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Abstract

Robots require high-quality maps—internal representations of their operating

workspace—to localise, path plan, and perceive their environment. Until recently,

these maps were restricted to sparse, 2D representations due to computational,

memory, and sensor limitations. With the widespread adoption of high-quality

sensors and graphics processors for parallel processing, these restrictions no longer

apply: dense 3D maps are feasible to compute in real time (i.e., at the input

sensor’s frame rate).

This thesis presents the theory and system to create large-scale dense 3D maps

(i.e., reconstruct continuous surface models) using only sensors found on modern

autonomous automobiles: 2D laser, 3D laser, and cameras. In contrast to active

RGB-D cameras, passive cameras produce noisy surface observations and must be

regularised in both 2D and 3D to create accurate reconstructions. Unfortunately,

straight-forward application of 3D regularisation causes undesired surface interpola-

tion and extrapolation in regions unexplored by the robot. We propose a method

to overcome this challenge by informing the regulariser of the specific subsets of

3D surfaces upon which to operate. When combined with a compressed voxel grid

data structure, we demonstrate our system fusing data from both laser and camera

sensors to reconstruct 7.3 km of urban environments. We evaluate the quantitative

performance of our proposed method through the use of synthetic and real-world

datasets—including datasets from Stanford’s Burghers of Calais, University of

Oxford’s RobotCar, University of Oxford’s Dense Reconstruction, and Karlsruhe

Institute of Technology’s KITTI—compared to ground-truth laser data. With only

stereo camera inputs, our regulariser reduces the 3D reconstruction metric error

between 27% to 36% with a final median accuracy ranging between 4 cm to 8 cm.

Furthermore, by augmenting our system with object detection, we remove

ephemeral objects (e.g., automobiles, bicycles, and pedestrians) from the input

sensor data and target our regulariser to interpolate the occluded urban surfaces.

Augmented with Kernel Conditional Density Estimation, our regulariser creates

reconstructions with median errors between 5.64 cm and 9.24 cm.

Finally, we present a machine-learning pipeline that learns, in an automatic

fashion, to recognise the errors in dense reconstructions. Our system trains on

image and laser data from a 3.8 km urban sequence. Using a separate 2.2 km urban

sequence, our pipeline consistently identifies error-prone regions in the image-

based dense reconstruction.
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A map does not just chart, it unlocks and formulates
meaning; it forms bridges between here and there,
between disparate ideas that we did not know were
previously connected.

— Reif Larsen, The Selected Works of T.S. Spivet

1
Introduction

Contents

1.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . 7

D
ense reconstruction—continuous three dimensional (3D) surface models

created from sensor data—is a vibrant research area in which the computer

vision and robotics communities have shown a surge of interest over the past decade.

These maps aid a robot in visualising, localising, and navigating within an operating

environment. The 3D dense reconstructions targeted in this thesis stand in contrast

to traditional two dimensional (2D) point-based (i.e., sparse) maps. 3D maps

allow the robot to operate in more complex environments (e.g., hills, multi-floor

buildings, warehouses, etc.) while providing the potential to improve the robustness

of algorithms in previously-ambiguous scenarios. For example, depending on the

sensor mounting height, a map created from a horizontal 2D lidar sensor might

struggle to differentiate between a building support column and a cardboard box; 3D

maps with height information help resolve this ambiguity. A dense (i.e., continuous)

map also reduces uncertainty for algorithms using the map—e.g., a path planner can

now differentiate between a physical gap in a wall rather than low sensor coverage.

1



2 1. Introduction

Figure 1.1: Example Dense 3D Reconstructions (Mesh). The software pipeline presented
in this thesis created the above urban reconstruction by fusing data from the Oxford
Broad Street dataset.

Due to computational and memory constraints, early robotics work focused on

sparse 2D feature maps created from lidar scans. With the pressure of the multi-

billion dollar gaming industry, the capability of commodity Graphics Processing

Units (GPUs) rapidly expanded until they rivalled the parallel processing power

previously available only with supercomputers. For example, the NVIDIA TITAN

X contains 3,584 Compute Unified Device Architecture (CUDA) cores, 12 GiB

of memory, and draws only 250 W of power. Each CUDA core processes up

to 32 threads. Therefore, at its peak performance, the TITAN X can handle

114,688 threads. This computing power opens up entirely new realms of feasible

real-time problems for robotics applications—most importantly for this thesis:

dense 3D reconstructions.

Why is such computing power required to create dense 3D maps? Voxel grids—

the generally accepted data structure used in dense 3D reconstructions—subdivide

an environment into a regular grid of voxels (cubes), each of which stores the distance

to the nearest surface. Voxel grids provide a guaranteed level of reconstruction

quality while requiring only a fixed amount of memory, no matter the number of

sensor observations fused. If one desires to reconstruct a workspace with a precision

of 4 millimetres, this requires a 512 × 512 × 512 voxel grid with 1 GiB of memory

(assuming 2 floating point values in each voxel). In addition, each depth map fused
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Figure 1.2: Example Dense 3D Reconstructions (Coloured). Our software pipeline
creates dense 3D models of robot workspaces, with a focus on autonomous-automobile
sensors and environments. The above coloured reconstructions were created by applying
our reconstruction software to the KITTI dataset [1].

requires computation in each of the 134,217,728 voxels. This is all presupposed

upon a sensor that provides accurate range measurements.

In late 2010, Microsoft released the Kinect camera that generated RGB and

per-pixel depth-to-surface measurements (so-called RGB-D) at 30 Hz with 640× 480

resolution. Newcombe et al., leveraging the Kinect in concert with the emerging

capabilities of General Purpose Graphics Processing Unit (GPGPU), published

the KinectFusion system that generated dense 3D models in real time (i.e., at the

input sensor’s frame rate) [2]. This caused an explosion of research in the dense

reconstruction community, with researchers proposing methods to improve the

storage efficiency of voxel grids to increase the size of feasible reconstructions.
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(a) Nissan LEAF

(b) Jaguar Land Rover

Figure 1.3: Example Dense Reconstruction Data Collection Platforms. This thesis
presents methods to create large-scale dense 3D models from autonomous-automobile
platforms. Above are two such examples in use by ORI. Note the combination of camera
and lidar sensors provide a continuous 360° coverage around each vehicle. See Figure 2.9
on page 22 for a detailed depiction of (a) with images of the available sensors.

These 3D maps provide great utility to a wide variety of robotics domains: scene

segmentation, material prediction, localisation, augmented reality, visualisation,

and remote inspection (nuclear, chemical, etc.). Unfortunately, because of the high-

quality RGB-D sensors, researchers focused on hand-held scenarios where an operator

manually manipulated the sensor to reconstruct objects of interest. But RGB-D
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sensors cannot be used on many autonomous vehicle applications due to range

limitations (approximately 0.5 m to 6 m) and its restriction to indoor environments.

In this thesis, we present the theory required to create a dense reconstruction

pipeline that fuses data from commodity (passive) camera or (active) lidar sensors

to produce high-quality, large-scale reconstructions (see Figure 1.1 on page 2 and

Figure 1.2 on page 3) from an automobile platform. Two example platforms are

shown shown in Figure 1.3 on the facing page. This system is substantial: including

custom time synchronisation, hardware drivers, and data structures, the software

encompasses over 480K lines of source code. To create high-quality models from

noisy sensor inputs, we must regularise both the 2D input depth maps and the

volumetric 3D surface representation stored in the voxel grid. We build upon

prior 3D regularisation research [3][4], but by means of a technique we call Ω-

labelling, we extend the object-centric focus to work during vehicle exploration.

We rely upon quantitative analysis to rigorously evaluate the quality of our final

reconstruction when compared to 3D lidar ground-truth data. We hope the datasets

and evaluations presented in this thesis will become valuable tools of comparison

for the research community.

1.1 Contributions

This thesis presents six contributions to the state-of-the-art dense reconstruction:

1. We propose a method to regularise 3D data stored in a conventional (Chapter 3)

and compressed (Chapter 4) volumetric data structures, thereby enabling

regularisation of significantly larger scenes created from robot exploration.

2. We present and develop in Chapters 3, 4, and 5 the theory required to construct

a state-of-the-art dense-reconstruction system pipeline for large-scale, mobile-

robotics applications and quantitatively analyse the quality of the resulting

reconstructions.
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3. We provide, by way of our quantitative results in Chapter 4 and the models

released in the supplementary materials, a new KITTI benchmark for the

community to compare dense-map reconstructions.

4. We release (Chapter 4) the 1.6 km Oxford Broad Street dataset as a real-world

reconstruction scenario for a mobile-robotics platform with camera and lidar

sensors.

5. We formulate in Chapter 5 a new Kernel Conditional Density Estimation

(KCDE) data term for the energy functional to interpolate occluded surfaces

in dense reconstructions.

6. In Chapter 6, we present a framework that, through the use of deep neural

networks, learns to evaluate the quality of our 3D reconstructions.

1.2 Publications

The preponderance of work in this thesis has been published, though one is still

in peer review,

• G. Pascoe, W. Maddern, M. Tanner, P. Piniés, and P. Newman. “NID-

SLAM: Robust Monocular SLAM Using Normalised Information Distance”.

In: Computer Vision (ICCV), IEEE International Conference On. Honolulu,

Hawaii, July 2017. [5] (background for material in Chapter 2 and Chapter 4)

• M. Tanner, P. Piniés, L. M. Paz, and P. Newman. “BOR2G: Building Opti-

mal Regularised Reconstructions with GPUs (in Cubes)”. In: International

Conference on Field and Service Robotics (FSR). Toronto, ON, Canada, June

2015. [6] (Chapter 3)

• M. Tanner, P. Piniés, L. M. Paz, and P. Newman. “DENSER Cities: A

System for Dense Efficient Reconstructions of Cities”. In: ArXiv e-prints (Apr.

2016). [7] (Chapter 4)
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• M. Tanner, P. Piniés, L. M. Paz, and P. Newman. “Keep Geometry in

Context: Using Contextual Priors for Very-Large-Scale 3D Dense Recon-

structions”. In: Robotics: Science and Systems, Workshop on Geometry and

Beyond: Representations, Physics, and Scene Understanding for Robotics.

June 2016. [8] (Chapter 4)

• M. Tanner, P. Piniés, L. M. Paz, and P. Newman. “BOR2G: Building

Optimal Regularized Reconstructions with GPUs”. In: IEEE Transactions on

Robotics In Review (TBD). [9]1 (Chapter 3 and Chapter 4)

• M. Tanner, P. Piniés, Lina Maria Paz, and Paul Newman. “What Lies

Behind: Recovering Hidden Shape in Dense Mapping”. In: Proceedings of

the IEEE International Conference on Robotics and Automation (ICRA).

Stockholm, Sweden, May 2016. [10]2 (Chapter 5)

1.3 Thesis Structure

In Chapter 2, we present the preliminary research and tools required to understand

our contributions to the dense reconstitution community. In Chapter 3, we explain

the theory of regularising dense 3D reconstructions—avoiding the inadvertent

spurious surface interpolation and extrapolation to which gradient-based regularisers

are subject—created from monocular cameras on a mobile-robotics platform. We

augment our software pipeline in Chapter 4 by levering a compressed data structure

while fusing multiple sensor modalities to create large-scale reconstructions. With

an eye on single-pass automobile-based surveying applications, we present a method

in Chapter 5 to remove dynamic and ephemeral objects (e.g., pedestrians, bicyclists,

automobiles) from sensor data and target a regulariser to interpolate the occluded

urban structure. Finally, in Chapter 6, we propose a machine learning pipeline that

learns, through extensive training on laser and image-depth-map reconstructions,

to find areas in our 3D reconstructions that contain errors. Overall, this thesis

1Under revision for second round of peer reviews
21 of 3 finalists for Best Student Paper Award
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proposes an end-to-end dense reconstruction framework suitable for modern mobile-

robotics applications.



Everything is related to everything else, but near
things are more related than distant things.

— Tobler’s First Law of Geography
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T
his thesis presents the theory and systems required to create and critique

large-scale, dense, 3D reconstructions from an autonomous vehicle platform.

In this chapter, we introduce the research and tools currently available to the

robotics community to create and evaluate dense reconstructions.

We begin in Section 2.1 on the next page with reference frames and coordinate

transformations, providing the mathematical framework to denote the position of

9
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sensors and objects in the operating environment. We introduce camera and lidar

models in Section 2.2 on page 15, emphasising the importance of accurate intrinsic

and extrinsic calibration. In Section 2.3 on page 24, we provide an overview of

algorithms to infer 3D structure from passive monocular and stereo cameras—the

resulting depth maps are used as inputs to our dense reconstruction pipelines in

Chapter 3 and Chapter 4. Section 2.4 on page 30 provides a overview of the

voxel grid data structure and the algorithm to convert a series of depth maps

into a continuous 3D model. Finally, in Section 2.5 on page 38, we present the

CloudCompare software tool we will use to quantitatively evaluate the metric

error of our dense reconstructions.

2.1 Reference Frames

Reference frames are fundamental to robotics and our dense-reconstruction applica-

tions. Mathematically described by the special Euclidean group SE(n), reference

frames enable a system designer to describe the position of any sensor or platform at

any point of time. This section introduces the mathematical notation (Section 2.1.1)

and convention (Section 2.1.2 on page 12) used throughout this thesis.

2.1.1 Special Euclidean Group

The SE(n) special Euclidean group represents the set of all possible rigid-body

rotations and translations available in n-dimensional space (typically n = {2, 3})

[11][12]. Many of the examples in this chapter use SE(2) transformations for

clarity, however the same concepts extend to the SE(3) transformations that are

used throughout this thesis.

SE(n) consists of an n × n rotation matrix, R, and an n-dimension translation

vector, t. The n dimensional vector, p, may be transformed via,

p̂ = Rp + t (2.1)
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Figure 2.1: SE(2) Rotation and Translation Example. The SE(2) special Euclidean
group represents any rigid-body rotation or translation for 2D points. In the above
example, the Object A (red triangle) is rotated 30° and then translated (8, 2)T units to
form Object B (blue triangle).

where the point is first rotated about reference frames’ the origin and then translated.

For simplicity, R and t are commonly combined into a single matrix, T ,

T =

[
R t

0 1

]
(2.2)

where T may be applied to a n-dimensional homogeneous vector,

p̂ = T

[
p

1

]
(2.3)

R is orthonormal, so the inverse transformation may be efficiently computed [11],

T−1
=

[
RT −RT t

0 1

]
(2.4)

A specific example clarifies the notation. In SE(2) the general transform

matrix T takes the form,

T =


cos θ − sin θ tx

sin θ cos θ ty
0 0 1

 (2.5)

where θ is the rotation angle about the origin and t = (tx, ty)T is the translation

vector. Due to the rigid-body constraint (i.e., orthonormal R), the transformed

triangle is both the same shape and size as the original. In other words, SE(n)

transformations can neither warp nor scale objects—see Figure 2.1 for an example.
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2.1.2 Convention

In robotics and dense reconstruction contexts, SE(3) transformations enable one

to mathematically describe the position of a platform or sensor relative to one

another at any point in time. This section describes the notation and mathematical

conventions used to describe these transformations.

All points in space must be described relative to a given reference frame. For

example, the robot and camera reference frames are commonly used throughout this

thesis. If the camera observes a point, relative to itself, of pcamera = (xc, yc, zc, 1)T,

this point could be converted to the robot reference frame via,

probot = Trobot—camera pcamera (2.6)

and vice versa,

pcamera = T−1
robot—camera probot = Tcamera—robot probot (2.7)

Therefore each reference frame describes the same point, but in terms relative to

their respective origins and orientation, by using Trobot—camera (and its inverse)

to “translate” between the frames.

As shown in the above example, transforms are written in the standard form,

TDestinationFrame—SourceFrame (2.8)

Using the above notation, in a fully-connected graph of n reference frames, n(n−1)/2

transforms and their inverse must be computed to handle the transformation between

any two reference frames [13]. This quickly becomes intractable in large-scale mobile-

robotics applications. For example, we may define a unique reference frame for

each sensor, robot, and stereo pair of images. A data collection lasting just one

hour would require over 9.7 million transforms.

We mitigate this problem—thus requiring just n transforms—by introducing

the transform composition operator ⊕,

Ta—d = Ta—b ⊕ Tb—c ⊕ Tc—d (2.9)
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�

Figure 2.2: SE(2) Pose Composition Example. Poses may be combined together to
create a composite pose, as shown in the above example. Mathematically, this is denoted
as Ta—d = Ta—b ⊕ Tb—c ⊕ Tc—d. This is particularly useful when a relative pose chain is
provided by one sensor (e.g., VO operating on a stream of stereo images) and one seeks to
compute the current location of a mobile-robotics platform relative to its original position.

where this composition is graphically depicted in Figure 2.2. The inverse of

this transform is,

Td—a = (Ta—b ⊕ Tb—c ⊕ Tc—d)−1
= (Ta—d)−1 (2.10)

When SE(3) transformations are in their homogeneous 4 × 4 matrix form (in

contrast to Euler angles or quaternions [14]), composition (⊕) is equivalent to

matrix multiplication.

In describing the reference frame for a given object, one must define “up/down”,

“left/right”, and “forward/backward” (i.e., direction of x, y, and z). We use two

conventions in this thesis, as shown in Figure 2.3 on the following page. The NASA

Body Axis convention is the standard for all ORI sensors and platforms where x is

forward, y is to the right, and z is down [15]. However, when projecting points in or

out of a camera (see Section 2.2.1 on page 15) we use the Computer Vision convention

of z forward, x to the right, and y down. We convert between the frames via,

TCV—NASA =



0 1 0 0
0 0 1 0
1 0 0 0
0 0 0 1


(2.11)

In practice, a typical pose-chain in our dense reconstructions might look some-

thing like this,

TCvLocal—NasaWorld = TCV—NASA ⊕ TCameraNasa—RobotNasa ⊕ TRobotNasaTk—NasaWorld

(2.12)
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(a) NASA Body Axis
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(b) Computer Vision

Figure 2.3: NASA Body Axis vs. Computer Vision Reference Frame. The above
figures outline the two primary reference frames used throughout this thesis. The NASA
Body Axis frame is used as the standard reference frame for all sensors and platforms
[15]. However, as the literature for vision applications utilise the “Computer Vision”
reference frame, we transform coordinates to this frame of reference whenever performing
image-specific tasks. For example, to compute a global-frame point pg (in NASA Body
Axis) to a local camera reference frame, one might compute: TCvLocal—NasaWorld =

TCV—NASA ⊕TCameraNasa—RobotNasa ⊕TRobotNasaTk—NasaWorld where TRobotNasaTk—NasaWorld

is the transform from the robot position at time tk to the global-frame origin. Images
from [16][17].

where TRobotNasaTk—NasaWorld converts from the robot position at time tk to the

global-frame origin. To compute the global-frame point pg (in NASA Body Axis)

to a local camera reference frame via,

pc = TCvLocal—NasaWorld pg (2.13)

We store our transforms in the following data structure,

Listing 2.1: Transform Data Structure

struct Transform {
String sourceFrame ;
String dest inat ionFrame ;
DateTime sourceTimestamp ;
DateTime dest inationTimestamp ;
Matrix4 homogeneousTransform ; // 4 x 4 matrix

} ;

with methods that allow one to compose multiple transforms into a composite

transform if the source and destination timestamps match. We store timestamps
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Figure 2.4: Assortment of Sensors. Above are six sensors used in this thesis for dense
reconstructions. Clockwise from top-left: (1) Point Grey Bumblebee XB3 colour stereo
camera, (2) Point Grey Bumblebee2 colour stereo camera, (3) Point Grey Grasshopper2
colour monocular camera, (4) Asus XtionPro RGB-D camera, (5) Velodyne HDL-32E
3D lidar, and (6) SICK LMS-151 2D lidar. The top row are passive sensors, whereas the
bottom row’s sensors actively project light into the environment to measure distances to
surfaces.

in this structure since some reference frames are only valid at one point in time

(e.g., the VO relative pose between two sequential stereo images [18]).

2.2 Sensor Overview

Without sensors, robots are blind—operating in an open-loop capacity. To remedy

this, and produce the large-scale dense reconstructions that are the primary focus of

this thesis, we mount a variety of camera and lidar sensors on our mobile-robotics

platform, see Figure 2.4. In the following two subsections, we provide an overview

of the models and intrinsic calibration used for camera (Section 2.2.1) and lidar

(Section 2.2.2 on page 19) sensors. In Section 2.2.3 on page 21, we emphasise the

importance of accurate extrinsic calibration.

2.2.1 Cameras

The pinhole camera model, depicted in Figure 2.5 on the following page, is a simple

geometric description of how a camera works [20][22]. It provides a means to project

3D points into the 2D image plane, and vice versa.
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Figure 2.5: Pinhole Camera Model. The Pinhole Camera Model, summarised by the
camera model matrix K , is a simple method to map 3D points in space to a 2D coordinate
on the image plane. The camera lens focus all light rays to the camera centre, c, while the
image’s individual pixels (image plane) may be thought of as f metres (the focal length)
in front of c. The principal point, p, is located at the centre of the image plane. Figure
inspired by [19][20][21].

The camera focal point, c, is the point at which the camera lens focuses all light.

The image plane, located f metres in front of c, is the virtual surface upon which

the image rests. If the pixels are rectangular, then we must track two separate focal

lengths, f x and f y. A light source emits a photon that reflects off a surface and then

travels to the camera centre. When the photon passes through the image plane,

the pixel it passes through becomes (in this model) the “colour” of that photon.

With this model, the 3D point p3D = (X,Y,Z) is mapped to the image plane via

[20]

(X,Y, Z )3D →

(

f x X

Z
,

f yY

Z

)

2D

(2.14)

or in its matrix form [20],


X

Y

Z

 →


f x X

f yY

Z

 =


f x 0 0
0 f y 0
0 0 1



X

Y

Z

 (2.15)

However, the above equation assumes that the (0, 0)T coordinate is at the centre

of the image. To account for the reality that there is an offset from the image
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origin (usually located in the top-left of the image) we introduce the principal

point, p, offset,


X

Y

Z

 →


f x X + Zpx

f yY + Zpy
Z

 =


f x 0 px

0 f y py
0 0 1



X

Y

Z

 (2.16)

The key parameters of the pinhole camera model can therefore be represented

by the following camera calibration matrix,

K =


f x 0 px

0 f y py
0 0 1

 (2.17)

This “world to pixels” matrix provides the means to convert world-space 3D coordi-

nates to the equivalent image-space 3D pixel coordinates with the computation,

p2d = π (p3d) = Kp3d (2.18)

or back-project pixels (assuming the pixel has a known depth value, d) via,

p3d = π
−1 (p2d, d) = dK−1

[
p2d

1

]
(2.19)

See Figure 2.11 on page 25 for an example of an RGB-D (i.e., an RGB image

where each pixel has a depth value) back-projected into a 3D point cloud using

Equation 2.19.

The above camera model is only valid when there is no lens distortion in the

image. However, as all cameras have lens distortion to one degree or another, we

must correct the distortion before applying Equation 2.18 or Equation 2.19. An

example of this process is shown in Figure 2.6 on the next page. The input image

is significantly distorted as it was captured by a Point Grey Grashopper2 camera

with a fish-eye lens. Distortion can be found in images by verifying if straight lines

are represented correctly, especially on the border regions of the image where the

distortion is usually the greatest. In Figure 2.6 on the following page, the parking

lines on the road clearly curved in the raw image.

A common method to remove this effect is to use a radial distortion model L(·)

to account for the warping from the camera lens [20],[
ud

vd

]
= L(r)

[
u

v

]
(2.20)
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Figure 2.6: Distorted vs. Undistorted Images. All camera lenses cause distortion. In
the above example, note how straight lines do not appear straight in (left) (e.g., white
parking road markings), but they are corrected in (right). By building a custom LUT
for the camera lens, this effect is removed. This is accomplished by mapping (via ℓ(·))
each pixel of the undistorted image (u, v) to interpolated (uv, vd) values in the distorted
image—three such mappings are shown in the above images. The camera’s “intrinsic”
calibration, of which the LUT is part, needs only be computed once per camera as long
as the lens is not replaced.

where (ud, vd)T ∈ R2 (interpolated pixel coordinates in the distorted image),

(u, v)T ∈ Z2 (pixels coordinates in the undistorted image), r is the radial distance
√

(u − uc)2
+ (v − vc)2 a sample point (u, v) is from the centre of distortion (uc, vc),

and L(r) is the distortion function. To make it computational tractable, L(·) may

be approximated via a Taylor series expansion,

L(r) = 1 + k1r + k2r2
+ k3r3

+ . . . + knrn (2.21)

An image can be undistorted in real time by either limiting the number of Taylor

series terms (e.g., n = 4) or use a high-order approximation of L(·) to pre-compute a

LUT ℓ(·). The distortion is then removed by applying ℓ(·) to map each pixel (u, v) in

the undistorted image Iu to an interpolated location (ud, vd) in the distorted image Id,

ℓ : (u, v) → (ud, vd)

Iu(u, v) = Id (ℓ(u, v)) = Id (ud, vd)
(2.22)

Figure 2.6 provides an example of the mapping of three pixels between the distorted

and undistorted images.
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The combination of K and the undistortion LUT (or {k1, k2, . . .} for L(·)) is the

camera’s intrinsic calibration. This may be computed, via standard software [23],

by the system developer upon purchase of the camera. Occasionally vendors who

specialise in cameras for computer vision or robotics platforms will compute the

intrinsic calibration as part of the manufacturing process.

As a summary of the key variables required to undistort and project points from

the image plane to 3D space, here is an example camera model data structure,

Listing 2.2: Camera Model

struct CameraModel {
double focalLengthX ;
double focalLengthY ;
double pr inc ipa lPo intX ;
double pr inc ipa lPo intY ;

// LUT conta ins IMAGE_WIDTH ∗ IMAGE_HEIGHT elements
Vector2 [ ] undistort ionLookupTable ;

} ;

2.2.2 Lidar

Lidar is a time-of-flight sensor that actively projects light into the environment

and calculates the distance (d) to the nearest surface via,

d =
ct

2
(2.23)

where c is speed of light and t is the time from projecting the light pulse to

when the return was detected.

