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Developers seek to seamlessly integrate cybersecurity on military systems. However, when implementing 
security features in an embedded system, which has a dedicated function, developers must add security 
components that often compromise system functionality. To avoid this compromise, system developers 
desire a well-defined, systematic codesign approach for embedded system functionality and cybersecurity. 
Lincoln Laboratory’s secure embedded system  methodology uses a security coprocessor to 
cryptographically ensure system confidentiality and integrity while maintaining functionality. 

Department of Defense (DoD) systems are increasingly the targets of deliberate, sophisticated 
cyberattacks. To assure successful missions, military systems must be trusted to perform their 
intended functions, prevent attacks, and operate while under attack. The DoD has thus directed 
that cybersecurity technology must be integrated into systems because it is too expensive and 
impractical to secure a system after it has been designed [1]. Lincoln Laboratory is at the 
research and development forefront of system solutions for challenging critical missions, such 
as those to collect, process, and exchange sensitive information. Many of Lincoln Laboratory’s 
prototype systems must be designed with security in mind so that they can be quickly brought 
into compliance with the DoD’s cybersecurity requirements and support field tests and 
technology transfer. 

Many DoD systems require the use of embedded computing. An embedded computer system is 
designed for a dedicated function, in contrast to a general-purpose computer system, e.g., a 
desktop computer, which is designed for multiple functions [2]. The specific functionality 
design optimizes performance, e.g., smaller form factor, lower power consumption, and higher 
throughput. Developers determine embedded system security requirements according to 
mission objectives and a concept of operations (CONOPS). In general, security should be robust 
enough to prevent attacks, ensuring that a system can successfully support a mission. 
Developers may need to enable a system to continue functioning when security fails, albeit with 
possibly degraded capabilities. The design of security for an embedded system is challenging 
because security requirements are rarely accurately identified at the start of the design process, 
and embedded system engineers tend to focus on well-understood functional capabilities rather 
than stringent security requirements. In addition, engineers must provide security that causes 
minimal impacts on the system’s size, weight, and power (SWaP), usability, cost, and 
development schedule.   

To meet these challenges, Lincoln Laboratory established a secure embedded system 
development methodology. When securing a system, we strive to achieve three goals: 
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confidentiality, integrity, and availability (CIA), which are often referred to as the CIA triad for 
information security. The CIA triad is defined for embedded systems as follows: 

 Confidentiality assures that an embedded system’s critical information, such as 
application code and surveillance data, cannot be disclosed to unauthorized entities. 

 Integrity assures that adversaries cannot alter system operation.  
 Availability assures that mission objectives cannot be disrupted.  

In this article, we use the example of a hypothetical secure unmanned aerial system (UAS) to 
illustrate how we use cryptography to ensure confidentiality and integrity. Using this example, 
we demonstrate the identification of potential attack targets by considering the CONOPS, the 
development of countermeasures to these attacks, and the design and implementation of a 
cryptography-based security architecture. Because cryptography does not directly enable 
availability, we also provide insight into the ongoing research that extends our methodology to 
achieve the resilience required to improve the availability of embedded systems. 

Challenges in Securing Embedded Systems (heading level 1) 

An embedded system will provide very little, if any, SWaP allowance for security; thus, security 
must not impose excessive overheads on the protected system. While the DoD has some of the 
most demanding applications in terms of throughput and SWaP, it no longer drives the 
development of processor technology. Therefore, security technologies must be compatible with 
embedded systems using commercial off-the-shelf (COTS) processor hardware platforms that 
the DoD can easily adopt. 

As military electronic systems continue to increase in sophistication and capability, their cost 
and development time also grow. Each year, the DoD acquires and operates numerous 
embedded systems, ranging from intelligence, surveillance, and reconnaissance sensors to 
electronic warfare and electronic signals intelligence systems. Depending on their CONOPS, 
embedded systems have different security requirements. Methodologies for securing embedded 
systems must be customizable to meet CONOPS needs.  

