 𝐹𝐹 is consistent), 
but 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝐹𝐹) is not provable within 𝐹𝐹. 

 
Then undecidability results were proven by Turing and Church for functions. Thus, 

undecidability and incompleteness are closely related. 
However, undecidability still applies to the same formal system, i.e., while the decidability 

can be proved within a given formal system, it still can be decided in a stronger system. 
Perhaps this could give us an idea of going after to use it for emergence? We have not 
investigated this idea any further. 

It is perhaps worthwhile to mention that Wolfram claims that computational irreducibility 
is not due to just the lack of computational power. Instead, the computation to make the 
prediction needs to be equivalent to the computation that the other computation is trying to 
predict. So, he introduces the principle of equivalence of computations. He claims that most 
natural processes are like computations, and even though they are simple, they can produce 
complex results. All such programs are then equivalent (meaning complex). Complex 
computations are irreducible. If one designs a computation to predict the behavior of a 
complex computation, such computations, in order to predict the outcome, perform 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
9 

computations that are not more sophisticated (i.e., they are in the “complex” equivalence 
class) than the behaviors they are trying to predict; they simply perform the computation 
of the behavior. Moreover, Wolfram states that in the traditional analysis computational 
complexity and undecidability are related to a specific problem. But the programs that 
Wolfram investigates are not designed to solve any specific problem.  So, the only issue 
with the analysis of this kind of computations is to predict the value of the computation at 
time t. 

Unfortunately, Wolfram does not use mathematics to present his results. Instead, he 
uses simulation; in fact, most of it is simulation of cellular automata. This is not surprising, 
considering he is the guy behind the Mathematica simulation framework. So, in summary, 
while the idea of investigating emergence by considering computational processes as models 
of processes occurring in nature is appealing, Wolfram’s ideas don’t seem to be sufficiently 
formalized so far. This opinion has been expressed by many scientists in various publications, 
so our conclusion is not novel. The only point we are making is that we believe the idea of 
computational irreducibility is interesting and worthwhile pursuing in our future research. 
 
2.4 Classification/Taxonomy of Emergent Behaviors 

Based on our extensive literature review, there is no formal, universally agreed definition 
of emergence. However, emergence has been identified for many different types of processes. 
And a need for dealing with emergence has been documented and strongly supported. One of 
the directions of dealing with emergence is to identify the various features of emergence and 
develop classifications of this phenomenon based on these features. In this section, we 
describe some of those attempts. 

A taxonomy of different types of emergence can be defined based on the feature of (dis- 
cussed earlier in this report) and the relationships between the levels of the system (micro- 
and macro-levels). Understanding the distinction between these types is necessary to 
understand the context in which emergence can be detected. Such a taxonomy addresses the 
following objectives [10]: 1) to understand what emergent behavior is, 2) to understand the 
underlying principles, and 3) to identify emergent behaviors apart from other phenomena. 
Table 1 provides a list of some of the classification/taxonomy types of emergent behaviors 
found in the literature. The table also lists the criteria on which the different classifications 
are based. 

One of the earliest emergent behavior taxonomies was presented by Chalmers [35] in 
2002, which distinguishes emergence as weak and strong emergence. This classification is 
based on the feature of deductibility. Strong emergence is not deducible even in principle 
from the laws of the low-level domain, while weak emergence is only unexpected, given the 
properties and principles of the low-level domain. 

Mark A. Bedau [36] extends Chalmers’s taxonomy by adding the third type of emergence 
called nominal. Nominal emergence is the appearance of a macro property in a system that 
cannot be a micro property. 

William Seager [37] discussed two kinds of emergence: benign and radical. Benign and 
radical emergence differ in their description of behavior. If one can find a descriptive or 
explanatory scheme describing the behavior of the system, the behavior is benign, otherwise 
it is radical. 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
10 

Maier [38] gave four categories of emergence: simple, weak, strong and spooky. Simple 
emergent property can be readily and predictably produced in lower complexity, abstracted 
models of the system. Weak and strong emergence have the same meaning as described 
above. Spooky emergent property, on the other hand, is inconsistent with the known 
properties of the system’s components. The spooky property is not reproduced in any model 
of the system, even one with the complexity equal to that of the system itself. 

Mogul [18] provided a taxonomy of emergent mis-behaviors.  The taxonomy presents a 
list of undesirable behaviors in software systems. Gore and Reynolds Jr. [39] presented an 
exploration based taxonomy for validating emergent behaviors rather than simulation. They 
presented taxonomy based on three orthogonal dimensions: reproducibility (repeatability of 
a simulation for a given set of inputs), predictability (increase the efficiency of exploration 
process) and temporality (distinguish between process of achieving a final state and residing 
in the final state). The authors claim that the taxonomy is robust, comprehensive and suitable 
to use with established emergent behavior exploration methods. 

Yaneer Bar-Yam [40], Jochen Fromm [1] and O. Thomas Holland [10] distinguish five 
emergence types to which they assigned numbers instead of names. Bar-Yam presented a 
taxonomy consisting of four types of emergence based on particles and ensembles. A particle 
is a single acting agent or entity while an ensemble is a group of particles. In Type 0, no 
interactions occur between particles and behavior is seen strictly on the particle level. All the 
other types of behaviors involve ensembles. Type 1 behaviors are only unexpected given the 
properties and principles at the component level while Type 2 behaviors cannot be found in 
the properties of the system’s lower level. Type 3 classifies the emergent behavior of systems 
that arise out of the interactions with the environment.  Fromm [1] provided four types (I-
IV) taxonomy based on feedback types and causal relationships between micro and macro 
level. We have used Fromm’s approach in our ontology development. Detailed explanation 
is presented in the next section. Holland [10] provides an extension to Fromm’s taxonomy. 
Holland also dispenses Fromm’s concepts of “strong emergence” and “supervenience” and 
instead introduces the use of evolutionary agents at the local levels weherein feedback from 
either the global or local levels can cause individual entities to add or delete from their 
control rule set. Holland presented definitions of five types of emergent behaviors with four 
subtypes, with discriminating features as feedback types and pattern formation at the scale 
of observation. 

 
 
 
 
 
 
 
 
 
 
 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
11 

Table 1.  Different Classifications and their Criteria 
 

Reference Criteria Classification/Taxonomy 

Chalmers, 2002 Deductibility (Earliest 
EB taxonomy) 

{Weak, Strong} 

Bedau, 2002 Extension to 
  Chalmers 

{Weak, Strong, Nominal} 

Bar-Yam, 2004 Resolution and 
Interactions 

{Type 0, Type 1, Type 2, 
Type 3} 

Fromm, 2005 Feedback and 
Interactions 

{Type I, Type II, Type III, 
Type IV} 

Seager, 2006 Description of  
behavior 

{Benign, Radical} 

Mogul, 2006 Undesired behaviors 
in software systems 

Emergent Mis-behavior 
taxonomy 

Holland, 2007 Feedback and Patterns {Type 0, Type 1, Type 2, 
Type 3, Type 4} 

Gore, 2007 Exploration based 
taxonomy - three or- 
thogonal dimensions 

{Reproducibility, 
Predictability, Temporality} 

Maier, 2015 Complexity and Sys- 
tem Classification 

{Simple, Weak, Strong, 
Spooky} 

 
 

2.4.1 Fromm’s Taxonomy. As we stated earlier, since we selected the taxonomy provided by 
Fromm [1] to use for the development of a first cut of an ontology, which we use for the 
demonstration of the use of an ontology for detection of emergence, we provide a brief 
overview of this taxonomy below. 

Fromm classified emergent behaviors into four different types based on interactions be- 
tween micro and macro levels. Each type is further subdivided into two sub-types. Type I 
contains the simplest intentional emergent phenomena with a single feed-forward relation, 
e.g. clock, computer program, wave front. Type Ia is simple intentional emergence with no 
feedback, thus the behavior is deterministic and brittle. Type Ib, on the other hand, is simple 
unintentional emergence with no feedback but with peer-to-peer interaction. 

From an engineering perspective, a particularly interesting case is type II emergence 
which encompasses systems exhibiting self-organization and other useful properties. Type 
II is weak emergence with top-down feedback. Type IIa includes negative feedback which 
imposes constraints on actions of the agents. The examples include flocking and ant foraging, 
whereas Type IIb refers to undesirable emergence with positive feedback. Examples include 
crashes and bubbles in the stock market. Type III and IV have the highest level of complexity. 
Type III phenomena are characterized by multiple feedback loops, both positive and negative. 
This type is common in open systems with high complexity and it is usually associated with 
activator-inhibitor systems, e.g. patterns in biological entities, prisoners dilemma, as well 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
12 

as evolutionary and adaptive systems. Type IIIa is a combination of types IIa and IIb 
with short-term positive and long-term negative feedback. Type IIIb consists of multiple 
feedback loops and many constraint generating processes. Type IV contains the emergence of 
completely new complex systems (e.g. culture, life). We focus on first three types of 
emergence. Type IV is out of scope for this project and our study. The classification is 
summarized in Figure 3. 

 
 

Figure 3.  Taxonomy of Emergent Behaviors by Fromm [1] 
 
2.5 Emergence in Swarms of UAVs 
Many studies of undesirable emergent behavior are not directly relevant to the domain of 
UAVs for ISR (Intelligence, Surveillance, and Reconnaissance). Some studies (e.g., [41]) 
have relevant models such as flocking behavior but have limited coverage on the domain of 
UAVs. Nevertheless, they are beneficial from the point of view of the formalization of the 
concept of emergence, as well as sources of examples of emergent behaviors and behavior 
control rules. In particular, the simulation studies like in [3] have proved that it is possible to 
observe emergent behaviors similar to the ones occurring in nature by using distributed 
simulation in which each object is simulated based on a set of behavioral rules. 
     In [42], simulations are used to investigate the behaviors of swarms of UAVs. Two distinct 
scenarios were considered: mapping a contaminant plume and detecting and tracking vessels 
crossing a body of water. UAV swarming behaviors were explored and how they could be 
controlled by ground pilots (centralized control) to accomplish both of these scenarios. These 
scenarios implement rules from Reynold’s BOIDS [3] which demonstrates the emergent 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
13 

behavior of flocking in UAVs.  
      In our research work, as well, we consider scenarios in which multi-agent (UAV) systems 
are designed to carry out missions such as tracking or surveillance of targeted search 
areas/facilities. It is a known fact that these kinds of systems, i.e., systems with autonomous 
agents, exhibit various types of behaviors, some of which may be highly undesirable with 
respect to the mission. Potential forms of undesirable emergent behavior are: 

• Thrashing : UAVs keep moving back and forth between facilities due to multiple 
requests. 

• Poorly covered or non-covered facilities: Some facilities or part of search areas 
get ignored and activities that should be detected are missed. 

• Saturation: One facility gets too much attention at the expense of other facilities. 

• Collision: Two moving agents executing their control policies that fail to account for 
the dynamics of other objects operating in the same space, which results in a collision. 

• Imbalanced use of resources: E.g. all agents are tracking the same area. 

In the work documented in this report, we implemented and detected such types of 
undesirable emergent behaviors in a multi-UAV system. Next sections present the methods 
and approaches we applied for the analysis and detection of emergent behaviors. 
 

