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Abstract— The MIT Map-Reduce utility has been developed 
and deployed on the MIT SuperCloud to support scientists and 
engineers at MIT Lincoln Laboratory. With the MIT Map-
Reduce utility, users can deploy their applications quickly onto 
the MIT SuperCloud infrastructure. The MIT Map-Reduce 
utility can work with any applications without the need for any 
modifications. For improved performance, the MIT Map-Reduce 
utility provides an option to consolidate multiple input data files 
per compute task as a single stream of input with minimal 
changes to the target application. This enables users to reduce 
the computational overhead associated with the cost of multiple 
application starting up when dealing with more than one piece of 
input data per compute task. With a small change in a sample 
MATLAB image processing application, we have observed 
approximately 12x speed up by reducing the application startup 
overhead.  Currently the MIT Map-Reduce utility can work with 
several schedulers such as SLURM, Grid Engine and LSF. 
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I. INTRODUCTION 

Rapidly increasing data volume, velocity and variety has 
created a growing gap between data and users.  This is true for 
the scientists and engineers at MIT Lincoln Laboratory as well. 
The common big data architecture, which is designed to 
address these challenges,  is made of the computing resources, 
scheduler, central storage file system, databases, analytics 
software and web interfaces [1]. These components are 
common to many big data and supercomputing systems. The 
platform is designed to support standardized data access and 
dynamic compositions of functionalities.  

In particular, addressing data volume requires a large 
computing cloud. The MIT SuperCloud [1] has evolved to 
merge the four common cloud computing ecosystems, namely 
enterprise, compute, database and big data clouds. In big data 
cloud computing, the open-source Map Reduce programming 
model is a very popular and widely used tool first described in 
2004 by Google [2].  The open source community has its own 
implementations such as Hadoop MapReduce framework [3]. 

Although its underlying concept has existed in other 
programming models such as map and reduce primitives in 
Lisp and many other functional languages [3], Map Reduce 
programing became popular with the Hadoop MapReduce 
framework for the Java community. The Map Reduce 
programming model provides a number of benefits such as 

automatic parallelization and fault-tolerant features for Java 
programmers [3]. However, although the support has been 
extended to other languages such as Python [4], it still requires 
a steep learning curve for programmers who are not familiar 
with the framework. 

 In addition, scientists and engineers at MIT Lincoln 
Laboratory must work with legacy codes which may not be 
written in Java or Python. So we developed and deployed the 
MIT Map-Reduce utility to MIT SuperCloud systems [5], 
which works on a central storage system instead of distributed 
filesystem such as Hadoop distributed filesystem (HDFS) [6]. 
The Map-Reduce utility can launch any program onto the MIT 
SuperCloud with the use of the scheduler running on it.  It can 
distribute the workloads in a block or cyclic distribution 
fashion. Since the initial deployment, the utility has evolved 
with more features. One of the new features is that it can 
reduce the runtime by consolidating the multiple launches of 
the mapper application into a single application launch per 
each compute task. This requires the modification of the 
mapper application so that it can process the input stream 
automatically generated by the utility. With the input 
consolidation, we have observed more than 2x speedup with 
toy examples and approximately 12x speedup for a user 
application. Currently, the MIT Map-Reduce utility can work 
with the majority of schedulers such as SLURM [7], open and 
commercial distribution of Grid Engine [8, 9, 10] and IBM 
Platform LSF [11]. However, the utility was written with the 
support for a wide range of schedulers in mind; it is reasonably 
trivial to add support for any other schedulers. 

II. PORTABLE MAP REDUCE UTILITY 

The Map-Reduce parallel programming model is the 
simplest of all parallel programming models; it is much easier 
to learn than message passing or distributed arrays. The Map-
Reduce parallel programming model consists of two user 
written programs: Mapper and Reducer. The input to Mapper is 
a file and the output is another file. The input to Reducer is the 
set of Mapper output files. The output of Reducer is a single 
file. Launching consists of starting many Mapper programs 
each with a different input file. When the Mapper programs all 
have completed, the Reduce program is run on the Mapper 
outputs. 

The MIT Map-Reduce utility has been deployed on the 
MIT SuperCloud systems by utilizing a centralized high-
performance parallel filesystem such as the Lustre filesystem 
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[12]. Since any high-performance supercomputing facility runs 
a scheduling or resource management software, the MIT Map-
Reduce utility is designed to use the existing scheduler to 
manage its workloads. Finally, the MIT Map-Reduce utility 
assumes that users will have their data already partitioned into 
many smaller segments. Such segmentation is natural for many 
application areas; when collecting data from various sensors, 
they are collected in a large number of segmented files instead 
of one large, holistic file. This allows users to deploy their 
applications rapidly and efficiently. 

