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1.0 SUMMARY 
The Department of Defense (DoD) faces threats from both outside and within, and no single 
system can be reliably secured against all threats. This is further complicated by the fact that 
missions operate over large, heterogeneous sets of computing resources, potentially from 
multiple jurisdictions. Insider threats are increasingly prevalent, and one cannot assume that 
because something or someone is allowed within the perimeter, that they may not be the source 
of a future attack. Additionally, operators are inundated with alerts from many different sensors, 
making processing the massive amount of information in a timely manner difficult. 
The Safety On Untrusted Network Devices (SOUND) system provides a secure, resilient, 
scalable distributed computing platform upon which mission-oriented distributed applications 
can be built that are both resistant to and capable of adapting to an attack to continue a given 
mission.  
The SOUND program investigated bringing together three promising technologies: Accountable 
Virtual Machines (AVM), Quantifiable Trust Management (QuanTM) and Introduction-Based 
Routing (IBR).  Over the course of the program, we found that QuanTM was far too complicated 
for the needs of the military, and that AVM was not able to protect against exploits which 
utilized application flaws. 
As a result of these discoveries, we chose to shift directions a bit and combine IBR with a set of 
SOUND Services: SOUND Trust Service (STS), SOUND Policy Service (SPS), Sound Identity 
Service (SIS), SOUND Reputation Service (SRS), SOUND Data Service (SDS), and a SOUND 
Connection Service (SCS), based on IBR.  In addition to these services, we developed a SOUND 
Sensor Framework (SSF) to integrate sensors and SOUND Administration Console (SAC) to 
allow for administration of the system. 
We did research on existing reputation algorithms and chose to base the SOUND Reputation 
Service on the REGRET algorithm. By integrating the reputation service with IBR, we were able 
to create secure Communities of Trust (CoTs), inside which users and hosts would have a 
reputation which tracked them throughout the network.  We were able to provide accountability 
and monitoring through our Sensor Framework and by utilizing reputation to isolate suspicious 
members from the CoT. Members of the CoT could have different levels of trust for other 
members, providing a differentially reliable decentralized trusted environment. SOUND is able 
to incorporate existing commercial or government sensors alerts into the reputation. We found 
that reputation provided a way for operators to view the health of the network in a simple way 
which reduced the alarm fatigue. 
We experimented with how we could build Pillars of Trust – nodes with a higher level of 
protection by performing experiments through simulation showing how if a few nodes in the 
network had a higher level of trust, it enhanced SOUND’s ability to contain the attack. We built 
a prototype of a SOUND Router which is built on a formally verified secure processor.  
In order to define policies within SOUND, we created a SOUND Policy Service and the Simple 
Unified Policy Programming Language (SUPPL), which allows formal specifications of policies 
in a way that allows conflicts between policies to be discovered before they create problems in 
deployment. 
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We demonstrated the SOUND System to the Pacific Command (PACOM), Defense Information 
Systems Agency (DISA), Special Operations Command (SOCOM), as well as deploying it in 
several of the shipboard control system labs at NAVSEA Naval Surface Warfare Center 
(NSWC) in Philadelphia. We integrated the SOUND System with another MRC project, 
Network Path Diversity (NPD) and showed how the two systems were able to secure Navy 
shipboard networks. NAVSEA agreed to sign a Technology Transfer Agreement (TTA) to 
deploy SOUND to a ship. 
Our recommendation is that the government continue pursuing deployment of SOUND to a 
Navy vessel for testing and to the fleet. We further recommend that SOUND be utilized for 
securing any Information Technology (IT) or Industrial Control System (ICS) network from 
intrusion, and would still be useful for SOCOM or DISA to consider. 
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2.0 INTRODUCTION 

2.1 Problem Description 
Computational support for today’s DoD missions operate over a large, heterogeneous, distributed 
set of computing resources—from personal mobile devices to massively parallel computers 
managing millions of connections and petabytes of data. These distributed components must 
cooperate across agencies and across coalitions of allies; each partner brings independently-
managed systems of varying reliability and trust into the distributed resource mix, and each has 
different policies and legal restrictions. 
Today, we cannot reliably secure any single system against cyber attacks, even when it is wholly 
owned by a single agency with a single mission. Computations can be disrupted (denial-of-
service); machines can be co-opted (taken over and used by attacker); data can be corrupted and 
stolen. The problem is even further beyond the state-of-the-art when considering a coalition of 
machines under different jurisdictions. There is currently no principled way to describe what 
such systems should be doing and thereby differentiate proper and compliant agents from rogue 
actors.  
In addition to threats from outside of an organization, we are also faced with insider threats. It is 
not enough to simply protect the boundaries of our networks, we must assume that the threat can 
come from within.  
Ineffective legacy practices have failed to counter contemporary information security and 
privacy threats. Modern IT operates on large, heterogeneous, distributed sets of computing 
resources, from small mobile devices to large cloud environments that manage millions of 
connections and petabytes of data. Protection must often span organizations with varying 
reliability, trust, policies, and legal restrictions. Centrally managed, host-oriented trust systems 
are not flexible enough to meet the challenge. New research in distributed and adaptive trust 
frameworks shows promise to better meet modern needs, but lab constraints make realistic 
implementations impractical. 
Safety On Untrusted Network Devices (SOUND) provides secure, resilient, scalable distributed 
computing platform upon which mission-oriented distributed applications can be built that are 
both resistant to and capable of adapting to an attack to continue a given mission.  

2.2 SOUND Solution 
Safety on Untrusted Network Devices (SOUND) is a new security platform built from the 
ground-up to verifiably protect communications up to and within applications. Legacy solutions 
are compartmentalized, focusing on just the systems and networks that carry traffic, independent 
of content, or are application driven, disregarding behavior that occurs at lower levels of the 
network stack. SOUND unifies the tools organizations already have in order to proactively 
protect communications, separate outsiders from insiders, and track misbehavior. SOUND’s 
primary assumption is that the technical environment is vulnerable to attack. It trusts 
applications, their users, and the subsystems applications and users operate on, only as long as 
they behave appropriately [FUJ15]. 
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The SOUND research goal is to create a digital immune system that can remember the damage 
caused by communications behavior and automatically reacts to contain that damage and its 
source. SOUND eliminates digital anonymity by establishing a “Community of Trust” (CoT) in 
which identifiable members are monitored for their adherence to defined rules of behavior. Each 
CoT embodies three common resilience characteristics, including: 

• Accountability – Compare individual behavior against a common community policy. This 
capability was initially based on the Accountable Virtual Machines (AVM) technology [6]. 

• Protected Communications – Anchor network communications and allow members to report 
on community interactions. This capability evolved from the Introduction Based Routing 
(IBR) technology [7].  

• Reputation – Provide a framework for measuring member reputation. This capability was 
initially based on the Quantitative Trust Management (QuanTM) technology [8]. 

2.3 Background 

2.3.1 Introduction Based Routing 
Given enough attempts, even a low-probability cyber attack (e.g., spam, password guessing, 
Structured Query Language (SQL) injection, port scanning, Distributed Denial of Service 
(DDoS)) will eventually succeed. As attackers rattle the proverbial doorknob looking for a way 
in, each failure is observable and should serve to identify them as attackers, but, in today’s 
networks, they usually go unidentified, and there are no repercussions for such misbehavior.   

In contrast to the bank vault model—preventing malfeasance via (metaphorical) armor plating 
which strictly controls what an actor can and cannot do, Introduction-Based Routing (IBR) 
follows the shopping model, in which each individual actor identifies safe partners with whom to 
conduct business. When we walk into a store to make a purchase, it is with some confidence that 
we will not be “ripped off”, because the store does not want to risk losing all the future business 
of not only that customer, but the customer’s friends, as well.  Choosing where to shop is a 
repeated game; misbehavior in one round impacts the reputation of involved parties in 
subsequent rounds, and their subsequent willingness to interact. Unfortunately, within current 
Internet Protocol (IP) standards, every interaction is a single-play game.  Furthermore, we do not 
currently use information from other, trusted nodes to assist with establishing reputations. 
IBR is an active network defense that changes the economics of cyber attacks by requiring that 
new connections be formed by way of “Introductions.”  Figure 1 (a) shows the introduction 
handshake: 1. Requestor sends (R)equest to Introducer. 2. Introducer sends (O)ffer to the Target. 
3. Target sends (A)cceptance to Introducer. 4. Introducer sends (E)stablished to Requester. The 
connection is established and exists until closed by either party. Figure 1 (b) shows a notional 
architecture of how IBR is deployed on a network. The IBR Proxy Server allows hosts to 
participate in IBR simply by routing their packets via the proxy server. The IBR IP Bridge 
connects the IBR network to the Internet. It acts as an Introducer to the Internet nodes, causing 
them to have a persistent reputation in the IBR network. 
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(a) The Introduction Handshake (b) Notional IBR Architecture 

Figure 1: Introduction-Based Routing Active Network Defense Solution 

By collecting positive and negative feedback about interactions, IBR participants 
(independently) assesses the trustworthiness of other participants.  Nodes can decide for 
themselves whether to participate in connections, whether as introducers or endpoints. 
Misbehavior not only degrades the reputation of the bad actor, but also of those hosts that were 
willing to introduce it. When a system’s reputation is poor, it will be isolated from the network. 
IBR is a locally-managed, peer-to-peer federation of nodes where observations and reputations 
are not shared (other approaches, like eBay’s, rely on centrally-managed reputations). 
The basic idea of establishing a connection via introductions is illustrated in Figure 2.  When 
Host A wishes to establish communications with Host E, it contacts a few “neighboring” hosts 
that are well trusted based on past experience.  These hosts (such as Host B) provide 
introductions to other hosts (such as Host C) until A is put in touch with Host E.  This 
remembered pedigree allows Host A to hold both the end host and the introducers accountable 
for poor behavior. At any given point in this process, introducing hosts may refuse to offer an 
introduction for hosts that they do not trust, thus isolating bad actors from the system.  To get the 
system started, each node must have some a priori connections, established outside of IBR. 

