
p. 1

»

Advanced Tools for Cyber
Ranges
Timothy M. Braje

In response to the growing number and variety of cyber threats, the government, military, and
industry are widely employing network emulation environments for cyber capability testing
and cyberwarfare training. These “cyber ranges” have been increasing in size and complexity to
model the high-volume network traffic and sophisticated attacks seen on the Internet today. For
cyber ranges to operate effectively and efficiently, organizations need tools to automate range
operations, increase the fidelity of emulated network traffic, and visualize range activity.
Lincoln Laboratory has developed a variety of such tools.

With the recent high-profile cyber attacks on government agencies, such as the U.S.
Office of Personnel Management [1], and on companies, including Target, Home
Depot, and Sony [2], the dangers of cyber attacks have gained national
prominence. Cyber attacks threaten not only the security of personal data but also

the national critical infrastructure, for example, power grids and transportation systems [3]. To
mitigate the cyber threat, researchers are actively developing cyber defense tools. Before these
tools can be deployed in corporate or military networks, they must be tested and validated in
realistic environments. Simple tests conducted on developers’ computers are insufficient
because these tests do not have the required level of realism. Needed are high-fidelity, surrogate
networks (i.e., cyber ranges) in which we can introduce attackers, defenders, and defensive and
offensive capabilities, and measure the performance of these capabilities in the hands of skilled
network defenders pitted against realistic adversaries. To help create and operate these cyber
ranges, tools are needed to (1) automate the configuration and generation of complex network
environments; (2) create high-fidelity emulated user traffic on these networks; and (3)
effectively operate and visualize the rich traffic environment being executed on the range
during an event, i.e., a scenario to test capabilities or train personnel.

Cyber Ranges (heading level 1)
At the crudest level, cyber ranges are racks of computer hardware. What makes them
interesting, however, is their ability to be reconfigured into essentially endless complex network
topologies and overlaid with different network traffic profiles. Because cyber ranges are
typically disconnected from external networks (and thus have no access to the Internet or to any
network resources) to prevent disruptions or damage to live networks during testing and
training exercises, all network conditions and activity must be generated from scratch.

As a result, cyber ranges are a scarce, expensive resource. Teams of information technology (IT)
staff are required to maintain the hardware and support the events that are executed on the
range (e.g., assessing the effectiveness of a software or hardware system). Properly configuring
the range for an event can be a daunting task: network machines need to be built, network

Distribution A: Public Release.This material is based upon work supported under Air Force Contract No. FA8721-05-C-0002 and/or FA8702-15-D-0001.
Any opinions, findings, conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the U.S. Air Force.

p. 2

routing and defensive tools need to be installed, services to support an event need to be
deployed, event-specific traffic generation and applications need to be set up, and, finally, this
entire infrastructure needs to be configured. The range community has been scaling the size and
capabilities of cyber ranges to more realistically depict the network environment (e.g., by
increasing the number of network machines, generating more traffic, configuring additional
applications), only complicating the aforementioned tasks. What we gain from this expense and
complexity is the ability to perform assessments, experimentation, and training that would not
be possible without cyber ranges. It is within this context that Lincoln Laboratory has
developed a tool suite to help ease the workload burden on IT staff and to drive costs to a
manageable level.

Range Tools (heading level 1)
As cyber ranges become larger and more complex and their use becomes more prevalent, the
importance of automation and sophisticated tools increases; we need to be able to quickly and
accurately build and configure networks and to describe the ranges and events we would like to
execute. Once the networks are configured and operational, we need to overlay virtual users
that automatically perform the activities of real users to generate simulated network traffic.
Finally, we need analysis infrastructure so that we can monitor events as they execute and can
examine in great detail the results of those events. Our tools extend automation capabilities,
increase environment fidelity, and scale to cyber ranges of both high complexity and very large
size. In this article, we discuss the tools we have developed, beginning with our efforts to
develop a standard event-description language—an enabling technology for our entire tool
suite.

Standardization (heading level 2)
In the cyber range business, the data used to describe how the range should be built and
configured are typically separate from the data used to describe how the traffic generator
should operate. These inconsistent descriptions result in traffic generators having an inaccurate
understanding of the range’s layout. Consequently, significant time and effort are wasted on
reconciling discrepancies. . One straightforward way to avoid this inefficiency is to create a
single description language that can be used by all of the tools that participate in a cyber range
event. This description language needs to be precise, machine readable, portable, and
comprehensive. Lincoln Laboratory has been developing ontologies (called the Common Cyber
Event Representation) to describe the network (e.g., hosts, subnets, routing infrastructure,
firewall rules, virtual local area networks). We feed data derived from these ontologies into all
of our tools, from our Automatic Live Instantiation of a Virtual Environment (ALIVE)
application for range build-out to our Lincoln Adaptable Real-time Information Assurance
Testbed (LARIAT) application for traffic generation and range control.