To meet application-specific requirements while also reducing technology costs and 
development time, developers have started to use open-systems architectures (OSA). Because 
OSAs use nonproprietary system architectural standards, variable payloads can be shared 
among variable platforms, promoting technology upgrades and commercial acquisition. The 
DoD has thus directed all DoD agencies to adopt OSA in electronic systems [3]. However, 
adding security to OSA could interfere with its openness. As most current security approaches 
are ad hoc, proprietary, and expensive, they are incompatible with OSA principles, especially 
when each payload developer individually implements and manages the payload security. 
Therefore, developing a system-level secure embedded system architecture that will seamlessly 
work with various OSA components is a challenge.  
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Design Process (heading level 1) 

Embedded system CONOPS are developed from mission objectives and are used to derive both 
functional and security requirements. Researchers create, evaluate, and implement an initial 
system design, codeveloping functionality and security while minimizing security interference 
during functionality testing by decoupling security and functionality requirements. Several 
design iterations may be required before the mission objectives are met. Figure 1 captures the 
ideal process of designing a secure embedded system; the steps dedicated to security are 
highlighted in green.  

To illustrate the secure embedded system design process, we use the design of a hypothetical 
UAS for a video surveillance application. The CONOPS of this example UAS application is as 
follows: At startup, the UAS loads its long-term credentials for identification and authentication 
purposes. Mission-specific information—e.g., software, firmware, and data—is loaded into the 
respective memories. The system is then booted up and prepared for mission execution. 

 

FIGURE 1. In an ideal secure embedded system design process, functionality (blue) and 
security (green) are codesigned, yet they are appropriately decoupled during testing so that 

security does not interfere with functionality. This codesign is often difficult to achieve 
because functionality and security are two very different disciplines. 
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FIGURE 2 illustrates the UAS embedded system in its execution phase. Under the command of 
a ground control station, the UAS takes off, flies to its destination, and then collects video data. 
Video data containing target information are encrypted and broadcast to authorized ground 
stations (GT1 and GT2) via a radio. Raw video data are also saved for further processing after 
the UAS lands. When the UAS is shut down, both raw and processed video data are considered 
sensitive and must be saved securely. Any persistent state data, such as long-term credentials, 
must also be protected. 

 

FIGURE 2. In this example of an unmanned aerial system (UAS) application in its execution 
phase, the intelligence collected by the UAS needs to be shared by coalition partners, yet 
protected from adversaries. Cryptography is the key technology enabling this operation.  

Figure 3 shows a high-level functional architecture initially designed for the example UAS 
embedded system. The architecture consists of a central processing unit (CPU) and a field-
programmable gate array (FPGA) interconnected with a backplane network. The FPGA 
typically performs advanced video signal processing (e.g., for target detection and 
identification). The CPU handles command-and-control communications received from the 
ground control station and manages information (e.g., for target tracking).  
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FIGURE 1. This example of an unmanned aerial system embedded system functional 
architecture includes the central processing unit (CPU) that is supplied with a basic 

input/output system (BIOS), operating system (OS), and mission-specific application code 
(Apps). The field-programmable gate array (FPGA) has its configuration stored in a firmware 

memory. In addition to a video camera payload, the system has a random-access memory, a 
hard drive for storage, and a radio, all of which are accessible by the CPU and/or FPGA 

through a backplane network. 

Processing elements, such as the CPU and FPGA, must be chosen to securely deliver the UAS 
functionality requirements. This UAS application involves sophisticated signal processing and 
requires high throughput (measured by the number of floating-point operations per second) 
with a stringent SWaP allowance.  

To support a complicated signal processing algorithm, the CPU needs a large memory and 
storage capacity. A popular mainstream processor likely has a variety of COTS software 
libraries that can be used in application development, but it may not have the security features 
desired for the CONOPS. On the other hand, a secure processor with built-in security features 
may simplify system development but may not possess the appropriate processing power or 
support the large memory space required for the application. We must consider system 
openness and upgradability before choosing a secure processor over a mainstream CPU.  