 
Fig. 1. A schematic diagram showing how MIT Map-Reduce works. The 
Map Reduce process identifies input files which are used to generate an array 
job with the help of the HPC scheduler. By setting a dependency between the 
mapper and reducer jobs, the output of completed jobs are passed through a 
reducer to generate the final result. 

The MIT Map-Reduce utility, called LLMapReduce, 
identifies the input files to be processed by scanning a given 
input directory or reading a list from a given input file as 
shown in the step 1 in Fig. 1. It generates all the necessary 
temporary files under the directory, .MAPRED.PID, where the 
PID is the process identification number of LLMapReduce 
process in which it was executed.This new feature has been 
added so that users can build a nested call to LLMapReduce for 
their hierarchical data processing construction. Then, by 
accessing the scheduler at step 2, it creates an array of many 
tasks, called an array job, which is denoted as “Mapper Task 
1”, “Mapper Task 2”, and so on. LLMapReduce was originally 
written to work with the open source Grid Engine [9, 10], and 
more recently it has been extended to work with SLURM [8] 
and LSF [11] as well. 

Once the array job is created and dispatched for execution, 
each input file will be processed by one of the tasks with the 
specified application at the command line, noted as “Mapper” 
in Fig. 1.  The application can be any type of executable 
written in any language, such as a shell script, a Java program 
or a MATLAB script.   In addition, there is an option to do 
further processing on the results, if there are any, by creating a 
dependent task at the step 3. This is noted as “Reduce Task” in 
Fig. 1.  The reduce task will wait until all the mapper tasks are 
completed by setting a job dependency between the mapper 
tasks and reduce task. The reduce application is responsible to 
scan the output files from the mapper tasks at step 4 and to 
process them into the final results at step 5. 

The map application of the MIT Map-Reduce utility requires 
two input arguments: one for the input filename and the other 
for the output filename.  Subsequently, the reducee application 
takes two arguments as input, which are the directory path 
where the results of the map tasks reside and the output 
filename for the reduce result. The reduce application may use 

the input path to scan and read the output generated by the map 
tasks. 

 
Fig. 2. Available options of MIT Map-Reduce utility. 

The available options of the current MIT Map-Reduce 
utility are shown in Fig. 2.  After we deployed the utility 
initially, we found out that some users tried to launch their 
applications with the number of data files exceeding the limit 
that the scheduler array job could accommodate.  So we 
modified the --np option in such a way that it not only limits 
the total number of compute tasks it generates, but also 
calculates the number of data files per each task to be assigned.  
The --ndata option allows users to define how many data files 
are to be assigned per each task, which will override the --np 
option.  The --ext option allows changing the default extension, 
“out”, with the user-defined extension name. Along with the --
ext option, the --delimiter option allows the change of the 
default, “.” extension with a user-defined delimiter when 
adding the extension.  The --distribution option enables 
changing how the input data is distributed among the given 
number of task processes; the default is the block distribution. 
The --subdir option is useful if your data files are stored in a 
hierarchical directory structure. By defining this option with 
the top directory path of your input data, the utility will 
traverse all the sub-directories to process all the data files. The 
--exclusive option enables the use of entire compute nodes for 
your jobs, but this option is limited to pre-approved users as 
configured in the current Grid Engine scheduler running on the 
MIT SuperCloud systems. By default, the utility will delete the 
.MAPRED.PID directory after the job is completed.  However, 
users can keep the temporary directory for debugging purpose 
with the --keep=true option. By default, the utility expects that 
the map application to take single input and single output path 
(siso) at a time. However, this will incur overhead associated 
with repeated startups of the map application.We have 
observed that some applications such as MATLAB codes can 
save significant overhead cost with the minor change of having 
the map application start only once and read many lines of 
input/output path pairs to process the given data. For this 
purpose the --apptype=mimo option will generate the input 
files for the modified map application that will read the input 
file with the multiple lines of input/output filename pairs.  

