
1

Secure Embedded Systems

Michael Vai, David J. Whelihan, Benjamin R. Nahill, Daniil M. Utin, Sean R.
O’Melia, and Roger I. Khazan

Developers seek to seamlessly integrate cybersecurity on military systems. However, when implementing
security features in an embedded system, which has a dedicated function, developers must add security
components that often compromise system functionality. To avoid this compromise, system developers
desire a well-defined, systematic codesign approach for embedded system functionality and cybersecurity.
Lincoln Laboratory’s secure embedded system methodology uses a security coprocessor to
cryptographically ensure system confidentiality and integrity while maintaining functionality.

Department of Defense (DoD) systems are increasingly the targets of deliberate, sophisticated
cyberattacks. To assure successful missions, military systems must be trusted to perform their
intended functions, prevent attacks, and operate while under attack. The DoD has thus directed
that cybersecurity technology must be integrated into systems because it is too expensive and
impractical to secure a system after it has been designed [1]. Lincoln Laboratory is at the
research and development forefront of system solutions for challenging critical missions, such
as those to collect, process, and exchange sensitive information. Many of Lincoln Laboratory’s
prototype systems must be designed with security in mind so that they can be quickly brought
into compliance with the DoD’s cybersecurity requirements and support field tests and
technology transfer.

Many DoD systems require the use of embedded computing. An embedded computer system is
designed for a dedicated function, in contrast to a general-purpose computer system, e.g., a
desktop computer, which is designed for multiple functions [2]. The specific functionality
design optimizes performance, e.g., smaller form factor, lower power consumption, and higher
throughput. Developers determine embedded system security requirements according to
mission objectives and a concept of operations (CONOPS). In general, security should be robust
enough to prevent attacks, ensuring that a system can successfully support a mission.
Developers may need to enable a system to continue functioning when security fails, albeit with
possibly degraded capabilities. The design of security for an embedded system is challenging
because security requirements are rarely accurately identified at the start of the design process,
and embedded system engineers tend to focus on well-understood functional capabilities rather
than stringent security requirements. In addition, engineers must provide security that causes
minimal impacts on the system’s size, weight, and power (SWaP), usability, cost, and
development schedule.

To meet these challenges, Lincoln Laboratory established a secure embedded system
development methodology. When securing a system, we strive to achieve three goals:

Distribution A: Public Release.bThis work was sponsored by the Assistant Secretary of Defense for Research & Engineering under Air Force
Contract #FA8721-05-C-0002 Opinions, interpretations, recommendations and conclusions are those of the authors and are not necessarily
endorsed by the United States Government.

2

confidentiality, integrity, and availability (CIA), which are often referred to as the CIA triad for
information security. The CIA triad is defined for embedded systems as follows:

 Confidentiality assures that an embedded system’s critical information, such as
application code and surveillance data, cannot be disclosed to unauthorized entities.

 Integrity assures that adversaries cannot alter system operation.
 Availability assures that mission objectives cannot be disrupted.

In this article, we use the example of a hypothetical secure unmanned aerial system (UAS) to
illustrate how we use cryptography to ensure confidentiality and integrity. Using this example,
we demonstrate the identification of potential attack targets by considering the CONOPS, the
development of countermeasures to these attacks, and the design and implementation of a
cryptography-based security architecture. Because cryptography does not directly enable
availability, we also provide insight into the ongoing research that extends our methodology to
achieve the resilience required to improve the availability of embedded systems.

Challenges in Securing Embedded Systems (heading level 1)

An embedded system will provide very little, if any, SWaP allowance for security; thus, security
must not impose excessive overheads on the protected system. While the DoD has some of the
most demanding applications in terms of throughput and SWaP, it no longer drives the
development of processor technology. Therefore, security technologies must be compatible with
embedded systems using commercial off-the-shelf (COTS) processor hardware platforms that
the DoD can easily adopt.

As military electronic systems continue to increase in sophistication and capability, their cost
and development time also grow. Each year, the DoD acquires and operates numerous
embedded systems, ranging from intelligence, surveillance, and reconnaissance sensors to
electronic warfare and electronic signals intelligence systems. Depending on their CONOPS,
embedded systems have different security requirements. Methodologies for securing embedded
systems must be customizable to meet CONOPS needs.