Many popular FPGAs are built with embedded security features [4]. Developers should select 
these devices on the basis of their ability to encrypt and authenticate configuration bitstreams, 
incorporate security monitors to detect attacks, and erase decryption keys (a process known as 
zeroization) to protect critical information when attacks are detected.  

Threat Analysis (heading level 2) 

The first step in designing a secure system is to analyze the potential attacks that the system 
may be subjected to when deployed. Adversaries seek to sabotage and develop 
countermeasures against U.S. missions, so the CONOPS determines not only functional 
requirements but also potential adversary attacks. The attacks depend on the adversary’s 



6 
 

capability (e.g., a nation state’s sophisticated knowledge) and objectives (e.g., to exfiltrate 
information). 

In the UAS example, we assume that there is a high probability of equipment loss resulting 
from the small size of the UAS and its operation in hostile areas. The examples of UAS attack 
targets in FIGURE 2 portray three logical attack surfaces—boot process, system data, and 
software—and one physical attack surface, its physical system, that adversaries may attack to 
exfiltrate information.  

 

 

FIGURE 2. Example UAS attack targets illustrate the vulnerabilities and sources of a threat 
scenario with three attack surfaces (boot process, system data, and software) and one physical 

attack surface (physical system). 

During the CPU boot process, a secure system must establish a root of trust, which consists of 
hardware and software components that are inherently trusted, to protect and authenticate 
software components. Current practice uses the trusted platform module (TPM), an 
international standard secure processor that facilitates secure cryptographic key generation, 
remote attestation, encryption, decryption, and sealed storage [5]. Each TPM chip includes a 
unique secret key, allowing the chip to perform platform and hardware device authentication. 

When creating the TPM, developers made a number of compromises that addressed cost and 
privacy concerns to ensure commercial adoptability of the module by vendors. The TPM must 
be inexpensive and cause as little disruption to the processing architecture as possible. 
Consumer privacy concerns dealing with user identification forced device usage to be an 
optional and passive part of a processing system’s operations. These compromises led to a low-
performance device that lacks adequate physical protection. In the Architecture and Enabling 
Technologies section, we will explain Lincoln Laboratory’s security coprocessor equipped with 
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a physical unclonable function, which was developed to address the TPM security inadequacy 
in tactical operations. 

Despite a system’s incorporation of an effective TPM, adversaries may exploit latent 
vulnerabilities, e.g., bugs, within an authorized software component to access critical data or 
gain control of the platform itself. Even authorized users could deliberately or negligently 
introduce threats onto a system via untrusted software (e.g., malware) or unwanted 
functionality via third-party intellectual property.   

A secure system must be designed to prevent compromised software from giving an attacker 
unrestricted system access. Some developers are starting to address access issues on commercial 
systems. For example, software developers use separation kernels to establish and isolate 
individual computing processes, control information flow between the processes, and prevent 
unauthorized information access. On the hardware side, researchers are developing 
architectures that enforce isolations between processing threads executing on the same 
processor [6].  

Because the UAS is built with minimal system software for dedicated purposes, the exploitation 
of software vulnerabilities may be less likely than that for a general-purpose computer. The 
UAS has a strictly controlled provisioning environment accessible by a very limited number of 
authorized users, reducing the risk of introducing unverified and untrusted software into the 
UAS. However, one should always assume that an adversary will attempt to eavesdrop on 
wireless communication; thus, data protection is a high security priority.  

Developers must also consider physical attacks because there is a high probability that 
adversaries will gain physical access to a UAS device, allowing enemies to reverse engineer the 
device or modify sensitive components in order to leapfrog their own technology or to gain 
unauthorized access to intellectual property. The most popular protection technique to date is 
the use of a strong protective enclosure equipped with electronic sensors to detect unauthorized 
accesses. However, because some systems are deployed and unattended for extended periods of 
time, it is challenging to maintain the standby power necessary for intrusion detection and 
response.  