 

Figure 2: Introduction of Host A to Host E via B, C and D 
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Although IBR provides a modest set of misbehavior sensors, IBR emphasizes integration with 
each site’s existing set of commercial misbehavior sensors. 
The IBR Protocol does not specify the policies by which participants label behavior as malicious 
and update their own opinions of other participants, and can operate with large variations in such 
policies across the network. Four classes of effective policies discovered over the course of this 
research is based on (a) playing tit-for-tat—reporting as a bad actor anyone who reports you as a 
bad actor; (b) incrementing and decrementing one’s reputation of an interaction partner for good 
and bad behaviors at different rates, which must be roughly tuned to detect false alarm rates; (c) 
adjusting the reputation of the subject of a report more when the reporter has a high reputation; 
and (d) forgiving bad behavior—allowing a bad reputation to recover—over time. 
IBR is implemented as an Internet Protocol (IP) based on a small number of message types, 
corresponding to such events as offering or accepting an introduction, closing a connection, or 
sending post-connection feedback to an introducer.  IBR uses the IPsec tunneling protocol, and 
most messages use public/private key encryption to verify endpoint identity.   
By design, IBR is a “drop in” solution, with low barriers to adoption.  It can be adopted and 
deployed piecemeal, is open sourced, scalable, has low latency cost, requires no central 
administration, and require no changes to the entrenched infrastructure.  
Simulations and game theoretic analyses over a wide range of network topologies, numbers of 
attackers, detector false positive and negative rates, and policy parameters provides evidence that 
widespread adoption of restrictive introduction and acceptance policies is strategically stable; 
that IBR adoption need not be universal to sharply reduce misbehavior, including “reputation 
attacks”; and that IBR is difficult to “game”. 

2.3.2 Quantitative Trust Management (QuanTM) 
A major challenge in determining trust in a decentralized setting is selecting robust Trust 
Evidence. How do we know who is making a request and if they are authorized to perform such 
a request? With what confidence can we draw these conclusions? Such evidence can be static, 
such as possession of cryptographic keys or a cryptographically signed certificate as in the 
original Trust Management proposal (implemented in KeyNote [BFK98]). However, as we deal 
with varying policies among different agencies assembled to contribute to a common mission, 
the evidence must be context-dependent, as in Dynamic Trust Management (DynTM) 
[BKL+09], with its sophisticated, context-sensitive authorization policies. When agents are 
subject to compromise and when we must continually make judgements about new agents in a 
system authorized by decentralized authorities, the evidence and judgements may need to be 
policy-, context- and behavior-dependent, as in Quantitative Trust Management (QuanTM) 
[WAC+09]. 
Figure 3 represents the QuanTM architecture. The three boxes (demarcated with dashed lines) 
represent the Trust Management (TM), Reputation Management (RM) and Decision 
Management (DM) subsystems of QuanTM, moving from left to right in the figure.  
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Figure 3: Architecture for Quantitative Trust Management 

On the left side, a request and credentials authorizing that request are presented. An example 
credential is represented in Figure 4.  

Authorizer: SecDef 
Licensees: SecARMY || SecNAVY || SecAIR 
Conditions: 
operation == "query" -> "True"; 
operation == "update" -> "Maybe"; 
Signature: "rsa-sig:1294..." 

Figure 4: An Example Keynote Credential 

This credential represents that an authorizer SecDef authorizes two operations query and update, 
to three Licensees, for some database access. Compliance values are computed using the 
conditions values, with True meaning trust, False meaning don’t trust, and Maybe meaning the 
system must consult additional policy rules to make a trust decision. 
The TM subsystem parses the KeyNote language and computes a Compliance Value (CV) that is 
passed (over the RM subsystem in the figure) to the DM subsystem. The TM subsystem also 
constructs (using the dependencies inherent in delegated authorities) a trust dependency graph 
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(TDG) annotated with compliance values computed using local policies. This TDG is what is 
passed to the RM subsystem. 
The RM subsystem consults observations stored in a Reputation Database that represent learned 
knowledge in QuanTM. A Reputation Algorithm is applied to the TDG object, computing trust 
values (TVs) using the KeyNote Compliance Values and the behavioral data from the Reputation 
Database; the Reputation Quantifier produces a final Trust Value (TV), which is passed to the 
DM subsystem. In the QuanTM paper, the Reputation Database was assumed to be pre-
populated; in our proposed SOUND effort, an initial database and feedback mechanism derived 
from IBR and audit will flow into the system at the arc on the lower right, feeding into the 
Reputation Database. 
In the DM subsystem, the CV is combined with the context information (e.g., indications of a 
high alert) before being passed to the Decision Maker. This injection of context is where the 
Dynamic Trust Management is achieved; the Decision Maker combines the information from the 
TM subsystem and the Reputation Management subsystem using a Decision Meta-Policy  and 
determines an Action, shown emerging from the right hand side of the figure. The Decision 
Meta-Policy is application-dependent, but might represent the application’s preferences for trust 
evidence and how these are affected by context and observed behaviors. Feedback on the action 
is incorporated into the Reputation Database.  
Chang, et al. [CVW+11] have demonstrated the application of a behavior-based reputation 
system to the Border Gateway Protocol (BGP), a highly decentralized information exchange for 
Internet path information. The derivation of probabilistic measures of trust for Autonomous 
Systems (ASs) on the Internet is shown to be useful to increase routing performance and dampen 
the effect of misbehaving nodes. 

2.3.3 AVM 
Accountable Virtual Machines (AVM) provides the capability to audit software system 
executions through logging the execution and comparing it to a known-good version.  This 
auditing system does not require trust in the hardware or the accountable virtual machine monitor 
on which the binary executes. AVMs provide users with the capability to detect faults, identify 
faulty nodes and to provide evidence of which machine caused the fault.  The AVM must 
maintain a log with enough information to reproduce the entire execution and cryptographically 
record each outgoing message to link it to the execution log.  AVM then detects faults by 
replaying the execution using a known-good copy of the binary and checking the visible 
behavior is identical to the previously run version. AVMs can do this with any binary image that 
can be run inside a VM. 
If we are going to build a Community of Trust out of a population that includes malicious and 
compromised agents, how do we establish trust? If agents trustworthiness can change over time 
(e.g. they are compromised, or a sleeper agent awakens), how do we detect misbehavior and 
reassess trust?  
In order to check whether a system is performing satisfactorily, each element of the system must 
provide tamper-proof evidence. Computational elements range from individual instructions on a 
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host, to functions, to processes, to ensembles of processes on a single host, to a host as a black 
box, to distributed ensembles. [HKD07, HARD09, HK09, BDHU09, HARD10, Hae09]. 
In an accountable system, each node is responsible for performing some specific function, such 
as storing files or forwarding packets. This function is called the node’s expected behavior. 
However, it is assumed that some nodes may deviate from their expected behavior, e.g., because 
they are faulty or have been compromised. The goal of accountability is a) to detect when such 
misbehavior occurs; b) to identify misbehaving nodes; and c) to produce evidence that 
irrefutably links the misbehavior to a specific node. 
Existing accountability techniques [HKD07, HARD10] generate evidence as follows. First, each 
node is required to maintain a tamper-evident log of its local actions, such as sending or 
receiving messages, certain processing steps, etc. The logs of different nodes are intertwined 
such that, if a node tampers with its local log or maintains an incomplete log, at least one other 
node is guaranteed to detect this. Second, each node is associated with a set of witnesses 
(auditors) that periodically audit that node’s log. Thus, as long as each node has at least one 
correct witness, misbehaving nodes cannot escape detection: If they misbehave but maintain a 
correct log, the witnesses will discover the misbehavior; if they attempt to cover their traces, this 
will be discovered.  
Figure 5 illustrates this approach in the context of a multiplayer game. Each of the three players 
maintains a tamper-evident log of his or her actions; Eve has modified her game software to gain 
unlimited ammunition (left). When Alice becomes suspicious of Eve’s good performance, she 
can audit her log and check it for tampering (middle); she then replays the log using her own 
copy of the game software to check for cheating (right). Since Alice’s copy of the game software 
has not been modified, the behavior during replay will be different. Alice now knows that Eve 
must have been cheating, and she can use the copy of Eve’s log to convince Bob. 

 

Figure 5: Simplified Example: Accountability in a Multiplayer Game 
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3.0 METHODS, ASSUMPTIONS, AND PROCEDURES 
SOUND (Safety On Untrusted Network Devices)’s goal is to provide a secure, resilient, scalable 
distributed computing platform upon which mission-oriented distributed applications can be built 
that are both resistant to and capable of adapting to an attack to continue a given mission.  
In order to achieve this goal, we provide two mechanisms: 

1. Communities of Trust that provide an “immune system” for detecting and adapting to 
misbehaving elements of the distributed system, and 

2. Highly reliable and trustable infrastructure nodes from which we can bootstrap a reliable 
“public health infrastructure” and provide oversight for the large number of mutually 
suspicious nodes in the network. 

3.1 Research Methodology 
Our research and development methodology followed an Agile/Scrum approach where design 
and research direction were motivated by a number of “User Stories”, which described how our 
eventual users would want to use the system, and how attackers would try to attack it. We built 
the system up by focusing on one type of attack by a persistent malicious adversary per sprint. 
As we got further along in the project, our approach was heavily motivated by what we learned 
from our transition partners. We would demonstrate systems to potential transition partners, get 
feedback on what was useful to them and what was not, and use that to determine what the next 
steps should be. User stories have been documented in Appendix F of the SSDD. 
As a result of this methodology, our methods for researching solutions to the problem evolved 
over time. In section 3.2, we describe the initial approach and in section 3.3, we describe what 
the approach evolved to become. 