The SICK LMS-151 is a 2D lidar that sweeps a single laser beam at 0.5°

increments along a plane with a viewing angle of 270° at 50 Hz (i.e., 540 depth

observations per scan). When mounted in a push-broom orientation (see the rear

LMS-151 in Figure 2.9 on page 22) it produces detailed sparse reconstructions of

urban environments, as shown in Figure 2.7 on the next page.

The system to create sparse reconstructions of this quality is the topic of

another thesis [25], the basic concepts are used throughout this thesis to generate

ground-truth data to evaluate image-only or interpolated dense 3D reconstructions
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Figure 2.7: Coloured LIDAR Point Cloud Example. Lidar is one of the few sensors
on mobile-robotics platforms that provides robust, accurate, and far-ranged depth
measurements. The above image plots the lidar point cloud captured by a push-broom
LMS-151 (see Figure 2.9 on page 22) in an urban environment. Note how the push broom
orientation of the lidar sensor enables it to produce an accurate sparse reconstruction
of the 3D structure. Laser points are coloured via cameras that are oriented to provide
continuous 360° coverage around the vehicle. Creating sparse reconstructions like this
require accurate intrinsic, extrinsic, and temporal calibration [24].

�"#$
�"#% Transform from reference frame 

� to reference frame �

Sensor	� pose

�$#%

�
� � � � � � �

Sensor	� pose

�"#6 �$#7

Interpolated pose

Directly observed pose

Figure 2.8: Pose Interpolation Example. When a platform contains multiple, unsyn-
chronised sensors, the pose for each sensor must be interpolated. This commonly occurs
in this thesis’ experiments when capturing data with cameras and lidar sensors. The
camera (represented by “Sensor A”) in the above figure provides the SE(3) pose chain.
Since the lidar sensor does not directly observe or compute the pose, it must interpolate
the pose between two subsequent camera poses. The extrinsic calibration must be precise
for this system to work properly—see Figure 2.9 on page 22 and Figure 2.10 on page 23
for more details. In addition, the temporal calibration—accounting for clock differences
between sensors—must also be corrected [24].

(Chapters 3, 4, and 5) or to fuse into a voxel grid to improve the dense reconstruction

quality (Chapter 4). These sparse reconstructions are created by,

1. Compute the vehicle’s trajectory via VO [26].
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2. Interpolate the SE(3) pose of each laser point from the LMS-151 (see Figure 2.8

on the facing page).

3. Project all laser points into the most relevant camera sensor (from a suite of

six cameras with continual 360° coverage around the vehicle) to colour the

point cloud [25].

Unlike cameras, lidar sensors require neither intrinsic calibration nor a so-

phisticated model. Rather, a simple ray-based model (origin at lidar sensor and

termination at reflectance point as described in Section 4.2.1.1 on page 83) is

sufficient to provide the results in Figure 2.7 on the facing page. However, pose

interpolation and colouring the point cloud requires accurate intrinsic, extrinsic,

and temporal (cross-sensor clock biases) calibration [24].

2.2.3 Extrinsic Calibration

Any system with more than one sensor must accurately characterise their extrinsic

calibration, the relative SE(3) pose between sensors. The ORI RobotCar platform

is used to capture data for a variety of experiments throughout this thesis [27]. As

shown in Figure 2.9 on the next page, it contains a variety of sensors, representative

of the suite used on modern autonomous automobiles. These sensors include: 1x

GPS, 1x INS, 1x 3D lidar, 2x 2D lidar, 3x monocular cameras, and 1x stereo camera.

As this type of setup is typical (and conservative compared to our more recent

platforms), we seek to simplify the extrinsic calibration process by defining a single

reference frame against which all sensors are compared: robot. This is usually

located at the centre of the vehicle’s rear axle.

The sensors may first be coarsely calibrated via physical measurements before

more sophisticated methods are used to refine the calibration [28][29]. For example,

if two cameras have any overlap, then multiple objects are placed in the overlapping

field of view and their known locations are used to solve for the unknown relative

transformation between the sensors. Lidar sensors are calibrated by seeking an
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Figure 2.9: University of Oxford RobotCar Sensor Layout. One of the primary data-
collection platforms for this thesis is the University of Oxford’s RobotCar [27]. This
platform’s range of sensors are representative of a typical modern autonomous vehicle. The
360° coverage with multiple sensor modalities is ideal for high-quality dense reconstructions.
A forward-facing stereo camera provides poses (via SLAM or VO) and depth maps while
the laser sensor is directly fused into the 3D dense reconstruction or used as ground-truth
data for metric evaluations. It is critical that the extrinsic calibration (i.e., the relative
SE(3) pose) between the sensors be computed accurately. See Figure 2.10 on the facing
page for an example of the effects of poor extrinsic calibration. Figure from [27].

overlap between the reflectance values in the 3D point cloud (similar to Figure 2.7

on page 20) and the camera images.

Accurate calibration is vital in many robotics applications, but particularly when

fusing data from multiple sensors (and sensor modalities) for dense reconstructions,
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(a) Correct Calibration

(b) 5° RPY Calibration Error

Figure 2.10: Camera-lidar Calibration. The relative SE(3) pose of the sensors on a
mobile-robotics platform must be very accurate. In (a) the extrinsic calibration between
the camera and lidar sensor is correct, resulting in the laser points accurately overlaying
the 3D structure when projected in the image. However, in (b), when the calibration angles
are perturbed by 5°, the 3D structure does not align correctly. In dense reconstruction
applications, this results in each sensor fusing conflicting data into the voxel grid, producing
poor quality reconstructions. See Figure 2.9 on the facing page for the layout of sensors
on the ORI RobotCar platform used to collect the above data.

as is required in Chapter 4. Figure 2.10 shows the effects of poor calibration. In

the well-calibrated image, laser points projected into the image overlap properly

with the scene’s underlying 3D urban structure. However, in the poorly-calibrated
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image, the projected laser points do not align correctly. If one attempted to

fuse the lidar and image data into a voxel grid to create a dense reconstruction,

the conflicting range information would create destructive interference, resulting

in inaccurate surface models.

With proper extrinsic calibration and pose interpolation (see Figure 2.8 on

page 20), the precise SE(3) pose of each sensor is always known. However, this

calibration should be regularly updated to account for changes due to temperature

variance or physical perturbations.

2.3 Depth Maps

Depth maps are one of the primary input used throughout this thesis to create dense

3D reconstructions. A depth map is an image where the “depth” of each pixel—i.e.,

the z component of the distance from the camera’s optical centre through the

pixel to the first surface observed—is known.

An example of the utility of depth maps is depicted in Figure 2.11. Given

an RGB image and an associated depth map, the pixels may be back-projected

into space (Equation 2.19 on page 17) to create a sparse reconstruction of the

environment. If a pose source is available (e.g., VO), sequential point clouds may be

accumulated to create moderate-scale sparse reconstructions. Unfortunately, large-

scale reconstructions are not feasible with this approach as the memory requirements

grow linearly with subsequent depth maps. We address this issue and explain how

to create dense 3D reconstructions in Section 2.4 on page 30.

The most straight-forward method to create depth maps is with an active sensor

(e.g., Microsoft Kinect or Asus Xtion Pro). These “RGB-D” (RGB and Depth)

sensors actively project infrared light patterns into the environment and compute the

depth based on perturbations to the light patterns [30]. This results in a high quality

(640×480) depth map, accurate within millimetres for near objects, at a rate of 30 Hz.

However, the range limitations (approximately 5 m) and restricted daytime outdoor

use limit the utility of RGB-D sensors in autonomous-driving applications [31].
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Figure 2.11: RGB-D Point Cloud Example. The RGB image (top) and its associated
depth map image (middle) can be projected out into 3D space by using the camera’s
calibration matrix K . Each pixel in the depth map represents the depth (in metres) of the
surface observed by the camera. In this case, the depth map is metrically accurate since
the known stereo-baseline avoids the scale-invariance of monocular camera depth maps.
The RGB image is from the KITTI dataset [1], while the depth map and projection are
computed by ORI software.

There are a wide variety of techniques are presented in the literature to generate

depth maps from passive monocular or stereo cameras. Traditional methods for

stereo cameras rely upon stereo matching to find corresponding pixels in a set

of images [32][33][34]. Once these correspondences are identified, depth of these

pixels is directly computed via geometric reasoning—the depths for the remaining

pixels, where there were no (or incorrect) correspondences, may be inferred by

regularising with a prior [35].

Monocular approaches traditionally used similar geometric approaches, but more
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Figure 2.12: Feature Matching and Depth Interpolation. LIBELAS relies upon support
points to compute the initial seed estimates for each pixel’s depth. This is achieved
by identifying a set of point features (orange circles in the above figure) in the image,
computing their depth via data association in the stereo image pair, and then interpolating
dense depth estimates throughout the image by interpolating within the Delaunay
triangulation (green lines in the above figure). [42]

than two images are usually required to produce high-quality depth maps because

subsequent images are not rectified (i.e., each row in one image aligns with the same

row in another image) [36][37][38]. However, recent machine-learning techniques

(in particular: convolutional neural networks) demonstrate the ability to produce

accurate, dense depth estimates from a single image [39][40][41].

In the subsequent two sections, we present two widely-used methods for depth-

map estimation—Library for Efficient Large-scale Stereo Matching (LIBELAS) for

stereo (Section 2.3.1) and Dense Tracking and Mapping (DTAM) for monocular

(Section 2.3.2 on page 28). As discussed in the preceding paragraphs, understand

that these are merely two examples to provide intuition into the process, but other

methods may be used based on system computation versus performance trade-offs.

2.3.1 Stereo

Stereo depth map generation is generally more straight-forward than monocular

approaches because there is a known baseline (the distance between the left and

right sensors) and the image are rectified, where each row of pixels in one image

aligns with the same row in the other image.
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Geiger et al. present the robust (and open source) LIBELAS approach to

generate stereo depth maps [42] that we outline in the following steps:

1. Identify support points, S, within the stereo pair (Figure 2.12 on the preceding

page). While data association of features in different images is known to be

challenging, these support points are selected because they are the most unique

and identifiable features in the images (e.g., high texture, high gradient). Only

robust features are selected—i.e., features similarly identified in left-to-right

and right-to-left image correspondences.

2. Connect all support points with Delaunay triangulation [43]. Delaunay

triangles balance the edge lengths so no one edge dominates, which would

inappropriately skew the interpolation towards one vertex.

3. Create a generative probabilistic model that serves as a prior for disparity

estimation,

p(δn, o
(l)
n , o

(r)
n , S) ∝ p(δn |S, o

(l)
n )p(o

(r)
n |o

(l)
n , δn) (2.24)

This formulation assumes the support points (S) and observations (o) are

conditionally independent given the disparity (dn). δn is the disparity of pixel

n, and on is the pixel’s observation vector (·(l), ·(r) denotes left or right image).

p(δn |S, o
(l)
n ) is the image prior built from support points and observations.

p(o
(r)
n |o

(l)
n , δn) is the image likelihood (i.e., consistency between observations

in the left and right image). These are modelled as Gaussian and Laplace

distributions, respectively,

p(δn |S, o
(l)
n ) ∝ γ + exp *,−

(δn − µ(S, o
(l)
n )2

2σ2
+-

p(o
(r)
n |o

(l)
n , δn) ∝ exp

(

−β | |f
(l)
n − f

(r)
n | |1

)

(2.25)

where µ(·, ·) is a mean function and f
(·)
n is the pixel’s feature vector for the left

or right image. Both distributions are constrained to operate in the immediate

region around the current pixel and neighbouring support points.
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4. Solve the energy-maximisation optimisation problem to converge upon a

solution that maximises the likelihood disparity (δ) given the support-point

prior and the feature vector for pixel correspondences between the left and

right images,

argmin
δ

∫

Ψ

−β | |f
(l)
n − f

(r)
n (δ) | |1 − log *,γ + exp *,−

(δn − µ(S, o
(l)
n )2

2σ2
+-+- dΨ (2.26)

where u and v are the x and y coordinates for pixel n and f
(r)
n (δ) is the

feature vector at (u(l) − δ, v (l)). Note, we discuss methods to minimise energy

equations such as this in Chapter 3.

This, as with many dense stereo depth map algorithms, produces a disparity (δ)

per pixel rather than metric depth (d). The disparity is the pixel offset between

features in the two images (i.e., given feature a in the left image appears in column

u, find the feature in the right image at column u − δ). The equation to convert

between depth and disparity is, by similar triangles,

d =
b f x

δ
(2.27)

where f x is the focal length of the camera (Section 2.2.1 on page 15) and δ is

the pixel disparity.

2.3.2 Monocular

Estimating a dense depth map from a monocular camera proves challenging because

the images are not rectified and there is no known baseline. Without image

rectification, rows in subsequent images do not align, thus increasing the difficulty

of feature matching. Without a known baseline or world measurement, monocular

depth maps are scale invariant and (over time) suffer from scale drift. The latter

limitation may be removed or reduced by using a metric pose source—e.g., lidar

[45][46][47][47], VO [48], or Inertial Measurement Unit (IMU) VO [49][18][50][51][52]—

and interpolate the SE(3) pose of each monocular image. We assume a metric pose

source is available to simplify the discussion in this section. Without it, one would

need to bootstrap the system with an initial scale estimate [53].

The following outlines the DTAM algorithm proposed by Newcombe et al. [44],
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Figure 2.13: DTAM Cost Volume Overview. DTAM creates one inverse depth map (and
an associated cost volume) that is continually updated with sequential monocular camera
frame. Each subsequent frame is first warped back to the original frame before being
fused into the cost volume, Cr . In the above example, the inverse depth of a single pixel
ζ contains a row of costs associated with a set of discrete possible inverse depths, each
represented by a cell, Cr (u, ζx ), in the cost volume. The inverse depth map is computed
via argmin

d

C(u, ζ ). [44]

1. On the first frame, construct a frustum cost volume (Cr) in front of the camera

(Figure 2.13). Each cost volume row (Cr (u)) contains the photometric error

(cost) of a given pixel (u) for a discrete set of inverse depths (ζ) in the cell

Cr (u, ζ ). Due to the structure of the cost volume, this approach limits inverse

depth estimates to the range between the first and last cells, [ζmin, ζmax], in

Cr .

2. For each subsequent image Im, each cell of Cr is updated with the photometric

error (ρr) from projecting the first keyframe (Ir) image’s pixels into the new

image at various depths,

ρr (Im, u, ζ ) = Ir (u) − Im(π(KTmrπ
−1(u, ζ ))) (2.28)

3. Compute the inverse depth (ζ) for each pixel u,

argmin
ζ

∫

Ω

(

g(u) | |∇ζ | |ǫ + λC
(

u, ζ (u)
))

du (2.29)
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where g(u) is a function to reduce the stair-step tendencies of the | |∇ζ | |ǫ

(Huber norm) term,

g(u) = exp
(

−α | |∇Ir (u) | |
β

2

)

(2.30)

The first half of the energy minimisation is a regularisation term that seeks

to ensure the smoothness of the output image while allowing for sharp

discontinuities. The latter term (λC(·)) penalises solutions that vary too

far from the cost volume’s observed photometric error. In concert, these two

terms ensure the final depth map is reasonably smooth (i.e., low gradient)

while minimising photometric error.

Unlike the stereo camera approach, monocular cameras require a sequence of

tens to hundreds of images to create a single high-quality depth map. These

depth maps are of “reasonable” quality, but a sole depth map is rarely of sufficient

quality to create a dense 3D reconstruction. In the next section, we outline the

voxel grid data structure that allows us to fuse a sequence of depth maps and

extract a continuous 3D model.

2.4 Voxel Grids

Our aim in this thesis is to efficiently reconstruct urban outdoor or large-scale

environments while continually improving the accuracy of the representation with

subsequent observations. Our data fusion system is built to process depth-map

estimates (camera sensor) and range observations (lidar sensor) within the same

data structure. The representation of the surfaces plays an important role in our

system. An explicit representation of each of the depth/range observations (e.g.,

as a point cloud) is a poor choice as storage grows without bound and the surface

reconstruction does not improve when revisiting a location.

Instead, we prefer an implicit representation of the surface [54]. A common

approach is to select a subset of space in which one will reconstruct surfaces and

divide that subspace into a uniform voxel grid. Each voxel stores depth/range

observations represented by their corresponding Truncated Signed Distance Function
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(TSDF), uT SDF . The TSDF value of each voxel is computed such that the zero-

crossing level set (isosurface) is the continuous 3D surface model. The voxel grid is

a discrete field; however, since the TSDF value stores the precise distance to the

nearest surface, the surface reconstruction is even more precise than the voxel size.

We will first introduce two dominant data structures used in the dense re-

construction community (Section 2.4.1) before reviewing how range data is fused

into the voxel grid (Section 2.4.2 on page 34) and the surface is extracted (Sec-

tion 2.4.3 on page 36).

2.4.1 Data Structures

There are a plethora of 3D reconstruction data structures in the literature, rang-

ing from fixed conventional voxel grids [2], moving voxel grids [55], hierarchical

[56][57][58], hash tables [59], or a combination thereof [60].

For small-scale reconstructions in this thesis (Chapter 3 and Chapter 5) we

use the simple conventional voxel grid. When reconstructing large outdoor scenes

(Chapter 4) we instead select the hash-table method. The following two subsections

discuss these choices in more detail.

2.4.1.1 Conventional

In 2011, Newcombe published a paper that presented the KinectFusion method

of creating dense 3D reconstructions in real time (i.e., at the input sensor’s frame

rate) by fusing data from an RGB-D camera into a conventional voxel grid using a

GPU [2]. The conventional voxel grid divides space into a regular grid of voxels,

as shown in Figure 2.14 on the next page, in which the sensor data is fused as

TSDF values (see Section 2.4.2 on page 34).

Due to GPU memory constraints, only a small subset of space (7 m3 in the

Newcombe’s paper) can be reconstructed using this conventional approach where

the voxel grid is fixed in space [44][2]. This presents a particular problem in mobile-

robotics applications since the exploration region of the robot would be restricted

to a prohibitively small region. In addition, long-range depth/range sensors (e.g.,
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Figure 2.14: Conventional Voxel Grid (2D example). The conventional voxel grid
subdivides a fixed area in space into a uniform grid of voxels. The TSDF values (uTSDF ∈

(−1, 1]) in each voxel are proportional to the average distance of that voxel to the nearest
surface (see Figure 2.16 on page 34). Positive TSDF values indicate the voxel’s centroid is
in front of the surface; negative values are behind the surface. µ represents the threshold
in front and behind the surface around which a linear uTSDF value is stored—this prevents
negative TSDF values from overwriting surfaces behind the observed surface (e.g., in the
red region of the above figure). The surface is extracted by solving for the zero-crossing
level set (isovalue = 0).

laser, stereo-camera-based depth maps) cannot be fully utilised since their range

exceeds the size of the voxel grid (or local voxel grid if a local-mapping approach is

used) [55]. These limitations are acceptable for small-scale, local reconstructions,

but a more sophisticated data structure is required for large-scale reconstructions

with longer-range sensors (Chapter 4, specifically Table 4.1 on page 79).

2.4.1.2 Hashing

In recent years, researchers proposed a variety of techniques to remove spacial

limitations [55][56][58][60]. They leverage the fact that the overwhelming majority

of voxels do not contain any valid TSDF data since they are never directly observed

by the range sensor or they constitute free space (uT SDF = 1). A compressed data

structure only allocates and stores data in voxels that are near a surface.

One of the more prolific compression approaches is Nießner’s HVG [59]. HVG

creates an “infinite” (within numerical limitation) virtual grid that subdivides the
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Figure 2.15: HVG Data Structure Overview. At the lowest level, HVG voxel blocks
are similar to conventional voxel grids (Figure 2.14 on the preceding page)—albeit much
smaller. Conventional voxel grids are typically contain approximately 5123 voxels, while
each HVG voxel block contains only 83 voxels. However, HVG can reconstruct much
larger environments by only reserving memory in the regions immediately surrounding
the reconstructed surface, whereas conventional voxel grids implicitly reserve memory
even in known free space. In the above figure, only seven voxel blocks are reserved in
memory to reconstruct the surface. On the right is the logical layout of GPU memory.
The hash table serves as a LUT (indexed by the hash of the voxel block’s world position)
to find the appropriate voxel block in global memory. For this example, two voxel blocks
remain available for surfaces observed in subsequent sensor scans.

environment with a course and fine level of detail (see Figure 2.15). The course

level contains voxel blocks (small conventional voxel grids composed of 8 × 8 × 8

voxels) while the fine level contains voxels. No memory is used on the GPU until

a surface is observed within that voxel block (±µ).

As part of initialisation, the HVG algorithm reserves a portion of the GPU

memory to store nblocks of voxel blocks. In addition, and as part of the overhead,

a hash table with nhash elements (where nhash ≫ nblocks) enables efficient lookup

and reservation of voxel blocks during run time. The hash function,

ih = H (x, y, z) = (x · p1 + y · p2 + z · p3) mod nh (2.31)

deterministically converts to coordinates in world space (x, y, z) to an index ih
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Figure 2.16: Depth Map Voxel Grid Fusion. A depth map, D, is fused into voxel grids
by projecting each voxel into the nearest-neighbour depth pixel, dx,y. This is achieved by
converting the global-frame voxel centroid, pg, to a camera-frame point via pc = T−1

gc pg
and then applying the camera calibration matrix, K (see Section 2.2.1 on page 15). This
algorithm is well suited for GPGPU implementation. A modern GPU can fuse data into
a 5123 voxel grid at 30 Hz.

within a hash table with nh elements by using three large prime numbers,

p1 = 73856093

p2 = 19349669

p3 = 83492791

(2.32)

selected to minimise hash collisions. The hash table entry at index ih contains

a pointer to the raw voxel block data. A depiction of the relationship between

the reconstruction, hash table, and raw voxel data is provided in Figure 2.15

on the previous page). We refer the reader to the original HVG paper [59] for

further implementation details.

2.4.2 Data Fusion

Unlike conventional voxel grids, HVG requires a two-step data-fusion process because

voxel blocks in which data is fused may not yet be reserved in the hash table. The
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voxel blocks are reserved first by efficiently ray casting (see Section 4.2.1.2 on

page 85) the depth map and reserving memory from the range d ± µ.

Once memory is reserved, the data fusion (Figure 2.16 on the preceding page)

is similar between conventional voxel grids and HVG. If one considers each HVG

voxel block to be a conventional voxel grid, then the update equations are nearly

identical to those presented by [2]. For each voxel, perform the following operations

for every new depth map, D:

1. Calculate the voxel’s global-frame centre pg = [xg, yg, zg]
T with respect to the

camera coordinate frame as pc = T−1
gc pg, where Tgc ∈ SE(3) is the camera-to-

global coordinate frame transformation.

2. Project pc into D to determine the nearest pixel dx,y.

3. If the pixel (x, y) lies within the depth map, evaluate uSDF = dx,y−zc. uSDF > 0

indicates the voxel is between the surface and the camera, uSDF < 0 for voxels

occluded from the camera by the surface, and uSDF = 0 for voxel centroids

that exactly intersect the surface.

4. Update the voxel’s current f (Signed Distance Function (SDF) value) and w

(weight or confidence in f ) at time k,

wk =


wk−1 + ws uSDF ≥ −µ

wk−1 uSDF < −µ

f k =


uSDF+wk−1 fk−1

wk
uSDF ≥ −µ

f k−1 uSDF < −µ

(2.33)

where wk−1 and f k−1 are the previous values of f and w for that voxel, and

ws is the weight (confidence) assigned to the sensor’s depth measurement.

This is well suited for real-time (i.e., at the input sensor’s frame rate) processing

on a GPU (via CUDA or OpenCL) as, once the memory is properly allocated, no

atomic operations are required to fuse a depth map into the voxel grid. Each voxel

is allocated an individual GPU thread that computes the updated f and w values.
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While the SDF is still truncated at −µ behind surfaces, we do not clamp

distance values in front of the surface—each voxel stores the metric distance to the

surface. Therefore, we refer to this as SDF rather than the truncate-and-clamp

TSDF presented in Curless [54]. We elect to use this SDF for f as this allows

us to simultaneously fuse data from different sensors, each with distinct µ values

based on the sensor’s precision, into the same voxel grid. Our SDF µ should be

proportional to the accuracy of the range sensor. For example, µ might be large

for points far away from the stereo camera but be smaller for laser scans or close

stereo observations. Note that µ must always be greater than the voxel width

or else the isosurface cannot be extracted.

2.4.3 Surface Extraction

The reconstruction’s surfaces are implicitly stored in the voxel grid and may be

extracted either via ray casting or by directly computing the isosurface function.

In the ray casting approach, one positions a virtual camera near the voxel grid

and steps along the ray for each pixel until the ray moves from a positive region

of the voxel grid to a negative region [61]. There are two major limitations of this

approach. First, the ray-casted image must be updated with each movement of the

camera. This is very computational inefficient as GPU hardware is optimised for

rasterising images, not ray casting. Second, the “surfaces” are only represented

in image form: the 3D shape is not explicitly represented.

An alternative is to extract the surface model as a series of triangles with the

Marching Cubes algorithm [62][63][64]. This algorithm operates independently on

a per-voxel basis rather than per-pixel. A given voxel is compared to the values

of seven neighbouring voxels to determine if there is an isosurface that intersects

between the vertices. For example, using the notation from Figure 2.17 on the

facing page, if v0 (the voxel of interest) has a positive TSDF value (u0) but its

neighbour’s (v1) TSDF value (u1) is negative, that indicates the surface intersects

the edge e0. The surface intersection point (pi) is computed,

sn = p0 + (i − u0)
p1 − p0

u1 − u0
(2.34)
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Figure 2.17: Marching Cubes Notation Overview. The marching cubes algorithm
extracts the surface from a voxel grid by independently processing each voxel, v0 in the
above example. One byte, bmc, is computed where each bit is 1 if the voxel is less than
the isovalue and 0 otherwise. This value is used in a series of LUTs (see Figure 2.18 on
the next page) to compute how many triangles are contained within the cube (formed
by 8 neighbouring voxel centroids) and interpolate their precise location along the edges.
Anywhere between 0 to 15 triangles may be found in each cube.

where n is the edge number, i is the isovalue (always 0 in this thesis), and p0 and

p1 are the world-space coordinates of v0 and v1. This interpolation is performed for

each edge of the cube (Figure 2.17) that is intersected by the isosurface.

This is where the utility of Marching Cubes’ LUTs (Figure 2.18 on the following

page) becomes apparent.