Using a common cyber event data source offers more benefits than just a consistent view of the
configuration data; it also allows us to perform integrity analysis on our cyber event data before
we use any range time. Because cyber ranges are costly to operate and maintain and are
relatively scarce, cyber range time is expensive, so catching data integrity issues before the

p. 3

event begins is very important. We have developed many rules and validation checks that we
perform on the event description while it is being developed, giving us a high degree of
confidence that, when we deploy the described range, it will operate as expected.

Of course, a standard description language that is only used by the tools of the organization
that developed it is not as useful as it could be. If shared by multiple organizations, the
description language can enable tool interoperability and reuse. We are actively working with
industry partners to develop a standard language that could be adopted by organizations in the
cyber range business.

Range Automation (heading level 2)
A cyber range useful for a variety of purposes potentially needs to be configured differently for
every event. While the hardware often remains the same for each scenario executed on the
range, the network topologies, services, and traffic patterns layered on top of that hardware
change. Typically, we use virtualization technologies like VMware to build out custom
networks for every event. This network churn is a burden on cyber range administrators, who
maintain the range hardware and set up custom environments for different events as they are
scheduled. Automation tools are essential to relieve this burden. While each vendor (e.g.,
VMware, HP) has custom software solutions to help build virtual networks, these solutions are
usually designed around a single use case with needs that significantly differ from those of a
cyber range. As such, these solutions are optimized to repeatedly “stamp out” identical copies
of the same network or virtual machine. Tools for rapid network design and reconfiguration are
currently lacking.

Lincoln Laboratory has developed ALIVE to fill this gap. ALIVE ingests configuration files from
the Common Cyber Event Representation and then automatically and reliably builds out the
necessary virtual machines and networking infrastructure to make the network function. ALIVE
can create virtualized networks within VMware Elastic Sky X (ESXi)1, automating most of this
network build-out, including the creation of end hosts (clients), routers, firewalls, and many of
the servers needed to support interesting traffic generation (e.g., Microsoft Exchange Server,
Active Directory). After the operating systems are installed and networking is configured,
ALIVE can install on each host other software packages, from web browsers to office
applications to email clients and other user software. ALIVE also creates the user accounts that
are required for the traffic generators to operate. A typical enterprise network would have its
own procedures for generating credentials for new users on the system, but for range events,
the virtual users that will be operating on the environment are already known. User accounts
are an essential component of the range enterprise environment, and ALIVE can create them in
bulk (including Active Directory credentials and Microsoft Exchange mailboxes) as part of the
range build-out and configuration.

1 In the future, additional virtualization backends may be supported.

p. 4

Emulation Environment (heading level 2)
Cyber ranges are disconnected from the Internet; however, most of what we do with computers
requires Internet connectivity. Users connect to Facebook, Google Mail (Gmail), and corporate
intranet sites, and send email to each other through webmail services or other email hosts (like
Exchange). Without access to these services, we cannot make the range come to life with virtual
users interacting with dynamic content, applications, and each other as real Internet users
would.

To emulate the Internet, we leverage several techniques. We sample 10s of 1000s of sites very
shallowly to scrape their content and efficiently and realistically rehost this scraped content by
using our custom-written software. Through a similar process, we closely mirror sites so that
the emulated users can browse deeply into the sites’ content. This content is rehosted with
Microsoft’s Internet Information Services (IIS) or the Apache HTTP Server. Because the rehosted
content is inherently very static, we periodically collect new content. Emulating rich web
applications, which constitute the majority of the Internet traffic we see today, is not as
straightforward as emulating content. Although we would like to emulate users’ interactions
with webmail servers like Gmail or Yahoo! Mail, Google and Yahoo are not going to give us
their proprietary software and, without an Internet connection, we cannot access these servers
directly. Instead, we must choose “surrogate” servers and then carefully model interactions
with those surrogates. An open-source alternative, Zimbra Collaboration, allows us to build
models for users that interact with a webmail server that we can call Gmail or Yahoo! Mail.
While the modeled network traffic will not exactly match real network traffic, the interaction
model will be very similar, and for most scenarios, the interactions are the important part of the
traffic model. Lastly, we emulate the root Domain Name System structure of the Internet to
provide the link between website names and their numeric addresses.

