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In response to the growing number and variety of cyber threats, the government, military, and 
industry are widely employing network emulation environments for cyber capability testing 
and cyberwarfare training. These “cyber ranges” have been increasing in size and complexity to 
model the high-volume network traffic and sophisticated attacks seen on the Internet today. For 
cyber ranges to operate effectively and efficiently, organizations need tools to automate range 
operations, increase the fidelity of emulated network traffic, and visualize range activity. 
Lincoln Laboratory has developed a variety of such tools.  

With the recent high-profile cyber attacks on government agencies, such as the U.S. 
Office of Personnel Management [1], and on companies, including Target, Home
Depot, and Sony [2], the dangers of cyber attacks have gained national 
prominence. Cyber attacks threaten not only the security of personal data but also 

the national critical infrastructure, for example, power grids and transportation systems [3]. To 
mitigate the cyber threat, researchers are actively developing cyber defense tools. Before these 
tools can be deployed in corporate or military networks, they must be tested and validated in 
realistic environments. Simple tests conducted on developers’ computers are insufficient 
because these tests do not have the required level of realism. Needed are high-fidelity, surrogate 
networks (i.e., cyber ranges) in which we can introduce attackers, defenders, and defensive and 
offensive capabilities, and measure the performance of these capabilities in the hands of skilled 
network defenders pitted against realistic adversaries. To help create and operate these cyber 
ranges, tools are needed to (1) automate the configuration and generation of complex network 
environments; (2) create high-fidelity emulated user traffic on these networks; and (3) 
effectively operate and visualize the rich traffic environment being executed on the range 
during an event, i.e., a scenario to test capabilities or train personnel. 

Cyber Ranges (heading level 1 )   
At the crudest level, cyber ranges are racks of computer hardware. What makes them 
interesting, however, is their ability to be reconfigured into essentially endless complex network 
topologies and overlaid with different network traffic profiles. Because cyber ranges are 
typically disconnected from external networks (and thus have no access to the Internet or to any 
network resources) to prevent disruptions or damage to live networks during testing and 
training exercises, all network conditions and activity must be generated from scratch.  

As a result, cyber ranges are a scarce, expensive resource. Teams of information technology (IT) 
staff are required to maintain the hardware and support the events that are executed on the 
range (e.g., assessing the effectiveness of a software or hardware system). Properly configuring 
the range for an event can be a daunting task: network machines need to be built, network 

Distribution A: Public Release.This material is based upon work supported under Air Force Contract No. FA8721-05-C-0002 and/or FA8702-15-D-0001.
Any opinions, findings, conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the U.S. Air Force.



p. 2

routing and defensive tools need to be installed, services to support an event need to be 
deployed, event-specific traffic generation and applications need to be set up, and, finally, this 
entire infrastructure needs to be configured. The range community has been scaling the size and 
capabilities of cyber ranges to more realistically depict the network environment (e.g., by 
increasing the number of network machines, generating more traffic, configuring additional 
applications), only complicating the aforementioned tasks. What we gain from this expense and 
complexity is the ability to perform assessments, experimentation, and training that would not 
be possible without cyber ranges. It is within this context that Lincoln Laboratory has 
developed a tool suite to help ease the workload burden on IT staff and to drive costs to a 
manageable level.   

Range Tools (heading level 1 )  
As cyber ranges become larger and more complex and their use becomes more prevalent, the 
importance of automation and sophisticated tools increases; we need to be able to quickly and 
accurately build and configure networks and to describe the ranges and events we would like to 
execute. Once the networks are configured and operational, we need to overlay virtual users 
that automatically perform the activities of real users to generate simulated network traffic. 
Finally, we need analysis infrastructure so that we can monitor events as they execute and can 
examine in great detail the results of those events. Our tools extend automation capabilities, 
increase environment fidelity, and scale to cyber ranges of both high complexity and very large 
size. In this article, we discuss the tools we have developed, beginning with our efforts to 
develop a standard event-description language—an enabling technology for our entire tool 
suite.  

Standardization (heading level 2) 
In the cyber range business, the data used to describe how the range should be built and 
configured are typically separate from the data used to describe how the traffic generator 
should operate. These inconsistent descriptions result in traffic generators having an inaccurate 
understanding of the range’s layout. Consequently, significant time and effort are wasted on 
reconciling discrepancies. . One straightforward way to avoid this inefficiency is to create a 
single description language that can be used by all of the tools that participate in a cyber range 
event. This description language needs to be precise, machine readable, portable, and 
comprehensive. Lincoln Laboratory has been developing ontologies (called the Common Cyber 
Event Representation) to describe the network (e.g., hosts, subnets, routing infrastructure, 
firewall rules, virtual local area networks). We feed data derived from these ontologies into all 
of our tools, from our Automatic Live Instantiation of a Virtual Environment (ALIVE) 
application for range build-out to our Lincoln Adaptable Real-time Information Assurance 
Testbed (LARIAT) application for traffic generation and range control.  

