

AFRL-RY-WP-TR-2017-0163

SAFETY ON UNTRUSTED NETWORK DEVICES (SOUND)

Karen Uttecht

BAE Systems

OCTOBER 2017
Final Report

Approved for public release; distribution is unlimited.

See additional restrictions described on inside pages

STINFO COPY

AIR FORCE RESEARCH LABORATORY
SENSORS DIRECTORATE

WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7320
AIR FORCE MATERIEL COMMAND

UNITED STATES AIR FORCE

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for any purpose
other than Government procurement does not in any way obligate the U.S. Government. The fact that
the Government formulated or supplied the drawings, specifications, or other data does not license the
holder or any other person or corporation; or convey any rights or permission to manufacture, use, or
sell any patented invention that may relate to them.

This report was cleared for public release by the Defense Advanced Research Projects Agency
(DARPA) Public Affairs Office (PAO) and is available to the general public, including foreign
nationals. Copies may be obtained from the Defense Technical Information Center (DTIC)
(http://www.dtic.mil).

AFRL-RY-WP-TR-2017-0163 HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION
IN ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

This report is published in the interest of scientific and technical information exchange, and its publication
does not constitute the Government’s approval or disapproval of its ideas or findings.

*Disseminated copies will show “//signature//” stamped or typed above the signature blocks.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YY) 2. REPORT TYPE 3. DATES COVERED (From - To)

October 2017 Final 29 September 2011 – 30 June 2017
4. TITLE AND SUBTITLE

SAFETY ON UNTRUSTED NETWORK DEVICES (SOUND)
5a. CONTRACT NUMBER

FA8650-11-C-7189
5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER
62303E

6. AUTHOR(S)
Karen Uttecht

5d. PROJECT NUMBER
3000

5e. TASK NUMBER
YW

5f. WORK UNIT NUMBER
N/A

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBERBAE Systems

600 District Avenue
Burlington, MA 01803

9. SPONSORING/MONITORING AGENCY NAME(S) AND
ADDRESS(ES)

Air Force Research Laboratory
Sensors Directorate
Wright-Patterson Air Force Base, OH 45433-7320
Air Force Materiel Command
United States Air Force

Defense Advanced
Research Projects
AgencyDARPA/IA
675 North Randolph
Street
Arlington, VA 22203

10. SPONSORING/MONITORING AGENCY
ACRONYM(S)
AFRL/RYWA

11. SPONSORING/MONITORING AGENCY
REPORT NUMBER(S)
AFRL-RY-WP-TR-2017-0163

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES
PA DISTAR Case number 28440, Clearance 18 Sept. 2017. Paper contains color.

14. ABSTRACT
SOUND achieves resilient distributed systems by enabling Communities of Trust based on mutual suspicion,
transparent accountability, formal methods, and differentially more reliable. The SOUND approach included:
Communities of Trust: Using Introduction-Based Routing (IBR) and Reputation algorithms to dynamically establish and
adapt trust levels among computational agents. This allowed well-intentioned agents to collaboratively identify and
neutralize rogue agents. Accountability: Explored Accountable Virtual Machines (AVM) and developed mechanisms for
supporting different levels of detailed auditing. Pillars of Trust: SOUND Communities are made dramatically more
secure by having only a few trustworthy nodes on a network. Formal Methods: Proved correctness and security using
formal methods to create the Simple Unified Policy Programming Language (SUPPL). The SOUND was demonstrated
at PACOM, NAVSEA NSWC Research lab, and LSD-41 labs to show how it can work at scale to protect a ship
network.

15. SUBJECT TERMS
Communities of trust, SAFE architecture, adaptable resiliency for computing architectures

16. SECURITY CLASSIFICATION OF: 17. LIMITATION
OF ABSTRACT:

SAR

18. NUMBER
OF PAGES
51

19a. NAME OF RESPONSIBLE PERSON (Monitor)
a. REPORT
Unclassified

b. ABSTRACT
Unclassified

c. THIS PAGE
Unclassified

Tod Reinhart
19b. TELEPHONE NUMBER (Include Area Code)

N/A
Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39-18

i

Approved for public release; distribution is unlimited.

TABLE OF CONTENTS

Section page

LIST OF FIGURES .. ii
ACKNOWLEDGMENTS ... iii
1.0 SUMMARY ... 1

2.0 INTRODUCTION ... 3

2.1 Problem Description ... 3

2.2 SOUND Solution ... 3

2.3 Background .. 4

3.0 METHODS, ASSUMPTIONS, AND PROCEDURES ... 10

3.1 Research Methodology ... 10

3.2 Baseline System: Integration of IBR, QuanTM, and AVM ... 10

3.3 New Focus: Reputation .. 11

3.4 Assumptions ... 13

3.5 Red Team ... 13

4.0 RESULTS AND DISCUSSION .. 14

4.1 Experiments .. 14

4.2 SOUND Platform ... 17

4.3 Tests ... 25

4.4 Demonstrations... 27

4.5 Publications .. 37

5.0 CONCLUSIONS.. 40

5.1 Recommendations .. 40

6.0 REFERENCES .. 41

LIST OF ACRONYMS, ABBREVIATIONS, AND SYMBOLS ... 43

ii

Approved for public release; distribution is unlimited.

LIST OF FIGURES

Figure ..page

Figure 1: Introduction-Based Routing Active Network Defense Solution 5
Figure 2: Introduction of Host A to Host E via B, C and D ... 5
Figure 3: Architecture for Quantitative Trust Management ... 7
Figure 4: An Example Keynote Credential ... 7
Figure 5: Simplified Example: Accountability in a Multiplayer Game .. 9
Figure 6: SAFE and SOUND Experiment Setup .. 15
Figure 7: Experimental Setup, Scenario, Variables, and Assumptions .. 15
Figure 8: Rate of Contamination With and Without Added SAFE Servers 16
Figure 9: Community of Trust .. 17
Figure 10: SOUND Architecture with IBR Modifications ... 22
Figure 11: Sample SUPPL Code... 24
Figure 12: BMOC Interface .. 25
Figure 13: RotoRouter Prototype .. 28
Figure 14: Resource Usage and Throughput .. 30
Figure 15: Attack Test .. 30
Figure 16: Network Configuration for PACOM Demonstration .. 32
Figure 17: Architecture for SOUND+NPD .. 34
Figure 18: Network Configuration for NSWC Lab Demonstration ... 35
Figure 19: Notional Demonstration Architecture and Features .. 36
Figure 20: Layout of LSD-41 Demonstration Network .. 37

iii

Approved for public release; distribution is unlimited.

ACKNOWLEDGMENTS

The following institutions and individuals joined BAE Systems as part of our SOUND team and
we would like to acknowledge their contributions to the work described herein:

Institution Contributors
BAE Systems Tim Anderson, Ray Bahr, Nicholas Brown, Robert Bryant, Tyrone

Chao, David Chen, Berj Chilingirian, Silviu Chiricescu, Greg
Eakman, Russell Elliott, Joseph Fahey, Kendall Farnham, Michael
Figueroa, Victor Firoiu, Karl Fischer, Chris Frederickson, Martha
Gonsalves, Hillary Holloway, Suraj Iyer, Andrew Kaluzniacki,
Basil Krikeles, David Lebling, Clifton Lin, Andrew Macbeth, Josh
McGrath, Ed Pelletier, Balasubramaniam Ravichandran, Jothy
Rosenberg, Howard Rubenstein, Andrea Ruggiero, Kathy Ryall,
Deborah Stott, Greg Sullivan, Andrew Sutherland, Yelena
Taytslina, Michelle Torrelli, Peter Trei, Karen Uttecht,
Christopher White

University of Pennsylvania Arthur Azevedo de Amorim, Andre DeHon, Andreas Haeberlen,
Ben Karel, Eric Keller, Albert Kwon, Alex Marder, Jonathan
Smith, Antal Spector-Zabusky, Steve Zdancewic

Portland State University Robert Dockins, Andrew Tolmach

Apogee Research Greg Frazier, Anders Jagd

Good Harbor Security Risk
Management

Richard Clarke, Lisa Davis, Jacob Gilden, Emilian Papadopoulos,
Evan Sills

Red Balloon Security Calvin Chu, Ang Cui, Peter Minzicu, Joseph Pantoga

Consultants Jason Bloomberg, Patrick Harding, David Linthicum, Thomas
Knight, Greg Morrisett, Andrew Myers, Benjamin Pierce, Olin
Shivers

http://www.cis.upenn.edu/%7Eaarthur/

1

Approved for public release; distribution is unlimited.

1.0 SUMMARY
The Department of Defense (DoD) faces threats from both outside and within, and no single
system can be reliably secured against all threats. This is further complicated by the fact that
missions operate over large, heterogeneous sets of computing resources, potentially from
multiple jurisdictions. Insider threats are increasingly prevalent, and one cannot assume that
because something or someone is allowed within the perimeter, that they may not be the source
of a future attack. Additionally, operators are inundated with alerts from many different sensors,
making processing the massive amount of information in a timely manner difficult.
The Safety On Untrusted Network Devices (SOUND) system provides a secure, resilient,
scalable distributed computing platform upon which mission-oriented distributed applications
can be built that are both resistant to and capable of adapting to an attack to continue a given
mission.
The SOUND program investigated bringing together three promising technologies: Accountable
Virtual Machines (AVM), Quantifiable Trust Management (QuanTM) and Introduction-Based
Routing (IBR). Over the course of the program, we found that QuanTM was far too complicated
for the needs of the military, and that AVM was not able to protect against exploits which
utilized application flaws.
As a result of these discoveries, we chose to shift directions a bit and combine IBR with a set of
SOUND Services: SOUND Trust Service (STS), SOUND Policy Service (SPS), Sound Identity
Service (SIS), SOUND Reputation Service (SRS), SOUND Data Service (SDS), and a SOUND
Connection Service (SCS), based on IBR. In addition to these services, we developed a SOUND
Sensor Framework (SSF) to integrate sensors and SOUND Administration Console (SAC) to
allow for administration of the system.
We did research on existing reputation algorithms and chose to base the SOUND Reputation
Service on the REGRET algorithm. By integrating the reputation service with IBR, we were able
to create secure Communities of Trust (CoTs), inside which users and hosts would have a
reputation which tracked them throughout the network. We were able to provide accountability
and monitoring through our Sensor Framework and by utilizing reputation to isolate suspicious
members from the CoT. Members of the CoT could have different levels of trust for other
members, providing a differentially reliable decentralized trusted environment. SOUND is able
to incorporate existing commercial or government sensors alerts into the reputation. We found
that reputation provided a way for operators to view the health of the network in a simple way
which reduced the alarm fatigue.
We experimented with how we could build Pillars of Trust – nodes with a higher level of
protection by performing experiments through simulation showing how if a few nodes in the
network had a higher level of trust, it enhanced SOUND’s ability to contain the attack. We built
a prototype of a SOUND Router which is built on a formally verified secure processor.
In order to define policies within SOUND, we created a SOUND Policy Service and the Simple
Unified Policy Programming Language (SUPPL), which allows formal specifications of policies
in a way that allows conflicts between policies to be discovered before they create problems in
deployment.

2

Approved for public release; distribution is unlimited.

We demonstrated the SOUND System to the Pacific Command (PACOM), Defense Information
Systems Agency (DISA), Special Operations Command (SOCOM), as well as deploying it in
several of the shipboard control system labs at NAVSEA Naval Surface Warfare Center
(NSWC) in Philadelphia. We integrated the SOUND System with another MRC project,
Network Path Diversity (NPD) and showed how the two systems were able to secure Navy
shipboard networks. NAVSEA agreed to sign a Technology Transfer Agreement (TTA) to
deploy SOUND to a ship.
Our recommendation is that the government continue pursuing deployment of SOUND to a
Navy vessel for testing and to the fleet. We further recommend that SOUND be utilized for
securing any Information Technology (IT) or Industrial Control System (ICS) network from
intrusion, and would still be useful for SOCOM or DISA to consider.

