The patient proving provide burdle of information is estimated to average 1 how per reporting, including the information and estimated, and origing and resconds in calculation of information. Seed connected in the formation and estimated and original and estimated	REPORT DOCUMENTATION PAGE							Form Approved OMB No. 0704-0188	
1. REPORT DATE (DD-MAY YOY) 2. REPORT TYPE 3. DATES COVERED (**mon - 7c) 25.12.201 Final Technical 3. DATES COVERED (**mon - 7c) 25.12.201 15.1-2013 to 4-30-2017 4. TITLE AND SUBTILE Final Technical Friction Drag Reduction Using Superhydrophobic Surface in High Reynolds 5a. CONTRACT NUMBER Number Turbulent Flow 5d. PROGRAM ELEMENT NUMBER 5. AUTHOR(6) 5d. PROJECT NUMBER Smits, Alexander J 5d. PROJECT NUMBER 5. TASK NUMBER 5d. PROGRAM ELEMENT NUMBER 7. PERFORMING ORGANIZATION NAME(5) AND ADDRESS(ES) 5d. PROSINGMONITOR'S ACRONYM(6) Office of Naval Research 7f. WORK UNIT NUMBER 87 SPONSORINGMONITORING AGENCY NAME(5) AND ADDRESS(ES) 0. SPONSORIMONITOR'S ACRONYM(6) Office of Naval Research 7f. SPONSORIMONITOR'S ACRONYM(6) 0/fice of Naval Research 7f. NAROSINGMONITOR'S ACRONYM(6) 0/fice of Naval Research 7f. SPONSORIMONITOR'S ACRONYM(6) 0/fice of Naval Research 7f. NAROSINGMONITOR'S ACRONYM(6) 0/fice of Naval Research 7f. NAROSINGMONITOR'S ACRONYM(6) 0/fice of Naval Research 7f. NAROSINGMONITOR'S ACRONYM(6) 0/fice of Naval Research 7f. SPONSORIMONITOR'S ACRONYM(6)	The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.								
25-12:2017 Final Technical 15-1:2013 10 4-30-2017 4. TITLE AND SUBTILE Final Technical 5a. CONTRACT NUMBER Finction Drag Reduction Using Superhydrophobic Surface in High Reynolds Sa. CONTRACT NUMBER Number Turbulent Flow 5d. PROJECT NUMBER Notion 14.13-1-0458 5c. PROJECT NUMBER Smits, Alexander J 5d. PROJECT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 5r. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 5r. PROSORIMONTORING AGENCY NAME(S) AND ADDRESS(ES) Office of Naval Research 7f. NRandohj Street Suite 1425 7f. N. Randohj Street Suite 1425 11. SPONSORIMONTORING AGENCY NAME(S) AND ADDRESS(ES) Office of Naval Research 7f. NRandohj Street Suite 1425 7f. N. Randohj Street Suite 1425 11. SPONSORIMONTOR'S ACRONYM(S) OVR 11. SPONSOR/MONTOR'S REPORT 13. SUPPLEMENTARY NOTES 11. SPONSOR/MONTOR'S REPORT 14. ABSTRACT Experiment and spontation, transitional behavior, and the stability of the flow. Here, our studies included (1) large-scale towing tark lests to asses the drag reducing performance and durability of the flow. Here, our studies included (1) large-scale towing tark lests to asses the drag reducing performance and durability of the flow. Here, our studies included (1) large-scale towing tark lests to asses the drag reducing perform	1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE							3. DATES COVERED (From - To)	
4. TITLE AND SUBTITLE Superhydrophobic Surface in High Reynolds Superhydrophobic Surface in High Reynolds Finction Drag Reduction Using Superhydrophobic Surface in High Reynolds Subscreen Superhydrophobic Surface in High Reynolds Superhydrophobic Surface in High Reynolds Smits, Alexander J Subscreen Superhydrophobic Surface in High Reynolds Superhydrophobic Surface in High Reynolds Superhydrophobic Surface in High Reynolds 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Superhydrophobic Surface Superhydrophobic Surface in High Reynolds Superhydrophobic Surface Superhydrophydit Superhydrophydrophobic Surface Superhydro	25-12-2017		Final Tec	hnical				15-1-2013 to 4-30-2017	
Friction Drag Reduction Using Superhydrophobic Surface in High Reynolds Number Turbulent Flow	4. TITLE AND S	SUBTITLE					5a. CO	NTRACT NUMBER	
Number Turbulent Flow 5b. GRANT NUMBER N00014-13-1-0458 5c. PROGRAM ELEMENT NUMBER 5mits, Alexander J	Friction Drag Reduction Using Superhydrophobic Surface in High Reynolds								
6. AUTHOR(S) Sc. PROGRAM ELEMENT NUMBER 5. AUTHOR(S) 5c. PROGRAM ELEMENT NUMBER 5. Smits, Alexander J 5d. PROJECT NUMBER 5. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 5. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Princeton University, Princeton, NJ 08544 5. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Office of Naval Research 10. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) Office of Naval Research 10. SPONSOR/MONITOR'S ACRONYM(S) ONR 11. SPONSOR/MONITOR'S ACRONYM(S) ONR 11. SPONSOR/MONITOR'S ACRONYM(S) ONR 11. SPONSOR/MONITOR'S ACRONYM(S) NAMER(S) 11. SPONSOR/MONITOR'S REPORT NUMBER(S) 11. SPONSOR/MONITOR'S REPORT NUMBER(S) 11. SPONSOR/MONITOR'S REPORT NUMBER(S) 11. SPONSOR/MONITOR'S REPORT 13. SUPPLEMENTARY NOTES 11. SPONSOR/MONITOR'S REPORT 14. ABSTRACT Selip velocity at the surface. This significant modification to the no-slip boundary condition will affect the separation, transitional behavior, and the stability of the flow. Here, our studies included (1) large-scale towing tark tests to assess the drag reducing performance and durability of SLIPS at high Reynolds number; (2) flow studies over streamlined and bluff bodies where pressure	Number Turb	ulent Flow					5b. GRANT NUMBER		
							N00014 13 1 0458		
6. AUTHOR(S) Smits, Alexander J 5d. PROJECT NUMBER 5. MIS, Alexander J 5e. TASK NUMBER 5. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Princeton University, Princeton, NJ 08544 8. PERFORMING ORGANIZATION REPORT NUMBER N/A 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) Office of Naval Research 875 N. Randolph Street Suite 1425 Ardington VA 22203-1995 10. SPONSOR/MONITOR'S ACRONYM(S) ONR 11. SPONSOR/MONITOR'S ACRONYM(S) OFfice of Naval Research 875 N. Randolph Street Suite 1425 11. SPONSOR/MONITOR'S REPORT NUMBER(S) 12. DISTRIBUTION/AVAILABILITY STATEMENT PUBLIC 11. SPONSOR/MONITOR'S REPORT NUMBER(S) 13. SUPPLEMENTARY NOTES 50. Instribution to the no-slip boundary condition will affect the separation, transitional behavior, and the stability of the flow. Here, our studies included (1) large- scale towing tark tests to assess the drag reducing performance and durability of SLIPS at high Reynolds number; (2) flow understand the mechanisms by which SLIPS can influence separation; and (3) investigations of the influence of SLIPS on the stability thresholds that govern the transition to turbulence in laminar boundary layers, and the stability of wakes. 16. SECURITY CLASSIFICATION OF: a. REPORT 17. LIMITATION OF ABSTRACT 18. NUMBER PAGES 19. NAME OF RESPONSIBLE PERSON (H-Han Kim 19. TELEPHONE NUMBER (include area code) (703) 696-4305								5C. PROGRAM ELEMENT NUMBER	