Developers must consider all threats and protect the confidentiality and integrity of the UAS 
data existing in three forms: data in use, data at rest, and data in transit. Various hardware and 
software solutions, most based on cryptography, are available a la carte. However, 
cryptographic technology must be fully integrated with the processor for efficient data 
protection via secure key management.  

Security Metrics (heading level 2) 

Specifying and measuring security requirements for embedded system development is difficult. 
The requirements of the CIA triad for embedded systems are excellent objectives, but these 



8 
 

requirements are too abstract to be used as measurable security metrics to evaluate an 
embedded system during the design process. We have thus created three practical, tangible 
security metrics to facilitate the design of a secure embedded system: trustworthiness, 
protection, and usability.  These metrics do not support absolute measurements but provide 
parameters to guide the design of embedded system security as the system’s mission 
functionality architecture evolves. In addition, multiple system architectures can be 
qualitatively evaluated and compared to determine relatively how well they provide security. 
Because these metrics are qualitative and subjective, each security decision must include 
sufficient justification and documentation.  

Trustworthiness is a qualitative analysis of the system’s effectiveness in defending against 
potential threats relevant to its CONOPS. On the basis of current system design and system 
information fidelity, developers have a certain level of trust in system behavior during an attack. 
For example, if a system is equipped with a defense mechanism against a certain threat, the 
system’s security and trustworthiness likely improve. While unpatched system vulnerabilities 
reduce security, understanding those vulnerabilities enables developers to add protection 
technology to the design.  

The protection metric is a qualitative analysis of the system’s capability to support added-in 
protection technologies and address vulnerabilities identified in a CONOPS. Together, the 
trustworthiness and protection metrics can be used to measure how well a system’s security 
addresses confidentiality and integrity requirements.  

Usability is a qualitative analysis of the system’s suitability to a task. A system that is highly 
secure but incapable of delivering the required functionality is not designed well. This metric 
evaluates a system’s design by considering the system’s throughput, resilience, portability, 
upgradability, SWaP, and other similar parameters. 

A system‘s processing requirements, threats, and protection needs vary over the course of a 
system’s operation. We thus define four operational phases for a secure embedded system so 
that it can be evaluated:  

1. Startup: The system is being booted into a state suitable for operations; a trusted 
computing base (TCB), the set of components that provide the system with a secure 
environment, is established.  

2. Execution: The system is in the operational state and performs functions required by the 
mission.  

3. Shutdown: The system is in the process of turning off.  
4. Off: The system is powered down.  
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Architecture and Enabling Technologies (heading level 1) 
Because the critical information of a COTS-based embedded system is mostly in the system’s 
software and firmware, cryptography is the foundation of the system’s overall security. Many 
efficient, secure building blocks, such as the National Security Agency-approved Suite B 
cryptography [7], can be implemented with software, firmware, or hardware, and are often 
obtainable as open-source intellectual property. However, simply using standard cryptographic 
primitives cannot guarantee the adequate implementation of security functions. Encryption 
effectiveness is based on the manner in which the cryptographic primitives are assembled and 
coordinated into the desired application-specific security functions. Encryption effectiveness 
also depends on key management, which includes the generation, distribution, and protection 
of keys.  

Lincoln Laboratory has developed a solution to address encryption key management: Lincoln 
Open Cryptographic Key Management Architecture (LOCKMA), a highly portable, modular, 
open software library of key management and cryptographic algorithms that are suitable for 
embedded system uses. Designed to secure systems used in a wide range of missions, 
LOCKMA provides user, identity, and key management functions, as well as support for 
hardware and software cryptographic primitives, including the Suite B cryptographic 
primitives. LOCKMA has an intuitive front-end application programming interface (API) so 
developers can easily access LOCKMA’s core functionality. To use LOCKMA, developers are 
not required to have advanced knowledge of the cryptography or key management algorithms 
implemented by LOCKMA’s core modules; instead, they simply use the API to create security 
functions. LOCKMA handles the processing of key management messages and makes extensive 
use of cryptographic primitives available in several commercial and open-source libraries. 
FIGURE 3 shows LOCKMA’s interfaces as high-level security functions and low-level 
cryptographic primitives. 
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FIGURE 3. The LOCKMA software provides a front-end application programming interface 
(API) for high-level security functions that application developers can use directly. 