3

Approved for public release; distribution is unlimited.

2.0 INTRODUCTION

2.1 Problem Description
Computational support for today’s DoD missions operate over a large, heterogeneous, distributed
set of computing resources—from personal mobile devices to massively parallel computers
managing millions of connections and petabytes of data. These distributed components must
cooperate across agencies and across coalitions of allies; each partner brings independently-
managed systems of varying reliability and trust into the distributed resource mix, and each has
different policies and legal restrictions.
Today, we cannot reliably secure any single system against cyber attacks, even when it is wholly
owned by a single agency with a single mission. Computations can be disrupted (denial-of-
service); machines can be co-opted (taken over and used by attacker); data can be corrupted and
stolen. The problem is even further beyond the state-of-the-art when considering a coalition of
machines under different jurisdictions. There is currently no principled way to describe what
such systems should be doing and thereby differentiate proper and compliant agents from rogue
actors.
In addition to threats from outside of an organization, we are also faced with insider threats. It is
not enough to simply protect the boundaries of our networks, we must assume that the threat can
come from within.
Ineffective legacy practices have failed to counter contemporary information security and
privacy threats. Modern IT operates on large, heterogeneous, distributed sets of computing
resources, from small mobile devices to large cloud environments that manage millions of
connections and petabytes of data. Protection must often span organizations with varying
reliability, trust, policies, and legal restrictions. Centrally managed, host-oriented trust systems
are not flexible enough to meet the challenge. New research in distributed and adaptive trust
frameworks shows promise to better meet modern needs, but lab constraints make realistic
implementations impractical.
Safety On Untrusted Network Devices (SOUND) provides secure, resilient, scalable distributed
computing platform upon which mission-oriented distributed applications can be built that are
both resistant to and capable of adapting to an attack to continue a given mission.

2.2 SOUND Solution
Safety on Untrusted Network Devices (SOUND) is a new security platform built from the
ground-up to verifiably protect communications up to and within applications. Legacy solutions
are compartmentalized, focusing on just the systems and networks that carry traffic, independent
of content, or are application driven, disregarding behavior that occurs at lower levels of the
network stack. SOUND unifies the tools organizations already have in order to proactively
protect communications, separate outsiders from insiders, and track misbehavior. SOUND’s
primary assumption is that the technical environment is vulnerable to attack. It trusts
applications, their users, and the subsystems applications and users operate on, only as long as
they behave appropriately [FUJ15].

4

Approved for public release; distribution is unlimited.

The SOUND research goal is to create a digital immune system that can remember the damage
caused by communications behavior and automatically reacts to contain that damage and its
source. SOUND eliminates digital anonymity by establishing a “Community of Trust” (CoT) in
which identifiable members are monitored for their adherence to defined rules of behavior. Each
CoT embodies three common resilience characteristics, including:

• Accountability – Compare individual behavior against a common community policy. This
capability was initially based on the Accountable Virtual Machines (AVM) technology [6].

• Protected Communications – Anchor network communications and allow members to report
on community interactions. This capability evolved from the Introduction Based Routing
(IBR) technology [7].

• Reputation – Provide a framework for measuring member reputation. This capability was
initially based on the Quantitative Trust Management (QuanTM) technology [8].

2.3 Background

2.3.1 Introduction Based Routing
Given enough attempts, even a low-probability cyber attack (e.g., spam, password guessing,
Structured Query Language (SQL) injection, port scanning, Distributed Denial of Service
(DDoS)) will eventually succeed. As attackers rattle the proverbial doorknob looking for a way
in, each failure is observable and should serve to identify them as attackers, but, in today’s
networks, they usually go unidentified, and there are no repercussions for such misbehavior.

In contrast to the bank vault model—preventing malfeasance via (metaphorical) armor plating
which strictly controls what an actor can and cannot do, Introduction-Based Routing (IBR)
follows the shopping model, in which each individual actor identifies safe partners with whom to
conduct business. When we walk into a store to make a purchase, it is with some confidence that
we will not be “ripped off”, because the store does not want to risk losing all the future business
of not only that customer, but the customer’s friends, as well. Choosing where to shop is a
repeated game; misbehavior in one round impacts the reputation of involved parties in
subsequent rounds, and their subsequent willingness to interact. Unfortunately, within current
Internet Protocol (IP) standards, every interaction is a single-play game. Furthermore, we do not
currently use information from other, trusted nodes to assist with establishing reputations.
IBR is an active network defense that changes the economics of cyber attacks by requiring that
new connections be formed by way of “Introductions.” Figure 1 (a) shows the introduction
handshake: 1. Requestor sends (R)equest to Introducer. 2. Introducer sends (O)ffer to the Target.
3. Target sends (A)cceptance to Introducer. 4. Introducer sends (E)stablished to Requester. The
connection is established and exists until closed by either party. Figure 1 (b) shows a notional
architecture of how IBR is deployed on a network. The IBR Proxy Server allows hosts to
participate in IBR simply by routing their packets via the proxy server. The IBR IP Bridge
connects the IBR network to the Internet. It acts as an Introducer to the Internet nodes, causing
them to have a persistent reputation in the IBR network.

5

Approved for public release; distribution is unlimited.

(a) The Introduction Handshake (b) Notional IBR Architecture

Figure 1: Introduction-Based Routing Active Network Defense Solution

By collecting positive and negative feedback about interactions, IBR participants
(independently) assesses the trustworthiness of other participants. Nodes can decide for
themselves whether to participate in connections, whether as introducers or endpoints.
Misbehavior not only degrades the reputation of the bad actor, but also of those hosts that were
willing to introduce it. When a system’s reputation is poor, it will be isolated from the network.
IBR is a locally-managed, peer-to-peer federation of nodes where observations and reputations
are not shared (other approaches, like eBay’s, rely on centrally-managed reputations).
The basic idea of establishing a connection via introductions is illustrated in Figure 2. When
Host A wishes to establish communications with Host E, it contacts a few “neighboring” hosts
that are well trusted based on past experience. These hosts (such as Host B) provide
introductions to other hosts (such as Host C) until A is put in touch with Host E. This
remembered pedigree allows Host A to hold both the end host and the introducers accountable
for poor behavior. At any given point in this process, introducing hosts may refuse to offer an
introduction for hosts that they do not trust, thus isolating bad actors from the system. To get the
system started, each node must have some a priori connections, established outside of IBR.

Figure 2: Introduction of Host A to Host E via B, C and D

6

Approved for public release; distribution is unlimited.

Although IBR provides a modest set of misbehavior sensors, IBR emphasizes integration with
each site’s existing set of commercial misbehavior sensors.
The IBR Protocol does not specify the policies by which participants label behavior as malicious
and update their own opinions of other participants, and can operate with large variations in such
policies across the network. Four classes of effective policies discovered over the course of this
research is based on (a) playing tit-for-tat—reporting as a bad actor anyone who reports you as a
bad actor; (b) incrementing and decrementing one’s reputation of an interaction partner for good
and bad behaviors at different rates, which must be roughly tuned to detect false alarm rates; (c)
adjusting the reputation of the subject of a report more when the reporter has a high reputation;
and (d) forgiving bad behavior—allowing a bad reputation to recover—over time.
IBR is implemented as an Internet Protocol (IP) based on a small number of message types,
corresponding to such events as offering or accepting an introduction, closing a connection, or
sending post-connection feedback to an introducer. IBR uses the IPsec tunneling protocol, and
most messages use public/private key encryption to verify endpoint identity.
By design, IBR is a “drop in” solution, with low barriers to adoption. It can be adopted and
deployed piecemeal, is open sourced, scalable, has low latency cost, requires no central
administration, and require no changes to the entrenched infrastructure.
Simulations and game theoretic analyses over a wide range of network topologies, numbers of
attackers, detector false positive and negative rates, and policy parameters provides evidence that
widespread adoption of restrictive introduction and acceptance policies is strategically stable;
that IBR adoption need not be universal to sharply reduce misbehavior, including “reputation
attacks”; and that IBR is difficult to “game”.

2.3.2 Quantitative Trust Management (QuanTM)
A major challenge in determining trust in a decentralized setting is selecting robust Trust
Evidence. How do we know who is making a request and if they are authorized to perform such
a request? With what confidence can we draw these conclusions? Such evidence can be static,
such as possession of cryptographic keys or a cryptographically signed certificate as in the
original Trust Management proposal (implemented in KeyNote [BFK98]). However, as we deal
with varying policies among different agencies assembled to contribute to a common mission,
the evidence must be context-dependent, as in Dynamic Trust Management (DynTM)
[BKL+09], with its sophisticated, context-sensitive authorization policies. When agents are
subject to compromise and when we must continually make judgements about new agents in a
system authorized by decentralized authorities, the evidence and judgements may need to be
policy-, context- and behavior-dependent, as in Quantitative Trust Management (QuanTM)
[WAC+09].
Figure 3 represents the QuanTM architecture. The three boxes (demarcated with dashed lines)
represent the Trust Management (TM), Reputation Management (RM) and Decision
Management (DM) subsystems of QuanTM, moving from left to right in the figure.

7

Approved for public release; distribution is unlimited.

Figure 3: Architecture for Quantitative Trust Management

On the left side, a request and credentials authorizing that request are presented. An example
credential is represented in Figure 4.

Authorizer: SecDef
Licensees: SecARMY || SecNAVY || SecAIR
Conditions:
operation == "query" -> "True";
operation == "update" -> "Maybe";
Signature: "rsa-sig:1294..."

Figure 4: An Example Keynote Credential

This credential represents that an authorizer SecDef authorizes two operations query and update,
to three Licensees, for some database access. Compliance values are computed using the
conditions values, with True meaning trust, False meaning don’t trust, and Maybe meaning the
system must consult additional policy rules to make a trust decision.
The TM subsystem parses the KeyNote language and computes a Compliance Value (CV) that is
passed (over the RM subsystem in the figure) to the DM subsystem. The TM subsystem also
constructs (using the dependencies inherent in delegated authorities) a trust dependency graph

8

Approved for public release; distribution is unlimited.

(TDG) annotated with compliance values computed using local policies. This TDG is what is
passed to the RM subsystem.
The RM subsystem consults observations stored in a Reputation Database that represent learned
knowledge in QuanTM. A Reputation Algorithm is applied to the TDG object, computing trust
values (TVs) using the KeyNote Compliance Values and the behavioral data from the Reputation
Database; the Reputation Quantifier produces a final Trust Value (TV), which is passed to the
DM subsystem. In the QuanTM paper, the Reputation Database was assumed to be pre-
populated; in our proposed SOUND effort, an initial database and feedback mechanism derived
from IBR and audit will flow into the system at the arc on the lower right, feeding into the
Reputation Database.
In the DM subsystem, the CV is combined with the context information (e.g., indications of a
high alert) before being passed to the Decision Maker. This injection of context is where the
Dynamic Trust Management is achieved; the Decision Maker combines the information from the
TM subsystem and the Reputation Management subsystem using a Decision Meta-Policy and
determines an Action, shown emerging from the right hand side of the figure. The Decision
Meta-Policy is application-dependent, but might represent the application’s preferences for trust
evidence and how these are affected by context and observed behaviors. Feedback on the action
is incorporated into the Reputation Database.
Chang, et al. [CVW+11] have demonstrated the application of a behavior-based reputation
system to the Border Gateway Protocol (BGP), a highly decentralized information exchange for
Internet path information. The derivation of probabilistic measures of trust for Autonomous
Systems (ASs) on the Internet is shown to be useful to increase routing performance and dampen
the effect of misbehaving nodes.