3.2 Baseline System: Integration of IBR, QuanTM, and AVM 
Our baseline system merged three promising technologies: Introduction Based Routing (IBR), 
Quantitative Trust Management (QTM), and Accountable Virtual Machines (AVM).  
For detecting and adapting to misbehaving elements in a heterogeneous distributed system, our 
dynamic Communities of Trust was based on a novel integration of research in Accountability, 
Reputation, and Protected Communications. Initially based on three founding technologies – 
Accountable Virtual Machines (AVM), Quantitative Trust Management (QTM), and 
Introduction-Based Routing (IBR) – our research efforts extended beyond those technologies to 
develop a more powerful and practical SOUND implementation that would support real 
operational environments. 
In more detail, SOUND a breakthrough in security and resiliency of heterogeneous networked 
systems by innovating in the following four areas: 
1. Communities of Trust: SOUND implements an innovative combination of Introduction 

Based Routing with Quantitative Trust Management. This combination was intended to 
support a self-organizing, dynamic web of trust, backed by context-sensitive policies. This 
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would solidify distributed trust management by extending formal methods developed under 
the SAFE program to the SOUND communications layer, resulting in dramatically more 
trusted systems than is possible currently. The combination of these technologies would 
allow SOUND to implement unforgeable communications, such as connections between 
distributed processes. 

2. Accountability and Monitoring with Mutual Suspicion: The plan was to have SOUND 
apply a fine-grained protection model that focuses on the root cause of misbehavior instead 
of just the system that is hosting the damage. For this to work, SOUND would implement an 
innovative multi-layer attribution technique that will allow SOUND to attach sensor 
observations to all of the identities involved in a detected misbehavior event. We also 
investigated extending work by Haeberlen [HARD10, Hae09] to enable tamper-evident logs 
and audit trails on endpoint hosts, acting as a SOUND sensor to enhance accountability with 
the host, however we found that this didn’t provide protection for application flaws. 

3. Pillars of the Community: Establishing a differentially reliable decentralized trusted 
environment: The SOUND project took on a two-pronged approach to enhance the inherent 
trust in an operational environment. To push SOUND resilience properties closer to the 
endpoint hosts without causing significant impact to host functions, SOUND needed to 
implement a distributed trust management capability that monitors user and host activities. 
This will allow a more rapid deployment of reputation management in any communications 
environment. Then, SOUND development would extend the SAFE implementation from the 
CRASH program to allow SAFE hosts to operate in a heterogeneous distributed system of 
differentially reliable elements (like accredited public health system hospitals). SAFE-based 
elements would consist both of general purpose (but highly trusted) compute servers running 
critical computing tasks (e.g. auditing, introducing), and also of embedded devices (e.g. 
routers) obtained by creating specializations of the SAFE architecture. A distributed set of 
SAFE-based nodes will provide a Trusted Computing Base (TCB) for any MRC system. 

4. Formal Specification and Model-based Programming: SOUND investigated 
implementing formal specifications for all services, protocols, and computational platforms 
in a SOUND system that provide interfaces for external subscription to SOUND data and to 
provide feedback into SOUND decisions. To support programming of policy and sensor 
control, SOUND would also include a high-level policy language that allowed direct 
specification of desired system states and reduces conflict between SOUND control 
authorities.  

3.3 New Focus: Reputation 
After achieving minimal results in attempts to merge the SOUND technologies into a 
comprehensive framework, the SOUND team modified its approach to emphasize development 
of a research platform that could compute reliably in the face of attacks known and unknown on 
a differentially trustable set of distributed compute nodes with variable susceptibility to attack. 
This new approach sought to apply an agile development methodology for building a new 
SOUND platform that would implement and extend the key research technologies in alignment 
with a series of plausible attack scenarios with dangerous potential consequences to explore the 
platform's resilience response. This new SOUND platform is based on implementing an 
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Observe-Orient-Decide-Act paradigm through a set of networking, authentication and trust 
services that define and enforce Communities of Trust, providing an immune system against 
attacks. 
A shift towards transition caused us to further modify our approach to emphasize SOUND 
features that will support demonstration to PACOM and other capabilities that build a broader 
transition story. SOUND reputation will continue to evolve, but we now expect development to 
be limited to a single SOUND community with constrained reputation portability. We shifted 
emphasis to address the security considerations of the SOUND platform itself and focus on 
building stronger core capabilities. 
Our modified approach innovated in the four areas in the following ways: 
1. Communities of Trust: Deeper investigation into utilizing QuanTM for trust management in 

SOUND found that the architecture was much too complex and couldn’t be adapted easily to 
tracking variable trust, instead of determining complex static trust. The IBR reputation 
system was designed with network security in mind, but didn’t have a concept of a 
Community of Trust, each IBR node operated independently.  Our discussions with transition 
partners made it clear that centralized control and communities would be essential to success, 
but so would a system which was understandable enough to be useful to operators.  As a 
result we chose to extend a reputation algorithm, Reputation in Gregarious Societies 
(REGRET) [SS01], originally designed for reputations in shopping and review systems, to 
our needs.  The REGRET algorithm combines four components: node A’s opinion of node B, 
node A’s opinion of node B’s community, node A’s community’s opinion of node B, and 
node A’s community’s opinion of node B’s community.  In addition, the method of 
incorporating sensor data allows for different classes of behavior to affect the reputation and 
decay using definable functions. 

2. Accountability and Monitoring with Mutual Suspicion: In choosing to base the SOUND 
reputation scheme on the REGRET algorithm, one of our goals was to define a reputation 
system which would allow root cause to be determined. We also investigated how SOUND 
identities could be attributed to hosts and applications, in addition to individuals. Our 
approach was to create a wrapper which would do the appropriate authenticate on behalf of 
the application and individual in order to allow legacy applications to be used. 

3. Pillars of the Community: Establishing a differentially reliable decentralized trusted 
environment: We experimented with how adding provably trustworthy nodes to the network 
could bolster the effectiveness of SOUND in a future integration. 

4. Formal Specification and Model-based Programming: As our research took shape, we 
found that one of the more difficult research problems we needed to address was how to 
detect conflicts within a set of policies.   Our high-level policy language needed to account 
for sets of policies written by different individuals at different times and allow us to formally 
reason about policies. 
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3.4 Assumptions 
In our work on SOUND, we performed our research under a set of assumptions about the 
environment SOUND would be operating in, outlined below: 

• Insider Threat: We assumed that attacks could come from within the network, from 
identities and individuals which were considered trusted. 

• Differential Trust: Entities communicating using SOUND may have differential levels of 
trust in one another. We needed to build a system that would allow less trustworthy agencies 
to connect. 

• Zero Day Attacks: We assumed that the attacks may not be ones that could be identified by 
signature, but that would be visible by a pattern of multiple behaviors over time. 

• Centralized Control: In designing SOUND, we assumed that the organization deploying it 
would want control over the entire Community of Trust, as we discovered in discussions with 
military agencies. 

• Legacy Applications: Originally we assumed that applications would be programmed or 
retrofitted explicitly to work with SOUND.  We modified this assumption after discussions 
with transition partners revealed that this would be extremely difficult to accomplish.  Our 
later work assumed that existing applications and devices would not be modified. 

• Automatic vs Human-in-the-loop: Another original assumption was that SOUND would 
operate entirely autonomously, making decisions based on policy and taking action 
accordingly. Discussions with transition partners made it clear that until our technology had 
been proven and in regular use, transition partners would need a human in the loop, choosing 
whether to act on SOUND’s recommendations. 

• Authentication: SOUND relies on authentication of users, but our research was not focused 
on authentication systems, so we assumed that a deployed system would be integrated with 
the customer’s authentication. 

• Encryption: SOUND utilized IBR’s integrated IPSec tunnels for encryption, but we also 
assumed that a transition partner would specify which encryption technologies were needed 
and integrate them into SOUND. 

• Unicast vs Multicast: We assumed through most of the project that communication over the 
SOUND system would be done via unicast protocols (such as TCP, etc.).  When we initially 
worked with NAVSEA NSWC, we found out that most communications on shipboard 
systems are done via multi-cast. 

3.5 Red Team 
As part of our testing, we planned to conduct Red Team assessments.  In these assessments, a 
group of engineers from BAE who worked in the Cyber & Communication Technologies Group, 
but not on the SOUND project, would review the code, design and perform attacks against a live 
system to internally assess its vulnerabilities.  



14 

Approved for public release; distribution is unlimited. 
 

4.0 RESULTS AND DISCUSSION 
We have organized the results into four main sections.  First, a discussion of experiments 
performed. Second, a discussion of the SOUND Platform. Third a discussion of the tests run.  
Lastly, the demonstrations and lab deployments done during the program. 

4.1 Experiments 

4.1.1 SAFE+SOUND Experiment 
SAFE, developed under the DARPA CRASH program and SOUND were designed to be 
companion projects. SAFE focused on the processor and the host, SOUND focused on the 
network. We wanted to see how much having a SOUND node running on a SAFE processor 
would make a difference in our ability to thwart attacks and whether the two systems would 
provide benefits to one another. 
SAFE protects only the machine its running on, not the network. It also can’t protect from insider 
attack, or bugs within an application. It does protect against the top 20 CWEs (such as buffer 
overflow). 
In order to do this, we ran simulations to see if SAFE bolstered SOUND and we found that a few 
SAFE machines in the network were able to increase the overall security of the network 
significantly. 

4.1.1.1 Experiment Design 
For this experiment we utilized an IBR simulator, which simulated the behavior of IBR and 
attacks to see how they would spread within a network. The network was divided into a series of 
enclaves, each enclave had a simulated SAFE machine within it. The enclaves were connected 
via a backbone of routers.  A single node would be deemed compromised and would then 
attempt to choose another machine to attack and attempt to attack it.  A non-SAFE machine 
could be compromised, but would have a percent chance of detecting the attack. A SAFE 
machine was considered unable to be compromised, but the compromised machine would still 
attempt to attack it and the SAFE machine would therefore report the attack, affecting the 
reputation of the attacker. Figure 6 shows the setup for the experiment and Figure 7 describes the 
scenario, variables and assumptions. 
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Figure 6: SAFE and SOUND Experiment Setup 
 

 

Figure 7: Experimental Setup, Scenario, Variables, and Assumptions 
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4.1.1.2 Results 
What our experiment found was that a small number of SAFE machines made a great difference 
in how quickly the IBR system was able to contain the attack. (See Figure 8)  The SAFE nodes 
acted as observers, quickly noticing and reporting the behavior of the infected nodes, which 
allowed IBR to stop accepting connections from them.  This kept the infection contained to a few 
enclaves, instead of spreading across the network.  