To meet application-specific requirements while also reducing technology costs and
development time, developers have started to use open-systems architectures (OSA). Because
OSAs use nonproprietary system architectural standards, variable payloads can be shared
among variable platforms, promoting technology upgrades and commercial acquisition. The
DoD has thus directed all DoD agencies to adopt OSA in electronic systems [3]. However,
adding security to OSA could interfere with its openness. As most current security approaches
are ad hoc, proprietary, and expensive, they are incompatible with OSA principles, especially
when each payload developer individually implements and manages the payload security.
Therefore, developing a system-level secure embedded system architecture that will seamlessly
work with various OSA components is a challenge.

3

Design Process (heading level 1)

Embedded system CONOPS are developed from mission objectives and are used to derive both
functional and security requirements. Researchers create, evaluate, and implement an initial
system design, codeveloping functionality and security while minimizing security interference
during functionality testing by decoupling security and functionality requirements. Several
design iterations may be required before the mission objectives are met. Figure 1 captures the
ideal process of designing a secure embedded system; the steps dedicated to security are
highlighted in green.

To illustrate the secure embedded system design process, we use the design of a hypothetical
UAS for a video surveillance application. The CONOPS of this example UAS application is as
follows: At startup, the UAS loads its long-term credentials for identification and authentication
purposes. Mission-specific information—e.g., software, firmware, and data—is loaded into the
respective memories. The system is then booted up and prepared for mission execution.

FIGURE 1. In an ideal secure embedded system design process, functionality (blue) and
security (green) are codesigned, yet they are appropriately decoupled during testing so that

security does not interfere with functionality. This codesign is often difficult to achieve
because functionality and security are two very different disciplines.

4

FIGURE 2 illustrates the UAS embedded system in its execution phase. Under the command of
a ground control station, the UAS takes off, flies to its destination, and then collects video data.
Video data containing target information are encrypted and broadcast to authorized ground
stations (GT1 and GT2) via a radio. Raw video data are also saved for further processing after
the UAS lands. When the UAS is shut down, both raw and processed video data are considered
sensitive and must be saved securely. Any persistent state data, such as long-term credentials,
must also be protected.

FIGURE 2. In this example of an unmanned aerial system (UAS) application in its execution
phase, the intelligence collected by the UAS needs to be shared by coalition partners, yet
protected from adversaries. Cryptography is the key technology enabling this operation.

Figure 3 shows a high-level functional architecture initially designed for the example UAS
embedded system. The architecture consists of a central processing unit (CPU) and a field-
programmable gate array (FPGA) interconnected with a backplane network. The FPGA
typically performs advanced video signal processing (e.g., for target detection and
identification). The CPU handles command-and-control communications received from the
ground control station and manages information (e.g., for target tracking).

5

FIGURE 1. This example of an unmanned aerial system embedded system functional
architecture includes the central processing unit (CPU) that is supplied with a basic

input/output system (BIOS), operating system (OS), and mission-specific application code
(Apps). The field-programmable gate array (FPGA) has its configuration stored in a firmware

memory. In addition to a video camera payload, the system has a random-access memory, a
hard drive for storage, and a radio, all of which are accessible by the CPU and/or FPGA

through a backplane network.

Processing elements, such as the CPU and FPGA, must be chosen to securely deliver the UAS
functionality requirements. This UAS application involves sophisticated signal processing and
requires high throughput (measured by the number of floating-point operations per second)
with a stringent SWaP allowance.

To support a complicated signal processing algorithm, the CPU needs a large memory and
storage capacity. A popular mainstream processor likely has a variety of COTS software
libraries that can be used in application development, but it may not have the security features
desired for the CONOPS. On the other hand, a secure processor with built-in security features
may simplify system development but may not possess the appropriate processing power or
support the large memory space required for the application. We must consider system
openness and upgradability before choosing a secure processor over a mainstream CPU.

Many popular FPGAs are built with embedded security features [4]. Developers should select
these devices on the basis of their ability to encrypt and authenticate configuration bitstreams,
incorporate security monitors to detect attacks, and erase decryption keys (a process known as
zeroization) to protect critical information when attacks are detected.

Threat Analysis (heading level 2)

The first step in designing a secure system is to analyze the potential attacks that the system
may be subjected to when deployed. Adversaries seek to sabotage and develop
countermeasures against U.S. missions, so the CONOPS determines not only functional
requirements but also potential adversary attacks. The attacks depend on the adversary’s

6

capability (e.g., a nation state’s sophisticated knowledge) and objectives (e.g., to exfiltrate
information).

