

 ARL-TR-8175 ● SEP 2017

 US Army Research Laboratory

Generating Artificial Snort Alerts and
Implementing SELK: The Snort–Elasticsearch–
Logstash–Kibana Stack

by Daniel E Krych, Joshua Edwards, and Tracy Braun

Approved for public release; distribution unlimited.

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the
Army position unless so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official
endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

 ARL-TR-8175 ● SEP 2017

 US Army Research Laboratory

Generating Artificial Snort Alerts and
Implementing SELK: The Snort–Elasticsearch–
Logstash–Kibana Stack

by Daniel E Krych, Joshua Edwards, and Tracy Braun
Computational and Information Sciences Directorate, ARL

Approved for public release; distribution unlimited.

ii

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the
burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302.
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently
valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

September 2017
2. REPORT TYPE

Technical Report
3. DATES COVERED (From - To)

6/1/2016–8/12/2016
4. TITLE AND SUBTITLE

Generating Artificial Snort Alerts and Implementing SELK: The Snort–
Elasticsearch–Logstash–Kibana Stack

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Daniel E Krych, Joshua Edwards, and Tracy Braun
5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

US Army Research Laboratory
ATTN: RDRL-CIN-D
Adelphi, MD 20783-1138

8. PERFORMING ORGANIZATION REPORT NUMBER

ARL-TR-8175

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.
13. SUPPLEMENTARY NOTES

14. ABSTRACT

This report details the development of an artificial Snort alert generator and the configuration of a Snort–Elasticsearch–
Logstash–Kibana (SELK) stack for parsing, storing, visualizing, and analyzing Snort alerts. The first section covers the Snort
alert-generation program, the methodology involved in developing it, and how it accelerates Snort-related research. The
second section covers the development of configuration files and the pipeline for the SELK stack, followed by its deployment
and uses. We develop the program, gen_alerts.py, which takes in a Snort rules file and generates artificial Snort alerts with a
specified priority distribution for outputting high, medium, low, and very low alerts based on Snort’s classifications. We
construct the ELK pipeline, using Logstash to parse and organize Snort alerts. These generated alerts head this pipeline to
create the SELK stack. To enable rapid deployment, we implement this system in a lightweight Lubuntu virtual machine that
can be imported and used with VirtualBox or VMware. In addition, we provide an instructional guide on system setup. The
methodologies described can be translated to the setup and use of the ELK stack for storing and visualizing any data.

15. SUBJECT TERMS

Snort, Elastic, Elasticsearch, Kibana, Logstash, ELK, SELK, data visualization, IDS, IPS, networking, traffic analysis

16. SECURITY CLASSIFICATION OF:
17. LIMITATION
 OF
 ABSTRACT

UU

18. NUMBER
 OF
 PAGES

36

19a. NAME OF RESPONSIBLE PERSON

Tracy Braun
a. REPORT

Unclassified
b. ABSTRACT

Unclassified

c. THIS PAGE

Unclassified

19b. TELEPHONE NUMBER (Include area code)

(301) 394-4954
 Standard Form 298 (Rev. 8/98)

 Prescribed by ANSI Std. Z39.18

Approved for public release; distribution unlimited.
iii

Contents

List of Figures iv

List of Tables iv

1. Introduction 1

2. Methodology 2

2.1. Snort Alert Generation 2

2.2 The SELK Stack 8

3. Discussion and Conclusion 11

4. References 13

Appendix A. Using the Snort Alert Generator <gen_alerts.py> 15

Appendix B. Leveraging the Snort–Elasticsearch–Logstash–Kibana (SELK)
Stack Using the Prebuilt, Lightweight Lubuntu Virtual Machine 17

Appendix C. Implementing Snort–Elasticsearch–Logstash–Kibana (SELK)
in Your Environment 19

List of Symbols, Abbreviations, and Acronyms 28

Distribution List 29

Approved for public release; distribution unlimited.
iv

List of Figures

Fig. 1 gen_alerts.py outputting 10 generated alerts .. 3

Fig. 2 gen_alerts.py usage outputted with “-help” flag 7

Fig. 3 The SELK stack pipeline .. 9

Fig. 4 “Default2” Dashboard we created and provide:
dek_kibana_viz_setup_Aug-16.json ... 11

List of Tables

Table 1 Predefined priority distributions ... 3

Table 2 The header and options sections of a Snort rule used in the crafting of
a Snort alert .. 5

Approved for public release; distribution unlimited.
1

1. Introduction

Snort is an open-source network intrusion prevention system (NIPS) and a network
intrusion detection system (NIDS) developed by Sourcefire.1,3 When running Snort
in Intrusion-Detection mode, network traffic is monitored and a rules file
(.rules) is used to set the traffic rules and generate alerts when one of these rules
is satisfied. For example, a rule in the configuration file could tell Snort to generate
an alert whenever it sees a transmission control protocol (TCP) connection
established by a private network connecting to a public network. Users can also
specify actions such as dropping the packet altogether. Snort rules can become very
specific and target specific programs/malware by looking for known IP addresses,
port numbers, byte values seen in packets, and so on. Snort uses a classification
system with 38 classifications for alerts. These include things such as “trojan-
activity”, “shellcode-detect”, “denial-of-service”, “network-scan”, and “misc-
attack”. Each classification has an associated priority level from 1 to 4, defined as
high (1), medium (2), low (3), and very low (4). By default on a Linux system,
alerts generated by Snort are stored in the file /var/log/snort/alert.1 Alerts
can then be examined by analysts to find patterns of misuse or indications of
gradual attacks. This analysis can help network defenders stop some attacks before
they succeed.

Elasticsearch, Logstash, and Kibana are free, open-source tools offered by the
company Elastic. Elasticsearch is a search and analytics engine built on top of
Apache Lucene, an information retrieval library, and enables efficient data storage
and retrieval similar to a database. Logstash is a data collection and transportation
platform that provides a way to ingest data from one source, filter and map the data
as specified in a configuration file, and push them to another source (in this case,
Elasticsearch). Kibana is a visualization platform, which reads Elasticsearch data
and provides a graphical interface to query, analyze, transform, and monitor the
data.2 Each of these tools runs independently and communicates with its
predecessor/successor in the pipeline, and together they form the ELK stack.