6. AUTHOR(S) Sd. PROJECT NUMBER Smits, Alexander J 5d. PROJECT NUMBER 5r. TASK NUMBER 5d. TASK NUMBER 5d. WORK UNIT NUMBER 5d. TASK NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S) Office of Naval Research 00 NR 75 N. Randolph Street Suite 1425 11. SPONSOR/MONITOR'S ACRONYM(S) ONR 0NR 12. DISTRIBUTION/AVAILABILITY STATEMENT PUBLIC 11. SUPPLEMENTARY NOTES 14. AESTRACT Bodies covered by SLIPS present a slip velocity at the surface. This significant modification to the no-slip boundary condition will affect the separation, transitional behavior, and the stability of the flow. Here, our studies included (1) large-scale towing tank tests to assess the drag reducing performance and durability of SLIPS at high Reynolds number, (2) flow wakes. 15. SUBJECT TENNS 17. LIMITATION OF ABSTRACT 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>									
Smirs, Alexander J Smirs, Alexan	6. AUTHOR(S)	a al a a l					5d. PR	OJECT NUMBER	
SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Princeton University, Princeton, NJ 08544 8. PERFORMING ORGANIZATION REPORT NUMBER N/A 10. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) Office of Naval Research 10. SPONSOR/MONITOR'S ACRONYM(S) ONR 11. SPONSOR/MONITOR'S ACRONYM(S) ONR 11. SPONSOR/MONITOR'S REPORT 12. DISTRIBUTION/AVAILABILITY STATEMENT PUBLIC 13. SUPPLEMENTARY NOTES 14. ABSTRACT Bodies covered by SLIPS present a slip velocity at the surface. This significant modification to the no-slip boundary condition will affect the separation, transitional behavior, and the stability of the flow. Here, our studies included (1) large-scale towing tank tests to assess the drag reducing performance and durability of SLIPS at high Reynolds number; (2) flow studies over streamlined and bluff bodies where pressure gradients are important and separation can occur, in order to understand the mechanisms by which SLIPS can influence separation; and (3) investigations of the influence of SLIPS on the stability of wakes. 15. SUBJECT TERMS 17. LIMITATION OF 18. NUMBER 19a. NAME OF RESPONSIBLE PERSON 6. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER (include area code) (70, 90, 96, 4305	Smits, Alexar	nder J							
i. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Princeton University, Princeton, NJ 08544 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S) Office of Naval Research 0/NR 375 N. Randolph Street Suite 1425 10. SPONSOR/MONITOR'S ACRONYM(S) ONR 11. SPONSOR/MONITOR'S REPORT NUMBER(S) 12. DISTRIBUTION/AVAILABILITY STATEMENT 11. SPONSOR/MONITOR'S REPORT NUMBER(S) 13. SUPPLEMENTARY NOTES 13. SUPPLEMENTARY NOTES For sevent a slip velocity at the surface. This significant modification to the no-slip boundary condition will affect the separation, transitional behavior, and the stability of the flow. Here, our studies included (1) large- scale towing tank tests to assess the drag reducing performance and durability of SLIPS at high Reynolds number; (2) flow studies over streamlined and bluff bodies where pressure gradients are important and separation, can occur, in order to understand the mechanisms by which SLIPS can influence separation; and (3) investigations of the influence of SLIPS on the stability thresholds that govern the transition to turbulence in laminar boundary layers, and the stability of wakes. 15. SUBJECT TERMS 17. LIMITATION OF ABSTRACT 18. NUMBER (<i>PAGES</i> PAGES 19a. NAME OF RESPONSIBLE PERSON (Ki-Han Kim 19b. TELEPHONE NUMBER (<i>Include area code</i>) (703) 696-4305 <td colspan="7">5e.</td> <td>SK NUMBER</td>	5e.							SK NUMBER	
9f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Princeton University, Princeton, NJ 06544 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) Office of Naval Research 875 N. Randolph Street Suite 1425 Arlington VA 22203-1995 12. DISTRIBUTION/AVAILABILITY STATEMENT PUBLIC 13. SUPPLEMENTARY NOTES 14. ABSTRACT Bodies covered by SLIPS present a slip velocity at the surface. This significant modification to the no-slip boundary condition will affect the separation, transition al behavior, and the stability of SLIPS at high Reynolds (1) large-scale towing tank tests to assess the reg ressure gradients are important and separation can occur, in order to understand the mechanisms by which SLIPS can influence separation is an occur, in order of SLIPS on the stability of subject TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 17. SUBJECT TERMS 18. NUMBER 18. REPORT b. ABSTRACT									
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER Princeton University, Princeton, NJ 08544 N/A 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) N/A 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 0NR 757 N. Randolph Street Suite 1425 10. SPONSOR/MONITOR'S ACRONYM(S) Arilington VA 22203-1995 11. SPONSOR/MONITOR'S REPORT 12. DISTRIBUTION/AVAILABILITY STATEMENT 11. SPONSOR/MONITOR'S REPORT PUBLIC 13. SUPPLEMENTARY NOTES 14. ABSTRACT Bodies covered by SLIPS present a slip velocity at the surface. This significant modification to the no-slip boundary condition will affect the separation, transitional behavior, and the stability of the flow. Here, our studies included (1) large-scale towing tank tests to assess the drag reducing performance and durability of SLIPS at high Reynolds number; (2) flow studies over streamlined and bluff bodies where pressure gradients are important and separation can occur, in order to understand the mechanisms by which SLIPS can influence separation, rand (2) investigations of the influence of SLIPS on the stability of the flow. Here, our studies included to wakes. 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER [9. NAME OF RESPONSIBLE PERSON a. REPORT b. ABSTRACT C. THIS PAGE 11. SUMTATION FLIES (20. GP) 19. NAME OF RESPONSIBLE PERSON [1Han Kim [9. GS] [7. Han Kim	51							f. WORK UNIT NUMBER	
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER Princeton University, Princeton, NJ 08544 N/A 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S) Office of Naval Research 10. SPONSOR/MONITOR'S ACRONYM(S) 875 N. Randolph Street Suite 1425 11. SPONSOR/MONITOR'S REPORT Arlington VA 22203-1995 11. SPONSOR/MONITOR'S REPORT 12. DISTRIBUTION/AVAILABILITY STATEMENT 11. SPONSOR/MONITOR'S REPORT PUBLIC 13. SUPPLEMENTARY NOTES 14. ABSTRACT Bodies covered by SLIPS present a slip velocity at the surface. This significant modification to the no-slip boundary condition will affect the separation, transitional behavior, and the stability of the flow. Here, our studies included (1) large-scale towing tank tests to assess the drag reducing performance and durability of SLIPS at high Reynolds number; (2) flow studies over streamlined and bluff bodies where pressure gradients are important and separation and (3) investigations of the influence of SLIPS on the stability of wakes. 15. SUBJECT TERMS 17. LIMITATION OF ABSTRACT 18. NUMBER 19a. NAME OF RESPONSIBLE PERSON KI-HAM KIM 16. SECURITY CLASSIFICATION OF: 0. ABSTRACT 17. LIMITATION OF ABSTRACT 18. NUMBER 19a. NAME OF RESPONSIBLE PERSON (K-HAM KIM 19. ABSTRACT 0. ABSTRACT 0. THIS PAGE 17. LIMITATION OF ABSTRACT <									