Complicated cryptographic algorithms are captured as core modules, which are hidden from 
application developers. The back-end API supports the use of low-level cryptographic 

kernels implemented in either hardware or software.  

Because software-implemented security functions may not meet extreme SWaP requirements, 
Lincoln Laboratory has implemented LOCKMA in a security coprocessor (S-COP), which 
applies cryptographic primitives in hardware. The benefits of hardware implementation 
include much faster computation times, lower power consumption, and hardware separation 
and thus protection of sensitive keys from nonsensitive data and code.  

FIGURE 4 shows the UAS embedded system architecture, previously shown in FIGURE 1, in 
which the CPU is secured with an S-COP and a physical unclonable function (PUF), which is a 
unique function that can be easily evaluated but hard to duplicate. The S-COP employs 
dynamic key management and accelerated Suite B cryptography for the authentication steps 
necessary to securely boot the CPU. The PUF provides an inviolable root of trust, from which a 
unique cryptographic key is derived.  

 

FIGURE 4. A security coprocessor (S-COP) is used along with a physical unclonable function 
(PUF) to secure a commercial off-the-shelf central processing unit (CPU). 

Lincoln Laboratory researchers have developed an optical PUF that can be implemented on a 
fully fabricated printed circuit board (PCB). As illustrated in FIGURE 5, the PUF is constructed 
by adding one or more light-emitting diodes (LED) and an imager to the PCB, which is then 
coated with a thin polymer planar waveguide. Upon powering up, the S-COP derives a unique 
numerical code from the imager, which receives light that is emitted by the LEDs and travels 
through the waveguide. This code is then used for device identification and key derivation. 
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Manufacturing variations ensures a unique identification code for each PCB. Invasive attempts 
to learn about the PUF code (e.g., for cloning or other unauthorized actions), even when the 
PCB is unpowered, will disturb and damage the coating and irreversibly destroy the PUF code.  

 

FIGURE 5. An optical physical unclonable function (PUF) is implemented with a waveguide. 
An operating concept illustration is shown in (a); implementation of the concept on a fully 

fabricated printed circuit board is shown in (b). 

Because many environmental conditions, such as temperature and aging, can cause the PUF 
reading to vary, a technique called fuzzy extraction is employed to ensure that the same key 
will be derived from the PUF under various conditions [8]. This technique allows the S-COP to 
secure the boot process, load only trusted software, and confirm that the unique identity is 
intact before, during, and after the boot process. In addition to protecting data at rest with 
cryptography, the S-COP uses key management to support secure communications between 
subsystems to protect data in transit. 

This S-COP-based secure embedded architecture allows software applications to be developed 
and tested initially without invoking security features. When a system is provisioned for 
deployment, developers apply the PUF to its PCB and load the finalized software code 
encrypted with the PUF-derived key. An incorrect PUF code will cause a failed software 
decryption and the system will not start. The decoupling of the S-COP and the CPU allows DoD 
embedded systems to leverage mainstream CPUs, enhancing system usability and 
upgradability. 

FIGURE 6 shows a test bed that we have developed to evaluate the S-COP-based secure 
architecture. In an unsecured architecture, the CPU reads in the basic input/output system 
(BIOS) and bootstraps the operating system (OS). Without authentication, the CPU is vulnerable 
to a maliciously modified BIOS and OS.  



12 
 

 

   

FIGURE 6. A secure processing environment integrates a central processing unit (CPU), a 
security coprocessor (S-COP), and a physical unclonable function (PUF).   