We have created the (Snort–Elasticsearch–Logstash–Kibana) SELK stack, which
consists of the generating, parsing, storing, visualizing, and analyzing of Snort
alerts with the ELK stack. An overview of the pipeline in a Linux system entails
the following:

1) Snort IDS writes alerts as network traffic matches rules.

Approved for public release; distribution unlimited.
2

2) Logstash detects alerts being added to the alert file, ingests them, applies
the rules specified in the configuration file to filter, and map values to
variables, then pushes them to Elasticsearch in JSON format.

3) Elasticsearch stores the JSON-formatted Snort alerts.

4) Kibana connects to Elasticsearch and provides a graphical interface for
viewing the data stored. Kibana can then generate graphs and visualizations
displaying the information in useful ways. It also enables near-real-time
monitoring of the data.

This work aims to promote and accelerate US Army Research Laboratory (ARL)
research involving the use of Snort and the ELK stack for parsing, storing,
analyzing, and visualizing Snort alerts or any data in several ways:

• Anyone looking for a better way to store and examine Snort alerts can use
this system out of the box.

• End users can use the 2 parts to this system—the Snort alert generator and
the ELK stack system—independently and gain insight into setting up a
similar system with their own data by following the instructional guide in
Appendix C, and altering the Logstash configuration file to parse their data
specifically.

• The Snort Alert Generation program allows end users to generate realistic
Snort alerts based on their rules files without having to run Snort. This also
provides interesting test data for any system that ingests Snort alerts.

• The SELK stack demonstrates the capabilities of the open-source ELK stack
suite, and outlines the methodology involved in filtering, storing, and
visualizing the data. Anyone looking to expand upon their data collection,
or looking to replace a less-robust storage and visualization system, will
want to experiment with the ELK stack.

2. Methodology

2.1. Snort Alert Generation

The main idea is a program that takes in a Snort rules file and generates artificial
alerts based on the rules found in the file provided. The name of this program is
gen_alerts.py. End users can specify N, the number of artificial alerts to be
generated. The program will then output “fast” formatted alerts. The fast format is

Approved for public release; distribution unlimited.
3

one of Snort’s available formats, and it prints a quick one-line alert, whereas the
“full” format prints alerts with full packet headers and is far more verbose.

Because Snort uses a classification-priority system to rank the severity of alerts, we
also wanted to give the end user some freedom on specifying the priority
distribution they desired. We defined 5 priority distributions from which end users
can choose, which are shown in Table 1.

Table 1 Predefined priority distributions

Priority
distribution

High
alerts

Medium
alerts

Low
alerts

Very low
alerts

1 5% 24% 69% 2%
2 10% 29% 59% 2%
3 15% 34% 49% 2%
4 20% 39% 39% 2%
5 33.33% 32.33% 32.33% 2%

By default, we set the priority distribution to “2,” which generates 10% high, 29%
medium, 59% low, and 2% very low alerts. Only 1 classification in Snort’s default
settings is specified as “very low,” and this is for a “tcp-connection” seen.
Therefore, we decide to limit the percentage of these to only 2%, because very little
variability exists when generating alerts at this priority level. The final product of
our program is seen in Fig. 1, which shows 10 alerts generated using the
community.rules file Snort provides on their website. We use the “-
micros” flag to output timestamps with microsecond precision, as Snort does by
default (see Appendix A for more information).

Fig. 1 gen_alerts.py outputting 10 generated alerts

Approved for public release; distribution unlimited.
4

To better understand Snort alerts, we ran Snort in IDS mode and observed how
Snort rules files were written and processed by Snort to create alerts. For this
system, we used an Ubuntu 12.04 virtual machine (VM). After performing some
tests in our environment, one being an ICMP rule that we could trigger by sending
outbound pings, we found that metadata in the rule are used to craft the “fast”
formatted alerts. The Snort alert is crafted from both the network traffic and
metadata from the rule.

In the following passage, we provide an example of a rule seen in the Snort rules
file community.rules1, the associated alert generated by gen_alerts.py,
and the fields used in crafting the alert:

RULE:

alert tcp $EXTERNAL_NET any -> $HOME_NET 53
(msg:"PROTOCOL-DNS dns zone transfer via TCP
detected"; flow:to_server,established; content:"|00 01
00 00 00 00 00|"; depth:8; offset:6;
byte_test:1,!&,0xF8,4; content:"|00 00 FC 00 01|";
fast_pattern; isdataat:!1,relative; metadata:ruleset
community, service dns; reference:cve,1999-0532;
reference:nessus,10595; classtype:attempted-recon;
sid:255; rev:23;)

ALERT:

2016/06/17-05:34:08.382267 [**] [1:255:23] "PROTOCOL-
DNS dns zone transfer via TCP detected" [**]
[Classification: attempted-recon] [Priority: 2] {tcp}
83.8.50.58:54630 -> 172.24.136.71:53

ALERT FIELDS:

timestamp [**] [gid:sid:rev] “msg” [**]
[Classification: classtype] [Priority: priority]
{protocol} sip:sport -> dip:dport

The program is written in Python for its rapid development and data parsing
capabilities. To take in command-line arguments from the end user, we leverage
the argparse module. First, we create the “-i” flag to read in a Snort rules file.

Next, we parse the rules file line-by-line, then split the line to differentiate the
header section from the rest, which we dub the “options” section. The fields within

Approved for public release; distribution unlimited.
5

these sections are shown in Table 2. Many more fields are provided in the rule in
the options section, such as the flow, content, and reference fields, but these are not
used to generate the fast formatted alert.