1. A byte of memory, bmc, is reserved where each bit stores vn < i.

2. EDGE_CASES[bmc] returns the 12-bit number where each bit indicates which

edge (from Figure 2.17) is intersected. This simplifies the process of identifying

edges on which to apply Equation 2.34 on the facing page and thus producing

a list of n known intersection points.

3. NUM_TRIANGLES[bmc] returns the number of triangles contained within the

cube so the appropriate amount of memory may be reserved on the GPU.

4. Finally, TRIANGLE_CASES[bmc] returns the vertex order for the triangles. For

example, if bmc = 3, from Figure 2.18 on the next page we see that there are

two triangles (NUM_TRIANGLES) with vertices (s1, s8, s3) and (s9, s8, s1).
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uint16_t EDGE_CASES[256] = {
  0x000, 0x109, 0x203, 0x30A, 0x406, 0x50F, 0x605, 0x70C,
  // ...
};

uint8_t NUM_TRIANGLES[256] = {
  0,     1,     1,     2,     1,     2,     2,     3,
  // ...
};

#define NUM_TRIANGLES_PER_VOXEL 5
#define X -1
int8_t TRIANGLE_CASES[256][3*NUM_TRIANGLES_PER_VOXEL] = {
  {X,  X,  X,  X,  X,  X,  X,  X,  X,  X,  X,  X,  X,  X,  X },
  {0,  8,  3,  X,  X,  X,  X,  X,  X,  X,  X,  X,  X,  X,  X },
  {0,  1,  9,  X,  X,  X,  X,  X,  X,  X,  X,  X,  X,  X,  X },
  {1,  8,  3,  9,  8,  1,  X,  X,  X,  X,  X,  X,  X,  X,  X },
  {1,  2,  10, X,  X,  X,  X,  X,  X,  X,  X,  X,  X,  X,  X },
  {0,  8,  3,  1,  2,  10, X,  X,  X,  X,  X,  X,  X,  X,  X },
  {9,  2,  10, 0,  2,  9,  X,  X,  X,  X,  X,  X,  X,  X,  X },
  {2,  8,  3,  2,  10, 8,  10, 9,  8,  X,  X,  X,  X,  X,  X },
  // ...
};

Figure 2.18: Marching Cubes LUTs. Once the isovalue byte, bmc is computed (see
Figure 2.17 on the previous page), this value is used in a series of three LUTs. First,
emc = EDGE_CASES[bmc] returns a uint16_t with 12 bits indicating which edges in the
cube are intersected by a triangle and therefore the triangle vertex must be interpolated.
Second, nmc = NUM_TRIANGLES[bmc] returns the number of triangles contained within
that cube. Finally, rmc = TRIANGLE_CASES[bmc] returns the order of cube-edge vertices
(computed in the previous step) for each triangle. As the computation of the triangles in
each cube is independent, this is well suited for GPGPU.

The surface normal can be computed using a process similar to the above,

but linearly interpolate the TSDF gradient (∇uT SDF) rather than the TSDF value

(uT SDF). As each voxel’s computation is independent of the other voxels, this

algorithm may be efficiently implemented on a GPU and the resulting mesh streamed

on demand to other robotics modules.

Once the surface is extracted, we can evaluate the reconstructions accuracy

against ground-truth data.

2.5 Mesh and Point Cloud Metric Evaluation

In subsequent chapters, we provide metric error analysis to evaluate the quality

of reconstructions created by our algorithms. CloudCompare is an open-source

tool designed for this purpose [65]. In particular, we found three specific fea-

tures of CloudCompare indispensable in our analysis: downsampling, registration,
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Figure 2.19: CloudCompare Example: Error Analysis. Given two aligned point clouds
or meshes, CloudCompare can compute the metric error. Each vertex in the evaluation
point cloud is compared to the ground-truth model via a user-selected method (e.g.,
nearest point, linear model of k-nearest point, etc.). CloudCompare outputs summary
histograms, statistics, and visualisations (see above) of the errors.

and error analysis.

Downsampling is required when the point clouds are too large to fit into the

systems memory. The level of detail in these ground-truth files is often unnecessary.

For example, in Chapter 4, a single ground-truth model—created by consolidating all

laser scans from a 3.8 km vehicle trajectory—required 13.79 GiB. The reconstruction

used 10 cm voxels, but many lidar points were less than 1 cm apart. Even further-

apart points could be modelled with a local model function. CloudCompare provides

the functionality to downsample the point clouds into a representative subset.

The reference (ground truth) and compared (evaluation) surface models must

be registered before performing an error analysis. If both models were created with

the same global reference frame, this is not required. However, sometimes a common

reference frame is not feasible because of an unknown relative transformation during

data collection (e.g., Chapter 5). The user aligns point clouds in CloudCompare

by selecting four (or more) matching points in the two reconstructions.

Finally, once segmented, downsampled, and registered, CloudCompare performs

metric point cloud error analysis, the results of which are shown in Figure 2.19.

CloudCompare compares the compared point cloud to a reference point cloud.

The fidelity of this analysis is improved by utilising a local model (e.g., least-squares
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plane) of the surface for each point-to-surface comparison.

The real-world ground truth used in this thesis is exclusively 3D laser point

clouds. Fusing the laser data into a voxel grid and extracting the surface model

would produce a more visually appealing (and dense) ground truth, but the fusion

process implicitly introduces an averaging prior that would bias the error metrics.

Instead, we process raw laser point clouds and downsample them when operating

under memory constraints.

2.6 Conclusions

This chapter introduced the fundamental concepts required to understand the body

of work presented in this thesis. Reference frames and coordinate transformations

(Section 2.1 on page 10) enable us to describe the precise SE(3) position of each

sensor and platform at a given point in time. Sensor models and intrinsic/extrinsic

calibration (Section 2.2 on page 15) ensure we correctly process the raw data received

from cameras and lidar sensors. Depth maps (Section 2.3 on page 24) generated

from monocular or stereo cameras provide real-time data about the 3D structure of

the environment without requiring an expensive (lidar) and limited-range (RGB-D)

active sensor. Voxel grids in concert with depth map data fusion (Section 2.4 on

page 30) enable dense 3D reconstruction for large-scale environments. Finally,

CloudCompare (Section 2.5 on page 38) enables us to evaluate the metric quality

of these reconstructions against ground-truth data.

Building upon the concepts introduced in this chapter, in Chapter 3, we will

present a method to create high-quality dense reconstructions by regularising the

3D surfaces to remove noise from low-quality monocular depth maps. We extend

this in Chapter 4 to large-scale environments with inputs from multiple sensor

modalities. Finally, in Chapter 5, we apply the regularisation techniques from

Chapter 3 to remove ephemeral objects (e.g., automobiles) and interpolate occluded

urban structure—thus further improving the quality of our dense reconstructions.



All models are wrong, but some are useful.

— George E. P. Box, Box & Draper (1988)

3
Dense 3D Reconstruction and

Optimisation

Abstract

Camera-generated depth maps are prone to noise that make it difficult to create

quality reconstructions. This noise is especially prevalent with geometric-based

monocular camera algorithms, to which we restrict our attention in this chapter.

We present the theory to regularise noisy reconstructions for real-world applications.

We consider this from the perspective of a vehicle moving through the environment,

in contrast to the object-centric reconstructions common in the literature.

Our approach limits the regulariser to only operate in regions of the voxel grid

where surface data was directly observed by the camera. Failing to do so results

in the generation of spurious surfaces, a problem not previously addressed in the

dense reconstruction literature.

We successfully demonstrate a Total Variation (TV) regulariser improves reconstruc-

tions in synthetic and real-world datasets. When compared to 3D lidar point clouds,

our regulariser reduces the metric dense reconstruction error by 61% in outdoor

environments and 51% in indoor environments, with final respective median errors

of 14.41 cm and 15.08 cm.

41
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P
assive cameras, in mobile-robotics applications, struggle to create high-

quality depth maps in real-world environments. When fusing a sequence

of depth maps into a voxel grid, the resulting reconstructions are noisy. In this

chapter, we present the theory—using fused monocular-camera-generated depth

maps—to regularise the noisy surfaces and create high-quality dense 3D models

Figure 3.1: An example 3D reconstruction created using the techniques described in
this chapter from an automobile’s forward-facing monocular camera.
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Figure 3.2: Sample RGB-D Camera Depth Map and Point Cloud. Clockwise from
top-left: RGB image, depth map (metres), and projected 3D point cloud. Captured with
an Asus Xtion Pro as part of the Stanford Burghers of Calais dataset [66], this frame is
representative of the high quality depth data captured by RGB-D cameras. Contrast the
quality of this sparse reconstruction with Figure 3.3 on the next page.

(e.g., Figure 3.1) that accurately reproduce the observed environment.

Dense reconstruction research in recent years has primarily focused on processing

a stream of high-quality RGB-D data that, for close objects, can produce stunningly

accurate surface models [2][67][59][68][69]. While each pixel of the RGB-D sensor
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Figure 3.3: Sample Stereo Camera Depth Map and Point Cloud. Clockwise from
top-left: RGB image, depth map (metres), and projected 3D point cloud. Captured with
an Point Grey Bumblebee XB3 stereo camera as part of the Oxford RobotCar dataset
[27], this frame is representative of how passive cameras struggle to reconstruct outdoor
environments. Even when provided a known baseline with registered images, the wet,
reflective road creates significant noise in the 3D point cloud. This is why our system
must regularise in both 2D (as done in the above depth map) and 3D (as documented in
this chapter). Contrast the quality of this sparse reconstruction with Figure 3.2 on the
previous page.
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contains errors, the average of thousands of depth maps taken of a single object

from a variety of angles creates millimetre-level accurate reconstructions.

An example of one such depth map from a Asus Xtion Pro is shown in Figure 3.2

on page 43. Notice that the depth map, when projected into 3D space as a point

cloud, captures the fine details of the statue and ground. When the sensor is moved

slowly and intentionally by the operator, such that all surfaces are fully observed

from multiple directions (and depth maps received at 30 Hz), the reconstructions

from this type of dataset are of very high quality (Figure 4.1 on page 77).

In contrast to RGB-D sensors, depth maps created from passive cameras suffer

from significant noise. Figure 3.3 on the facing page presents a typical depth map

generated by an automobile’s forward-facing stereo camera—the common use case

we seek to optimise throughout this thesis. Notice how the depth map struggles

with the planer surface of the road because of the wet/reflective surface, and the

points on the road closest to the automobile are seen as curving into the ground.

These types of irregularities are even more pronounced in depth maps created from

monocular camera image sequences. However, the depth range of passive sensors

is an order of magnitude larger than RGB-D cameras (50 m vs. 5 m). Range is

the salient feature in mobile-robotics applications since the passive camera’s depth

map provides more time to react to objects in front of the vehicle.

However, an automobile-mounted sensor also is limited in its observation of

the environment. In contrast to typical hand-held RGB-D datasets, the mounted

forward-facing camera may only capture a few frames of any given object from

non-ideal angles, so we must fuse all captured data into a voxel grid and utilise

a 3D regulariser in an attempt to best reconstruct the observed surfaces. The

regulariser serves as a geometric prior on the shape we expect of the environment,

thus penalising noisy data that does not conform.

The critical challenge in regularising reconstructions made from forward-facing

automobile cameras is that only a subset of voxels are directly observed by the

camera. Applying regularisation to the entire voxel grid produces spurious surfaces

(Section 3.4 on page 63). We present a new method—the primary contribution of
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Figure 3.4: An overview of our software pipeline. Our Dense Fusion module accepts data
from monocular camera depth maps. We regularise the 3D model, extract the surface,
and then provide the final 3D model.

this chapter—in Section 3.5 on page 65 (that we call “Ω labelling”) that targets

regularisation to only directly-observed voxels.

Figure 3.4 provides a basic overview of the system presented in this chapter.

First, we process a stream of camera images. The sparse Pose Estimation mod-

ule (implemented via VO in this chapter, whereas Chapter 4 uses a full SLAM

implementation) computes a SE(3) pose for each image while the Depth-Map

Estimation module uses a sequence of images and poses to compute key-frame,

2D-regularised depth maps. Our Dense Fusion module, the primary focus of this

chapter, fuses the sequence of depth maps and performs 3D regularisation directly

on the noisy voxel data. The resulting model is extracted via Marching Cubes,

as described in Section 2.4.3 on page 36 [62].

In Section 3.1 on the next page we present an overview of the fundamentals

of optimisation to provide context for the application-specific selections we make

in Section 3.2 on page 54. Next, in Section 3.3 on page 59, we review the specific

algorithms required to implement our 3D regulariser. However, naïvely applying

this regulariser to a partially-observed voxel grid produces unexpected results

(Section 3.4 on page 63), that we address in Section 3.5 on page 65. Finally, in

Section 3.6 on page 68, we quantitatively analyse the performance of our system

in both indoor and outdoor environments.
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3.1 Optimisation Overview

In this section, we provide a general introduction to optimisation before discussing

our application-specific optimisation selections in Section 3.2 on page 54.

3.1.1 Energy

The goal of optimisation is to minimise a given function subject to certain constraints

[70],

minimise E(u)

subject to gi (u) ≤ bi, i = {1, . . . ,m}
(3.1)

where E(u) is the equation that we wish to minimise and gi (u) is set of functions

on which there are constraints b1,2,...,m.

Most energy-minimisation problems in this thesis are unconstrained (i.e., m = 0)

and will take the form,

E(u) = Eregularisation(u) + Edata (u, f ) (3.2)

where E(u) is the function we seek to minimise, u is the proposed solution, and

f is the set of noisy input data. The two terms, regularisation and data, seek a

denoised solution that meets a desired prior state (regularisation) but does not

vary too far from the original observed data (data).

For example, if one expects the input to be a constant value, then the regulariser

might take the form,

Eregularisation(u) =

∫

Ω

| |∇u| |1dΩ (3.3)

where Ω is the domain of integration (e.g., a set of observed data points). This

specific term penalises sequential large local changes in u. This is essentially a prior

that prevents the final solution from over-fitting the original data.

However, if left unchecked, the regulariser will force the optimiser to find a

trivial solution (e.g., u = 0 for all data). The data term penalises these solutions,
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Figure 3.5: Gradient Descent Example. Gradient descent finds the minimum of a convex
function E(u) by taking small steps (the size of which is dictated by α) along the cost
function. Given the current estimate uk , the energy function is linearised around that
point, an α-sized step is taken towards the minimum, and the process is continually
repeated until the energy reduction falls below a set threshold.

thus forcing the optimiser to select a solution that appropriately conforms to both

the prior (regulariser) and data terms. For example,

Edata (u, f ) =
λ

2

∫

Ω

| | f − u| |22dΩ (3.4)

penalises any solutions that vary from the input data. λ allows a trade off between

solutions that closely match the regulariser’s prior (small λ) vs. solutions that

conform to the original data (large λ).

3.1.2 Gradient Descent

Except for the most trivial of problems, there is no closed-form solution to solve

the energy-minimisation in a single step. However, if E(u) is convex, a properly

configured gradient descent (or ascent, if solving a maximisation problem) approach

will converge on the single maximum or minimum solution. With the exception

of a special data term we discuss in Chapter 5, all energy functions in this thesis

are convex and are solved with a modified version of gradient descent or ascent.

However, non-smooth convex functions (such as the L1 norm used throughout this

thesis) require reformulation before using gradient descent/ascent—see Section 3.1.3

on the facing page for more details.
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As shown in Figure 3.5 on the preceding page, gradient descent works by taking

small “steps” along the energy function, where each step moves closer to the global

minimum. Since we constrain ourselves to convex problems, there are no local

minima (just a single global minimum), and the system will converge upon the

same final solution, no matter the initial value of uk .

Gradient descent is a continual loop executing [70],

uk = uk−1 − α∇E |uk (3.5)

where ∇E |uk is the Jacobian of the energy function and α, a small positive number,

is the step size. If α is sufficiently small, the system is guaranteed to converge upon

the optimal solution for convex energy functions. One may check for convergence

by evaluating [70],

| |∇E(u) | |2 ≤ η (3.6)

where η is a small positive number. If not converged, continue with gradient descent.

Gradient descent provides a simple method to find the optimal solution for

smooth, convex energy minimisation problems.

3.1.3 The Legendre-Fenchel Transformation

The above formulation of gradient descent requires a smooth E(u). However, as we

rely upon the non-smooth L1 norm term in our regularisers (see Section 3.2.1 on

page 54), the energy function must be converted into an alternate form to solve

the optimisation problem—we achieve this via the Legendre-Fenchel (LF) Trans-

formation [70][71][72]. This section presents an introduction to the LF Transform

with the relevant details required to implement an L1 optimiser. Section 3.2.1 on

page 54 provides the application-specific version of our regulariser while Section 3.3

on page 59 outlines the specific equations required to implement the optimiser

within the context of a scene-reconstruction voxel grids.
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Given a continuous but optionally smooth function E(u), the LF Transform

is defined in its scalar and vector form [72],

E∗(p) = argsup
u∈R

{up − E(u)}

E∗(p) = argsup
u∈Rn

{< u, p > − E(u)}
(3.7)

where E∗(p) is the conjugate, and < ·, · > is the inner-product operator. E∗(p) is the

“dual” of E(u) and may be thought of as a parameterised representation of E(u). It

finds the point u on E(u) that maximises the y-intercept of a line that passes through

the point (u, E(u))—geometrically equivalent to computing the tangent line at u [72],

p = E′(u) (3.8)

With respect to the energy functions used in this thesis, the LF Transform

has four salient properties [72]:

1. Points on the function E(u) are transformed into slopes on the function E∗(p),

and vice versa.

2. E∗(u) is always convex.

3. The process is reversible: (u, E(u)) ⇐⇒ (p, E∗(p)).

4. For convex problems, the minimising the primal is equivalent to maximising

its dual; they both converge to the same solution, as shown in Figure 3.6 on

the next page.

This formulation allows us to approach the optimisation problem simultaneously

from two viewpoints: primal (u) and dual (p). The convex, smooth dual formulation

is critical to minimising non-smooth primal energy functions.

In Section 3.2.1 on page 54 we introduce the TV energy term that contains an L1

norm.

E| |·| |1 (u) = | |u | |1 (3.9)

Note, for clarity, the above is presented in standard vector form, but the TV primal

variable is the gradient of a 3D scalar field (∇u). Since this energy equation is not
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Primal (�)
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Figure 3.6: Primal-Dual Saddle Example. A non-differentiable energy function, E(u),
may be minimised by leveraging a LF Transform combined with a Primal-Dual formulation.
Using these techniques, argmin

u∈R

{E(u)} is converted into two separate, smooth optimisation

problems: minimise the primal u and maximise the dual p. This is solved by alternating
between gradient descent (u) and ascent (p) until converging upon the solution. Figure
from [9].

smooth, one option is to approximate a smooth function via the Huber norm (| | · | |ǫ)

by constructing a smooth function composed of two convex functions [44],

| |u | |ǫ =

| |u | |2

2

2ǫ
if | |u | |2 ≤ ǫ

| |u | |1 otherwise
(3.10)

where ǫ is a small number. This approximates the L1 norm by replacing the

non-differentiable portion of E(u) at the u = 0 “kink” with a quadratic function.

Rather than use the Huber norm approximation, in this thesis we elect to use a

more precise optimisation implementation—based on the LF Transform—directly

on the L1 norm. This enables the system to converge in fewer iterations by

alternating between gradient descent (u) and gradient ascent (p)—see Figure 3.6

for a graphical depiction of this process.

After substituting the L1 norm into Equation 3.7 on the facing page, it becomes,

E∗
||·| |1

(p) = argsup
u∈Rn

{< u, p > − ||u | |1} (3.11)

or on a per-element basis,

E∗
||·| |1

(p) = argsup
ui∈R


∑

i

(

(ui pi − ||ui | |1
)

 (3.12)
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Figure 3.7: Total Variation Legendre-Fenchel Transform Overview. As the L1 norm
(left) is not smooth and therefore not differentiable, however a solution is possible if one
divides the equation into three regions: (u < 0), (u > 0), and (u = 0). The first two
(u < 0 and u > 0) regions are smooth and differentiable with respective slopes of p = −1
and p = 1. However, in the border region (u = 0) there are a range of acceptable slope
values, p ∈ [−1, 1]. This dual space, p, is depicted in (right). The LF Transform therefore
transforms E(u) = | |u| |1 → E(u) = argsup

| |p | |∞≤1

< x, p > that can be solved via projected

gradient ascent. Figure inspired by [9].

this can be broken into two components,

E∗
||·| |1

(p) = argsup
ui∈R

*,
∑

i


ui pi − ui if ui ≥ 0

ui pi + ui if ui < 0
+-

= argsup
ui∈R

*,
∑

i


ui (pi − 1) if ui ≥ 0

ui (pi + 1) if ui < 0
+-

(3.13)

Since p, as previously discussed, is equivalent to the slope of u, we provide a simple

one dimensional (1D) example of the L1 norm in Figure 3.7 [73]. The slope (p) is

constant for u < 0 (p = −1) and u > 0 (p = 1), but the L1 norm is non-differentiable

at u = 0. For gradient descent to work properly, we must approximate the slope at

that point. The key insight is that there is not a single valid slope at u = 0, rather

there is a valid range of slopes: pi ∈ [−1, 1]. Any slope outside that range is invalid.

Given the restriction pi ∈ [−1, 1], we can state (pi − 1 ≤ 0) and (pi + 1 ≥ 0)

which means both conditional terms in Equation 3.13 ((ui (pi − 1)) if ui ≥ 0 and

(ui (pi + 1)) if ui < 0) are always less than or equal to zero. Therefore, the supremum

is always at ui = 0 with the restriction pi ∈ [−1, 1]. The original supremum problem
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(Equation 3.11 on page 51) may now be rewritten [72],

E∗
||·| |1

(p) = argmax
| |pi | |1≤1 ∀i

{< u, p > − ||u | |1}

= 0 if | |pi | |1 ≤ 1 ∀i
(3.14)

The utility of the this formulation becomes apparent when used in an energy

minimisation problem,

argmin
u∈Rn

| |u | |1 (3.15)

While one may solve this particular problem by inspection (u = 0), when additional

terms are added (e.g., Section 3.3.1 on page 59), the LF Transform process is

required to apply gradient ascent and descent to find the optimal u. The dual

form of Equation 3.7 on page 50 is,

E(u) = argsup
p∈Rn

{< u, p > − E∗(p)} (3.16)

We therefore substitute Equation 3.9 on page 50 into the minimisation problem

and use this dual form with E∗
||·| |1

(p) to simplify,

argmin
u∈Rn

| |u | |1 = argmin
u∈Rn

(

E| |·| |1 (u)
)

= argmin
u∈Rn

argsup
p∈Rn

{< u, p > − E∗
||u | |1

(p)}

= argmin
u∈Rn

argmax
| |pi | |1≤1 ∀i

{< u, p > − 0}

= argmin
u∈Rn

argmax
| |pi | |1≤1 ∀i

{< u, p >}

(3.17)

This formulation is now solvable by alternating between projected gradient ascent

(p),

pk = ξ (pk−1 + σ∇E |pk
)

ξ (pk−1) =
pk−1

max(1, | |p| |2)

(3.18)

and conventional gradient descent (u),

uk = uk−1 − τ∇E |uk
(3.19)

where σ and τ are the respective gradient ascent and descent step sizes. “Projected”

gradient ascent is identical to gradient ascent, except that the projection operator

ξ (·) enforces the constraint on p.
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The primary take-away is this: by utilising the LF Transform’s Primal-Dual

formulation, we convert the non-smooth minimisation problem into two separate

problems: a minimisation (u) and maximisation (p). A visual depiction of this

process is provided in Figure 3.6 on page 51 and Figure 3.7 on page 52.

3.2 Application-Specific Optimiser

As discussed in Section 3.1.1 on page 47, the optimisation energy functions usually

take the form,

E(u) = Eregularisation(u) + Edata (u, f ) (3.20)

where the regularisation term is a prior—the assumed underlying structure of

the data. The data term seeks to keep the proposed solution (u) similar to the

originally observed values ( f ). A systems designer must select regularisation and

data terms that meet their requirements. Based on our scene-reconstruction goal,

we choose a TV regulariser (Section 3.2.1) and two data terms (Section 3.2.2 on

page 57 and Section 3.2.3 on page 58).

3.2.1 Regulariser Term

The TV regulariser takes the form [74][75],

E(u) =

∫

Ω

| |∇u| |1dΩ + Edata (u, f ) (3.21)

One immediate concern with the L1 norm is that, though it is convex, it is not

smooth so the conventional gradient descent methods cannot be directly used. As

discussed in Section 3.1.3 on page 49, we elect to directly implement this energy

function, rather than attempt to approximate it with the Huber norm. This does not

affect the core contributions of this thesis, however the more precise implementation

eliminates one additional parameter in the system (ǫ) while presenting a modern

variational method implementation.
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Figure 3.8: Simple Total Variation 1D Example. A Total Variation regulariser seeks
to reduce noise by finding a piecewise-constant solution consistent with the noisy input
data. In the above example, the input square wave was subjected to N (0, 0.2). The
TV denoised signal is the solution from minimising the energy in Equation 3.21 on the
facing page with and Edata (u, f ) = | | f − u| |2

2
. Note that TV gracefully handles the sharp

discontinuities in the input signal, a desirable feature as this type of input appears often
in urban environments (e.g., the intersection of pavement and a building’s façade).

The LF Transform [76][77] enables us to transform the TV cost function into a

saddle-point optimisation problem, similar to the problem discussed in Figure 3.6

on page 51. In a similar form to the L1 vector LF Transform solution found in

Equation 3.17 on page 53, the minimisation problem is transformed via,

argmin
u∈R

| |∇u| |1 = argmin
u∈R

argsup
u∈R

{< ∇u, p > − E∗(p)}

= argmin
u∈R

argmax
| |p| |∞≤1

{< ∇u, p >} (3.22)

As discussed in Section 3.1.3 on page 49, this formulation can be solved by alternating

between projected gradient ascent (p) and conventional gradient descent (u). The

full implementation is presented in Section 3.3 on page 59.

Why select TV given this difficulty in implementing the energy minimisation?