2.3.3 AVM
Accountable Virtual Machines (AVM) provides the capability to audit software system
executions through logging the execution and comparing it to a known-good version. This
auditing system does not require trust in the hardware or the accountable virtual machine monitor
on which the binary executes. AVMs provide users with the capability to detect faults, identify
faulty nodes and to provide evidence of which machine caused the fault. The AVM must
maintain a log with enough information to reproduce the entire execution and cryptographically
record each outgoing message to link it to the execution log. AVM then detects faults by
replaying the execution using a known-good copy of the binary and checking the visible
behavior is identical to the previously run version. AVMs can do this with any binary image that
can be run inside a VM.
If we are going to build a Community of Trust out of a population that includes malicious and
compromised agents, how do we establish trust? If agents trustworthiness can change over time
(e.g. they are compromised, or a sleeper agent awakens), how do we detect misbehavior and
reassess trust?
In order to check whether a system is performing satisfactorily, each element of the system must
provide tamper-proof evidence. Computational elements range from individual instructions on a

9

Approved for public release; distribution is unlimited.

host, to functions, to processes, to ensembles of processes on a single host, to a host as a black
box, to distributed ensembles. [HKD07, HARD09, HK09, BDHU09, HARD10, Hae09].
In an accountable system, each node is responsible for performing some specific function, such
as storing files or forwarding packets. This function is called the node’s expected behavior.
However, it is assumed that some nodes may deviate from their expected behavior, e.g., because
they are faulty or have been compromised. The goal of accountability is a) to detect when such
misbehavior occurs; b) to identify misbehaving nodes; and c) to produce evidence that
irrefutably links the misbehavior to a specific node.
Existing accountability techniques [HKD07, HARD10] generate evidence as follows. First, each
node is required to maintain a tamper-evident log of its local actions, such as sending or
receiving messages, certain processing steps, etc. The logs of different nodes are intertwined
such that, if a node tampers with its local log or maintains an incomplete log, at least one other
node is guaranteed to detect this. Second, each node is associated with a set of witnesses
(auditors) that periodically audit that node’s log. Thus, as long as each node has at least one
correct witness, misbehaving nodes cannot escape detection: If they misbehave but maintain a
correct log, the witnesses will discover the misbehavior; if they attempt to cover their traces, this
will be discovered.
Figure 5 illustrates this approach in the context of a multiplayer game. Each of the three players
maintains a tamper-evident log of his or her actions; Eve has modified her game software to gain
unlimited ammunition (left). When Alice becomes suspicious of Eve’s good performance, she
can audit her log and check it for tampering (middle); she then replays the log using her own
copy of the game software to check for cheating (right). Since Alice’s copy of the game software
has not been modified, the behavior during replay will be different. Alice now knows that Eve
must have been cheating, and she can use the copy of Eve’s log to convince Bob.

Figure 5: Simplified Example: Accountability in a Multiplayer Game

10

Approved for public release; distribution is unlimited.

3.0 METHODS, ASSUMPTIONS, AND PROCEDURES
SOUND (Safety On Untrusted Network Devices)’s goal is to provide a secure, resilient, scalable
distributed computing platform upon which mission-oriented distributed applications can be built
that are both resistant to and capable of adapting to an attack to continue a given mission.
In order to achieve this goal, we provide two mechanisms:

1. Communities of Trust that provide an “immune system” for detecting and adapting to
misbehaving elements of the distributed system, and

2. Highly reliable and trustable infrastructure nodes from which we can bootstrap a reliable
“public health infrastructure” and provide oversight for the large number of mutually
suspicious nodes in the network.

3.1 Research Methodology
Our research and development methodology followed an Agile/Scrum approach where design
and research direction were motivated by a number of “User Stories”, which described how our
eventual users would want to use the system, and how attackers would try to attack it. We built
the system up by focusing on one type of attack by a persistent malicious adversary per sprint.
As we got further along in the project, our approach was heavily motivated by what we learned
from our transition partners. We would demonstrate systems to potential transition partners, get
feedback on what was useful to them and what was not, and use that to determine what the next
steps should be. User stories have been documented in Appendix F of the SSDD.
As a result of this methodology, our methods for researching solutions to the problem evolved
over time. In section 3.2, we describe the initial approach and in section 3.3, we describe what
the approach evolved to become.

3.2 Baseline System: Integration of IBR, QuanTM, and AVM
Our baseline system merged three promising technologies: Introduction Based Routing (IBR),
Quantitative Trust Management (QTM), and Accountable Virtual Machines (AVM).
For detecting and adapting to misbehaving elements in a heterogeneous distributed system, our
dynamic Communities of Trust was based on a novel integration of research in Accountability,
Reputation, and Protected Communications. Initially based on three founding technologies –
Accountable Virtual Machines (AVM), Quantitative Trust Management (QTM), and
Introduction-Based Routing (IBR) – our research efforts extended beyond those technologies to
develop a more powerful and practical SOUND implementation that would support real
operational environments.
In more detail, SOUND a breakthrough in security and resiliency of heterogeneous networked
systems by innovating in the following four areas:
1. Communities of Trust: SOUND implements an innovative combination of Introduction

Based Routing with Quantitative Trust Management. This combination was intended to
support a self-organizing, dynamic web of trust, backed by context-sensitive policies. This

11

Approved for public release; distribution is unlimited.

would solidify distributed trust management by extending formal methods developed under
the SAFE program to the SOUND communications layer, resulting in dramatically more
trusted systems than is possible currently. The combination of these technologies would
allow SOUND to implement unforgeable communications, such as connections between
distributed processes.

2. Accountability and Monitoring with Mutual Suspicion: The plan was to have SOUND
apply a fine-grained protection model that focuses on the root cause of misbehavior instead
of just the system that is hosting the damage. For this to work, SOUND would implement an
innovative multi-layer attribution technique that will allow SOUND to attach sensor
observations to all of the identities involved in a detected misbehavior event. We also
investigated extending work by Haeberlen [HARD10, Hae09] to enable tamper-evident logs
and audit trails on endpoint hosts, acting as a SOUND sensor to enhance accountability with
the host, however we found that this didn’t provide protection for application flaws.

3. Pillars of the Community: Establishing a differentially reliable decentralized trusted
environment: The SOUND project took on a two-pronged approach to enhance the inherent
trust in an operational environment. To push SOUND resilience properties closer to the
endpoint hosts without causing significant impact to host functions, SOUND needed to
implement a distributed trust management capability that monitors user and host activities.
This will allow a more rapid deployment of reputation management in any communications
environment. Then, SOUND development would extend the SAFE implementation from the
CRASH program to allow SAFE hosts to operate in a heterogeneous distributed system of
differentially reliable elements (like accredited public health system hospitals). SAFE-based
elements would consist both of general purpose (but highly trusted) compute servers running
critical computing tasks (e.g. auditing, introducing), and also of embedded devices (e.g.
routers) obtained by creating specializations of the SAFE architecture. A distributed set of
SAFE-based nodes will provide a Trusted Computing Base (TCB) for any MRC system.

4. Formal Specification and Model-based Programming: SOUND investigated
implementing formal specifications for all services, protocols, and computational platforms
in a SOUND system that provide interfaces for external subscription to SOUND data and to
provide feedback into SOUND decisions. To support programming of policy and sensor
control, SOUND would also include a high-level policy language that allowed direct
specification of desired system states and reduces conflict between SOUND control
authorities.

3.3 New Focus: Reputation
After achieving minimal results in attempts to merge the SOUND technologies into a
comprehensive framework, the SOUND team modified its approach to emphasize development
of a research platform that could compute reliably in the face of attacks known and unknown on
a differentially trustable set of distributed compute nodes with variable susceptibility to attack.
This new approach sought to apply an agile development methodology for building a new
SOUND platform that would implement and extend the key research technologies in alignment
with a series of plausible attack scenarios with dangerous potential consequences to explore the
platform's resilience response. This new SOUND platform is based on implementing an

12

Approved for public release; distribution is unlimited.

Observe-Orient-Decide-Act paradigm through a set of networking, authentication and trust
services that define and enforce Communities of Trust, providing an immune system against
attacks.
A shift towards transition caused us to further modify our approach to emphasize SOUND
features that will support demonstration to PACOM and other capabilities that build a broader
transition story. SOUND reputation will continue to evolve, but we now expect development to
be limited to a single SOUND community with constrained reputation portability. We shifted
emphasis to address the security considerations of the SOUND platform itself and focus on
building stronger core capabilities.
Our modified approach innovated in the four areas in the following ways:
1. Communities of Trust: Deeper investigation into utilizing QuanTM for trust management in

SOUND found that the architecture was much too complex and couldn’t be adapted easily to
tracking variable trust, instead of determining complex static trust. The IBR reputation
system was designed with network security in mind, but didn’t have a concept of a
Community of Trust, each IBR node operated independently. Our discussions with transition
partners made it clear that centralized control and communities would be essential to success,
but so would a system which was understandable enough to be useful to operators. As a
result we chose to extend a reputation algorithm, Reputation in Gregarious Societies
(REGRET) [SS01], originally designed for reputations in shopping and review systems, to
our needs. The REGRET algorithm combines four components: node A’s opinion of node B,
node A’s opinion of node B’s community, node A’s community’s opinion of node B, and
node A’s community’s opinion of node B’s community. In addition, the method of
incorporating sensor data allows for different classes of behavior to affect the reputation and
decay using definable functions.

2. Accountability and Monitoring with Mutual Suspicion: In choosing to base the SOUND
reputation scheme on the REGRET algorithm, one of our goals was to define a reputation
system which would allow root cause to be determined. We also investigated how SOUND
identities could be attributed to hosts and applications, in addition to individuals. Our
approach was to create a wrapper which would do the appropriate authenticate on behalf of
the application and individual in order to allow legacy applications to be used.

3. Pillars of the Community: Establishing a differentially reliable decentralized trusted
environment: We experimented with how adding provably trustworthy nodes to the network
could bolster the effectiveness of SOUND in a future integration.

4. Formal Specification and Model-based Programming: As our research took shape, we
found that one of the more difficult research problems we needed to address was how to
detect conflicts within a set of policies. Our high-level policy language needed to account
for sets of policies written by different individuals at different times and allow us to formally
reason about policies.

13

Approved for public release; distribution is unlimited.

3.4 Assumptions
In our work on SOUND, we performed our research under a set of assumptions about the
environment SOUND would be operating in, outlined below:

• Insider Threat: We assumed that attacks could come from within the network, from
identities and individuals which were considered trusted.

• Differential Trust: Entities communicating using SOUND may have differential levels of
trust in one another. We needed to build a system that would allow less trustworthy agencies
to connect.

• Zero Day Attacks: We assumed that the attacks may not be ones that could be identified by
signature, but that would be visible by a pattern of multiple behaviors over time.

• Centralized Control: In designing SOUND, we assumed that the organization deploying it
would want control over the entire Community of Trust, as we discovered in discussions with
military agencies.

• Legacy Applications: Originally we assumed that applications would be programmed or
retrofitted explicitly to work with SOUND. We modified this assumption after discussions
with transition partners revealed that this would be extremely difficult to accomplish. Our
later work assumed that existing applications and devices would not be modified.

• Automatic vs Human-in-the-loop: Another original assumption was that SOUND would
operate entirely autonomously, making decisions based on policy and taking action
accordingly. Discussions with transition partners made it clear that until our technology had
been proven and in regular use, transition partners would need a human in the loop, choosing
whether to act on SOUND’s recommendations.

• Authentication: SOUND relies on authentication of users, but our research was not focused
on authentication systems, so we assumed that a deployed system would be integrated with
the customer’s authentication.

• Encryption: SOUND utilized IBR’s integrated IPSec tunnels for encryption, but we also
assumed that a transition partner would specify which encryption technologies were needed
and integrate them into SOUND.

• Unicast vs Multicast: We assumed through most of the project that communication over the
SOUND system would be done via unicast protocols (such as TCP, etc.). When we initially
worked with NAVSEA NSWC, we found out that most communications on shipboard
systems are done via multi-cast.