Table 2 The header and options sections of a Snort rule used in the crafting of a
Snort alert

Header Options
protocol msg
source IP classtype
source port priority
destination IP gid
destination port sid
 rev

Within the header section of the rule, we see the client/server IPs and ports, which
can be specified in multiple ways. Both the IPs and ports can be set in the Snort
rules file or configuration file using a list variable such as “HOME_NET” and
“SSH_PORTS”. They can also be provided as exact values, such as “146.186.33.5”
and “335”. Lists can also be provided within the fields, making the following
possible: “[1.1.1.1, 2.2.2.2, 3.3.3.3, 4.4.4.4]” and “[111, 222, 333, 444]”. In
addition, shorthand enumeration can be used such as with classless inter-domain
routing (CIDR)-addressed IPs, “1.1.1.0/24”, and port ranges, “326:335”.
Furthermore, these can be used in combination provided within lists, and “!” can
be added to represent the Boolean “NOT”. All of these cases are handled in the
parsing of the fields in gen_alerts.py. Since our program only takes in the
Snort rules file, we assume that any variable declarations will be set there instead
of a configuration file.

In terms of fields used in the alert, the options section of the rule usually provides
the msg (message), classtype (classification), sid (signature ID), and rev (revision
ID). According to the Snort manual,3 the gid is the Generator ID, the sid is the
Snort/Signature ID, and the rev is the revision ID. The gid provides the component
of Snort that generated the alert and defaults to “1” since it is not commonly set.
The sid is used as a signature ID, and the rev is the number of revisions that have
been made to the rule. For more specific information, please see the 3.4.3 gid
section of the Snort manual.3 By default, Snort derives the priority from the
classification field, but this can be overwritten by providing the priority field in the
options section or by defining it in the Snort rules file or configuration file. For
example:

‘config classification: network-scan,Detection of a
Network Scan,1’.

http://manual-snort-org.s3-website-us-east-1.amazonaws.com/node31.html#SECTION00443000000000000000

Approved for public release; distribution unlimited.
6

By default, “network-scan” is priority 3 (i.e., low priority). Here, the user set
network scan to 1, meaning high priority, to reflect the importance of this
classification in their system.

By default, we preset all of the variable lists to Snort’s default variable definitions.
Users can define Server lists and Port lists using the keywords “var” , “ipvar”,
or “portvar”, where “var” is universal. For example, “var HOME_NET
192.168.1.0/24” and “var HTTP_PORTS 80,8080,8000”, which
could also be defined with “ipvar HOME_NET 192.168.1.0/24” and
“portvar HTTP_PORTS 80,8080,8000”. Since Snort does not define the
HOME_NET, if it is not set in the rules or configuration file, we define it as any
private IP address (which in turn means EXTERNAL_NET is anything but private
IPs). Snort also has over 50 ports listed in their HTTP_PORTS list, including but
not limited to “80”, “81”, “311”, “8000”, “8008”, “8080”, and “8088”.3 While
parsing the .rules file in gen_alerts.py, we also check for any
user-defined changes to the default lists, and we override the preset lists.

In order to generate N realistic alerts when given a .rules file with only a small
fraction of N rules, we find and enumerate mutable fields and introduce
randomness. Generated alerts would be unrealistic if they repeated connection
information and timestamps, thus this variability and randomness are necessary. In
addition, to enforce the generation of realistic alerts, we cannot just randomly grab
pieces from several alerts to generate new ones because this could result in illogical
alerts. For example, a generated alert with “udp” for its protocol field combined
with a message field clearly matching a TCP rule would not make sense. Thus, we
needed to determine which fields must be grouped together to form a logical,
realistic alert.

The combination of the gid/sid/rev fields uniquely describes the rule and is linked
to the message, classification, priority, protocol, IPs, and ports fields. Unlike the
previous fields, the timestamp is not linked to other fields and can be randomized
to the extent desired by the end user. By default, we use a 2-h span with an end time
of now and start time of 2 h before now. Since we are precise to the microsecond,
we have already greatly reduced the chance of repeating alerts, even if we only
provided a few rules. The sip, sport, dip, and dport fields can also be randomized
within the boundaries of the rule definition. Fields can be variables, such as
“HTTP_PORTS” or “AIM_SERVERS”, defined as lists of possible values. This
allows us to choose a random value from the list for the field. At other times, actual
lists are provided in the rule, or CIDR-addressed IP addresses, or port ranges. All
of these resolve to a list of IPs and ports to choose from randomly, and we still
generate a realistic alert by adhering to the rule’s original IP/port definitions.

Approved for public release; distribution unlimited.
7

Fig. 2 gen_alerts.py usage outputted with “-help” flag

Our program first parses the entire Snort rules file provided, creating/updating any
values defined that overwrite Snort’s defaults, and stores the nonmutable fields of
each parsed rule together as one item in a dictionary indexed by the priority level.
It then loops a number of times for each priority, based on N, the number of alerts
to be generated, and the chosen priority distribution that specifies the percentage of
N that is high, medium, and so on. Next, it grabs a random rule at that priority level
and generates an alert filled with the rule’s metadata and random values that meet
the rule’s parameters. For example, we may see “HTTP_PORTS” or “any”
provided as the source port, so we resolve this to the list of ports it entails and select
one of these ports at random. Each alert is stored as it is crafted, and after N alerts
have been created, it sorts them by timestamp and outputs them to stdout or a

Approved for public release; distribution unlimited.
8

specified output file. Several helper-functions are used to handle repeated tasks
throughout the parsing and random parameter generation sections, including
“Parse_var”, “Gen_IP”, and “Gen_Port”.

After implementing the aforementioned parsing techniques and developing
functions to handle repeated tasks, we focused more on the usability and the flags
available when calling the program. These are detailed in Fig. 2 and can be
outputted using “python gen_alerts.py –help”, assuming Python is
installed and the user is in the current directory. See Appendix A for more
information on using gen_alerts.py.

