ARL-TN-0847 e Sep 2017

P

ARL

US Army Research Laboratory

US Army Research Laboratory and University
of Notre Dame Distributed Sensing: Software
Overview

by Neal Tesny and Daniel T Galanos

NOTICES
Disclaimers

The findings in this report are not to be construed as an official Department of the
Army position unless so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official
endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

ARL-TN-0847 e Sep 2017

A

ARL

US Army Research Laboratory

US Army Research Laboratory and University
of Notre Dame Distributed Sensing: Software

Overview

by Neal Tesny
Sensors and Electron Devices Directorate, ARL

Daniel T Galanos
Alion Science and Technology, MclLean, VA

Approved for public release; distribution is unlimited.

REPORT DOCUMENTATION PAGE o AT

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the
burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302.
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently
valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To)
September 2017 Technical Note

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

US Army Research Laboratory and University of Notre Dame Distributed

Sensing: Software Overview 5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER
Neal Tesny and Daniel T Galanos

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER
US Army Research Laboratory
ATTN: RDRL-SER-M ARL-TN-0847

2800 Powder Mill Road
Adelphi, MD 20783-1138

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

Software was developed using Python and GNU Radio to control spectrum sensing modules that are part of a distributed
sensing network. The modules consist of a low-cost Raspberry Pi single-board computer and an Ettus B205mini Universal
Software Radio Peripheral software-defined radio and Message Queue Telemetry Transport network infrastructure. This
technical note describes the software that was developed to control the individual sensors.

15. SUBJECT TERMS
software-defined radio, GNU Radio, Python, spectrum sensing, distributed sensing

17. LIMITATION | 18. NUMBER | 19a. NAME OF RESPONSIBLE PERSON
16. SECURITY CLASSIFICATION OF:
OF OF
Neal Tesny
ABSTRACT PAGES
a. REPORT b. ABSTRACT c. THIS PAGE SAR a4 19b. TELEPHONE NUMBER (Include area code)
Unclassified Unclassified Unclassified 301-394-5559

Standard Form 298 (Rev. 8/98;
Prescribed by ANSI Std. Z39.18

Contents

List of Figures iv
1. Background/Introduction 1
2. Software Description 2
2.1 GRCBlocks 3
2.2 GR/Python Data Interface 3
2.3 Functions 3
2.4 Settable Parameters 5
3. Network 7
3.1 MQTT 7
3.2 GPS 8
4. Conclusions 8
5. References 9
Appendix A. Output Format, In-Phase and Quadrature (1Q) Data in the
Header 11
Appendix B. Welch’s Method 13
Appendix C. Program Listing 15
Appendix D. Window Types 35
List of Symbols, Abbreviations, and Acronyms 37
Distribution List 38

Approved for public release; distribution is unlimited.
ii

List of Figures

Fig. 1 Block diagram of the hardware in an individual module......................
Fig. 2 Distributed SENSING CONCEPL......vevuveiiiiieie e

Approved for public release; distribution is unlimited.
iv

1. Background/Introduction

This project is part of a cooperative agreement between the US Army Research
Laboratory (ARL) and the University of Notre Dame (ND). The project involved
developing and testing a distributed sensing network comprising low-cost RF
sensors connected remotely to a central control server. This type of distributed
network would benefit the Army for sensing RF signals due to its very low cost and
small size.

The hardware consists of a portable Raspberry Pi single-board computer (SBC) that
controlled an Ettus B205mini software-defined radio (SDR) Universal Software
Radio Peripheral (USRP).The B205mini can receive signals between 70 MHz and
6 GHz and has an instantaneous bandwidth of up to 56 MHz. However, the use of
USB-2 (a restriction due to the Raspberry Pi) limited the usable bandwidth to
2 MHz. A commercial mobile ad-hoc network (MANET) was set up among the
central host and the remote modules. A block diagram of the hardware in an
individual module is shown in Fig. 1. The sensing network consists of several nodes
connected to a central server. The individual nodes continuously collect in-phase
and quadrature (1Q) data and send them to the central server for processing. A block
diagram of the distributed sensing concept is shown in Fig. 2.

Battery

: SDR characteristics:
i Freq range: 70 MHz to 6 GHz
i Inst bandwidth: 56 MHz

| Sensitivity: -90 dBm

Received
RF

Figure 1: Hardware block diagram of
individual sensor node.

2.4 GHz Dipole
Antenna :7 "_ __________________________ I
(T T T T T T T T T T e 1
MANET Comms } i a C ication and Network subsystem | }
GPS 2Watts, 24GHz | MANET Ethernet H
Antenna h MANET Radio Interface
> Data A: bl I | Ethernet Port 2
T ssembly
N %‘ cable A : | (Troubleshooting)
R B |
} +12 Volts Ethernet Port 1 }
AC to DC Wall =“ ‘______________‘ "_ _________ ‘;__v__'__'_v—‘\
Adapter 1\ K i i i
External Power | | Power Regulator L : I
+11t0 +20 Volts | | Assembly i +5] o } 5.8 GHz Dipole
Portable 06 Amps } : : £ Transc:\gl?nagll I Anteﬂ
i USB 2.0
Rechargeable \— | : sower P e e | V
|
|
|
I
|
I
|
I
|

Environmental Box

Fig. 1 Block diagram of the hardware in an individual module

Approved for public release; distribution is unlimited.

1

Figure 2: Distributed sensing concept.

Data Processing and
Network Control Node

A RF Transmitter
@ Sensor Node

-: = Sensor Node Cluster

. Data Processing and
Network Control Node

Fig. 2 Distributed sensing concept

The software was made up of a GNU Radio (GR) module that was interfaced with
a Python module. This report focuses on the software that was developed by ARL
for this effort.

GNU Radio is a free, open-source software development toolkit that provides signal
processing blocks to allow users to implement SDRs and signal-processing
systems.

2. Software Description

The software is written in Python and contains a GR module that was developed
using GNU Radio Companion (GRC). GRC is the graphical interface that is used
to design and generate GR modules. It translates a graphically designed flowchart
to a Python script that can communicate with SDRs. The script it generates uses
commands linked to GR blocks that are written in C++ for speed and efficiency.
The software runs in the Ubuntu Linux operating system.