 

Figure 8: Rate of Contamination With and Without Added SAFE Servers 

However, this experiment assumed the attacker did not know which nodes were SAFE nodes. It 
would make sense that if the Adversary had that information, they would program the malware 
to avoid the SAFE nodes, therefore reducing the ability for SAFE to protect the network. 
Additionally, we realized that this benefit is also true of heterogeneity of the network. In a 
network where all nodes are running identity operating systems, malware is capable of attacking 
and compromising all of them.  But if nodes are heterogeneous, presumably the malware isn’t 
able to compromise all of them, but rather a subset.  The nodes which are running operating 
systems not susceptible would act similar to the SAFE nodes in our experiment. 
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4.2 SOUND Platform 
This section discusses the resulting SOUND platform. 

4.2.1 SOUND Services 
SOUND is comprised of a set of distinct and independent services that enhance trustworthiness 
by maintaining logical "Communities of Trust" (illustrated in Figure 9) and tracking the 
reputation of all community members. Those services reduce reliance on perimeter defenses for 
protecting mission operations and enhance control over how information flows across 
community boundaries. Their functions are founded on the premises that distributed, cloud-
oriented applications will always have flaws and that SOUND cannot completely trust insiders or 
endpoints. Rather, SOUND will operate on a concept of differential trust where each community 
member is judged based on its individual actions. The architecture increases attacker workload 
through necessity of being a recognized and legitimate community member and of mounting a 
coordinated attack against an application and the SOUND platform simultaneously. We designed 
the SOUND platform to be a dynamic immune system of services that are capable of controlling 
the communications channels between all community members. Those services collectively 
support the SOUND Observe, Orient, Decide, Act (OODA) loop, providing the mechanisms 
needed to collect sensor information, to interpret sensor observations to detect potentially 
damaging behavior, to process those observations against policy to decide how to respond to the 
behavior, and to protect the community from the behavior while maintaining mission 
effectiveness. 

 

Figure 9: Community of Trust 
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SOUND is comprised of the following components / services: 

• SOUND Trust Service (STS): STS is the central SOUND decision-making and policy 
enforcement engine. STS receives sensor observations and acts on those observations by 
applying predefined policies to manage connections, identities, sensor behavior, and 
notification of community participants.  See Appendix B of the SSDD for more detail. 

• SOUND Policy Service (SPS): SPS stores and manages SOUND policies. Policies managed 
by SPS include those defining communities, interactions between SOUND communities, and 
reputation distribution across SOUND nodes. See Appendix C of the SSDD for more detail. 

• SOUND Identity Service (SIS): The common identity management service for all 
community participants, providing credentialing and authentication. See Appendix D of the 
SSDD for more detail. 

• SOUND Reputation Service (SRS): SRS captures and stores Observations as submitted by 
community participants, and uses those Observations to calculate whether or not one entity 
trusts another. See Appendix K of the SSDD for more detail. 

• SOUND Data Service (SDS): The SDS is intended to be a middleman between the 
application and the data provider, such as a SQL database, which enforces and maintains 
permissions based on SOUND policies and reputations. As this piece was of less interest to 
our transition partners, it was later dropped from the SOUND platform. 

• SOUND Connection Service (SCS): The SCS is essentially the SOUND version of IBR. It 
allows secure connects to be established between members of the Community of Trust, if 
their reputation is in good standing. 

• SOUND Administration Console (SAC): A console to allow an administrator to manage 
the SOUND system, viewing reputations, IBR connections and policies. 

• SOUND Sensor Framework (SSF):  A framework to integrate sensors.  The SSF can 
receive alerts via syslog or parse snort logs. It is extensible to allow the addition of new log 
formats and sensors in the easiest possible way. 

4.2.2 Communities of Trust (CoT) 
Participation in a CoT carries an agreement to adhere to a common set of rules. Community 
members expect others to behave predictably, and punish those that act outside of acceptable 
boundaries. SOUND requires that CoT members have secure network connections to any other 
community member they choose to communicate with. Two connection types power SOUND 
CoT communications: a priori and introduced connections. The a priori connections are like 
those that might exist within a business group, a military command structure, or a similar real-
world community. They represent predefined trusted relationships that SOUND uses to introduce 
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members to other members across the community, when the two parties do not have an 
established trust relationship. Any SOUND CoT member may serve as an introducer, using a 
priori connections to other community members and introducers to build an introduction path. 
When all of the introducers along the path agree that the two members may communicate, the 
members build a protected introduced connection with which to transmit data.  
Integrity and trust of all community members—introducers included—in a CoT is essential to its 
operation. To guarantee this level of trust, SOUND promotes accountability by applying an audit 
function to all nodes. If the members all operate as expected—for any input the expected output 
and only that output is produced—then the community considers them trustworthy and continues 
to allow them to participate in the CoT. Once introduced and connected, the members regularly 
rate the communication and report back through the introduction chain until the interaction 
concludes. While normal behavior will result in a positive rating, any questionable, suspicious, 
or blatantly inappropriate behavior will result in a poor rating. This simple model works like 
human communities where one’s past behavior and performance directly impact one’s reputation 
and therefore one’s ability to have future community interactions. Just as a good reputation leads 
to more interactions in human societies, good reputation leads to being allowed to make future 
connections in a SOUND CoT.  
The implications of this simple model and how it operates are powerful. A CoT member (i.e. a 
human actor, an application, or a host) can either be introduced and thus be an insider, or cannot 
be introduced and therefore cannot communicate with other CoT members. SOUND records the 
history of communication ratings as reputation against member identities and uses policies to 
determine what action, if any, it should take relative to misbehavior. SOUND tolerates minor 
misbehavior because it may represent a transient user error or something that in isolation is 
innocuous, events that analysts often interpret as “false positives.” However, continued “minor 
infractions” would eventually result in punitive action. This means a consistent treatment of 
misbehavior is applied across a CoT up to and including a complete community access 
revocation if sufficient bad behavior is attributed to a member. A badly behaving insider 
effectively becomes an outsider and can no longer participate in the community, protecting the 
CoT operational integrity and all of its members. 

4.2.3 Accountability and Monitoring with Mutual Suspicion 
In order to provide accountability, we investigated the use of AVM, but discarded this for the 
reasons outlined below. We created a sensor framework and integrated a number of sensors into 
SOUND to provide monitoring of community members.  Past research suggested that, to protect 
community assets, communication should only be allowed if the participants could hold each 
other accountable for their behavior. 

4.2.3.1 AVM 
Our initial accountability approach was based upon research for generating evidence of 
misbehavior using AVMs. AVMs require that each CoT host maintain a tamper-evident log of 
local actions and be associated with a set of witnesses that audit the host’s log. One of the 
primary challenges for applying AVM to SOUND was that AVMs detected misbehavior by 
deterministically replaying a host’s log using a reference implementation, requiring that the full 
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behavior be known. We intended for SOUND to extend AVM to verify behavior against a coarse 
abstraction of expected communications patterns. 
The issue we discovered using AVM this way is that it does nothing to protect against defects in 
the software itself. Most of the exploits in use today are utilizing flaws in the software attacked, 
not necessarily making changes to that software. The use of ROP gadgets is an example of this. 
We realized that AVM would not detect this because the flaw would still exist in the gold copy 
of the software AVM was comparing the running copy against. 

4.2.3.2 Tit for Tat 
In order to provide a protection model which prevents our reputation system from being used as 
an attack surface, we utilized the “tit-for-tat” model developed for IBR.  When a node reports an 
attack, both nodes reputation, from the point of view of the other, are reduced.  What this means 
is that if one node attacks another by falsely reporting an attack, eventually the attacking node 
will no longer be able to communicate with the victim node, and no further false reports can be 
created.  This does not mean the reputation from the perspective of the whole community is 
degraded to the point of exclusion, so the attacker would need to choose a new target, therefore 
lower its reputation further in the eyes of the whole community until it is cut off.  In this way, we 
are able to pinpoint the true attacker. 
In order for an adversary to use the SOUND reputation system to deny service, the adversary 
would have to compromise a large number of hosts from a diverse portion of the introducer 
network. This forces the Adversary to raise the bar and work harder to be able to attack the 
system. 

4.2.3.3 Sensor Integration 
SOUND is a system which relies on inputs from sensors.  The goal of the SOUND project was 
not to build new sensors, though we built a few for testing and demo purposes, but rather to 
integrate existing sensors. During the course of the project, we integrated a number of 
COTS/GOTS sensors, described in this section. 
We integrated with the following sensors: 

• Network Intrusion Detection Sensor – We integrated with Snort, which is an industry 
standard Network Intrusion Detection Sensor (NIDS), which is available open source.  The 
snort sensor can detect a wide variety of intrusions through its very extensible ruleset, for 
which rules are regularly updated.  For our purposes, we ran snort separately from SOUND 
and built a tool which ingested the snort logs. For the demonstrations we did at PACOM, in 
the NSWC lab and LSD-41 lab, we kept the ruleset very small to detect only port scans and 
ftp login failures.  The reason for this was because the larger rulesets detected so much we 
could not necessarily control for false alarms or unexpected alerts, which made deterministic 
demos difficult. 

• ICS Sensor – We integrated with Sophia, which is a commercial NIDS designed specifically 
for Industrial Control Systems (ICS) from the company NexDefense, which the Navy was 
considering for use on shipboard systems.  NexDefense was willing to provide us with a 
complimentary copy of Sophia so we could integrate with it and show how SOUND and 
Sophia could work together. We did this integration via Syslog.  SOUND was able to receive 
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syslog alerts from Sophia and report them to the reputation system.  This was shown in the 
demonstrations we did in the NSWC lab. 

• Firmware Intrusion Detection Sensors – We used a proprietary technology developed 
under the DARPA CRASH program which is able to monitor and alert when issues with the 
firmware arise.  We demonstrated this integration in the LSD-41 lab, by having this sensor 
detect changes to the firmware of a Programmable Logic Controller (PLC) network card. 