2.2 The SELK Stack

Having a program that can generate Snort alerts will provide great test data for
anyone working with Snort, or a system that ingests Snort alerts, but at this point
we only have raw text. We wanted a way to investigate and monitor real Snort
alerts. We decided to use Elasticsearch as the back-end to store the Snort alerts, and
Kibana as the front-end to visualize them. Elasticsearch stores data in an efficient
way and enables fast retrieval through querying by creating “nodes” and “indices,”
and splitting up the data intelligently. Kibana provides an easy-to-use graphical
interface for performing these queries, and creating graphs and charts to view and
monitor the data as they are stored. Adding in Logstash, the additional tool that
ingests, filters, and forwards data to Elasticsearch, as well as the gen_alerts.py
program for generating Snort alerts, we now form the SELK stack and create a full
system for generating, filtering, storing, visualizing, and monitoring our data.2 This
pipeline can be seen in Fig. 3 and begins with either Snort firing rules and
generating alerts or gen_alerts.py generating fake alerts, and it ends with
Kibana visualizations and monitoring of these alerts. This system will mostly
benefit end users who are hoping to store, visualize, and investigate their Snort
alerts in depth, but it can also make Snort data testing much more involved. In
addition, the SELK stack and the methodology used to create it can be seen as a
great example of how to set up a similar system with any data of your choosing.

Going into this part of the project, we developed a system in which end users could
find trends in their Snort data. Perhaps a specific type of malware or malware in
general was on the rise, or maybe they would be able to classify patterns of attacks
and use these to decrease the attack surface on their front and thwart future attacks.

Approved for public release; distribution unlimited.
9

Fig. 3 The SELK stack pipeline

As discussed earlier, Elasticsearch, Logstash, and Kibana are all tools provided by
the company Elastic, and thus work well together out of the box. Getting this stack
up and running with their default settings is not too difficult, but the setup gets more
complex when trying to customize settings such as altering Elasticsearch’s storage
methods or Kibana’s custom index patterns. Logstash required the most work since
we needed to instruct the system on how to parse and filter our Snort alerts. One
tutorial we found useful for learning about the ELK stack and its configuration was
by DigitalOcean.4

The Logstash configuration file (snort-alert.conf in our case) is used to
instruct Logstash on where it is ingesting data from, how it is filtering/parsing data,
and where to send them to. We ingest data from the file
/var/log/snort/alert since it is the default location for Snort to store
alerts. We use Grok patterns to filter Snort alerts and map/typecast fields in the alert
to variables we will store them as in Elasticsearch. Grok filtering is the best method
for Logstash to parse arbitrary text and structure it so that it is easily queryable.
This requires writing Grok patterns to match the exact log format and providing
variable names to the data parsed and typecast information to overwrite the default
storage of the field as a string. Logstash provides approximately 120 Grok patterns,
so there is a good chance the logs’ patterns may have already been established, but
in our case we needed to develop our own. For more specific information on writing
custom Grok patterns, see the Grok guide provided by Elastic.5 To test custom Grok
patterns and simplify debugging, we recommend using an online interpreter such
as the “Grok Debugger”.6

Once our Grok patterns were created and we instructed Logstash to output our data
to Elasticsearch, as well as stdout to view the stream of logs as they are processed,

Approved for public release; distribution unlimited.
10

we were able to get the SELK pipeline up and running. As shown in Fig. 3, the
SELK stack was built to work alongside Snort and can ingest data directly from
Snort’s alert output, or, in our case, it can be tested with gen_alerts.py and
ingest its outputted alerts. The alerts are ingested, filtered/mapped, and outputted
by Logstash to Elasticsearch. Elasticsearch stores and indexes the data, and then
Kibana reads the data in Elasticsearch and displays them in a user-friendly
graphical interface. In Kibana, the “Discover” tab can be used to query data and
display them by fields in the alert or in raw JSON. Visualizations of the data can be
created, including pie charts, bar graphs, tables, Geo-coordinate maps, and more.
To create Geo-coordinate maps, GeoIP databases can be leveraged, which enable
the translation of IP addresses to coordinates. We found a DigitalOcean tutorial to
be helpful in enabling this feature.7 After creating visualizations, one can use
Kibana’s “Dashboard” feature to view several of them at once. This provides a great
way to quickly view data and monitor them.

An example of several Kibana visualizations and a dashboard we created with Snort
alert data can be seen in Fig. 4. This dashboard is saved as “Default2” and can be
imported into Kibana through our settings file
dek_kibana_viz_setup_Aug-16.json by following instructions in
Appendix C. In the upper left corner, we have a pie chart embedded in another pie
chart, where the inner chart shows the Snort alert priority levels (1–4) seen and the
outer chart shows the classifications seen. To the right of this, we see a line graph
displaying the log timestamps over time to view trends in the amount of alerts seen,
and to the right of that we see a world map showing malware traffic. In this case,
we are mapping coordinates based on the locations of the source IPs seen within
alerts containing malware keywords. On the bottom left, we have a table displaying
the top 10 destination ports seen in alerts, along with the protocol and classification
seen in alerts with those ports. Moving to the right again, we can see the countries
of destination IPs binned by month. Finally, in the bottom right corner, we see
another set of embedded pie charts, but now they are showing the protocols seen
with the classifications.

This enables us to quickly see trends in data, such as the fact that most alerts with
priority 1 (high) are related to a “default-login-attempt,” or that a few days after
“2016-06-11,” the number of Snort alerts we saw jumped up drastically (Fig. 4).
We also note that the United States accounts for most of the malware traffic alerts
seen in our dataset, specifically from the Kansas/Montana area.

Approved for public release; distribution unlimited.
11

Fig. 4 “Default2” Dashboard we created and provide: dek_kibana_viz_setup_Aug-
16.json

3. Discussion and Conclusion

Throughout these projects, we faced multiple challenges such as 1) the constant
discovery of edge cases and customizations in Snort .rules files to handle when
parsing Snort rules and 2) the ELK stack causing our system to run out of file
descriptors and errors saying the Java language was out of memory/heap space.
When first setting up the ELK stack, it appeared that our Logstash Grok patterns
were working when they actually were not. This resulted in a lot of confusion and
the inability to create Kibana index patterns indexed by the log timestamp. By
default, Kibana index patterns are indexed on the “@timestamp” field, which
denotes the time the log was actually stored in Elasticsearch. For a system running
Snort in real time and immediately storing alerts in Elasticsearch, this would not
make a noticeable difference, but when a system only submits logs on a set
schedule, or when older logs are input along with newer ones, this results in false
data.