3.5 Red Team
As part of our testing, we planned to conduct Red Team assessments. In these assessments, a
group of engineers from BAE who worked in the Cyber & Communication Technologies Group,
but not on the SOUND project, would review the code, design and perform attacks against a live
system to internally assess its vulnerabilities.

14

Approved for public release; distribution is unlimited.

4.0 RESULTS AND DISCUSSION
We have organized the results into four main sections. First, a discussion of experiments
performed. Second, a discussion of the SOUND Platform. Third a discussion of the tests run.
Lastly, the demonstrations and lab deployments done during the program.

4.1 Experiments

4.1.1 SAFE+SOUND Experiment
SAFE, developed under the DARPA CRASH program and SOUND were designed to be
companion projects. SAFE focused on the processor and the host, SOUND focused on the
network. We wanted to see how much having a SOUND node running on a SAFE processor
would make a difference in our ability to thwart attacks and whether the two systems would
provide benefits to one another.
SAFE protects only the machine its running on, not the network. It also can’t protect from insider
attack, or bugs within an application. It does protect against the top 20 CWEs (such as buffer
overflow).
In order to do this, we ran simulations to see if SAFE bolstered SOUND and we found that a few
SAFE machines in the network were able to increase the overall security of the network
significantly.

4.1.1.1 Experiment Design
For this experiment we utilized an IBR simulator, which simulated the behavior of IBR and
attacks to see how they would spread within a network. The network was divided into a series of
enclaves, each enclave had a simulated SAFE machine within it. The enclaves were connected
via a backbone of routers. A single node would be deemed compromised and would then
attempt to choose another machine to attack and attempt to attack it. A non-SAFE machine
could be compromised, but would have a percent chance of detecting the attack. A SAFE
machine was considered unable to be compromised, but the compromised machine would still
attempt to attack it and the SAFE machine would therefore report the attack, affecting the
reputation of the attacker. Figure 6 shows the setup for the experiment and Figure 7 describes the
scenario, variables and assumptions.

15

Approved for public release; distribution is unlimited.

Figure 6: SAFE and SOUND Experiment Setup

Figure 7: Experimental Setup, Scenario, Variables, and Assumptions

16

Approved for public release; distribution is unlimited.

4.1.1.2 Results
What our experiment found was that a small number of SAFE machines made a great difference
in how quickly the IBR system was able to contain the attack. (See Figure 8) The SAFE nodes
acted as observers, quickly noticing and reporting the behavior of the infected nodes, which
allowed IBR to stop accepting connections from them. This kept the infection contained to a few
enclaves, instead of spreading across the network.

Figure 8: Rate of Contamination With and Without Added SAFE Servers

However, this experiment assumed the attacker did not know which nodes were SAFE nodes. It
would make sense that if the Adversary had that information, they would program the malware
to avoid the SAFE nodes, therefore reducing the ability for SAFE to protect the network.
Additionally, we realized that this benefit is also true of heterogeneity of the network. In a
network where all nodes are running identity operating systems, malware is capable of attacking
and compromising all of them. But if nodes are heterogeneous, presumably the malware isn’t
able to compromise all of them, but rather a subset. The nodes which are running operating
systems not susceptible would act similar to the SAFE nodes in our experiment.

17

Approved for public release; distribution is unlimited.

4.2 SOUND Platform
This section discusses the resulting SOUND platform.

4.2.1 SOUND Services
SOUND is comprised of a set of distinct and independent services that enhance trustworthiness
by maintaining logical "Communities of Trust" (illustrated in Figure 9) and tracking the
reputation of all community members. Those services reduce reliance on perimeter defenses for
protecting mission operations and enhance control over how information flows across
community boundaries. Their functions are founded on the premises that distributed, cloud-
oriented applications will always have flaws and that SOUND cannot completely trust insiders or
endpoints. Rather, SOUND will operate on a concept of differential trust where each community
member is judged based on its individual actions. The architecture increases attacker workload
through necessity of being a recognized and legitimate community member and of mounting a
coordinated attack against an application and the SOUND platform simultaneously. We designed
the SOUND platform to be a dynamic immune system of services that are capable of controlling
the communications channels between all community members. Those services collectively
support the SOUND Observe, Orient, Decide, Act (OODA) loop, providing the mechanisms
needed to collect sensor information, to interpret sensor observations to detect potentially
damaging behavior, to process those observations against policy to decide how to respond to the
behavior, and to protect the community from the behavior while maintaining mission
effectiveness.

Figure 9: Community of Trust

18

Approved for public release; distribution is unlimited.

SOUND is comprised of the following components / services:

• SOUND Trust Service (STS): STS is the central SOUND decision-making and policy
enforcement engine. STS receives sensor observations and acts on those observations by
applying predefined policies to manage connections, identities, sensor behavior, and
notification of community participants. See Appendix B of the SSDD for more detail.

• SOUND Policy Service (SPS): SPS stores and manages SOUND policies. Policies managed
by SPS include those defining communities, interactions between SOUND communities, and
reputation distribution across SOUND nodes. See Appendix C of the SSDD for more detail.

• SOUND Identity Service (SIS): The common identity management service for all
community participants, providing credentialing and authentication. See Appendix D of the
SSDD for more detail.

• SOUND Reputation Service (SRS): SRS captures and stores Observations as submitted by
community participants, and uses those Observations to calculate whether or not one entity
trusts another. See Appendix K of the SSDD for more detail.

• SOUND Data Service (SDS): The SDS is intended to be a middleman between the
application and the data provider, such as a SQL database, which enforces and maintains
permissions based on SOUND policies and reputations. As this piece was of less interest to
our transition partners, it was later dropped from the SOUND platform.

• SOUND Connection Service (SCS): The SCS is essentially the SOUND version of IBR. It
allows secure connects to be established between members of the Community of Trust, if
their reputation is in good standing.

• SOUND Administration Console (SAC): A console to allow an administrator to manage
the SOUND system, viewing reputations, IBR connections and policies.

• SOUND Sensor Framework (SSF): A framework to integrate sensors. The SSF can
receive alerts via syslog or parse snort logs. It is extensible to allow the addition of new log
formats and sensors in the easiest possible way.

4.2.2 Communities of Trust (CoT)
Participation in a CoT carries an agreement to adhere to a common set of rules. Community
members expect others to behave predictably, and punish those that act outside of acceptable
boundaries. SOUND requires that CoT members have secure network connections to any other
community member they choose to communicate with. Two connection types power SOUND
CoT communications: a priori and introduced connections. The a priori connections are like
those that might exist within a business group, a military command structure, or a similar real-
world community. They represent predefined trusted relationships that SOUND uses to introduce

19

Approved for public release; distribution is unlimited.

members to other members across the community, when the two parties do not have an
established trust relationship. Any SOUND CoT member may serve as an introducer, using a
priori connections to other community members and introducers to build an introduction path.
When all of the introducers along the path agree that the two members may communicate, the
members build a protected introduced connection with which to transmit data.
Integrity and trust of all community members—introducers included—in a CoT is essential to its
operation. To guarantee this level of trust, SOUND promotes accountability by applying an audit
function to all nodes. If the members all operate as expected—for any input the expected output
and only that output is produced—then the community considers them trustworthy and continues
to allow them to participate in the CoT. Once introduced and connected, the members regularly
rate the communication and report back through the introduction chain until the interaction
concludes. While normal behavior will result in a positive rating, any questionable, suspicious,
or blatantly inappropriate behavior will result in a poor rating. This simple model works like
human communities where one’s past behavior and performance directly impact one’s reputation
and therefore one’s ability to have future community interactions. Just as a good reputation leads
to more interactions in human societies, good reputation leads to being allowed to make future
connections in a SOUND CoT.
The implications of this simple model and how it operates are powerful. A CoT member (i.e. a
human actor, an application, or a host) can either be introduced and thus be an insider, or cannot
be introduced and therefore cannot communicate with other CoT members. SOUND records the
history of communication ratings as reputation against member identities and uses policies to
determine what action, if any, it should take relative to misbehavior. SOUND tolerates minor
misbehavior because it may represent a transient user error or something that in isolation is
innocuous, events that analysts often interpret as “false positives.” However, continued “minor
infractions” would eventually result in punitive action. This means a consistent treatment of
misbehavior is applied across a CoT up to and including a complete community access
revocation if sufficient bad behavior is attributed to a member. A badly behaving insider
effectively becomes an outsider and can no longer participate in the community, protecting the
CoT operational integrity and all of its members.

4.2.3 Accountability and Monitoring with Mutual Suspicion
In order to provide accountability, we investigated the use of AVM, but discarded this for the
reasons outlined below. We created a sensor framework and integrated a number of sensors into
SOUND to provide monitoring of community members. Past research suggested that, to protect
community assets, communication should only be allowed if the participants could hold each
other accountable for their behavior.

4.2.3.1 AVM
Our initial accountability approach was based upon research for generating evidence of
misbehavior using AVMs. AVMs require that each CoT host maintain a tamper-evident log of
local actions and be associated with a set of witnesses that audit the host’s log. One of the
primary challenges for applying AVM to SOUND was that AVMs detected misbehavior by
deterministically replaying a host’s log using a reference implementation, requiring that the full

20

Approved for public release; distribution is unlimited.

behavior be known. We intended for SOUND to extend AVM to verify behavior against a coarse
abstraction of expected communications patterns.
The issue we discovered using AVM this way is that it does nothing to protect against defects in
the software itself. Most of the exploits in use today are utilizing flaws in the software attacked,
not necessarily making changes to that software. The use of ROP gadgets is an example of this.
We realized that AVM would not detect this because the flaw would still exist in the gold copy
of the software AVM was comparing the running copy against.

4.2.3.2 Tit for Tat
In order to provide a protection model which prevents our reputation system from being used as
an attack surface, we utilized the “tit-for-tat” model developed for IBR. When a node reports an
attack, both nodes reputation, from the point of view of the other, are reduced. What this means
is that if one node attacks another by falsely reporting an attack, eventually the attacking node
will no longer be able to communicate with the victim node, and no further false reports can be
created. This does not mean the reputation from the perspective of the whole community is
degraded to the point of exclusion, so the attacker would need to choose a new target, therefore
lower its reputation further in the eyes of the whole community until it is cut off. In this way, we
are able to pinpoint the true attacker.
In order for an adversary to use the SOUND reputation system to deny service, the adversary
would have to compromise a large number of hosts from a diverse portion of the introducer
network. This forces the Adversary to raise the bar and work harder to be able to attack the
system.

4.2.3.3 Sensor Integration
SOUND is a system which relies on inputs from sensors. The goal of the SOUND project was
not to build new sensors, though we built a few for testing and demo purposes, but rather to
integrate existing sensors. During the course of the project, we integrated a number of
COTS/GOTS sensors, described in this section.
We integrated with the following sensors:

• Network Intrusion Detection Sensor – We integrated with Snort, which is an industry
standard Network Intrusion Detection Sensor (NIDS), which is available open source. The
snort sensor can detect a wide variety of intrusions through its very extensible ruleset, for
which rules are regularly updated. For our purposes, we ran snort separately from SOUND
and built a tool which ingested the snort logs. For the demonstrations we did at PACOM, in
the NSWC lab and LSD-41 lab, we kept the ruleset very small to detect only port scans and
ftp login failures. The reason for this was because the larger rulesets detected so much we
could not necessarily control for false alarms or unexpected alerts, which made deterministic
demos difficult.

• ICS Sensor – We integrated with Sophia, which is a commercial NIDS designed specifically
for Industrial Control Systems (ICS) from the company NexDefense, which the Navy was
considering for use on shipboard systems. NexDefense was willing to provide us with a
complimentary copy of Sophia so we could integrate with it and show how SOUND and
Sophia could work together. We did this integration via Syslog. SOUND was able to receive

21

Approved for public release; distribution is unlimited.

syslog alerts from Sophia and report them to the reputation system. This was shown in the
demonstrations we did in the NSWC lab.