The following are the 4 main functions the software performs:
« Controls the USRP hardware and receives its data.

« Processes the data received from the USRP and performs frequency
transforms on them.

« Communicates with the remote server.

Approved for public release; distribution is unlimited.

2

« Obtains the local GPS coordinates from the MANET receiver.

2.1 GRC Blocks

The GR blocks that are used by the program include the following:

« USRP: This is the block that controls the B205 hardware and pulls out the
data from it. The data are 1Q data that were downconverted in frequency to
baseband. The baseband is the instantaneous bandwidth of the USRP. This
block has a long list of settable parameters, the more important ones being
channel frequency, sample rate, and address (if Ethernet is used).

« FFT block: This block ended up not being used in GRC. Instead, we did fast
Fourier transforms (FFTs) in Python using the Welch method.

. Stream to vector: This block converts a data stream into vectors of a fixed
length.

« Message sink: This allows data to be sent to the Python module.

« Null sink: This works along with the Message Sink to provide a null output
for the message sink.

« Vector decimator: This reduces the number of vectors being sent through
the data stream to the Python module by allowing every nth vector to pass
through. It is set by a through-rate setting.

2.2 GR/Python Data Interface

The data are transferred from the GR module to the Python portion of the program
via a Message Sink block that is terminated in a null sink. The vector data stream
from the USRP is fed into the Message Sink. The Message Sink is then accessed in
program to obtain the data using the command tb.msgq_out.delete _head()
.to_string(). This reads in a structured block of data, which is then unpacked and
formatted into a numerical array.

2.3 Functions

The individual methods that the program uses to perform its functions are
described:

« On_connect: This callback is run when the client receives a CONNACK
response from the server. It subscribes to the Message Queue Telemetry
Transport (MQTT) channels that are needed to send and receive messages.

Approved for public release; distribution is unlimited.

3

« On_message: This is the callback that is run when a PUBLISH message is
received from the server.

« parseJson: This method parses JavaScript Object Notation (JSON) data into
standard format data that are usable by Python. It then calls the proper
method to run based on the message payload.

« send_heartbeat: This method sends a message to the server at 10-s intervals.
The message consists of the mac_address, latitude, longitude, and altitude.

« send_status: This method sends the status of the program to the server when
it is requested. The parameters that are sent in the message are the
following:

"job_id"
"disk_used"
"disk_free"
"mac_address"
"IP_addr"
"latitude”
"longitude”
"altitude”

. set_location: This method sets the location coordinates to that which is
specified in a message directed to this remote node from the server. It allows
the server to tell each remote node its GPS coordinates.

« coordinates.set_time: This method sets the system time of the remote node
to that specified in an incoming message from the server with this
command.

« acquire_GPS: This method is run when directed by the server. It acquires
the GPS coordinates from the MANET receiver.

« change_config: This method allows the server to change the node’s program
configuration remotely. Changeable parameters include the following:

("check_in_server")

("master_controller™)

Approved for public release; distribution is unlimited.

4

("hostname™)
"short_name")
("group_name")
("rh_software_version™)
("system_version™)
("hardware_version")
("rh_hardware_version™)
("IP_addr™)

« send_config: This method sends the current configuration parameters to the
remote server when it is requested. The parameters sent are the same ones
as those listed under the “change_config” method.

. Scan: This method performs a data acquisition scan when a “scan” request
comes in from the remote server.

« parse_sdr_data: This method extracts an array of 1Q data from a structured
block of data, which is output from the GR Message Sink.

. format_data_for_tx: This method puts the acquired signal data into the
proper format required by the remote server. This format is essentially one
large Python dictionary with the 1Q data formatted into a single string
sequence. The output format is described in Appendix A. The Welch
method that is used to perform the FFTs is described in Appendix B.

. send_data: This method puts the formatted data into JSON format and
transmits them to the remote server.

« Main: This is the method that is run when the program starts, which calls
the top block module with the GR components. A listing of the entire
program is given in Appendix C.

2.4 Settable Parameters

The parameters that are settable in this program include the following:

« Window type: This is a string input specifying the windowing function to
use before FFT operations are performed. These are described in
Appendix D. An example is "hamming".

Approved for public release; distribution is unlimited.

5

« Nfft: Thisisthe FFT size that is used in the frequency transform. Acceptable
values are integers greater than 16.

« Sample rate: This is the rate at which the SDRs sample the data. The default
value is 2 MHz because of the bandwidth being limited by the USB-2 cable
connection. This is of double type.

« Gain: This is the gain of the SDR. This is of double type between 0 and 76.

« FreqO: This is the center frequency of the band being scanned. This is of
double type. The range is 70E6 to 6E9.

There are additional values that can be set internally but cannot be changed
remotely:

« Vector size: This is the size of the data blocks that are output from the GR
module to the Python module. The default value for this is 1024. Integer
values are acceptable.

« Vector rate: The GR module uses a vector decimator, which reduces the rate
at which data blocks are transferred to the Python module. It was found that
the overall data rate is maximized by setting this to 100 vectors per second,
which is the default value.

The following are changeable/nonchangeable items for scan requests:
« "fmin": This is settable via the scan command.
« "fmax": This is settable via the scan command.
« "fs": This is settable via the scan command.
« "overlap™: This is settable via the scan command.
« "nsamples": This is settable via the scan command.

« "gain": This is settable via the scan command. The B205 receive frontends
have 76 dB (or 73?) of available gain.

. "nfft": The FFT size cannot be changed after the program is started. It can
be set manually in code before the program is run o/a line 101. Default is
1024. This set by changing the value of the variable “vector_size”.

« "noverlap™: This is not directly changeable, but is modified when the
“overlap” value is changed. It is set to nfft*overlap.

"window": This value cannot be changed after the program is started. This
can be set manually in code before running the program. This is a window

Approved for public release; distribution is unlimited.

6

that is recognized by GNU Radio, such as “window.blackmanharris”. To
change it, go to Line 135 and change the name of the window argument in
the line where it calls the “fft.fft_vcc” function. One must also change the
variable “window_type”, which stores the name of the window type that is
saved in the metadata of the output. Two commented-out lines of how to
change the window to “Hanning” should be given in the code. Selectable
windows that GNU Radio can use are listed in Appendix D.