The Internet is not the only service users expect to have. Users access corporate email servers,
directory services, websites, and file shares. Within the description of the environment we are
building, we include all of these services. ALIVE is able to automatically build and configure
many of them. The number and types of services that we deploy are constantly being expanded
so that we can create environments of ever-increasing fidelity.

Given a high-fidelity emulation environment, we need to overlay virtual users onto the network
so that the network appears as if it is being used by real people. On an actual network, users
interact with applications, services, and each other, ultimately producing a rich network traffic
environment. It is within this traffic environment that we need to test our tools and capabilities.

Background Traffic (heading level 2)
Background traffic is the term we use to describe the normal, random-looking traffic that you
would see if you were to inspect the network. It is the by-product of everyday network
activities: sending and receiving emails, interacting with content on the Internet, and chatting
with friends and coworkers. This traffic affects the way tools work. For example, a network

p. 5

intrusion-detection tool has a much more difficult time detecting malicious traffic within
background traffic environments (normal traffic is commonly misidentified as malicious) than it
does within “clean” environments in which only malicious traffic is present. To create high-
fidelity testing environments for cyber range tools, we need to emulate the constant network
activity that normal users produce. This background traffic also covers malicious traffic that is
introduced onto a network, as oftentimes attackers hide their activity within the background.

There are several techniques for generating network traffic. Commercial solutions, such as Ixia’s
BreakingPoint, create realistic, packet-level traffic (i.e., streams of bits on the network) [4]. These
techniques involve either replaying network packets or generating streams of bits on the
network that emulate specific protocols. They are highly scalable, are relatively simple to add
new traffic types to, and have sufficient fidelity for many scenarios, including those in which
you want to push as many bits as possible across a link or through a piece of software.
BreakingPoint is designed to efficiently generate this high-bit-rate traffic with a variety of
network protocols, and we have found it useful for augmenting our background Internet traffic
to increase traffic volume and protocol variety.

Instead of building a protocol emulator, Lincoln Laboratory is building a different kind of traffic
generator—one that generates traffic that is tailored to real, specific user-application
interactions. We hook into (i.e., programmatically control) existing installed applications on
behalf of each virtual user in the emulated network, making them automatically perform their
actions and, as a by-product, produce network traffic similar to that produced by a real user.
This approach has several advantages over protocol emulation:

1. Each and every user interaction generates traffic in the same way a real user would,
including second- and third-order effects (e.g., a Domain Name System lookup caused
by a website visit).

2. Because our virtual users are interacting with real applications, they can click on
malicious links, download compromised files, and carry out other actions that real users
will inevitably perform on a network.

3. Unlike packet generators, traffic generators can provide real targets for malicious code
propagation and endpoints for attackers to leverage for further attacks within the
network.

This level of fidelity comes at the costs of increased complexity and smaller network sizes. For
every traffic generator, the need for a fully configured operating system reduces the amount of
traffic that can be produced for a given set of hardware. The events that we have designed
LARIAT to support (e.g., red team [offense]/blue team [defense] exercises, evaluations of
complex network tools) require this level of fidelity to allow for realistic attack propagation.

Blue Traffic (heading level 3)
A significant part of LARIAT is its actuation capability, which allows the system to realistically
interact with applications that real users would have installed on their computers. For blue
users, LARIAT contains actuators (i.e., application emulations) for standard user software, such

p. 6

as office applications, mail clients, and web browsers. Using these kinds of software, virtual
users can generate and edit documents, send emails to each other, and interact with web
content and web applications. By finding programmatic hooks into user applications, LARIAT
builds a model of the software and automatically executes the actions that a user would
perform when interacting with the software. These same programmatic hooks that are used to
control the applications’ behavior also allow LARIAT to receive feedback from the software
with which it interacts.

Many applications, however, are not controllable in this way. For those cases, we use image-
processing techniques on the video output from the virtual user’s machine to recognize
available actions that can be performed on an application. Then, keyboard or mouse commands
are sent to that application to make it perform its actions. For example, in order to browse to a
website, we would use image-processing techniques to find the location of the URL bar, send
mouse move commands to position the cursor at the correct place on the screen, send a mouse
click command to bring the URL bar into focus, and then send keyboard click commands to
type the URL. We have developed an actuator that works remotely by interacting with
keyboard, video, and mouse (KVM) devices or through a virtual network computing
connection. Using either of these connection types, this actuator (KVM-based 0 Artifact LARIAT
Actuator, or K0ALA) interacts with applications in much the same way a real user would by
recognizing relevant images from a video stream and then performing keyboard or mouse
actions at those image locations. In many ways, this means of interacting with the application
provides an even more realistic application interaction model than the one produced by typical
LARIAT actuators.