Princeton University, Princeton, NJ 08544 REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) ONR 9. SPONSOR/MONITORING AGENCY NAME(S) AND ADDRESS(ES) ONR 875 N. Randolph Street Suite 1425 N/A Arlington VA 22203-1995 10. SPONSOR/MONITOR'S ACRONYM(S) 12. DISTRIBUTION/AVAILABILITY STATEMENT PUBLIC 13. SUPPLEMENTARY NOTES 11. SPONSOR/MONITOR'S REPORT 14. ABSTRACT Bodies covered by SLIPS present a slip velocity at the surface. This significant modification to the no-slip boundary condition will affect the separation, transitional behavior, and the stability of the flow. Here, our studies included (1) large-scale towing tank tests to assess the drag reducing performance and durability of SLIPS at high Reynolds number; (2) flow studies over streamlined and bluff bodies where pressure gradients are important and separation can occur, in order to understand the mechanisms by which SLIPS can influence separation, and (3) investigations of the influence of SLIPS on the stability of wakes. 15. SUBJECT TERMS 17. LIMITATION OF ABSTRACT 18. NUMBER OF RESPONSIBLE PERSON Ki-Han Kim 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF RESPONSIBLE PERSON Ki-Han Kim 18. REPORT b. ABSTRACT C. THIS PAGE 19. ALMER OF RESPONSIBLE PERSON (703) 696-4305	7. PERFORMIN	G ORGANIZATIO	N NAME(S) AND	DADDRESS(ES)				8. PERFORMING ORGANIZATION	
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S) Office of Naval Research ONR 875 N. Randolph Street Suite 1425 11. SPONSOR/MONITOR'S ACRONYM(S) ONR Insponsor/Monitor's acronyme 12. DISTRIBUTION/AVAILABILITY STATEMENT Insponsor/Monitor's report number(s) PUBLIC Insponsor/Monitor's report number(s) 13. SUPPLEMENTARY NOTES Insponsor/Monitor's number(s) 14. ABSTRACT Bodies covered by SLIPS present a slip velocity at the surface. This significant modification to the no-slip boundary condition will affect the separation, transitional behavior, and the stability of the flow. Here, our studies included (1) large-scale towing tank tests to assess the drag reducing performance and durability of SLIPS at high Reynolds number; (2) flow studies over streamlined and bluff bodies where pressure gradients are important and separation can occur, in order to understand the mechanisms by which SLIPS can influence separation; and (3) investigations of the influence of SLIPS on the stability thresholds that govern the transition to turbulence in laminar boundary layers, and the stability of wakes. Is. SUBJECT TERMS drag reduction, superhydrophobic surfaces, high Reynolds number, If and the stability of wakes. If and the stability of wakes. 16. SECURITY CLASSIFICATION OF: a. REPORT b. ABSTRACT Instruction of ABSTRACT Is. NUMBER (Include area code) a. REPORT b. ABSTRACT C. THIS P	Princeton University, Princeton, NJ 08544							REPORT NUMBER	
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) Office of Naval Research 875 N. Randolph Street Suite 1425 Arlington VA 22203-1995 10. SPONSOR/MONITOR'S ACRONYM(S) ONR 11. SPONSOR/MONITOR'S REPORT NUMBER(S) 11. SPONSOR/MONITOR'S REPORT NUMBER(S) 12. DISTRIBUTION/AVAILABILITY STATEMENT PUBLIC 11. SPONSOR/MONITOR'S REPORT NUMBER(S) 13. SUPPLEMENTARY NOTES 5 14. ABSTRACT Bodies covered by SLIPS present a slip velocity at the surface. This significant modification to the no-slip boundary condition will affect the separation, transitional behavior, and the stability of the flow. Here, our studies included (1) large- scale towing tank tests to assess the drag reducing performance and durability of SLIPS at high Reynolds number; (2) flow studies over streamlined and bluff bodies where pressure gradients are important and separation can occur, in order to understand the mechanisms by which SLIPS can influence separation; and (3) investigations of the influence of SLIPS on the stability thresholds that govern the transition to turbulence in laminar boundary layers, and the stability of wakes. 16. SUBJECT TERMS drag reduction, superhydrophobic surfaces, high Reynolds number, 18. NUMBER OF ABSTRACT 19. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19. NAME OF RESPONSIBLE PERSON (i-Han Klim 19b. TELEPHONE NUMBER (<i>Include area code</i>) (703) 696-4305								N/A	
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) Office of Naval Research 875 N. Randolph Street Suite 1425 Arlington VA 22203-1995 10. SPONSOR/MONITOR'S ACRONYM(S) ONR 11. SPONSOR/MONITOR'S REPORT NUMBER(S) 11. SPONSOR/MONITOR'S ACRONYM(S) ONR 12. DISTRIBUTION/AVAILABILITY STATEMENT PUBLIC 11. SPONSOR/MONITOR'S REPORT 13. SUPPLEMENTARY NOTES 13. SUPPLEMENTARY NOTES 14. ABSTRACT Bodies covered by SLIPS present a slip velocity at the surface. This significant modification to the no-slip boundary condition will affect the separation, transitional behavior, and the stability of the flow. Here, our studies included (1) large- scale towing tank tests to assess the drag reducing performance and durability of SLIPS at high Reynolds number; (2) flow studies over streamlined and bluff bodies where pressure gradients are important and separation can occur, in order to understand the mechanisms by which SLIPS can influence separation; and (3) investigations of the influence of SLIPS on the stability thresholds that govern the transition to turbulence in laminar boundary layers, and the stability of wakes. 15. SUBJECT TERMS drag reduction, superhydrophobic surfaces, high Reynolds number, 18. NUMBER OF PAGES 19. NAME OF RESPONSIBLE PERSON Ki-Han Kim 19. TELEPHONE NUMBER (Include area code) (703) 696-4305									
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S) OVIR 0NR 875 N. Randolph Street Suite 1425 11. SPONSOR/MONITOR'S REPORT Arlington VA 22203-1995 11. SPONSOR/MONITOR'S REPORT 12. DISTRIBUTION/AVAILABILITY STATEMENT 11. SPONSOR/MONITOR'S REPORT PUBLIC 13. SUPPLEMENTARY NOTES 14. ABSTRACT Bodies covered by SLIPS present a slip velocity at the surface. This significant modification to the no-slip boundary condition will affect the separation, transitional behavior, and the stability of the flow. Here, our studies included (1) large-scale towing tank tests to assess the drag reducing performance and durability of SLIPS at high Reynolds number; (2) flow studies over streamlined and bluff bodies where pressure gradients are important and separation can occur, in order to understand the mechanisms by which SLIPS can influence separation; and (3) investigations of the influence of SLIPS on the stability of the stability of wakes. 15. SUBJECT TERMS 17. LIMITATION OF a. REPORT b. ABSTRACT b. ABSTRACT C. THIS PAGE 17. LIMITATION OF 18. NUMBER 18. NUMBER (/rolude area code) (703) 696-4305									