• Hardware Bus Sensor – We used a proprietary technology hardware sensor which monitors 
communications between devices.  For demonstrations in both the LSD-41 lab and the 
NSWC lab, we were able to show that SOUND could ingest the hardware bus sensors 
detection of a logic update and isolate the PLC. 

4.2.3.4 SOUND Identity & SOUND Wrapper 
Another method we experimented with to assign attribution was in attempting to authenticate 
and identify and assign reputation to the software in use.  We did initial experiments with this 
using the SOUND Wrapper. SOUND assigns a unique IP address to all identities, and when that 
user or application authenticated itself, IBR would bind that IP address to the virtual interface it 
was proxying for.  In this way, each individual identity would have its own IBR connections and 
underlying IPSec tunnels.  The SOUND Wrapper ensures that a legacy application will use only 
the assigned IP address. 
The goal in identifying an application is that when you saw bad behavior coming from the user 
of an application you could lower the reputation of the application (e.g. Firefox) itself a small 
amount, allowing over time to realize which applications may have built in flaws, even if you do 
not know what the flaw itself is. 
In order to apply this to an application, the application itself would have to authenticate when it 
started up. We realized that this creates issues with respect to how to authenticate software – 
having software incorporate its credentials is not secure. In order to test our theories, we created 
a wrapper – a shell script that you would use to launch the application.  The shell script would 
replace the standard networking libraries with its own libraries. These wrapper libraries would 
authenticate the application and bind all the applications communications to come from the 
assigned IP address for that SOUND identity.  This allowed us to track the application itself. 
The issues we ran into were that using this method we were limited to a single identity being 
bound to a connection – either the application or the user, since only one IP address could be 
used. Since this particular piece was not of interest to our specific transition partners, we did not 
continue the research further. Future research would include determining how to bundle 
identities for all the applications and pieces of code which were in use by the user, so the 
behavior seen coming from them would affect the reputation of that code. 

4.2.4 Pillars of the Community: Establishing a differentially reliable 
decentralized trusted environment 

4.2.4.1 Reputations 
The SOUND Trust Service relies on the SOUND Policy Service and SOUND Reputation 
Service to determine whether it should trust a member of a community. SOUND uses Sensors, 
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Trust and Reputation to provide defense in depth for networks. It is a network defender that 
receives sensor observations of activities performed by and against network-wide identities and 
aggregates and evaluates them to modify the “reputation” of each identity. Bad behavior by an 
identity (typically a host or user) reduces its reputation to a degree associated with the actual 
activity sensed. Individual low-danger activities can add up to significant lowering of reputation 
and eventual severing of the offending identity from the network. High-danger activities can 
result in immediate disconnection. SOUND provides broad resilience to attacks because what is 
detected is behaviors, not (e.g.) virus signatures. 
SOUND Trust provides a simple sensor platform which supports easy addition of new sensors 
and new “suspicious activities,” and many ways to adjust its evaluation of behavior events, 
otherwise known as “impressions.” 
One benefit we discovered to the addition of reputation for detection of attack is that of relieving 
alarm fatigue.  Network operators or military operators often see hundreds or thousands of alerts 
a day from various sensors. It’s easy to adjust to constantly seeing streams of alerts and no longer 
respond as quickly or necessarily notice critical alerts in a timely manner.  SOUND Reputation 
helps combat this by adding up the many small alerts into a quantifiable reputation which lets the 
operator know when a true issue has occurred.  The operator can then dig into the many alerts 
which made up the reputation to determine the cause of the problem. 

4.2.4.2 IBR / IBR Modifications 
As an extension of standard IBR, SOUND IBR integrates standard IBR’s introduction-based 
connection management scheme with SOUND Platform services. 
Figure 10 illustrates how SOUND IBR fits within the SOUND context.   

 

Figure 10: SOUND Architecture with IBR Modifications 
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As with standard IBR, SOUND IBR serves as a proxy between naïve hosts and the rest of the 
SOUND network.  When a naïve host attempts to connect to another host across the network, 
SOUND IBR requires that a connection be established to the target.  Connections are requested 
via introduction, which are subject to policy decisions by all nodes involved.  IBR enforces 
connections by manipulating Linux kernel iptables rules and XFRM policies.  For more details 
on standard IBR, see [F+11]. 
SOUND IBR extends standard IBR chiefly by means of the SOUND IBR Plugin component.  
The SOUND IBR Plugin connects standard IBR with the various SOUND Platform services 
(Trust Service, Reputation Service, Naïve Authentication), sensors, and SOUND Admin 
Console. 
Through the SOUND IBR Plugin, IBR policies query the SOUND Trust Service whenever 
making trust decisions for requesting/offering/accepting introductions.  Thus, IBR benefits from 
the Reputation Service’s community-wide perspective as well as its more sophisticated 
reputation model.  Additionally, the IBR policies benefit by being able to incorporate reputations 
of users as well as hosts when making trust decisions. 
In the event that the Trust/Reputation Service becomes unavailable, SOUND IBR provides 
availability by falling back to using IBR’s traditional policy scheme whereby each node 
continues to make local trust decisions.   
SOUND IBR interacts with many SOUND components. The SOUND IBR Plugin has an 
interface for receiving reports from sensors.  It also interfaces with the Reputation Service by 
forwarding reports to it and receiving reputation updates from it.  The Plugin provides on-
demand IBR connection data to the SOUND Admin Console.  Also, it accepts user association 
data from Naïve Auth.  Finally, IBR also offers a command-line interface used primarily for 
managing a priori connections.  

4.2.5 Formal Specification and Model-based Programming 

4.2.5.1 Simple Unified Policy Programming Language (SUPPL) 
Simple Unified Policy Programming Language (SUPPL) (Dockins & Tolmach, 2014) is a 
language for security policies that aims to (1) be simple, expressive, and easily debugged, and (2) 
support the construction of coherent policies by combination of simpler policies.  We start with 
the premise that a declarative programming language—Prolog—is close to a natural fit for 
security policies.  We then add type and instantiation mode declarations (stating which variables 
should be bound when a predicate is called, and which are to be bound as a by-product of 
execution) to catch more errors at compile time and to support compiler optimizations.  They add 
an imperative syntax for conditionally branching event handlers that eliminates some non-logical 
Prolog constructs (such as “cut”) with which even experienced Prolog programmers often shoot 
themselves in the foot.  To make programs easier to debug, reason about, and optimize, we 
segregate all effects into table updates that can happen only after all handlers for an event have 
executed. An example of SUPPL code is shown in Figure 11. 
A SUPPL program maps exogenous events to exogenous actions.  Every handler that matches an 
event runs against that event. A coherent policy handles every event with exactly one set of 
actions.  Unfortunately, it is easy to combine several individually coherent policies to create an 
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incoherent one.  For example, a combined policy might both allow a user access to a resource, 
because he/she is a superuser (policy 1), and deny access to that resource because he/she is not 
explicitly authorized to access that resource (policy 2).  A human told to combine the superuser-
list-based and access-table-based policies would likely assume that superuser status trumps the 
access table information in the combined policy, and may therefore forget that this constraint 
must be explicit in the combined policy program.   Rather than rank-ordering event-handling 
rules or actions to resolve such conflicts dynamically (which can have wide-ranging 
unanticipated effects), SUPPL provides a static analysis to detect potential conflicts, so that the 
programmer can debug the policy.  First, the analysis finds pairs of control-flow paths initiated 
by the same event types that lead to incompatible actions.  For each pair, it defines a first-order 
logical formula for the conditions that would have to hold for both actions to be derived from the 
same event.  It then submits the formula to an external SMT solver to attempt to prove that the 
combination of the two paths is unsatisfiable—that is, the two incompatible actions cannot be 
produced by any single event.  If unsatisfiability can’t be proven, the pair is marked as a 
potential conflict.  False positives are possible, but have not been a problem in tests to date.   

 

Figure 11: Sample SUPPL Code 
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The tested implementation of SUPPL targets a Prolog interpreter implemented in Java, which has 
built-in support for calling Java methods.  The aim is to make it easy to integrate SUPPL-defined 
policies into existing Java applications, or, with modest changes, other languages that have good 
foreign function interfaces to some Prolog implementation. 

4.3 Tests 

4.3.1 Single board SOUND Proxy 
In order to demonstrate that SOUND could run on a small device which would be easily 
deployable, we attempted to install SOUND on a single board computer called a PandaBoard.  
The PandaBoard is similar to a Raspberry Pi, but has a more updated version of the ARM 
processor, making it easier to find the libraries which SOUND relies on compiled for it.  
Our efforts showed that a SOUND proxy could run effectively on a low-power single-board 
computer. We were able to run a proxy and stream video over it with no loss of quality. 

4.3.2 Blue-forces Mission-Oriented Command Center (BMOC) 
As we continued forward with the SOUND project, it became obvious that we would need an 
application we could use to demonstrate and test how SOUND worked, to which we would be 
able to build in flaws and needed features. As a result, we created the Blue-forces Mission-
Oriented Command Center (BMOC).  BMOC was designed to be able to show how a typical 
application might be able to utilize the powers of SOUND. An example of the BMOC interface 
can be seen in Figure 12. 

 

Figure 12: BMOC Interface 
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The BMOC functions include: 

• BMOC: A Java web application running with embedded Tomcat, providing functionality for 
the UAV video display, UAV positional display, chat messaging, and Call For Fires (SAFE) 
requests. The web application transmits and receives data via a Representational State 
Transfer (REST) interface, and serves static Hypertext Markup Language (HTML) and 
JavaScript files to a requesting web-based browser client. The RESTful interface is 
implemented with Jersey *Service classes. BMOC has several functionality modules, 
including: UAV, Call For Fires, Chat, Admin, Debug, and Attack. The SOUND Software 
Design Document (SDD) further describes each module. 

• Web Browser: BMOC requires the Firefox web browser with a custom SOUND extension 
to access application resources. All BMOC pages are static HTML. Periodic data requests are 
made to the BMOC server via Asynchronous JavaScript and XML (AJAX). 