« "zero_pad_to": not implemented.

« "detrend": not implemented.

3. Network

The network of devices comprises nodes and one central server. The server does
the following:

. Stores all data collected by the nodes.
. Disseminates instructions to the nodes.
. Interfaces the user to the network of nodes

Nodes are able to exchange information by leveraging a MANET architecture. Each
node is equipped with a MANET radio that provides access to the MANET.
Information can be sent between any 2 nodes within signal range and, additionally,
information can be relayed along a set of nodes such that if nodes form a connected
graph, information can be passed between any pair of nodes on the network. The
MANET is self-forming; as nodes come online or go out of range the MANET
continuously adapts. All of this is taken care of on the MANET card and is
transparent to the devices connected to it.

The central server did not include a Dynamic Host Configuration Protocol
capability, so nodes were configured with static IP addresses. To better take
advantage of the flexibility of the MANET, future efforts should leverage
dynamically allocated IP addresses and, potentially, Domain Name System.

3.1 MQTT

MQTT is a lightweight publish-subscribe messaging protocol. MQTT requires a
designated message broker to distribute messages and track subscriptions. Clients
connect to a broker, subscribe to various topics, and publish messages to topics.
The broker then distributes the published messages to clients that are subscribed to
the corresponding topics.

Approved for public release; distribution is unlimited.

7

The MQTT protocol was implemented for this effort to send and receive
data/instructions between all devices on the MANET. Each node connects to the
central server (broker) and subscribes to the following topics, where mac_address
is the unique media access control (MAC) address of the node:

‘radiohound/clients/command_to_all'
'radiohound/clients/command/' + mac_address
'radiohound/clients/data/' + mac_address
‘radiohound/clients/status/' + mac_address

An instruction may now be published to
‘radiohound/clients/command_to_all'

Because all connected nodes are subscribed to this topic, all connected nodes
receive this instruction. For a full list and description of topics, see RadioHound
API Documentation by Nik Kleber and Gonzalo Martinez.!

3.2 GPS

Knowing the physical location of each module is key for activities such as emitter
geolocation. The MANET card includes a GPS receiver, and each module is
equipped with a GPS antenna. Each MANET card also hosts a configuration
website that can control the MANET (individual node or entire network) and
provide application programming interface (API) functionality. Nodes queried their
GPS information from this API over Transmission Control Protocol/IP.

4. Conclusions

Software programming has been written to support distributed sensing using
low-cost, highly portable computers and SDRs. The software was demonstrated
successfully at a joint field test between ARL and ND in June 2017.

Approved for public release; distribution is unlimited.

8

5. References

Kleber N, Martinez G. University of Notre Dame, South Bend, IN. RadioHound
API documentation. Personal communication, 2017.

Approved for public release; distribution is unlimited.

9

INTENTIONALLY LEFT BLANK.

Approved for public release; distribution is unlimited.

10

Appendix A. Output Format, In-Phase and Quadrature (1Q) Data
in the Header

Approved for public release; distribution is unlimited.

11

The data are output to the remote host in a Python dictionary format that contains
all the data and parameters. The frequency transformed data are formatted as a
single string variable. The metadata contain the in-phase and quadrature (1Q) data
and settable parameters and are formatted as a separate Python dictionary within
the overall data dictionary. The format of the data is as follows:

"software_version"

"timestamp”

"gain”

"data"

"short_name"

"uncertainty"

"longitude”

"sample_rate"

"mac_address"

"latitude"

"center_frequency"

"metadata”: {"nfft"
"fmax"
""'scan_type"
"detrend"
"report_type"
"nsamples”
"antenna”
"actualGain"
"overlap”
"window"
"fmin"
"zero_pad_to"
"noverlap"

"ig_data"

Approved for public release; distribution is unlimited.

12

Appendix B. Welch’s Method

Approved for public release; distribution is unlimited.

13

Welch’s method is form of spectral energy estimation that uses a form of time
averaging of overlapping power measurements. It first applies a filtering window
such as a Hann window to each time segment. It then performs a fast Fourier
transform (FFT) on each segment. Time averaging is then performed on the
overlapping FFT segments reducing the variance of the individual power
measurements.

Input parameters for Welch’s method in this program include the following:
« Data: the time-domain vector of data.
. Fs: the sample rate at which the data were collected.
« Window: the windowing, or tapering, function used, for example, Hanning.

« Nperseg: the number of points to use for the FFT.

Approved for public release; distribution is unlimited.

14

Appendix C. Program Listing

Approved for public release; distribution is unlimited.

15

#1/usr/bin/env python2
-*- coding: utf-8 -*-
HH AR AR R R R R R AR
GNU Radio Python Flow Graph
Title: Top Block
Generated: Mon May 22 10:17:11 2017
HH
if _ name_ == " main__ ":
import ctypes
import sys
iT sys.platform.startswith("linux®):
try:
x11 = ctypes.cdll.LoadLibrary("1ibX11.s0")
x11_XInitThreads()
except:
print "Warning: failed to XInitThreads()"

from PyQt4 import Qt

from gnuradio import blocks

from gnuradio import eng_notation

from gnuradio import fft

from gnuradio import gr

from gnuradio import uhd

from gnuradio.eng_option import eng_option
from gnuradio.fft import window

from gnuradio.filter import firdes

from optparse import OptionParser

from distutils.version import StrictVersion
#import osmosdr

import sys

import time

import struct

import numpy

import datetime

import numpy as np

import base64

from scipy import signal

import paho.mgtt.client as mgtt
import json

import urllib2

import os

import requests

from requests.packages.urllib3 import exceptions
requests.packages.urllib3.disable_warnings(exceptions. Insecure
RequestWarning)

#import matplotlib.pyplot as pyplot
#broker_ip = "192.168.3.3"
broker_ip = "127.0.0.1"

mac_address = "b8:27:eb:09:99:3F"

Approved for public release; distribution is unlimited.