ONR S75 N. Randolph Street Suite 1425 I1. SPONSOR/MONITOR'S REPORT Arlington VA 22203-1995 11. SPONSOR/MONITOR'S REPORT NUMBER(S) I1. SPONSOR/MONITOR'S REPORT NUMBER(S) NUMBER(S) 13. SUPPLEMENTARY NOTES II. SPONSOR/MONITOR'S REPORT 14. ABSTRACT Bodies covered by SLIPS present a slip velocity at the surface. This significant modification to the no-slip boundary condition will affect the separation, transitional behavior, and the stability of the flow. Here, our studies included (1) large-scale towing tank tests to assess the drag reducing performance and durability of SLIPS at high Reynolds number; (2) flow studies over streamlined and bluff bodies where pressure gradients are important and separation can occur, in order to understand the mechanisms by which SLIPS can influence separation; and (3) investigations of the influence of SLIPS on the stability of wakes. 15. SUBJECT TERMS drag reduction, superhydrophobic surfaces, high Reynolds number, 16. SECURITY CLASSIFICATION OF: a. REPORT 17. LIMITATION OF ABSTRACT 18. NUMBER (Include area code) (703) 696-4305	9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)							10. SPONSOR/MONITOR'S ACRONYM(S)	
Arlington VA 22203-1995 11. SPONSOR/MONITOR'S REPORT NUMBER(S) 12. DISTRIBUTION/AVAILABILITY STATEMENT PUBLIC 11. SPONSOR/MONITOR'S REPORT NUMBER(S) 13. SUPPLEMENTARY NOTES 13. SUPPLEMENTARY NOTES 14. ABSTRACT Bodies covered by SLIPS present a slip velocity at the surface. This significant modification to the no-slip boundary condition will affect the separation, transitional behavior, and the stability of the flow. Here, our studies included (1) large- scale towing tank tests to assess the drag reducing performance and durability of the flow. Here, our studies included (1) large- scale towing tank tests to assess the drag reducing performance and durability of the flow. Here, our studies number; (2) flow studies over streamlined and bluff bodies where pressure gradients are important and separation can occur, in order to understand the mechanisms by which SLIPS can influence separation; and (3) investigations of the influence of SLIPS on the stability thresholds that govern the transition to turbulence in laminar boundary layers, and the stability of wakes. 15. SUBJECT TERMS drag reduction, superhydrophobic surfaces, high Reynolds number, 18. NUMBER OF PAGES 19a. NAME OF RESPONSIBLE PERSON Ki-Han Kim 19b. TELEPHONE NUMBER (Include area code) (703) 696-4305	Office of Naval Research							UNR	
12. DISTRIBUTION/AVAILABILITY STATEMENT PUBLIC 13. SUPPLEMENTARY NOTES 14. ABSTRACT Bodies covered by SLIPS present a slip velocity at the surface. This significant modification to the no-slip boundary condition will affect the separation, transitional behavior, and the stability of the flow. Here, our studies included (1) large-scale towing tank tests to assess the drag reducing performance and durability of SLIPS at high Reynolds number; (2) flow studies over streamlined and bluff bodies where pressure gradients are important and separation can occur, in order to understand the mechanisms by which SLIPS can influence separation; and (3) investigations of the influence of SLIPS on the stability thresholds that govern the transition to turbulence in laminar boundary layers, and the stability of wakes. 15. SUBJECT TERMS 17. LIMITATION OF ABSTRACT 18. NUMBER OF RESPONSIBLE PERSON (i-Han Kim Here) (include area code) (703) 696-4305	Arlington VA 22203-1995						-	11 SPONSOR/MONITOR'S REPORT	
12. DISTRIBUTION/AVAILABILITY STATEMENT PUBLIC 13. SUPPLEMENTARY NOTES 14. ABSTRACT Bodies covered by SLIPS present a slip velocity at the surface. This significant modification to the no-slip boundary condition will affect the separation, transitional behavior, and the stability of the flow. Here, our studies included (1) large- scale towing tank tests to assess the drag reducing performance and durability of SLIPS at high Reynolds number; (2) flow studies over streamlined and bluff bodies where pressure gradients are important and separation can occur, in order to understand the mechanisms by which SLIPS can influence separation; and (3) investigations of the influence of SLIPS on the stability thresholds that govern the transition to turbulence in laminar boundary layers, and the stability of wakes. 15. SUBJECT TERMS drag reduction, superhydrophobic surfaces, high Reynolds number, 18. NUMBER OF PAGES 19a. NAME OF RESPONSIBLE PERSON Ki-Han Kim 19b. TELEPHONE NUMBER (Include area code) (703) 696-4305								NUMBER(S)	
12. DISTRIBUTION/AVAILABILITY STATEMENT PUBLIC 13. SUPPLEMENTARY NOTES 14. ABSTRACT Bodies covered by SLIPS present a slip velocity at the surface. This significant modification to the no-slip boundary condition will affect the separation, transitional behavior, and the stability of the flow. Here, our studies included (1) large- scale towing tank tests to assess the drag reducing performance and durability of SLIPS at high Reynolds number; (2) flow studies over streamlined and bluff bodies where pressure gradients are important and separation can occur, in order to understand the mechanisms by which SLIPS can influence separation; and (3) investigations of the influence of SLIPS on the stability thresholds that govern the transition to turbulence in laminar boundary layers, and the stability of wakes. 15. SUBJECT TERMS drag reduction, superhydrophobic surfaces, high Reynolds number, 16. SECURITY CLASSIFICATION OF: a. REPORT 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a. NAME OF RESPONSIBLE PERSON Ki-Han Kim 19b. TELEPHONE NUMBER (Include area code) (703) 696-4305									
PUBLIC 13. SUPPLEMENTARY NOTES 14. ABSTRACT Bodies covered by SLIPS present a slip velocity at the surface. This significant modification to the no-slip boundary condition will affect the separation, transitional behavior, and the stability of the flow. Here, our studies included (1) large-scale towing tank tests to assess the drag reducing performance and durability of SLIPS at high Reynolds number; (2) flow studies over streamlined and bluff bodies where pressure gradients are important and separation can occur, in order to understand the mechanisms by which SLIPS can influence separation; and (3) investigations of the influence of SLIPS on the stability thresholds that govern the transition to turbulence in laminar boundary layers, and the stability of wakes. 15. SUBJECT TERMS drag reduction, superhydrophobic surfaces, high Reynolds number, 16. SECURITY CLASSIFICATION OF: a. REPORT b. ABSTRACT c. THIS PAGE 17. LIMITATION OF ABSTRACT c. THIS PAGE 17. LIMITATION OF (703) 696-4305	12. DISTRIBUTION/AVAILABILITY STATEMENT								