Realizing we will be unable to build all actuators of interest to the cyber range community, we
are also building a platform into which actuators can be plugged. Our actuation system in no
way requires upfront knowledge of all the actuators that may be used within an event. We
provide hooks for programmers to dynamically register their custom actuators to seamlessly
work within our environment. In fact, we build our own actuators in this way so that we can
refine our processes and application program interfaces. In particular, K0ALA provides a visual
scripting language with which range developers who are interested in building interactions
with applications can capture the necessary images and register the appropriate actions against
those images; these actions can then be assembled into larger scripts that describe the
application interaction model.

Red Traffic (heading level 3)
Many uses of cyber ranges involve testing offensive and defensive tools, or running red-on-blue
exercises (Figure 1). Adversarial traffic is absolutely essential for creating a realistic
environment for these events. This traffic is used not only as a cover for live red teams to help
assess the stealth of their teams or their tools but also as a base level of attacks that the defensive
tools must protect against. Malicious traffic has a different character from that of blue traffic. In
many ways, it can look like normal system administrator traffic, with attackers scanning

p. 7

computer ports, creating accounts, changing passwords, and installing software. Attackers also
engage in more obviously malicious actions, such as creating botnets, performing network
reconnaissance, and pivoting from host to host. Lincoln Laboratory has been developing an
automated capability, the Lincoln Laboratory Attack Framework, to generate these kinds of
malicious activities, including many of the exploits provided in Metasploit, a network-
penetration testing software suite [5]. Generating coordinated attacks against blue networks,
this framework provides a relatively large-scale, fairly sophisticated array of attacks that would
be encountered in real environments.

FIGURE 1. During a red/blue exercise held at Lincoln Laboratory, members of the blue team look through data
gathered by their defensive tools to tease out signatures of network attackers—both LARIAT virtual users and
members of the live red team. The network defenders are from different Cyber Protection Teams, which are being
created by the U.S. Cyber Command to help companies and government agencies defend their networks from cyber
attacks.

User Modeling (heading level 2)
To emulate real network users, we need models for many kinds of users with different
behaviors; at the same time, we need a modeling engine that is both simple and powerful so
that general user behaviors can be described and easily encoded within the system. Fulfilling
both of these requirements is particularly challenging because the behavior descriptions must
be distributed across potentially 10s or 100s of 1000s of virtual users on a large network; thus,
the description language must characterize many user behaviors in a succinct but precise

p. 8

manner. Additionally, the execution of these models needs to be mostly self-contained and
autonomous. We will be unable to scale a modeling architecture that requires a single master
server to dole out actions to each virtual user; once a size threshold is met, the single master
server cannot keep up with the workload. We must find other ways to build models in which
the users coordinate actions to achieve a common goal.

User Modeling Basics (heading level 3)
LARIAT comes with a modeling engine that is provided separately from the actuators. The
modeling engine is a language that allows us to aggregate our actuator actions into simple
models, aggregate those simple models into larger models, and then build virtual users that are
configured to use different aggregations of these interaction models. We decouple the modeling
capability from our actuators, keeping us from mixing modeling and actuation logic and
providing us with the ability to more easily integrate actuators written by others and to build
single models that mix actions from different actuators. For example, we can combine actuator
actions and build simple models of what it means to compose a Microsoft Word document or to
randomly surf the Internet. We can take those models and aggregate them into more interesting
models for surfing the Internet for some interesting facts on a particular topic and then feed
those facts into the document we are creating. We could then vary how we combine these
actions to make different models of what we could call an analyst, intelligence officer, or other
type of user.

In addition to having these aggregation and composition capabilities, the modeling language
can automatically interact with the environment, detecting and responding to failures. Consider
the case of a corporate Microsoft Exchange Server going down: a user who had intended to use
the server to send an email could use a webmail service instead. The modeling language also
automatically handles the selection of specific applications needed to accomplish tasks (e.g.,
choosing Chrome, Firefox, or Internet Explorer when given a model of a web browser). Perhaps
most importantly, the engine provides several developer conveniences, such as automatic
handling of error propagation.