Using a common cyber event data source offers more benefits than just a consistent view of the 
configuration data; it also allows us to perform integrity analysis on our cyber event data before 
we use any range time. Because cyber ranges are costly to operate and maintain and are 
relatively scarce, cyber range time is expensive, so catching data integrity issues before the 
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event begins is very important. We have developed many rules and validation checks that we 
perform on the event description while it is being developed, giving us a high degree of 
confidence that, when we deploy the described range, it will operate as expected.  

Of course, a standard description language that is only used by the tools of the organization 
that developed it is not as useful as it could be. If shared by multiple organizations, the 
description language can enable tool interoperability and reuse. We are actively working with 
industry partners to develop a standard language that could be adopted by organizations in the 
cyber range business.  

Range Automation (heading level 2) 
A cyber range useful for a variety of purposes potentially needs to be configured differently for 
every event. While the hardware often remains the same for each scenario executed on the 
range, the network topologies, services, and traffic patterns layered on top of that hardware 
change. Typically, we use virtualization technologies like VMware to build out custom 
networks for every event. This network churn is a burden on cyber range administrators, who 
maintain the range hardware and set up custom environments for different events as they are 
scheduled. Automation tools are essential to relieve this burden. While each vendor (e.g., 
VMware, HP) has custom software solutions to help build virtual networks, these solutions are 
usually designed around a single use case with needs that significantly differ from those of a 
cyber range. As such, these solutions are optimized to repeatedly “stamp out” identical copies 
of the same network or virtual machine. Tools for rapid network design and reconfiguration are 
currently lacking. 

Lincoln Laboratory has developed ALIVE to fill this gap. ALIVE ingests configuration files from 
the Common Cyber Event Representation and then automatically and reliably builds out the 
necessary virtual machines and networking infrastructure to make the network function. ALIVE 
can create virtualized networks within VMware Elastic Sky X (ESXi)1,  automating most of this 
network build-out, including the creation of end hosts (clients), routers, firewalls, and many of 
the servers needed to support interesting traffic generation (e.g., Microsoft Exchange Server, 
Active Directory). After the operating systems are installed and networking is configured, 
ALIVE can install on each host other software packages, from web browsers to office 
applications to email clients and other user software. ALIVE also creates the user accounts that 
are required for the traffic generators to operate. A typical enterprise network would have its 
own procedures for generating credentials for new users on the system, but for range events, 
the virtual users that will be operating on the environment are already known. User accounts 
are an essential component of the range enterprise environment, and ALIVE can create them in 
bulk (including Active Directory credentials and Microsoft Exchange mailboxes) as part of the 
range build-out and configuration. 
 

                                                                                                                
1  In  the  future,  additional  virtualization  backends  may  be  supported.    
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Emulation Environment (heading level 2) 
Cyber ranges are disconnected from the Internet; however, most of what we do with computers 
requires Internet connectivity. Users connect to Facebook, Google Mail (Gmail), and corporate 
intranet sites, and send email to each other through webmail services or other email hosts (like 
Exchange). Without access to these services, we cannot make the range come to life with virtual 
users interacting with dynamic content, applications, and each other as real Internet users 
would.  
 
To emulate the Internet, we leverage several techniques. We sample 10s of 1000s of sites very 
shallowly to scrape their content and efficiently and realistically rehost this scraped content by 
using our custom-written software. Through a similar process, we closely mirror sites so that 
the emulated users can browse deeply into the sites’ content. This content is rehosted with 
Microsoft’s Internet Information Services (IIS) or the Apache HTTP Server. Because the rehosted 
content is inherently very static, we periodically collect new content. Emulating rich web 
applications, which constitute the majority of the Internet traffic we see today, is not as 
straightforward as emulating content. Although we would like to emulate users’ interactions 
with webmail servers like Gmail or Yahoo! Mail, Google and Yahoo are not going to give us 
their proprietary software and, without an Internet connection, we cannot access these servers 
directly. Instead, we must choose “surrogate” servers and then carefully model interactions 
with those surrogates. An open-source alternative, Zimbra Collaboration, allows us to build 
models for users that interact with a webmail server that we can call Gmail or Yahoo! Mail. 
While the modeled network traffic will not exactly match real network traffic, the interaction 
model will be very similar, and for most scenarios, the interactions are the important part of the 
traffic model. Lastly, we emulate the root Domain Name System structure of the Internet to 
provide the link between website names and their numeric addresses.  
 