16

tb = None

client = mgtt.Client()
last_heartbeat_time = time.time()
last trace_time = time.time()

send_data_flag
msg_queue = []
latitude = 0.0

=0

longitude = 0.0

altitude=0.0

check in_server = "check_iIn_server0"
master_controller = "master_controllerQ0"
hostname = "hostname0"

short_name
group_name

"ARL xxx"
"ARL_groupO™

rh_software_version = "1.0"

system_version

= "1.0"

hardware_version = "1.0"
rh_hardware_version = "1.0"

IP_addr = "192.

168.3.131"

uhd_serial_number = ""30F5565" # set this for each node®s B205
uhd_serial _number = "30AEBFQO" # set this for each node"s B205
window_type = "window.blackmanharris™

window_type =
nfft=1024

'scipy.hanning”

samp_rate_current=2e6
window_welch="hann"

class top_block(gr.top_block, Qt.QWidget):

def __init_ (self):
gr.top_block.__init__ (self, "Top Block™)
Qt.QWidget. init_ (self)

try:

grc))

HFHEHFEHFHFHFFEFRHHHE HHH

self.

setWindowTitle("Top Block'™)

self.setWindowlcon(Qt.Qlcon.fromTheme("gnuradio-

except:
pass
self.
self.
self.
self.
self.
self.
self.
self.
self.
self.
self.

top_scroll_layout = Qt.QVBoxLayout()
setlLayout(self.top_scroll_layout)

top_scroll = Qt.QScrollArea()

top_scroll _setFrameStyle(Qt.QFrame.NoFrame)
top_scroll_layout.addWidget(self.top_scroll)
top_scroll _setWidgetResizable(True)
top_widget = Qt.QWidget()
top_scroll._setWidget(self.top_widget)
top_layout = Qt.QVBoxLayout(self.top_widget)
top_grid_layout = Qt.QGridLayout()
top_layout.addLayout(self.top_grid_layout)

#self.settings = Qt.QSettings("'GNU Radio', "top_block™)

#selT_restoreGeometry(self.settings.value(''geometry') . toByteAr

ray()

Approved for public release; distribution is unlimited.

17

uses to

R

GNU Radio Variables

HHHHHHHHH R
self.vector_size = vector_size = 1024 # block size GR
send data to Python

self.vector_rate = vector_rate = 100 # rate at which GR

sends vectors to Python

self.samp_rate = samp_rate = 2e6
self.gain0 = gain0 = 30
self.freq0 = freqO 100e6

HHHH R
Processing Variables
HHHH R
self._nsamples = 16384

HHHHH R

Message queues (added by grcconvert)

HHHHH R R
self._msgg_out = blocks_message_sink_0_msgq_out =

gr.msg_queue(2)

(window.

(window.

R
Blocks
R
self.uhd_usrp_source_0 = uhd.usrp_source(
"L ragoin(CtY, M),
uhd.stream _args(
cpu_format=""fc32",
channels=range(1),

).

self.uhd_usrp_source_0.set_samp_rate(samp_rate)
self.uhd _usrp_source O.set center_freq(freq0, 0)
self.uhd_usrp_source_0.set_gain(gain0, 0)

self.fft_vxx 0 = TFft_fft_vcc(vector_size, True,
blackmanharris(vector_size)), True, 1)

#self_fFt_vxx 0 = fft_fft_vcc(vector_size, True,
hanning(vector_size)), True, 1)

#window_type = "window.hanning"

self.blocks _stream_to vector decimator_O =

blocks.stream to_vector_decimator(

Approved for

item_size=gr.sizeof _gr_complex,
sample_rate=samp_rate,
vec_rate=vector_rate,
vec_len=vector_size,

public release; distribution is unlimited.

18

self_blocks_message sink 0O =
blocks.message_sink(gr.sizeof gr_complex*vector_size,
blocks_message_sink 0 _msgq_out, False)

#self_blocks _complex _to _mag_O =
blocks.complex_to_mag(vector_size)

self._blocks_complex_to_mag_O0 =
blocks.complex_to _mag squared(vector_size)

HHHH R

Connections

HHHH R

self._connect((self.blocks_complex_to_mag O, 0),
(self._blocks _message sink 0, 0))

self.connect((self.blocks_stream_to_vector_decimator_O, 0),
(self._blocks _message _sink 0, 0))

removed by grcconvert:
self.connect((self.blocks message sink 0, "msg”), (self, 0))

#
self.connect((self.blocks stream_to vector_decimator_O, 0),
(self_fft_vxx_0, 0))

self.connect((self.fft_vxx 0O, 0),
(self._blocks _complex_to _mag 0, 0))

self.connect((self.uhd_usrp_source_0, 0),

(self.blocks_stream to vector_decimator_ 0, 0))

def closeEvent(self, event):
self._settings = Qt.QSettings("'GNU Radio', "top_block™)
self.settings.setValue('geometry", self.saveGeometry())
event.accept()

def get_vector_size(selT):
return self.vector_size

def set vector_size(self, vector_size):
self.vector_size = vector_size

def get vector_rate(self):
return self.vector_rate

def set_vector_rate(self, vector_rate):
self.vector_rate = vector_rate

self.blocks_stream_to vector_decimator O.set vec rate(self.vec
tor_rate)

def get _samp_ rate(self):
return self.samp_rate

def set_samp_rate(self, samp_rate):
self.samp_rate = samp_rate

Approved for public release; distribution is unlimited.

19

self.blocks_stream_to vector_decimator_ O.set sample rate(self.
samp_rate)
self.uhd_usrp_source O.set samp_rate(self.samp_rate)

det get_gainO(self):
return self.gainO

def set _gainO(self, gain0):
self.gain0 = gain0
self.uhd_usrp_source 0O.set gain(self.gain0, 0)

def get freqO(self):
return self.freq0

def set freqO(self, freq0):
self.freq0 = freqO
self.uhd_usrp_source_ O.set center_ freq(self.freq0, 0)

HHHH A R
HHHHAHHH IR AR
MQTT Config
HHHH A
HHHH AR A
The callback for when the client receives a CONNACK response
from the server.
def on_connect(client, userdata, flags, rc):

print("MQTT Connected with result code “+str(rc))

Subscribing in on_connect() means that if we lose the
connection and

reconnect then subscriptions will be renewed.

client._subscribe("radiohound/clients/command_to_all*®)

client.subscribe("radiohound/clients/command/ " +mac_address)
client.subscribe("radiohound/clients/data/"+mac_address)
client._subscribe("radiohound/clients/status/"+mac_address)

#client.subscribe("radiohound/clients/announce/ " +mac_address)

The callback for when a PUBLISH message is received from the
server.

def on_message(client, userdata, msg):
global msg_queue
if len(str(msg.payload))<=300:
print(msg.topic+" "+str(msg.payload))
else:
print(msg.topic+® : length is:",len(str(msg.payload)))
msg_queue . append(msg. payload)

def parseJson(msg_payload):
global send _data_flag
#print "msg_payload is:",msg_payload

Approved for public release; distribution is unlimited.