13. SUPPLEMENTARY NOTES 14. ABSTRACT Bodies covered by SLIPS present a slip velocity at the surface. This significant modification to the no-slip boundary condition will affect the separation, transitional behavior, and the stability of the flow. Here, our studies included (1) large-scale towing tank tests to assess the drag reducing performance and durability of SLIPS at high Reynolds number; (2) flow studies over streamlined and bluff bodies where pressure gradients are important and separation can occur, in order to understand the mechanisms by which SLIPS can influence separation; and (3) investigations of the influence of SLIPS on the stability thresholds that govern the transition to turbulence in laminar boundary layers, and the stability of wakes. 15. SUBJECT TERMS drag reduction, superhydrophobic surfaces, high Reynolds number, 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT a. REPORT b. ABSTRACT c. THIS PAGE 17. LIMITATION OF ABSTRACT 18. NUMBER 19a. NAME OF RESPONSIBLE PERSON Ki-Han Kim 19b. TELEPHONE NUMBER (Include area code) (703) 696-4305 (703) 696-4305	PUBLIC								
13. SUPPLEMENTARY NOTES 14. ABSTRACT Bodies covered by SLIPS present a slip velocity at the surface. This significant modification to the no-slip boundary condition will affect the separation, transitional behavior, and the stability of the flow. Here, our studies included (1) large- scale towing tank tests to assess the drag reducing performance and durability of SLIPS at high Reynolds number; (2) flow studies over streamlined and bluff bodies where pressure gradients are important and separation can occur, in order to understand the mechanisms by which SLIPS can influence separation; and (3) investigations of the influence of SLIPS on the stability thresholds that govern the transition to turbulence in laminar boundary layers, and the stability of wakes. 15. SUBJECT TERMS drag reduction, superhydrophobic surfaces, high Reynolds number, 18. NUMBER OF PAGES 19a. NAME OF RESPONSIBLE PERSON Ki-Han Kim 16. SECURITY CLASSIFICATION OF: a. REPORT b. ABSTRACT c. THIS PAGE 18. NUMBER (Include area code) (703) 696-4305									
13. SUPPLEMENTARY NOTES 14. ABSTRACT Bodies covered by SLIPS present a slip velocity at the surface. This significant modification to the no-slip boundary condition will affect the separation, transitional behavior, and the stability of the flow. Here, our studies included (1) large-scale towing tank tests to assess the drag reducing performance and durability of SLIPS at high Reynolds number; (2) flow studies over streamlined and bluff bodies where pressure gradients are important and separation can occur, in order to understand the mechanisms by which SLIPS can influence separation; and (3) investigations of the influence of SLIPS on the stability thresholds that govern the transition to turbulence in laminar boundary layers, and the stability of wakes. 15. SUBJECT TERMS drag reduction, superhydrophobic surfaces, high Reynolds number, 16. SECURITY CLASSIFICATION OF: a. REPORT a. REPORT b. ABSTRACT c. THIS PAGE 17. LIMITATION OF ABSTRACT 0F PAGES (703) 696-4305									
14. ABSTRACT Bodies covered by SLIPS present a slip velocity at the surface. This significant modification to the no-slip boundary condition will affect the separation, transitional behavior, and the stability of the flow. Here, our studies included (1) large-scale towing tank tests to assess the drag reducing performance and durability of SLIPS at high Reynolds number; (2) flow studies over streamlined and bluff bodies where pressure gradients are important and separation can occur, in order to understand the mechanisms by which SLIPS can influence separation; and (3) investigations of the influence of SLIPS on the stability thresholds that govern the transition to turbulence in laminar boundary layers, and the stability of wakes. 16. SUBJECT TERMS drag reduction, superhydrophobic surfaces, high Reynolds number, 16. SECURITY CLASSIFICATION OF: a. REPORT b. ABSTRACT C. THIS PAGE 17. LIMITATION OF ABSTRACT 0F PAGES 0F PAGES (703) 696-4305	13. SUPPLEMENTARY NOTES								
14. ABSTRACT Bodies covered by SLIPS present a slip velocity at the surface. This significant modification to the no-slip boundary condition will affect the separation, transitional behavior, and the stability of the flow. Here, our studies included (1) large-scale towing tank tests to assess the drag reducing performance and durability of SLIPS at high Reynolds number; (2) flow studies over streamlined and bluff bodies where pressure gradients are important and separation can occur, in order to understand the mechanisms by which SLIPS can influence separation; and (3) investigations of the influence of SLIPS on the stability thresholds that govern the transition to turbulence in laminar boundary layers, and the stability of wakes. 15. SUBJECT TERMS drag reduction, superhydrophobic surfaces, high Reynolds number, 16. SECURITY CLASSIFICATION OF: a. REPORT b. ABSTRACT c. THIS PAGE 17. LIMITATION OF ABSTRACT c. THIS PAGE 17. LIMITATION OF ABSTRACT (OF PAGES) (Fi-Han Kim 19b. TELEPHONE NUMBER (Include area code) (703) 696-4305									
14. ABSTRACT Bodies covered by SLIPS present a slip velocity at the surface. This significant modification to the no-slip boundary condition will affect the separation, transitional behavior, and the stability of the flow. Here, our studies included (1) large-scale towing tank tests to assess the drag reducing performance and durability of SLIPS at high Reynolds number; (2) flow studies over streamlined and bluff bodies where pressure gradients are important and separation can occur, in order to understand the mechanisms by which SLIPS can influence separation; and (3) investigations of the influence of SLIPS on the stability thresholds that govern the transition to turbulence in laminar boundary layers, and the stability of wakes. 15. SUBJECT TERMS drag reduction, superhydrophobic surfaces, high Reynolds number, 16. SECURITY CLASSIFICATION OF: a. REPORT b. ABSTRACT c. THIS PAGE 17. LIMITATION OF ABSTRACT c. THIS PAGE 0F PAGES 0F PAGES 19a. NAME OF RESPONSIBLE PERSON Ki-Han Kim 19b. TELEPHONE NUMBER (Include area code) (703) 696-4305									