LLMapReduce --np=Np                  \ 
            --input=input_dir        \ 
            --output=output_dir      \ 
            --mapper=myMapper        \ 
            --reducer=myReducer      \ 
            --redout=output_filename \ 
            --ndata=NdataPerTask     \  
         --distribution=block|cyclic \  
            --subdir=true|false      \ 
            --ext=myExt              \ 
          --delimeter=myExtDelimiter \ 
            --exclusive=true|false   \ 
            --keep=true|false        \ 
            --apptype=mimo|siso      \ 
  --options=<scheduler_options_to_add> 



 

Finally, the utility allows adding some additional scheduler 
options when generating the job submission scripts with the --
options option. This is handy when some data processing 
requires more memory than the standard allowance. 

III. USE CASES 

In this section, we present a couple of use cases to 
demonstrate how to use the utility. First, a MATLAB application 
that converts an RGB image into a gray-scale image is used 
with a small number of image files. It demonstrates the use of 
the Mapper and assigning multiple input files to one 
application execution. Next, a Java application that counts the 
number of unique words in the given text files illustrates the 
use of the Mapper and Reducer. 

A. A MATLAB Application 

An image conversion function, called imageConvert(), is 
shown in Fig. 3.  The function takes two arguments, the input 
and output image names. It reads in an RGB image file and 
converts it into a gray scale image. Then, it saves the gray scale 
image into the file of the output name. This satisfies the MIT 
Map-Reduce API requirements.  

 
Fig. 3. A MATLAB application that convert an image file from RGB to gray 
scale. 

However, it still needs a wrapper script to receive the input 
and output file names that are provided by the utility. Then, the 
wrapper script will execute MATLAB with the corresponding 
input and output files when dispatched for execution by the 
scheduler. An example wrapper script is shown in Fig. 4. 

 
Fig. 4. An example wrapper script, MatlabCmd.sh, for the imageConvert() 
function. 

In the above wrapper script, the variables, $1 and $2, are 
the two input arguments (input and output file names), which 
are provided by the MIT Map-Reduce utility. The script will 
execute the imageConvert() function with MATLAB when it is 
called by the run script, which is generated by the utility. With 
the wrapper script, the image conversion job can be launched 
with one line of the MIT Map-Reduce command as shown in 
Fig. 5. In this case, each input image file in the input directory 
becomes a compute task of an array job automatically 
generated by the utility. The resulting gray images are saved in 
the output directory as specified. 

When the MIT Map Reduce command is called, some 
temporary files are created in the .MAPRED.PID directory,  

 
Fig. 5. An example Map Reduce job with the MIT Map-Reduce utility. 

where PID is the process identification (PID) number of the 
MIT Map-Reduce command. These temporary files are 
generated for the specific scheduler being used on a particular 
MIT SuperCloud system. The files are one job submission 
script and a number of run scripts for all compute tasks, one 
per each compute task as shown in Figs. 6 and 7, respectively.  
The job submission script shown in Fig. 6 is written for the 
open source Grid Engine scheduler, which has a number 
options specific to the scheduler.  The -t 1-M option specifies 
an array job of M tasks, starting from 1 to M with an increment 
of one. The number M is determined by the MIT Map-Reduce 
utility, which is the number of input image files in the input 
directory. Each compute task keeps its own log file, uniquely 
named with its job and task numbers. If there is any standard 
output, it goes into these log files. 

 
Fig. 6. An example job submission script written for the Grid Engine 
scheduler.  

 
Fig. 7. A number of run scripts for all compute tasks generated by the MIT 
Map-Reduce utility. 

The run script for each compute task is written to feed one 
input and one output argument to the wrapper script shown in 
Fig. 4. This meets the MIT Map-Reduce Application 
Programming Interface (API) requirement. As mentioned 
above, the MIT Map-Reduce utility generates M number of 
run scripts, one run script per each compute task.  As shown in 
Fig. 7, the output file name is determined by the name of the 
input file with the default extension, “.out”. 

However, the example shown in Fig. 5 has an issue if there 
are a large number of input files in the given input directory. 
As discussed earlier, we have observed that some users tried 
to launch a job with more than 100,000 data files. This can 
easily break the scheduler limit for how many tasks a job array 
can have. For example, the default maximum number of tasks 
of an array job is 75,000 for the open source Grid Engine 

function imageConvert(inFile,outFile) 
I=imread(inFile); J=rgb2gray(I); 
dicomwrite(J,outFile); 

#!/bin/bash 
cat<<EOF|matlab -nodisplay -singleCompThread 
inFile='$1'; outFile='$2'; 
imageConvert(inFile, outFile); 
EOF 

$ LLMapReduce –-mapper MatlabCmd.sh \ 
              –-input input –-output output 

#!/bin/bash 
#$ -terse –cwd –V -j y -N MatlabCmd.sh 
#$ -l excl=false -t 1-M 
#$ -o .MAPRED.1120/llmap.log-$JOB_ID-$TASK_ID 
./.MAPRED.1120/run_llmap_$SGE_TASK_ID 

$ cat .MAPRED.1120/run_llmap_1 (for task 1) 
#!/bin/bash 
export PATH=${PATH}:. 
MatlabCmd.sh input/image_1.jpg \ 
             output/image_1.jpg.out 
. . . 
 