The S-COP-based secure architecture addresses this vulnerability by authenticating the BIOS, 
OS, and applications, as illustrated in FIGURE 7. When the embedded system powers up, the S-
COP halts the CPU while it performs authentication. It first reads the PUF and derives a key, 
which is used to decrypt the BIOS. If the decryption is successful, the CPU is released to execute 
the BIOS. The S-COP then authenticates and decrypts the OS and boots the system. Encrypted 
applications are loaded and handled in the same manner. In addition to associating an 
application with a designated system, the system can use LOCKMA key management to 
dynamically and seamlessly adjust the authorization of application execution (e.g., in time-
specific and/or location-specific modes).  
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FIGURE 7. During the secure boot process, the central processing unit (CPU) is halted until 
the security coprocessor (S-COP) successfully verifies system integrity. Data that are 

protected by encryption are indicated by lock symbols. 

FIGURE 8 shows data-at-rest and data-in-transit protection enabled by the S-COP. In System 1 
and System 2, the S-COP encrypts the CPU-generated data before they are stored, thus 
protecting them from unauthorized access. Likewise, the S-COP decrypts stored data before 
sending them to the CPU. FIGURE 8 also shows the concept of using S-COPs to protect data in 
transit between two systems by establishing an encrypted communication channel over which 
encrypted data can flow.  

  

  

FIGURE 8. The security coprocessor (S-COP) enables data-at-rest and data-in-transit 
protection. Data that are protected by encryption are indicated by lock symbols. 

Evaluation (heading level 1) 

In terms of the CIA triad, the S-COP addresses confidentiality and integrity by protecting the 
boot process, data, and communication channel from unauthorized access and alteration. The S-
COP itself does not fully ensure a system’s availability, but the decoupling of functionality and 
security, which allows for the use of a mainstream CPU, results in improved system usability. 
The system can be adapted to support other agility and resilience measures, such as moving 



14 
 

target technologies [9]. As an example, we evaluate the hypothetical UAS embedded system 
with an S-COP-based secure architecture by using the same three security metrics: 
trustworthiness, protection, and usability.  

A mainstream unsecured CPU receives low trustworthiness ratings during all system operation 
phases, as we assume that it needs an inherently large trusted computing base (TCB) and lacks 
hardware-enforced boot attestation. The security of such a CPU enhanced with an S-COP 
dramatically increases across all system operation phases, earning the CPU higher 
trustworthiness ratings. However, during the execution phase, the user still needs to trust the 
OS, which may have inherent vulnerabilities. The trusted boot does not completely eliminate 
the risk of running untrusted or unverified codes that could potentially be exploited by 
attackers to escalate user privileges on the system or exfiltrate information. 

If a CPU has no explicit support for physical protection, it will receive low protection ratings 
during the boot phase. Although the integration of a CPU with a TPM provides key storage and 
security measurements, the OS still needs to obtain, use, and revoke cryptographic keys, thus 
increasing the number of security components in the TCB. A lack of overall support for physical 
protection or for hardware-enforced encryption of code and data allows attackers to snoop or 
modify memory in the execution phase. During the off phase, the TPM could be physically 
replaced, and thus a new set of measurements could be inserted into the system. The S-COP-
based secure architecture mitigates these deficiencies by creating a root of trust with a PUF and 
can be used to support physical protection. 

Because the S-COP can be adapted to secure a mainstream CPU, the usability of the secure UAS 
embedded architecture rates high; the architecture can leverage all the benefits of a COTS CPU, 
such as high performance (e.g., for signal processing), large cache and memory support, and 
widely supported software libraries.  

Open-Systems Architecture Security (heading level 1) 

The use of OSAs can improve the development and life-cycle efficiency of system assets. 
Typically, OSAs incorporate several buses with well-defined interfaces for communication 
between components. A system can then be adapted to different needs by providing proper 
components and defining system interconnections. 