3 METHODS, ASSUMPTIONS AND PROCEDURE 

3.1 Targeting Emergence:  EBS (Emergent Behavior System) 
Frame- work 

3.1.1 Emergence in Levels of the System. Many authors, cf. [1, 10, 43, 44], agree that 
the notion of emergence involves the existence of levels in the system. Emergence can be 
summarized as a characteristic of system where properties and behaviors appear at the sys- 
tem (macro) level that were not explicitly implemented. These properties arise dynamically 
from the interactions between entities at the component (micro) level, and cannot be reduced 
to the properties or behavior of the individual entities [25]. This relationship between micro 
and macro level is presented in Figure 4. Interactions of components at the micro level result 
into group formation (as in flocks of birds) at the macro level. 

The system, the behavior of which is a result of emergent phenomena, is called Emergent 
Behavior System (EBS) [45]. We will also use this term to refer to systems that exhibit 
emergent behaviors including the multi-UAV systems. Popular examples of types of systems 
that exhibit emergent behavior include flocking system, particle system, stigmergy system 
and traffic system. To better understand these kinds of system and their exhibited behaviors, 
models are needed to explore their properties. The simulation technology exists today to 
build such emergent behavior systems, but the theoretical framework to support modeling 
and analysis is still in its infancy.  We need an EBS framework to establish a foundation 
and context for simulation development and analysis of emergent behaviors. The next sub- 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
14 

section discusses in detail the proposed EBS simulation framework presented by us at the 
SpringSim 2017 conference [46]. But before going into details of the framework, it is essential 
to understand the constituent elements of any EBS which are needed to be identified or 
implemented first to study the behavior of the overall system. The EBS comprises of the 
following elements: 

 

 
 

Figure 4.  Relationship between Micro and Macro Levels 
 

1. Agent: An agent is any physical or logical entity/element of a system that is de- 
signed/specified through an engineering process. The distinguishing characteristic of 
agent is some amount of autonomy, i.e., the capability of making own decisions in order 
to accomplish a specific goal. 

2. Interaction between Agents: An interaction represents the relationship between agents 
and defines how agents interact with other agents and environment. In particular, 
agents can interact via exchange of messages, or by observing characteristics of other 
agents, either directly, or by reading traces that agents leave in their environment. 

3. Agent Environment: An environment corresponds to a set of conditions in which an 
agent must perform its functions.  It may include influences on the agent, like forces, 
or any physical inputs. 

4. System: A system is composed of agents, environment and their interactions. 

5. External Commander: An external entity that observes the behavior of the system 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
15 

and possibly controls it via some control means (control inputs). 

 
 

 
 

Figure 5. Agent(s) in EBS. 
 

3.1.1.1 Agent. In literature, although there is no widely agreed definition for an agent, 
there is a general consensus that autonomy is central to the notion of agency [47]. Among 
various definitions, we consider the general definition of an autonomous agent as given in 
[48]: “An autonomous agent is a system situated within and a part of an environment that 
senses that environment and acts on it, over time, in pursuit of its own agenda and so as 
to effect what it senses in the future”. Agent, in Figure 5, represents an independent entity 
that interacts with other agents and environment in the system. Each agent has a set of 
attributes that describe the state of the agent and a set of specified policies that define how 
an agent behaves with respect to changes in its environment. 
3.1.1.2 Interaction between Agents.  To model the functioning of an agent, we con- sider 
that each agent executes the OODA loop, as shown in Figure 5. OODA is the acronym for 
Observe, Orient, Decide, Act [49]. The OODA loop is appropriate for modeling autonomous 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
16 

agents that operate and interact with other agents through a rational decision-making process that 
follows a cycle of observation, orientation, decision-making, and action. 

Multiple agents in the system can all individually run their OODA loops along with interaction 
with each other. For instance, the Action of an agent can be observed by one or more other agents 
and can, in turn, influence the decision of the other agent (shown as solid black arrows in Fig. 5). 
Furthermore, in our model we also define the following three datasets associated with the agent’s 
Orient function: 

• Goal Space: defines the goal of the agent 

• Action (Policy) Space: defines the set of actions available to the agent to achieve its 
goal 

• Constraint Space: set of constraints (restrictions) on actions 

The sections that follow explain these spaces in the context of our multi-UAV system 
(persistent surveillance) scenario. 

 
3.1.1.3 Agent Environment. The environment is observable medium with which agents 
interact and is not considered as being an agent in its own right; that is, it is passive and 
global (it does not actively assert behavior and it potentially affects all agents) [50, 51]. The 
environment is simply used to provide information to agents such as the spatial location of 
other agents in its vicinity or air conditions etc., depending on the domain or objective of 
the system. 

 
3.1.1.4 System. A system comprises agents, their interactions, and environment. A 
system has a clearly defined boundary with well-defined inputs and outputs (if appropriate) 
[50]. As mentioned above and in our framework, as well, we model the behavior of a system 
by two levels, i.e. macro and micro levels. The taxonomy of different types of emergent 
behaviors is based on the relationship between these macro and micro levels: 

• Micro Level consists of entities/agents that interact with each other by observing the 
environment around it (local information) and/or directly by either exchanging 
messages or observing the results of the actions (outputs) of the other agents. 

• Macro Level is a virtual level where system level properties (global) are generated and 
maintained. 

 
There is a bi-directional link between the two levels in the system and in particular the 

downward causation (black dashed lines) that pass influences from the macro to the micro 
level. Causation means that an emergent phenomenon that exists at the macro level impacts 
the agents at the micro-level by constraining their behavior, or their environment in some 
manner. At the same time, the upward link connects the low-level agents with the higher 
level. 

 
3.1.1.5 External Entity - Commander (Observer). Ronald et al [52] state that 
without an observer, the issue of emergence could not arise at all. Also, the authors in [53] 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
17 

state in their paper, “…. the emergent aspect of a phenomena is related to the point of view of 
an observer of this phenomena: it is not intrinsic to the phenomena, but related to the global 
system (phenomenon + observer)”. This insight presents an important consideration for the 
EBS modeler, specifically for the applications where one wants to detect and control the 
emergent behaviors. Thus, when observing the phenomena in a natural or simulated system, 
the discovery of patterns and emergent features implies the existence of an observer. In our 
framework, Commander represents an external entity (observer) that observes the global 
properties of the system and takes necessary actions (i.e., sends control parameters to agents 
if necessary). 
 
3.1.2 Emergence in Ontology. Since different emergence cases have different features, 
a generic representation formalism is needed in which models of all such behaviors can be 
specified. In other words, the representation formalism must be able to capture all possible 
cases of emergence. A language in which the features of each of the cases of emergence 
are represented in the same way is needed. Ontology has been widely used in agent-based 
modelling and simulation [54, 55, 56]. However, none of the works that we are aware of has 
demonstrated the capability of representing and classifying all possible cases of emergence 
in a system. In this project, we used the ontology to model the emergent behavior. The 
Web Ontology Language (OWL) [57] has been used as the formal language. Ontology of 
emergence is discussed later in the report. 
 
3.1.2.1 Ontology Basics. In information sciences, “an ontology is a formal naming and 
definition of the types, properties, and interrelationships of the entities that really or 
fundamentally exist for a particular domain of discourse” [58]. An ontology can be represented 
in a formal language, e.g., OWL; it is then called a formal ontology. In general, ontology has 
four basic primitives: class, relation, individual and axiom: 

• Class: also called Concepts or Types, represents a group of different Individuals, 
that share common characteristics, which may be more or less specific. 

• Relation:  ways in which classes and individuals can be related to one another. 

• Individual:  also known as Instances, are the base unit of an ontology; they are 
the things that the ontology describes or potentially could describe. 

• Axiom: assertions (including rules) in a logical form that together comprise the 
overall theory that the ontology describes in its domain of application. 

 
3.1.2.2 Features of Emergent Behaviors. In order to develop an ontology to model 
emergent behaviors, we needed to investigate the features of emergent behaviors first. Table 
2 lists the features of emergent behaviors that are described in the literature. We focused on 
three aspects of features of behavior modelling to facilitate detecting emergent behaviors: 
 

  



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
18 

Table 2.  Features of Emergent Behaviors 
 

Paper 
Emergence 
phenomena 

Features to characterize 
the emergence 

Map to the 
ontology 

Fromm, 
2005 [4] 

thermodynamics 
pressure, volume, 

temperature 
Class: Pressure, 

Volume, 
 

networks 
path lengths, clustering 

coefficients Class: Length 

bird flocks 
direction, velocity, 

center of flock 
Class: Direction, 
Velocity, Position 

world wide web 
standards and constraints of 

the W3C, HTML, HTTP  

free markets supply, demand  
economic infl wage, product price  

stripes and spots in 
animals coat 

 
color Class:  Color 

O’Toole et 
al, 2014 [4] 

flocking 
heading, position, the 

position of the centre-of-
mass 

Class: Direction, 
Position 

segregation 
color, the number of agents 
in neighborhood with the 

same color 
Class: Color, 

Direction 
ant colony path, heading Class: Direction 

game of life alive, dead  

gas particles direction, velocity, color 
Class: Direction, 
Velocity, Color 

Miner et al, 
2008 [6] 

boids 
density (area covered by 

agents divided by the 
number of agents) 

Class: Density 

Holland, 
2007 [3] 

gases 
pressure, volume, 

temperature 
Class: Pressure, 

Volume, 
 flocking, schooling distance Class: Distance 

foraging ants trails  
free-market 
economies 

consumer-production 
balance 

 

Parrish et 
al, 2002 [7] 

fish schools 
population size, velocity, 
dependence, direction, 

neighbor scaling 
Classes:  Velocity, 

Direction 

Chan, 2011 
[2] 

game of life   
boids distance Class: Distance 

Brownian motion   
 
• Supports both the modeling of behavior at the system-level and at the component-level. 

• Distinguish internal (component) behaviors and external (between-component) 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
19 

behaviors. 

• The behavior of the system is the sum of the components’ behaviors and their inter- 
actions. 

 
3.1.3 EBS Simulation Framework. In this section, we present our approach [46] to 
developing a simulation system, where the fundamental idea is to explore emergent behaviors 
in EBS, i.e. analyzing the causal relationships between micro and macro levels of the system. 
The ultimate goal is to create a taxonomy consisting of types of emergence and providing 
mechanisms to control any kind of undesirable behavior exhibited by such systems, within 
this taxonomy.  Figure 6 presents our proposed framework consisting of two components, 
i.e. Conceptual Modeling and Experimentation, in which the EBS is simulated. These are 
further divided into sub-components which are discussed in the subsections that follow. 
 

 

Figure 6.  Proposed EBS Framework Showing OWL and Simulation Based 
Components 

 
3.1.3.1 Behavior Model.   In our EBS framework, system behaviors are modeled using 
an ontology. It is based on Nuvio (Northeastern and VIStology) ontology, a new foundational 
ontology developed by Northeastern and VIStology, Inc.  The behavior ontology provides 
a common vocabulary for defining the concepts and relationships between those concepts 
for specifying behaviors of multi-agent systems. It aims to provide a formal approach to 
reasoning and classifying emergent behaviors. In this ontology, the behavior of multi-agent 
systems is represented by a Finite State Machine (FSM) diagram. Figure 7 shows how the 
concepts of behavior model are linked to Nuvio.  Figure 8 shows the structure of the FSM 
representation in the ontology. 
 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
20 

 
 

Figure 7. Behavior Modeling Concepts Based on Nuvio 
 

Figure 9 shows the main ontological concepts for representing the structure of a multi- 
agent system. In a multi-agent system, a component is any physical or logical entity/element 
of a system that is designed/specified through an engineering process. A system is a set of 
components that interact with each other. The system consists of at least one component. 
A system could also be a component in a system of systems. A system could have several 
system attributes, such as input, output, interaction, goal, reference, and feedback. These 
attributes can be used to characterize the system behaviors. 