These limitations led us to storing the logs in Elasticsearch based on the log
timestamp, but this led to even more issues because by default Logstash creates an
index for each day. This resulted in hundreds of Elasticsearch indices for only a
few hundred random logs over the past year and caused the system to hang, Kibana
to time out, and more Elasticsearch errors to occur. The solution to all of this was
to index on the log timestamp but continue to store the logs in Elasticsearch based

Approved for public release; distribution unlimited.
12

on the day they were submitted. Now, instead of hundreds of indices per day, we
only have one, resulting in a stable, easy-to-use system.

In order to promote and accelerate Army research involving the use of Snort and
the ELK stack for parsing, storing, analyzing, and visualizing Snort alerts or any
data, we have provided a lightweight Lubuntu Virtual Machine in .ova format.
This VM has the SELK stack setup and is ready to go along with our
gen_alerts.py program. This .ova file can be imported into either
VirtualBox or VMware with ease, and more details can be found in Appendix B.
In addition, in Appendix C, we have provided a guide for setting up the SELK stack
in one’s own environment. The methodology described can also be used to set up
an ELK stack with any data.

The SELK system provides end users with a system for parsing, storing, analyzing,
and visualizing Snort alerts, but the methodology can be applied to any data. The
benefits of these projects and a system such as this are clear. We can now generate
artificial Snort alerts without ever running Snort. This benefits any research
involving Snort data, and it allows for detailed, realistic datasets. In addition, we
can now do so much more with our Snort alert data and easily analyze them as a
whole or by specific days, months, years, and so forth. If Snort is set to run in real
time, we can monitor our Snort alert data live and more easily find attacks, analyze
them, and stop them before they escalate.

Approved for public release; distribution unlimited.
13

4. References

1. Snort. [accessed 2017 May 3]. https://www.snort.org/.

2. The Open Source Elastic Stack. [accessed 2017 May 22].
https://www.elastic.co/products.

3. SNORT Users Manual 2.9. Martin Roesch; c1998–2003. Chris Green; c2001–
2003. Sourcefire, Inc.; c2003–2013. Cisco and/or its affiliates. All rights
reserved; c2014–2016. [accessed 2017 May 3]. http://manual-snort-org.s3-
website-us-east-1.amazonaws.com/.

4. Anicas M. How to install ELK: Elasticsearch, Logstash, and Kibana. [accessed
2017 May 23]. https://www.digitalocean.com/community/tutorials/how-to-
install-elasticsearch-logstash-and-kibana-elk-stack-on-ubuntu-14-04.

5. Grok. [accessed 2017 May 22].
https://www.elastic.co/guide/en/logstash/current/plugins-filters-grok.html.

6. Grok Debugger. [accessed 2017 May 23]. http://grokdebug.herokuapp.com/.

7. Anicas M. How to map user location with GeoIP ELK. [accessed 2017 May
24]. https://www.digitalocean.com/community/tutorials/how-to-map-user-
location-with-geoip-and-elk-elasticsearch-logstash-and-kibana.

https://www.snort.org/
https://www.elastic.co/products
http://manual-snort-org.s3-website-us-east-1.amazonaws.com/
http://manual-snort-org.s3-website-us-east-1.amazonaws.com/
https://www.digitalocean.com/community/tutorials/how-to-install-elasticsearch-logstash-and-kibana-elk-stack-on-ubuntu-14-04
https://www.digitalocean.com/community/tutorials/how-to-install-elasticsearch-logstash-and-kibana-elk-stack-on-ubuntu-14-04
https://www.elastic.co/guide/en/logstash/current/plugins-filters-grok.html
http://grokdebug.herokuapp.com/
https://www.digitalocean.com/community/tutorials/how-to-map-user-location-with-geoip-and-elk-elasticsearch-logstash-and-kibana
https://www.digitalocean.com/community/tutorials/how-to-map-user-location-with-geoip-and-elk-elasticsearch-logstash-and-kibana

Approved for public release; distribution unlimited.
14

INTENTIONALLY LEFT BLANK.

Approved for public release; distribution unlimited.
15

Appendix A. Using the Snort Alert Generator <gen_alerts.py>

Approved for public release; distribution unlimited.
16

When planning to use gen_alerts.py to generate Snort alerts and use them
with another system (not the Snort–Elasticsearch–Logstash–Kibana [SELK]
System which is used to store/visualize/monitor alerts), then use the following
instructions.

Running the Program:

 python gen_alerts.py –i X.rules –n Y -micros

Where X is the name of the rules file and Y is the number of alerts to be generated.

Note: By default, this program outputs Snort alerts with timestamps with
millisecond precision, whereas Snort, itself, uses timestamps with microsecond
precision. Use the “-micros” flag to produce timestamps in microseconds in
order to have the most realistic, accurate Snort alerts. This design is by choice since
Elasticsearch only stores timestamps with a maximum of millisecond precision.
Because of this, issues arise when using microseconds in timestamps and having
Logstash attempt to parse them and store them in Elasticsearch. In Kibana, the
timestamps are used as a way of organizing the alerts by the time the timestamps
say they were created, instead of the time they were stored in Elasticsearch.
Therefore, when planning to use the SELK stack, do not use this flag, and instead
understand that the best precision one can achieve at present is milliseconds.

For more information on running gen_alerts.py and to see the list of available
command line options, use the following command or see Fig. 2:

 python gen_alerts.py –help

For an example run of gen_alerts.py, see Fig. 1.