TV is robust to outliers and, due to the nature of its piecewise-constant assumption,

gracefully handles sharp discontinuities. These benefits are best seen via the 1D

example in Figure 3.8. Given a noisy square wave as the input, the TV regulariser

successfully captures the underlying signal while preserving the sharp square-wave

transitions. Other regularisers (e.g., L2 norm) have a tendency to produce a

“smearing” effect and thus smooth out rather than preserve discontinuities.
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Iteration 0 Iteration 54 Iteration 56

Iteration 88 Iteration 97 Iteration 105

Iteration 112 Iteration 120 Iteration 156

Figure 3.9: Regulariser’s Gradient Ripple Effect. The gradient operator in the gradient
creates a “ripple” effect throughout the energy minimisation process. In the above
example, the input to the optimiser is a noisy plane with the centre removed. As it
moves through each iteration, the one can visually see the energy minimisation solutions
rippling through the reconstruction until it converges upon the most efficient (and
in this case, correct) solution. Note that the above example also demonstrates the
interpolation effect of naïve 3D regularisation, but Figure 3.11 on page 63 shows the
undesirable extrapolation of the regulariser. This chapter introduces a method to avoid
this spurious interpolation/extrapolation, whereas Chapter 5 leverages the interpolation
to reconstruction hidden objects in urban scenes.

When regularising a noisy 3D reconstruction, as shown in Figure 3.9, the gradient

in the regulariser causes data from neighbouring voxels to propagate. Over the course

of many iterations, one can visually see this wave of energy propagate throughout

the voxel grid before the optimiser converges upon the most likely solution.

Two additional critical concepts are illustrated in Figure 3.9. First, the TV reg-

ulariser nearly perfectly reconstructs the plane even when given partially-occluded,

noisy input. Second, due to the nature of the gradient operator propagating data,

the regulariser interpolated structure where none was originally observed (i.e.,
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in the centre of the plane). We discuss the undesirable implications of this in

Section 3.4 on page 63.

Having selected the regulariser, the last part of the energy function in Equa-

tion 3.20 on page 54 is the data term. We present two options in the following

two subsections, each of which is tailored for different sensors. The SDF data

term Section 3.2.2 is ideal for low-noise sensors (e.g., lidar, RGB-D cameras), while

the histogram data term (Section 3.2.3 on the next page) is more robust in the

presence of noise. We analyse the relative performance of these data terms in

Section 4.3 on page 92.

3.2.2 SDF Data Term

In the method originally proposed by Curless [54] and popularised by Newcombe

[2], data is fused into the voxel grid by storing in each voxel a weighted average

of all depth observations. To produce good results, this method usually requires

the noise to either be small or Gaussian.

The end result of fusion (Equation 2.33 on page 35) are two numbers stored in

each voxel:

1. f — the signed metric distance to the nearest surface

2. w — the number of observations used to compute f

One may also think of f and w as storing the mean ( f ) and information (w, inverse

of variance) to characterise the sampled distribution. As the energy minimisation

seeks to solve for a denoised-version of f , a simple L2 norm data term ensures

the final u is consistent with the observed depths:

E(u) =

∫

Ω

| |∇u| |1dΩ +
λ

2

∫

Ω

| | f − u| |22dΩ (3.23)

However, as only f and w are retained during fusion, this data term may fail to

properly capture the observed probability distribution—thus causing the optimiser

to converge upon the wrong solution.
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Figure 3.10: Visual depiction of the relationship between the TSDF, SDF, and histogram
bins storage methods for voxel distance values. TSDF has traditionally been the favoured
approach, but SDF is useful when fusing multiple sensor modalities so that each sensor
has a different µ based on its precision. The histogram approach is useful to aid the
regulariser by directly storing a PDF (vs. the weighted average stored by SDF/TSDF) of
noisy surface measurements.

3.2.3 Histogram Data Term

In general, the more meaningful information provided to an optimiser, the better

the final results. The SDF data-term method summarised all depth measurements

for a voxel as two numbers: f and w. At the other extreme, one could store the

entire set of N observed SDFs within each voxel [4],

E(u) =

∫

Ω

| |∇u| |1dΩ +
λ

2

∫

Ω

1

N

N
∑

t=1

| | f t − u| |1dΩ (3.24)

The main drawback with this approach is that we cannot just sequentially

update a single f and w when a new depth map arrives. Instead, all previous

uSDF values must be stored in each voxel. This greatly limits the number of depth

maps that can be fused due to memory constraints.

Rather than explicitly storing the entire measurement history or vital statistics, a

more practical approach is to store depth measurements as a histogram representing

the Probability Density Function (PDF) for that voxel [3]. This histogram approach

is desirable since it uses a fixed amount of memory.
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With a histogram representation, each voxel contains an array with nbins

elements where each element, hb, stores the number of depth observations within

the bth histogram bin. The fusion process described in the previous section is thus

augmented by linearly scale-and-clamp f in the interval [−1, 1). The relationship

between SDF, TSDF, and histogram bins are graphically depicted in Figure 3.10

on the facing page.

The energy minimisation becomes,

E(u) =

∫

Ω

| |∇u| |1dΩ +
λ

2

∫

Ω

nbins
∑

b=1

hb | |cb − u| |1dΩ (3.25)

where the centre of the bins are computed as,

cb =
2b

nbins

− 1 (3.26)

This method has been demonstrated in [3] on small-scale, object-centred envi-

ronments where the final reconstruction was within a millimetre of the ground-truth

laser scan with 99% completeness.

3.3 Implementation

In this section, we describe the specific algorithm to solve Equations 3.23 on page 57

and Equation 3.25. With the most relevant fundamentals of gradient descent and

the LF Transformation discussed in Section 3.1.2 on page 48 and Section 3.1.3 on

page 49, we point the reader to [78][77][76][72] for a more formal derivation of these

steps. We primarily vary from their methods in our new definition for the gradient

and divergence operators, as described in Section 3.5 on page 65.

3.3.1 SDF Optimisation Implementation

Equation 3.23 on page 57 is not smooth so it cannot be minimized with traditional

techniques. As discussed in Section 3.2 on page 54, we convert the TV term to

a differentiable form via the LF Transform [76][77] to transform our TV cost-

function term into:
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argmin
u∈R

| |∇u| |1 = argmin
u∈R

argsup
u∈R

{∫

Ω

< ∇u, p > − E∗(p)dΩ

}

= argmin
u∈R

argmax
| |p| |∞≤1

{∫

Ω

< ∇u, p > dΩ

}

= argmin
u∈R

argmax
| |p| |∞≤1

{∫

Ω

u∇ · p dΩ

}

(3.27)

where the primal scalar u is the current denoised and interpolated SDF solution and

∇ · p is the divergence of the dual vector field, ∇ · p = ∇px +∇py +∇pz. Substituted

into Equation 3.23 on page 57, it becomes a saddle-point problem to maximise the

new dual variable p while minimizing the original primal variable u,

argmin
u

argmax
| |p| |∞≤1

∫

Ω

u∇ · p + λ

∫

Ω

| | f − u| |22 dΩ (3.28)

Equation 3.28 can be efficiently solved via a Primal-Dual (Section 3.1.3 on

page 49) optimization algorithm [77], as discussed in Section 3.1.3 on page 49. A

more formal derivation of the below TV implementation may be found in [72][79],

however we summarise the steps required as follows:

1. p, u, and û are initialised to 0. û is a temporary variable that reduces the

number of optimization iterations required to converge.

2. To solve the maximisation, update the dual variable p,

pk =
p̃

max(1, | |p̃| |2)

p̃ = pk−1 + σp∇û

(3.29)

where σp is the dual variable’s projected gradient ascent step size and the

denominator of pk enforces | |p| |∞ ∈ [−1, 1] (see Figure 3.7 on page 52).

3. Then update u to minimize the primal variable,

uk =
ũ + τλw f

1 + τλw

ũ = uk−1 − τ∇ · p

(3.30)
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where τ is the gradient descent step size and w is the weight of the f SDF

value.

4. Finally, the energy converges in fewer iterations with a “relaxation” step,

û = u + θ(u − û) (3.31)

where θ is a parameter to adjust the relaxation step size.

Repeat steps 2 - 4 until the energy of the system converges.

3.3.2 Histogram Optimisation Implementation

The implementation to minimise the histogram-based approach closely mirrors

the implementation described Section 3.3.1 on page 59. The only difference is the

primal update (Equation 3.30 on the facing page) becomes [80],

uk = median(c1, ..., cnbins, b0, ..., bnbins )

ũ = uk − τ∇ · p

bi = ũ + τλWi

Wi = −

i
∑

j=1

h j +

nbins
∑

j=i+1

h j

i ∈ [0, nbins]

(3.32)

where, uk is the primal solution at the kth optimisation iteration, and Wi and bi are

the optimal weight and gradient-ascent solution for the ith histogram bin.

For both the SDF and histogram optimisation implementations, the operations

in each voxel are independent. Therefore, our implementations leverage massively-

parallel GPU processing with careful synchronisation between subsequent primal

and dual variable updates.

3.3.3 Data Structures

As a summary of the key data tracked during the data fusion and 3D regularisation

stages our pipeline, we define the follow three voxel datatypes:
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Listing 3.1: Voxel Data Structures

struct VoxelSdf {
f loat sd f ;
uint8_t weight ;
uint8_t co l ou r [ 3 ] ;
bool is_omega ;

} ;

struct VoxelHistogram {
uint8_t histogram [N_BINS ] ;
uint8_t co l ou r [ 3 ] ;
bool is_omega ;

} ;

struct Voxe lTota lVar iat ion {
f loat u ; // primal
f loat p [ 3 ] ; // dua l
f loat u_relax ; // r e l a x a t i o n s t ep

} ;

There are a few observations and forward pointers about these data structures

that are valuable here, but they will be addressed in more detail in later sections.

First, sensor data (stereo-camera-based depth maps or laser) is continually fused

into either VoxelSdf or VoxelHistogram voxel grid. In practice, we found the laser

data works best with VoxelSdf and the camera-based depth maps work well (in the

tested scenarios) with either VoxelSdf or VoxelHistogram. Section 4.3 on page 92

provides a more detailed analysis on why this is the case.

Second, depth-map fusion colour is read directly from the RGB reference image.

When fusing lidar scans, the colour is the grayscale reflectance intensity value. If

both lidar and depth images are fused into the same voxel grid, colour data always

takes priority over grayscale data as to make the final model visually appealing

(i.e., surfaces viewed by the camera are coloured correctly while surfaces viewed

only by the laser are grayscale). Again, Section 4.3 on page 92 provides a variety

of examples showing reconstructions using these techniques.

Third, the is_omega indicator variable in the above data structures is discussed

in Section 3.4 on the next page. This variable is used to restrict our regulariser

to regions in which surfaces were directly observed by the camera.
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(a) Noisy Input Plane (b) Naïve Regularised Plane

Figure 3.11: Regulariser Surface Extrapolation Problem. The input reconstruction
consists solely of a noisy plane around which there is a border of unobserved voxels in the
voxel grid. The naïve regulariser (poorly) attempts to extrapolate surface data in these
unobserved regions, resulting in a bowl-shaped solution. In real-world experiments, we
found the extrapolated surfaces permeated the final solution where eventually non-existent
ceilings and walls were added around roads in outdoor scenarios.

Finally, once all data is fused, the energy minimisation data is stored in a voxel

grid of type VoxelTotalVariation. The final surface may be extracted directly from

the VoxelTotalVariation voxel grid via Marching Cubes [62] or Ray Casting [81] to

solve for the zero-crossing level set of u. See Section 2.4.3 on page 36 for more details.

3.4 A Problem: Surface Extrapolation

Unfortunately, naïvely implementing the TV regularisation steps outlined in the

previous section does not work as expected. We illustrate this via the simple

synthetic example in Figure 3.11. A single, noisy depth map is fused into a voxel grid,

however the depth map utilises only a subset of the available voxels (i.e., the plane

is smaller than the voxel grid’s dimensions). Instead of creating a denoised plane as

expected, the optimiser converges upon a bowl-shaped surface. Why does this occur?

To understand the mechanics of this phenomenon, let us examine the even

simpler 2D regularisation problem in Figure 3.12 on the following page. Given an

input image, we occlude it in two different ways: a small interior section and then

larger exterior sections. We then apply a regulariser to both of these occluded

images. The regulariser sensibly interpolates the interior occluded region, however

it struggles to extrapolate pixels in the exterior regions. It is the gradient operator

of the regulariser that propagates data into these unobserved regions.
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Interpolation Extrapolation

Partially Occluded

Regularised Result

Figure 3.12: 2D Interpolation vs. Extrapolation. The above illustrates why a 3D
regulariser produces unexpected results when processing noisy voxel grid data. The
original image above represents the ground truth that is only partially observed in
two instances. When the interior portion of the image is unobserved, the regulariser
interpolates reasonable results based on surrounding neighbourhood data. However,
when larger regions are unobserved and not wholly surrounded by valid image data, the
regulariser performs poorly since it must extrapolate. A similar effect is found in our 3D
voxel grid when we attempt to regularise after the depth sensor only directly observes a
subset of the voxels.

This extrapolation is exactly what was happening in the 3D example in Figure 3.11

on the previous page. Since the plane occupied only a subset of the interior

voxels, the regulariser—that operates over the entire voxel grid—effectively seeks

to extrapolate surface data in the border regions. Therefore, spurious surfaces are

generated in areas of the voxel grid in which no depth data is fused (i.e., regions

that were not observed by the camera).

A more representative example is illustrated in Figure 3.13. 3D regularisation

of dense reconstructions traditionally operates under the assumption that a voxel

grid is fully observed by the sensor. This usually takes the form of the researcher
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Ω

(a) Object-Centreed Fusion

Ω"

Ω�$
�%

(b) Mobile-Robot-Centreed Fusion

Figure 3.13: Conventional voxel-grid-based reconstructions focus on object-centred
applications where the objects are fully observed multiple times from various angles. Even
though the internal portion of the object has not been observed, previous regularisation
techniques do not make a distinction between Ω (observed regions) and Ω̄ (unobserved
regions). However, in mobile-robotics applications the world environment is traversed and
observed during exploration, inevitably resulting in never-observed voxels. For example,
at camera capture tx, it is unknown what exists in the camera’s upper field of view. Not
accounting for Ω̄ in regularisation results in incorrect surface generation.

manually selecting the position of the voxel grid such that it perfectly encloses

the object they seek to reconstruct. However, in mobile-robotics applications, we

neither know our path nor the locations of observed surfaces prior to data collection.

Voxel grids therefore will only contain a subset of voxels that are directly observed.

We must restrict the regulariser to operate solely upon these observed voxels to

prevent the regulariser from creating spurious surfaces.

3.5 The Solution: Boundary Conditions (Ω La-

bels)

Since we are moving at an a priori-unknown trajectory through the world, we

only observe surfaces in a subset of all allocated voxels. In this section we present

a new technique to prevent the unobserved voxels from negatively affecting the

regularisation results of the observed voxels — i.e., to ensure the regulariser does not

extrapolate into unobserved regions. To achieve this, as illustrated in Figure 3.13,

we define the complete voxel grid domain as Λ and use Ω to represent the subset
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Figure 3.14: A graphical depiction of how the Ω label is utilised in a two-dimensional
‘voxel’ grid. The TSDF values represent the zero-crossing surface (black line). All voxels
with valid TSDF values are part in Ω (blue voxels), and all remaining voxels are in Ω̄
(red voxels). These TSDF values f ∈ [−1, 1] are a linear mapping from the signed distance
a surface is from a given voxel centroid. There is no f value when the signed distance
is less than −µ, however when the signed distance is greater than µ (i.e., observed free
space in front of a surface) all those voxels are updated with f = 1.

of voxels that have been directly observed and therefore will be regularised. The

remaining subset, Ω̄, represents voxels that have never been observed. By definition,

Ω and Ω̄ form a partition of Λ and therefore Λ = Ω ∪ Ω̄ and Ω ∩ Ω̄ = ∅.

To the authors’ knowledge, all prior works rely on a fully-observed conventional

voxel grid before regularisation and they implicitly assume that Λ = Ω — i.e., every

voxel in the voxel grid is directly observed by the sensor. This assumption is not valid

in non-object-centric reconstruction applications. The collection platform’s motion

results in unobserved regions caused by object occlusion, field-of-view limitations,

and trajectory decisions. Therefore, Ω ⊂ Λ as Figure 3.13 on the previous page

illustrates. In practice, as discussed in Section 3.4 on page 63, we found failure to

account for the Ω-Ω̄ boundaries causes the regulariser to spuriously extrapolate

surfaces into undesired regions of the reconstruction.

Our approach introduces a new state variable, 1Ω : Λ → {0, 1}, in each voxel

indicating whether or not it was directly observed by a range sensor. Ω is therefore

the set solely upon which the regulariser is constrained to operate, thus avoiding

spurious surface generation in non-valid voxels (Ω̄). A graphical depiction of
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how we augmented the voxel grid data structure with Ω and Ω̄ is provided in

Figure 3.14 on the preceding page.

With the Ω label annotation in the voxel grid, we define the gradient term of

the regulariser to enforce the observed-unobserved boundary conditions,

∇xui, j,k =



ui+1, j,k − ui, j,k if 1 ≤ i < Vx

0 if i = Vx

0 if ui, j,k ∈ Ω̄

0 if ui+1, j,k ∈ Ω̄

(3.33)

where ui, j,k is a voxel’s SDF value at the 3D world integer coordinates (i, j, k), and

Vx is the number of voxels in the x dimension. The gradient term in the regulariser

encourages smoothness across neighbouring voxels. This explains why this new

gradient definition excludes Ω̄ voxels — they have not been observed.

To solve the Primal-Dual optimisation, we must also define the corresponding

divergence operator:

(∇ · pi, j,k )x
=



px
i, j,k
− px

i−1, j,k
if 1 < i < Vx

px
i, j,k

if i = 1

−px
i−1, j,k

if i = Vx

0 if ui, j,k ∈ Ω̄

px
i, j,k

if ui−1, j,k ∈ Ω̄

−px
i−1, j,k

if ui+1, j,k ∈ Ω̄

(3.34)

The regulariser operates only on the voxels within Ω, the domain of integration,

and thus it neither spreads spurious surfaces into unobserved regions nor updates

valid voxels with invalid SDF data.

Both equations are presented for the x-dimension, but the y and z-dimension

equations can be obtained by variable substitution between i, j, and k. In this

section we assumed the Ω label is a binary indicator with w (Section 2.4.2 on

page 34) used to weight the confidence in the data term, however future work may

expand upon this to vary the regulariser with a more sophisticated function—for

example, a linear scale-and-threshold based on the number of observations.
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(a) Noisy Input Plane (b) Omega-Domain Regularised
Plane

Figure 3.15: Surface Extrapolation Fixed Via Ω Labels. After applying Ω labels to
account for the observed-unobserved boundaries in the voxel grid, the TV optimiser
converges upon a more reasonable solution. Contrast this solution with the naïve
regulariser’s bowl-shaped solution in Figure 3.11 on page 63.

After using these new gradient and divergence definitions for the implementation

from Section 3.3 on page 59, we again applied the regulariser to the original noisy-

plane example. As shown in Figure 3.15, the Ω-labelling regulariser correctly

smooths out the noisy surface and produces a flat plane. Having passed this simple

test, we next evaluate Ω labelling on more rigorous datasets to ensure it improves

large-scale, real-world reconstructions.

3.6 Results

In the previous section the Ω labelling concept was introduced and validated on a

simple synthetic reconstruction (Figure 3.15). This section further validates the

performance Ω labelling via a qualitative analysis on the public ICL-NUIM RGBD

benchmark dataset [82] and a quantitative analysis with a real-world data collection

from the University of Oxford’s RobotCar platform [27]. All experiments were

completed utilising an NVIDIA GeForce GTX TITAN (6 GB) GPU.

Our analysis compares two approaches to generating dense reconstructions.

First, we fuse (Section 2.4.2 on page 34) the sequence of depth maps into a

conventional voxel grid. Since depth maps from monocular cameras are subject to

significant noise, we use the histogram (nbins = 5) data term to store the PDF of

TSDF values observed in each voxel. We refer to the resulting noisy model as the
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(a) Curless Fused Reconstruction (b) Regularised Result

Figure 3.16: Comparison of the effect regularisation has on surface normals between a
‘raw’ Curless (a) and regularised (b) reconstruction of a synthetic environment [82]. The
Phong-shading illustrates the Omega-domain-enabled TV regulariser smooths out the
surface normals without inadvertently, spurious surface creation. The input depth maps
are corrupted with σn = 10 cm Guassian noise.

‘Curless‘ reconstruction, after the author who first proposed the TSDF data-fusion

function [54]. Second, for the Building Optimal Regularised Reconstructions with

GPUs (BOR2G) reconstruction model, we apply our TV regulariser to the voxel grid

to smooth out the noisy surfaces by enforcing our piecewise-constant assumption.

We find that Ω labelling enables the TV regulariser to reduce surface-normal noise

while improving the metric quality of the reconstruction.

3.6.1 Imperial College ICL-NUIM Dataset

The ICL-NUIM dataset was released in 2014 to provide a benchmark to evaluate

the performance of RGB-D systems with high-quality indoor ray-traced, synthetic

sequences. Ground-truth camera trajectories, depth maps, and environment models

are provided to enable evaluation. We use the “Living Room ‘lr ktw”’ sequence

that consists of 882 images, captured at 30 Hz with a resolution of 640 × 480. Large

sections of the floor and ceiling are unobserved throughout the camera trajectory,

so this is an ideal dataset to evaluate whether or not the Ω labelling concept works

correctly—i.e., no unobserved surfaces are interpolated or extrapolated.
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To perform a more robust qualitative evaluation than that provided in Fig-

ure 3.15, we add noise (N (0, 0.1)) to the depth maps before fusing them into

the voxel grid and then regularising.

As shown via the Phong shading of the resulting reconstructions in Figure 3.16

on the previous page, the ‘raw’ Curless (i.e., averaging observed TSDF values in

each voxel) produces noisy surface normals in the reconstruction. After applying

the TV regulariser, the surface normals align to the proper underlying observed

3D structure. Also note, by comparing figures (a) to (b), the Ω labelling worked

as intended since no surfaces are extrapolated or interpolated.

3.6.2 Oxford Datasets

The University of Oxford RobotCar dataset consists of approximately 1,000 km

of GPS/INS, monocular camera, stereo camera, and laser data captured over the

course of a year in an urban environment [27]. We utilised the vehicle to capture

data in Woodstock, UK. A similar set of sensors (excluding the GPS/INS sensor)

were mounted to an smaller mobile-robotics platform to capture an indoor dataset

in the University of Oxford’s Acland building.

We captured a sequences of images at 20 Hz with 1280 × 960 (Woodstock)

and 1032 × 776 (Acland) resolution via a forward-facing monocular camera. To

prevent scale drift, improve metric accuracy, and help isolate this analysis to the

performance of the fusion/regularisation modules, camera poses were computed

by VO on a stereo camera.

Table 3.1: Timing Results of BOR2G regularisation on an NVIDIA GeForce GTX
TITAN graphics card with 5123 voxel grids. For the configuration parameters, only the
volume’s dimension changed, but the number of voxels (and hence memory requirements)
remained consistent between experiments.

Experiment Volume Dim (m) Iterations Reg. time (s) Memory size (MB)

Woodstock 6 × 25 × 10 100 11.09 640 MB
Acland 4 × 6 × 30 100 11.24 640 MB
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Table 3.2: Error analysis comparing Curless and BOR2G methods. The BOR2G error
is less than half that of Curless.

Experiment Median Error (cm) Standard Deviation (cm)

Woodstock (Curless) 37.30 57.08
Woodstock (BOR2G) 14.41 36.36
Acland (Curless) 31.02 57.08
Acland (BOR2G) 15.08 35.37

Ground-truth data was computed by composing the push-broom SICK-LMS

151 laser scans into a coherent 3D point cloud. Example ground-truth point clouds

are shown in Figures 3.17 on the following page and 3.18 on page 73.

Pose estimation was processed in real time (20 Hz), depth-map estimates (1 Hz)

and data fusion (5 Hz) were at interactive rates, while the regularisation could only

be achieved via an off-line process since it required approximately 11 minutes to

converge in each scenario (see Table 3.1 on the facing page). This is to be expected

since the optimiser must, over the course of approximately 100 iterations, converge

upon the minimal energy for 134,217,728 voxels (5123). This requires significant

amount of computing and memory resources, all of which are dedicated to solving

the energy minimisation algorithm outlined in Section 3.3 on page 59.

Table 3.2 summarises the metric error comparison between the Curless and our

BOR2G methods. Figure 3.17 on the next page and Figure 3.18 on page 73 provide

a visual overview of the error distributions in the resulting reconstruction while

Figure 3.19 on page 74 shows the final, coloured dense reconstructions.

These results were favourable: when comparing the Curless method to BOR2G,

our TV regulariser reduced the median metric error by 61% (from 37.30 cm to

14.41 cm) in the outdoor Woodstock dataset and 51% (from 31.02 cm to 15.08 cm)

in the indoor Acland dataset. These are small but precise reconstructions; in

Chapter 4 we will address scale.
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(a) Woodstock Data Set: Comparison of Point Clouds. The Curless implementation (left) produced
a large range of spurious data points when compared to our BOR2G method (right). The white
vertices are truth data and the colour vertices correspond to the histogram bins in (b).
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(b) Woodstock Data Set: Histograms of per-vertex-error when compared to laser-generated point
clouds. The Curless (left) has a median error of 37.3 cm (σ = 57.1 cm) while our BOR2G (right)
method has a median error of 14.4 cm (σ = 3.64 cm). Note that the BOR2G method requires fewer
vertices to represent the same scene.

Figure 3.17: Woodstock Dataset: Comparison of the Curless (left) and BOR2G (right)
dense reconstruction techniques. The Curless has a larger number spurious outlier
segments and requires more than twice the number vertices to represent the structure
due to its irregular surfaces. The BOR2G method’s median error is approximately half
that of the Curless method.

3.7 Conclusions

In this chapter we presented the theory and system required to regularise noisy

depth data from real-world environments. The key challenge to overcome was that

a naïve 3D regulariser operates on all voxels, whereas mobile-robotics collections

result in a voxel grid containing only a subset of voxels with directly observed

surface data. Ignoring this fact results in the generation of spurious surfaces.
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(a) Acland Data Set: Comparison of Point Clouds. The BOR2G (right) method again outperformed
the Curless implementation (left). The white vertices are truth data and the colour vertices correspond
to the histogram bins in (b).
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(b) Acland Data Set: Histograms of per-vertex-error when compared to laser-generated point clouds.
The Curless (left) has a median error of 31.0 cm (σ = 57.1 cm) while our BOR2G (right) method
had a median error of 15.1 cm (σ = 35.4 cm). Note that the BOR2G method requires fewer vertices
to represent the same scene.