We considered two types of behavior in a system: 

• Component behaviors:  this is a specification of how the dynamic state of a Component 
is allowed to evolve in time. 

• System (group) behaviors: it is the aggregation of component behaviors and 
interactions between components. 

 
The main concepts in the behavior ontology are mapped to the corresponding objects 

and functions in the agent-based simulation language. 
 
3.1.3.2 Behavior Classifier.   The main advantage of formal ontologies is that they can be 
used by software agents for automated inference, i.e., inferring facts that are only implicitly 
stated. The inference is carried out by inference engines (or reasoners). Reasoners can be 
incorporated into other algorithms. In our EBS, we use OWL reasoners to derive 
classifications of behaviors. 
 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
21 

 
 

Figure 8. Ontology Concepts for Representing Finite State Machine 
 

Figure 10 shows part of the class hierarchy of the behavior ontology. The boxes in this 
figure represent classes, i.e., collections of objects of the class type. In this ontology, we 
distinguish Behavior and Behavior Model. Behaviors are the actual behaviors that are 
described by some basic attributes, e.g., velocity, heading. Behavior models are the 
abstractions of actual behaviors that are described by other variables. For example, we use 
the feedback to define different emergent behavior types. The main behavior model class 
is Emergent- Behavior. Definitions of classes are given by the axioms expressed in OWL, 
which are used to define different types of emergent behavior. For instance, Equation 1 
shows an axiom (using description logic) of the definition of Type IIa. Once the data of 
system behavior features collected from the simulation are imported to the ontology, OWL 
reasoners may be able to infer the behavior type automatically. 

                 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 ≡ 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ∩  ∃ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎. (𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ∩          (1) 
   ∃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠.𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶) 

 
3.1.3.3 Simulation Engine. The EBS simulation system utilizes an agent-based 
simulation engine to model and simulate the EBS. With a given abstract scenario 
specification (FSM) of a complex system under study as input, the model of an agent 
and system is designed and simulated using an available simulation platform. We have a 
variety of options that exist in literature [59]. For the purpose of this work, NetLogo [60] 
was selected as the platform for experimentation as it allows modeling and animation of 
an agent-like entities in a simulation environment supported by a scripting language, visual 
animator, and data output mechanisms. 

 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
22 

 
 

Figure 9.  Main Ontological Concepts for Representing Structure of a 
Multi-Agent System 

 

3.1.3.4 Visualizer. Visualizer provides a visual representation of the simulation.  It 
may be used by the user to detect emergent properties arising at the macro level. NetLogo 
has a built-in visual animator window that we used to visually confirm the existence of 
emergence during simulation. 
 
3.1.3.5 Behavior Monitor. Although Visualizer provides means to recognize 
emergence by visual inspection, we still need some kind of mathematical, or computer-
supported, proof. This function is performed by Behavior Monitor. This module detects 
emergent behaviors by analyzing the global properties generated at the macro level of the 
system (using the data generated by simulation). In literature, many techniques exist to detect 
emergence, which range from statistical analysis to formal approaches. For the purpose of 
our current research, variable-based emergence detection [9, 10, 25] seemed to be the most 
appropriate choice. We discuss a metric called variety in the next section.  Besides, Behavior 
Monitor is also responsible for sending some of the variables from simulation to the OWL 
model so that inference can be performed on the types of observed behaviors (type of 
emergence or good/bad behavior). 
 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
23 

 
 

Figure 10.  Classification of Emergent Behaviors 
 

3.2 Scenario Formalization: Undesirable Emergent Behaviors in 
Swarms of UAVs 

This section presents the formalization of the scenario that we selected to study in the current 
work. We address the persistent monitoring problem. The goal is to control the motion of 
UAVs to maximize the coverage and minimize the metric of information age (definition 
discussed in the next section) over the targeted area in the environment. The targeted area, 
termed as Plume, is a high priority enclosed area inside the environment, to be monitored 
by a UAV. The optimal control framework for each UAV is designed in such a way as to 
provide maximal coverage over the plume while minimizing the age of information about the 
plume in each location inside it. 

In the coverage control, it is common to model knowledge of the environment as a non- 
negative density function defined over the mission space and usually assumed to be fixed 
over time. Some researches in persistent monitoring tasks involve dynamically changing the 
environment, but for simplicity we assume environment to be non-changing and stable. I.e., 
we do not vary the status of the plume in our simulations, although the monitoring of the 
plume does not depend on this assumption. 
 
3.2.1 Problem Specification. A UAV, U, operates in a two-dimensional environment, E 
⊂ X × Y, where X = Y = N are natural numbers that enumerate the cells of the environment. 
We consider a plume, P ⊆ E as the targeted search area to which U provides persistent 
surveillance by measuring the environment at each time instant t ∈ T =  N. Each measurement 
covers a subset of the environment S(t) ⊂ E.  Assuming mission starts at
ts ∈ T, initial time, and ends at tf ∈ T, the final time, the measurements are a sequence S(ts), 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
24 

S(ts + 1), . . . , S(tf ). Such sequences of measurements can be considered as paths that the UAV 
travels. Figure 11 shows the surveillance area demonstrating cells of environment and plume. 
 
 

 

Figure 11. Surveillance Area (NetLogo Snapshot) 
 
Here we are interested in monitoring the plume in some optimal way. In order to formulate 
the optimization problem, we need to define the objective function, the variables that can be 
manipulated in order to minimize the objective function, and possibly some constraints. 
Loosely speaking, the objective is to cover the plume “as best as possible”. This needs to be 
expressed formally. Towards this aim, we use the notion of information age. At time t > 0, 
we will assign the age of zero to the cells of the plume ((i, j) ∈ P) that are measured at t, and 
then increase its age proportionally to the time. The rest of the cells of the environment E that 
do not belong to P are assigned the value of -1 in order to distinguish them from the plume 
cells: 

                        
The next step is to define a single measure of coverage of the plume. For this we just 

sum the ages of the cells in the plume computed by Equation 2. 

                          
Note that Equation 3 represents an instantaneous coverage of the plume, P, i.e., it is the 

value of coverage at time t. However, since we are interested in the persistent surveillance 
of the plume, we need to define the problem of optimizing the mission, i.e., find a path of 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
25 

the UAV that measures the plume so that the overall mission is optimal. The control decision 
then moves the UAV to a new position according to the dynamics of the system, i.e., the 
physical constraints due to the capabilities of the vehicle. Since this is a dynamical system, 
the response to control actions depends on the current state of the UAV system. We model 
the control action by the acceleration, a(t), applied to the UAV at the particular time instance, 
which results in the new position of the UAV in the next time instance, 

                                
The function, f, in Equation 4 represents the control law. Now let us assume that the UAV 

can make control decisions at each time instant, i.e., use a different control law at each time 
step. In that case, we can represent the control actions of the UAV as a sequence 𝑎𝑎� = (a(ts), 
. . ., a(tf )). 

How do we measure the quality of a mission (or path)? Here we propose to use the sum 
of the ages of the plume cells during the whole mission. 

                                         
Note that ā does not appear in Equation 6. However, the relation does exist via Equations 
2 and 4. 

Now we can formulate the optimization problem. The goal is to find a sequence ā from 
all possible sequences ak  such that it minimizes the information age as defined by Equation 
6. We define S(t) as the area covered by U at t such that S(t) ⊂ E. Thus, for a given initial 
position, velocity and heading of the UAV following the dynamics in (1), find Sk  for UAV 
such that overall age of the plume is minimum. Mathematically it is represented as: 
 

          
3.2.2 Agent (UAV) Dynamics.  Considering each UAV as a dynamic system (moving 
in 2D), the dynamic system is defined by the following components: 

• x, y: location (state variables) 
• vx, vy : velocity (state variables) 
• ax, ay : acceleration (input variables) 
• T : time interval between the time instant k − 1 and k 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
26 

The state transition function, f = (vx, vy, x, y) is defined below:  

 
The above equations can be alternatively represented in matrix version. The state 

vector, q and input vector, u are given by: 

                             
The state transition function, f, is given by the following equation: 

                               
         where A and B are matrices defined below: 

                                
3.2.3 Dimensionality Problem. We consider each of the entities i.e., single UAVs, as 
dynamical systems moving along a trajectory through the space defined by the Cartesian 
product of the system’s parameters (inputs X, states Q and outputs Y, each being a vector). 
While all the systems are embedded in the same space and time, some of them additionally 
are coupled via their input/output parameters (e.g., exchange of messages either informing 
of their own locations or plans or requesting special movements by the peers). The conjoined 
space of all the participating systems can be modeled by the Cartesian product of all the 
system spaces Π (Xi × Qi × Yi), usually denoted as ℜn. The dimensionality of this space is 
relatively high and thus the analysis, detection, and control in such spaces are very complex. 
The exploration and analysis of such systems is further complicated by the fact that each of 
the parameters depends on time, and additionally, that each of the systems has its own 
dynamics, captured by the fact that the next state depends on the previous state and input, 
where next depends on the time parameter Ti representing the time interval between the state 
transitions. Since the inputs, states, and outputs for each of the systems are multidimensional, 
the dimensionality of the whole space is very high. The goal of this research is to reduce the 
dimensionality of the space in a principled way to make it practical to detect undesirable 
emergent behaviors. In order to do so, we use qualitative methods to study the behaviors 
exhibited by EBS. The use of such methods will lower the computational complexity of the 
algorithms for detecting undesirable behaviors with respect to a more traditional approach 
based on just a general dynamical system. We are using dimensional analysis and 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
27 

Quantitative-Qualitative (Q2) abstraction approach in the current work. These are discussed 
in detail in the following sections. 
 
3.3 Qualitatively Different Behaviors 
The approach for generating the qualitatively diff t behaviors in a system relies on the 
theory of similitude (or physical similarity). This theory has been used extensively in physics 
and engineering, in particular to model behaviors of phenomena that occur due to the 
interactions of particles, e.g., in heat and mass exchange. For instance, Osborne Reynolds, 
in 1895, defined a criterion, called Reynolds number (Re), to describe transition between 
the two kinds of flow (turbulent and laminar). In similarity theory, numbers like Re are 
called similarity numbers (or dimensionless numbers, dimensionless quantities). The 
definition of such numbers is based on the theory of invariance and dimensional analysis. 
The importance of dimensionless numbers comes from the fact that they manifest the effect 
of the fact that physical laws do not depend on the systems of units that are chosen to 
represent such laws. E.g., it does not matter whether one uses the SI system of units or CGS, 
the formulas representing, e.g., Newton’s Laws, are the same. 

We use the similarity theory methods to the modeling, analysis, and detection of behaviors 
of multiple UAVs, as a whole treated as a complex dynamical system. The main idea of the 
similitude theory is that similar behaviors occur when the values of the system variables are 
in a specific relation. Such relations are captured by dimensionless quantities. Each such 
relation defines a hypersurface in the space spanned over the system variables. Knowing such 
relationships allows the system to measure the distance to potentially undesirable behaviors, 
alerting the central controller, which in turn can provide the agents with policies for avoiding 
such behaviors. 