• UAV: The UAV simulators are separate java processes, each with unique initial 
configuration for location, destination, altitude, airspeed, and heading. Every second, each 
simulator calculates its new location based on its configuration and sends its location 
information to the BMOC web application via a RESTful call. Each simulator also has a 
RESTful listener to enable the External Spoofing Attack and to reset the UAV to its initial 
settings. 

• SOUND Data Service: SDS retains and serves the messages for the Chat module. 
• VLC Server: BMOC uses the open source VLC video media server to stream the video 

component of UAV module. A second VLC server serves to deliver a competing video 
stream to interrupt the UAV stream as part of the DoS Attack. 

4.3.3 Red Team 
We performed two Red Team Assessments on SOUND during the program.  The first was a 
table-top exercise where the Red Team looked over the design and code and made suggestions.  
The second was a full Red Team exercise where we set up a live network for the Red Team to 
attempt to exploit the SOUND and NPD integration which we later deployed in the LSD-41 lab. 
The Red Team was able to find a number of issues which were addressed for the LSD-41 
demonstration, and a number that should be addressed if SOUND is deployed in a production 
environment such as hardening of the server bindings, tighter privileges, input sanitization, and 
access permissions. These issues are listed in Table 2 of the VDD. 
Overall, the Red Team felt the design of the system was solid and did not find any opportunities 
for Man-In-The-Middle (MITM) attacks or the introduction of malicious introducers into the 
system.  They did not feel the integration of NPD and SOUND increased the attack surface. 
Once hardening is completed, they felt the sensors would be the weakest spot in the system, so 
sensor security should be a priority in a deployed SOUND system. 
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4.4 Demonstrations 
During the life of the project, we performed a number of increasingly sophisticated 
demonstrations, tests and experiments for transition partners, including SOCOM, NAVSEA, 
PACOM, and DISA. This section will outline the major ones. 

4.4.1 Chat Server 
At the November 2012 PI Meeting, we did an initial demonstration of the SOUND integrated 
technologies using a chat server. For this demo, we incorporated a current implementation of 
IBR (spiral 7) and the notion of AVM through logging and replay mechanisms. We extended the 
Apache Mina/Vysper XMPP chat server for logging and replay mechanisms as well as added a 
trivial data exfiltration exploit. We wrote a plugin for the Ignite Spark XMPP chat client to allow 
clients to ‘report misbehavior’ about other clients. In short the two scenarios were focused 
around mitigating data exfiltration and mitigating chat messages sent by potentially malicious 
entities. 
We used a very naive logging and replay mechanism that resembles AVM in spirit. On the chat 
server, each time a message is received, a copy of the message is forwarded to a reference chat 
server (the ‘gold version’). That is, we assume the ‘gold version’ has not been corrupted and 
cannot be corrupted by receiving normal XMPP messages. Similarly, whenever the chat server 
sends a message, a copy of the sent message is forwarded to the reference server. In an infinite 
loop, the reference server listens for each type of message. Messages received by the original 
chat server are passed along as regular messages (i.e. the reference server sees these messages as 
ones from clients). Messages sent by the original chat server are put into a queue. Whenever the 
reference server produces an output message, the AVM replay mechanism checks that the output 
message matches one on the queue of messages. When the messages don’t match, AVM notifies 
IBR of the bad behavior of the original chat server. 
We installed IBR on 7 virtual machines running Fedora. The introducer was configured with a 
priori connections to each of the other VMs, so the only way that the clients were able to connect 
to the chat server was via IBR introductions. In this way, we were able to disconnect clients from 
the chat server when it was deemed to be misbehaving by notifying the IBR introducer of its 
misbehavior. 
We included two attack scenarios. The first involved the chat server being compromised and 
exfiltrating messages to a third party. The second involved a malicious user sending fake 
messages, with user identified misbehavior being reported, and ultimately disconnecting the 
server. 

4.4.1.1 Outcomes 
There are two large realizations which came out of this demonstration. The first was that there 
needs to be some story for resiliency. Stopping the world won’t suffice. The second realization 
was that the reason for only being able to disconnect the chat server, and not just the attacker, 
was that we only have the notions of connection and identity at the IP level. As a result, if you 
don’t have a direct connection to someone, you don’t really know their identity in the scheme of 
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IBR. As a result, and after considering other web applications, the notions of identity and 
reputation have to exist at the application level. 

4.4.2 SOUND Router 
As we envisioned that ultimately deployments of SOUND would be more performant and secure 
if the encryption and IBR tunnels could be performed at the hardware level on a SAFE processor 
(developed under the DARPA CRASH program). This section summarizes our work; more 
details can be found in [K+14]. 

4.4.2.1 Concept 
 Denial of service (DoS) and distributed denial of service (DDoS) attacks exploit a basic design 
principle of the internet; any machine can send a packet to any other.  The IPsec protocol makes 
it possible to filter out unwanted packets, but only at the destination, on a per-packet basis, 
allowing an attacker to saturate the targeted machine’s ports with unwanted packets.  RotoRouter 
(Kwon, et al., 2014) is a novel protocol and router architecture designed to prevent DoS attacks 
by filtering unwanted packets on the router itself, so that they never reach the targeted endpoint.   
To verify that a packet is “wanted” by the destination, the router  

1. Asks the destination if it wants to receive packets from the source, and forwards packets 
only if the answer is yes; and 

2. Requires the source to sign each packet to verify its origin and integrity. 

Figure 13 shows a picture of the RotoRouter prototype. 

 

Figure 13: RotoRouter Prototype 
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4.4.2.2 Protocol 
When the router first sees the requested connection (source IP, destination IP, and port #) there is 
some one-time (as opposed to per packet) set up: 

1. The router computes a connection ID from the source IP, destination IP, and a random bit 
string such that (a) neither IP can be read off of the ID, and (b) it is difficult for an attacker to 
create a valid ID. 

2. The router asks the destination if it wants to receive packets from this source.  If the answer 
is “no”, future packets from the rejected source can be identified and dropped just by looking 
up the connection ID in a table and checking the result’s “allowed” field. 

3. The source generates a private/public key pair, and sends the public key to the destination.   

A router handling an existing connection for the first time can query the destination for the 
public key, which it will need to authenticate packets. 
For each packet: 

1. The source computes a hash (message digest) of the connection ID, payload, and several 
header fields. 

2. The router decrypts the message digest and recomputes it against the packet to verify that the 
packet came from the connection’s identified sender and that its contents have not been 
altered. 

3. If the packet is verified, it is forwarded.  Otherwise it is dropped. 

4.4.2.3 Implementation 
The protocol was tested in an implementation aboard a NetFPGA-10G platform, an FPGA board 
that supports prototyping and experimenting with network protocols and hardware.  
To keep high throughput, a few of RotoRouter’s more expensive/frequent tasks required special 
attention.  A flow table maps connection IDs to information about the connection—whether the 
connection is allowed, the RSA public key used for authentication, etc.  Because every packet 
requires a lookup in this table, it is implemented as a dynamic multi-hash cache, a species of 
content-addressable memory.  RotoRouter also dedicates hardware cores to two of the most 
expensive steps in the protocol: SHA-1 hashing and modular exponentiation required for packet 
authentication.  RotoRouter uses about five times the resources of a comparison open source 
IPv4 router, with most of the extra due to these two modules.  However, the overall throughput is 
a respectable 8 Gbps. Figure 14 shows resource usage and throughput for the RotoRouter. 
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 Area Clock 
Module LUTs BRAMs (MHz) 
 

Crossbar w/ Buffers 8249 16 300 
Flow Table 38 74 350 
Processor 26985 52 200 
SHA-1 Module 4x1005 0 125 
Mod-Exp 73591 0 200 
RotoRouter 112883 142 125 

 

IPv4 Router 22523 35 150 
 

Total available 149760 324 - 
 

 Crossbar Flow Table SHA-1 Mod-Exp 
 

Clock Speed (MHz) 300 350 125 200 
Individual Throughput (Gpbs) 19.2 515 4 x 0.8 4 x 1.2 

Effective Throughput @ 125 MHz (Gbps) 8 184 3.2 4.8 
 

Figure 14: Resource Usage and Throughput 

4.4.2.4 Simulated attack tests 
RotoRouter was tested against a small simulated attack: two machines on an isolated network are 
video-chatting, while a third, malicious machine attempts to flood the network with junk 
messages.   
With the RotoRouter’s special features disabled (so running as a vanilla IPv4 router), the 
throughput of legitimate data plummets immediately upon attack, but with RotoRouter enabled, 
there is no measurable drop at all.  Figure 15 illustrates the attack test experimental setup (a) and 
goodput measured (b). 

 

 
(a) Experimental Setup (b) Throughput of ROTORouter and Typical Router Under DoS Attack 

Figure 15: Attack Test 
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4.4.2.5 Avoiding DoS attacks on the router itself 
Because there is costly set-up associated with each new connection, a RotoRouter instance is 
vulnerable to an attacker sending numerous bogus new connections.  To mitigate this, the invalid 
request rate on each input port is tracked.  When this rate exceeds a threshold, the port is 
considered to be under attack and is shut down.  
The throughput, resource usage, and basic filtering behavior of a RotoRouter instance have been 
demonstrated, but larger-scale tests remain, to (e.g.) understand the dynamics of connection 
validation traffic and optimize such parameters as the number of unverified packets to let 
through at the start of a connection.   
The cost of RotoRouter’s extra validation steps is significant, but not prohibitive, given current 
technologies, and promises to be effective at preventing DoS attacks. 

4.4.3 Persistent Insider Scenario Demonstration 
For the January 2014 PI Meeting, we demonstrated how SOUND would protect against a 
persistent insider. We utilized our BMOC application to show the simulated path of a UAV. 
BMOC incorporated a chat server and a GPS tracker. We showed a situation where a flaw in 
BMOC allowed an insider Ivan to give himself permissions to access to information he shouldn’t 
have had.  The demonstration first showed what Ivan could do if SOUND was not in effect. Ivan 
is able to utilize the bug to gain access to his commander’s chat history. When SOUND is 
enabled, we allow Ivan to still exploit the bug to change his permissions within the application, 
since the premise is that we don’t know about this bug in the application, but the SOUND Data 
Service recognizes that Ivan is not allowed to have access to the data.  The Data Service 
intercepts the request, detects and escalation in Ivan’s privilege and prevents Ivan from receiving 
the data.  In addition, the attempt to access the data is logged.  The policy in effect for SOUND is 
that of ‘2 strikes and you are out’ and once Ivan attempts to access the data again – he is logged 
off the BMOC system entirely. 