$ cat .MAPRED.1120/run_llmap_M (for task M) 
#!/bin/bash 
export PATH=${PATH}:. 
MatlabCmd.sh input/image_M.jpg \ 
             output/image_M.jpg.out 



 

scheduler. In order to handle this case, the --np option can be 
used to specify how many compute tasks the MIT Map-
Reduce utility should create. For example, if the --np=100 
option is used, only 100 compute tasks are created and each 
compute task will process a block of the total input data 
instead of a single data. The block size is determined by the 
MIT Map-Reduce utility. 

With the --np option, one can handle a large number of 
input data files easily. However, this approach executes the 
application multiple times – as many as the number of input 
data files. There is a significant overhead cost associated with 
the repeated startup of the application, especially program 
environments such as MATLAB. One way to eliminate the 
overhead cost is to launch the application once and process all 
the data assigned to each compute task. This requires 
modifying the wrapper script shown in Fig. 4 in addition to 
modifying the job submission script and the run scripts shown 
in Figs. 6 and 7. This feature can be invoked by an example 
command as shown in Fig. 8. In this case, the command 
specifies a wrapper script, MatlabCmdMulti.sh, to handle the 
multiple lines of input and output file lists, created with the  
--apptype=mimo option. Also, with the --ext=gray option, the 
extention is renamed as “.gray” instead of the default, “.out”. 

 
Fig. 8. An example Map-Reduce job to eliminate the overhead cost 
associated with the multiple execution of an application in the default 
processing model. 

An example wrapper script, MatlabCmdMulti.sh, for the  
--apptype=mimo option is presented in Fig. 9. This script 
reads in the input and output file names from the generated 
file and provided through the run scripts, which are also 
generated by the MIT Map-Reduce utility. This script 
launches the application (MATLAB in this case) once and 
processes all the data, assigned by a dynamically generated 
file. 

 
Fig. 9. A wrapper script, MatlabCmdMulti.sh, to accept multiple lines of 
input and oout file names with the --apptype=mimo option. 

With the --apptype=mimo option, the MIT Map-Reduce 
utility still generates a similar job submission script as shown 
in Fig. 6. However, it will generate different run scripts, 
named as run_llmap_x, which is shown in Fig. 10. The 
number x ranges from 1 to N, where N is the number of tasks 

defined by the --np option. In these run scripts, the wrapper 
script takes one input file, which is automatically generated by 
the MIT Map-Reduce utility. The input files named as 
input_x, that are also generated by the MIT Map-Reduce 
utility, have the list of input and output file names, one line 
per each input data file.  

 
Fig. 10. A number of run scripts for all compute tasks generated by the MIT 
Map-Reduce utility. 

B. A Java Application 

One of the common Map-Reduce examples is a word 
frequency count application. In this example, a couple of java 
codes, WordFrequencyCmd.java and ReduceWordFrequency 
Cmd.java along with a few auxiliary codes, written by Fred 
Swartz [13] have been used.  The WordFreqCmd.java code 
requires three command line inputs: input, output, and 
reference files.  The reference file contains a list of words to be 
ignored for word counting.  In order to comply with the MIT 
Map-Reduce API requirement, a wrapper script, 
WordFreqCmd.sh, has been created as shown in Fig. 11.  In 
this wrapper script, the variables, $1 and $2, represent the input 
and output files, respectively. 

 
Fig. 11. A wrapper script for the WordFreqCmd.java code. 

Also another wrapper script, ReduceWordFreqCmd.sh, is 
used to execute the ReduceWordFrequencyCmd.java code to 
collect the map process results as shown in Fig. 12. The reduce 
code scans the map results in the output directory and merges 
the results into a single file. The first argument ($1) for the 
reduce application is the location of the map process results 
and the second argument ($2) is the output name of the reduce 
application.  Both arguments are provided by the MIT Map-
Reduce utility. 