The Internet is not the only service users expect to have. Users access corporate email servers, 
directory services, websites, and file shares. Within the description of the environment we are 
building, we include all of these services. ALIVE is able to automatically build and configure 
many of them. The number and types of services that we deploy are constantly being expanded 
so that we can create environments of ever-increasing fidelity. 
 
Given a high-fidelity emulation environment, we need to overlay virtual users onto the network 
so that the network appears as if it is being used by real people. On an actual network, users 
interact with applications, services, and each other, ultimately producing a rich network traffic 
environment. It is within this traffic environment that we need to test our tools and capabilities.  
 
Background Traffic (heading level 2) 
Background traffic is the term we use to describe the normal, random-looking traffic that you 
would see if you were to inspect the network. It is the by-product of everyday network 
activities: sending and receiving emails, interacting with content on the Internet, and chatting 
with friends and coworkers. This traffic affects the way tools work. For example, a network 



p. 5 
  

intrusion-detection tool has a much more difficult time detecting malicious traffic within 
background traffic environments (normal traffic is commonly misidentified as malicious) than it 
does within “clean” environments in which only malicious traffic is present. To create high-
fidelity testing environments for cyber range tools, we need to emulate the constant network 
activity that normal users produce. This background traffic also covers malicious traffic that is 
introduced onto a network, as oftentimes attackers hide their activity within the background. 
 
There are several techniques for generating network traffic. Commercial solutions, such as Ixia’s 
BreakingPoint, create realistic, packet-level traffic (i.e., streams of bits on the network) [4]. These 
techniques involve either replaying network packets or generating streams of bits on the 
network that emulate specific protocols. They are highly scalable, are relatively simple to add 
new traffic types to, and have sufficient fidelity for many scenarios, including those in which 
you want to push as many bits as possible across a link or through a piece of software. 
BreakingPoint is designed to efficiently generate this high-bit-rate traffic with a variety of 
network protocols, and we have found it useful for augmenting our background Internet traffic 
to increase traffic volume and protocol variety. 
 
Instead of building a protocol emulator, Lincoln Laboratory is building a different kind of traffic 
generator—one that generates traffic that is tailored to real, specific user-application 
interactions. We hook into (i.e., programmatically control) existing installed applications on 
behalf of each virtual user in the emulated network, making them automatically perform their 
actions and, as a by-product, produce network traffic similar to that produced by a real user. 
This approach has several advantages over protocol emulation: 

1. Each and every user interaction generates traffic in the same way a real user would, 
including second- and third-order effects (e.g., a Domain Name System lookup caused 
by a website visit).    

2. Because our  virtual  users  are  interacting  with  real  applications,  they  can  click  on  
malicious  links,  download compromised files, and carry out other actions that real users 
will inevitably perform on a network. 

3. Unlike packet generators, traffic generators can provide real targets for malicious code 
propagation and endpoints for attackers to leverage for further attacks within the 
network. 

This level of fidelity comes at the costs of increased complexity and smaller network sizes. For 
every traffic generator, the need for a fully configured operating system reduces the amount of 
traffic that can be produced for a given set of hardware. The events that we have designed 
LARIAT to support (e.g., red team [offense]/blue team [defense] exercises, evaluations of 
complex network tools) require this level of fidelity to allow for realistic attack propagation. 
 
Blue Traffic (heading level 3) 
A significant part of LARIAT is its actuation capability, which allows the system to realistically 
interact with applications that real users would have installed on their computers. For blue 
users, LARIAT contains actuators (i.e., application emulations) for standard user software, such 
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as office applications, mail clients, and web browsers. Using these kinds of software, virtual 
users can generate and edit documents, send emails to each other, and interact with web 
content and web applications. By finding programmatic hooks into user applications, LARIAT 
builds a model of the software and automatically executes the actions that a user would 
perform when interacting with the software. These same programmatic hooks that are used to 
control the applications’ behavior also allow LARIAT to receive feedback from the software 
with which it interacts.  
 