4.4.3.1 Outcomes 
• We were able to demonstrate SOUND in a physical networked environment by having 4 

separate laptops for the SOUND Services, and the BMOC Server and client. 
• Equipment included four machines, including two end-user client hosts, one application 

server, and one that hosts the SOUND Core components. 
• Demonstrated how a combination of sensor outputs could be combined to make a policy 

decision about whether to remove a user from the Community of Trust (CoT) 

4.4.4 PACOM 
In August and November of 2014, we went out to PACOM in Hawaii to demonstrate SOUND on 
a realistic operational network in the SPAWAR Systems Center Pacific Facility. We presented a 
Humanitarian Aid / Disaster Relief (HADR) scenario involving military forces required to work 
with untrusted Non-Government Organizations (NGOs), who attempt to use the network 
connections they are given for video communications to attack the military networks. We had 13 
SOUND nodes in this scenario, Figure 16 shows the network setup for this demonstration.  Four 
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different groups were communicating on the network: 3 military groups and an NGO.  We 
demonstrated their ongoing communications by streaming video. 

 

Figure 16: Network Configuration for PACOM Demonstration 

We showed how if a bad actor in the NGO facility attacked one of the military nodes, SOUND 
would isolate it from communicating with the victim, but not remove it from the Community of 
Trust entirely.  When the bad actor attacked a second military node, SOUND removed the bad 
actor from the community of interest.  The attacker then attempted to move to another node, 
where he still did not have access, since his account was no longer allowed in the CoT, 
regardless of where he logged in.  We then showed that if another user in the NGO were to attack 
one of the military nodes, based on policy, SOUND would remove the entire NGO from the 
CoT. 

4.4.4.1 Outcomes 
• Demonstrated SOUND’s capability to protect differential networks 
• Showed SOUNDs integration with the Snort COTS sensor 
• Demonstrated SOUND to a large number of interested groups from across the military. 
• Generated interest from PACOM in potentially including SOUND in an exercise, which did 

not later materialize. 
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4.4.5 SOUND+NPD Integration 
We were asked by DARPA to look into whether integrating with any of our sister projects on the 
MRC program would be beneficial. After discussions with a fellow performer, Applied 
Communications Sciences (ACS), we determined it would be worthwhile to explore an 
integration between SOUND and their Network Path Diversity (NPD) technology. This worked 
out well as the combination worked very well for the Navy demonstrations we did. 
NPD provides path diversity in a network by routing traffic through other NPD nodes as an 
overlay on the existing network, for which you may not have control over routing. NPD can also 
send packets along multiple paths, to ensure greater availability of the data. 
SOUND provides insider threat protection, enclave protection to NPD (which is not otherwise 
hardened), supports health assessments of NPD’s intermediaries and can influence/help control 
NPD’s list of available intermediaries based on reputation. 
NPD provides defensive maneuver capabilities by giving us the ability to route traffic through 
NPD intermediaries. NPD can also act as a network traffic sensor, letting us consider the 
reliability of a network path when determining the reputation of an intermediary to use. 
Together, they can defend against malicious behavior inside networks by having SOUND 
monitor reputations, log misbehaviors and isolate serious attacks. Additional benefits include the 
ability to use more costlier (in computing terms) sensors, which would be too cumbersome to run 
locally.  NPD can divert traffic past the more costly sensor while still sending it along the normal 
path. SOUND+NPD also protects against attacks from the outside by having NPD fight through 
network degradation, not matter what the cause is, and SOUND wraps ad hock communities of 
interest inside enclaves to restrict access and protect enclave participants. SOUND+NPD 
empowers the defense of the network by giving the operator the ability to reroute traffic away 
from suspicious nodes. 

Integration 
Integration between the two technologies was done loosely, by installing both technologies on 
the same box and deconflicting their iptables rules. NPD sits logically “behind” the SOUND 
proxy, somewhat as if it was a separate box connected behind it, functioning as a bump in the 
wire. Figure 17 shows the architecture of the SOUND and NPD integration. 
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Figure 17: Architecture for SOUND+NPD 

We demonstrated the SOUND+NPD integration to DARPA. 

4.4.5.1 Outcomes 
• The exploration into how SOUND+NPD could work together let us bring a more complete 

capability to discussions with NAVSEA NSWC 
• The combination of the two technologies allowed us to operate on the shipboard ICS 

networks with no modification to the networks, which is what made the NSWC lab 
demonstration possible. 

4.4.6 NSWC Research Lab 
We were invited to the NAVSEA Navy Surface Warfare Center (NSWC) Philadelphia to show 
how SOUND, in conjunction with our sister project from Applied Communications Sciences 
(ACS) Network Path Diversity (NPD) could be used to protect Navy ICS shipboard systems.  
NSWC had a research lab for experimenting with potential products they might want to use. 
When we first arrived in the NSWC lab, we learned two critical things. SOUND+NPD needed to 
be transparent to the Navy systems and not require any changes to network configuration on their 
side, and second, that the Navy uses a significant amount of multicast and we needed to be able 
to handle this traffic.  We were able to address the first issue by spoofing ARP so that the Navy 
machines saw the proxy as the machine they were talking to. With the help of NPD, we were 
able to address the second by tunneling the multicast traffic through the network via NPD. 
Figure 18 shows the network setup for this demonstration. We integrated SOUND with Sophia 
(more info in the Sensor Integration section) and showed how SOUND could be used to protect a 
network modeled after the Mohawk class Coast Guard cutter.  SOUND protected and isolated 
the Programmable Logic Controller (PLC) from an attack which moved laterally around the 
network.  We ran an nmap scan to emulate a reconnaissance phase, simulated a malware attack 
by downloading and then changing the PLC ladder logic.  We used reputation a little differently 
in this demonstration by quarantining an infected host and isolating a vulnerable PLC from 
further attack. 
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Figure 18: Network Configuration for NSWC Lab Demonstration 

Attack scenarios included in NSWC Lab Demonstration: 

• Nmap Scan 
• Loading a web page on PLC 
• Uploading ladder logic from PLC 
• Modifying and downloading Ladder logic to PLC 

4.4.6.1 Outcomes 
• Demonstrated to numerous Navy decisions makers, including a Vice-Admiral. 
• Generated interest in a larger deployment on in a Navy ship lab 
• Based on this demonstration, NAVSEA agreed that they would sign a Technology Transfer 

Agreement (TTA) if SOUND could be demonstrated at a larger scale in the LSD-41 class 
ship lab. 

Figure 19 shows a logical layout of the demonstration (left) and outlines the features we 
demonstrated (right). 
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Figure 19: Notional Demonstration Architecture and Features 

4.4.7 NSWC LSD-41 lab 
NSWC Philadelphia liked our demonstration in the NSWC research lab and wanted to see a 
demonstration which was more to the scale of a real ship. The LSD-41 was chosen as a ship 
whose lab was available and was a reasonable enough representation for a viable demo. We 
faced several challenges with this deployment. First was the scale – the software had not been 
tested at this scale and we discovered several issues which needed to be dealt with. Second was 
deployment – maintaining and deploying software to so many systems was tedious and required 
a software solution to make it tractable. Third was management of the systems – we wrote a 
curator software to manage the system from an operator standpoint, to be able to know when 
systems were functioning correctly. Figure 20 shows the network layout of the LSD-41 
demonstration. 
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Figure 20: Layout of LSD-41 Demonstration Network 

4.4.7.1 Outcomes 
• We were able to demonstrate that SOUND+NPD could be deployed on a large scale 

shipboard ICS network and not require the modification of or interfere with the operation of 
the shipboard systems. 

• We were able to show how SOUND+NPD could integrate with firmware and hardware 
sensors to detect attacks on the backplane and within the firmware of the PLC network card. 

• We demonstrated how SOUND+NPD could isolate a PLC, allowing the ship system to 
failover to its backup. 

• NAVSEA agreed to sign the TTA to transfer the Reputation technology to its cyber 
situational awareness system. 

4.5 Publications 
The following publications were published by the SOUND team during the course of the 
program: 
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[DT14]   Robert Dockins, and Andrew Tolmach. SUPPL: A flexible language for policies. In 
Proceedings of the 12th Asian Symposium on Programming Languages and Systems (APLAS 
2014), Nov 2014. 
Abstract:  

We present the Simple Unified Policy Programming Language (SUPPL), a domain-
neutral language for stating, executing, and analyzing event-condition-action policies. 
SUPPL uses a novel combination of pure logic programming and disciplined imperative 
programming features to make it easy for non-expert users to express common policy 
idioms. The language is strongly typed and moded to allow static detection of common 
programming errors, and it supports a novel logic-based static analysis that can detect 
internally inconsistent policies. SUPPL has been implemented as a compiler to Prolog 
and used to build several network security applications in a Java framework. 
 

[TDT15]   Alix Trieu, Robert Dockins, and Andrew Tolmach. Static conflict detection for a 
policy language. In Proceedings of Vingt-sixièmes Journées Francophones des Langages 
Applicatifs (French-speakers' Workshop on Functional Languages) (JFLA 2015), Jan 2015. 

Abstract: 
We present a static control flow analysis used in the Simple Unified Policy Programming 
Language (SUPPL) compiler to detect internally inconsistent policies. For example, an 
access control policy can decide to both “allow” and “deny” access for a user; such an 
inconsistency is called a conflict. Policies in Suppl. follow the Event-Condition-Action 
paradigm; predicates are used to model conditions and event handlers are written in an 
imperative way. The analysis is twofold; it first computes a superset of all conflicts by 
looking for a combination of actions in the event handlers that might violate a user-
supplied definition of conflicts. SMT solvers are then used to try to rule out the 
combinations that cannot possibly be executed. The analysis is formally proven sound in 
Coq in the sense that no actual conflict will be ruled out by the SMT solvers. Finally, we 
explain how we try to show the user what causes the conflicts, to make them easier to 
solve. 
 