Approved for public release; distribution unlimited.
17

Appendix B. Leveraging the Snort–Elasticsearch–Logstash–
Kibana (SELK) Stack Using the Prebuilt, Lightweight Lubuntu

Virtual Machine

Approved for public release; distribution unlimited.
18

1. Download and install VirtualBox or VMware (VirtualBox is suggested).

https://www.virtualbox.org/wiki/Downloads

2. Download the OVA file (.ova). Available from several locations. Contact
the authors for details.

3. Import the OVA file (.ova) into the virtual machine environment.

a. VirtualBox import instructions can be found here:

https://www.virtualbox.org/manual/ch01.html#ovf

b. VMware import instructions can be found here:

https://pubs.vmware.com/fusion7/index.jsp?topic=%2Fcom.vmware.
fusion.help.doc%2FGUID-275EF202-CF74-43BF-A9E9-
351488E16030.html

4. Run the virtual machine and jump to Appendix C section “Start up the ELK
stack in different tabs/screens/terminals”.

5. If planning to use this environment for a more permanent setup, increase the
hard disk size to allow for the storage of more data.

a. VirtualBox hard-drive increase

VBoxManage modifyhd vdi_file_full_path_and_name
 --resize <size in MB>

 Example to resize to 40 GB:

VBoxManage modifyhd vdi_file_full_path_and_name
-–resize 40000

b. VMware hard-drive increase:

https://kb.vmware.com/selfservice/microsites/search.do?langu
age=en_US&cmd=displayKC&externalId=1004047

https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/manual/ch01.html#ovf
https://pubs.vmware.com/fusion7/index.jsp?topic=%2Fcom.vmware.fusion.help.doc%2FGUID-275EF202-CF74-43BF-A9E9-351488E16030.html
https://pubs.vmware.com/fusion7/index.jsp?topic=%2Fcom.vmware.fusion.help.doc%2FGUID-275EF202-CF74-43BF-A9E9-351488E16030.html
https://pubs.vmware.com/fusion7/index.jsp?topic=%2Fcom.vmware.fusion.help.doc%2FGUID-275EF202-CF74-43BF-A9E9-351488E16030.html
https://kb.vmware.com/selfservice/microsites/search.do?language=en_US&cmd=displayKC&externalId=1004047
https://kb.vmware.com/selfservice/microsites/search.do?language=en_US&cmd=displayKC&externalId=1004047

Approved for public release; distribution unlimited.
19

Appendix C. Implementing Snort–Elasticsearch–Logstash–Kibana
(SELK) in Your Environment

Approved for public release; distribution unlimited.
20

The following principles can be applied to setup ELK with any data.

Download the ELK stack:

Grab the appropriate files for your OS, and download directly or use wget
Then unzip files (and un-tar if on Linux)

<https://www.elastic.co/downloads/elasticsearch>

<https://www.elastic.co/downloads/logstash>

<https://www.elastic.co/downloads/kibana>

Install Java JRE

sudo apt-get install openjdk-8-jre

java -version (Test to see Java version & ensure installation)

Grab dependencies and setup environment for gen_alerts.py program

sudo apt-get install python-ipy

sudo mkdir /var/log/snort

sudo touch /var/log/snort/alert

Move Logstash config file into the ‘logstash-x.x.x/’ folder

 mv snort-alert.conf logstash-2.3.3/ (Logstash version 2.3.3)

GeoIP setup

mkdir /etc/logstash

cd /etc/logstash

sudo curl –O
http://geolite.maxmind.com/download/geoip/database/Geo
LiteCity.dat.gz

sudo gunzip GeoLiteCity.dat.gz

https://www.elastic.co/downloads/elasticsearch
https://www.elastic.co/downloads/logstash
https://www.elastic.co/downloads/kibana

Approved for public release; distribution unlimited.
21

Start up the ELK stack in different tabs/screens/terminals

 elasticsearch-2.3.3/bin/elasticsearch

 kibana-4.5.3-linux-x64/bin/kibana

logstash-2.3.3/bin/logstash -f logstash-2.3.3/snort-
alerts.conf

 *Note the ‘-f’ flag is used to provide the .conf file

*By default it pulls alerts from /var/log/snort/alert so if alerts
are in this file that you do not want to be stored, consider changing the
paths. See the “Changes to Make Based on File Locations, etc.” section
for details.

*All three will output information to stdout as they are running.

Look for some lines explaining the status of the servers and if they are
communicating.

 Logstash will just say:
 Settings: Default pipeline workers: 1
 Pipeline main started

Test the setup

 Check on Elasticsearch server

 curl localhost:9200/

 This should return something along the lines of:

 {

 "name" : "Tom Cassidy”,

 "cluster_name" : "elasticsearch”,

 "version" : {

 "number" : "2.3.3”,

"build_hash" :
"218bdf10790eef486ff2c41a3df5cfa32dadc
fde”,"build_timestamp" : "2016-
0517T15:40:04Z”,

 "build_snapshot" : false,

 "lucene_version" : "5.5.0”

 },

 "tagline" : "You Know, for Search”

 }

Approved for public release; distribution unlimited.
22

 Check on Kibana server

 Browse to ‘localhost:5601’ in your browser of choice.
 You should see the Kibana main page, but you will not be able to see any

data yet since we have not added any.

 *If any issues occur, it is most likely due to Elasticsearch – query ES to investigate

Query Elasticsearch to get its status, health, indices, shards, nodes, etc.

 - Use the following command to see more options

curl localhost:9200/_cat

- Add ‘?v’ after the chosen command to see column headers with output

curl localhost:9200/_cat/X?v

where ‘X’ is ‘health’, ‘shards’, ‘indices’, ‘recovery’, etc. and
‘?v’ provide output with column headers

- View more data in Elasticsearch

curl localhost:9200/_all?pretty

Changes to make based on file locations, etc.