20

#print "Line 208, msg_payload is:",msg_payload
J = json.loads(msg_payload)

if type(@) == dict:
message_value
payload_value
for key, value in j.iteritems():
ifT key == "message”:
message value = value
elif key == "“payload”:
payload _value = value

if message value == “run-:
send_data flag = 2

elif message value == "get_single_trace~:
send _data flag = 1

elif message value == "stop”:
send_data flag = 0

elif message value == "scan”:
scan(payload_value)

elif message value == "set_location~:
set_location(payload_value)

elif message value == "change_config":
change_config(payload_value)

elif message value == "send_config":
send_conftig()

elif message value == "release_ location”:
acquire_GPSQ

elif message value == "set time~:

set_time(payload value)
else:
print "Not a dict, val is: %s" % j

HHHH AR R R R R R R R R R
HHHHHH R R

send_heartbeat

HHHHH R R R R R R R A R R R R R R R R R R
HHHHHH R R

def send_heartbeat():
global last_heartbeat_time
current_time = time.time(Q)
if current_time - 10 > last heartbeat_ time:
#latitude = 0.0
#longitude = 0.0
#altitude = 0.0

Out = llllll{
""message’: ""HEARTBEAT",
"payload':

"mac_address'': %s
"latitude™: %f

Approved for public release; distribution is unlimited.

21

"longitude” %f
"altitude” %f

i % (mac_address, latitude, longitude, altitude)

client.publish("radiohound/clients/announce/ " +mac_address, payl
oad=out)

last heartbeat time = current_time

#print mac_address, latitude, longitude,altitude

B T e e A e e e e TR T e e T
HHHH R

send_status

B T T A e e A e e e e T T e e T
HHHH R

def send_status(reset flag, pct _done):
global latitude, longitude, altitude
global last _status_time
iT reset_flag:
last_status_time = time.time()

current_time = time.time()
#print "In send_status--",f min_current, f _max_current,
overlap_current

a = str(f_min_current/1e6)

a =a + "MHz-"

a = a + str(f_max_current/1le6)
a = a + "MHz"

a= """ +ag+ """

statvfs = os.statvfs("/")

b =
str(np.round(statvfs.f_bfree*statvfs.f_frsize/2.0**30,2))

C =
str(np.round(statvfs.f_blocks*statvfs.f_frsize/2.0**30,2))

d = str(np.round(pct_done*100,1))+"%"

d="""+d+ ="~

#ipad="""131.68""

ipad=""" + IP_addr + *'*

#print “"In send_status',a,', “,b,", ",c,", v,d,r,

"*,mac_address,", ', ipad
#print latitude, longitude, altitude

if current_time - 10 > last _status_time:

out = "{"message': "STATUS","payload":{"
out=out+*"job id" : " + a + ","% _complete”:" + d
out=out+","disk used”: " + c
out=out+","disk_free": " + b
out=out+","mac_address': " +
out=out+*","IP_addr': * + ipad
out=out+","latitude”: * + str(latitude)
out=out+","longitude': " + str(longitude)

+ mac_address + "'*

Approved for public release; distribution is unlimited.

22

out=out+*,"altitude”: * + str(altitude)+" }}-
#print "'Status out:", out

client.publish("radiohound/clients/status/~+mac_address, payloa
d=out)
last _status_time = current_time
#print statvfs(*/").T_bfree*statvfs(*/").T_Tfrsize
#print statvfs("/").T blocks*statvfs("/").f frsize
#print
statvfs("/").T bfree*statvfs("/").Tf frsize/2.0**30

HHARH R R
B

Set_location

HH
HHAHH

def set_location(payload_value):
global latitude, longitude, altitude

iT type(payload_value) == dict:
if payload value.has key("'latitude'™):
latitude = payload_value.get("latitude™)
if payload value.has key("'longitude'):
longitude = payload_value.get('longitude’™)
if payload value.has key(altitude'™):
altitude = payload value.get(altitude™)

HHHH AR T R R R R R R R R
HHHHHH R R

Set _time

HHHHH R R R R R R R A R R R R R R R R R
HHHH AR AR T

def set_time(payload value):
print "set _time: payload_value is:",payload value
if type(payload value) == dict:
if payload_value.has_key(''time'):
time_string = payload_value.get("time')
time_string = """ + time_string + """
print "time_string is:",time_string
os.system(“"sshpass -p Taaaaaaaaa" sudo -p
"password:" date -s " + time_string)

B
HHHHH
Acquire_GPS

Approved for public release; distribution is unlimited.

23

HHARHHHHH AR H A R AR
HHAHHH R

def acquire_GPSQ):
global latitude, longitude, altitude
pass

locationFile =
"/home/pi/radiohound/client_gr/tempLocation.txt”

key timestamp = “timestamp®

key longitude = "longitude”

key latitude = "latitude”

key altitude = "altitude”

def record_location_to_fTile(lat,lon,alt,timestamp):
convert information to json
newinfo = {}
newinfo[key latitude] = lat
newinfo[key_longitude] = lon
newinfo[key altitude] = alt
newinfo[key_timestamp] = timestamp
with open(locationFile, “w") as fp:

fp.write(son.dumps(newinfo))

print(” Saved new location to file...")