Besides securing the CPU, LOCKMA is being developed into a cryptography-based secure 
framework that has been successfully demonstrated in OSA embedded system protection. The 
framework employs LOCKMA to provide encryption of data in use, data in transit, and data at 
rest to prevent eavesdropping, probing, and unauthorized access. In addition, developers can 
enforce a trusted configuration by accepting only predetermined payloads and preventing 
unauthorized hardware and/or software substitutes.  
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FIGURE 9 illustrates an example configuration that consists of several payloads and processors 
and a LOCKMA security manager (LSM). A digitally signed configuration (config) file that 
specifies authorized payloads, acceptable combinations of payloads, and secure communication 
channels establishes the authorized mission configuration. FIGURE 10 shows an example config 
file that has three sections: principals, constraints, and channels. The authorized subsystems are 
listed under the principals section; authorized configurations are noted under the constraints 
section; and authorized communication channels are specified in the channels section. In this 
example, the system can contain subsystems A, B, C, and D, among others. An authorized 
configuration is one that includes subsystem A or subsystem B with both subsystems A and D 
present. Subsystem A is given the role of a publisher (pub) and subsystems D and E are 
assigned the role of subscriber (sub).  A digital signature is created for the config file so that its 
integrity can be verified. 

 

FIGURE 9. In a LOCKMA-based open-systems architecture security framework, the 
LOCKMA security manager (LSM) checks subsystem credentials against a config file to 

ensure that the configuration is authorized. 

 

FIGURE 10. A security config file, an example of which is shown above, is used to enforce 
payload authorization and secure communication channels. 

At startup, the LSM verifies the digital signature of the config file and ensures that it is 
unaltered. Using the config file, the LSM collects subsystem credentials and confirms the 
absence of unexpected system payloads, leading to authorized system configuration. The 
system then starts and the LSM continues to set up secure communication channels.  
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FIGURE 11 illustrates how LOCKMA enables each subsystem with a key management (KM) 
function and an Advanced Encryption Standard (AES) encryption and decryption function. 
Subsystem A creates a key wrap containing a symmetric cryptographic key that is only 
accessible by authorized subsystems D and E, and establishes a communication channel. The 
channel users retrieve the common secret session key and use it for encrypted communications. 
The system is then ready to perform its mission objectives.  

 

(a) 

 

(b) 

FIGURE 11. In a LOCKMA security framework, a publisher (e.g., subsystem A) sends a key 
wrap only accessible by intended subscribers (e.g., subsystems D and E) to retrieve a session 
key (a). The publisher and subscribers are then able to carry out encrypted communication 

(b). 

Ongoing Work (heading level 1) 

Security has an asymmetric nature—an attacker can compromise a system by discovering a 
single, unexpected vulnerability while a defender must defend against all vulnerabilities. 
Because it is impossible to correctly predict every future attack, securing an embedded system 
to prevent attacks is not a guarantee of mission assurance. Being secure is not adequate; systems 
must also be resilient. Lincoln Laboratory is vigorously pursuing an answer to the essential 
mission-assurance question: If an attacker is successful despite implemented defenses, what can 
be done so the mission can continue until completion?  
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Our objective is to define a standardized reference secure and resilient architecture for DoD 
embedded systems. We want to ensure that systems continue to function when a situation does 
not go as we expect. Our work is guided by the four stages of actions involved with the 
resiliency of an embedded system against cyberattacks: anticipate, withstand, recover, and 
evolve [10]. Our current research and development focuses on approaches that enable a system 
to defend against threats; withstand attacks and complete mission goals; recover from a 
degraded state and return to a normal state; and evolve to improve defense and resilience 
against further threats. 

Our ongoing work also includes the development of mission-level resiliency metrics to answer 
the following question: Is the mission more likely to be successful when our system is used? A 
system specification such as system restart time is a good design objective, but by itself does not 
provide information about availability and mission assurance. We are developing a systematic 
approach to connect mission-level resiliency metrics to system specifications.  
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