- In log_alerts.sh and log_alerts_dates.sh change the filepaths
o Change the paths to gen_alerts.py
o Change the name and path to the output file if desired

- In snort-alerts.conf change the input file and path accordingly

Now that everything is setup – basic test run

 (1) Spin up Elasticsearch

 elasticsearch-2.3.3/bin/elasticsearch

 (2) Spin up Kibana

 kibana-4.5.3-linux-x64/bin/kibana

(3) Spin up Logstash

logstash-2.3.3/bin/logstash -f logstash-
2.3.3/snort-alerts.conf

Approved for public release; distribution unlimited.
23

 (4) Run the script to continuously generate alerts

 ./log_alerts_dates.sh

You will see ‘Generating X alerts’ and ‘Sleeping for X seconds…’
indicating that alerts have been appended to the file
/var/log/snort/alert (ensure file exists)

(5) Switch to the console running Logstash and within approximately
10 seconds you should see alerts being filtered

*This is because we are sending alerts to Elasticsearch and stdout
(specified in snort-alerts.conf)

(6) Once your Logstash input file contains alerts, open up the browser
and access Kibana (localhost:5601)

 (i) In Kibana you will first need to ‘Configure an index pattern’
 Under ‘Index name or pattern’ replace ‘logstash-*’ with

‘snort-alert-*’ as is defined in the Logstash configuration
file

(ii) Under ‘Time-field name’ using the drop-down menu select ‘logts’ to
store the alerts based on their log timestamps or select ‘@timestamp’ to
store the alerts based on the time the alerts were added to Elasticsearch.

*The former is highly recommended since you will most likely
not always be submitting alerts on the same day they were created.

 (iii) Click the ‘Create’ button, which should now be green

* If this is greyed out, uncheck the checkbox next to ‘Index
contains time-based events’ and check it again to refresh or refresh
the page altogether

 (iv) Under the tabs Settings —> Objects select the ‘Import’ button
 Select the file dek_kibana_viz_setup_Aug-16.json

(v) Navigate to ‘Dashboard’ then click the ‘Load Saved Dashboard’ folder
button, and select ‘Default’ to open and view the Dashboard. You can also
go to ‘Discover’ to view data (change the time range in the upper right
corner).

Approved for public release; distribution unlimited.
24

Additional Elasticsearch and Kibana commands/options

- General Kibana introduction
o <https://www.elastic.co/guide/en/kibana/current/index.html>

- Create new visualizations
o <https://www.elastic.co/guide/en/kibana/current/visualize.html>

- Create new searches / hone in on specific data in the database
o <https://www.elastic.co/guide/en/kibana/current/discover.html>

- Remove all data stored in Elasticsearch (ES must be running,
Kibana off)

Run the following command a few times:
curl -XDELETE 'http://localhost:9200/_all’

You should see {"acknowledged":true} responses to the query.

ctrl + c the Elasticsearch process, then start it back up again.

You should see ‘recovered [0] indices into cluster_state’ in the stdout info,
and if you see that [x] indices have been recovered, repeat the process.

* If Kibana is left running during this process an index for Kibana will be
created, and in this case you will see a nonzero number of indices. To
ensure the index is for Kibana -

curl localhost:9200/_cat/indices?v

- Create a snapshot of your entire Elasticsearch database
*We suggest installing ‘Sense’ – an app for Kibana to make larger
queries easier

< https://www.elastic.co/guide/en/sense/current/installing.html>

Setup – register a snapshot repository in Elasticsearch:

 PUT /_snapshot/backup

 {

 "type": "fs",

 settings": {

"location": "/home/username/backup-
folder",

 "compress": true,

 "chunk_size": "10m"

 }

 }

https://www.elastic.co/guide/en/kibana/current/index.html
https://www.elastic.co/guide/en/kibana/current/visualize.html
https://www.elastic.co/guide/en/kibana/current/discover.html
https://www.elastic.co/guide/en/sense/current/installing.html

Approved for public release; distribution unlimited.
25

 Add following line to elasticsearch.yml:

 path.repo: /home/username/backup-folder

 Create:

 curl -XPUT localhost:9200/_snapshot/backup/snapshot-name

 Check:

 curl -XGET localhost:9200/_snapshot/backup/snapshot-name?pretty

 Restore:

 curl -XPOST localhost:9200/_snapshot/backup/snapshot-name/_restore

 Delete:

 curl -DELETE /_snapshot/backup/snapshot_name

For more specific details:

<https://www.elastic.co/guide/en/elasticsearch/reference/current/modules
-snapshots.html>

Example output from Elasticsearch, Kibana, and Logstash

Elasticsearch:

[2016-08-05 14:33:35,290][INFO][node] [Aurora] version[2.3.4], pid[7957],
build[e455fd0/2016-06-30T11:24:31Z] [2016-08-05 14:33:35,297][INFO][node]
[Aurora] initializing ...

[2016-08-05 14:33:35,905][INFO][plugins] [Aurora] modules [reindex, lang-expression,
lang-groovy], plugins [], sites [] [2016-08-05 14:33:35,920][INFO][env] [Aurora]
using [1] data paths, mounts [[/ (/dev/sda1)]], net usable_space [3.1gb], net
total_space [6.7gb], spins? [possibly], types [ext4]

[2016-08-05 14:33:35,920][INFO][env] [Aurora] heap size [1015.6mb], compressed
ordinary object pointers [true]

[2016-08-05 14:33:38,293][INFO][node] [Aurora] initialized
[2016-08-05 14:33:38,293][INFO][node] [Aurora] starting ...
[2016-08-05 14:33:38,411][INFO][transport] [Aurora] publish_address {127.0.0.1:9300},

bound_addresses {[::1]:9300}, {127.0.0.1:9300}
[2016-08-05 14:33:38,414][INFO][discovery] [Aurora]

elasticsearch/8nba3kiqR0SoEJjfv5Serg [2016-08-05 14:33:41,520][INFO
][cluster.service] [Aurora] new_master
{Aurora}{8nba3kiqR0SoEJjfv5Serg}{127.0.0.1}{127.0.0.1:9300}, reason: zen-
disco-join(elected_as_master, [0] joins received)

[2016-08-05 14:33:41,557][INFO][gateway] [Aurora] recovered [0] indices into
cluster_state

[2016-08-05 14:33:41,558][INFO][http] [Aurora] publish_address {127.0.0.1:9200},

https://www.elastic.co/guide/en/elasticsearch/reference/current/modules-snapshots.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/modules-snapshots.html

Approved for public release; distribution unlimited.
26

bound_addresses {[::1]:9200}, {127.0.0.1:9200}
[2016-08-05 14:33:41,559][INFO][node] [Aurora] started [2016-08-05

14:33:53,162][INFO][cluster.metadata] [Aurora] [.kibana] creating index, cause
[api], templates [], shards [1]/[1], mappings [config]

[2016-08-05 14:33:53,462][INFO][cluster.routing.allocation] [Aurora] Cluster health status
changed from [RED] to [YELLOW] (reason: [shards started [[.kibana][0]] ...]).