Figure 3.18: Acland Data Set: Comparison of the Curless (left) and BOR2G (right)
dense reconstruction techniques. Note that the laser truth data was only measured depth
data for the lower-half of the hallway. This results in the spurious errors for the upper-half
where our depth maps produced estimates but for which there was no truth data. These
errors dominate the right tail of the histograms in (b). As with the Woodstock data set,
the BOR2G method’s median and standard deviation are approximately half that of the
Curless method.

By introducing the new Ω labelling concept and restricting our regularisation

to operate only upon voxels with valid SDF data, we successfully demonstrated

a TV regulariser reduces the noise in both synthetic and real-world datasets. In

the synthetic datasets, the regulariser noticeably smoothed out all surfaces and

aligned the surface normals. In the real-world datasets, the regulariser reduced

the metric error (when compared to the raw, noisy, fused reconstruction) by 61%
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(a) Acland Reconstruction (b) Woodstock Reconstruction

Figure 3.19: The final dense 3D reconstructions of the experiments using BOR2G with
the Acland building (a) and Woodstock, UK (b). In addition to the lack of spurious
surfaces, note the high level of detail achieved with the forward-facing monocular camera
in both indoor and outdoor environments.

in outdoor environments and 51% in indoor environments, with final respective

median errors of 14.41 cm and 15.08 cm.

In the next chapter, we expand upon the Ω-labelling concept to build a complete

dense reconstruction system that operates in large-scale, autonomous-driving

environment with multiple sensor-modality inputs.



The foremost cartographers of the land have prepared
this for you; it’s a map of the area that you’ll be
traversing. [The map is blank.] They’ll be very
grateful if you could just fill it in as you go along.

— Blackadder, Potato (Blackadder II)

4
Large-Scale, Multi-Sensor Reconstructions

Abstract

We extend the methodology of Chapter 3 to utilise a compressed 3D data structure

that enables large-scale scene capture. Our BOR2G system fuses data from multiple

sensor modalities (stereo cameras, lidars, or both) and regularises the resulting 3D

model. Because of the paucity of surface observations by the camera and lidar

sensors, we again regularise both the 2D (camera depth maps) and 3D (voxel grid)

to provide a local contextual prior for the reconstruction.

We evaluate our system using the Stanford Burghers of Calais, Oxford Broad

Street (released with this thesis), and the KITTI datasets. We provide metric-error

statistics by comparing our surface models to 3D lidar scans.

Our regulariser reduces the median error between 27% to 36% in 7.3 km of dense

reconstructions with a median accuracy between 4 cm to 8 cm. Qualitatively, fusing

both stereo-camera-based depth images with lidar data produces reconstructions

that are both higher quality and more comprehensive than either sensor achieves

independently.

75
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T
his chapter is about the efficient generation of dense, coloured models of very-

large-scale environments from stereo cameras, laser data, or a combination

thereof. These models are used for a myriad of autonomous-driving applications–

including visualisation, localisation, planning, segmentation, and distraction sup-

pression. However, the computational and memory requirements of dense 3D models

have limited their use in real-world, large-scale environments.

Dense 3D reconstruction research has significantly increased over the past

half decade because of improvements in computer hardware and mathematical

theory. Modern commodity GPUs support massive parallel processing that was only

previously available in super-computer environments. When a problem is framed cor-

rectly, this GPGPU programming realises multiple orders of magnitude performance

improvements over a pure Central Processing Unit (CPU) implementation.

Early reconstruction work focused on processing a set of unstructured images of a

3D environment [83][84][85] while leveraging traditional Structure from Motion (SfM)

techniques. However, as mathematical models improved [77][86], more sophisticated

optimisation and regularisation techniques became feasible to process the notoriously

noisy input 2D depth maps and resulting 3D reconstructions. Unfortunately, many

recent techniques focused primarily on mobile and tablet products [87][88][89][90][87]

and do not scale for our large-scale mobile-robotics applications.
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(a) Stanford Burghers of Calais: 155.97 Depth Images/m2

(b) KITTI-VO 00: 0.049 Stereo Images/m2

Figure 4.1: RGB-D vs KITTI reconstruction detail comparison. Both reconstructions
were created with the BOR2G pipeline, but the Stanford [66] reconstruction has over 3,100
times (Table 4.3 on page 92) more depth observations per square metre than the KITTI
reconstruction. In addition, each the RGB-D depth maps are more than an order of
magnitude more accurate than the stereo-camera-generated depth estimates. This chapter
is focused on creating high quality reconstructions that gracefully handle KITTI-level low
observation densities over kilometres of observations, but also works on the conventional
RGB-D use cases. In addition, our method accepts sensor input from RGB-D, stereo
images, lidar, or a combination thereof. When compared to the model provided by [66],
the above BOR2G Burghers reconstruction has a median point-to-surface difference of
0.5 cm. Section 4.3 on page 92 provides a more detailed quantitative analysis of our
reconstruction precision.
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Some researchers have worked with data and sensors more applicable for

autonomous vehicles. Most notable, in 2010 Google released an academic article

detailing their “Street View” application that utilises laser and camera data to

create dense 3D reconstructions of cities across the world [91]. However, their

algorithms over-emphasize the laser data and assume all depth maps only contain

piecewise planar objects. In 2014, Xiao and Furukawa proposed a system to model

large-scale indoor environments with laser and image inputs, but their modified

Manhattan-world assumption restricted reconstructions from modelling anything

other than vertical and horizontal planes [92]. Bok et al. built upon the prior state

of the art to create large-scale 3D maps using camera and lasers [93]. Their final

reconstructions were sparse and only utilised the cameras for odometry and loop

closure, not as an additional depth sensor to improve the dense reconstructions.

In 2012, Stewart demonstrated a system with capabilities similar to those

provided by Xiao and Furukawa’s system [94][95][25]. We extensively used Stewart’s

city-scale, sparse 3D models as ground-truth data to evaluate the performance

of the algorithms detailed in this thesis.

In Chapter 3, we introduced the Ω labelling concept that allows one to target opti-

misation and regularisation to a focused subset of 3D space. We extend that concept

in this chapter to build a dense mapping system, targeted to large-scale autonomy

and scene understanding applications, that meets the following requirements:

R1: Operate in multiple-kilometres-scale environments

R2: No range limitations for input sensor observations

R3: Cope with a paucity of surface observations

R4: Fuse data from multiple sensor modalities

A survey of the literature found no systems currently exist that meet these require-

ments.

Four seminal systems (Table 4.1 on the facing page) in this area are DTAM

by Newcombe et al. [44]; Kinect Fusion by Newcombe et al. [2]; Kintinuous by

Whelan et al. [55]; and Voxel Hashing by Nießner et al. [59].
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Before RGB-D cameras were widely available, DTAM presented a method to

produce high-quality depth maps with a monocular camera. A cost volume is

constructed in front of the camera’s focal plane and continually updated with 2D-

regularised depth estimates from sequential image frames. The final reconstructions

provide fine details, but this system limits the range of the monocular camera

to near-field reconstructions.

In 2010, the first commodity RGB-D camera was released. RGB-D cameras

provide a centimetre-level-accurate depth measurement for each pixel in the image

— 640×480 resolution at 30 Hz in this first device. Newcombe et al. extended their

work via the Kinect Fusion system to take advantage of this stream of high-frequency

and high-quality depth maps. Leveraging the TSDF [54], depth observations are

stored in a voxel grid where each voxel contains a positive number when in front

of a surface and a negative number behind the surface. Solving for the zero-value

level set results in a dense model of the original surface. Thus, Kinect Fusion could

generate unprecedented-quality dense 3D reconstructions in real time (i.e., at the

input sensor’s frame rate) for workspaces approximately 7 m3 in size.

In contrast to Kinect Fusion where the voxel grid is fixed to one location in space,

Kintinuous sought to extend the size of reconstruction scenes by allowing the voxel

grid to move with the camera. A continual stream of previously-observed regions are

streamed to disk as a mesh, but can be reloaded back into the GPU if that region

is observed again. This system infinitely (within numerical constraints) extended

the reconstruction workspace size. However, it cannot leverage sensor observations

∗2D Regularisation
†2D and 3D Regularisation

Table 4.1: System Capabilities Comparison

Technique R1: Env. R2: Range R3: Data R4: Sensors

DTAM∗ 1 m2 1 m 100+ img/m2 Mono
Kinect Fusion 7 m2 2 m RGB-D

Kintinuous ∞ 3 m RGB-D
Voxel Hashing ∞ 4 m RGB-D

BOR2G† ∞ 50 m 0.05 img/m2 Mono, Stereo or Lidar
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further than 3 m from the RGB-D camera because it is still fundamentally based

upon a conventional fixed-size voxel grid.

Nießner’s HVG also extended the size of reconstructions but did so by only

allocating voxels in regions where surfaces were observed. This removed memory

wasted storing free space. When combined with streaming of data to/from the GPU

and hard disk when surfaces are “far” away from the sensor, there is essentially

no limit on the size of reconstructions. This implementation restricts the sensor

range to 4 metres as that is near the maximum effective range of the Kinect camera,

however the range can be trivially extended.

All the above techniques focused on object-centred reconstructions. In other

words, the operator selected a small scene to reconstruct (e.g., desk, courtyard, etc.)

and a single sensor was moved through the environment in a way that observed

all surfaces multiple times from a variety of angles. This results in a fine-detailed

final reconstruction, as shown in Figure 4.1 on page 77a. In autonomous driving

scenarios where the sensor is mounted on a vehicle and the path is not known a

priori, the surfaces are observed for fewer times. In fact, we found that RGB-D

scenarios have over 3,100 times more depth images per square metre than our

autonomous vehicle applications (Table 4.3 on page 92).

In addition, mobile-robotics sensor suites typically include lidars and forward-

facing monocular or stereo cameras. Since RGB-D cameras viewing range is so

short (5 metres) and their accuracy degrades outdoors, they are not useful when

reconstructing an urban environment from a mobile-robotics platform. In short,

mobile-robotics platforms have significantly less accurate sensors that observe

surfaces far fewer times than in a typical RGB-D scenario. Therefore the recon-

structions inherently have less detail, as shown in Figure 4.1 on page 77b, that

requires us to apply contextual priors via a local regulariser to improve the final

surface reconstructions. Table 4.1 on the preceding page, Table 4.3 on page 92, and

Figure 4.1 on page 77 summarise the discussion in the preceding literature review.

Our contributions in this chapter are as follows:
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1. We present in Sections 4.1 on the next page - 4.2 on page 83 the theory

required to construct a state-of-the-art dense-reconstruction pipeline for mobile-

robotics applications (i.e., satisfies R1-R4 previously defined in this section).

Our implementation includes a compressed data structure (R1/R2) of a sensor-

agnostic voxel grid (R4). Since the input data may be noisy and the observations

per m2 are very low, we utilise a regulariser in both 2D and 3D to both serve

as a prior and reduce the noise in the final reconstruction (R3).

2. We present in Section 4.2 on page 83 a method to regularise 3D data stored

in a compressed volumetric data structure thereby enabling regularisation of

significantly larger scenes (fulfils R1 and R3). The key difficulty (and hence

our vital contribution) in regularising within a compressed structure is the

presence of many additional boundary conditions introduced between regions

that have and have not been directly observed by the range sensor. Accurately

computing the gradient and divergence operators, both of which are required

to minimise the regulariser’s energy, becomes a non-trivial problem. We ensure

the regulariser only operates on meaningful data and doesn’t extrapolate into

unobserved regions.

3. We provide, by way of our quantitative results in Section 4.3 on page 92 and

the models released in the supplementary materials, a new KITTI benchmark

for the community to compare dense-map reconstructions. In addition, we

include the ground truth (GT) data used to evaluate our system. This includes

the optimised vehicle trajectory, consolidated GT point cloud, and final dense

reconstructions with different sensor modalities.

4. We release (Section 4.3.2 on page 93) the 1.6 km Oxford Broad Street dataset

as a real-world reconstruction scenario for a mobile-robotics platform with a

variety of camera and lidar sensors.

Our hope is that our dataset and benchmarks become valuable tools of com-

parison within the community.
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(2D Regularisation)
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(3D Regularisation)
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Figure 4.2: An overview of our software pipeline. Our Dense Fusion module accepts
data from either laser sensors or depth maps created from mono or stereo cameras. We
regularise the 3D model, extract the surface, and then provide the final 3D model to other
components on our autonomous robotics platform — e.g., segmentation, localisation,
planning, or visualisation.

4.1 System Overview

This section provides a brief overview of our system’s architecture (Figure 4.2)

before we proceed to a detailed discussion in Section 4.2 on the next page.

At its core, our system consumes a stream of stereo camera images (I) or laser

scans (L) and produces a 3D model. The pipeline consists of a Localisation module

that provides sensor pose estimates. We do not restrict the trajectory of source

sensors a priori. In fact, we demonstrate (Section 4.3 on page 92) our method

using a forward-facing stereo camera and lidar sensor on an automobile in an urban

environment. The design of this module is versatile allowing us to use any SLAM

implementation [96][97][98][99][100][101][102][103][88][104]; we use ORB-SLAM2

[105][106] as it is the current state-of-the-art for sparse localisation and loop closure

with monocular, stereo, and RGB-D cameras.

The Depth-Map Estimation module (Section 2.3 on page 24) processes a stream of

stereo or monocular frames into a stream of 2D regularised depth maps, D. Because

of the nature of a passive camera and the large scale at which we operate, we utilise
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a sophisticated regulariser – specifically, the Total Generalised Variation (TGV)

regulariser – to improve the accuracy of these depth maps.

4.2 Hashing Voxel Grid Modifications

To improve our system from the small-scale single-sensor-modality reconstructions

in Chapter 3, we need to make a variety of changes to our fusion algorithm and data

structures. Specifically, the methods described in this section build upon the HVG

data structure discussed in Section 2.4.1.2 on page 32. First, we must articulate

the algorithms to fuse both depth-map data from cameras and laser range data

from lidar (Section 4.2.1). Next, in Section 4.2.2 on page 89, we extend the Ω

labelling construct (Chapter 3) to work with the Hashing Voxel Grid approach

introduced in Section 2.4.1.2 on page 32. Finally, in Section 4.2.3 on page 90, we

provide an overview of the details required to implement the optimisation with

both SDF and histogram data terms.

4.2.1 Multi-Sensor Fusion

Fusing data into the voxel grid varies in method depending on whether one utilises a

camera-based sensor (Section 2.4.2 on page 34) or a laser-based sensor (Section 4.2.1).

4.2.1.1 Laser Fusion

Fusing laser data into the voxel grid is accomplished via an efficient ray casting

implementation [81]. Consider the case of a single laser ray (~ρ) with an origin at

ρo and a termination (i.e., where the laser reflects off of a surface) point at ρr .

~ρ is fused into the voxel grid by tracing the ray and updating each voxel with

the signed distance to ρr . Specifically, the following operations are performed on

all voxels that intersect the ray from ρo to ρr :

1. Calculate the voxel’s global-frame centre pg = [xg, yg, zg]
T

2. Compute the vector from the laser scan’s origin to the current voxel centre:

v1 = pg − ρo
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Figure 4.3: A graphical depiction of how a single ray-traced laser is fused into a two-
dimensional ‘voxel’ grid. To compute the SDF value ρ creates in the voxel with centroid
pg, one must compute v1 and v2. The dot product of these vectors indicate whether the
voxel is in front (positive) or behind (negative) the observed surface. The magnitude of
v2 is equal to the magnitude of the SDF.

3. Compute the vector from the current voxel centre to the laser scan’s termination

point: v2 = ρr − pg

4. Compute the voxel’s SDF value:

uSDF = sgn(v1 · v2) | |v2 | |2 (4.1)

If uSDF > 0, the voxel is between the surface and the laser sensor, uSDF < 0

indicates the surface occludes the laser sensor’s view of the voxel, and uSDF = 0

indicates the voxel’s centroid exactly intersects the surface.

5. Update the voxel’s current f (SDF value) and w (weight) via Equation 2.33 on

page 35.

The key variables of these steps are graphically depicted in Figure 4.3. As

with the depth-map fusion, these calculations are highly data-independent and

thus suitable for parallel processing. However, in contrast to depth-map fusion,

one must ensure the memory update operations are atomic since multiple laser

rays may simultaneously intersect any given voxel.
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Figure 4.4: Ray casting problem overview. The goal of ray casting is to compute
the in-order sequence of voxels intersected by a given ray (~ρ), from its origin (ρo) to
termination point (ρr). In the above example, the ray intersects ‘voxels’ in the order: a,
b, c, d, e, f , g. Figure inspired by [81].

To conserve space, voxel blocks are allocated in the region ±µ, but the ray

trace starts at the sensor so that free-space regions may be updated. In other

words, in addition to the memory allocated immediately around the surface, we

ray trace all free space to update any voxel blocks that may have previously been

allocated when fusing depth or range data. For example, if an automobile appeared

in a previous depth map or laser scan but it has since moved, the full ray trace

will update the SDF values in those now-empty voxels. This removes free-space

violations without increasing the memory requirements.

4.2.1.2 Efficient Ray Casting

We utilise an efficient implementation [81] for ray-casting operations in our system—

these operations include laser fusion, voxel-block memory initialization to fuse

depth maps or laser scans, and presenting a rendering of the reconstruction in a

OpenGL window. In the last case, the 3D model is still extracted via Marching

Cubes method (Section 2.4.3 on page 36) for processing by other applications in

our mobile-robotics system pipeline (e.g., planning, segmentation, etc.).

The goal of ray casting is to compute the in-order sequence of voxels inter-

sected by a given ray (~ρ), from its origin (ρo = (xo, yo, zo)) to termination point

(ρr = (xr, yr, zr )). To simplify notation, we denote the ray’s normalized vector
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Figure 4.5: In an efficient implementation of ray casting, three key variables (per
dimension) must be computed for each ray. The t∆x variable indicates the distance along
the ray required to travel one voxel in the x direction. t ⌈x⌉ is the distance from the
distance from the ray’s entry to the voxel grid to the first time it crosses a ‘vertical’
boundary (i.e., x increments). xd is 1 when the ray moves in the positive x direction, and
−1 otherwise. t∆y, t ⌈y⌉ , and xd are the same as their respective x variables, but for the y

dimension. These values must only be computed once for each ray.

components as ρ̂ = ( x̂, ŷ, ẑ). Figure 4.4 on the preceding page depicts a simple

2D ray-casting scenario.

Three variables (per dimension) must be computed to initialise the ray-casting al-

gorithm,

t∆x =
����vx

x̂

����
t ⌈x⌉ =

x+ − xo

x̂

x+ = cx + 0.5vx sgn( x̂)

(4.2)

where vx is the width of the voxel in the x dimension and cx is the current voxel’s

centroid. The y- and z-equivalent variables can be found by substitution in the

above equations. Each of these variables is computed with respect to t—i.e., a

distance along the ray. t∆x is the travel distance along the ray to move one voxel

in the x dimension, whereas t ⌈x⌉ is the travel distance along the ray from the

entry point to the next voxel in the x dimension. Figure 4.5 provides graphical

depictions of these variables in a 2D scenario.

As all variables are with respect to a distance travelled along the ray, one

must transform all points from the Voxel Grid’s reference frame to the ray’s

reference frame via,
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Algorithm 1: Ray casting implementation for a 2D grid

1 while inGrid(x, y) do
2 operationOnCell(x, y);
3 if t ⌈x⌉ < t ⌈y⌉ then
4 t ⌈x⌉ = t ⌈x⌉ + t∆x;
5 x = x + sgn( x̂);

6 else
7 t ⌈y⌉ = t ⌈y⌉ + t∆y;
8 y = y + sgn( ŷ);

9 end

10 end

TV oxelGrid_Ray =



...
...

... xo

r̂x r̂y r̂z yo
...

...
... zo

0 0 0 1


rx = ry × rz

ry = [xo, yo, zo]T × rz

rz = [xr − xo, yr − yo, zr − zo]

(4.3)

Once these variables are initialised, Algorithm 1 presents the process to step

through each grid cell in a 2D scenario. Note that each iteration in this implementa-

tion requires only two floating-point operations: one comparison and one addition.

In concert with coalesced memory operations, this executes efficiently on a GPU.

The 3D algorithm used in the BOR2G implementation is shown in Algorithm 2

on the next page.

Finally, a brief note on numerical precision is appropriate since data fusion in

HVG requires two stages. In the first stage, the depth map or laser scan is projected

into the voxel grid to allocate memory in the regions where surfaces are observed.

The ray-casting algorithm operates on the courser voxel blocks for this initialisation.

In the second stage, when processing laser scans, the ray caster steps through the

voxels (not voxel blocks) to update each SDF value.

After processing real-world data to fuse both depth-map and laser data, we found

that the system occasionally crashed. This occurred very rarely (in approximately
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Algorithm 2: Ray casting implementation for a 3D voxel grid

1 while inVoxelGrid(x, y, z) do
2 operationOnVoxel(x, y, z);
3 if t ⌈x⌉ < t ⌈y⌉ then
4 if t ⌈x⌉ < t ⌈z⌉ then
5 t ⌈x⌉ = t ⌈x⌉ + t∆x;
6 x = x + sgn( x̂);

7 else
8 t ⌈z⌉ = t ⌈z⌉ + t∆z;
9 z = z + sgn( ẑ);

10 end

11 else
12 if t ⌈y⌉ < t ⌈z⌉ then
13 t ⌈y⌉ = t ⌈y⌉ + t∆y;
14 y = y + sgn( ŷ);

15 else
16 t ⌈z⌉ = t ⌈z⌉ + t∆z;
17 z = z + sgn( ẑ);

18 end

19 end

20 end

0.0001% of the laser scans) and only when processing laser scans. Further analysis of

the problem revealed that numerical precision limitations on the GPU – specifically,

cumulative rounding errors – resulted in stage 1 (block ray casting) reserving a

different memory block than was required by stage 2 (voxel ray casting).

This is expanded upon in Figure 4.6 on the facing page where the ray passes

near a region where four voxel blocks (eight in 3D) intersect. A slight rounding

error results in a different ray-casting solutions depending on the step size—the

voxel block ray-casting step size is exactly eight times larger.

This may be avoided by always using a single step size (e.g., voxel) for the ray-

casting implementation. Alternatively, a small threshold value may be evaluated

at each step to implement a margin of error to “round down” the solution to

the same voxel or voxel block.
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Voxel Ray Intersections

Voxel BlockRay Intersections

Numerical-Precision Error Boundary

No GPU memory is 
allocated for this voxel

Figure 4.6: Ray casting numerical precision error. In 2D, when a ray passes through or
near the intersection of four voxel blocks, a numerical-precision rounding error sometimes
results in a different ray-casting solutions. In this instance, the blue voxel blocks were
reserved in memory during stage 1 of HVG data fusion, but one green voxel will cause a
runtime exception in Stage 2 since its voxel block never had memory reserved.

4.2.2 Voxel Labels

As discussed in Section 2.4.1.2 on page 32, HVG enables reconstruction of an

arbitrary location in space by breaking the infinite (within numerical limits) space

into voxel blocks. Each voxel block is composed of 8 × 8 × 8 (512) voxels. These

voxel blocks only occupy GPU memory if a surface is observed by the range sensor.

We augment the HVG data structure with an indicator variable (1Ω) that

designates whether or not a given voxel or voxel block is included in the domain

or regularisation,

1Ω(v) =


0 v ∈ Ω

1 v < Ω
(4.4)

where v is a given voxel or voxel block and Ω is the set of voxels that were directly

observed by the range sensor (i.e., the domain across which to apply regularisation).

All voxels and voxel blocks are initialized as members of Ω̄ until an individual

voxel’s SDF value is updated via the data fusion stage. Figure 4.7 on the following

page presents the Ω labels and GPU memory model after one range-sensor scan.
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Figure 4.7: Hashing Voxel Grid and Ω Labels. A depiction of our new combination of the
HVG data structure with regularisation to fuse depth observations from the environment.
The HVG enables us to reconstruct large-scale scenes by only allocating memory for
the regions of space in which surfaces are observed (i.e., the coloured blocks). To avoid
generating spurious surfaces, we mark each voxel with an indicator variable (1Ω) to ensure
the regulariser only operates on voxels in which depth information was directly observed.
This same approach is used independent of the range sensor — e.g., stereo depth maps or
laser. Figure inspired by [59].

4.2.3 Optimisation

Ω labels naturally extend from the conventional voxel grid (Chapter 3) to the HVG

(Section 2.4.1.2 on page 32). Unlike non-homogeneous data structures like octrees, all

voxels in the HVG that contain data are identically sized. This greatly simplifies the

computation of neighbourhood lookups in the gradient and divergence operations. In

fact, once the gradient and divergence operators are implemented, the optimisation

implementations are identical to those presented in Section 3.3 on page 59.

With respect to GPGPU processing, a simpler implementation is usually faster.

Applied to this application, rather than trying to optimise for performance and

anticipate when a neighbour-lookup voxel is in the same voxel block, we instead

simply fetch (or re-fetch) the voxel block from memory. Empirically, this is faster

since it allows memory operations to be coalesced.

Thereafter, the optimisation implementation follows the form presented in

Section 3.3 on page 59.
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Figure 4.8: GPS trace for the Oxford Broad Street dataset. The dataset includes data
from 1x Bumblebee XB3, 1x Bumblebee2, 4x Grasshopper2, 2x Velodyne HDL-32E lidar,
and 3x SICK LMS-151 lidar sensors.

Table 4.2: Summary of Parameters Used in System

SymbolValue Description

λ3D 0.8 (10 cm) / 0.4
(20 cm)

The TV weighting of the data term versus regular-
isation

µ3D 1.0 m (10 cm) / 1.6 m
(20 cm)

The maximum voxel distance behind a surface in
which to fuse negative signed-distance values

σp, θ 0.5, 1.0 3D regulariser gradient-ascent/descent step sizes
τ 1/6 3D regulariser relaxation-step weight
N 20 Number of histogram bins

λ2D 0.5 The TGV weighting of the data term versus regu-
larisation

α1, α2 1.0, 5.0 Relative weights of the affine-smooth/piecewise-
constant TGV terms

β, γ 1.0, 4.0 Exponent and scale factor respectively modifying
the influence of the image gradient
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Figure 4.9: This chapter is about the efficient generation of dense models of multiple-km-
scale environments from stereo and/or laser data. Pictured is an example reconstruction
from the 1.6 km Oxford Broad Street dataset released with this thesis.