Mission Modeling (heading level 3)
Once we have established a modeling capability that supports random (but semi-intelligent)
background traffic, the next level of interesting user behavior is mission modeling. Missions are
coordinated actions among several virtual users that, in aggregate, achieve one large goal—for
example, several agents at an air operations center are working to produce a portion of the daily
air tasking order,2 which needs to be sent to a commander for assembly into the final order [6].
We have just begun to model these kinds of missions and are researching ways to express
coordinated actions within the modeling engine. We can already model simple coordinated
tasks like the one above, but we are interested in expanding the fidelity and increasing the
complexity of the models we can build.

2 An air tasking order is a document created by an air operations center that has command and control of
a particular theater. The document outlines how airpower will be used over a 24-­‐‑hour period.

p. 9

For missions that need to be very precisely controlled, we have prototyped a scripting
capability that allows the author of a model to specify actions that should occur at a given time
or within a certain time interval of another action. This scripting capability is currently fairly
limited, but already we have used it to describe models of malicious actors working within an
organization to sell the secrets of that organization.

Event Operations (heading level 2)
Given tools to precisely specify an event, automatically build out the cyber range based on the
specification, and generate realistic network traffic, we still need to execute the event. LARIAT
provides a graphical user interface (Figure 2) that helps with this task. This interface guides the
range operator through the workflow of configuring the virtual users with the data needed to
execute their behaviors, validating that the configuration is correct, and then starting and
stopping traffic. While necessary, these functions are clearly not sufficient for comprehensive
situational awareness of an event. Range operators running the event need to be able to build
and maintain an accurate understanding of the current states of potentially many 1000s of
machines, users, and traffic flows. An easy-to-understand visualization of the virtual user (or
even of the host that the virtual user executes its actions on) states can help range operators
understand their events to the level necessary. Additionally, event operators want to perform
analyses of the event either during its execution or afterwards in order to measure the
effectiveness of the event.

FIGURE 2. Each gray bar (most of which are collapsed) on LARIAT’s graphical user interface represents a subnet
(e.g., llan-­‐‑c2.mitll.ad.local). Roll-­‐‑up summaries show the statuses of the virtual users within that subnet; on the top
row, the fuchsia bar (21/D) indicates that 21 users are currently unresponsive, the gray bar (1/U) specifies the one user
that has never been heard from, the purple bar (1/C) represents one user in the configured state, the dark green bar

p. 10

(1/V) shows one host that is ready to start running, and the light-­‐‑green bar (15/R) represents 15 users that are running
as expected. Expanding out a subnet view shows details at the user type or individual host level. For example, two
user types are shown in the expanded view of the internet.com subnet: SocialCollabConsumer and
SocialCollabProducer, with the individual users listed below them. The play, stop, and send configuration buttons
allow the operator to control the operation of virtual users by sending them configuration data or commands to start
or stop traffic.

Command and Control (heading level 3)
As ranges become larger, more intricate, and further distributed, we need a lightweight,
scalable command-and-control (C2) system to operate the traffic generators. Simultaneously, we
need to monitor in real time and with high accuracy how these traffic generators are performing
and fix any errors that may arise. To avoid the latency introduced by the request-response
cycles of synchronous C2 systems and to help us achieve the scalability requirements, we have
built an asynchronous C2 system. However, because the asynchronous system does not provide
immediate feedback from the virtual users under a range operator’s control, the status
monitoring problem is more difficult. We are able to achieve near-real-time reporting on the
health and status of the traffic generator by using a messaging protocol, which analyzes
messages as they periodically arrive from the virtual users. When we detect that a virtual user is
unresponsive, we can take steps to fix the issue or, at the very least, notify the range operators
that there is a problem.

Our C2 system works by pushing data to the virtual users when they need the information. The
server “knows” what these users need for configuration and state changes (i.e., whether they
should be running traffic or not). Virtual users continuously report to the server a signal that
indicates whether they (a) have received the correct configuration and (b) are in the correct
execution state. As the server detects inconsistencies, it may send out either updated
configurations or other C2 messages to transition the virtual user into the appropriate state.

Because this C2 system is built around a loosely coupled, asynchronous messaging protocol, it
is easy for organizations other than Lincoln Laboratory to augment LARIAT’s capabilities by
adding their own components (e.g., actuators) into LARIAT. A very near-term goal for the
LARIAT development team is to break out the necessary components of this C2 system into a
separate module that has very clear integration points for third parties. Then, a simple
integration path could be created for traffic generators that are not built at Lincoln Laboratory.