Bodies covered by SLIPS present a slip velocity at the surface. This significant modification to the no-slip boundary condition will affect the separation, transitional behavior, and the stability of the flow. Here, our studies included (1) large-scale towing tank tests to assess the drag reducing performance and durability of SLIPS at high Reynolds number; (2) flow studies over streamlined and bluff bodies where pressure gradients are important and separation can occur, in order to understand the mechanisms by which SLIPS can influence separation; and (3) investigations of the influence of SLIPS on the stability thresholds that govern the transition to turbulence in laminar boundary layers, and the stability of wakes. 15. SUBJECT TERMS drag reduction, superhydrophobic surfaces, high Reynolds number, 16. SECURITY CLASSIFICATION OF: a. REPORT b. ABSTRACT c. THIS PAGE 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a. NAME OF RESPONSIBLE PERSON Ki-Han Kim 19b. TELEPHONE NUMBER (Include area code) (703) 696-4305	14. ABSTRACT Dedice several by CLIDC presents a dia valasity at the surface. This simulfact tractification to the second by CL								
conduction will affect the separation, transitional behavior, and the stability of the now. Here, our studies included (1) large-scale towing tank tests to assess the drag reducing performance and durability of SLIPS at high Reynolds number; (2) flow studies over streamlined and bluff bodies where pressure gradients are important and separation can occur, in order to understand the mechanisms by which SLIPS can influence separation; and (3) investigations of the influence of SLIPS on the stability thresholds that govern the transition to turbulence in laminar boundary layers, and the stability of wakes. 15. SUBJECT TERMS drag reduction, superhydrophobic surfaces, high Reynolds number, 16. SECURITY CLASSIFICATION OF: a. REPORT b. ABSTRACT c. THIS PAGE 17. LIMITATION OF ABSTRACT c. THIS PAGE 18. NUMBER 19a. NAME OF RESPONSIBLE PERSON Ki-Han Kim 19b. TELEPHONE NUMBER (Include area code) (703) 696-4305	boulds covered by SLIPS present a supverocity at the sunace. This significant modification to the no-slip boundary								
studies over streamlined and bluff bodies where pressure gradients are important and separation can occur, in order to understand the mechanisms by which SLIPS can influence separation; and (3) investigations of the influence of SLIPS on the stability thresholds that govern the transition to turbulence in laminar boundary layers, and the stability of wakes. 15. SUBJECT TERMS drag reduction, superhydrophobic surfaces, high Reynolds number, 16. SECURITY CLASSIFICATION OF: a. REPORT b. ABSTRACT c. THIS PAGE 17. LIMITATION OF ABSTRACT 06 07 PAGES 19b. TELEPHONE NUMBER (Include area code) (703) 696-4305	condition will alloct the separation, transitional benavior, and the Stability of the NOW. There, our Studies Included (1) large-								
16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF RESPONSIBLE PERSON A. REPORT b. ABSTRACT c. THIS PAGE 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a. NAME OF RESPONSIBLE PERSON Ki-Han Kim 19b. TELEPHONE NUMBER (Include area code) (703) 696-4305 19b. TELEPHONE NUMBER (Include area code)	studies over streamlined and bluff bodies where pressure gradients are important and separation can occur, in order to								
the stability thresholds that govern the transition to turbulence in laminar boundary layers, and the stability of wakes. 15. SUBJECT TERMS drag reduction, superhydrophobic surfaces, high Reynolds number, 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT a. REPORT b. ABSTRACT c. THIS PAGE 17. LIMITATION OF ABSTRACT of page 200 04. 000 in the stability of wakes. 05. 000 in the stability of wakes. 06. 000 in the stability of wakes. 05. 000 in the stability of wakes. 06. 000 </td <td colspan="8">understand the mechanisms by which SLIPS can influence separation; and (3) investigations of the influence of SLIPS on</td>	understand the mechanisms by which SLIPS can influence separation; and (3) investigations of the influence of SLIPS on								
15. SUBJECT TERMS drag reduction, superhydrophobic surfaces, high Reynolds number, 16. SECURITY CLASSIFICATION OF: a. REPORT b. ABSTRACT c. THIS PAGE 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a. NAME OF RESPONSIBLE PERSON Ki-Han Kim 19b. TELEPHONE NUMBER (Include area code) (703) 696-4305	the stability thresholds that govern the transition to turbulence in laminar boundary layers, and the stability of wakes.								
drag reduction, superhydrophobic surfaces, high Reynolds number, 16. SECURITY CLASSIFICATION OF: a. REPORT b. ABSTRACT c. THIS PAGE b. ABSTRACT c. THIS PAGE b. ABSTRACT c. THIS PAGE b. ABSTRACT c. THIS PAGE b. ABSTRACT c. THIS PAGE c. THIS PAGE b. ABSTRACT c. THIS PAGE c.	15. SUBJECT T	ERMS	, 				, ,	· · · ·	
16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF RESPONSIBLE PERSON a. REPORT b. ABSTRACT c. THIS PAGE 17. LIMITATION OF ABSTRACT 18. NUMBER OF RESPONSIBLE PERSON Job ABSTRACT c. THIS PAGE 17. LIMITATION OF ABSTRACT 18. NUMBER OF RESPONSIBLE PERSON Job ABSTRACT c. THIS PAGE 0F 19a. NAME OF RESPONSIBLE PERSON Job ABSTRACT c. THIS PAGE 0F 19b. TELEPHONE NUMBER (Include area code) (703) 696-4305 190. TELEPHONE NUMBER (Include area code) 170. LIMITATION OF	drag reductio	n. superhydror	hobic surface	s, high Revnolds n	umbe	er.			
16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF RESPONSIBLE PERSON a. REPORT b. ABSTRACT c. THIS PAGE 18. NUMBER OF RESPONSIBLE PERSON 0F 0F 0F 0F 0F <	andg roddollo	n, caponyarop		, ngh toynoldo n		51,			
16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a. NAME OF RESPONSIBLE PERSON a. REPORT b. ABSTRACT c. THIS PAGE ABSTRACT OF PAGES Ki-Han Kim 19b. TELEPHONE NUMBER (Include area code) (703) 696-4305									
16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER 19a. NAME OF RESPONSIBLE PERSON a. REPORT b. ABSTRACT c. THIS PAGE 0F PAGES 19b. TELEPHONE NUMBER (Include area code) (703) 696-4305		<u></u>		47 1 10/17 4 71011 02	40.		10- 110-5		
a. REPORT b. ABSTRACT c. THIS PAGE PAGES Ki-Han Kim 19b. TELEPHONE NUMBER (Include area code) (703) 696-4305	16. SECURITY		OF:	ABSTRACT	18. ľ	18. NUMBER 1 OF	19a. NAME	JF RESPONSIBLE PERSON	
19b. TELEPHONE NUMBER (Include area code)(703) 696-4305	a. REPORT	D. ABSTRACT	C. THIS PAGE		PAGES	PAGES	Ki-Han Kin	1	
(703) 696-4305							19b. TELEP	HONE NUMBER (Include area code)	
							(703) 696-	4305	