The dimensionless quantities are obtained using the theorem known as Buckingham’s 
π-theorem [61].  The π-Theorem has two premises and one conclusion.  The premises are: 

• There exists a function Y = F (X1, ..., Xn) that relates the variables of interest, 

• The function F is invariant with respect to the transformations of systems of units. 
The conclusion of the π-Theorem is then that such a function can be represented in 

dimensionless form πy = f (π1, ..., πr ), where the dimensionless variables πy, π1, ..., πr are 
constructed out of the variables Y, X1, ..., Xn according to the rules of dimensional analysis. 
The general form for computing the πs is given by the following formula: 

                                                
where A1, ..., Am are the dimensional quantities selected from the set X1, ..., Xn (called 
dimensional base), while B1,...,Br are the remaining quantities from X1, ..., Xn. 
Dimensional analysis provides rules and procedures for deriving the πs. Intuitively, the 
exponents bji are selected in such a way so that the πj s are dimensionless.  

An even more important implication of the π-Theorem is that it also gives rise to the 
similitude (or similarity) theory [62]. Similitude theory is used to relate models of 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
28 

physical reality with respect to the reality, as well as to other models. A number of 
different requirements need to be satisfied in order for two models to be similar. Most 
importantly, the values of the dimensionless parameters must be the same for both models 
in order to achieve similitude between the structures and the behaviors of two modeled 
systems. These dimensional parameters are called invariants. The reason for this is that 
whenever these parameters have the same values for two instantiations of the same process 
captured by the model functions, the behaviors are similar. This provides a quite powerful 
tool for both prediction and analysis of behaviors. Note that one can modify the specific 
process variables X1, ..., Xn, yet the values of π1, ..., πr remain constant; the consequence of 
which is that πy should also be constant. But since πy is expressed in terms of some of the 
X1, ..., Xn and Y, the value of Y can be predicted. I.e., since we know the value of πy for the 
given values of π1, ..., πr , we can calculate y as: 

                                       
Additionally, by measuring the values of the variables we can see whether the system 

stays at the same orbit, where the orbit is defined as the sets of values of the variables X1, 
..., Xn such that the values of all the πj remain constant. In this way, we can monitor the 
system for transitions to other orbits, and thus possibly to other types of behaviors. For 
instance, like in the Reynolds number (Re) example, we can see whether the value of ℜn 
is moving towards the critical value of 4,000, indicating that the flow may become turbulent, 
i.e., the system (in this case the process) moves towards a qualitatively different behavior. 

The use of dimensionless quantities and similitude theory was studied by Kokar and some 
results have been published in a number of papers. In [63] the notion of critical hypersurface 
was introduced. Critical hypersurfaces are defined by the dimensionless quantities. The 
main point of this paper was that hypersurfaces should be used for separating qualitatively 
different behaviors of systems, rather than hyperplanes. Dimensionless invariants were also 
used for the purpose of discovery of concepts (relevant variables) that are needed for full 
characterization of processes. 
 
3.4 Quantitative-Qualitative (Q2) Approach 
While invariants capture the borders between different types of behavior, they do not account 
for the dynamics of the process behind the transition from one behavior type to another. In 
a number of papers, Kokar has extended this approach to dynamical systems. In [2], 
dimensionless invariants were used for monitoring behaviors of time-varying dynamical 
systems. Then they were also used for learning models of dynamical systems [64, 65, 66]. 

The notion of consistent quantitative-qualitative dynamic system, or the Q2 system, was 
introduced in [67]. The Q2 approach is used to develop a qualitative dynamic model (QDS) 
of a quantitative dynamical system (GDS) and then use the qualitative model to analyze 
the behavior of the dynamical system.  While the results of such analysis are qualitative in 
nature, since intervals and regions are used instead of points, the qualitative conclusion still 
should be correct. Abstractions that satisfy such requirements are called consistent. The Q2 

framework for reasoning with abstractions about a GDS is shown in Figure 12. 
 
 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
29 

 

Figure 12. Q2: Quantitative-Qualitative Representation of a Dynamical 
System 

 

The consistency constraints on abstractions are defined as [67]: 
 

Let S, Σ and χ  represent a GDS, a QDS and an abstraction function. The pair (Σ, χ   ) is a 
consistent representational structure of a dynamic system S if the following consistency 
postulates are fulfilled ∀q, qo, x, t: 

 

           γ(χQ(q)) = χW (g(q) 
                                   𝜙𝜙(χQ(qo), χT QX (t, qo, x)) = χ (f (t, qo, x))                     (16) 

 
To summarize, the main ideas of Q2 are as follows.  

 
1. The ℜ𝑛𝑛 system space must include not only inputs X, states Q and outputs Y, but 

also the time between state transitions, T. 
2. The partition of ℜ𝑛𝑛   cannot be done by simply selecting specific values for X, Q and 

T (this would result in hyperbox partitions), but by hypersufraces in ℜ𝑛𝑛  defined by 
appropriate similarity numbers (similar to Re). 

3. Qualitative abstraction functions are introduced to partition the output space of a 
dynamical system into qualitative outputs, state space into qualitative states, and T × 
X × Q into qualitative inputs. 

4. Qualitative State Machine (QSM) is defined to abstract the state transitions of the 
underlying quantitative system by the transitions of the QSM. 

 
This construction was proven to be consistent, i.e., the QSM was proven to be correct 

with respect to the underlying quantitative system, modulo the abstraction. 
 
 
 
 

  



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
30 

4 RESULTS AND DISCUSSION 
This section presents the experiments performed to simulate and detect undesirable 
emergent behaviors. For our simulations, we used NetLogo [60] for agent-based modeling 
and simulation and MATLAB [68] for analysis of results. 
 
4.1 Boids Flocking 
We start the discussion with a very simple and popular example of emergent behavior, 
i . e . ,  flocking.  Craig Reynolds in 1986 [3] developed a program named Boids to simulate 
flocking as emergent behavior. The complex behavior of flocking arises from the interaction 
of individual agents (the boids, in this case) adhering to a set of simple rules. Every agent 
follows exactly the same set of behavioral rules: 

 
1. Separation: At each iteration, each boid makes an adjustment to its velocity if it gets 

too close to a nearby boid. 

2. Alignment: For the neighbors inside the vision-range of a boid, it aligns its velocity 
with the average velocity of its neighboring boids. 

3. Cohesion: For the neighbors inside the vision-range of a boid, it moves towards the 
centroid of its neighboring boids. 

 
The boids framework is often used in computer graphics, providing realistic-looking 

representations of flocks of birds and other creatures, such as schools of fish or herds of animals. 
Figure 13 shows the snapshot from NetLogo simulation of boids rules. Here, the boids 
(yellow agents or turtles in NetLogo) are moving in flocks – an emergent behavior.  Boids in 
a flock move with the same velocity (or heading) in space (or environment). 

Can we detect such emergence algorithmically? The answer is yes. The detection is pretty 
direct using similitude theory (see Section 3.3). For instance, consider ten boids moving in space. 
We create πs (dimensionless quantities) by computing the ratios of boids’ velocities, such as, πk =
vi/vj, i ≠ j. The plot of all πs versus time (1800 ticks) is shown in Figure 14. Saturation of all πs 
towards value 1 shows an existence of emergence because at that time the boids in a flock move 
with the same velocity. The aim here is to show the applicability of dimensional analysis to detect 
emergence in such a simple scenario. We use the same kind of approach to a more complicated 
scenario of UAVs (explained in the following sections). 
 
4.2 Agent Based Modeling and Simulation of UAVs 
In this subsection, we describe the design of control policies for single and multiple UAVs 
per the persistent surveillance scenario presented in Section 3.2. 
 
4.2.1 Single UAV representation. Figure 15 shows one UAV agent (red plane) in Net- Logo. 
The environment (2D space) is divided into cells such that each cell has its own coordinate 
location. We assume that one UAV occupies one cell. Each cell has an associated age value that 
represents the time elapsed since the last observation (Section 3.2.1).  The blue region (Fig. 15) 
 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
31 

 
 

Figure 13.  NetLogo Simulation - Boids Flocking 
 
 
 
 
 

 
Figure 14. Detection of Flocking Behavior using Similitude Theory 

 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
32 

 
 

Figure 15. UAV and Information Age 

shows the sensor footprint of the UAV which comprises the cells in its sensing range (a 
constant value). Each UAV is modeled as a point in space with location, velocity and 
acceleration (force). The acceleration is the input applied in any direction in an effort to 
steer the UAV. The basic rule for UAV movement is “seek” which causes a UAV to move 
towards some specified (desired) position in the environment. 

A UAV agent in our simulations is designed to be a self-controlling autonomous agent. 
The search for a solution to the optimization problem (Eq. 7) is implemented in the controller 
of a UAV. At every iteration (or tick NetLogo), each UAV selects a value of the acceleration 
based on its current state (position, direction and velocity) and the age values of cells in its 
sensing range (neighboring cells).  Thus, the control policy for a single UAV is: 
 

Measure the surroundings (sensing range), create feedback and calculate next lo- 
cation to move to, based on nearest maximum age cell. 

 
Figure 15 gives the pictorial representation in one-dimensional space. The next maximum 

age cell (i) is selected based on the following equation: 

       
In our simulations, we observed different behaviors of the UAVs moving in straight and 

curved lines. One of the interesting emergent behaviors observed was the “lawn-mowing” 
pattern of the movements of the UAVs. Figure 16 shows a MATLAB simulation output for 
a single UAV implementation of the square plume monitoring. With no dynamic constraints 
on the rate of turn, the typical lawnmower behavior emerges, while a random turn radius is 
allowed, the UAV’s behavior does not exhibit such a pattern. 
 
4.2.2 Extension to multiple UAVs.  In the previous subsection, we described a control 
policy for one UAV performing a specific mission (plume monitoring). In this subsection, we 
 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
33 

 
 

Figure 16. Pattern Emergence from Single UAV (Plume - Green Area) 

extend the control policies to multiple UAVs. As explained in Section 3.1.1, for a streamlined 
movement and interactions among UAVs, we made each UAV to follow four steps of the 
OODA loop. A UAV agent takes appropriate action based on its observation and orientation. 
At any time, the action of a UAV agent is based on the following information: 

• Goal Space: The goal in this scenario is to minimize the information age metric i.e. to 
solve the optimization problem (Eq. 7). 

• Action Space: Each UAV calculates its next location by measuring its sensor footprint 

• Constraints Space: For UAV-UAV interaction, we follow three constraints/ behavioral 
rules from [3] (pictorial representation shown in Fig. 17): 

– Separation Constraint: Maintain minimum distance with neighboring UAV 
(neighborhood is defined by sensor footprint), 

– Alignment Constraint: Heading of each UAV is equal to the average heading of 
the neighboring UAVs, 

– Cohesion Constraint:  Each UAV moves in the direction of the centroid of the 
neighboring UAVs. 

The aim here is to simulate this multi-UAV system and study different behaviors emerged 
at the system level. Section 4.1 shows that three simple rules cause the flocking to appear. 
The question here is, are we going to get the same emergent behavior with UAVs? The 
easiest and fastest approach is by simulation. We observe what happens at the system (or 
macro) level when UAVs interact at the micro level (Section 3.1.1). The algorithms for agent 
and system logic are given in Algorithm 1 and 2. 

Figures 18 and 19 show the NetLogo snapshots for a 4-UAV system implementation. 
The sliding bars on the left are for the external parameters that can be changed during the 
 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
34 

 
 

Figure 17. Control Policies for Multiple UAVs (grey circle represent the S(t) 
of center UAV 

 
 

 
simulation. The plot on the right represents information age over time. We simulated the 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
35 

scenario with two kinds of plumes (the green region in the figures) - Square and Circular. 
The simulations are not affected by the shape of the plume, thus, for further results, we just 
show the runs with the circular plume. Also, to note here, in all the simulations, we used 
plumes with the same concentration in the plume, i.e., all cells are the same. 