== START EXECUTING

setup alias IP so that we can talk to the Persistent
Systems management screen

#os.system(*'sudo i1fconfig enxd8eb97b69c7e:1 10.3.1.105
netmask 255.255.255.0 up'™)

a = "sshpass -p "aaaaaaaaa™ sudo -p *‘password:" *

#os.system(a+"ifconfig enxd8eb97b69c7e:1 10.3.1.105 netmask
255.255.255.0 up™)

os.system(a+"ip addr add 10.3.1.131/24 dev enxb827eb09993f"")

check if the JSON file already exists and delete it
if os.path.isfile(locationFile):
print locationFile + " exists, deleting it"
os.remove(locationFile)

url to the Persistent Systems management screen associated
with the GPS

url =
“"https://10.3.1.254/management.cgi?command=gps_status. json&pas
sword-input=aaaaaaaa'

#print url

response = requests.get(url, verify=False, stream=True)
for line in response.iter_lines():
#

Approved for public release; distribution is unlimited.

24

Screen scrape the response line by line until we find
the location data
#
expected format:"Latitude: ###_ ##H## deg”
#Ffiprint line
iT "Latitude:" in line:
if "unknown"™ in line: # unknown means we do not yet
have GPS data so set a default
#line = "Latitude: 41.703059 deg"
line = “Latitude: 1.111 deg"
latStr = line[10:len(line)-3]
expected Tormat:"Longitude: ###_##H#### deg”
if "Longitude:" in line:
it "unknown™ in line:
#line = "Longitude: -86.238987 deg"
line = "Longitude: 2.222 deg"
lonStr = line[ll:len(line)-3]
expected format:"Altitude: 208 m (682 ft)"
it "Altitude:" in line:
it "unknown™ in line:
#line = "Altitude: 208 m (682 f©t)”
line = "Altitude: 3.333 m (0O f©)"
altStr = line[line.find(':")+1:line.find('m"")]
break

print latStr_strip() + ", " + lonStr.strip() + ", " +
altStr.stripQ

latitude = float(latStr._strip())

longitude = float(lonStr.strip())

altitude = float(altStr.strip(Q))

Update the JSON Ffile with the new data

#record_location_to_file(latStr.strip(), lonStr._strip(),altsStr.
strip(Q),time.time())
#time.sleep(10)

HHHH A
B

Change_config
B
HHHIHHHH

def change_config(payload_value):
#global latitude, longitude, altitude

if type(payload value) == dict:
iT payload_value._has_key(''check_in_server™):
check _in_server =
payload_value.get('check_in_server™)
if payload value.has _key("'master_controller'):

Approved for public release; distribution is unlimited.

25

master_controller =
payload value.get("'master_controller™)
iT payload_value.has_key("*hostname™):
hostname = payload_value.get(""hostname')
iT payload_value.has_key(‘'short_name™):
short_name = payload_value.get('short_name™)
if payload value.has_key(‘‘group_nhame'):
group_name = payload_value.get('group_name™)
if payload value.has key(''rh_software_version'):
rh_software_version =
payload value.get("'rh_software_version')
iT payload_value.has_key(''system_version'):
system_version =
payload value.get(''system_version')
iT payload_value.has_key("’hardware_version'):
hardware_version =
payload_value.get("hardware_version')
if payload value.has key("'rh_hardware_version'):
rh_hardware_version =
payload value.get("'rh_hardware_version')
iT payload_value._has_key("'I1P_addr'):
IP_addr = payload_value.get('I1P_addr™)

HHHH A
HHHHAHHH IR AR

Send_config

B T A e A e e e e T T e e T
HHHH

det send_config():
out = "{"message': ""CONFIGURATION","payload":{"

out=out+*""IP_addr"™ : "" + IP_addr +""*
out=out+","short_name" : "" + short _name +""*
out=out+~,"system _version"™ : """ + system version +""*"
out=out+","hostname"™ : "* + hostname +""*
out=out+","master_controller”™ : "" + master_controller +"""
out=out+","hardware_version'" : "" + hardware_version +""*
out=out+","group_name'"™ : "" + group_name +"'*
out=out+","rh_hardware_version” : " + rh_hardware_version
pune
out=out+","rh_software_version” : " + rh_software_version
pune
out=out+","check_in_server" : "" + check_in_server +""*

out=out+"}}"

client_publish("radiohound/clients/status/"+mac_address,payloa
d=out)

HHHHH AR R R R AR
HHHHHHH IR
Scan

Approved for public release; distribution is unlimited.

26

HHARHHHHH AR H A R AR
HHAHHH R

def scan(payload_value):
global tb, send _data_flag
global f_min_current, f_max_current, overlap_current
global nsamples_current
global latitude, longitude, altitude, window_welch, nfft

change_settings = False

nfft = tb.get vector_size()
samp_rate_current=tb.get_samp_rate()
fc_current = tb.get freq0()
send_status(True,0.0)

if type(payload _value) == dict:
iT payload_value._has_key(''gain™):
a=payload_value.get(*'gain'™)
tb.set_gain0(a)
change_settings = True

iT payload_value.has_key("'fs™):
samp_rate _new = payload value.get('fs')
iT samp_rate_new!=samp_rate_current:
tb.set_samp_rate(samp_rate_new)
change_settings = True
samp_rate_current = samp_rate_new

if payload value.has key("'fmin'™):
f min_new = payload_value.get("fmin'™)
fc_new = ¥ min_new + samp_rate_current/2
if fc_new!=fc_current:
tb.set_freqO(fc_new)
change_settings = True
fc_current = tb.get_freq0()
f _min_current = ¥ min_new

if payload value.has key("'fmax'):
f max_new = payload_value.get(*"fmax')
T _max_current = £ max_new

if payload_value.has_key("overlap™):
overlap new = payload value.get(overlap'™)
overlap_current = overlap_new

iT payload_value.has_key("'nsamples'):
nsamples_current = payload _value.get("'nsamples')

if payload_value.has_key(''nfft'):
nfft = payload value.get("'nfft™)

if payload value.has_key(“'window'):
windowstr = payload_value.get("window')
it "boxcar™ In windowstr:

Approved for public release; distribution is unlimited.