Visualization and Analytics (heading level 3)
To help range operators build the necessary mental model of the entire range, we provide a
visualization of the range state. The visualization shows the virtual user workflow states so that
range operators understand if and when the virtual users are ready to start execution. These
workflow states progress as follows:

1. There is no indication that the virtual user is available (i.e., before LARIAT installation).
2. The virtual user checks in at some point in time.
3. The virtual user is configured with a behavior model and ready to start executing.

p. 11

Additionally, separate from the workflow state, virtual users are either responsive or
unresponsive, determined by whether they have checked in recently. We give range operators
a way to quickly determine how traffic is running and what, if any, parts of the range need to be
fixed.

The fairly high-level status reporting and visualization described above is for a single virtual
user. We have also built aggregate visualizations of large portions of the virtual users within the
network so that the range operator can, for example, see where network traffic is flowing. The
process for building visualizations begins with each actuator logging its actions as it performs
them. These logs are then sent to a centralized server that stores them and makes them available
for analysis. Using these data, we can create real-time graphs of, for example, the number of
successful and unsuccessful website navigation attempts (Figure 3). Too many failed navigation
attempts could indicate to the range operator that there is a problem with the web servers or the
routers that allow traffic to flow through them. We provide a range of out-of-the-box queries
and visualizations for actuator data but also allow users to write custom queries against the
same data so they can monitor the activities that are most relevant to their events.

FIGURE 3. The LARIAT network traffic seen in the above visualization was produced during one day of a red/blue
exercise hosted at the Laboratory. The top graph plots the counts of virtual users’ actions as a function of time. For
example, several users were uploading images to a social networking site (orange line) at the beginning of the
exercise but this activity drops off drastically after an hour or so. Other actions include replying to an email (fuchsia),
composing an email (light blue), and writing a blog post on the social networking site (green). Shown in the lower
plot are counts over time of successful (green) and attempted (yellow) website navigation instances. About halfway
through the plot, the number of successful navigations to the website plummets, perhaps because the web server
became overloaded or a router was misconfigured.

p. 12

Future Work (heading level 1)
We intend to continue driving toward increased range fidelity and to build more sophisticated
tools for range operators to monitor the health and status of the range. Specifically, we will
enhance our modeling engine with features that allow for more complex interactions with the
environment, such as responding to dynamic stimuli (e.g., messaging windows popping up on
the screen). Ultimately, we want to create mission activities that describe coordinated user
actions and are woven into the normal background traffic. We will also be supporting
additional actuator types so that we have more variation in our virtual users. Finally, we will
augment our range introspection capabilities, provide better analytics, and develop more
visualizations of the emulated-user log data to make the jobs of range operators and event
analysts easier.

References

1. J. Sciutto, “OPM Government Data Breach Impacted 21.5 Million,” CNN website, 10 Jul.
2015, available at http://www.cnn.com/2015/07/09/politics/office-of-personnel-
management-data-breach-20-million/.

2. K. Granville, “9 Recent Cyberattacks Against Big Businesses,” The New York Times, 5 Feb.
2015, available at
http://www.nytimes.com/interactive/2015/02/05/technology/recent-
cyberattacks.html?_r=0.

3. “Cyber Warfare: Sabotaging the System,” CBS News website, 6 Nov. 2009, available at
http://www.cbsnews.com/news/cyber-war-sabotaging-the-system-06-11-2009/.

4. “Network Testing with Simulated Traffic. Does Realism Matter?” An Ixia BreakingPoint
Case Study, White Paper 915-3128-01, Rev. C., Aug. 2014.

5. Metasploit company website, available at http://www.metasploit.com/.
6. J. Mathieu, J. Melhuish, J. James, P. Mahoney, L. Boiney, and B. White, “Multi-scale

Modeling of the Air Operations Center,” The MITRE Corporation, Technical Papers,
November 2007, available at
http://www.mitre.org/sites/default/files/pdf/06_1497.pdf.

About the Author

Timothy M. Braje is a technical staff member in Lincoln Laboratory’s
Secure Resilient Systems and Technology Group, where he works on
adaptive computing platforms and quantum computing algorithms. He
also has interests in functional programming, formal methods for

p. 13

verifying software systems, programming languages, and constructive theorem proving.
Between 2009 and 2015, he led the effort to architect and build the Laboratory’s next-generation
advanced cyber tools platform, including tools for range control, visualization, and traffic
generation. Prior to joining the Laboratory in 2009, he worked at MyVest, Solidware
Technologies, and Coverity, building systems to help automate financial investment
management and to help software developers analyze and improve the quality of their
products. He holds a bachelor’s degree in physics from the University of Florida and a doctoral
degree in physics from Stanford University.