In this work, our aim is to simulate and study undesirable emergent behaviors in swarms 
of UAVs. Figures 20 and 21 demonstrate two cases of undesirable emergent behaviors in a 
persistent surveillance scenario. Figure 20 shows the undesirable flocking of UAVs due to the 
alignment and cohesion constraints. This kind of emergent behavior is undesirable in this 
scenario as it causes the quality metric, i.e., information age, to increase. Figure 21 shows 
the monitoring of two plumes by 4 UAVs. The simulation clearly shows the poorly covered 
or non-covered facility emergent behavior (Section 2.5). Again, this behavior is undesirable 
as none of the UAVs are monitoring the first plume, causing an increase in the overall value 
of the information age. 
 

 

Figure 18.  NetLogo Simulation of persistent surveillance of square plume by 4 
UAVs 

 
4.2.3 Simulating Emergent Behavior Types. Previous sections presented some of the 
examples of desirable and undesirable emergent behaviors in swarms of UAVs. But so far, 
we have not distinguished these behaviors into different types. This subsection deals with 
simulating different types of emergent behaviors in the multi-UAV system. The main idea 
here is to simulate the behaviors such that they fall into the specified types of emergence. 
 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
36 

 
 

Figure 19.  NetLogo Simulation of persistent surveillance of circular plume by 
4 UAVs 

 

As mentioned above, we follow the classification provided by Fromm (Section 2.4.1). Here, 
we discuss two types i.e., type IIa and type IIb as these are the most interesting with respect 
to engineering applications. 
 

1. Type IIa: This refers to the emergent behavior type in which the net feedback from 
the macro level is negative. For the discussed UAV scenario, this is implemented using 
the information age metric, i.e., each UAV’s motion is constrained by the metric of 
information age in such a way that it has to move towards the cell with highest age 
value at each time instant. Figure 22 shows the simulation where UAVs interact by 
only following the separation constraint. This results into a desired behavior of the 
UAVs as the information age decreases with time and stays minimum over time. 

2. Type IIb: This refers to the type where the net feedback from the macro level is 
positive. For the discussed UAV scenario, we implemented this by adding alignment 
and cohesion constraints. This results into group formation (Fig. 23), as in boids, 
which turns out to be an undesirable behavior in UAVs as it causes information age 
to increase with time. 

 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
37 

 
 

Figure 20. Flocking Emergent Behaviors in Multi-UAV Plume Monitoring 
System. 

 
4.3 Application of Q2  Approach 

This section presents the step by step application of the Quantitative-Qualitative (Q2) 
approach. We start the discussion with a simple test case scenario with two UAVs and then 
formalize a generalized Q2 conceptualization for a dynamical system. 
 
4.3.1 A Test Case Scenario. The Q2 approach translates observations of the dynamical 
system to qualitative inputs, outputs, and states. As a first step in this direction we 
implement a test case scenario with two UAVs moving in circular motion, one clockwise 
and another counterclockwise (shown in Fig. 24). The system of these two UAVs is treated 
as one dynamical system. We observed their synchronized motion using qualitative outputs 
and tried to learn the hypersurfaces they are moving through. 

Considering heading (α) as the output of each UAV, the ranges for 𝛼𝛼1 and 𝛼𝛼2 are [0o, 360o) 
(counterclockwise direction) and [180o, −180o) (clockwise direction), respectively. Figure 25 
shows the observation of outputs of these two UAVs.  The quantitative model, i.e.  states (Q), 
inputs (X), state transition function (f) and output (W) sets are given below: 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
38 

 
 

Figure 21. Undesirable Emergent Behavior - Non-Covered Facility 
 

 q(k) = [x1(k), y1(k), vx1(k), vy1(k), x2(k), y2(k), vx2(k), vy2(k)]T 

 x(k) = [ax1(k), ay1(k), ax2(k), ay2(k)]T 

q(k) = f (q(k − 1), x(k − 1), k)                                                      (18) 
 w(k) = [α1(k), α2(k)]T 
 

To create the qualitative model for this system, we start with qualitative partitioning of 
the output space. Let us assume eight (8) partitions of the output, i.e., output abstraction 
function divides the output space into eight qualitative outputs (more details in the next 
section): 

                                               Ω = {ω1, ω2, ω3, ω4, ω5, ω6, ω7, ω8}                                (19) 
Figure 26 shows a trajectory through such qualitative output space. The lines show the 

movements of the UAVs in time (quantitative). The blue and red boxes in the plot represent 
the points that fall inside the qualitative partitions of the Ω space. 

This kind of behavior generates a hypersurface in space. The line going through the 
coordinate plot in Figure 27 represents the hypersurface for this dynamical system. This is 
obtained by determining the invariance in outputs of these two agents. α1 and α2 are related 
by the equation, α2  = α20  − α1, where α20 is initial value for α2.  It means that as long as both 
the UAVs are moving along this hypersurface, there will be a synchronized motion (circular 
motion in different directions in this case), making it easier to detect how agents are moving 
in space. Thus, our ultimate goal is to generate or learn such hypersurfaces for our specified 
multi-UAV system. Such hypersurfaces divide the space into distinct behaviors which can be 
used to separate desirable behavior from undesirable ones. 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
39 

 

 
 

Figure 22.  NetLogo Simulation of Persistent Surveillance by 4 UAVs of 
Square Plume (Green Region) - Minimization of Information Age (Right 

Plot) 
 
4.3.2 Generalized Q2 Conceptualization. In this section, we develop the Q2 

conceptualization for a UAV agent. As mentioned before, we consider UAV as a dynamical 
system with system dynamics given in Section 3.2.2. We use the same state transition 
function f as in Equation 9. Let’s take the heading direction, α(k), as the output variable 
for the system, which is defined as: 

             
We intentionally ignore the case where vx(k) = 0 and vy (k) = 0 as it is assumed 

that agent won’t stop moving in the space. 
 
4.3.2.1 Partitioning of the Output Space and Qualitative Outputs. We start 
developing qualitative abstractions with the output space. In this case, the output space 
is W = [0, 2π) in radians, or [0o to 360o) in degrees. The qualitative outputs (sets in the 
original space) are separated by output landmarks: 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
40 

 
 

Figure 23.  NetLogo Simulation of Persistent Surveillance by 4 UAVs of Square 
Plume (Green Region) - Undesirable Group Formation 

The qualitative outputs include eight elements:  

                               
Thus, the output abstraction function is given by the following equation: 

                            
As can be seen from Equation 23, the output abstraction function χW defines eight (disjoint) 
partitions or subsets in the quantitative output space. 
 
4.3.2.2 Partitioning of State Space and Qualitative States. According to the 
Q2 approach, the partitioning of the output space determines qualitative partitions in the 
state space X × Y × Vx × Vy . The goal is to obtain the qualitative state abstraction function, 
χQ, of the state space Q such that 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
41 

                                                     
where each qualitative state θi  corresponds to one qualitative output ωj . 

 
 

 
 

Figure 24. Two UAVs Moving in Circular Motion (Opposite Directions) 
 

 

 
 

Figure 25.  Observation of Outputs 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
42 

 
 

Figure 26.  Transition through Qualitative Space 
 
 
 
 
 

 
 

Figure 27.  Invariance in Outputs 
 
 

 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
43 

The eight qualitative outputs induce the partition of the state space into eight regions 
(qualitative states) {θ1, ..., θ8}, each corresponding to a qualitative output. 

                                  
The qualitative output function γ is defined in such a way that θ1 corresponds to ω1, θ2 

corresponds to ω2, ..., θ8 corresponds to ω8. The explicit assignment is represented as: 

                   
The computation of χQ is achieved by the following steps: 

1. For each state q ∈ Q, compute the output associated with q by the output function α 
(it is denoted as g in Fig. 12). 
 

2. Find the qualitative output corresponding to this output by the qualitative output 
function χW. 
 

3. Find the qualitative state θ ∈ Θ that is mapped to this qualitative output by the 
qualitative output function γ. Assign this qualitative state to q. 

 
This computation defines χQ, which can be expressed mathematically as: 

                                          
    An example of projection of state space partition onto 2D is shown in Figure 28. 

To test whether the two abstraction functions (χW and χQ) define a consistent abstraction, 
we can test the satisfaction of the consistency constraints between general dynamic system 
and qualitative dynamic system with respect to state abstraction, given by Equation 28, by 
performing computation in the forward manner, i.e., testing whether for each state q, the 
mapping from q to Θ and then applying the qualitative output function γ gives the same 
result as first applying the output function α to the state q and then mapping the quantitative 
output to the qualitative output using the qualitative output abstraction χW , as shown in 
Equation 28. 

                                         
4.3.2.3 Partitioning of Input Space and Qualitative Inputs. The qualitative input 
abstraction function χTQX , of TQX space, is obtained in a similar way as the abstraction 
function for the states. We denote the qualitative input set as Λ, such that: 

                                                   
We postulated that the qualitative input set consists of eight qualitative inputs as shown 

in Equation 30:  



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
44 

                               
 

 
 

Figure 28. Partitioning of State Space [Red: θ1, Yellow: θ2, Magenta: θ3, Cyan: 
θ4, Green: θ5, Blue: θ6, Black: θ7, Light Blue: θ8] 

                                  
We assume that λ1 causes transition to θ1, λ2 causes transition to θ2 and so on. This 

defines the qualitative state transition function, 𝜙𝜙, represented as an automaton shown in 
Figure 29. The automaton is a two-way loop in which the heading direction of the particle 
in the space is limited in the range [0, 360). For instance, if particle is moving in a clockwise 
direction along a circular path and is in state θ2 it can change its path to counterclockwise 
direction by applying the input λ1  resulting into transition to state θ1. 

Similarly, as with the computation of the qualitative state abstraction, we compute the 
qualitative input abstraction function χT QX in the following steps: 

 
1. For each quantitative (initial) state q0  = (x, y, vx, vy ), quantitative input u = (ax, ay) 

and time increment T: compute the next state 𝑞𝑞′ = �𝑥𝑥′,𝑦𝑦′,𝑣𝑣𝑥𝑥′ ,𝑣𝑣𝑦𝑦′ �. 
 

2. Compute the qualitative abstractions of the initial state and the next state. 
3. Find the qualitative next state, θi  and assign its label to the qualitative input, λi. 

 
The computation of the qualitative input abstraction function, χT QX , can be described 

mathematically as: 

                    
As an example of input partitions, a projection onto 2D is shown in Figure 30. The 

horizontal axis is time, T, while the vertical axis represents the y-component of the 
acceleration input, ay . 

 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
45 

 
 

Figure 29. Automaton: Qualitative State Transition Function 
 

In order to be a consistent abstraction function, the qualitative input abstraction function 
χTQX should satisfy the consistency constraint specified in Equation 16. To ensure that our 
implementation of the qualitative input abstraction of Equation 31 is correct, we test the 
satisfaction of this condition by performing the forward computation defined by Equation 
32. 