Many applications, however, are not controllable in this way. For those cases, we use image-
processing techniques on the video output from the virtual user’s machine to recognize 
available actions that can be performed on an application. Then, keyboard or mouse commands 
are sent to that application to make it perform its actions. For example, in order to browse to a 
website, we would use image-processing techniques to find the location of the URL bar, send 
mouse move commands to position the cursor at the correct place on the screen, send a mouse 
click command to bring the URL bar into focus, and then send keyboard click commands to 
type the URL. We have developed an actuator that works remotely by interacting with 
keyboard, video, and mouse (KVM) devices or through a virtual network computing 
connection. Using either of these connection types, this actuator (KVM-based 0 Artifact LARIAT 
Actuator, or K0ALA) interacts with applications in much the same way a real user would by 
recognizing relevant images from a video stream and then performing keyboard or mouse 
actions at those image locations. In many ways, this means of interacting with the application 
provides an even more realistic application interaction model than the one produced by typical 
LARIAT actuators.  
 
Realizing we will be unable to build all actuators of interest to the cyber range community, we 
are also building a platform into which actuators can be plugged. Our actuation system in no 
way requires upfront knowledge of all the actuators that may be used within an event. We 
provide hooks for programmers to dynamically register their custom actuators to seamlessly 
work within our environment. In fact, we build our own actuators in this way so that we can 
refine our processes and application program interfaces. In particular, K0ALA provides a visual 
scripting language with which range developers who are interested in building interactions 
with applications can capture the necessary images and register the appropriate actions against 
those images; these actions can then be assembled into larger scripts that describe the 
application interaction model. 
 
Red Traffic (heading level 3)  
Many uses of cyber ranges involve testing offensive and defensive tools, or running red-on-blue 
exercises (Figure 1). Adversarial traffic is absolutely essential for creating a realistic 
environment for these events. This traffic is used not only as a cover for live red teams to help 
assess the stealth of their teams or their tools but also as a base level of attacks that the defensive 
tools must protect against. Malicious traffic has a different character from that of blue traffic. In 
many ways, it can look like normal system administrator traffic, with attackers scanning 
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computer ports, creating accounts, changing passwords, and installing software. Attackers also 
engage in more obviously malicious actions, such as creating botnets, performing network 
reconnaissance, and pivoting from host to host. Lincoln Laboratory has been developing an 
automated capability, the Lincoln Laboratory Attack Framework, to generate these kinds of 
malicious activities, including many of the exploits provided in Metasploit, a network-
penetration testing software suite [5]. Generating coordinated attacks against blue networks, 
this framework provides a relatively large-scale, fairly sophisticated array of attacks that would 
be encountered in real environments. 
 

  
FIGURE  1.  During  a  red/blue  exercise  held  at  Lincoln  Laboratory,  members  of  the  blue  team  look  through  data  
gathered  by  their  defensive  tools  to  tease  out  signatures  of  network  attackers—both  LARIAT  virtual  users  and  
members  of  the  live  red  team.  The  network  defenders  are  from  different  Cyber  Protection  Teams,  which  are  being  
created  by  the  U.S.  Cyber  Command  to  help  companies  and  government  agencies  defend  their  networks  from  cyber  
attacks.    
 
User Modeling (heading level 2) 
To emulate real network users, we need models for many kinds of users with different 
behaviors; at the same time, we need a modeling engine that is both simple and powerful so 
that general user behaviors can be described and easily encoded within the system. Fulfilling 
both of these requirements is particularly challenging because the behavior descriptions must 
be distributed across potentially 10s or 100s of 1000s of virtual users on a large network; thus, 
the description language must characterize many user behaviors in a succinct but precise 
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manner. Additionally, the execution of these models needs to be mostly self-contained and 
autonomous. We will be unable to scale a modeling architecture that requires a single master 
server to dole out actions to each virtual user; once a size threshold is met, the single master 
server cannot keep up with the workload. We must find other ways to build models in which 
the users coordinate actions to achieve a common goal. 

User Modeling Basics (heading level 3) 
LARIAT comes with a modeling engine that is provided separately from the actuators. The 
modeling engine is a language that allows us to aggregate our actuator actions into simple 
models, aggregate those simple models into larger models, and then build virtual users that are 
configured to use different aggregations of these interaction models. We decouple the modeling 
capability from our actuators, keeping us from mixing modeling and actuation logic and 
providing us with the ability to more easily integrate actuators written by others and to build 
single models that mix actions from different actuators. For example, we can combine actuator 
actions and build simple models of what it means to compose a Microsoft Word document or to 
randomly surf the Internet. We can take those models and aggregate them into more interesting 
models for surfing the Internet for some interesting facts on a particular topic and then feed 
those facts into the document we are creating. We could then vary how we combine these 
actions to make different models of what we could call an analyst, intelligence officer, or other 
type of user.  