[FUR15]   Michael Figueroa, Karen Uttecht, and Jothy Rosenberg. A SOUND Approach to 
Security in Mobile and Cloud-Oriented Environments. In Proceedings of 2015 IEEE 
International Symposium on Technologies for Homeland Security, Boston, 14-16 April 2015. 

Abstract: 
Ineffective legacy practices have failed to counter contemporary information security and 
privacy threats. Modern IT operates on large, heterogeneous, distributed sets of 
computing resources, from small mobile devices to large cloud environments that manage 
millions of connections and petabytes of data. Protection must often span organizations 
with varying reliability, trust, policies, and legal restrictions. Centrally managed, host-
oriented trust systems are not flexible enough to meet the challenge. New research in 
distributed and adaptive trust frameworks shows promise to better meet modern needs, 



39 

Approved for public release; distribution is unlimited. 
 

but lab constraints make realistic implementations impractical. This paper describes our 
experience transitioning technology from the research lab to an operational environment. 
As our case study, we introduce Safety on Untrusted Network Devices (SOUND), a new 
platform built from the ground up to protect mobile and cloud network communications 
against persistent adversaries. Initially based on three founding technologies- 
Accountable Virtual Machines (AVM), Quantitative Trust Management (QTM), and 
Introduction-Based Routing (IBR)- our research efforts extended those technologies to 
develop a more powerful and practical SOUND implementation. 
 

[ADG15]   Arthur Azevedo de Amorim, Maxime Dénès, Nick Giannarakis, Cătălin Hriţcu, 
Benjamin C. Pierce,  Antal Spector-Zabusky, and Andrew Tolmach. Micro-Policies: Formally 
Verified, Tag-Based Security Monitors. In Proceedings of IEEE Security and Privacy 2015, San 
Jose, May 2015. 
Abstract: 

Recent advances in hardware design have demonstrated mechanisms allowing a wide 
range of low-level security policies (or micro-policies) to be expressed using rules on 
metadata tags. We propose a methodology for defining and reasoning about such tag-
based reference monitors in terms of a high-level "symbolic machine" and we use this 
methodology to define and formally verify micro-policies for dynamic sealing, 
compartmentalization, control-flow integrity, and memory safety, in addition, we show 
how to use the tagging mechanism to protect its own integrity. For each micro-policy, we 
prove by refinement that the symbolic machine instantiated with the policy's rules 
embodies a high-level specification characterizing a useful security property. Last, we 
show how the symbolic machine itself can be implemented in terms of a hardware rule 
cache and a software controller. 

 
[K+14]   Albert Kwon, et al. "RotoRouter: Router support for endpoint-authorized decentralized 
traffic filtering to prevent DoS attacks." Field-Programmable Technology (FPT), 2014 
International Conference on. IEEE, 2014. 
Abstract: 

RotoRouter addresses Denial-of-Service (DoS) attacks on networks with a novel protocol 
and router implementation. Sets of RotoRouters cooperate in detecting and filtering out 
invalid network traffic before it reaches network endpoints; a new router-enforceable 
connection protocol queries destination endpoints to authorize traffic flows and uses per-
packet digital signatures to distinguish allowed from disallowed connections. A 
RotoRouter prototype was implemented on a four-port 1000BASE-T NetFPGA-10G 
platform and supports 1024 simultaneous active connections using 74 BRAMs (less than 
one quarter of the available NetFPGA-10G BRAMs). It is able to sustain 800 Mbps per 
port throughputs for 1500B packets with less than 0.3/its latency, even during a DoS 
attack. With additional logic and memory resources, the required validation and 
switching operations scale to port speeds in excess of 10 Gbps and links with more than 
10,000 active flows. 
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5.0 CONCLUSIONS  
The SOUND project successfully created a technology which was able to create secure 
Communities of Trust, provide multi-level tracking of reputation for accountability, and isolate 
actors from the community if their reputation dropped below the policy-defined threshold. 
We were able to demonstrate successfully: 

• How SOUND could be used to protect infrastructure when communicating with 
organizations of unknown trustworthiness. Using Reputation and a variety of sensors, 
SOUND can track users behavior and downgrade their level of trust. Trust can be 
differential, without having to be all or nothing, so less trustworthy partners can be interacted 
with and the organization will know that if they show signs of compromise or attacks, they 
will be removed from the CoT. 

• How SOUND could be used to protect Shipboard SCADA systems. We deployed SOUND 
on a full-scale shipboard network and demonstrated that SOUND could be used to protect 
equipment and isolate attackers before damage to the ship could be done. 

• How SOUND could integrate with a variety of GOTS/COTS sensors.  We integrated with a 
number of different sensors from those available open source, proprietary commercial and 
developed by government labs. 

• SOUND does not require any changes to existing applications or hosts. In our demonstrations 
in the LSD-41 labs, we were able to install SOUND without having to modify the software, 
hosts or PLCs running the shipboard network. Our technology can be used with any legacy 
IP based systems or applications. 

5.1 Recommendations 

• We recommend that the Navy deploy the SOUND technology onto a ship for testing, with 
the later intention of putting it into ships throughout their fleet. 

• Additionally, SOUND is ideal for use in a traditional office network, and we are working 
with BAE systems to deploy beta versions to the corporate network, we recommend the 
government consider deploying SOUND on its IT networks. 

• We recommend that the government expand on its use of SOUND Reputation beyond that of 
basic reputation as deployed in LSD-41 to utilize its full potential in managing Communities 
of Trust. 

• We recommend the military consider that SOUND could be deployed to multiple domains, 
especially those that employ multiple enclaves or Communities of Trust which need to 
communicate. 
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LIST OF ACRONYMS, ABBREVIATIONS, AND SYMBOLS 
ACRONYM DESCRIPTION 
ACM Association for Computing Machinery 
ACS Applied Communication Sciences 
AFRL Air Force Research Laboratory 
AFC Air Force Component 
AJAX Asynchronous JavaScript and XML 
ARM Advanced RISC Machines 
ARP Address Resolution Protocol 
AVM Accountable Virtual Machine 
BGP Border Gateway Protocol 
BMOC Blue Force Mission-Oriented Command Center 
CA California 
CoT Community of Trust 
COTS Commercial Off-The-Shelf 
CRASH Clean-slate design of Resilient Adaptive Secure Hosts 
CV Compliance Value 
CWE Common Weakness Enumeration 
DARPA Defense Advanced Research Projects Agency 
DDoS Distributed Denial of Service 
DISA Defense Information Systems Agency 
DM Decision Management 
DoD Department of Defense 
DoS Denial of Service 
EUROSEC European Workshop on Systems Security 
FLC Fleet Logistics Center 
FPGA Field-Programmable Gate Array 
Gbps Gigabits per second 
GOTS Government Off-The-Shelf 
GPS Global Positioning System 
HADR Humanitarian Aid/Disaster Relief 
HMI Human-Machine Interface 
HTML Hypertext Markup Language 
IBR Introduction Based Routing 
ICS Industrial Control Systems 
IDS Intrusion Detection System 
IEEE Institute of Electrical and Electronics Engineers 
IP Internet Protocol 
IPSec Internet Protocol Security Encryption Scheme 
IT Information Technology 
JIOR Joint Information Operations Range 
LSD-41 Landing Dock Ship, Class LSD-41 
MA Massachusetts 
MB Megabits 
MCS Machinery Control System 
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MITM Man-in-the-Middle 
MLC Marine Logistics Group 
MRC Mission-oriented Resilient Cloud 
NAV Navigation System 
NAVSEA Naval Sea Systems Command 
NFQ Netfilter Queue 
NGO Non-Governmental Organization 
NPD Network Path Diversity 
NSDI Symposium on Networked Systems Design and Implementation 
NSWC Naval Surface Warfare Center 
NY New York 
OH Ohio 
OMB Office of Management & Budget 
OODA Observe, Orient, Decide, Act 
OS Operating System 
PACOM Pacific Command 
PI Principal Investigator 
PLC Programmable Logic Controller 
QuanTM Quantitative Trust Management 
QTM Quantitative Trust Management 
REGRET Reputation In Gregarious Societies 
REST Representational State Transfer 
RISC Reduced Instruction Set Computer 
RM Reputation Management 
RSA Rivest-Shamir-Adleman cryptosystem 
S Seconds 
SAC SOUND Administration Console 
SAF/AQR Secretary of the Air Force, Science, Technology, and Engineering 

Directorate 
SAFE Semantically Aware Foundation Environment for CRASH 
SAR Same As Report 
SCS SOUND Connection Service 
SCS Ship Control System 
SDD Software Design Document 
SDS SOUND Data Service 
SecDef Secretary of Defense 
SHA-1 Secure Hash Algorithm 1 
SIGOPS Special Interest Group on Operating Systems 
SIS SOUND Identity Service 
SMT Satisfiability Modulo Theories   
SOCOM Special Operations Command 
SOUND Safety On Untrusted Network Devices 
SPAWAR Space and Naval Warfare Systems Command 
SPS SOUND Policy Service 
SQL Structured Query Language 
SRS SOUND Reputation Service 
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SSDD System/Subsystem Design Description 
SSF SOUND Sensor Framework 
STINFO Scientific & Technical Information Office 
STS SOUND Trust Service 
SUPPL Simple Unified Policy Programming Language 
TCP Transmission Control Protocol 
TM Trust Management 
TR Technical Report 
TTA Technology Transfer Agreement 
TUN Tunneling Interface 
TV Trust Value 
UAV Unmanned Ariel Vehicle 
USAF United States Air Force 
USENIX The Advanced Computing Systems Association 
US United States 
VA Virginia 
VDD Version Description Document 
VLAN Virtual Local Area Network 
VLC a software multimedia player 
VSE Virtual Secure Enclave 
WP Wright-Patterson 
XFRM IP framework for transforming packets 
XML Extensible Markup Language 
XMPP Extensible Messaging and Presence Protocol 
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