• Firmware Intrusion Detection Sensors – We used a proprietary technology developed
under the DARPA CRASH program which is able to monitor and alert when issues with the
firmware arise. We demonstrated this integration in the LSD-41 lab, by having this sensor
detect changes to the firmware of a Programmable Logic Controller (PLC) network card.

• Hardware Bus Sensor – We used a proprietary technology hardware sensor which monitors
communications between devices. For demonstrations in both the LSD-41 lab and the
NSWC lab, we were able to show that SOUND could ingest the hardware bus sensors
detection of a logic update and isolate the PLC.

4.2.3.4 SOUND Identity & SOUND Wrapper
Another method we experimented with to assign attribution was in attempting to authenticate
and identify and assign reputation to the software in use. We did initial experiments with this
using the SOUND Wrapper. SOUND assigns a unique IP address to all identities, and when that
user or application authenticated itself, IBR would bind that IP address to the virtual interface it
was proxying for. In this way, each individual identity would have its own IBR connections and
underlying IPSec tunnels. The SOUND Wrapper ensures that a legacy application will use only
the assigned IP address.
The goal in identifying an application is that when you saw bad behavior coming from the user
of an application you could lower the reputation of the application (e.g. Firefox) itself a small
amount, allowing over time to realize which applications may have built in flaws, even if you do
not know what the flaw itself is.
In order to apply this to an application, the application itself would have to authenticate when it
started up. We realized that this creates issues with respect to how to authenticate software –
having software incorporate its credentials is not secure. In order to test our theories, we created
a wrapper – a shell script that you would use to launch the application. The shell script would
replace the standard networking libraries with its own libraries. These wrapper libraries would
authenticate the application and bind all the applications communications to come from the
assigned IP address for that SOUND identity. This allowed us to track the application itself.
The issues we ran into were that using this method we were limited to a single identity being
bound to a connection – either the application or the user, since only one IP address could be
used. Since this particular piece was not of interest to our specific transition partners, we did not
continue the research further. Future research would include determining how to bundle
identities for all the applications and pieces of code which were in use by the user, so the
behavior seen coming from them would affect the reputation of that code.

4.2.4 Pillars of the Community: Establishing a differentially reliable
decentralized trusted environment

4.2.4.1 Reputations
The SOUND Trust Service relies on the SOUND Policy Service and SOUND Reputation
Service to determine whether it should trust a member of a community. SOUND uses Sensors,

22

Approved for public release; distribution is unlimited.

Trust and Reputation to provide defense in depth for networks. It is a network defender that
receives sensor observations of activities performed by and against network-wide identities and
aggregates and evaluates them to modify the “reputation” of each identity. Bad behavior by an
identity (typically a host or user) reduces its reputation to a degree associated with the actual
activity sensed. Individual low-danger activities can add up to significant lowering of reputation
and eventual severing of the offending identity from the network. High-danger activities can
result in immediate disconnection. SOUND provides broad resilience to attacks because what is
detected is behaviors, not (e.g.) virus signatures.
SOUND Trust provides a simple sensor platform which supports easy addition of new sensors
and new “suspicious activities,” and many ways to adjust its evaluation of behavior events,
otherwise known as “impressions.”
One benefit we discovered to the addition of reputation for detection of attack is that of relieving
alarm fatigue. Network operators or military operators often see hundreds or thousands of alerts
a day from various sensors. It’s easy to adjust to constantly seeing streams of alerts and no longer
respond as quickly or necessarily notice critical alerts in a timely manner. SOUND Reputation
helps combat this by adding up the many small alerts into a quantifiable reputation which lets the
operator know when a true issue has occurred. The operator can then dig into the many alerts
which made up the reputation to determine the cause of the problem.

4.2.4.2 IBR / IBR Modifications
As an extension of standard IBR, SOUND IBR integrates standard IBR’s introduction-based
connection management scheme with SOUND Platform services.
Figure 10 illustrates how SOUND IBR fits within the SOUND context.

Figure 10: SOUND Architecture with IBR Modifications

23

Approved for public release; distribution is unlimited.

As with standard IBR, SOUND IBR serves as a proxy between naïve hosts and the rest of the
SOUND network. When a naïve host attempts to connect to another host across the network,
SOUND IBR requires that a connection be established to the target. Connections are requested
via introduction, which are subject to policy decisions by all nodes involved. IBR enforces
connections by manipulating Linux kernel iptables rules and XFRM policies. For more details
on standard IBR, see [F+11].
SOUND IBR extends standard IBR chiefly by means of the SOUND IBR Plugin component.
The SOUND IBR Plugin connects standard IBR with the various SOUND Platform services
(Trust Service, Reputation Service, Naïve Authentication), sensors, and SOUND Admin
Console.
Through the SOUND IBR Plugin, IBR policies query the SOUND Trust Service whenever
making trust decisions for requesting/offering/accepting introductions. Thus, IBR benefits from
the Reputation Service’s community-wide perspective as well as its more sophisticated
reputation model. Additionally, the IBR policies benefit by being able to incorporate reputations
of users as well as hosts when making trust decisions.
In the event that the Trust/Reputation Service becomes unavailable, SOUND IBR provides
availability by falling back to using IBR’s traditional policy scheme whereby each node
continues to make local trust decisions.
SOUND IBR interacts with many SOUND components. The SOUND IBR Plugin has an
interface for receiving reports from sensors. It also interfaces with the Reputation Service by
forwarding reports to it and receiving reputation updates from it. The Plugin provides on-
demand IBR connection data to the SOUND Admin Console. Also, it accepts user association
data from Naïve Auth. Finally, IBR also offers a command-line interface used primarily for
managing a priori connections.

4.2.5 Formal Specification and Model-based Programming

4.2.5.1 Simple Unified Policy Programming Language (SUPPL)
Simple Unified Policy Programming Language (SUPPL) (Dockins & Tolmach, 2014) is a
language for security policies that aims to (1) be simple, expressive, and easily debugged, and (2)
support the construction of coherent policies by combination of simpler policies. We start with
the premise that a declarative programming language—Prolog—is close to a natural fit for
security policies. We then add type and instantiation mode declarations (stating which variables
should be bound when a predicate is called, and which are to be bound as a by-product of
execution) to catch more errors at compile time and to support compiler optimizations. They add
an imperative syntax for conditionally branching event handlers that eliminates some non-logical
Prolog constructs (such as “cut”) with which even experienced Prolog programmers often shoot
themselves in the foot. To make programs easier to debug, reason about, and optimize, we
segregate all effects into table updates that can happen only after all handlers for an event have
executed. An example of SUPPL code is shown in Figure 11.
A SUPPL program maps exogenous events to exogenous actions. Every handler that matches an
event runs against that event. A coherent policy handles every event with exactly one set of
actions. Unfortunately, it is easy to combine several individually coherent policies to create an

24

Approved for public release; distribution is unlimited.

incoherent one. For example, a combined policy might both allow a user access to a resource,
because he/she is a superuser (policy 1), and deny access to that resource because he/she is not
explicitly authorized to access that resource (policy 2). A human told to combine the superuser-
list-based and access-table-based policies would likely assume that superuser status trumps the
access table information in the combined policy, and may therefore forget that this constraint
must be explicit in the combined policy program. Rather than rank-ordering event-handling
rules or actions to resolve such conflicts dynamically (which can have wide-ranging
unanticipated effects), SUPPL provides a static analysis to detect potential conflicts, so that the
programmer can debug the policy. First, the analysis finds pairs of control-flow paths initiated
by the same event types that lead to incompatible actions. For each pair, it defines a first-order
logical formula for the conditions that would have to hold for both actions to be derived from the
same event. It then submits the formula to an external SMT solver to attempt to prove that the
combination of the two paths is unsatisfiable—that is, the two incompatible actions cannot be
produced by any single event. If unsatisfiability can’t be proven, the pair is marked as a
potential conflict. False positives are possible, but have not been a problem in tests to date.

Figure 11: Sample SUPPL Code

25

Approved for public release; distribution is unlimited.

The tested implementation of SUPPL targets a Prolog interpreter implemented in Java, which has
built-in support for calling Java methods. The aim is to make it easy to integrate SUPPL-defined
policies into existing Java applications, or, with modest changes, other languages that have good
foreign function interfaces to some Prolog implementation.

4.3 Tests

4.3.1 Single board SOUND Proxy
In order to demonstrate that SOUND could run on a small device which would be easily
deployable, we attempted to install SOUND on a single board computer called a PandaBoard.
The PandaBoard is similar to a Raspberry Pi, but has a more updated version of the ARM
processor, making it easier to find the libraries which SOUND relies on compiled for it.
Our efforts showed that a SOUND proxy could run effectively on a low-power single-board
computer. We were able to run a proxy and stream video over it with no loss of quality.

4.3.2 Blue-forces Mission-Oriented Command Center (BMOC)
As we continued forward with the SOUND project, it became obvious that we would need an
application we could use to demonstrate and test how SOUND worked, to which we would be
able to build in flaws and needed features. As a result, we created the Blue-forces Mission-
Oriented Command Center (BMOC). BMOC was designed to be able to show how a typical
application might be able to utilize the powers of SOUND. An example of the BMOC interface
can be seen in Figure 12.

Figure 12: BMOC Interface

26

Approved for public release; distribution is unlimited.

The BMOC functions include:

• BMOC: A Java web application running with embedded Tomcat, providing functionality for
the UAV video display, UAV positional display, chat messaging, and Call For Fires (SAFE)
requests. The web application transmits and receives data via a Representational State
Transfer (REST) interface, and serves static Hypertext Markup Language (HTML) and
JavaScript files to a requesting web-based browser client. The RESTful interface is
implemented with Jersey *Service classes. BMOC has several functionality modules,
including: UAV, Call For Fires, Chat, Admin, Debug, and Attack. The SOUND Software
Design Document (SDD) further describes each module.

• Web Browser: BMOC requires the Firefox web browser with a custom SOUND extension
to access application resources. All BMOC pages are static HTML. Periodic data requests are
made to the BMOC server via Asynchronous JavaScript and XML (AJAX).

• UAV: The UAV simulators are separate java processes, each with unique initial
configuration for location, destination, altitude, airspeed, and heading. Every second, each
simulator calculates its new location based on its configuration and sends its location
information to the BMOC web application via a RESTful call. Each simulator also has a
RESTful listener to enable the External Spoofing Attack and to reset the UAV to its initial
settings.

• SOUND Data Service: SDS retains and serves the messages for the Chat module.
• VLC Server: BMOC uses the open source VLC video media server to stream the video

component of UAV module. A second VLC server serves to deliver a competing video
stream to interrupt the UAV stream as part of the DoS Attack.

4.3.3 Red Team
We performed two Red Team Assessments on SOUND during the program. The first was a
table-top exercise where the Red Team looked over the design and code and made suggestions.
The second was a full Red Team exercise where we set up a live network for the Red Team to
attempt to exploit the SOUND and NPD integration which we later deployed in the LSD-41 lab.
The Red Team was able to find a number of issues which were addressed for the LSD-41
demonstration, and a number that should be addressed if SOUND is deployed in a production
environment such as hardening of the server bindings, tighter privileges, input sanitization, and
access permissions. These issues are listed in Table 2 of the VDD.
Overall, the Red Team felt the design of the system was solid and did not find any opportunities
for Man-In-The-Middle (MITM) attacks or the introduction of malicious introducers into the
system. They did not feel the integration of NPD and SOUND increased the attack surface.
Once hardening is completed, they felt the sensors would be the weakest spot in the system, so
sensor security should be a priority in a deployed SOUND system.

27

Approved for public release; distribution is unlimited.

4.4 Demonstrations
During the life of the project, we performed a number of increasingly sophisticated
demonstrations, tests and experiments for transition partners, including SOCOM, NAVSEA,
PACOM, and DISA. This section will outline the major ones.