27

window_welch=""boxcar"’
window_type="'scipy."+window_welch
elit "blackmanharris™ in windowstr:
window_welch=""blackmanharris"
window_type=""scipy."+window_welch
elit "blackman™ i1n windowstr:
window_welch="blackman"
window_type="scipy."+window_welch
elif "triang” in windowstr:
window_welch=""triang"
window_type="'scipy."+window_welch
elit "barthann”™ i1n windowstr:
window_welch="barthann"
window_type="'scipy."+window_welch
elif "hamming™ in windowstr:
window_welch=""hamming"
window_type=""scipy."+window_welch
elif "hann™ in windowstr:
window_welch="hann"
window_type="'scipy."+window_welch
elit "bartlett” in windowstr:
window_welch="bartlett"”
window_type="'scipy."+window_welch
elif "Tlattop” in windowstr:
window_welch="flattop"
window_type=""scipy."+window_welch
elif "parzen”™ in windowstr:
window_welch=""parzen"
window_type="'scipy."+window_welch
elif "bohman™ in windowstr:
window_welch="bohman"
window_type="'scipy."+window_welch
elif "nuttall” in windowstr:
window_welch="nuttall"
window_type="'scipy."+window_welch

figure out how many scan windows there are

fcO = ¥ _min_current + samp_rate_current/2

fc_last = f _max_current - samp_rate current/2

fc_interval = samp_rate_current * (1 - overlap_current)

num_iterations is the number of scans to do for to get the
full freq range

N_windows 1is the number of averages to do for each
iteration

num_iterations = (fc_last - fc0) / fc_interval + 1

N_windows =
int(np.floor(nsamples_current/tb.get_vector_size()))

print
"fc0:",fc0/1le6,"fc_last”,fc_last/1e6, samp_rate_current:',samp
_rate_current/1le6

print "num_iterations:',num_iterations,",
N_windows:",N_windows

data_sum = O;

Approved for public release; distribution is unlimited.

28

capture data and throw away because might be old settings
#figure out how many to throw away
print "‘change_settings is:",change_settings
iT change_settings:
for j in range(0,10):
vec_list =
parse_sdr_data(tb.msgq_out.delete_head() -\
to_string(),tb.get vector_size()) # this indeed
blocks

loop over scan windows
for i1 in range(O0,N_windows):

configure SDR - Fc should alread be set above

#todo

capture data with good settings

vec_list = parse_sdr_data(tb.msgq out.delete head()-\

to_string(),tb.get_vector_size()) # this indeed
blocks

data = vec_list[O0]

data_sum = np.add(data_sum,data)

vec_list=[]

data=[]

while (len(data)<nsamples_current):
iq_block=tb.msgq out.delete head().to_string() # this
indeed blocks

for i1 in range(0,len(ig_block),8):

re = (struct.unpack from(*f",iq_block[i:i+4]))

im (struct.unpack_from("f",iqg_block[i+4:1+8]))

if (len(data)<nsamples_current):

data.append(re[O] + 1.03*im[0])

Do fft:

f,Pxx_den =
signal .welch(data, fs=samp_rate_current,window=window_welch,npe
rseg=nfft)

Pxx_den=np.fft.fftshift(Pxx_den)

f=np.fft_fftshift(f)

format data and send

formatted _data = format _data for_ tx(Pxx_den,data,tb)
send_data_flag = 1

send_data(formatted_data)

send_data_flag = 0O

print "fc:",fc0/1le6, data[254:259]

If >1 i1terations in the scan, do them:
for k in range(2, int(np.ceil(num_iterations+1))):
loop through the iterations to do the full scan:

Approved for public release; distribution is unlimited.

29

send_status(False,Tloat(k/num_iterations))

configure SDR - change Fc

fc_new = tb.get freq0() + (1-overlap_current) *
samp_rate_current

tb.set_freqO(fc_new)

capture data and throw away because might be old
settings
#figure out how many to throw away
for j in range(0,10):
vec_ list =
parse_sdr_data(tb.msgq_out.delete_head() -\
to_string(),tb.get vector_size()) # this indeed
blocks

Collect good data:
data=[]
while (len(data)<nsamples_current):
iq_block=tb.msgq_out.delete_head().-to_string() #
this indeed blocks
for 1 in range(0,len(ig_block),8):
re = (struct.unpack_from(*f",iq_block[i:i+4]))
im =
(struct.unpack_from("f",iq_block[i+4:1+8]))
if (len(data)<nsamples_current):
data.append(re[O] + 1.03*im[0])

Do fft:

f,Pxx_den =
signal .welch(data, fs=samp_rate_current,window=window_welch,npe
rseg=nfft)

Pxx_den=np.fft.fftshift(Pxx_den)

f=np.fft._fftshifr(f)

format data and send

formatted_data = format_data_ for_tx(Pxx_den,data,tb)
send _data flag = 1

send_data(formatted_data)

send_data_flag = 0

print "fc:",fc0/1le6, data[254:259]

HH AR R R AR A A AR A
HHHHAHHH IR AR

Parse_sdr_data

B e R A e A e e e e T T e e T
HHHHHH

def parse_sdr_data(data_str,vector_size):
block size = 4 * vector_size
N_blocks = len(data_str)/block_size

Approved for public release; distribution is unlimited.

30

vec_list = []
for 1 in range(0,N_blocks):
floats = []
for j in range(O,block_size,4):

Ffloats.append(struct.unpack from("f",data _str[(i*block_size)+j
:(i*block_size)+j+4PD[[0D)
vec = np.array(floats)
vec_list.append(vec)
return vec_list

HHHH A
HHHHAHHH IR AR

Format_data for_tx

B e T R A e e A e e e e T T e e T
HHHIHH

def format data for_ tx(Pxx_den,data,tb):

metadata

#software_version = "0.1";

timestamp =
datetime.datetime.utcfromtimestamp(time.time()).strftime("%Y-
%m-%dT%H - %M:%S . %F-%z") + "0000"

gain = tb.get _gain0(Q

#short_name = "ARL_XxxX"

uncertainty = 35.2;

fcen = tb.get freq0(Q

sample_rate = tb.get_samp_rate()

fhi = fcen + sample_rate/2.0;

flo = fcen - sample_rate/2.0;

iq_data=base64.b64encode(str(data))

data
data _str =
for x in xrange(O0, len(Pxx_den)):

data_str = data_str + str(Pxx_den[x]) + ","

test data2 = {
"software_version": rh_software_ version,
"timestamp': timestamp,
"gain': tb.get_gain0(),
"data'': data_str,
"short_name': short _name,
"uncertainty': uncertainty,
"longitude: longitude,
"sample_rate': tb.get_samp_rate(),
"mac_address'': mac_address, # e.g. b827eb228478
"latitude”: latitude,
""center_frequency': fcen,
"metadata: {''nfft": nfft,
"fmax': fhi,

Approved for public release; distribution is unlimited.