                    
4.3.3 Proof of consistency constraints. 

1. Qualitative State Abstraction 
Given a state, q ∈ Q, we need to prove that the following two steps (LHS and RHS of 
Eq. 28) result in the same qualitative output: 
1.1. Map q to Θ using χQ ⇒ θi, then apply qualitative output function γ on θi ⇒ ωi 

1.2. Map q to W using α (quantitative output function) and then apply χW  to get 
qualitative output ⇒ ωj 

Thus, we need to prove that 𝜔𝜔𝑖𝑖 ≡ 𝜔𝜔𝑗𝑗  . We prove this graphically, Figure 31 shows the 
plots for above steps. It is clearly visible that both result into same partition of the 
state space. Each point is assigned a color representing the qualitative output it 
belongs to (based on the computations described in above steps). 
 

2. Qualitative Input Abstraction 
As discussed in above sub-section, we prove the consistency constraint on input 
abstraction function by proving that following two steps are equivalent (LHS and 
RHS of Eq. 32). Given initial state, q0, quantitative input, u, and time, T: 

 
 
 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
46 

 
 

Figure 30. Partitioning of Input Space [Red: λ1, Yellow: λ2, Magenta: λ3, 
Cyan: λ4, Green: λ5, Blue: λ6, Black: λ7, Light Blue: λ8] 

 
 
 
 
 

 
(a) Using Step (1) (b) Using Step (2) 

 
Figure 31. Consistency Constraint [Red: ω1, Yellow: ω2, Magenta: ω3, Cyan: 

ω4, Green: ω5, Blue: ω6, Black: ω7, Light Blue: ω8] 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
47 

2.1. Apply χQ   on q0   to get initial qualitative state and χT QX   on {q0, u, T} to 
get qualitative input and then apply φ to get the next qualitative state ⇒ θi 

2.2. Apply state transition function, f, on {q0, u, T} to get the next quantitative 
state and then apply χQ to get its qualitative equivalent ⇒ θj 

Thus, we need to prove that θi   ≡ θj .  This is done in similar way as in previous 
subsection. 
 
4.3.4 Simulation in Qualitative Domain. This section presents the simulation results 
based on the qualitative conceptualization developed in previous subsection. The steps for 
performing reasoning using Q2 are given below: 

1. Determine current qualitative state using χQ 

2. Select the desired next qualitative state 

3. Find the qualitative input (λi) according to automaton that causes the transition 
to the desired state 

4. Select a (quantitative) value for the input vector from the region associated with λi 

Figure 32 demonstrates two types of emergent behaviors - Type IIa and Type IIb. The 
left part shows the simulation of two UAVs for the Type IIa emergent behavior with top- 
down negative feedback (constrained behavior due to information age). This is a desirable 
behavior as the information age decreases over time. On the other hand, the right part shows 
the Type IIb emergent behavior where two UAVs try to align with each other resulting into 
undesirable behavior with increased information age. 
 

 

Figure 32.  MATLAB Simulation of Type IIa (left) and Type IIb (right) 
Emergent Behavior using Q2 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
48 

4.4 Detection and Classification of Emergent Behaviors 

4.4.1 Detection using Variety. So far, in our experiments, the existence of undesirable 
emergent behavior was confirmed by studying the changes in the quality metric (information 
age) of the scenario. Also, the simulation platforms, like NetLogo, provide just visual 
inspection of emergence using its built-in animator window. We need a mechanism for 
automatic detection of emergence. Literature provides many alternatives for detection of 
emergent behaviors mathematically. These approaches are categorized as variable-based, 
grammar based and event-based techniques. In our research, we use the variable-based 
approach, i.e. using a variable or a metric to prove the existence of emergence. In particular, 
we use a metric called variety [10]. Holland ([10]) states that the complexity of the system 
behavior can be analyzed with respect to the measures of variety and intensity of constraint, 
where variety relates to the number of control states of a system to the number of variations 
in control to achieve effective response. The variety (V) and intensity of constraint (I) are 
given by Equation 33, where Vp and Vs are variety in an unconstrained and constrained 
system, respectively. m is possible number of states in each automata and M is the number 
of states exhibited (traversed) by the system. Holland states that increasing I (or decreasing 
Vs) interprets that system is tending towards Type IIa emergence, while decreasing I (or 
increasing Vs) interprets the system moving towards Type IIb emergent behavior. 

                                    
Figure 33 illustrates an example for detection of the emergent property formation using 

the variety metric. As shown, when the groups are formed (undesirable state) in UAVs, 
variety becomes flat, whereas it fluctuates when no groups are formed (desirable state). The 
plots are obtained using MATLAB [68]. 

Here, we also want to compare the detection process by dimensional versus dimensionless 
variables (π’s) explained in Section 3.3. Consider the case with two UAVs performing the 
persistent surveillance of the circular plume. The state vector for dimensional and 
dimensionless variables is given below: 

             
Figures 34 and 35 demonstrate the detection of emergence using the variety metric for 

both cases. In this simulation, emergence (aligned movement of agents - undesirable behavior) 
starts approximately at tick = 270. The plots show that both techniques can equally well 
detect the change in the variety at that tick location, but the variety value falls in case of 
dimensionless variables, making it easier to detect the emergence mathematically. Though 
both techniques perform well in terms of simulation, they differ in the magnitude in terms 
of the complexity (discussed in a later section). 
 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
49 

 
 

Figure 33.  Detection of Emergent Behavior using Variable-Based Approach 
(Variety Metric) 

 
4.4.2 Detection using FSM. As we mentioned before, the behavior of multi-agent systems 
can be represented by a FSM in our behavior ontology. So, we can recognize the behavior of 
a system with FSM representation using the following three steps: 
• Given a sequence of data (e.g., event trace) observed from the simulation of a system’s 

behavior 
• Determine if this trace is compatible with the known FSMs (i.e., if the input trace is 

a path in the known FSM graph) 
• If the input trace is compatible with a known FSM∗ , and this known FSM∗  represents 

a certain behavior, recognize this system’s behavior as compatible with FSM∗  
We have two known FSMs as instances of FSM class: fsm1, fsm2 (Fig. 36). They 

represent the circular motion behavior shown in the test case scenario (Fig. 24). We 
represent these two FSMs in our ontology (Fig. 37). 

Suppose there are two event traces (shown in Fig. 38). By running the inference 
engine to infer if each trace is compatible with any of the FSM instances described above, 
the inference results show that trace1 is compatible with both fsm1 and fsm2, and trace2 is 
compatible with fsm1.   



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
50 

 

Figure 34. Detection using Variety with Dimensional Variables 
 

4.4.3 Classification using Ontology Inference. Representing and classifying all possible 
cases of emergence in a system is also an important goal for our research. We achieve this 
goal using our behavior ontology and inference engine. In our behavior ontology, we have 
two classes to represent behaviors, one is Behavior class, which contains the actual behavior 
instances. Another one is Behavior Model class, which contains the models of different 
behavior types as subclasses. These behavior instances are imported from simulation, which 
usually described by some basic attributes, e.g., velocity, heading. Our goal is to infer which 
type of behavior model the behavior instances belong to. We list several specific types of 
behavior model, and define these models by OWL axioms. Once we import the attributes 
of the behavior instances, OWL reasoners infer the behavior model type for each behavior 
instance automatically. 

In Figure 10, Flocking is one of the subclasses of Behavior Model class represented in our 
ontology. We explain the details of this behavior model using an example to show how the 
inference works. Basically, a UAV flocking scenario has the following rules: 

• A UAV flocking should contain at least two UAVs. 

• The UAVs in a flock should have the same velocity. 
 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
51 

 
 

Figure 35. Detection using Variety with Dimensionless Variables 
 

• The UAVs in a flock should have the same heading. 

• The UAVs in a flock should be close to each other. 

We use OWL axioms to define the UAV flocking class. Figure 39 shows the OWL axioms 
in Protégé. 

The behavior instances should be imported from simulation automatically. But so far, in 
this example, we add a few behavior instances based on the simulation manually. We create 
a behavior instance named “UAVSystemBehavior1”, which has two participants: uav1 and 
uav2. We assign velocity value and heading value to each UAV. The values satisfied the 
rules described above, the OWL reasoner infers the UAVSystemBehavior1 to be an instance 
of Flocking. 
 
4.5 Learning Hypersurfaces 
To make control decisions, we need knowledge the model of the system under consideration. 
The aim for the learning is to create a database with model’s dynamics for every qualitatively 
distinct behavior. Such a database represents a partial model of the overall system’s behavior. 
This is achieved by learning “hypersurfaces”. Using similitude theory (dimensional analysis), 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
52 

 

 
 

Figure 36.  Two Instances of FSM 
 

we subdivide the domain of state transition function into hypersurfaces (or orbits). Similarity 
property allows us to store only one point from each hypersurface, resulting in a reduced 
space complexity. Hypersurfaces are used for separating qualitatively different behaviors of 
the system. More specifically, the database points representing particular hypersurfaces are 
used for predicting of the next states. We use the hypersurface learning algorithm defined in 
[2]. The algorithm is presented in Algorithm 3 below. Figure 40 depicts the speed of learning 
of this algorithm in terms of the number of landmark points that the system stores. The 
straight line towards the end of the plot shows that the learning saturates. These results were 
obtained while learning hypersurfaces in the persistent surveillance scenario with two UAVs. 

Hypersurfaces are learned using landmark points. We compared the performance of 
learning algorithm in the UAV scenario based on π’s (dimensionless quantities) and the 
original variables. For instance, in a simulation, the number of distinct behaviors (landmark 
points) learned using the traditional approach is 90, while using the π’s, this number was 
46, resulting in almost 50% reduction is space. Figure 41 shows this comparison. 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
53 

 
 

Figure 37.  Representation of Two FSM Instances in OWL 
 

 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
54 

 
 

Figure 38. Two Event Trace Examples 
 

 

Figure 39. UAV Flocking Example 
 
 

 
 

Figure 40. Accuracy of Learning Algorithm [2]  



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
55 

 

 
 

Figure 41.  Comparison between Prediction by Similarity and Traditional 
Approach 

 

4.6 Complexity Analysis 
In this section, we discuss the complexity reduction achieved by using the dimensional 
analysis and Q2  approach presented in this report. The reduction in complexity is obtained 
by reducing the state space by abstracting quantitative dynamical system to the qualitative 
dynamical system. Additionally, the decrease in the dimensionality of the system space ℜ𝑛𝑛, 
reduced value of n, is achieved by considering the impact of couplings between various 
dynamical systems, i.e., by using dimensionless quantities instead of directly using the 
dimensional variables. 
 

1. Impact of qualitative abstraction on complexity of behavior recognition: 
Section 4.4.2 discussed the detection of emergent behaviors using FSMs by matching 
the traces to the stored automata. Here we analyze the impact of using qualitative 
approach on the complexity of behavior recognition using FSMs. To recognize the 
behavior, the reasoner needs to match traces to possible automata. For calculating 
the complexity analysis, we need to calculate the number of possible traces for a given 
number of transitions. For N partitions (qualitative regions) of the quantitative space, 
an agent can go through N transitions with the total number of traces (T) given by: 

                                        
For instance, with two transitions, i.e., {𝑡𝑡1,𝑡𝑡2}, four traces can be generated, 
i.e., {𝑡𝑡1, 𝑡𝑡2, 𝑡𝑡1𝑡𝑡2, 𝑡𝑡2𝑡𝑡1}  where the possible automata for each trace are shown in Figure 
42. Figure 43 demonstrates the number of comparisons performed by the reasoner as 
the number of qualitative partitions of qualitative regions increases. Here the 
complexity is on the order of O (T 2), where T is the number of traces. 