4.4.1 Chat Server
At the November 2012 PI Meeting, we did an initial demonstration of the SOUND integrated
technologies using a chat server. For this demo, we incorporated a current implementation of
IBR (spiral 7) and the notion of AVM through logging and replay mechanisms. We extended the
Apache Mina/Vysper XMPP chat server for logging and replay mechanisms as well as added a
trivial data exfiltration exploit. We wrote a plugin for the Ignite Spark XMPP chat client to allow
clients to ‘report misbehavior’ about other clients. In short the two scenarios were focused
around mitigating data exfiltration and mitigating chat messages sent by potentially malicious
entities.
We used a very naive logging and replay mechanism that resembles AVM in spirit. On the chat
server, each time a message is received, a copy of the message is forwarded to a reference chat
server (the ‘gold version’). That is, we assume the ‘gold version’ has not been corrupted and
cannot be corrupted by receiving normal XMPP messages. Similarly, whenever the chat server
sends a message, a copy of the sent message is forwarded to the reference server. In an infinite
loop, the reference server listens for each type of message. Messages received by the original
chat server are passed along as regular messages (i.e. the reference server sees these messages as
ones from clients). Messages sent by the original chat server are put into a queue. Whenever the
reference server produces an output message, the AVM replay mechanism checks that the output
message matches one on the queue of messages. When the messages don’t match, AVM notifies
IBR of the bad behavior of the original chat server.
We installed IBR on 7 virtual machines running Fedora. The introducer was configured with a
priori connections to each of the other VMs, so the only way that the clients were able to connect
to the chat server was via IBR introductions. In this way, we were able to disconnect clients from
the chat server when it was deemed to be misbehaving by notifying the IBR introducer of its
misbehavior.
We included two attack scenarios. The first involved the chat server being compromised and
exfiltrating messages to a third party. The second involved a malicious user sending fake
messages, with user identified misbehavior being reported, and ultimately disconnecting the
server.

4.4.1.1 Outcomes
There are two large realizations which came out of this demonstration. The first was that there
needs to be some story for resiliency. Stopping the world won’t suffice. The second realization
was that the reason for only being able to disconnect the chat server, and not just the attacker,
was that we only have the notions of connection and identity at the IP level. As a result, if you
don’t have a direct connection to someone, you don’t really know their identity in the scheme of

28

Approved for public release; distribution is unlimited.

IBR. As a result, and after considering other web applications, the notions of identity and
reputation have to exist at the application level.

4.4.2 SOUND Router
As we envisioned that ultimately deployments of SOUND would be more performant and secure
if the encryption and IBR tunnels could be performed at the hardware level on a SAFE processor
(developed under the DARPA CRASH program). This section summarizes our work; more
details can be found in [K+14].

4.4.2.1 Concept
 Denial of service (DoS) and distributed denial of service (DDoS) attacks exploit a basic design
principle of the internet; any machine can send a packet to any other. The IPsec protocol makes
it possible to filter out unwanted packets, but only at the destination, on a per-packet basis,
allowing an attacker to saturate the targeted machine’s ports with unwanted packets. RotoRouter
(Kwon, et al., 2014) is a novel protocol and router architecture designed to prevent DoS attacks
by filtering unwanted packets on the router itself, so that they never reach the targeted endpoint.
To verify that a packet is “wanted” by the destination, the router

1. Asks the destination if it wants to receive packets from the source, and forwards packets
only if the answer is yes; and

2. Requires the source to sign each packet to verify its origin and integrity.

Figure 13 shows a picture of the RotoRouter prototype.

Figure 13: RotoRouter Prototype

29

Approved for public release; distribution is unlimited.

4.4.2.2 Protocol
When the router first sees the requested connection (source IP, destination IP, and port #) there is
some one-time (as opposed to per packet) set up:

1. The router computes a connection ID from the source IP, destination IP, and a random bit
string such that (a) neither IP can be read off of the ID, and (b) it is difficult for an attacker to
create a valid ID.

2. The router asks the destination if it wants to receive packets from this source. If the answer
is “no”, future packets from the rejected source can be identified and dropped just by looking
up the connection ID in a table and checking the result’s “allowed” field.

3. The source generates a private/public key pair, and sends the public key to the destination.

A router handling an existing connection for the first time can query the destination for the
public key, which it will need to authenticate packets.
For each packet:

1. The source computes a hash (message digest) of the connection ID, payload, and several
header fields.

2. The router decrypts the message digest and recomputes it against the packet to verify that the
packet came from the connection’s identified sender and that its contents have not been
altered.

3. If the packet is verified, it is forwarded. Otherwise it is dropped.

4.4.2.3 Implementation
The protocol was tested in an implementation aboard a NetFPGA-10G platform, an FPGA board
that supports prototyping and experimenting with network protocols and hardware.
To keep high throughput, a few of RotoRouter’s more expensive/frequent tasks required special
attention. A flow table maps connection IDs to information about the connection—whether the
connection is allowed, the RSA public key used for authentication, etc. Because every packet
requires a lookup in this table, it is implemented as a dynamic multi-hash cache, a species of
content-addressable memory. RotoRouter also dedicates hardware cores to two of the most
expensive steps in the protocol: SHA-1 hashing and modular exponentiation required for packet
authentication. RotoRouter uses about five times the resources of a comparison open source
IPv4 router, with most of the extra due to these two modules. However, the overall throughput is
a respectable 8 Gbps. Figure 14 shows resource usage and throughput for the RotoRouter.

30

Approved for public release; distribution is unlimited.

 Area Clock
Module LUTs BRAMs (MHz)

Crossbar w/ Buffers 8249 16 300
Flow Table 38 74 350
Processor 26985 52 200
SHA-1 Module 4x1005 0 125
Mod-Exp 73591 0 200
RotoRouter 112883 142 125

IPv4 Router 22523 35 150

Total available 149760 324 -

 Crossbar Flow Table SHA-1 Mod-Exp

Clock Speed (MHz) 300 350 125 200
Individual Throughput (Gpbs) 19.2 515 4 x 0.8 4 x 1.2

Effective Throughput @ 125 MHz (Gbps) 8 184 3.2 4.8

Figure 14: Resource Usage and Throughput

4.4.2.4 Simulated attack tests
RotoRouter was tested against a small simulated attack: two machines on an isolated network are
video-chatting, while a third, malicious machine attempts to flood the network with junk
messages.
With the RotoRouter’s special features disabled (so running as a vanilla IPv4 router), the
throughput of legitimate data plummets immediately upon attack, but with RotoRouter enabled,
there is no measurable drop at all. Figure 15 illustrates the attack test experimental setup (a) and
goodput measured (b).

(a) Experimental Setup (b) Throughput of ROTORouter and Typical Router Under DoS Attack

Figure 15: Attack Test

31

Approved for public release; distribution is unlimited.

4.4.2.5 Avoiding DoS attacks on the router itself
Because there is costly set-up associated with each new connection, a RotoRouter instance is
vulnerable to an attacker sending numerous bogus new connections. To mitigate this, the invalid
request rate on each input port is tracked. When this rate exceeds a threshold, the port is
considered to be under attack and is shut down.
The throughput, resource usage, and basic filtering behavior of a RotoRouter instance have been
demonstrated, but larger-scale tests remain, to (e.g.) understand the dynamics of connection
validation traffic and optimize such parameters as the number of unverified packets to let
through at the start of a connection.
The cost of RotoRouter’s extra validation steps is significant, but not prohibitive, given current
technologies, and promises to be effective at preventing DoS attacks.

4.4.3 Persistent Insider Scenario Demonstration
For the January 2014 PI Meeting, we demonstrated how SOUND would protect against a
persistent insider. We utilized our BMOC application to show the simulated path of a UAV.
BMOC incorporated a chat server and a GPS tracker. We showed a situation where a flaw in
BMOC allowed an insider Ivan to give himself permissions to access to information he shouldn’t
have had. The demonstration first showed what Ivan could do if SOUND was not in effect. Ivan
is able to utilize the bug to gain access to his commander’s chat history. When SOUND is
enabled, we allow Ivan to still exploit the bug to change his permissions within the application,
since the premise is that we don’t know about this bug in the application, but the SOUND Data
Service recognizes that Ivan is not allowed to have access to the data. The Data Service
intercepts the request, detects and escalation in Ivan’s privilege and prevents Ivan from receiving
the data. In addition, the attempt to access the data is logged. The policy in effect for SOUND is
that of ‘2 strikes and you are out’ and once Ivan attempts to access the data again – he is logged
off the BMOC system entirely.

4.4.3.1 Outcomes
• We were able to demonstrate SOUND in a physical networked environment by having 4

separate laptops for the SOUND Services, and the BMOC Server and client.
• Equipment included four machines, including two end-user client hosts, one application

server, and one that hosts the SOUND Core components.
• Demonstrated how a combination of sensor outputs could be combined to make a policy

decision about whether to remove a user from the Community of Trust (CoT)

4.4.4 PACOM
In August and November of 2014, we went out to PACOM in Hawaii to demonstrate SOUND on
a realistic operational network in the SPAWAR Systems Center Pacific Facility. We presented a
Humanitarian Aid / Disaster Relief (HADR) scenario involving military forces required to work
with untrusted Non-Government Organizations (NGOs), who attempt to use the network
connections they are given for video communications to attack the military networks. We had 13
SOUND nodes in this scenario, Figure 16 shows the network setup for this demonstration. Four

32

Approved for public release; distribution is unlimited.

different groups were communicating on the network: 3 military groups and an NGO. We
demonstrated their ongoing communications by streaming video.

Figure 16: Network Configuration for PACOM Demonstration

We showed how if a bad actor in the NGO facility attacked one of the military nodes, SOUND
would isolate it from communicating with the victim, but not remove it from the Community of
Trust entirely. When the bad actor attacked a second military node, SOUND removed the bad
actor from the community of interest. The attacker then attempted to move to another node,
where he still did not have access, since his account was no longer allowed in the CoT,
regardless of where he logged in. We then showed that if another user in the NGO were to attack
one of the military nodes, based on policy, SOUND would remove the entire NGO from the
CoT.

4.4.4.1 Outcomes
• Demonstrated SOUND’s capability to protect differential networks
• Showed SOUNDs integration with the Snort COTS sensor
• Demonstrated SOUND to a large number of interested groups from across the military.
• Generated interest from PACOM in potentially including SOUND in an exercise, which did

not later materialize.

33

Approved for public release; distribution is unlimited.

4.4.5 SOUND+NPD Integration
We were asked by DARPA to look into whether integrating with any of our sister projects on the
MRC program would be beneficial. After discussions with a fellow performer, Applied
Communications Sciences (ACS), we determined it would be worthwhile to explore an
integration between SOUND and their Network Path Diversity (NPD) technology. This worked
out well as the combination worked very well for the Navy demonstrations we did.
NPD provides path diversity in a network by routing traffic through other NPD nodes as an
overlay on the existing network, for which you may not have control over routing. NPD can also
send packets along multiple paths, to ensure greater availability of the data.
SOUND provides insider threat protection, enclave protection to NPD (which is not otherwise
hardened), supports health assessments of NPD’s intermediaries and can influence/help control
NPD’s list of available intermediaries based on reputation.
NPD provides defensive maneuver capabilities by giving us the ability to route traffic through
NPD intermediaries. NPD can also act as a network traffic sensor, letting us consider the
reliability of a network path when determining the reputation of an intermediary to use.
Together, they can defend against malicious behavior inside networks by having SOUND
monitor reputations, log misbehaviors and isolate serious attacks. Additional benefits include the
ability to use more costlier (in computing terms) sensors, which would be too cumbersome to run
locally. NPD can divert traffic past the more costly sensor while still sending it along the normal
path. SOUND+NPD also protects against attacks from the outside by having NPD fight through
network degradation, not matter what the cause is, and SOUND wraps ad hock communities of
interest inside enclaves to restrict access and protect enclave participants. SOUND+NPD
empowers the defense of the network by giving the operator the ability to reroute traffic away
from suspicious nodes.