31

scan_type': "linear",

"detrend”: "True",
“report_type': 'periodogram®,
"nsamples™: nsamples_current,
"antenna': "default,

"actualGain™: tb.get _gain0(),
"overlap': overlap_current,

#'window': "‘numpy.hanning’,
"window': window_type,
“fmin": flo,

“'zero_pad to': O,
"noverlap™:

int(overlap_current*tb.get vector_size()),
"ig_data': i1g_data
3
s
#print test_data2["metadata’]
return json.dumps(test _data2)

B e T A e e A e e e e T T e e T
HHHH AR A

Send_data

B R R R R R R
HHHH R

def send_data(formatted data):
global last_trace_time
global send _data flag

if send_data_flag == 2:
current_time = time.time()
if current_time - 1 > last_trace_ time:

client.publish("radiohound/clients/data/"+mac_address,\
payload=formatted_data)
last_trace_time = time.time()
elif send _data flag ==
pass

client.publish("radiohound/clients/data/"+mac_address,\
payload=formatted_data)
send_data flag = 0
else:
pass

POST_LOCATION = "http://radiohoundl.crc.nd.edu/storedata/"

TIMEOUT = 5 # We have found that the timeout needs to be
greater than 1 for consistent ingestion of data

req = urllib2._.Request(POST_LOCATION)

req.add_header("Content-Type®", "application/json®)

response =
urllib2_urlopen(req, json.dumps(formatted_data))

print response.getcode()

Approved for public release; distribution is unlimited.

32

HHHA R R R
HEHH R

Main

HHHA R R R
HEHH

det main(top_block_cls=top_block, options=None):
global tb, msg queue
global T _min_current, T _max_current, overlap_current,
nsamples_current
HHHH R
MQTT Init
HHHH R
client.on_connect = on_connect
client.on_message = on_message
client.connect(broker_ip)
client.loop_start()
R T G e T T e T e e

iT StrictVersion(Qt.qgVersion()) >= StrictVersion(""'4.5.0"):
style = gr.prefs().get _string("qtgui-, "style”,
"raster”)
Qt.QApplication.setGraphicsSystem(style)
gapp = Qt.QApplication(sys.argv)

#client_publish("radiohound/clients/command_to_all",payload=st

r(i))

#client.publish("radiohound/clients/command/"+mac_address,payl
oad=str(i))

heartbeat

#client_publish("radiohound/clients/announce/"+mac_address, pay
load=str(i))

#client.publish("radiohound/clients/status/"+mac_address,paylo
ad=str(i))

tb = top_block_clsQ
tb.start()

tb.vector_size

#tb.show()

time2 = time.time()

print “"Time:",time2-timel
timel = time.time()
ave_length =16

Approved for public release; distribution is unlimited.

33

vector_size = tb.get vector_size()
block_size = 4 * vector_size
nsamples_default = 16384

num_aves = nsamples_default/vector_size
samp_rate = tb.get_samp_rate()

f min_current = tb.get freq0() - samp_rate/2;
f_max_current = tb.get_freq0() + samp_rate/2;
overlap_current = 0.5;

nsamples_current = 16384;

#print vector_size, block_size, num_aves

main loop
while True:
if len(msg_queue) > O:
first_msg = msg_queue.pop(0)
parseJson(first_msqg)

send_heartbeat()
vec_list = parse_sdr_data(tb.msgq_out.delete_head() -\
to_string(),tb.get vector_size()) # this indeed
blocks

data = vec_ list[0]

T,Pxx_den =
signal .welch(data,samp_rate_current,nperseg=nfft)

formatted _data = format_data for_ tx(Pxx_den,data,tb)

send_data(formatted_data)

#break
#print data#[255:258]

if _ name_ == main :
main()

Approved for public release; distribution is unlimited.

34

Appendix D. Window Types

Approved for public release; distribution is unlimited.

35

There are several window types that can be selected. These windows applied to the
time-domain data vectors before performing frequency transforms on them. The list
of window types is as follows:

« "boxcar"

« "blackmanharris”
« "blackman"

. triang"

« "barthann"

« "hamming"

« "hann"

« "bartlett”
. "flattop™

. "parzen"

« "bohman"
. "nuttall”

Approved for public release; distribution is unlimited.

36

List of Symbols, Abbreviations, and Acronyms

API
ARL
FFT

GPS
GR

SBC
SDR
USB
USRP

application programming interface
US Army Research Laboratory
fast Fourier transform

global positioning system

GNU Radio

GNU Radio Companion

Internet Protocol

in-phase and quadrature
JavaScript Object Notation

media access control

mobile ad-hoc network

Message Queue Telemetry Transport
University of Notre Dame

radio frequency

single-board computer
software-defined radio

universal serial bus

Universal Software Radio Peripheral

Approved for public release; distribution is unlimited.

37

1 DEFENSE TECHNICAL
(PDF) INFORMATION CTR
DTIC OCA

2 DIRARL
(PDF) RDRL DCM
IMAL HRA MAIL & RECORDS
MGMT
RDRL IRB
TECH LIB

1 GOVT PRINTG OFC
(PDF) A MALHOTRA

2 ARL
(PDF) RDRL SERW
N TESNY
C DIETLEIN

1 ALION SCIENCE AND
(PDF) TECHNOLOGY
D GALANOS

Approved for public release; distribution is unlimited.

38

	List of Figures
	1. Background/Introduction
	2. Software Description
	2.1 GRC Blocks
	2.2 GR/Python Data Interface
	2.3 Functions
	2.4 Settable Parameters

	3. Network
	3.1 MQTT
	3.2 GPS

	4. Conclusions
	5. References
	Appendix A. Output Format, In-Phase and Quadrature (IQ) Data in the Header
	Appendix B. Welch’s Method
	Appendix C. Program Listing
	Appendix D. Window Types
	List of Symbols, Abbreviations, and Acronyms