4.3 Results

This section provides an extensive analysis of our system, the parameters for

which are provided in Table 4.2 on the preceding page. In the first portion of our

results, we present how our system’s reconstruction quality compares with prior

work (Stanford Burghers of Calais). Next, we demonstrate its performance on

our Oxford Broad Street dataset. Finally, we use the publicly available KITTI

dataset [1] to evaluate the reconstruction performance of stereo-only, laser-only,

and multi-sensor fusion methods.

Three KITTI sequences (00, 05, and 06) were selected based on their length,

number of loop closures, and urban structure visible throughout the sequences. A

summary of the physical scale of each is provided in Table 4.3.

All experiments were performed on a GeForce GTX TITAN with 6 GB memory.

4.3.1 Stanford Burghers of Calais

We first validate that our dense-fusion system creates high-quality reconstructions

with the standard Stanford Burghers of Calais RGB-D dataset [66]. We performed a

Table 4.3: Summary of Reconstruction Scenarios

Dataset Cam. Dist. # Frames Surface Frames/m2

KITTI-VO 00 3.8 km 4,541 93,546 m2 0.049
KITTI-VO 05 2.2 km 2,761 55,909 m2 0.049
KITTI-VO 06 1.2 km 1,101 23,585 m2 0.047

Burghers 0.2 km 11,230 72 m2 155.97
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point-to-surface comparison between BOR2G’s (0.5 cm voxels) and [66]’s (unknown

voxel size) reconstructions. BOR2G’s median reconstruction difference was 0.5 cm

with a 1.0 cm 75-percentile difference. Note that this is a “difference” not an “error”

metric as there is no ground-truth data against which we can compare.

As can be seen in Figure 4.1 on page 77, our level of detail compares favourable

with the reconstructions in [66]. We accurately depict folds in clothing, muscle

tone, and facial features.

However, this does not reveal the full capabilities of our framework as the

low-noise, high-observation, and small-scale RGB-D dataset does not require

sophisticated 2D and 3D regularisation to create high-quality reconstructions. We

are not aware of any other system that both operates at scale and accepts a

variety of sensor inputs — hence the remaining quantitative analysis compares

only against ground-truth data.

4.3.2 Oxford Broad Street

In practice, we found dense reconstructions are the most complete and highest

quality (with our mobile robotics platform) when fusing data from multiple Velodyne,

SICK LMS-151, and stereo cameras using our own datasets. We are releasing such

a dataset with this thesis to provide a realistic mobile-robotics platform with a

variety of sensors—a few of which are prime candidates for ground truth when

testing the accuracy of reconstructions with other sensors. For example, the

push-broom laser sensor (which excels at 3D urban reconstructions) can be used

to compare the reconstruction quality of monocular versus stereo camera versus

Velodyne versus a combination thereof.

This dataset is ideal to benchmark and evaluate large-scale dense reconstruction

frameworks. It was collected in Oxford, UK at mid-day, thus it provides a

representative urban environment with numerous pedestrians, bicycles, and vehicles

visible to all sensors throughout the 1.6 km trajectory (Figure 4.8 on page 91).

It includes data from the following sensors that collectively provide a continuous

360◦ view around the vehicle:
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• 1x Point Grey Bumblebee XB3 Stereo Camera (Colour)

• 1x Point Grey Bumblebee2 Stereo Camera (Grayscale)

• 4x Point Grey Grasshopper2 Monocular Cameras (Colour, Fisheye Lens)

• 2x Velodyne HDL-32E 3D lidars

• 3x SICK LMS-151 2D lidars

In addition, the following is provided to aid in processing the raw sensor data:

• Optimised SE(3) vehicle trajectory

• Undistorted, rectified stereo image pairs

• Undistorted mono images

• Camera intrinsics

• Extrinsic SE(3) transforms for all sensors

Finally, we provide example depth maps — using the techniques described in

this chapter — for the Bumblebee XB3 to enable users to rapidly utilise the dataset

with their existing dense reconstruction pipelines.

All data is stored in a similar format as KITTI along with MATLAB development

toolkit. Videos of the included data are available at:

http://ori.ox.ac.uk/dense-reconstruction-dataset/.

For brevity, we provide more detailed analysis of the stereo-only, laser-only, and

multi-sensor fusion performance on the KITTI dataset in the following subsections.

However, an example Velodyne-based reconstruction of a small segment of this

dataset is shown in Figure 4.9 on page 92 and a larger qualitative analysis is

included in the video on the dataset website.

4.3.3 KITTI

The KITTI dataset [1] was created to provide a benchmark system for the mobile

robotics and computer vision communities. Geiger et al. mounted a 360° Velodyne

lidar, GPS/INS sensor, and colour/grayscale stereo camera rigs composed of Point

Grey Flea 2 cameras. After driving 39.2 km through a built-up, urban environment,

they released the data in 2012 to provide a common benchmark. One of the

http://ori.ox.ac.uk/dense-reconstruction-dataset/
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popular benchmarks within the KITTI dataset is the “Visual Odometry” datset

(KITTI-VO): a sequence of 11 sequences with ground-truth camera-pose data and

another 11 sequences for evaluation.

In this chapter, we propose utilising this dataset to quantitatively evaluate our

dense reconstruction system. It is an excellent dense reconstruction benchmark

because it: (1) operates in a real-world urban environment, (2) provides multiple

sensor modalities, (3) the Velodyne sensor may be used as ground-truth when fusing

depth-map data, and (4) is publicly available.

Unfortunately, the optimised GPS/INS ground-truth poses provided by KITTI

proved to be highly inaccurate, especially when poses are provided after revisiting

the same location multiple times. Empirically, we observed up to 3 m of drift

upon loop closures. We selected three KITTI-VO sequences in ORB-SLAM2 to

generate optimised pose trajectories with proper loop closures. These optimised

pose chains empirically improved reconstruction performance when revisiting the

same region, as we discuss in Section 4.3.3.3 on page 98.

4.3.3.1 Multi-Sensor Reconstruction Analysis

Many mobile platforms have a variety of sensors, yet conventionally much dense

reconstruction work is isolated to a single sensor—nearly exclusively a camera sensor

(RGB-D, monocular, or stereo). The KITTI dataset provides both camera images

and Velodyne laser scans, so we decided to evaluate the quality of reconstruction

achieved by fusing data from both sensors.

A snapshot of our qualitative results are shown in Figure 4.10 on page 97, but

the video on the dataset website provides a fly-through of each sequence to visualise

the quality of our final regularised 3D reconstructions.

The stereo-camera-only reconstructions were moderately detailed, but a number

of false surfaces were created between neighbouring objects (e.g., automobiles, build-

ings) due to the limitations of stereo-based depth maps. The camera reconstructions

included the full height of the buildings, in contrast to the laser reconstructions

that could only reconstruct the bottom 2.5 m of objects. However, the laser-only



96 4.3. Results

reconstruction was much more detailed and could see surfaces that were occluded

to the camera (e.g., behind automobiles) because the Velodyne was mounted higher

on the data-collection vehicle and it has a continuous 360◦ field of view.

Figure 4.10 on the next page shows that the combination of both sensors

produced a reconstruction that was higher quality and more comprehensive. The

comprehensiveness is measured in Table 4.4, where the multi-sensor fused recon-

struction has 40% to 50% more surface area coverage than the best sensor was able

to reconstruct by itself. We leave it to future work to quantitatively demonstrate the

effects of cost, field of view, and sensor fidelity (e.g., higher-quality stereo cameras

or lasers) on the resulting reconstruction quality and surface-area coverage.

In addition to traditional qualitative analysis, KITTI stereo-only reconstructions

may be quantitatively analysed by using laser data as ground truth. We dedicate

the remainder of our results write-up to this quantitative analysis.

4.3.3.2 SDF Versus Histogram Data Terms Analysis

We consolidated all Velodyne HDL-64E laser scans into a single reference frame using

poses provided by ORB-SLAM2. We found that KITTI’s “ground-truth” GPS/IMU

poses were not accurate enough to produce high-quality dense reconstructions —

in particular when revisiting regions. There was as much as 3 metres of drift from

one pass of a region to the second pass with the KITTI ground-truth poses, while

ORB-SLAM2 poses were accurate within a few centimetres.

The following three subsections perform analysis on the stereo-only reconstruc-

tion performance for SDF versus histogram data terms, comparing multiple stereo

camera passes through the same environment, and the quantitative quality of

7.3 km of stereo-only reconstructions.

Table 4.4: Summary of Surface Area Coverage by Sensor Type

Dataset Image Only Laser Only Image & Laser

KITTI-VO 00 93,546 m2 117,087 m2 176,624 m2

KITTI-VO 05 55,909 m2 77,292 m2 111,188 m2

KITTI-VO 06 23,585 m2 29,617 m2 41,401 m2
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(a) Stereo Camera Only

(b) Laser Only

(c) Stereo Camera and Laser

(d) Final Coloured Reconstruction

Figure 4.10: Comparison of reconstruction quality with stereo-camera only, laser only,
and stereo-with-laser fusion. The stereo camera has a higher field of view than the laser
sensor (i.e., the building/trees are cut half way up in the laser reconstruction), but the
laser sensor is much more accurate and can see into regions that were occluded for the
stereo camera (e.g., behind the automobiles). Fusing data from both sensors into the
same voxel grid produces a more comprehensive (Table 4.4 on the facing page) and
higher-quality result than either sensor can achieve alone.
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Zach demonstrated the superior histogram data term performance in small-

scale, object-centred scenarios [3]. We compare SDF and histogram optimisation

performance so dense-reconstruction system developers may make an informed

decision based on their target application.

After fusing stereo-based depth images into the voxel grid, the resulting re-

construction is indeed noisy, as shown in Figure 4.11 on the next page. The

2D TGV2 regulariser significantly reduced the noise in the input depth maps,

but these passively-generated depth maps inherently must infer depth of large

portions of the image.

Both the SDF and Histogram optimisers smooth the noisy surfaces (e.g.,

buildings) in the reconstruction, but the SDF regulariser subjectively appears

to do a better job. When compared against ground-truth in Table 4.5, the SDF

and histogram optimisers are nearly indistinguishable: both reconstructions have

a 5.9 cm median point-to-surface error with a 28 cm standard deviation.

Based on Zach’s previous results, we initially expected the histogram to perform

better. However, it appears that when a camera travels through the environment

(rather than observing a single object from many angles) there are not enough

observations of surfaces to provide a complete PDF in each voxel. Since the SDF

regulariser is both simpler to implement, faster to execute, and provides similar

results, we believe it can be a better choice for mobile-robotics platforms and we

use it exclusively for the remainder of our experiments.

4.3.3.3 Multiple Passes Analysis

In theory, revisiting a region should result in a more complete and accurate

reconstruction, assuming one has accurate localisation and loop closures. Noisy

depth maps from the stereo camera preclude the traditional point-cloud alignment

Table 4.5: SDF Versus Histogram Regularised Reconstruction Errors

Fusion Method Median 75% Std. Dev.

Signed Distance Function (SDF) 5.9 cm 21.0 cm 28.0 cm
Histogram 5.9 cm 21.5 cm 27.9 cm
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(a) Raw Reconstruction

(b) Histogram Data Term Reconstruction

(c) SDF Data Term Reconstruction

(d) Final Coloured Reconstruction

Figure 4.11: Comparison of reconstruction improvement with histogram and SDF data
terms on stereo-camera-only reconstructions. Both optimisation methods noticeably
smooth the surfaces (e.g., buildings, trees, automobiles) while also removing low-certainty
surfaces (e.g., speckled surface in the sky near the trees). The SDF data term qualitatively
produces “smoother” surfaces, but quantitatively (Table 4.5 on the facing page) SDF and
histogram methods are nearly indistinguishable.
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approaches used in Kinect Fusion-based approaches. However, ORB-SLAM2

provides accurate loop closures and locally-consistent pose estimates.

In fact, ORB-SLAM2 performs better in our applications than did the GPS/INS

ground truth — the latter resulted in trees and walls being observed in the middle

of a road when revisiting a location.

In Figure 4.12 on the next page, we compare the quality of reconstruction between

a single and two passes of a region. The second pass noticeably improves the detail

in previously-observed surfaces and increases the surface area reconstructed by

11% (6,044 m2 → 6,713 m2).

4.3.3.4 Full-Length Error Metrics Analysis

Using only the stereo camera as input, we first processed all three KITTI-VO

with 10 cm voxels and compared the dense reconstruction model, both before

and after regularisation, to the laser scans. In these large-scale reconstructions,

the compressed voxel grid structure provides efficient fusion performance while

vastly increasing the size of reconstructions. For the same amount of GPU memory,

the conventional voxel grid was only able to process 205 m, in stark contrast to

the 1.6 km reconstructed with the HVG—though that may be extended to an

infinite-size reconstruction by utilising bidirectional GPU-CPU streaming.

As shown in Table 4.6 on page 105, the SDF regulariser reduced the median

error by 27% to 36%, the 75-percentile error by 32% to 50%, and the surface area

by 26%. The final median error for the scenarios varied between 4.0 cm and 8.1 cm.

In Figure 4.13 on page 103, it becomes clear that errors in the initial “raw”

fusion largely come from false surfaces created in the input depth map caused by

sharp discontinuities in the original image. The SDF regulariser removes many

of these surfaces, that dominate the tail of the histogram plots and are visible

as red points in the point-cloud plots.

When processed at 20 cm voxel resolution, the results are similar, though

with slightly higher error metrics, as shown in Table 4.6 on page 105. However,

even though the spacial resolution was reduced by a factor of two (and memory
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(a) Stereo Camera Pass 1

(b) Stereo Camera Pass 2

(c) Final Coloured Reconstruction

Figure 4.12: Comparison of fusion after two passes of the same region. The second
pass results in a more complete model since, with accurate localisation, the stereo-camera
depth maps observe surfaces from a slightly different angle and lighting conditions. The
first pass reconstructed 6,044 m2, while the second pass increased that by 11% to 6,713 m2.
Note that the hole in the centre-left of the image is due to object occlusions at the viewing
angle of the input stereo images.
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requirements by a factor of 8), the final reconstruction accuracy was only reduced

by about 10%. This is because the urban environments are largely dominated

by planar objects (e.g., roads, building façades) that, by the very nature of SDF,

can be nearly-perfectly reconstructed with course voxels. Smaller voxels are only

beneficial in regions with fine detail (e.g., automobiles, steps, curb).

Figure 4.14 on page 104 shows the bird’s-eye view of each sequence with

representative snapshots of the 10 cm stereo-camera-only reconstructions. To

illustrate the quality, we selected several snapshots from various camera viewpoints

that were offset in both translation and rotation to the original stereo camera

position, thereby providing a representative depiction of the 3D structure. Overall,

the reconstructions are quite visually appealing; however, some artefacts such

as holes are persistent in regions with poor texture or with large changes in

illumination. This is an expected result since, in these cases, no depth map

can be accurately inferred.

4.4 Conclusions

We presented our state-of-the-art BOR2G dense mapping system for large-scale

dense reconstructions. When compared to object-centred reconstructions, mobile-

robotics applications have 3,100 times fewer depth observations per square metre,

thus we utilised regularisers in both 2D and 3D to serve as priors that improve the

reconstruction quality. We overcame the primary technical challenge of regularising

voxel data in the compressed 3D structure by redefining the gradient and divergence

operators to account for the additional boundary conditions introduced by the

data structure. This both enables regularisation and prevents the regulariser from

erroneously extrapolating surface data.

We know of no other dense reconstruction system that is quantitatively evaluated

at such a large scale. When qualitatively compared to the Stanford Burghers of

Calais RGB-D dataset, BOR2G reconstructed the same fine detail. For our large-

scale reconstructions, we used the 3D lidar sensor as ground truth to evaluate the
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(a) KITTI-VO 00: Stereo Camera Reconstruction Error Metrics
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(b) KITTI-VO 05: Stereo Camera Reconstruction Error Metrics

Without Regularization With Regularization
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(c) KITTI-VO 06: Stereo Camera Reconstruction Error Metrics

Figure 4.13: A summary of the stereo-camera-only dense reconstruction quality for three
scenarios from the KITTI-VO public benchmark dataset. The left side are the results
before regularisation and the right side are after regularisation. Above each histogram
of point-to-surface errors are the top-view, coloured reconstruction errors corresponding
to the same colours in the histogram. The regulariser reduces the reconstruction’s error
approximately a third, primarily by removing uncertain surfaces — as can be seen when
you contrast the raw (left) and regularised (right) reconstruction errors.
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Figure 4.14: A few representative sample images for various points of views (offset from
the original camera’s position) along each trajectory. All sample images are of the final
regularised reconstruction with 10 cm voxels using only stereo images as the input.



Table 4.6: Summary of Stereo-Camera-Only Reconstruction Quality and Error Statistics

Dataset Type Res. Median 75% GPU Memory Surface Area # Voxels Time Per Iteration (mm:ss)

KITTI-VO 00 Raw 20 cm 11.4 cm 38.3 cm 1,222 MiB 126,251 m2 107·106 —
10 cm 10.7 cm 37.0 cm 7,565 MiB 661·106 —

Regularized 20 cm 7.8 cm 25.9 cm 1,222 MiB 93,546 m2 107·106 1:46
10 cm 7.3 cm 25.1 cm 7,565 MiB 661·106 11:20

KITTI-VO 05 Raw 20 cm 14.2 cm 45.0 cm 756 MiB 76,880 m2 66·106 —
10 cm 12.7 cm 41.5 cm 4,533 MiB 396·106 —

Regularized 20 cm 9.1 cm 30.2 cm 756 MiB 55,909 m2 66·106 1:00
10 cm 8.1 cm 27.6 cm 4,533 MiB 396·106 3:45

KITTI-VO 06 Raw 20 cm 6.1 cm 23.8 cm 356 MiB 32,241 m2 31·106 —
10 cm 5.5 cm 21.3 cm 2,591 MiB 226·106 —

Regularized 20 cm 4.5 cm 12.4 cm 2,591 MiB 23,585 m2 31·106 0:34
10 cm 4.0 cm 10.6 cm 356 MiB 226·106 3:44
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quality of our reconstructions, for different granularities, against 7.3 km of stereo-

camera-only reconstructions. Our regulariser consistently reduced the reconstruction

error metrics by a third, for a median accuracy of 7 cm over 173, 040 m2 of

reconstructed area. Qualitatively, fusing both stereo-camera-based depth images

with lidar data produces reconstructions that are both higher quality and more

comprehensive than either sensor achieves independently. We hope the release of

our ground-truth KITTI point clouds, ground-truth KITTI 3D models, and the

comprehensive Oxford Broad Street dataset will become helpful tools of comparison

for the community.

This chapter applied the Ω labelling concept (originally presented in Chapter 3)

to a compressed 3D data structure that enabled real-world, large-scale reconstruc-

tions. In the next chapter we utilize the Ω labelling to interpolate the underlying

3D urban structure that is occluded by dynamic or ephemeral objects.



The subjectivist (i.e. Bayesian) states his judgements,
whereas the objectivist sweeps them under the carpet
by calling assumptions knowledge, and he basks in
the glorious objectivity of science.

— I. J. Good

5
Recovering Hidden Structure and Filling

in the Gaps

Abstract
The generation of accurate static maps for mobile-robotics applications is encum-

bered by ephemeral objects such as vehicles, pedestrians, or bicycles. Building upon

the theory presented in Chapter 3, we propose a method to process a sequence

of laser point clouds and back-fill dense surfaces into gaps caused by removing

objects from the scene – a valuable tool in scenarios where resource constraints

permit only one mapping pass in a particular region. Our method processes laser

scans in a 3D voxel grid using the Truncated Signed Distance Function (TSDF)

and then uses a Total Variation (TV) regulariser with a Kernel Conditional Density

Estimation (KCDE) “soft” data term to interpolate missing surfaces. Using four

real-world scenarios captured with a push-broom 2D laser, our technique infills

approximately 20 m2 of missing surface area for each removed object. Our median

reconstruction error ranges between 5.64 cm - 9.24 cm with standard deviations

between 4.57 cm - 6.08 cm.

107
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I
n robotics applications, it is vital to maintain an accurate map of the lo-

cal environment. When in the presence of ephemeral objects (e.g., vehicles,

pedestrians, bicycles, etc.), this map can quickly become cluttered and inconsistent,

especially when there is only a single mapping pass—as is the case in many surveying

applications. These inconsistencies make the map difficult to use.

Ephemeral objects are sometimes dynamic (e.g., pedestrian walking on the

pavement) but also may be static (e.g., automobile parked on the side of a

road). If a complete background map has been created from a previous data

run, these difficulties can be avoided by detecting and removing the differences

between the maps. However, in real-world data collections we encounter in our

autonomous-driving applications, it is uncommon to ever observe the world with

no ephemeral objects.

Nonetheless, it is desirable to remove these objects from the map and infill the

missing background data as this creates a more accurate static map. Figure 5.1 on

the facing page illustrates a representative map created in an urban data collection.

Even after we remove the ephemeral objects (automobiles, in this example), holes

still remain in the map. If these holes are filled in, the resulting map is more

complete, better representing the underlying 3D urban structure.

Of what use is this more-complete static map? Our work was motivated by one

specific application: low-cost urban surveys. When competing a large-scale (e.g.,

city size or larger) dense map for a survey, it is time-prohibitive to traverse every
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(a) Before: The sparse laser point cloud input.

(b) After: Our dense, interpolated reconstruction.

Figure 5.1: Example scenario (a) where three large gaps (highlighted by red arrows)
appear in the laser data after vehicles are removed. These gaps must be filled in (b) to
generate an accurate map that could later be used for algorithms such as localisation or
ephemeral-object detection.
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area a sufficient number of times to ensure no surface is occluded by ephemeral

objects. Rather, we seek to mount a push-broom oriented laser sensor on an

automobile, traverse each street exactly once, and rely upon post-processing to

remove ephemeral objects and infer the occluded urban structure.

Another use for the map is to provide a computationally-efficient method to

detect objects—for example, by comparing the static map to live laser scans to

identify new ephemeral objects. This approach is useful in distraction suppression

[107] scenarios where a mask is applied to the input data to avoid bias in dependent

localisation or perception algorithms. Alternatively, to complement recent “hard

negative” mining research [108], these object detections may be used to automatically

generate “hard positives” for standard detector or classification training.

However, removing ephemeral objects traditionally requires manually labelling

positive and negative data sets to train a detector. And, once removed, it is even

more difficult to back-fill the gaps (Figure 5.1 on the previous page) left in the laser

data because, without a prior, there is ambiguity as to which areas should be free

space and which should contain interpolated surfaces. We present our approach to

these two problems later in this chapter, but what proceeds are methods currently

proposed in the literature for hole filling and dense 3D map creation.

There has been a variety of work to address the “hole filling” problem. Wang

and Oliveira [109] use a least-squares method to estimate a locally-smooth surface

for holes. However, this requires user intervention to identify the holes and can

only reconstruct simple surfaces. Vasudevan et al. [110] use a neural-network

based Gaussian process to model large-scale, outdoor environments. They produce

visually appealing results for landscape-type environments. However, this is not

applicable in the city-street environments typical for our mobile robotics platform.

Davis et al. [111] use a small, local signed distance function to represent the surface

around the hole. Then, based on a number of heuristics, they select a “class model”

to approximate the missing surfaces. Their algorithm was designed and tested in

a small scale environment and only operates on gaps that are surrounded on all

sides by distance data - the latter assumption is routinely violated in our data
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Laser Scans Object Detector
Interpolated 
Dense Model

TV RegulariserDense Model Fuser

Figure 5.2: Software Pipeline Overview: Our software pipeline consists of three stages
to convert a sequence of laser scans into an interpolated dense model. First, we process
the laser scans to automatically detect ephemeral objects in the 3D point cloud. Next, the
laser rays not associated with an object are fused into a dense 3D model (Section 5.2 on
page 115). Finally, we apply our KCDE-modified TV regulariser to interpolate surfaces
behind the previously-removed objects (Section 5.4 on page 123).

runs with tall ephemeral objects or when objects pass near to the laser sensor.

Häne et al. [112] use a regularisation term to both smooth out noisy range data

and to interpolate small holes in the dense reconstruction with the assumption

that the surfaces are piecewise planar.

Much of the recent research in the field of general dense reconstruction is based

on RGB or RGB-D (e.g., Microsoft Kinect) inputs [2][67][68][113]. However, we seek

to produce an accurate, dense model solely from sparse range-data input (laser)

and then infill ephemeral-object gaps via a post-processing step.

Figure 5.2 provides a graphical overview of the framework presented in this

chapter. Our input is a sequence of push-broom laser scans from a SICK LMS-

151 mounted on an automobile platform. The laser scans are consolidated into a

cohesive 3D sparse point cloud and processed as follows:

1. Object Detector — We automatically detect and remove ephemeral objects by

using the 3D sliding-window technique presented in [114]. Figure 5.3 on the

next page presents an example of automobile object detection.

2. Dense Model Fuser — As discussed in Chapter 4, the laser scans are fused into

a voxel grid to create a dense model of the environment.
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(a) Raw laser point cloud

(b) Detected automobiles

(c) Processed point cloud after automobile removal

Figure 5.3: Object Detection Example. An example scenario in which the automatic
object-detection pipeline identifies ephemeral objects (automobiles) and removes them
from the laser point cloud.
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3. TV Regulariser — We apply our proposed KCDE TV optimisation method

(Section 5.3 on page 117) to interpolate all occluded surfaces.

The final output of our system is a dense, 3D model of the underlying urban architec-

ture.

This chapter’s contribution is the formulation of a new KCDE data term for the

energy functional in dense reconstructions. With no directly observed data in the

interpolation regions, the KCDE makes the energy sympathetic to local structure

by using a Gaussian-based likelihood model dependent upon neighbouring surfaces.

This helps avoid the tendency for TV to produce a saddle-shaped surface when

reconstructing multiple planes (see Section 5.3.1 on page 117).