In addition to having these aggregation and composition capabilities, the modeling language 
can automatically interact with the environment, detecting and responding to failures. Consider 
the case of a corporate Microsoft Exchange Server going down: a user who had intended to use 
the server to send an email could use a webmail service instead. The modeling language also 
automatically handles the selection of specific applications needed to accomplish tasks (e.g., 
choosing Chrome, Firefox, or Internet Explorer when given a model of a web browser). Perhaps 
most importantly, the engine provides several developer conveniences, such as automatic 
handling of error propagation.  

Mission Modeling (heading level 3) 
Once we have established a modeling capability that supports random (but semi-intelligent) 
background traffic, the next level of interesting user behavior is mission modeling. Missions are 
coordinated actions among several virtual users that, in aggregate, achieve one large goal—for 
example, several agents at an air operations center are working to produce a portion of the daily 
air tasking order,2 which needs to be sent to a commander for assembly into the final order [6]. 
We have just begun to model these kinds of missions and are researching ways to express 
coordinated actions within the modeling engine. We can already model simple coordinated 
tasks like the one above, but we are interested in expanding the fidelity and increasing the 
complexity of the models we can build. 
                                                                                                                
2    An  air  tasking  order  is  a  document  created  by  an  air  operations  center  that  has  command  and  control  of  
a  particular  theater.  The  document  outlines  how  airpower  will  be  used  over  a  24-­‐‑hour  period.    
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For missions that need to be very precisely controlled, we have prototyped a scripting 
capability that allows the author of a model to specify actions that should occur at a given time 
or within a certain time interval of another action. This scripting capability is currently fairly 
limited, but already we have used it to describe models of malicious actors working within an 
organization to sell the secrets of that organization. 

Event Operations (heading level 2) 
Given tools to precisely specify an event, automatically build out the cyber range based on the 
specification, and generate realistic network traffic, we still need to execute the event. LARIAT 
provides a graphical user interface (Figure 2) that helps with this task. This interface guides the 
range operator through the workflow of configuring the virtual users with the data needed to 
execute their behaviors, validating that the configuration is correct, and then starting and 
stopping traffic. While necessary, these functions are clearly not sufficient for comprehensive 
situational awareness of an event. Range operators running the event need to be able to build 
and maintain an accurate understanding of the current states of potentially many 1000s of 
machines, users, and traffic flows. An easy-to-understand visualization of the virtual user (or 
even of the host that the virtual user executes its actions on) states can help range operators 
understand their events to the level necessary. Additionally, event operators want to perform 
analyses of the event either during its execution or afterwards in order to measure the 
effectiveness of the event.  

  

FIGURE  2.  Each  gray  bar  (most  of  which  are  collapsed)  on  LARIAT’s  graphical  user  interface  represents  a  subnet  
(e.g.,  llan-­‐‑c2.mitll.ad.local).  Roll-­‐‑up  summaries  show  the  statuses  of  the  virtual  users  within  that  subnet;  on  the  top  
row,  the  fuchsia  bar  (21/D)  indicates  that  21  users  are  currently  unresponsive,  the  gray  bar  (1/U)  specifies  the  one  user  
that  has  never  been  heard  from,  the  purple  bar  (1/C)  represents  one  user  in  the  configured  state,  the  dark  green  bar  
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(1/V)  shows  one  host  that  is  ready  to  start  running,  and  the  light-­‐‑green  bar  (15/R)  represents  15  users  that  are  running  
as  expected.  Expanding  out  a  subnet  view  shows  details  at  the  user  type  or  individual  host  level.  For  example,  two  
user  types  are  shown  in  the  expanded  view  of  the  internet.com  subnet:  SocialCollabConsumer  and  
SocialCollabProducer,  with  the  individual  users  listed  below  them.  The  play,  stop,  and  send  configuration  buttons  
allow  the  operator  to  control  the  operation  of  virtual  users  by  sending  them  configuration  data  or  commands  to  start  
or  stop  traffic.  