INSTRUCTIONS FOR COMPLETING SF 298

1. REPORT DATE. Full publication date, including day, month, if available. Must cite at least the year and be Year 2000 compliant, e.g. 30-06-1998; xx-06-1998; xx-xx-1998.

2. REPORT TYPE. State the type of report, such as final, technical, interim, memorandum, master's thesis, progress, quarterly, research, special, group study, etc.

3. DATE COVERED. Indicate the time during which the work was performed and the report was written, e.g., Jun 1997 - Jun 1998; 1-10 Jun 1996; May - Nov 1998; Nov 1998.

4. TITLE. Enter title and subtitle with volume number and part number, if applicable. On classified documents, enter the title classification in parentheses.

5a. CONTRACT NUMBER. Enter all contract numbers as they appear in the report, e.g. F33315-86-C-5169.

5b. GRANT NUMBER. Enter all grant numbers as they appear in the report. e.g. AFOSR-82-1234.

5c. PROGRAM ELEMENT NUMBER. Enter all program element numbers as they appear in the report, e.g. 61101A.

5e. TASK NUMBER. Enter all task numbers as they appear in the report, e.g. 05; RF0330201; T4112.

5f. WORK UNIT NUMBER. Enter all work unit numbers as they appear in the report, e.g. 001; AFAPL30480105.

6. AUTHOR(S). Enter name(s) of person(s) responsible for writing the report, performing the research, or credited with the content of the report. The form of entry is the last name, first name, middle initial, and additional qualifiers separated by commas, e.g. Smith, Richard, J, Jr.

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES). Self-explanatory.

8. PERFORMING ORGANIZATION REPORT NUMBER. Enter all unique alphanumeric report numbers assigned by the performing organization, e.g. BRL-1234; AFWL-TR-85-4017-Vol-21-PT-2.

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES). Enter the name and address of the organization(s) financially responsible for and monitoring the work.

10. SPONSOR/MONITOR'S ACRONYM(S). Enter, if available, e.g. BRL, ARDEC, NADC.

11. SPONSOR/MONITOR'S REPORT NUMBER(S). Enter report number as assigned by the sponsoring/ monitoring agency, if available, e.g. BRL-TR-829; -215.

12. DISTRIBUTION/AVAILABILITY STATEMENT. Use agency-mandated availability statements to indicate the public availability or distribution limitations of the report. If additional limitations/ restrictions or special markings are indicated, follow agency authorization procedures, e.g. RD/FRD, PROPIN, ITAR, etc. Include copyright information.

13. SUPPLEMENTARY NOTES. Enter information not included elsewhere such as: prepared in cooperation with; translation of; report supersedes; old edition number, etc.

14. ABSTRACT. A brief (approximately 200 words) factual summary of the most significant information.

15. SUBJECT TERMS. Key words or phrases identifying major concepts in the report.

16. SECURITY CLASSIFICATION. Enter security classification in accordance with security classification regulations, e.g. U, C, S, etc. If this form contains classified information, stamp classification level on the top and bottom of this page.

17. LIMITATION OF ABSTRACT. This block must be completed to assign a distribution limitation to the abstract. Enter UU (Unclassified Unlimited) or SAR (Same as Report). An entry in this block is necessary if the abstract is to be limited.

Final Technical Report N00014-13-1-0458

January 15 2013 to July 29 2017

Submitted by Alexander J. Smits, Princeton University

1. Distribution statement

DISTRIBUTION A. Approved for public release: distribution unlimited.

2. Accomplishments

2.1 What were the major goals and objectives of the project?

This project was an expansion of a concurrent MURI project on "Super-Hydrophobic Surface for Skin Friction Drag Reduction in High Reynolds Number Turbulent Flow" that was approved for funding starting in FY12. Bodies covered by SLIPS present a slip velocity at the surface. This significant modification to the no-slip boundary condition will affect the separation, transitional behavior, and the stability of the flow. While in the MURI project we focused on classical flows like Taylor-Couette flow, pipe flow and flat plate flows, in this project we extended our studies to include (1) large-scale towing tank tests to assess the drag reducing performance and durability of SLIPS at high Reynolds number; (2) flow studies over streamlined and bluff bodies where pressure gradients are important and separation can occur, in order to understand the mechanisms by which SLIPS can influence separation; and (3) investigations of the influence of SLIPS on the stability thresholds that govern the transition to turbulence in laminar boundary layers, and the stability of wakes.

2.2 What was accomplished towards achieving these goals?

Task 1) Large-scale towing tank tests to assess the drag reducing performance and durability of SLIPS at high Reynolds number.

The most promising aspect of SLIPS is the possibility that significant drag reduction can be achieved in high Reynolds number, turbulent flows. Here, we examined the performance of SLIPS coated surfaces to high Reynolds number, within an order of magnitude of those experienced by, for example, a full scale ship.

Task 1.1 Experimental studies. The intention was to achieve the high Reynolds numbers by using the large towing tank available Naval Academy in Annapolis, in collaboration with Professor Michael Schultz. The towing tank is 380 ft long, 26 ft wide, and 16 ft deep. The carriage can run at speeds up to 5 m/s. Originally, it was intended to use a flat plate coated with SLIPS, and with a length of 2 m, Reynolds numbers up to approximately 10x10⁶ could be tested. The plate would have been mounted to a force balance to measure the overall drag

directly, and the results compared to reference cases. Additionally, the surface durability would be investigated by inspecting the surface before and after a large number of these high Reynolds number tests. It was later decided, in collaboration and consultation with our MURI partners at Michigan, we would instead test a SUBOFF model (no appendages) where the SLIPS surface covering the cylindrical center-body (see figure 1). The model was fabricated, with a mounting designed to connect to the USNA towing tank force balance, and it was readied for reference testing in the smooth surface condition. However, it was decided, as part of the overall research strategy on SLIPS surfaces, and with the advice and consultation of the Program Manager Dr. Ki-Han Kim, that our resources were better spent on more fundamental studies on the design of the candidate SLIPS surfaces for maximum durability and performance at high Reynolds number. The completed SUBOFF model has been put in storage for possible future testing.