A naive approach to missing surface reconstruction might use pure interpolation

or a simple affine prior. However, the sophisticated regularisation approach we

use allows us to model more complicated surfaces without explicitly enumerating

all possible priors.

We begin in Section 5.1 with a Bayesian interpretation of the TV method

previously described in Chapter 3. Section 5.2 on page 115 provides the Ω-label

(Chapter 3) extensions required for our problem formulation. In Section 5.3 on

page 117, we explore the possible interpolation methods that may be utilised by

our regulariser. The algorithm to implement our proposed energy-minimisation

optimisation approach is presented in Section 5.4 on page 123. Finally, quantitative

and qualitative analysis of our regulariser’s performance in an urban environment

are presented in Section 5.5 on page 126.

5.1 Variational Method Regularisation

In contrast to the derivation in Chapter 3, we use a probabilistic approach to

derive the energy function for TV. This provides a better intuition into the

rationale as to why variational methods are an appropriate mathematical model

for the hole-filling problem.

At its core, our method calculates the maximum a posteriori (MAP) estimator,
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argmax
u

(

P(u| f )
)

(5.1)

with P(u| f ) given via Bayes’ theorem as,

P(u| f ) =
P( f |u)P(u)

P( f )
(5.2)

where the scalar u is the denoised or interpolated result, f is the noisy TSDF

data, P( f ) is a constant, P(u) is the prior or “regularisation” term, and P( f |u)

is our likelihood model or “data” term.

From this foundation, we derive a traditional TV energy functional (Section 5.3.1

on page 117), implement a naïve-data-term regulariser (Section 5.3.1 on page 117),

and finally incorporate a KCDE to create a more sophisticated regulariser (Sec-

tion 5.3.2 on page 120) for interpolation purposes.

P(u) and P( f |u) can be modelled, respectively, as Laplace and Gaussian distribu-

tions,

P(u) ∝
∏

ui∈Ω

exp

(

| |∇ui | |1

2σ2
u

)

(5.3)

P( f |u) ∝
∏

( f i, ui )∈Ω

exp *,
| | fi − ui | |

2
2

2σ2
f

+- (5.4)

The numerator in the Laplace and Gaussian exponential’s fraction are the L1 and

L2 norms. The L1 norm is useful as a prior since it is robust to outliers and allows

piecewise consistency. If these distributions are substituted into Equation 5.1, we

can reframe this as a minimising optimisation problem,

argmin
u

(

− log(P(u| f ))
)

=

argmin
u

∑

( f i, ui )∈Ω

| |∇ui | |1 + λ | | fi − ui | |
2
2

(5.5)

where λ encapsulates the ratio of the constant scalar values in Equations 5.1, 5.3, and

5.4.
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Equation 5.5 on the preceding page can be mapped to the continuous domain

as a variational method’s cost functional in the form [115],

E(u) = Eregularisation(u) + Edata (u, f )

E(u) =

∫

Ω

| |∇u| |1dΩ + λ

∫

Ω

| | f − u| |22dΩ
(5.6)

where E(u) is the energy (that we seek to minimise) of the denoised (u) and noisy

( f ) data. The data energy term seeks to minimise the difference between the u

and f . The regularisation energy term–this specific L1-norm case is commonly

known as a TV regulariser–seeks to fit the solution (u) to a specified prior. When

data is non-existent, the regularisation term acts an interpolator and its form

serves as a prior. This is a convex energy minimisation problem that can be

solved using Primal-Dual techniques [77].

Before discussing a modified data term that improves interpolation performance,

first we must define the operating domains of this problem. This will enable us

to distinguish the regions that must be interpolated, in contrast to the typical

noise-reduction goal of optimisation with regularisation.

5.2 Ω Label Inclusion

In Chapter 3, Ω labels were originally conceived as a method to prevent spurious

surfaces from appearing when regularising 3D voxels where only a subset were

directly observed by a range sensor. Ω label’s defining property is enabling

regularisation to target a specific subset of 3D space. It operates on a principal

similar to Neumann boundary conditions - i.e., carefully define and limit an

operation (regularisation) by taking into account special boundary conditions

for the operating domain.

In this chapter, we use the usually-undesirable property (i.e., surface extrapo-

lation) of regularising unobserved voxels with the targeting ability of Ω labels to

interpolate structure in specific regions of the dense reconstruction. All other regions

(Ω̄) must still be excluded to avoid spurious surface generation by the regulariser.
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Figure 5.4: A graphical depiction of how a single ray-traced laser is fused into a two-
dimensional ‘voxel’ grid. The TSDF values represent the zero-crossing surface (black line)
that has only been partially observed (Ωd) while the remaining portion of the surface
must be interpolated (Ωi). All voxels with TSDF values are part of Ωd (blue voxels),
voxels near the interpolated surface are in Ωi (green voxels), and the remaining voxels are
in Ω̄ (red voxels). These TSDF values f ∈ [−1, 1] are a linear mapping from the signed
distance a surface is from a given voxel centroid. There is no f value when the signed
distance is less than −µ, however when the signed distance is greater than µ (i.e., observed
free space in front of a surface) all those voxels are updated with f = 1.

To leverage the Ω labels within our regulariser, we subdivide our voxel grid

into three distinct sets:

1. Ωd – These voxels were directly intersected by a laser ray, so the regulariser will

only smooth the already-existing data.

2. Ωi – These voxels were not intersected, but they are in a region in that we will

interpolate missing surfaces. For example, a automatic object detector such as

[114] indicates where ephemeral objects exist, we then remove the objects and

add those areas to Ωi to interpolate the surfaces. In other words, for each laser

ray that intersected an ephemeral object, we extend the ray further outwards

to include the background area in Ωi.

3. Ω̄ – These voxels were neither directly intersected by a laser ray nor were

they in a region targeted for interpolation. These voxels are excluded from

regularisation.
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Therefore, our Ω label domain is defined as Ω = Ωd

⋃

Ωi. These subsets are

graphically depicted in Figure 5.4 on the facing page.

5.3 Potential Interpolation Approaches

In Section 5.1 on page 113, the probabilistic noise-reduction approach presented

faced one difficult challenge: What should be done when optimising a region in

which no data was directly observed? In other words, how should the energy

minimisation problem be posed in regions not directly observed by the sensor?

For noise reduction, the formulation takes the form,

E(u) =

∫

Ω

| |∇u| |1dΩ + λ

∫

Ω

| | f − u| |22dΩ (5.7)

where the data term penalises a final solution that deviates too far from the originally

observed data. However, as our goal in this chapter to accurately interpolate regions

that were occluded by an object, the data term essentially disappears (is zeroed out

since there is no f ) and therefore only the regularisation term remains.

We evaluate two potential solutions to this problem. First, in Section 5.3.1, we

present a naïve approach where the data term remains zero and the TV or TGV

term are the sole contributors to the energy minimisation. Second, in Section 5.3.2

on page 120, we modify Equation 5.4 on page 114 with a bipartite likelihood, one

computation for smoothing and another for interpolation.

5.3.1 Naïve Likelihood Function

In a naïve approach, denoised and interpolated regions are treated identically in the

energy minimisation. However, the input data significantly differs. Equation 5.4 on

page 114 can be expanded to detail its form based the voxel’s (v operating domain),
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(a) Single-Plane Input (b) Single-Plane TV Naïve Regularisation Inter-
polation

Figure 5.5: Single-Plane TV Naïve Regularisation: This simple example demonstrates a
naïve TV regulariser serving to interpolate hidden structure. In this case, the input (a) is
a plane with a hole in the centre. The TV regulariser’s interpolated surfaces (b) converge
on the correct result.

P( f |u, v) ∝


exp

(

| | f−u| |2
2

2σ2
u

)

v ∈ Ωd

exp
(

0
2σ2

u

)

v ∈ Ωi

∝


exp

(

| | f−u| |2
2

2σ2
u

)

v ∈ Ωd

k1 v ∈ Ωi

(5.8)

When surface data ( f ) is directly observed (v ∈ Ωd), the data term takes

form of a normal distribution centred about the average TSDF value. A penalty

(| | f − u| |) is applied when the estimated (“denoised”) TSDF value differs from

the average observed value.

However, when the surface data is occluded (v ∈ Ωi) and the surface must be

interpolated, there is no observed f . Without a meaningful penalty to apply for

any given estimated (u) TSDF value, the numerator in the exponential becomes 0,

and the likelihood is a constant k1: all states are equally probable.

The “minimisation” version of Equation 5.8 now becomes,

δ̃(u, f ) ∝

| | f − u| |22 v ∈ Ωd

− ln(k1) v ∈ Ωi

∝

| | f − u| |22 v ∈ Ωd

k2 v ∈ Ωi

(5.9)
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(a) Two-Plane Input (b) Two-Plane TV Naïve Regularisation Interpo-
lation

Figure 5.6: Two-Plane TV Naïve Regularisation: A slightly more complicated scenario
than Figure 5.5 on the facing page, but more representative of the two-plane intersections
dominant in urban reconstructions. In this case, the missing data in the centre of the
plane intersection (a) causes difficulty in the interpolated result (b). The final converged
solution is approximately an average of all possible solutions—thus creating a saddle-
shaped interpolated surface.

Since k2 is a constant, in the minimisation there is effectively no data-term penalty

for unobserved voxels. The energy function becomes,

E(u) =

∫

Ω

| |∇u| |1dΩ + λ

∫

Ω

δ̃(u, f )dΩ (5.10)

Before performing large-scale experiments, we chose to evaluate this approach on

a simple synthetic scenarios. Planes dominate 3D urban environments. Therefore,

it stands to reason that if the interpolation does not perform well when portions

of one or two planes are occluded in synthetic data, it will not perform well on

even more complex, noisier real-world data.

We first evaluate the result of occluding a part of just a single plane, as depicted

in Figure 5.5 on the preceding page. The implementation (Section 5.4 on page 123)

of the naïve TV approach (Equation 5.10) is quite good—the occluded region is

correctly interpolated as a continuous plane (Figure 5.5 on the facing page).

However, urban structure is composed of more than just a single plane. Therefore,

in our second evaluation, we show the more typical case of two planes intersecting

at a 90° (Figure 5.6). Again, we occlude the interior portion of the intersecting

planes—this type of scenario occurs quite frequently in our real-world datasets
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(Section 5.5 on page 126) when a car parked on the side of the road occludes

the pavement-building plane intersections.

The naïve TV approach breaks down in this scenario. The final interpolated

surface (Figure 5.6 on the previous page) saddle-shaped. Essentially, the TV

regulariser approximates the average of all possible planes that could form a convex

hull to fill the occluded region. Even switching to a TGV regulariser [116][75] only

slightly dampens the saddle, but the saddle is still clear in the final solution.

However, as presented in the next section, it is possible to significantly improve

the performance of the optimiser by incorporating knowledge of the neighbouring

surface data. Rather than diffusing this data through a gradient term, we can

explicitly encode it in the data term.

5.3.2 Proposed Likelihood Function

The naïve approach presented in the previous section only propagated neighbouring

surface data through a gradient term. The optimiser converged upon a saddle-

shaped solution, shown in Figure 5.6 on the preceding page, when presented with

an occluded 90° two-plane intersection.

A human visually evaluating the solution sees it is incorrect because it does

not match the form of the non-occluded surfaces. In this section, we seek to

explicitly encode that knowledge into the data term of the energy function in

a probabilistic manner.

As described previously, for voxels where TSDF data ( f ) is missing (i.e., Ωi),

we cannot calculate the corresponding P( f |u). Our new data term adds a KCDE

likelihood estimator for the interpolated voxels (Ωi),

P( f |u, v) ∝


exp

(

| | f−u| |2
2

2σ2
u

)

v ∈ Ωd

L(u) v ∈ Ωi

(5.11)

where v is the current voxel and L(u) is a KCDE that provides a prior data term

to guide the regularisation as it interpolates surfaces [117],
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Figure 5.7: Example KCDE likelihood plots. These plots provide an illustration of the
TSDF likelihood distribution for a single voxel in a simple scenario where two neighbours
(hence a bimodal distribution) contain valid surface observations. The neighbour voxels
contained TSDF values of 0.25 and 0.75 and were respectively 10 and 8 voxels away.
As the 0.25 TSDF value is 2 voxels closer, it has a higher likelihood than the 0.75
neighbour. The log-likelihood plot (b) is the inverse of the likelihood that is used in the
energy-minimisation optimisation formulation. (σα = 0.3, σβ = 10)

L(u) =

M
∑

i=1
Ku(u − ui)Kd (di)

M
∑

i=1
Kd (di)

Ku(α) ∝ exp

(

−α2

2σ2
α

)

Kd (β) ∝ exp *,
−β2

2σ2
β

+-

(5.12)

where M is the number of cardinal neighbouring voxels in Ωd, ui is the neighbour’s

TSDF value, and di is the distance between the current voxel and the neighbour.

The Ku(·) kernel incorporates the neighbour’s TSDF value while Kd (·), in concert

with the denominator, provides a confidence in the neighbour’s value based on the

distance between voxels. This can be thought of as a memory-efficient method to

accomplish a similar effect as the approach described in [38].

Figure 5.7 provides an example L(U) for a single voxel with only two neighbours

with valid TSDF values. Two valid neighbours results in a bimodal distribution with

the nearest neighbour’s TSDF peak higher than the other peak. This plot makes
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(a) Two-Plane Input (b) Two-Plane TV KCDE Regularisation Inter-
polation

Figure 5.8: Two-Plane TV KCDE Regularisation: Using the same two-plane input (a)
as Figure 5.6 on page 119, our proposed KCDE data term successfully (b) interpolates
reasonable surfaces in the interpolated region. Note the stark contrast between this
solution (b) and the naïve approach’s saddle-shaped solution in Figure 5.6 on page 119.
Further analysis with real-world, multi-plane (up to six intersecting planes) scenarios are
presented in Section 5.5 on page 126.

it clear that the KCDE formulation elegantly incorporates an arbitrary number of

neighbour voxels, applies appropriate weights (based on distance), and then provides

a single, meaningful metric that can be used to inform the energy data term.

The minimisation version (Figure 5.7 on the preceding page) of Equation 5.11

on page 120 now becomes,

δ(u, f ) =

| | f − u| |22 v ∈ Ωd

− ln(L(u)) v ∈ Ωi

(5.13)

that results in the energy function,

E(u) =

∫

Ω

| |∇u| |1dΩ + λ

∫

Ω

δ(u, f )dΩ (5.14)

However, the KCDE term makes δ(u, f ) non-convex and cannot be solved with

traditional techniques. We therefore approximate it with a second-order Taylor Series

expansion that guarantees convergence when the Hessian is a positive-semidefinite

matrix [118]. In addition, the non-convexity of the data term–as illustrated in

the example in Figure 5.7 on the preceding page–contains multiple local minima

that we account for in Section 5.4.1 on page 125.
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As in the previous section, we now evaluate this new TV KCDE optimisation

approach with an occluded synthetic two-plane intersection. The input and output

of this approach are shown in Figure 5.8 on the facing page. Note the stark

contract between Figure 5.8 on the preceding page (this KCDE approach) and

Figure 5.6 on page 119 (the naïve approach). In the naïve approach, there was a

distinct saddle-shape to the interpolated surfaces. In this improved KCDE approach,

the additional neighbour information provided in the data term helps guide the

optimiser to a more reasonable solution.

Based on this modest success on synthetic data, we next discuss implementa-

tion details before presenting the results of applying this KCDE approach to

real-world data.

5.4 Implementation

Figure 5.2 on page 111 is a summary of our overall software pipeline, outlining

the steps required to process a sequence of laser scans to ultimately generate an

interpolated dense model. In this section, we describe the algorithm to solve

Equation 5.14 on the facing page that is required in the last stage of our software

pipeline. The optimisation implementation is similar to that presented in Section 3.3

on page 59, however, the KCDE introduces enough differences to justify explicitly

enumeration of the process.

The L1 term in Equation 5.14 on the facing page is not differentiable; therefore,

it cannot be minimised using standard techniques. We use the Legendre-Fenchel

Transform [76] [77] to transform it into a differentiable form,

argmin
u

∫

Ω

| |∇u| |1dΩ = argmin
u

argmax
| |p| |∞≤1

∫

Ω

u∇ · pdΩ (5.15)

where the primal scalar u is the current denoised and interpolated TSDF solution

and ∇·p is the divergence of the dual vector field p defined as ∇·p = ∇px+∇py+∇pz.

Applying this transformation to Equation 5.14 on the preceding page, the original

energy minimisation problem now becomes a saddle-point (min-max) problem with

a new dual variable p along with the original primal variable u,
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argmin
u

argmax
| |p| |∞≤1

∫

Ω

u∇ · p + λ

∫

Ω

δ(u, f )dΩ (5.16)

The solution to this regularisation problem is found with a Primal-Dual opti-

misation algorithm [77] that we briefly summarise in the following steps:

1. p, u, and û are initialised to 0. û is a temporary variable that reduces the

number of optimisation iterations required to converge.

2. To solve the maximisation, we update the dual variable p,

pk =
p̃

max(1, | |p̃| |2)

p̃ = pk−1 + σp∇û

(5.17)

where σp is the dual variable’s gradient-ascent step size.

3. For the minimisation problem, the primal variable u is updated by,

uk =


ψ(ũ,w, f ) v ∈ Ωd

ξ (ũ, uk−1,w, f ) v ∈ Ωi

(5.18)

with,

ũ = uk−1 − τ∇ · p

ψ(·) =
ũ + τλw f

1 + τλw

ξ (·) =
ũ + τλi (δ

′′(uk−1,·)uk−1 − δ
′(uk−1, ·))

1 + τλiδ′′(uk−1, ·)

(5.19)

where τ is the gradient-descent step size and w is the weight of the f TSDF

value.

The ξ (·) calculation is a numerical approximation of the second-order Taylor

series expansion of δ(u, f ) from the Ωi term in Equation 5.13 on page 122. This

uses a modified λi that is further described in Section 5.4.1 on the next page.

To meet the positive-semidefinite matrix constraint, since δ′′(u0, ·) is a scalar,

we restrict its value to ≥ 0.
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4. Finally, to converge in fewer iterations, we apply a “relaxation” step,

û = u + θ(u − û) (5.20)

where θ is a parameter to adjust the relaxation step size.

While the derivation may seem complex at first glance, the preceding four steps

are all that a user must implement to take advantage of our approach.

5.4.1 Adaptive Regularisation

As previously mentioned, the non-convexity of the KCDE data term contains

multiple local minima. We initially set λi to a small value and then increase it

after the regulariser converges.

Initially setting λi to a value orders of magnitude lower than λ ensures the

KCDE data term only guides rather than dominates the regularisation process.

This effectively removes the non-convexity of the energy functional and allows

the regulariser to select solutions outside of the current local minimum. Once

the regulariser converges, λi is increased to further refine the solution. This two-

stage process minimises the global energy and therefore reduces the impact of

non-convexity of the KCDE data term.

Our approach of utilising different values for λi, based on confidence in the local

data, was inspired by image pyramids and the 2D depth-map regularisation in [38].

Table 5.1: Scenario error statistics

# Median Error (cm) σ (cm) Eval Dims (m) Vol. (m3)
1 8.48 6.00 3.8 x 2.8 x 11.4 121.3
2 9.24 6.08 3.7 x 2.1 x 10.7 83.1
3 5.64 4.64 5.6 x 2.8 x 22.9 359.1
4 5.97 4.57 3.8 x 3.7 x 13.8 194.0
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Figure 5.9: The 10 km data collection route was traversed twice: once for reference
with few vehicles on the roads and a second time for evaluation data with a large variety
of vehicles visible. Map generated with OpenStreetMap [119].

5.5 Results

To evaluate the performance of our algorithm, we ran an automated ephemeral

object detector on a 10 km data-collection route in Oxford, UK, as depicted in

Figure 5.9. Our vehicle had a Bumblebee 2 stereo camera for VO [18]; a Ladybug 2

for colouring the laser points [94] and to add textures to the dense reconstructions;

and a SICK LMS-151 2D laser oriented for push-broom collection.

The data-collection route was driven on two separate occasions. The reference

data run was accomplished before dawn to minimise the number of vehicles parked

on the roadside. The evaluation data run took place near noon on the same day, a

time where there were a maximum number of vehicles on the roads or parked nearby.

We selected four 30 m segments from the two routes to access our dense

reconstruction. The segments contained two or more vehicles in the second data

run with no overlapping vehicles in the reference data run. This allowed us to

automatically detect cars in the second data run, remove them, apply our dense

reconstruction technique, and then compare our results with the original data run.

We used the object detector described in [114].
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(a) The raw point cloud used as the input to
our regularisation algorithm.

(b) The dense reconstruction with infilled
background data. Since there is no texture
data for the obstructed background, a
triangle mesh is overlaid to visualise the
reconstruction’s 3D model.

(c) A point cloud of the translation errors for the dense reconstruction. Each colour in this
figure correspond to the same translation error in (c).
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(d) The distribution of the translation error for the isosurface
extracted from the dense reconstruction.

Figure 5.10: Scenario 1: Reconstruction of area behind two automobiles where the
surrounding laser data includes a tree (top right of reconstructed area). Error: median
= 8.48 cm, σ = 6.00 cm
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(a) The raw point cloud used as the input to
our regularisation algorithm.

(b) The dense reconstruction with infilled
background data. Since there is no texture
data for the obstructed background, a
triangle mesh is overlaid to visualise the
reconstruction’s 3D model.

(c) A point cloud of the translation errors for the dense reconstruction. Each colour in this
figure correspond to the same translation error in (c).
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(d) The distribution of the translation error for the isosurface
extracted from the dense reconstruction.

Figure 5.11: Scenario 2: Reconstruction of area behind two automobiles where six
separate intersecting planes must be interpolated. Error: median = 9.24 cm, σ = 6.08 cm
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(a) The raw point cloud used as the input to
our regularisation algorithm.

(b) The dense reconstruction with infilled
background data. Since there is no texture
data for the obstructed background, a
triangle mesh is overlaid to visualise the
reconstruction’s 3D model.

(c) A point cloud of the translation errors for the dense reconstruction. Each colour in this
figure correspond to the same translation error in (c).
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(d) The distribution of the translation error for the isosurface
extracted from the dense reconstruction.

Figure 5.12: Scenario 3: Reconstruction of area behind two automobiles in a typical
two-plane-dominated street environment. Error: median = 5.64 cm, σ = 4.64 cm
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(a) The raw point cloud used as the input to
our regularisation algorithm.

(b) The dense reconstruction with infilled back-
ground data. Since there is no texture data
for the obstructed background, a triangle mesh
is overlaid to visualise the reconstruction’s 3D
model.

(c) A point cloud of the translation errors for the dense reconstruction. Each colour in this
figure correspond to the same translation error in (c).

Translation Error (cm)
 0 10 20 30 40 50

N
um

be
r 

of
 V

er
tic

es

  0

 50

100

150

200

250

300

350

400

(d) The distribution of the translation error for the isosurface
extracted from the dense reconstruction.

Figure 5.13: Scenario 4: Reconstruction of area behind three automobiles in a typical
two-plane-dominated street environment. Error: median = 5.97 cm, σ = 4.57 cm
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As in Section 3.6 on page 68, the ground-truth data (Mℓ) was generated by

composing the VO-estimated poses, interpolating the correct laser-to-world pose

(Twℓ ∈ SE(3)) for each 2D push-broom laser scan, and plotting the resulting scan (in

30 m segments) in the correct world position. To this end, we utilise the city-scale,

sparse point-cloud method created by Stewart in [94]. The resulting 3D point cloud

was used to access the accuracy of our reconstructions.

From the output of our reconstruction algorithm, we extracted a point-cloud

sampling of the zero-crossing isosurface in our voxel grid [62] and compared this to the

reference data with CloudCompare [65]. These results are quantitatively summarised

in Table 5.1 on page 125, Figure 5.10 on page 127, and Figure 5.13 on the facing page.

Each automobile removed required approximately 20 m2 of surface area to be

interpolated by the regulariser. Our reconstructions had median accuracies ranging

from 5.64 cm - 9.24 cm with standard deviations between 4.57 cm - 6.08 cm.

Based on the synthetic results presented in Section 5.3.2 on page 120, we are

not surprised at the highly accurate reconstruction on the simple reconstruction

scenarios. In these typical city-street environment were the reconstruction is

dominated by two planes (the pavement and building façade) the interpolated

reconstructions (Figure 5.12 on page 129 and 5.13 on the preceding page) contained

the least amount of error. However, our system even performed well interpolating

more complex structures such as trees (Figure 5.10 on page 127), six separate

intersecting planes (Figure 5.11 on page 128), or features (e.g., door or window)

obscured by the removed vehicle (Figure 5.13 on the facing page).

Previous work [78] demonstrated other regularisation terms can produce better

results than TV. However, once the KCDE data term was added to our pipeline,

the TV and TGV regularisers converged upon nearly identical solutions - there-

fore the additional computational and memory requirements of TGV perhaps

are not justified.

Finally, while the algorithm presented in this chapter worked well for the most

common scenarios we encountered in our datasets, there are areas in which it would

struggle—most notable in the selection of the “neighbour” voxels that guide the
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regulariser. For example, if an automobile is parked in front of an alleyway, then

the “neighbours” would include the orthogonal walls on either side of the alley, the

pavement below, and the free space in the alleyway. Our algorithm converges upon

the “neighbour” that results in a low-energy solution (i.e., minimise gradients with

respect to the originally-observed surfaces), but this would not be desirable if the

regulariser creates a wall where there should be free space. If this is a common

occurrence in a given application or dataset, then one must pursue an alternative

hole-filling strategy. We leave it to future work to address these potential limitations.

5.6 Conclusions

In this chapter, we presented our new approach that reconstructs large-scale

environments from laser scans, removes ephemeral objects, and then back-fills

the gaps in the laser data. We created accurate reconstructions by fusing laser

data into a voxel grid and isolating the regions for TV regularisation (utilising

Ω labelling method presented in Chapter 3) with a KCDE data term to assist

when interpolating the missing surfaces. When reconstructing approximately 20 m2

of surface area, our proposed method’s median accuracy was under 10 cm with

a standard deviation of 6 cm or less.

The high degree of accuracy achieved in detecting sensor occlusions (e.g.,

pedestrians, bicycles, automobiles, etc.) and interpolating the hidden surfaces

is an enabler for autonomous-driving applications. In concert with the large-scale

system presented in Chapter 4, we envision this “hole-filling” system being used

as part of an automobile’s “dream state”. After returning from a day of driving

around the city, the dense 3D maps are updated to remove all ephemeral objects

thus revealing the underlying urban structure.