 
Fig. 12. A wrapper script for the ReduceWordFreqCmd.java code. 

With these two wrapper scripts, a Map Reduce job for the 
word frequency count can be launched by using the MIT Map-
Reduce utility as shown in Fig. 13.  In this example, the  
--distribution=cyclic option is used.  With this option, the MIT 
Map-Reduce utility distributes the input data among the given 
number of compute tasks in a cyclic fashion. As mentioned in 
the previous MATLAB example, the Map-Reduce job launched 

$ LLMapReduce –-mapper MatlabCmdMulti.sh \ 
           –-input input –-output output \ 
           --np N --apptype mimo --ext gray 

cat<<EOF|matlab -nodisplay -singleCompThread  
inFile='$1'; fid=fopen(inFile); 
tline=fgets(fid); 
while ischar(tline) 
  myStr=strsplit(tline);  
  indata=deblank(myStr{1}); 
  outdata=deblank(myStr{2}); 
  imageConvert(indata, outdata); 
  tline=fgets(fid); 
end 
fclose(fid); 
EOF 

$ cat .MAPRED.2188/run_llmap_1 (for task 1) 
#!/bin/bash 
export PATH=${PATH}:. 
MatlabCmdMulti.sh ./.MAPRED.2188/input_1 
. . . 
 
$ cat .MAPRED.2188/run_llmap_N (for task N) 
#!/bin/bash 
export PATH=${PATH}:. 
MatlabCmdMulti.sh ./.MAPRED.2188/input_N 

#!/bin/bash 
java WordFrequencyCmd $1 $2 textignore.txt 

#!/bin/bash 
java ReduceWordFrequencyCmd $1 $2 



 

by the command in Fig. 13 also incurs the computational 
overhead associated with the multiple startup of the word count 
application. The run script for the reduce task is submitted as a 
dependent job to the mapper job, which only uses one task 
currently. The java application, ReduceWordFrequencyCmd, 
scans the results in the given directory (output) and merges 
them into a single file (default name: llmapreduce.out). 

 
Fig. 13. A Map Reduce job for word frequency count using the MIT Map-
Reduce utility. 

In order to reduce the overhead cost, as was done in the 
MATLAB example, a new Map-Reduce job can be launched 
with the --apptype=mimo option as shown in Fig. 14. As 
mentioned previously, this option also requires the application 
modification so that it can read in multiple lines of input and 
output pairs provided by the MIT Map-Reduce utility.  

 
Fig. 14. A Map Reduce job for word frequency count using the MIT Map-
Reduce utility with overhead cost reduction. 

The WordFreqCmdMulti.sh script is shown in Fig. 15. It is 
similar to the script shown in Fig. 11 but executes a modified 
java application called WordFrequencyCmdMulti.   

 
Fig. 15. A modified wrapper script for the WordFreqCmdMulti.java code. 

The modified java code, WordFrequencyCmdMulti.java, 
has some additional lines, which reads in multiple lines of the 
input and output filename pairs. The input to the modified Java 
code is automatically generated by the MIT Map-Reduce 
utility. The original section of the code processes the given 
input file and writes the results to the given output file. As a 
result, the java code is invoked only once and processes all the 
input data assigned to its compute task. 

IV. PERFORMANCE 

In this section, we present the performance results of the  
--apptype=mimo (MIMO) option. We used the two example 
use cases from the previous section in addition to a user 
MATLAB application. Furthermore, we present the behavior of 
the three different options (DEFAULT, BLOCK, and MIMO) 
by varying the number of processes and the number of input 
data files. 

The toy examples that we described previously are small in 
terms of number of input data files. The MATLAB application 

converts 6 images over 2 compute tasks.  The Java application 
counts word frequency of 21 text files over 3 compute tasks.  
The Map-Reduce jobs were executed with the BLOCK and 
MIMO options, and the total processing time  was measured. 
The speed up is calculated by the ratio between the time with 
the BLOCK option and the time with the MIMO option. The 
results are presented in Table 1. Although there are only a 
small number of data files assigned to each compute task in 
both cases, both examples show modest speed up with the 
MIMO option.     