[2016-08-05 14:34:32,990][INFO][cluster.metadata] [Aurora] [logstash-2016.08.05] creating
index, cause [auto(bulk api)], templates [logstash], shards [5]/[1], mappings
[_default_, logs]

[2016-08-05 14:34:33,274][INFO][cluster.routing.allocation] [Aurora] Cluster health status
changed from [RED] to [YELLOW] (reason: [shards started [[logstash
2016.08.05][4]] ...]).

[2016-08-05 14:34:33,353][INFO][cluster.metadata] [Aurora] [logstash-2016.08.05]
update_mapping [logs]

[2016-08-05 14:34:33,428][INFO][cluster.metadata] [Aurora] [logstash-2016.08.05]
update_mapping [logs]

Kibana:
log [14:33:47.833] [info][status][plugin:kibana] Status changed from uninitialized to green –
Ready log [14:33:47.863] [info][status][plugin:elasticsearch] Status changed from uninitialized
to yellow – Waiting for Elasticsearch
log [14:33:47.881] [info][status][plugin:kbn_vislib_vis_types] Status changed from uninitialized

to green - Ready
log [14:33:47.887] [info][status][plugin:markdown_vis] Status changed from uninitialized to

green – Ready
log [14:33:47.898] [info][status][plugin:metric_vis] Status changed from uninitialized to green –

Ready
log [14:33:47.901] [info][status][plugin:spyModes] Status changed from uninitialized to green –

Ready
log [14:33:47.903] [info][status][plugin:statusPage] Status changed from uninitialized to green –

Ready
log [14:33:47.906] [info][status][plugin:table_vis] Status changed from uninitialized to green –

Ready
log [14:33:47.918] [info][listening] Server running at http://0.0.0.0:5601
log [14:33:52.971] [info][status][plugin:elasticsearch] Status changed from yellow to yellow - No

existing Kibana index found
log [14:33:56.073] [info][status][plugin:elasticsearch] Status changed from yellow to green –

Kibana index ready

Approved for public release; distribution unlimited.
27

Logstash output when processing an alert (*Not all will have GeoIP data):
{

"message" => "2016/08/05-13:12:44.182 [**] [1:1625:14] \"PROTOCOL-FTP SYST
overflow
attempt\" [**] [Classification: protocol-command-decode] [Priority: 3] {tcp}
144.243.61.226:60277 -> 172.31.24.253:21",
"@version" => "1",
"@timestamp" => "2016-08-05T18:35:29.087Z",
"path" => "/var/log/snort/alert",
"host" => "elk-VirtualBox",
"logts" => "2016-08-05T17:12:44.182Z",
"gid" => "1",
"sid" => "1625",
 "rev" => "14",
"msg" => "PROTOCOL-FTP SYST overflow attempt",
"classification" => "protocol-command-decode",
"priority" => "3",
"protocol" => "tcp",
"sip" => "144.243.61.226",
"sport" => "60277",
"dip" => "172.31.24.253",
"dport" => "21",
"geoip" => {

"ip" => "144.243.61.226",
"country_code2" => "US",
"country_code3" => "USA",
"country_name" => "United States",
"continent_code" => "NA",
"region_name" => "MD",
"city_name" => "Annapolis",
"postal_code" => "21401",
"latitude" => 38.987899999999996,
"longitude" => -76.5454,
"dma_code" => 512,
"area_code" => 410,
"timezone" => "America/New_York",
 "real_region_name" => "Maryland",
"location" => [

[0] -76.5454,
[1] 38.987899999999996

]
}

}

Approved for public release; distribution unlimited.
28

List of Symbols, Abbreviations, and Acronyms

ARL US Army Research Laboratory

CIDR classless inter-domain routing

IP Internet Protocol

NIDS network intrusion detection system

NIPS network intrusion prevention system

SELK Snort–Elasticsearch–Logstash–Kibana

TCP transmission control protocol

VM virtual machine

Approved for public release; distribution unlimited.
29

 1 DEFENSE TECHNICAL
 (PDF) INFORMATION CTR
 DTIC OCA

 2 DIRECTOR
 (PDF) US ARMY RESEARCH LAB
 RDRL CIO LL
 IMAL HRA MAIL & RECORDS MGMT

 1 GOVT PRINTG OFC
 (PDF) A MALHOTRA

 3 DIR USARL
 (PDF) RDRL CIN D
 D KRYCH
 T BRAUN
 J EDWARDS

Approved for public release; distribution unlimited.
30

INTENTIONALLY LEFT BLANK.

	List of Figures
	List of Tables
	1. Introduction
	2. Methodology
	2.1. Snort Alert Generation
	2.2 The SELK Stack

	3. Discussion and Conclusion
	4. References
	Appendix A. Using the Snort Alert Generator <gen_alerts.py>
	Appendix B. Leveraging the Snort–Elasticsearch–Logstash–Kibana (SELK) Stack Using the Prebuilt, Lightweight Lubuntu Virtual Machine
	Appendix C. Implementing Snort–Elasticsearch–Logstash–Kibana (SELK) in Your Environment
	List of Symbols, Abbreviations, and Acronyms