After removing ephemeral objects and interpolating the background structure,

it may be desirable to further improve the reconstruction quality by identifying

and removing error-prone regions of the dense reconstruction. In Chapter 6, we

present a machine-learning approach to help identify these areas.



In God we trust. All others must bring data.

— W. Edwards Deming

6
Towards (Deep) Learning Where Dense

Reconstructions Go Wrong

Abstract

Dense reconstructions contain errors. We sought to minimise these errors in

previous chapters by using high quality sensors and regularising the output, but

errors still persisted. In this chapter, we present early-stage results around a

machine learning technique to identify and highlight the error-prone regions of

reconstructions. This enables a system pipeline to remove or repair these regions to

improve the reconstruction accuracy.

We trained and evaluated our network with data from the BOR2G dense recon-

struction pipeline. High-quality laser reconstructions provide ground truth against

which we compare our depth-map reconstructions. We train on a 3.8 km sequence

from the KITTI dataset. Through qualitative analysis of a separate 2.2 km KITTI

sequence, we demonstrate the network correctly identifies the most error-prone

regions in the depth-map reconstruction. In addition, we provide a quantitative

benchmark against which future work may compare.

133
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P
revious chapters sought to create accurate 3D maps by regularising the

camera depth maps, using high-quality sensors, and regularising the dense-

reconstruction output. However, as seen in the results presented in Chapter 4, the

reconstructions still contain errors. In this chapter, we present a method to identify

the most defect-prone portions. Our goal is to facilitate the removal or repair of

these mesh regions to improve overall mapping accuracy.

Defect detection has been a robust area of research for the past 25 years. In

1993, Abe proposed an automated system to detect cracks in real time using a

custom-built image processor [120]. This was a significant improvement for the

industry; previously they relied solely upon human evaluation of images, whereas

the new system improved efficiency by highlighting high-probability “crack” images.

Later research by Kumar sought to apply similar 2D image processing and filtering

techniques to identify defects in manufacturing processes—specifically targeted to

textile, plastic, and paper manufacturing [121].

In the 2000s, research transitioned from analysing individual 2D images to

creating a feature-rich 3D reconstruction. The additional spacial information enabled

the application of mesh-quality metrics based on explicitly-encoded geometric and

gradient priors [122]. Civil architecture applications drove the research during this

period. Gordon sought to evaluate the accuracy of a building under construction

by comparing the “as-built” 3D laser model to the design blueprints [123]. Natural

disaster Building Damage Assessment (BDA) applications required an automated

mobile-robotics system to survey buildings and identify regions requiring repair

[124][125][126]. These methods heavily relied upon computer vision approaches
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(a) Depth-Map Reconstruction (Colour) (b) Depth-Map Reconstruction (Mesh)

(c) Laser Reconstruction (Colour) (d) Laser Reconstruction (Mesh)

Figure 6.1: Depth-Map vs. Laser Reconstruction Comparison. A human operator, if
given a set of colour and mesh images for a reconstruction, can intuitively recognise the
regions that likely contain errors. In the top example ((a) and (b)) one can recognise
the “smearing” between the cars and the holes in the road are incorrect. The goal of this
chapter is to train a neural network to automatically recognise these regions in depth-map
reconstructions by training it on data from laser reconstructions (e.g., (c) and (d)).

to create a 3D model (sparse or dense) of the environment from a sequence of

images. An overview of these civil architecture defect detection approaches may

be found in Koch’s 2015 survey paper [127].

We base our approach on a convolutional neural network using feature data

generated from both laser-only and depth-map-only dense reconstructions. As

demonstrated in Chapter 4, though laser reconstructions usually cover less surface

area, they create more accurate reconstructions and therefore serve as our ground-

truth when training the network. We use the laser reconstructions to train the

network to evaluate the quality of the depth-map reconstructions. A simple example

of this process is shown in Figure 6.1 which compares the same scene reconstructed

by laser and camera input data. A human operator, after observing the quality of

the laser reconstruction’s colour and mesh images, could readily identify regions in

the camera reconstruction that are likely incorrect—e.g., holes in the road and the

“smearing” area between the automobiles. In this chapter, we present our method
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Figure 6.2: Machine Learning Data-Flow Pipeline. To train our network, we create
separate depth-map and laser dense reconstructions (using the techniques discussed in
Chapter 4). We create ground-truth data by subtracting the rasterised depth maps from
each reconstruction. The neural network trains on rasterised feature images (see Figure 6.3
on page 138) to learn to generalise the ground-truth error in new scenarios.

to train a neural network to recognise and highlight these regions.

Machine learning, in particular deep neural networks, has permeated the

computer vision community over the past decade due to advances in GPGPU

computing and technique. With just image inputs, neural networks have been

trained to identify a 6-DoF pose within a small-town-sized region [128], create

3D models of objects [129][130], and estimate per-pixel depth [40][41][131]. Our

contribution is the proposal of the dense reconstruction and machine learning system

pipeline that enables the network to identify poorly-reconstructed regions of a given

3D model and to point the way to future dense reconstruction repair work. Rather

than focus on the dense-reconstruction system’s inputs (e.g., laser or image), we

operate directly on its output (i.e., 3D model). In essence, this is a dual of our work

in Chapter 3 and Chapter 4 since we are now focused on learning the objective

function rather than adapting a regulariser to improve reconstruction performance.
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6.1 System Pipeline

Our system pipeline to train the neural network is presented in Figure 6.2 on the

facing page. We create two dense reconstructions: one with camera-only (depth-

map) inputs and another with laser inputs. We then extract the 3D model from

each reconstruction pipeline and rasterise feature images (Section 6.2). Since the

active laser sensor is significantly more accurate than the passive cameras, the laser

feature images are used as the ground-truth reference (Section 6.3 on page 139)

to train our convolutional neural network (Section 6.4 on page 139).

6.2 Feature Creation

Much work in the deep learning literature relies upon simple RGB images as the

input [40][41][131]. However, as our problem formulation assumes a dense 3D model

is available, we can extract a much richer set of features from the reconstruction.

High-quality features are important as they result in a more robust network that

takes less time to train because the network has less to learn. In our scenario

where we wish to find errors in the reconstruction, if we only provided an RGB

image to the network, it might first learn to infer the correct depth before learning

to predict the errors. However, if we directly provide the estimated depth as a

feature input, the initial learning time is reduced.

We use GLSL to “fly” a virtual camera throughout the 3D models to extract

features. Our vertex shader transforms the 3D model’s vertices into the camera

reference frame (Section 2.2.1 on page 15) to compute the depth of each vertex

and the normalised camera vector. These camera-frame points are then grouped

into triangles and passed along to a geometry shader that computes the triangle’s

area, surface normal, and edge lengths. Finally, the fragment shader processes

each of the preceding feature values and rasterises them into individual pixels in

feature images, as shown in Figure 6.3 on the next page. As a post-processing

step, we normalise all feature vectors to approximately fit within the range [0, 1].

This GLSL process enables us to extract 11 unique feature images: 4 per-pixel
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(a) Colour Reconstruction
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(d) Triangle Surface Normal
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(e) Triangle Edge Length Ratios

Figure 6.3: Example Input Features. As our dense reconstructions provide a 3D model
of our operating environment, we can extract a variety of features that are useful to train
our neural network. Pictured above are example features (colour reconstruction, pixel
depth, triangle area, triangle surface normal, and triangle edge length ratios) our GLSL
pipeline currently extracts. The per-triangle features significantly improve the feature
quality as they directly provide contextual and geometric information from which the
network can learn higher-order features.
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features (RGB and depth) and 7 per-triangle features (area, surface normal, and

edge lengths). The triangle-based features are critically important as they provide

both contextual and geometric information as patches in the image. This propagates

swaths of meaningful data throughout the image, enabling the network to learn

higher-order image and scene features.

6.3 Ground-Truth Data

Two identical virtual camera trajectories are used to create a sequence of feature

images from both the depth-map and laser reconstructions. However, as the goal

is to train a neural network to recognise errors in the depth-map reconstruction,

we must first compute ground-truth errors with which to train the network. This

ground truth must characterise differences between estimated depth values in the

laser and depth-map reconstructions. Rather than directly differencing depths, we

instead elect to use inverse depth maps so that small errors are heavily penalised

by the network. Specifically, we compute the per-pixel ground-truth (δgt) as,

δgt = A
�����
�����
di − dℓ

didℓ

�����
�����1 (6.1)

where di and dℓ are the depth-map and laser reconstruction per-pixel depth features,

respectively, and A is a constant. In disparity images from stereo cameras, A = f xb

where f x is the camera’s x focal length and b is the baseline distance between

the left and right image sensors (Section 2.2.1 on page 15). However, since our

approach is agnostic of the input sensor, A is arbitrary but should be standardised

when evaluating performance (Section 6.5 on page 143).

6.4 Network Architecture

When developing a machine learning implementation, one must consider four

vital components: (1) input features, (2) network architecture, (3) robustness

factors, and (4) cost function.

As discussed in Section 6.2 on page 137, our 3D models of the operating

environment enable us to extract a much richer feature set than usually available
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in image-based machine-learning applications. Of particular utility are the depth

and triangle-based features since they directly provide the network with geometric

and contextual information about the scene.

We down-selected from 11 to 3 features to reduce the time required to train

the network. By providing training data to human evaluators, we found the most

features most “intuitive” to help detect errors the inverse depth, intensity, and

camera-to-surface angle. The inverse depth map directly provides information about

the estimated 3D structure of the image. This, in concert with the gradients of

an intensity image and the viewing angle of the observed surfaces, were the most

salient features to allow the evaluators to estimate the errors after a very short

training period—thus making it more likely that a deep neural network can recognise

similar patterns if provided enough training data. The evaluators found the triangle

edge length to be the least useful since, as a result of the voxel representation and

Marching Cubes surface extraction, all triangles were similarly shaped and sized.

As it is the current state-of-the-art neural-network approach to generate depth

maps from an image, we selected Lania et al.’s Fully Convolutional Residual Network

[131] as the basis for our network architecture. Lania’s network, a high-level

representation of which is shown in Figure 6.4 on the next page, was originally

designed to infer per-pixel depth from a single RGB image, a task which is highly

correlated to our aim to compute estimated depth error given a set of feature

inputs. The general approach is to pass the input feature images through a series

of decreasing-sized convolutional layers. Each convolutional layer performs small

convolutions (1 × 1 and 3 × 3) that are added as features for the next layer. By

using the convolutional layers to add features, rather than directly modify the input

feature vector, higher-order feature gradients are better preserved throughout the

network, which improves the networks learning rate.

A network’s robustness refers to its ability to generalise. If a high-dimensionality

network is trained too long on a small dataset, then the network may become

overtrained, performing very well on the training dataset but producing poor results
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Figure 6.4: Fully Convolutional Residual Network. This network architecture, based
on [131], processes each input feature vector by downscaling/projecting the features to a
smaller image space but larger feature space (to preserve higher-order gradients). The
final prediction is generated by reversing the process. The convolutions in conjunction
with image-pyramid approach ensures the network can better generalise features across
input scenarios.

when presented new scenarios. A robust network performs reasonably on training

data and also generalises well to new datasets.

We seek to improve the robustness of our network through three techniques:

cropping, decimation, and regularisation. First, we randomly perturb and crop all

input feature images before inputting them into the network. After each epoch

of training (i.e., the network has viewed input image), the next epoch will receive

a slightly different cropped region of the input image. Without this, the network

may learn features that are only associated with a specific pixel location in the

training data, thus poorly generalising. Second, we decimate the feature images in

multiple stages of the network—similar to, but the reverse of, the image pyramid

approaches popular in computer vision. This provides the network with the chance

to learn higher-order features on the image that take into account information

from larger “patch” regions. Third, we implement a regulariser to prevent the

network from over-relying on the cost function at the expense of generalisation

performance. Additionally, dropout may be implemented to randomly remove

network connections during training to ensure the network builds redundancy and

robustness into its parameters [132].
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Figure 6.5: Comparison of L1, L2, Huber, and BerHu Norms. Pictured above are four
common norms used in the optimisation literature. We extensively used the L1 norm (a)
throughout earlier portions of this thesis, however in this chapter we transition to the
BerHu norm (d) as it enforces a larger penalty on small errors—a desirable feature when
learning disparity errors—while still providing a high penalty on larger errors.

A few cost (frequently called “loss” in the deep learning community) functions

are widely used in machine learning applications, as shown in Figure 6.5. The

L2 norm is traditionally popular because it heavily penalises large errors and is

smooth, thus simplifying the process of optimisation. However, as discussed in

Section 3.2.1 on page 54, the L1 norm emphasises small error penalties while

reducing the impact of outliers, but this is at the expense of a more complicated

optimisation implementation as L1 is not differentiable. Over the years, researchers

have proposed alternative norms which combine the “best” (based on application)

features of each of these norms. The Huber norm uses L2 near the origin and L1
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Figure 6.6: Example Network Prediction (Partial Fence Reconstruction). When provided
the feature vectors from (b), (c), and (d), our network recognises and highlights high-
probability error regions (f). Of particular note, it recognises the missing portions of the
fence (bottom-left of image) and automobile (bottom-right of image). During training,
the predicted error image is cropped and randomly perturbed to improve the network’s
robustness. This is why the “Predicted Error“ image (f) is smaller than the “Ground-Truth
Error“ image (f).

elsewhere, thus making the optimisation implementation simpler. The BerHu uses

the L1 norm near the origin and the L2 elsewhere [133]. We choose this as our cost

function since the L1 term places a higher penalty on small errors (when compared

to Huber or L2) while still providing strong penalties for larger errors.

6.5 Results

This section presents the qualitative and quantitative prediction performance of

our network. We trained the network on 4,541 feature images from KITTI-VO

Sequence 00 (3.8 km) and evaluated the network’s performance on KITTI-VO

Sequence 05 (2.2 km). In the train stage we use knowledge of the laser reconstruction

to improve network predictions, however in the evaluate stage we only use feature

inputs from the depth-map reconstruction. Both sequences are predominantly
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in urban environments with small amounts of visible vegetation. Using OpenGL

shaders, we created a virtual camera to project the dense reconstruction into feature

images to train and evaluate the network. We used three salient features: inverse

depth, camera-to-surface angle, and pixel intensity.

As discussed in Section 6.3 on page 139, per-pixel ground truth data (δgt)

was computed by comparing the inverse depths of the laser and depth-map re-

constructions. For Equation 6.1 on page 139, we select A = 500 to appropriately

scale the error metrics (Table 6.1).

Example input features, ground-truth data, and predicted errors are presented

in Figure 6.6 on the previous page The network successfully highlights the high-

likelihood error regions—most noticeable the borders around the fence (bottom-left

of input image) and car (bottom-right of input image). More examples of the

network’s qualitative prediction performance are presented in Figure 6.7 on the

facing page, which presents a set of input RGB images and the corresponding

ground-truth error and predicted error. The trends in the prediction image are

similar to those in the ground-truth images.

Quantitatively, the RMS, median, 75%, and standard deviation errors are

recorded in Table 6.1 to serve as a benchmark for future work.

Future work should explore improved methods of detecting reconstruction

defects—for example, enhance accuracy by directly inputting 3D data (rather than

the current 2D projection) into the network. Additionally, the problem of defect

repair should be addressed—perhaps through a simple “hole filling” strategy as

discussed in Chapter 5 or a more sophisticated method that manipulates a mesh

to conform to a learned prior.

Table 6.1: Error (Inverse Depth) Metrics Summary

Method KITTI Train KITTI Test RMS Median 75% Std. Dev.

BOR2G VO Seq 00 VO Seq 05 9.40 1.14 4.40 8.24
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(a) Coloured Reconstruction (b) Ground-Truth Error (c) Predicted Error

Figure 6.7: Example Ground-Truth vs. Network Prediction. Given the scene present
in (a), our network successfully recognises (c) the most error-prone regions of the
reconstruction—e.g., unlikely borders around cars, fences, and buildings.
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6.6 Conclusions

In this chapter we presented an automated, supervised learning technique to train

a neural network to detect error-prone regions of a dense reconstruction. Although

external time constraints placed on the author necessitate this research thread

remain as an early-stage component, we have not seen work which explicitly learns

to evaluate dense reconstruction. These nascent results indicate this approach

indeed shows promise. We extracted 11-channel feature images, including channels

for inverse depth, camera-to-triangle angle, triangle area, and pixel intensity.

Using a GLSL pipeline, we positioned a virtual camera at various positions and

orientations throughout the reconstruction to generate both input feature data and

(by comparing the laser and depth-map reconstruction features) ground-truth

data to train the network.

Trained on the reconstructions created in Chapter 4 for the 3.8 km KITTI-

VO Sequence 00, our network’s performance was qualitatively and quantitatively

analysed on the 2.2 km KITTI-VO Sequence 05. The network consistently recognised

and highlighted the similar problem areas as those found in the ground-truth data.

Thus, the approach proposed in this chapter provides an automated method to

evaluate the quality of image-based dense 3D reconstructions created by mobile-

robotics platforms.



This is not the end. It is not even the beginning of
the end. But it is, perhaps, the end of the beginning.

— Winston Churchill
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W
e began in Chapter 1 by introducing the concept of dense 3D reconstruc-

tions, establishing their utility in scene segmentation, planning, localisation,

augmented reality, material prediction, and hazardous remote inspection. Until

recently, computational and memory constraints restricted the quality and scale

of reconstructions—they mostly focused on sparse point-based maps. With the

introduction of low-cost RGB-D sensors and massively-parallel GPGPU computing,

Newcombe’s KinectFusion framework re-ignited dense 3D reconstruction research [2].

In Chapter 2, we introduced the fundamental research and tools required to

understand our contributions. We reviewed SE(3) coordinate transformations and

reference frames. This provides the framework to describe the relative position

of multiple sensors and platforms in 3D space at any point in time—a critical

prerequisite when fusing data from multiple sensors to produce a coherent model

of the environment. As input sensors chosen for this body of work are passive

cameras and active lidar sensors, we reviewed the mathematical models for each,

thus enabling us to process raw 2D scans and project them into 3D space, and vice

147
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versa. To simultaneously process multiple sensors, it is critical to continually update

the extrinsic calibration—i.e., relative poses between the sensors and the mobile-

robotics platform. We presented two methods from the literature to produce depth

maps from passive monocular and stereo cameras, respectively using Newcombe’s

DTAM [44] and Geiger’s LIBELAS [42] algorithms. Rather than project all depth

maps and laser scans into 3D space, where memory consumption grows linearly

with the each frame, we review variants of the voxel grid along with the TSDF

formulation to fuse data into a fixed-size data structure. Finally, the open-source

CloudCompare provides a method to quantitatively compare the quality of our dense

reconstructions to high-quality ground truth data, usually 3D lidar in this thesis.

Chapter 3 began with a gentle overview of energy-minimising optimisation

problems. The energy functions in this thesis exclusively took the form,

E(u) = Eregularisation(u) + Edata (u, f ) (7.1)

where the regularisation term seeks to find a solution which conforms to a prior

(e.g., “smooth”, “piecewise-constant”, etc.); the data term ensures the final solution

does not vary significantly from original sensor measurements. Though the TV

regulariser was used throughout this thesis, we introduced two alternatives for

the data term: SDF and histogram. The SDF data term stored two summary

statistics (mean and variance) for each voxel, while the histogram provided richer

historical information for the optimiser by storing the data observations as a PDF.

In our optimiser implementation, we focused on the venerable gradient descent

(and ascent) solution for convex problems, but we introduced the Legendre-Fenchel

Transformation to reframe a non-smooth energy minimisation function into a smooth

min-max saddle problem—thus providing the foundation to derive our TV regulariser

implementation. Unfortunately, a straight-forward regulariser implementation

produced unexpected results as it both interpolated and extrapolated spurious

surfaces. Our introduction of Ω-labels accounted for the special borders conditions

between observed and unobserved voxels. We demonstrated our improved regulariser

on synthetic and real-world mobile-robotics datasets. When compared to raw
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data fusion of monocular camera depth maps, our regulariser reduced the metric

reconstruction errors by 61% in an outdoor scenario and 51% in an indoor scenario,

with final respective median errors of 14.41 cm and 15.08 cm.

We built upon this foundation in Chapter 4 by expanding our system to enable

data fusion from multiple sensor modalities while operating in the large-scale

environments typically seen in mobile-robotics applications. Our system: (1)

operated in multiple-kilometres-scale environments, (2) had no range limitations

for input sensor observations, (3) coped with a paucity of surface observations,

and (4) fused data from multiple sensor modalities. We leveraged Nießner’s HVG

compressed voxel grid [59] to create the large scale reconstructions and then updated

our Ω-labelling concept to this compressed data structure. Data from both passive

stereo cameras and lidar sensors, with proper extrinsic calibration, were efficiently

fused into our Ω-augmented HVG. To evaluate the system trade-offs between

various parameters, our end-to-end dense reconstruction pipeline was robustly

analysed with three datasets: Stanford Burghers of Calias [66], Oxford Broad

Street (released with this thesis), and KITTI [1]. Fusing multiple sensors provided

between 40% to 50% more surface-area coverage. We found the SDF and histogram

data terms produced nearly identical results for the low depth observations per

m2 that is characteristic of autonomous-automobile applications. Also, both the

surface reconstruction area and quality improved after subsequent passes of the

same region. Over a distance of 7.3 km, our regulariser reduced the raw stereo

camera depth map fusion reconstruction metric error between 27% to 36% with

final median errors between 4 cm to 8 cm.

In Chapter 5, with an eye on single-pass automobile-based surveying applications,

we augmented our system to remove dynamic or ephemeral objects (e.g., automobiles,

bicycles, pedestrians) from the input sensor data and interpolated the occluded

urban structure. To this end, we utilised Ω-labelling to target the regulariser to

interpolate occluded structure. However, as no range data was directly observed

in these regions, the lack of a data term caused the optimiser to converge upon a

solution that compromised amongst all possible solutions that were consistent with
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our piecewise-constant prior assumption. We formulated a new KCDE “soft” data

term for the energy functional to guide the optimiser to a solution that conforms with

neighbour surfaces. When evaluated on four real-world scenarios requiring 20 m2 of

surface infilling, our final reconstruction errors ranged between 5.64 cm and 9.24 cm.

Finally, in Chapter 6, we presented a machine learning framework that learns to

recognise error-prone regions of our dense 3D reconstructions. The network was

trained by comparing 3.8 kilometres of dense reconstructions created by image

depth maps versus laser scans. Our system successfully identified depth-map

reconstruction areas which contained errors.

7.1 Future Work

The work presented in this thesis contributes to the dense reconstruction and

robotics communities, however there are a variety of ways it can be improved upon

in the future. We anticipate five specific extensions that should be pursued:

1. Augmented Ω Labelling. When we introduced Ω-labelling in Chapter 3, we

proposed a simple indicator variable for each voxel. Rather than restricting Ω

to a binary value, the regulariser may be better aided by providing additional

information—for example the number of sensors that have observed a voxel or the

angels at which a voxel has been observed. This data attests to the confidence of

a given voxel’s TSDF value, which may be used to guide the optimiser to a more

consistent solution.

2. Characterise Sensor Cost vs. Reconstruction Accuracy. In Chapter 4, we provided

reconstruction quality analysis on a variety of sensors and data-term techniques.

We found, when compared to a typical RGB-D dataset, passive camera sensors

mounted on an autonomous-vehicle platform have 3,100 fewer observations per

square metre of surface reconstruction. A system developer, however, must

operate with the design trade space between sensor cost, effective range, and

reconstruction accuracy. Qualitative and quantitative metrics in these areas for a

variety of sensors (e.g., Velodyne, SICK LMS-151, global-shutter mono and stereo
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cameras, rolling-shutter cameras, RGB-D, etc.) would be a valuable resource for

the mobile-robotics and dense-reconstruction communities.

3. Infill “Neighbourhood” Definition. With Chapter 5’s KCDE “soft” data term, we

found cardinal neighbours effectively guided the optimiser to an accurate solution.

There are instances, however, where this simple approach might struggle—for

example, if an ephemeral object occludes the lower portion of an alleyway’s entry,

the neighbour voxels would include both a wall (left/right), pavement (below),

and free space (above). Ambiguous scenarios such as these should either be

flagged by the algorithm for user review, or a more sophisticated prior may be

introduced based on the type of reconstruction (urban, country, indoor, etc.).

4. Machine-Learning Defect Detection. In Chapter 6, we leveraged the recent

advances in machine learning to build a deep neural network that processes dense

reconstructions and “learn” where the reconstructions are incorrect. The neural

network was trained by comparing the surface models from camera-only and

laser-only reconstructions—it learned which features in the input RGB image,

depth map, or resulting reconstruction result in poor surface models (e.g., large

holes in the road, uneven walls, etc.). However, defect-detection performance

could potentially be further improved by allowing a neural network to train

directly on 3D data (e.g., mesh or TSDF voxel grid) rather than the current

2D-only feature set.

5. Machine-Learning Defect Repair. In addition to improving defect detection,

future work should also address defect repair. This might be accomplished via

a simple hole infilling method (e.g., Chapter 5) or a machine-learning approach

that performs both defect detection and correction in a single neural network.

7.2 Closing Remarks

This thesis sought to contribute to the art of dense 3D reconstruction for mobile-

robotics applications. Our primary contribution is the introduction of Ω-labels,
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which enable us to target a regulariser to a specific subset of a voxel grid. In

Chapter 3 and Chapter 4, we used this to prevent the optimiser from interpolating

and extrapolating spurious surfaces in regions unobserved by the input sensors.

However, in Chapter 5, we targeted the regulariser to interpolate surfaces in regions

occluded by ephemeral and dynamic objects.

The algorithms and systems presented are substantial, requiring more than

480K lines of supporting C++, CUDA, GLSL, and Python source code — code

that is already under license for commercial applications. Our system generates

clean, optimised, large-scale, and dense 3D reconstructions that may be used by

localisation, planning, or any of a myriad of other subsystems on a mobile-robotics

platform. We hope these contributions serve as valuable tools to the robotics

and dense reconstruction communities.



nos esse quasi nanos gigantium humeris incidentes

— Bernard of Chartres (c. 1159)
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