TABLE I.  SPEED UP WITH TOY EXAMPLES 

Example Type 
Speed 

up 

Matlab 
Multiple app launches (BLOCK) 1 

Single app launch (MIMO) 2.41 

Java 
Multiple app launches (BLOCK) 1 

Single app launch (MIMO) 2.85 

 

A performance study with a user MATLAB application has 
been performed and the results are presented in Table 2. The 
MATLAB application does image processing, and the image 
files were distributed to 256 compute tasks. The number of 
input data files was 43,580 in this example. As MATLAB takes 
relatively significant time to launch as compared to other 
programs, the performance difference was significant. By using 
the MIMO option, the Map-Reduce job was able to run almost 
12 times faster than that of the BLOCK option when 
comparing the job elapsed times between the two runs.   

TABLE II.  SPEED UP WITH A REAL WORLD APPLICATION 

Example Type 
Speed 

up 

Matlab 
Multiple app launches (BLOCK) 1 

Single app launch (MIMO) 11.57 

 

For the scalability study, we used the three different MIT 
Map-Reduce options (DEFAULT, BLOCK, and MIMO) with 
a MATLAB code that reads in a list of square matrix sizes and 
does multiplications of the given matrices. First, we created 
512 input data files. For the scalability study, we run the 
simulation with various number of compute processes, ranging 
from 1, 2, 4, 8, 16, 32, 64, 128, and 256 for three different 
options.  The results are presented in Figs. 16 and 17. 

Fig. 16 shows the computational overhead associated with 
the cost of multiple application start-ups when dealing with 
more than one input data file per compute task. While the cases 
for the DEFAULT and BLOCK options show that the average 
overhead cost per compute process decreases linearly as the 
number of compute processes is increased, the overhead cost 
for the MIMO option remains relatively flat. As far as the 
overhead cost is concerned, both DEFAULT and BLOCK 
options show similar overhead, although the BLOCK option 
shows slightly smaller cost. The MIMO overhead cost is 
significantly smaller than those of the other two options. Thus 
the gap in the overhead cost between the MIMO and the other 
two options becomes significant especially when each compute 

$ LLMapReduce –-np 3  
             –-mapper WordFreqCmd.sh \ 
             --reducer ReduceWordFreqCmd.sh \ 
             –-input input –-output output \ 
             --distribution cyclic  

$ LLMapReduce –-np 3  
   –-mapper WordFreqCmdMulti.sh \ 
   --reducer ReduceWordFreqCmd.sh \ 
   –-input input –-output output \ 
   --apptype mimo  

#!/bin/bash 
java WordFrequencyCmdMulti $1 $2 \ 
                           textignore.txt



 

task processes a large number of data files. Fig. 16 clearly 
shows the benefits of the MIMO option when dealing with a 
large number of input data files per compute task.  

 
Fig. 16. The computational overhead cost when varying the number of 
compute processes, which changes the number of the input data files per 
compute task. 

Fig. 17 shows the speed-up based on job elapsed times for 
the three different options with varying number of compute 
processes. The speed-up is calculated by the ratio between the 
DEFAULT job elapsed time obtained with one compute 
process and the other job elapsed times. Throughout all the 
numbers of the concurrent processes, the MIMO option 
performed the best, consitently outperforming the other two 
options. The BLOCK option performed slightly better than the 
DEFAULT option but the difference is marginal. As the 
number of concurrent processes is increased and because the 
overhead cost per compute task is diminishing, the gap 
between the speed up of MIMO job and the other two results 
gets closer. If each compute task processes only one data, the 
results of all three options will converge at the same point.   

V. SUMMARY 

MIT Map-Reduce utility has been developed and deployed 
on the MIT SuperCloud to support scientists and engineers at 
MIT Lincoln Laboratory. With the MIT Map-Reduce utility, 
users can deploy their MapReduce-style applications quickly 
on to the MIT SuperCloud infrastructure. The MIT Map-
Reduce utility can work with any executable application 
without the need for any modifications. However, for improved 
performance, the MIT Map-Reduce utility provides an option 
to consolidate multiple input data files per compute task as a 
single stream of input with minimal changes to the target 
application.  This enables users to cut down the computational 
overhead associated with the cost of repeated application start-
ups when dealing with more than one input data file per 
compute task. With a small change in a sample MATLAB image 
processing application, we have observed approximately 12x 
speed up by reducing the overhead associated with the repeated 

application start-ups.  Currently the MIT Map-Reduce utility 
can work with handful of schedulers including SLURM, Grid 
Engine and LSF. 

 

Fig. 17. The speed-up of job elapsed times with respect to the default job 
elapsed time with one compute process when varying the number of compute 
processes, which in turn changes the number of the input data files per 
compute task. 
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