 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
56 

 
 

Figure 42. Possible Automata for Four Traces 
 

2. Impact of using dimensional versus dimensionless approaches on size of the state space: 
Let z be the number of possible states a single UAV can take and N be the total 
number of UAVs in a system. With dimensional variables, the state space increases 
exponentially as N increase, i.e., the complexity is in the order O(zN ).  On the other 
hand, with dimensionless variables, the increase in the state space is just quadratic, i.e., 
(O(z2)) complexity, which provides a lot of improvement over the traditional approach. 
Figure 44 gives the number of states with dimensional and dimensionless variables as 
N increases. The figure demonstrates the exponential increase in the number of states 
as the number of UAVs increases in the case of dimensional variables. 

3. GDS versus QDS: 
We also compare the performance of General Dynamical System (GDS) versus 
Qualitative Dynamical System (QDS) in terms of the number of comparisons. We 
observed that GDS is an order of magnitude more computationally expensive than 
QDS. Figure 45 shows this comparison. The plots show that for the same number of 
ticks (or iterations), GDS perform 140 comparisons while QDS performs just 14. 

 
 
5 CONCLUSION 

This report summarizes our efforts to investigate an approach to modeling and analysis of 
multi-agent dynamical systems with the intent of reduction in the complexity of detecting 
and controlling undesirable emergent behaviors. The approach is a combination of 
dimensional analysis (similitude theory) and the Quantitative-Qualitative (Q2) approach for 
representing dynamical systems. We presented a number of experiments that were performed 
in this work using multi-UAV systems which were performing a specified mission of 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
57 

persistent surveillance of targeted search area (Plume Monitoring). The experiments showed 
different types and forms of emergence in swarm(s) of UAVs. The approach used in our work 
was able to detect undesirable emergent behaviors which are not beneficial for the scenario 
discussed. We also showed how the qualitative approach is computationally inexpensive as 
compared to the traditional approaches that use quantitative representations of the 
dynamical systems. The complexity reduction is primarily due to the reduction of the 
state space by abstracting quantitative dynamical systems to qualitative dynamical systems. 
Additionally, experiments showed that the use of similitude theory (supported by machine 
learning) lead to the improvements in the efficiency of detection of emergent behaviors. 
 

 
 

Figure 43.  Number of Comparisons for N Qualitative Partitions 
 

Another aspect of our research was to gain more understanding of the nature of emergence in 
general. Towards this aim, we performed an intensive study of the definitions of emergence. As 
a result, we identified very many definitions of this concept. Then we identified a number of 
features of the particular definitions and performed Formal Concept Analysis. The net result 
was a lattice that shows the dependencies between and among the various definitions. The 
first conclusion from this research was that there is a lack of agreement on the notion of 
emergence. The encouraging result was that many of the definitions have common parts. 
Unfortunately, many of the definitions, even though they use the same linguistic terms, it is 
not clear what the meaning of the terms is. In particular, the most controversial, although 
very crucial, term is “irreducibility”. Unfortunately, none of the definitions we reviewed are 
based in mathematics. While this is not the only one way of stating definitions, another one being 
precise definitions, expressed in natural language. We have identified several precise 
definitions of irreducibility in mathematics. However, while they can serve as exemplars, none 
of them is a good match for the purpose of defining this term for identifying emergence.  In 
addition to mathematics, we have also analyzed computational irreducibility, where it applies 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
58 

to the computational process. Since emergence is also is associated with processes, 
computational irreducibility is perhaps the best match to our needs. The problem is that 
this definition also is not fully precise. It refers to a precise term used in both 
mathematics and computer science - the undecidability - but the definition does not provide 
a well-defined link between undecidability and emergence. In summary, even though we have 
not found a fully satisfactory definition of emergence, we have identified a potential direction 
for the future research of this concept. 

 
 

 
 

Figure 44. Comparison of Number of States with Dimensional and 
Dimensionless Variables (z = 12) 

 
 
5.1 Future Direction 
Emergence is one of the fundamental properties of complex systems and in recent years it has 
captured significant attention from the scientific community. Emergence appears in different 
forms and shapes in a variety of systems from simple to the most complex. Emergence 
can be viewed as a positive as well as a negative phenomenon, i.e., it can either significantly 
improve the functional performance of an engineered system, or it can have a very negative 
impact on the system’s functionality and performance. Emergence is a territory which is not 
properly defined in the literature, yet. Thus, there is a need for a mechanism that provides 
a structured approach to the analysis and control of such behaviors. We address this issue 
by proposing a framework for exploration of emergent behaviors in multi-agent systems. 

 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
59 

 
 

Figure 45. General Dynamical System - GDS (Left) versus Qualitative 
Dynamical System - QDS (Right) 

 
This research is still work-in-progress. Our ultimate aim here is to design a mechanism 

to control undesirable behaviors in CAS (specifically swarms of UAVs). We presented our 
partial work in [69, 46]. Our published work and papers in preparation are listed in Appendix 
A.  Some of the existing questions in the field of emergence that are targeted in our research 
are: Can we develop a formal model of emergent behaviors? Can we do detection of 
unexpected undesirable behaviors in an efficient and reliable way?  Since analyzing features 
of multi-agent system suffers from a high computational complexity due to a high dimension 
of the analysis space, can we find an approach to reduce the complexity of analysis? Can we 
create a complete taxonomy of emergence? 

 
 

Acknowledgement: This research was conducted in close collaboration with Dr. Paul Kogut 
from Lockheed Martin who was sponsored by a separate project from the Air Force 
Laboratory.  

  



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
60 

References 

[1] J. Fromm, “Types and forms of emergence,” arXiv preprint nlin/0506028, 2005. 

[2] M. M. Kokar and J. Reeves, “Qualitative monitoring of time-varying physical systems,” 
in Decision and Control, 1990., Proceedings of the 29th IEEE Conference on. IEEE, 
1990, pp. 1504–1508. 

[3] C. W. Reynolds, “Flocks, herds and schools: A distributed behavioral model,” ACM 
SIGGRAPH computer graphics, vol. 21, no. 4, pp. 25–34, 1987. 

[4] C. S. Holling, “Understanding the complexity of economic, ecological, and social 
systems,” Ecosystems, vol. 4, no. 5, pp. 390–405, 2001. 

[5]  L. A. Adamic and B. A. Huberman, “Power-law distribution of the world wide web,” 
Science, vol. 287, no. 5461, pp. 2115–2115, 2000. 

[6] N. O’Neill, “Google now indexes 620 million facebook groups,” Web log post. All Face- 
book, vol. 1, 2010. 

[7] W. Cirne, F. Brasileiro, D. Paranhos, L. F. W. Góes, and W. Voorsluys, “On the 
efficacy, efficiency and emergent behavior of task replication in large distributed 
systems,” Parallel Computing, vol. 33, no. 3, pp. 213–234, 2007. 

[8] S. Kaisler and G. Madey, “Complex adaptive systems: Emergence and self-organization,” 
Tutorial Presented at HICSS-42 Big Island, 2009. 

[9] W. K. V. Chan, “Interaction metric of emergent behaviors in agent-based simulation,” 
in Proceedings of the Winter Simulation  Conference.  Winter Simulation Conference, 
2011, pp. 357–368. 

[10] O. T. Holland, “Taxonomy for the modeling and simulation of emergent behavior 
systems,” in Proceedings of the 2007 spring simulation multiconference-Volume 2. 
Society for Computer Simulation International, 2007, pp. 28–35. 

[11] C. Szabo and Y. M. Teo, “Post-mortem analysis of emergent behavior in complex 
simulation models,” in Proceedings of the 1st ACM SIGSIM Conference on Principles 
of Advanced Discrete Simulation.   ACM, 2013, pp. 241–252. 

[12]  G. H. Lewes, Problems of life and mind. Trübner & Company, 1877. 

[13] D.Fisher, “An emergent perspective on interoperation in systems of systems,” 2006.  

[14] C. Szabo and Y. M. Teo, “Semantic validation of emergent properties in component-
based simulation models,” in Ontology, Epistemology, and Teleology for Modeling and 
Simulation. Springer, 2013, pp. 319–333. 

[15] G. E. Marsh, “The demystification of emergent behavior,” arXiv preprint 
arXiv:0907.1117, 2009. 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
61 

[16] J.P.Müller, “Emergence of collective behaviour and problem solving,” in International 
Workshop on Engineering Societies in the Agents World. Springer, 2003, pp. 1–20. 

[17] I. Allison and Y. Merali, “Software process improvement as emergent change: A 
structurational analysis,” Information and software technology, vol. 49, no. 6, pp. 
668–681, 2007. 

[18] J. C. Mogul, “Emergent (mis)behavior vs. complex software systems,” in IN 
EUROSYS. ACM, 2006, pp. 293–304. 

[19] C. W. Johnson, “What are emergent properties and how do they affect the engineering 
of complex systems?” Reliability Engineering & System Safety, vol. 91, no. 12, pp. 
1475–1481, 2006. 

[20] J. Deguet, Y. Demazeau, and L. Magnin, “Elements  about  the  emergence  issue:  A 
survey of emergence definitions,” ComPlexUs, vol. 3, no. 1-3, pp. 24–31, 2006. 

[21] D. Chalmers, “The conscious mind, new york: Oxford univ,” 1996. 

[22] G. B. Dyson, Darwin among the machines: The evolution of global intelligence. Basic 
Books, 2012. 

[23] J. Holland and H. Mallot, “Emergence: from chaos to order,” Nature, vol. 395, no. 6700, 
pp. 342–342, 1998. 

[24] J. Goldstein, “Emergence as a construct: History and issues,” Emergence, vol. 1, no. 
1, pp. 49–72, 1999. 

[25] E.O’Toole, V.Nallur, and S. Clarke,  “Towards decentralised detection of emergence in 
complex adaptive systems,” in 2014 IEEE Eighth International Conference on Self- 
Adaptive and Self-Organizing Systems.    IEEE, 2014, pp. 60–69. 

[26] Wikipedia, “Formal Concept Analysis — Wikipedia, the free encyclopedia,” 
https://en. wikipedia.org/wiki/Formal_concept_analysis, 2017, [Online; accessed 3-
August-2017]. 

[27] J. P. Crutchfield, “Is anything ever new?-considering emergence,” in Citeseer, 1994. 

[28] J. Kim, “Making sense of emergence,”  Philosophical studies, vol. 95, no. 1, pp. 3–
36, 1999. 

[29] C. Rouff, A. Vanderbilt, M. Hinchey, W. Truszkowski, and J. Rash, “Properties 
of a formal method for prediction of emergent behaviors in swarm-based systems,” 
in Software Engineering and Formal Methods, 2004. SEFM 2004. Proceedings of the 
Second International Conference on.   IEEE, 2004, pp. 24–33. 

[30] F. Patterson Jr, “Life cycles for system acquisition,” Systems Engineering and 
management for Sustainable Development-Volume I, p. 82, 2009. 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
62 

[31] J. C. Hsu and M. Butterfield, “Emergent behavior of systems-of-systems,” Proceedings 
of Conference INCOSE-2009, pp. 1–27, 2009. 

[32] C. J. Alberts, A. J. Dorofee, R. Creel, R. J. Ellison, and C. Woody, “A systemic approach 
for assessing software supply-chain risk,” in System Sciences (HICSS), 2011 44th 
Hawaii International Conference on.   IEEE, 2011, pp. 1–8. 

[33] V. Kim, “A design space exploration method for identifying emergent behavior in 
complex systems,” Ph.D. dissertation, Georgia Institute of Technology, 2016. 