Integration
Integration between the two technologies was done loosely, by installing both technologies on
the same box and deconflicting their iptables rules. NPD sits logically “behind” the SOUND
proxy, somewhat as if it was a separate box connected behind it, functioning as a bump in the
wire. Figure 17 shows the architecture of the SOUND and NPD integration.

34

Approved for public release; distribution is unlimited.

Figure 17: Architecture for SOUND+NPD

We demonstrated the SOUND+NPD integration to DARPA.

4.4.5.1 Outcomes
• The exploration into how SOUND+NPD could work together let us bring a more complete

capability to discussions with NAVSEA NSWC
• The combination of the two technologies allowed us to operate on the shipboard ICS

networks with no modification to the networks, which is what made the NSWC lab
demonstration possible.

4.4.6 NSWC Research Lab
We were invited to the NAVSEA Navy Surface Warfare Center (NSWC) Philadelphia to show
how SOUND, in conjunction with our sister project from Applied Communications Sciences
(ACS) Network Path Diversity (NPD) could be used to protect Navy ICS shipboard systems.
NSWC had a research lab for experimenting with potential products they might want to use.
When we first arrived in the NSWC lab, we learned two critical things. SOUND+NPD needed to
be transparent to the Navy systems and not require any changes to network configuration on their
side, and second, that the Navy uses a significant amount of multicast and we needed to be able
to handle this traffic. We were able to address the first issue by spoofing ARP so that the Navy
machines saw the proxy as the machine they were talking to. With the help of NPD, we were
able to address the second by tunneling the multicast traffic through the network via NPD.
Figure 18 shows the network setup for this demonstration. We integrated SOUND with Sophia
(more info in the Sensor Integration section) and showed how SOUND could be used to protect a
network modeled after the Mohawk class Coast Guard cutter. SOUND protected and isolated
the Programmable Logic Controller (PLC) from an attack which moved laterally around the
network. We ran an nmap scan to emulate a reconnaissance phase, simulated a malware attack
by downloading and then changing the PLC ladder logic. We used reputation a little differently
in this demonstration by quarantining an infected host and isolating a vulnerable PLC from
further attack.

35

Approved for public release; distribution is unlimited.

Figure 18: Network Configuration for NSWC Lab Demonstration

Attack scenarios included in NSWC Lab Demonstration:

• Nmap Scan
• Loading a web page on PLC
• Uploading ladder logic from PLC
• Modifying and downloading Ladder logic to PLC

4.4.6.1 Outcomes
• Demonstrated to numerous Navy decisions makers, including a Vice-Admiral.
• Generated interest in a larger deployment on in a Navy ship lab
• Based on this demonstration, NAVSEA agreed that they would sign a Technology Transfer

Agreement (TTA) if SOUND could be demonstrated at a larger scale in the LSD-41 class
ship lab.

Figure 19 shows a logical layout of the demonstration (left) and outlines the features we
demonstrated (right).

36

Approved for public release; distribution is unlimited.

Figure 19: Notional Demonstration Architecture and Features

4.4.7 NSWC LSD-41 lab
NSWC Philadelphia liked our demonstration in the NSWC research lab and wanted to see a
demonstration which was more to the scale of a real ship. The LSD-41 was chosen as a ship
whose lab was available and was a reasonable enough representation for a viable demo. We
faced several challenges with this deployment. First was the scale – the software had not been
tested at this scale and we discovered several issues which needed to be dealt with. Second was
deployment – maintaining and deploying software to so many systems was tedious and required
a software solution to make it tractable. Third was management of the systems – we wrote a
curator software to manage the system from an operator standpoint, to be able to know when
systems were functioning correctly. Figure 20 shows the network layout of the LSD-41
demonstration.

37

Approved for public release; distribution is unlimited.

Figure 20: Layout of LSD-41 Demonstration Network

4.4.7.1 Outcomes
• We were able to demonstrate that SOUND+NPD could be deployed on a large scale

shipboard ICS network and not require the modification of or interfere with the operation of
the shipboard systems.

• We were able to show how SOUND+NPD could integrate with firmware and hardware
sensors to detect attacks on the backplane and within the firmware of the PLC network card.

• We demonstrated how SOUND+NPD could isolate a PLC, allowing the ship system to
failover to its backup.

• NAVSEA agreed to sign the TTA to transfer the Reputation technology to its cyber
situational awareness system.

4.5 Publications
The following publications were published by the SOUND team during the course of the
program:

38

Approved for public release; distribution is unlimited.

[DT14] Robert Dockins, and Andrew Tolmach. SUPPL: A flexible language for policies. In
Proceedings of the 12th Asian Symposium on Programming Languages and Systems (APLAS
2014), Nov 2014.
Abstract:

We present the Simple Unified Policy Programming Language (SUPPL), a domain-
neutral language for stating, executing, and analyzing event-condition-action policies.
SUPPL uses a novel combination of pure logic programming and disciplined imperative
programming features to make it easy for non-expert users to express common policy
idioms. The language is strongly typed and moded to allow static detection of common
programming errors, and it supports a novel logic-based static analysis that can detect
internally inconsistent policies. SUPPL has been implemented as a compiler to Prolog
and used to build several network security applications in a Java framework.

[TDT15] Alix Trieu, Robert Dockins, and Andrew Tolmach. Static conflict detection for a
policy language. In Proceedings of Vingt-sixièmes Journées Francophones des Langages
Applicatifs (French-speakers' Workshop on Functional Languages) (JFLA 2015), Jan 2015.

Abstract:
We present a static control flow analysis used in the Simple Unified Policy Programming
Language (SUPPL) compiler to detect internally inconsistent policies. For example, an
access control policy can decide to both “allow” and “deny” access for a user; such an
inconsistency is called a conflict. Policies in Suppl. follow the Event-Condition-Action
paradigm; predicates are used to model conditions and event handlers are written in an
imperative way. The analysis is twofold; it first computes a superset of all conflicts by
looking for a combination of actions in the event handlers that might violate a user-
supplied definition of conflicts. SMT solvers are then used to try to rule out the
combinations that cannot possibly be executed. The analysis is formally proven sound in
Coq in the sense that no actual conflict will be ruled out by the SMT solvers. Finally, we
explain how we try to show the user what causes the conflicts, to make them easier to
solve.

[FUR15] Michael Figueroa, Karen Uttecht, and Jothy Rosenberg. A SOUND Approach to
Security in Mobile and Cloud-Oriented Environments. In Proceedings of 2015 IEEE
International Symposium on Technologies for Homeland Security, Boston, 14-16 April 2015.

Abstract:
Ineffective legacy practices have failed to counter contemporary information security and
privacy threats. Modern IT operates on large, heterogeneous, distributed sets of
computing resources, from small mobile devices to large cloud environments that manage
millions of connections and petabytes of data. Protection must often span organizations
with varying reliability, trust, policies, and legal restrictions. Centrally managed, host-
oriented trust systems are not flexible enough to meet the challenge. New research in
distributed and adaptive trust frameworks shows promise to better meet modern needs,

39

Approved for public release; distribution is unlimited.

but lab constraints make realistic implementations impractical. This paper describes our
experience transitioning technology from the research lab to an operational environment.
As our case study, we introduce Safety on Untrusted Network Devices (SOUND), a new
platform built from the ground up to protect mobile and cloud network communications
against persistent adversaries. Initially based on three founding technologies-
Accountable Virtual Machines (AVM), Quantitative Trust Management (QTM), and
Introduction-Based Routing (IBR)- our research efforts extended those technologies to
develop a more powerful and practical SOUND implementation.

[ADG15] Arthur Azevedo de Amorim, Maxime Dénès, Nick Giannarakis, Cătălin Hriţcu,
Benjamin C. Pierce, Antal Spector-Zabusky, and Andrew Tolmach. Micro-Policies: Formally
Verified, Tag-Based Security Monitors. In Proceedings of IEEE Security and Privacy 2015, San
Jose, May 2015.
Abstract:

Recent advances in hardware design have demonstrated mechanisms allowing a wide
range of low-level security policies (or micro-policies) to be expressed using rules on
metadata tags. We propose a methodology for defining and reasoning about such tag-
based reference monitors in terms of a high-level "symbolic machine" and we use this
methodology to define and formally verify micro-policies for dynamic sealing,
compartmentalization, control-flow integrity, and memory safety, in addition, we show
how to use the tagging mechanism to protect its own integrity. For each micro-policy, we
prove by refinement that the symbolic machine instantiated with the policy's rules
embodies a high-level specification characterizing a useful security property. Last, we
show how the symbolic machine itself can be implemented in terms of a hardware rule
cache and a software controller.

[K+14] Albert Kwon, et al. "RotoRouter: Router support for endpoint-authorized decentralized
traffic filtering to prevent DoS attacks." Field-Programmable Technology (FPT), 2014
International Conference on. IEEE, 2014.
Abstract:

RotoRouter addresses Denial-of-Service (DoS) attacks on networks with a novel protocol
and router implementation. Sets of RotoRouters cooperate in detecting and filtering out
invalid network traffic before it reaches network endpoints; a new router-enforceable
connection protocol queries destination endpoints to authorize traffic flows and uses per-
packet digital signatures to distinguish allowed from disallowed connections. A
RotoRouter prototype was implemented on a four-port 1000BASE-T NetFPGA-10G
platform and supports 1024 simultaneous active connections using 74 BRAMs (less than
one quarter of the available NetFPGA-10G BRAMs). It is able to sustain 800 Mbps per
port throughputs for 1500B packets with less than 0.3/its latency, even during a DoS
attack. With additional logic and memory resources, the required validation and
switching operations scale to port speeds in excess of 10 Gbps and links with more than
10,000 active flows.

40

Approved for public release; distribution is unlimited.

5.0 CONCLUSIONS
The SOUND project successfully created a technology which was able to create secure
Communities of Trust, provide multi-level tracking of reputation for accountability, and isolate
actors from the community if their reputation dropped below the policy-defined threshold.
We were able to demonstrate successfully:

• How SOUND could be used to protect infrastructure when communicating with
organizations of unknown trustworthiness. Using Reputation and a variety of sensors,
SOUND can track users behavior and downgrade their level of trust. Trust can be
differential, without having to be all or nothing, so less trustworthy partners can be interacted
with and the organization will know that if they show signs of compromise or attacks, they
will be removed from the CoT.

• How SOUND could be used to protect Shipboard SCADA systems. We deployed SOUND
on a full-scale shipboard network and demonstrated that SOUND could be used to protect
equipment and isolate attackers before damage to the ship could be done.

• How SOUND could integrate with a variety of GOTS/COTS sensors. We integrated with a
number of different sensors from those available open source, proprietary commercial and
developed by government labs.

• SOUND does not require any changes to existing applications or hosts. In our demonstrations
in the LSD-41 labs, we were able to install SOUND without having to modify the software,
hosts or PLCs running the shipboard network. Our technology can be used with any legacy
IP based systems or applications.

5.1 Recommendations

• We recommend that the Navy deploy the SOUND technology onto a ship for testing, with
the later intention of putting it into ships throughout their fleet.

• Additionally, SOUND is ideal for use in a traditional office network, and we are working
with BAE systems to deploy beta versions to the corporate network, we recommend the
government consider deploying SOUND on its IT networks.

• We recommend that the government expand on its use of SOUND Reputation beyond that of
basic reputation as deployed in LSD-41 to utilize its full potential in managing Communities
of Trust.

• We recommend the military consider that SOUND could be deployed to multiple domains,
especially those that employ multiple enclaves or Communities of Trust which need to
communicate.

41

Approved for public release; distribution is unlimited.