Figure 1: Left: SUBOFF model is 74.5" long and 8.7" in diameter. Right: USNA 120m towing tank.

Task 1.2: Fabrication of SLIPS on naval relevant metallic surfaces. Low-cost, scalable fabrication methods were developed to incorporate SLIPS onto various commonly used industrial materials, such as high-strength steel, aluminum, stainless steel, and tungsten, for a broad range of marine applications. Depending on the choice of the metal substrate, chemical functionalization schemes were developed to enhance the chemical affinity of the solid materials to the lubricants. The surface structures and the lubricants were optimized for ease of manufacturing and functionalities. A key figure in this work was co-PI Dr. Tak Sing Wong, currently at Penn State, who has played an important role in developing and applying SLIPS technology. These SLIPS-integrated structures were tested successfully in the facilities at Princeton (with Professor Smits) and at MIT (with Professor Gareth McKinley) for hydrodynamic evaluations.

Task 2) Investigation of separation and drag reduction over a large range of Reynolds numbers.

Modified separation characteristics over bodies coated with SLIPS are expected due to the slip condition imposed at the interface. The slip flow at the surface itself will allow the flow to stay attached longer, compared to the no-slip case, thus not only decreasing the frictional drag but also decreasing form drag experienced in separated flows. Although there are theoretical studies, based on models of a slip flow, for these situations, to the best of our knowledge, there were no experimental studies documenting the change in separation as a consequence of a significant modification of the no-slip boundary condition. This feature of SLIPS could delay stall over airfoils and hydrofoils at high angle of attacks. However, the magnitude of the effect was difficult to estimate without knowing how the SLIPS will affect the flow itself. Therefore, we conducted a set of experiments to quantify the changes to separation that are produced by SLIPS.

Experiments were performed at <u>Princeton</u> using the water channel. SLIPS-coated bodies (prepared according to the instructions provided by Aizenberg) were tested for Reynolds numbers 6,000<Re<120,000 (based on the chord length or diameter). First, airfoils were tested where the aim was to determine the critical angle of attack using a force balance. It was not possible to determine the effects if SLIPS in these experiments, suggesting that the effects of the SLIPS surface were likely negligible. This does not mean that our more current SLIPS surfaces, as developed under the MURI program, might not be more effective. Such experiments have not yet been performed. Second, cylinders were tested where the separation point and separation region were investigated on cylinders coated with the original SLIPS treatment using Particle Image Velocimetry (PIV) and compared to a reference cylinder without the SLIPS coating. Again, not significant differences were observed, but our improved SLIPS surfaces still need to be tested.

Task 3). The impact of leading edge extensional flows on SLIPS

Following the results of Task 2, Task 3 was not pursued in depth.

2.3 What opportunities for training and professional development did the project provide?

The grant has provided training for 3 graduate students, and 8 undergraduate students, and 1 post-doctoral scholar. All have participated in the MURI review meetings, authored numerous journal and conference presentations, as well as attending conferences to give presentations.

2.4 How were the results disseminated to communities of interest?

Our main lines of communication are the MURI review meetings, and publishing journal papers and presenting conference contributions. These outputs are listed under Products.

2.5 What do you plan to do during the next reporting period to accomplish the goals and objectives?

This report is a Final Technical Report.

2.6 Honors: What honors or awards were received under this project in this reporting period?

Major awards only:

Elected to membership in the National Academy of Sciences, 2014 (Stone); Fellow, Australasian Fluid Mechanics Society (AFMS), 2012 (Smits); AIAA Aerodynamic Measurement Technology Award 2014 (Smits); Fellow of the American Physical Society, March 2013 (Aizenberg); Hood Fellowship, University of Auckland, NZ, February 2013 (Aizenberg); 2012 R&D 100 Award (Aizenberg, Wong); R&D100 award for best innovation in 2013 (Aizenberg); Fellow of the Materials Research Society, 2014 (Aizenberg); Elected member of the American Academy of Arts and Sciences, 2014 (Aizenberg); Innovators Under 35, MIT Technology Review 2014 (Wong); DARPA Young Faculty Award 2014 (Wong); NSF CAREER Award 2014 (Wong); Outstanding Alumni, Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong 2014 (Wong); National Defense Science and Engineering Graduate Fellowship in 2015 (Fu); Fluid Dynamics Prize, American Physical Society, Division of Fluid Dynamics, 2016 (Stone); Distinguished Alumni Award, Faculty of Engineering, The Chinese University of Hong Kong, 2017 (Tak-Sing Wong); NASA iTech Top 10 Innovations, 2016 (Tak-Sing Wong);

IEEE Nanotechnology Council Early Career Award in Nanotechnology, 2016 (Tak-Sing Wong); 90th Anniversary Medal, Fluids Engineering Division (ASME), 2016 (Smits).

3. Technology Transfer

A Switchable Liquid Repellent and Active Fog Harvesting Surface (2016). US Patent Pending. Application No.: 62/430,169. Filing Date: December 5, 2016. Inventors: Yu Huang, Birgitt Boschitsch, Nan Sun, and Tak-Sing Wong.

4. Participants

The grant was primarily used to fund students. In addition:

First Name: Alexander Last Name: Smits Project Role: PD/PI National Academy Member: Yes Months Worked: 1

First Name: Marcus Last Name: Hultmark Project Role: Co PD/PI National Academy Member: No Months Worked: 1

First Name: Howard Last Name: Stone Project Role: Co PD/PI National Academy Member: Yes Months Worked: 1

First Name: Tak Sing Last Name: Wong Project Role: Co PD/PI National Academy Member: No. Months Worked: 1

First Name: Stefano Last Name: Leonardi Project Role: Co PD/PI National Academy Member: No. Months Worked: 1

First Name: Tyler Last Name: Van Buren Project Role: Staff Scientist (doctoral level) National Academy Member: N Months Worked: 1

First Name: Alireza Last Name: Mohammadi Project Role: Postdoctoral (scholar, fellow or other postdoctoral position) National Academy Member: N Months Worked: 1

First Name: Dan Project Role: Technician Last Name: Hoffman National Academy Member: N Months Worked: 2

5. Students

Number of undergraduate (8) and graduate (3) STEM participants: 11 (total)

Number of participants that received a STEM degree: 9

6. Products

Leo H O Hellström, Mohamed A Samaha, Karen M Wang, Alexander J Smits and Marcus Hultmark. "Errors in parallel-plate and cone-plate rheometer measurements due to sample under." Meas. Sci. Technol. 26 (2015) 015301 (4pp) doi:10.1088/0957-0233/26/1/015301