[34] S. Wolfram, A New Kind of Science. Wolfram Media, Inc., 2002. 

[35] D. J. Chalmers, “Strong and weak emergence,” The reemergence of emergence, pp. 244– 
256, 2006. 

[36] M. Bedau, “Downward causation and the autonomy of weak emergence,” Principia, vol. 
6, no. 1, p. 5, 2002. 

[37] W. Seager, “Emergence, epiphenomenalism and consciousness,” Journal of 
Conscious- ness Studies, vol. 13, no. 1-2, pp. 21–38, 2006. 

[38] L. B. Rainey and A. Tolk, Modeling and simulation support for system of systems 
engineering applications. John Wiley & Sons, 2015. 

[39] R. Gore and P. F. Reynolds Jr, “An exploration-based taxonomy for emergent behavior 
analysis in simulations,” in Proceedings of the 39th conference on Winter simulation: 
40 years! The best is yet to come.   IEEE Press, 2007, pp. 1232–1240. 

[40] Y. Bar-Yam, “Multiscale variety in complex systems,” Complexity, vol. 9, no. 4, 
pp. 37–45, 2004. 

[41] Y. M. Teo, B. L. Luong, and C. Szabo, “Formalization of emergence in multi-
agent systems,” in Proceedings of the 1st ACM SIGSIM Conference on Principles of 
Advanced Discrete Simulation.  ACM, 2013, pp. 231–240. 

[42] A. G. Madey and G. R. Madey, “Design and evaluation of uav swarm command 
and control strategies,” in Proceedings of the Agent-Directed Simulation Symposium. 
Society for Computer Simulation International, 2013, p. 7. 

[43] E. Bonabeau, J.-L. Dessalles, and A. Grumbach, “Characterizing emergent 
phenomena (1): A critical review,” Revue internationale de systémique, vol. 9, no. 3, 
pp. 327–346, 1995. 

[44] C. Emmeche, S. Køppe, F. Stjernfelt et al., “Levels, emergence, and three versions 
of downward causation,” Downward causation. Minds, bodies and matter, pp. 13–34, 
2000. 

[45] O. T. Holland, Partitioning method for emergent behavior systems modeled by agent- 
based simulations.  Old Dominion University, 2012. 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
63 

[46] S. Singh, S. Lu, M. M. Kokar, and P. A. Kogut, “Detection and classification of 
emergent behaviors using multi-agent simulation framework (wip),” in Proceedings of the 
MSCIAAS,  SpringSim, Society for Computer Simulation International, 2017. 

[47] S. Bouarfa, H. A. Blom, R. Curran, and M. H. Everdij, “Agent-based modeling and 
simulation of emergent behavior in air transportation,” Complex Adaptive Systems 
Modeling, vol. 1, no. 1, p. 1, 2013. 

[48] S. Franklin and A. Graesser, “Is it an agent, or just a program?: A taxonomy for 
autonomous agents,” in International Workshop on Agent Theories, Architectures, 
and Languages.  Springer, 1996, pp. 21–35. 

[49] Wikipedia, “OODA loop — Wikipedia, the free encyclopedia,” https://en.wikipedia. 
org/wiki/OODA_loop, 2017, [Online;  accessed  2-January-2017]. 

[50] S. J. Taylor, “Introducing agent-based modeling and simulation,” in Agent-based 
Modeling and Simulation.   Springer, 2014, pp. 1–10. 

[51] C. M. Macal and M. J. North, “Tutorial on agent-based modeling and simulation,” in 
Proceedings of the 37th conference on Winter simulation. Winter Simulation 
Conference, 2005, pp. 2–15. 

[52] E. M. Ronald, M. Sipper, and M. S. Capcarrère, “Design, observation, surprise! a 
test of emergence,” Artificial Life, vol. 5, no. 3, pp. 225–239, 1999. 

[53] E. Bonabeau, J.-L. Dessalles, and A. Grumbach, “Characterizing emergent 
phenomena (2): a conceptual framework,” Revue Internationale de Systémique, vol. 
9, no. 3, pp. 347–371, 1995. 

[54] S. Christley, X. Xiang, and G. Madey, “An ontology for agent-based modeling and 
simulation,” in Proceedings of the agent 2004 conference.    Citeseer, 2004. 

[55] M. Moshirpour, R. Alhajj, M. Moussavi, and B. H. Far, “Detecting emergent behavior 
in distributed systems using an ontology based methodology,” in Systems, Man, and 
Cybernetics (SMC), 2011 IEEE International Conference on. IEEE, 2011, pp. 2407– 
2412. 

[56] Y. M. Teo and C. Szabo, “Codes: An integrated approach to composable modeling and 
simulation,” in 41st Annual Simulation Symposium (anss-41 2008). IEEE, 2008, pp. 
103–110. 

[57] W3C, “Owl web ontology language overview.” [Online]. Available: 
http://www.w3.org/ TR/owl-features/ 

[58]  T. Gruber, “Ontology,” Encyclopedia of database systems, pp. 1963–1965, 2009. 

[59] S. F. Railsback, S. L. Lytinen, and S. K. Jackson, “Agent-based simulation platforms: 
Review and development recommendations,” Simulation, vol. 82, no. 9, pp. 609–623, 
2006. 

http://www.w3.org/
http://www.w3.org/


APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
64 

[60] S. Tisue and U. Wilensky, “Netlogo: Design and implementation of a multi-agent 
modeling environment,” in Proceedings of agent, vol. 2004, 2004, pp. 7–9. 

[61] E. Buckingham, “On physically similar systems; illustrations of the use of 
dimensional equations,” Physical review, vol. 4, no. 4, p. 345, 1914. 

[62] S. J. Kline, Similitude and approximation theory. Springer Science & Business Media, 
2012. 

[63] M. M. Kokar, “Critical hypersurfaces and the quantity space.” in AAAI, 1987, pp. 
616– 620. 

[64] M. Kokar and S. Reveliotis, “Integrating qualitative and quantitative methods for model 
validation and monitoring,” in Intelligent Control, 1991., Proceedings of the 1991 IEEE 
International Symposium on.   IEEE, 1991, pp. 286–291. 

[65] M. M. Kokar, “Learning to select a model in a changing world,” in Machine Learning 
Proceedings 1991: Proceedings of the Eighth International Workshop (ML91). Morgan 
Kaufmann, 1991, p. 313. 

[66] S. A. Reveliotis and M. M. Kokar, “A framework for on-line learning of plant models 
and control policies for restructurable control,” IEEE Transactions on Systems, Man, 
and Cybernetics, vol. 25, no. 11, pp. 1502–1512, 1995. 

[67] M. M. Kokar, “On consistent symbolic representations of general dynamic systems,” 
IEEE transactions on systems, man, and cybernetics, vol. 25, no. 8, pp. 1231–1242, 
1995. 

[68] MATLAB, version 9.1 (R2016b). Natick, Massachusetts: The MathWorks Inc., 
2016. 

[69] P. Kogut, M. Kokar, S. Singh, and S. Lu, “Detecting undesirable emergent behavior 
in teams of autonomous uass,” in Safe and Secure Systems and Software Symposium 
(S5), 2016. 

  



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
65 

APPENDIX A - Publications and Presentations 

A.1 Published Work 
1. Singh, S., Lu, S., Kokar, M., and Kogut, P., “Detection and Classification of Emergent 

Behavior using Multi-Agent Simulation Framework (WIP)”. Spring Simulation Multi- 
Conference (MSCIAAS), 2017. 

2. Kogut, P., Kokar, M., Singh, S., and Lu, S. 2016. “Detecting Undesirable Emergent 
Behavior in Teams of Autonomous UASs”. In Safe and Secure Systems and Software 
Symposium (S5), 2016. 

 
A.2 Papers in Preparation 

1. Singh, S., “Detection of Emergent Behaviors in System of Dynamical Systems Using 
Similitude Theory”, Ph.D. Colloquium, Winter Simulation Conference,  2017.  (Extended 
Abstract Submitted) 

2. Singh, S., Lu, S., Kokar, M., and Kogut, P., “Experiments with Detection and 
Classification of Emergent Behavior using Multi-Agent Simulation Framework”. 

3. Singh, S., Lu, S., Kokar, M., and Kogut, P., “Detection of Emergent Behaviors in 
Swarms of UAVs Monitoring Chemical Plume Based on Similitude Theory”. 

4. Singh, S., Lu, S., Kokar, M., and Kogut, P., “Detection of Emergent Behaviors in 
Swarms of UAVs Monitoring Chemical Plume Based on Q2 Approach”. 

5. Singh, S., Lu, S., Kokar, M., and Kogut, P., “Ontological Classification of Emergent 
Behaviors”. 

  



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
66 

APPENDIX B - Abstracts 

B.1 Spring Simulation Multi-Conference, 2017 
In recent years, the concept of emergence has gained much attention in the field of complex 
systems. However, the inability to predict and control emergent phenomena prevents us from 
exploring its full potential. The research effort in this paper focuses on exploring emergent 
behaviors by proposing a framework for analysis of systems that exhibit such behaviors. The 
framework provides a platform for simulating and analyzing behaviors in multi-agent system, 
including detection and classification of emergence into different types. In this paper, we 
follow the classification of emergent behaviors according to Fromm’s taxonomy. In addition, 
the paper presents a scenario implementation using swarms of Unmanned Aerial Vehicles 
(UAVs) to demonstrate the applicability of the proposed approach. Since this is a part of 
on-going research, future direction is also discussed. 

 
B.2 Safe and Secure Systems and Software Symposium (S5), 2016 
The Air Force envisions the use of cooperating teams of small unmanned aerial systems 
(UAS) for ISR and other missions instead of single large expensive UASs. There is also a 
trend toward increased autonomy of UASs for effective operation in a limited communications 
environment. The combination of cooperating teams and increased autonomy presents a 
major new challenge for test, evaluation, verification, and validation. We need to focus on 
interactions between UASs which involves emergent behavior and complex adaptive systems. 
There has been a lot of theoretical research on emergent behavior but how can we leverage 
this for the engineering of reliable systems of autonomous systems? 

This talk will discuss an ongoing exploratory research project in the AFRL Trusted 
Autonomy program. In this project, we are attempting to define the problem space for 
undesirable emergent behavior in UAS teams. This includes developing an ontology of 
emergent behaviors and defining representative scenarios where undesirable behavior is 
possible. The scenarios focus on common tasks in ISR missions such as search, persistent 
surveillance and dynamic task allocation. We are developing machine learning techniques to 
detect emergent behavior early so that control policies can be adjusted before safety 
problems or major performance degradations can occur. The behavior of the team of UASs 
is defined in terms of a dynamical system. The goal is to learn models for the phase 
transition boundaries in the dynamical system. Simulations and complexity analysis are 
being developed to evaluate the detection techniques. 

  



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
67 

LIST OF ACRONYMS 
 
CAS Complex Adaptive Systems. 

CGS Centimeter–Gram–Second. 

EBS Emergent Behavior System. 

FCA Formal Concept Analysis. 

FSM Finite State Machine. 

GDS General Dynamical System. 

ISR Intelligence, Surveillance, and Reconnaissance. 

OODA Observe, Orient, Decide, Act. 

OWL Web Ontology Language. 

QDS Qualitative Dynamical System. 

QSM Qualitative State Machine. 

Re Reynolds Number. 

SI Système Internationale. 

UAV Unmanned Aerial Vehicle. 

Q2 Quantitative-Qualitative. 