6.0 REFERENCES
[BFK98] Matt Blaze, Joan Feigenbaum, and Angelos D. Keromytis. Keynote: Trust

management for public-key infrastructures (position paper). In Bruce
Christianson, Bruno Crispo, William S. Harbison, and Michael Roe, editors,
Security Protocols Workshop, volume 1550 of Lecture Notes in Computer
Science, pages 59–63. Springer, 1998.

[BKL+09] Matt Blaze, Sampath Kannan, Insup Lee, Oleg Sokolsky, Jonathan M. Smith,
Angelos D. Keromytis, and Wenke Lee. Dynamic trust management. IEEE
Computer, 42(2):44–52, 2009.

[CVW+11] Jian Chang, Krishna K. Venkatasubramanian, Andrew G. West, Sampath
Kannan, Boon Thau Loo, Oleg Sokolsky, and Insup Lee. As-trust: A trust
quantification scheme for autonomous systems in bgp. In McCune et al.
[MBP+11], pages 262–276.

[JHP06] Audun Jøsang, Ross Hayward, and Simon Pope. Trust network analysis with
subjective logic. In Proceedings of the 29th Australasian Computer Science
Conference – Volume 48, Vladimir Estivill-Castro and Gillian Dobbie (Eds.),
Vol. 48, pages 85–94. Australian Computer Society, 2006.

[WAC+09] Andrew G.West, Adam J. Aviv, Jian Chang, Vinayak S. Prabhu, Matt Blaze,
Sampath Kannan, Insup Lee, Jonathan M. Smith, and Oleg Sokolsky. Quantm: a
quantitative trust management system. In Evangelos P. Markatos and Manuel
Costa, editors, EUROSEC, pages 28–35. ACM, 2009.

[BDHU09] Michael Backes, Peter Druschel, Andreas Haeberlen, and Dominique Unruh.
CSAR: a practical and provable technique to make randomized systems
accountable. In Proceedings of the 16th Annual Network & Distributed System
Security Symposium (NDSS’09), Feb 2009.

[Hae09] Andreas Haeberlen. A case for the accountable cloud. In Proceedings of the 3rd
ACM SIGOPS International Workshop on Large-Scale Distributed Systems and
Middleware (LADIS’09), October 2009.

[HARD09] Andreas Haeberlen, Ioannis Avramopoulos, Jennifer Rexford, and Peter
Druschel. NetReview: Detecting when interdomain routing goes wrong. In
Proceedings of the 6th Symposium on Networked Systems Design and
Implementation (NSDI’09), Apr 2009.

[HARD10] Andreas Haeberlen, Paarijaat Aditya, Rodrigo Rodrigues, and Peter Druschel.
Accountable virtual machines. In Proceedings of the 9th USENIX Symposium
on Operating Systems Design and Implementation (OSDI’10), October 2010.

[HK09] Andreas Haeberlen and Petr Kuznetsov. The Fault Detection Problem. In
Proceedings of the 13th International Conference on Principles of Distributed
Systems (OPODIS’09), December 2009.

[HKD07] Andreas Haeberlen, Petr Kuznetsov, and Peter Druschel. PeerReview: Practical
accountability for distributed systems. In Proceedings of the 21st ACM

42

Approved for public release; distribution is unlimited.

Symposium on Operating Systems Principles (SOSP’07), Oct 2007.
[DT14] Robert Dockins, and Andrew Tolmach. SUPPL: A flexible language for

policies. In Proceedings of the 12th Asian Symposium on Programming
Languages and Systems (APLAS 2014), Nov 2014.

[TDT15] Alix Trieu, Robert Dockins, and Andrew Tolmach. Static conflict detection for a
policy language. In Proceedings of Vingt-sixièmes Journées Francophones des
Langages Applicatifs (French-speakers' Workshop on Functional Languages)
(JFLA 2015), Jan 2015.

[ADG15] Arthur Azevedo de Amorim, Maxime Dénès, Nick Giannarakis, Cătălin Hriţcu,
Benjamin C. Pierce, Antal Spector-Zabusky, and Andrew Tolmach. Micro-
Policies: Formally Verified, Tag-Based Security Monitors. In Proceedings of
IEEE Security and Privacy 2015, San Jose, May 2015.

[K+14] Albert Kwon, et al. "RotoRouter: Router support for endpoint-authorized
decentralized traffic filtering to prevent DoS attacks." Field-Programmable
Technology (FPT), 2014 International Conference on. IEEE, 2014.

[SS01] Jordi Sabater, and Carles Sierra. "Regret: A reputation model for gregarious
societies." Fourth workshop on deception fraud and trust in agent societies. Vol.
70. 2001.

[FUJ15] Michael Figueroa, Karen Uttecht, and Jothy Rosenberg. "A SOUND approach to
security in mobile and cloud-oriented environments." Technologies for
Homeland Security (HST), 2015 IEEE International Symposium on. IEEE, 2015.

[F+11] Gregory Frazier, et al. "Incentivizing responsible networking via introduction-
based routing." International Conference on Trust and Trustworthy Computing.
Springer, Berlin, Heidelberg, 2011.

43

Approved for public release; distribution is unlimited.

LIST OF ACRONYMS, ABBREVIATIONS, AND SYMBOLS
ACRONYM DESCRIPTION
ACM Association for Computing Machinery
ACS Applied Communication Sciences
AFRL Air Force Research Laboratory
AFC Air Force Component
AJAX Asynchronous JavaScript and XML
ARM Advanced RISC Machines
ARP Address Resolution Protocol
AVM Accountable Virtual Machine
BGP Border Gateway Protocol
BMOC Blue Force Mission-Oriented Command Center
CA California
CoT Community of Trust
COTS Commercial Off-The-Shelf
CRASH Clean-slate design of Resilient Adaptive Secure Hosts
CV Compliance Value
CWE Common Weakness Enumeration
DARPA Defense Advanced Research Projects Agency
DDoS Distributed Denial of Service
DISA Defense Information Systems Agency
DM Decision Management
DoD Department of Defense
DoS Denial of Service
EUROSEC European Workshop on Systems Security
FLC Fleet Logistics Center
FPGA Field-Programmable Gate Array
Gbps Gigabits per second
GOTS Government Off-The-Shelf
GPS Global Positioning System
HADR Humanitarian Aid/Disaster Relief
HMI Human-Machine Interface
HTML Hypertext Markup Language
IBR Introduction Based Routing
ICS Industrial Control Systems
IDS Intrusion Detection System
IEEE Institute of Electrical and Electronics Engineers
IP Internet Protocol
IPSec Internet Protocol Security Encryption Scheme
IT Information Technology
JIOR Joint Information Operations Range
LSD-41 Landing Dock Ship, Class LSD-41
MA Massachusetts
MB Megabits
MCS Machinery Control System

44

Approved for public release; distribution is unlimited.

MITM Man-in-the-Middle
MLC Marine Logistics Group
MRC Mission-oriented Resilient Cloud
NAV Navigation System
NAVSEA Naval Sea Systems Command
NFQ Netfilter Queue
NGO Non-Governmental Organization
NPD Network Path Diversity
NSDI Symposium on Networked Systems Design and Implementation
NSWC Naval Surface Warfare Center
NY New York
OH Ohio
OMB Office of Management & Budget
OODA Observe, Orient, Decide, Act
OS Operating System
PACOM Pacific Command
PI Principal Investigator
PLC Programmable Logic Controller
QuanTM Quantitative Trust Management
QTM Quantitative Trust Management
REGRET Reputation In Gregarious Societies
REST Representational State Transfer
RISC Reduced Instruction Set Computer
RM Reputation Management
RSA Rivest-Shamir-Adleman cryptosystem
S Seconds
SAC SOUND Administration Console
SAF/AQR Secretary of the Air Force, Science, Technology, and Engineering

Directorate
SAFE Semantically Aware Foundation Environment for CRASH
SAR Same As Report
SCS SOUND Connection Service
SCS Ship Control System
SDD Software Design Document
SDS SOUND Data Service
SecDef Secretary of Defense
SHA-1 Secure Hash Algorithm 1
SIGOPS Special Interest Group on Operating Systems
SIS SOUND Identity Service
SMT Satisfiability Modulo Theories
SOCOM Special Operations Command
SOUND Safety On Untrusted Network Devices
SPAWAR Space and Naval Warfare Systems Command
SPS SOUND Policy Service
SQL Structured Query Language
SRS SOUND Reputation Service

45

Approved for public release; distribution is unlimited.

SSDD System/Subsystem Design Description
SSF SOUND Sensor Framework
STINFO Scientific & Technical Information Office
STS SOUND Trust Service
SUPPL Simple Unified Policy Programming Language
TCP Transmission Control Protocol
TM Trust Management
TR Technical Report
TTA Technology Transfer Agreement
TUN Tunneling Interface
TV Trust Value
UAV Unmanned Ariel Vehicle
USAF United States Air Force
USENIX The Advanced Computing Systems Association
US United States
VA Virginia
VDD Version Description Document
VLAN Virtual Local Area Network
VLC a software multimedia player
VSE Virtual Secure Enclave
WP Wright-Patterson
XFRM IP framework for transforming packets
XML Extensible Markup Language
XMPP Extensible Messaging and Presence Protocol

	LIST OF FIGURES
	ACKNOWLEDGMENTS
	1.0 SUMMARY
	2.0 INTRODUCTION
	2.1 Problem Description
	2.2 SOUND Solution
	2.3 Background
	2.3.1 Introduction Based Routing
	2.3.2 Quantitative Trust Management (QuanTM)
	2.3.3 AVM

	3.0 METHODS, ASSUMPTIONS, AND PROCEDURES
	3.1 Research Methodology
	3.2 Baseline System: Integration of IBR, QuanTM, and AVM
	3.3 New Focus: Reputation
	3.4 Assumptions
	3.5 Red Team

	4.0 RESULTS AND DISCUSSION
	4.1 Experiments
	4.1.1 SAFE+SOUND Experiment
	4.1.1.1 Experiment Design
	4.1.1.2 Results

	4.2 SOUND Platform
	4.2.1 SOUND Services
	4.2.2 Communities of Trust (CoT)
	4.2.3 Accountability and Monitoring with Mutual Suspicion
	4.2.3.1 AVM
	4.2.3.2 Tit for Tat
	4.2.3.3 Sensor Integration
	4.2.3.4 SOUND Identity & SOUND Wrapper

	4.2.4 Pillars of the Community: Establishing a differentially reliable decentralized trusted environment
	4.2.4.1 Reputations
	4.2.4.2 IBR / IBR Modifications

	4.2.5 Formal Specification and Model-based Programming
	4.2.5.1 Simple Unified Policy Programming Language (SUPPL)

	4.3 Tests
	4.3.1 Single board SOUND Proxy
	4.3.2 Blue-forces Mission-Oriented Command Center (BMOC)
	4.3.3 Red Team

	4.4 Demonstrations
	4.4.1 Chat Server
	4.4.1.1 Outcomes

	4.4.2 SOUND Router
	4.4.2.1 Concept
	4.4.2.2 Protocol
	4.4.2.3 Implementation
	4.4.2.4 Simulated attack tests
	4.4.2.5 Avoiding DoS attacks on the router itself

	4.4.3 Persistent Insider Scenario Demonstration
	4.4.3.1 Outcomes

	4.4.4 PACOM
	4.4.4.1 Outcomes

	4.4.5 SOUND+NPD Integration
	4.4.5.1 Outcomes

	4.4.6 NSWC Research Lab
	4.4.6.1 Outcomes

	4.4.7 NSWC LSD-41 lab
	4.4.7.1 Outcomes

	4.5 Publications

	5.0 CONCLUSIONS
	5.1 Recommendations

	6.0 REFERENCES
	LIST OF ACRONYMS, ABBREVIATIONS, AND SYMBOLS
	StmtACover.pdf
	afrl-ry-wp-tR-2017-0163

	PANoticepagessigned.pdf
	NOTICE AND SIGNATURE PAGE

	SF298.pdf
	REPORT DOCUMENTATION PAGE