Command and Control (heading level 3) 
As ranges become larger, more intricate, and further distributed, we need a lightweight, 
scalable command-and-control (C2) system to operate the traffic generators. Simultaneously, we 
need to monitor in real time and with high accuracy how these traffic generators are performing 
and fix any errors that may arise. To avoid the latency introduced by the request-response 
cycles of synchronous C2 systems and to help us achieve the scalability requirements, we have 
built an asynchronous C2 system. However, because the asynchronous system does not provide 
immediate feedback from the virtual users under a range operator’s control, the status 
monitoring problem is more difficult. We are able to achieve near-real-time reporting on the 
health and status of the traffic generator by using a messaging protocol, which analyzes 
messages as they periodically arrive from the virtual users. When we detect that a virtual user is 
unresponsive, we can take steps to fix the issue or, at the very least, notify the range operators 
that there is a problem. 

Our C2 system works by pushing data to the virtual users when they need the information. The 
server “knows” what these users need for configuration and state changes (i.e., whether they 
should be running traffic or not). Virtual users continuously report to the server a signal that 
indicates whether they (a) have received the correct configuration and (b) are in the correct 
execution state. As the server detects inconsistencies, it may send out either updated 
configurations or other C2 messages to transition the virtual user into the appropriate state. 

Because this C2 system is built around a loosely coupled, asynchronous messaging protocol, it 
is easy for organizations other than Lincoln Laboratory to augment LARIAT’s capabilities by 
adding their own components (e.g., actuators) into LARIAT. A very near-term goal for the 
LARIAT development team is to break out the necessary components of this C2 system into a 
separate module that has very clear integration points for third parties. Then, a simple 
integration path could be created for traffic generators that are not built at Lincoln Laboratory. 

Visualization and Analytics (heading level 3) 
To help range operators build the necessary mental model of the entire range, we provide a 
visualization of the range state. The visualization shows the virtual user workflow states so that 
range operators understand if and when the virtual users are ready to start execution. These 
workflow states progress as follows:  

1. There is no indication that the virtual user is available (i.e., before LARIAT installation).  
2. The virtual user checks in at some point in time.  
3. The virtual user is configured with a behavior model and ready to start executing. 
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Additionally, separate from the workflow state, virtual users are either responsive or 
unresponsive, determined by whether they have checked in recently.  We give range operators 
a way to quickly determine how traffic is running and what, if any, parts of the range need to be 
fixed. 

The fairly high-level status reporting and visualization described above is for a single virtual 
user. We have also built aggregate visualizations of large portions of the virtual users within the 
network so that the range operator can, for example, see where network traffic is flowing. The 
process for building visualizations begins with each actuator logging its actions as it performs 
them. These logs are then sent to a centralized server that stores them and makes them available 
for analysis. Using these data, we can create real-time graphs of, for example, the number of 
successful and unsuccessful website navigation attempts (Figure 3). Too many failed navigation 
attempts could indicate to the range operator that there is a problem with the web servers or the 
routers that allow traffic to flow through them. We provide a range of out-of-the-box queries 
and visualizations for actuator data but also allow users to write custom queries against the 
same data so they can monitor the activities that are most relevant to their events.  

 

FIGURE  3.  The  LARIAT  network  traffic  seen  in  the  above  visualization  was  produced  during  one  day  of  a  red/blue  
exercise  hosted  at  the  Laboratory.  The  top  graph  plots  the  counts  of  virtual  users’  actions  as  a  function  of  time.  For  
example,  several  users  were  uploading  images  to  a  social  networking  site  (orange  line)  at  the  beginning  of  the  
exercise  but  this  activity  drops  off  drastically  after  an  hour  or  so.  Other  actions  include  replying  to  an  email  (fuchsia),  
composing  an  email  (light  blue),  and  writing  a  blog  post  on  the  social  networking  site  (green).  Shown  in  the  lower  
plot  are  counts  over  time  of  successful  (green)  and  attempted  (yellow)  website  navigation  instances.  About  halfway  
through  the  plot,  the  number  of  successful  navigations  to  the  website  plummets,  perhaps  because  the  web  server  
became  overloaded  or  a  router  was  misconfigured.      
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Future Work (heading level 1 )  
We intend to continue driving toward increased range fidelity and to build more sophisticated 
tools for range operators to monitor the health and status of the range. Specifically, we will 
enhance our modeling engine with features that allow for more complex interactions with the 
environment, such as responding to dynamic stimuli (e.g., messaging windows popping up on 
the screen). Ultimately, we want to create mission activities that describe coordinated user 
actions and are woven into the normal background traffic. We will also be supporting 
additional actuator types so that we have more variation in our virtual users. Finally, we will 
augment our range introspection capabilities, provide better analytics, and develop more 
visualizations of the emulated-user log data to make the jobs of range operators and event 
analysts easier. 
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