In the UAS example, we assume that there is a high probability of equipment loss resulting
from the small size of the UAS and its operation in hostile areas. The examples of UAS attack
targets in FIGURE 2 portray three logical attack surfaces—boot process, system data, and
software—and one physical attack surface, its physical system, that adversaries may attack to
exfiltrate information.

FIGURE 2. Example UAS attack targets illustrate the vulnerabilities and sources of a threat
scenario with three attack surfaces (boot process, system data, and software) and one physical

attack surface (physical system).

During the CPU boot process, a secure system must establish a root of trust, which consists of
hardware and software components that are inherently trusted, to protect and authenticate
software components. Current practice uses the trusted platform module (TPM), an
international standard secure processor that facilitates secure cryptographic key generation,
remote attestation, encryption, decryption, and sealed storage [5]. Each TPM chip includes a
unique secret key, allowing the chip to perform platform and hardware device authentication.

When creating the TPM, developers made a number of compromises that addressed cost and
privacy concerns to ensure commercial adoptability of the module by vendors. The TPM must
be inexpensive and cause as little disruption to the processing architecture as possible.
Consumer privacy concerns dealing with user identification forced device usage to be an
optional and passive part of a processing system’s operations. These compromises led to a low-
performance device that lacks adequate physical protection. In the Architecture and Enabling
Technologies section, we will explain Lincoln Laboratory’s security coprocessor equipped with

7

a physical unclonable function, which was developed to address the TPM security inadequacy
in tactical operations.

Despite a system’s incorporation of an effective TPM, adversaries may exploit latent
vulnerabilities, e.g., bugs, within an authorized software component to access critical data or
gain control of the platform itself. Even authorized users could deliberately or negligently
introduce threats onto a system via untrusted software (e.g., malware) or unwanted
functionality via third-party intellectual property.

A secure system must be designed to prevent compromised software from giving an attacker
unrestricted system access. Some developers are starting to address access issues on commercial
systems. For example, software developers use separation kernels to establish and isolate
individual computing processes, control information flow between the processes, and prevent
unauthorized information access. On the hardware side, researchers are developing
architectures that enforce isolations between processing threads executing on the same
processor [6].

Because the UAS is built with minimal system software for dedicated purposes, the exploitation
of software vulnerabilities may be less likely than that for a general-purpose computer. The
UAS has a strictly controlled provisioning environment accessible by a very limited number of
authorized users, reducing the risk of introducing unverified and untrusted software into the
UAS. However, one should always assume that an adversary will attempt to eavesdrop on
wireless communication; thus, data protection is a high security priority.

Developers must also consider physical attacks because there is a high probability that
adversaries will gain physical access to a UAS device, allowing enemies to reverse engineer the
device or modify sensitive components in order to leapfrog their own technology or to gain
unauthorized access to intellectual property. The most popular protection technique to date is
the use of a strong protective enclosure equipped with electronic sensors to detect unauthorized
accesses. However, because some systems are deployed and unattended for extended periods of
time, it is challenging to maintain the standby power necessary for intrusion detection and
response.

Developers must consider all threats and protect the confidentiality and integrity of the UAS
data existing in three forms: data in use, data at rest, and data in transit. Various hardware and
software solutions, most based on cryptography, are available a la carte. However,
cryptographic technology must be fully integrated with the processor for efficient data
protection via secure key management.

Security Metrics (heading level 2)

Specifying and measuring security requirements for embedded system development is difficult.
The requirements of the CIA triad for embedded systems are excellent objectives, but these

8

requirements are too abstract to be used as measurable security metrics to evaluate an
embedded system during the design process. We have thus created three practical, tangible
security metrics to facilitate the design of a secure embedded system: trustworthiness,
protection, and usability. These metrics do not support absolute measurements but provide
parameters to guide the design of embedded system security as the system’s mission
functionality architecture evolves. In addition, multiple system architectures can be
qualitatively evaluated and compared to determine relatively how well they provide security.
Because these metrics are qualitative and subjective, each security decision must include
sufficient justification and documentation.

Trustworthiness is a qualitative analysis of the system’s effectiveness in defending against
potential threats relevant to its CONOPS. On the basis of current system design and system
information fidelity, developers have a certain level of trust in system behavior during an attack.
For example, if a system is equipped with a defense mechanism against a certain threat, the
system’s security and trustworthiness likely improve. While unpatched system vulnerabilities
reduce security, understanding those vulnerabilities enables developers to add protection
technology to the design.

The protection metric is a qualitative analysis of the system’s capability to support added-in
protection technologies and address vulnerabilities identified in a CONOPS. Together, the
trustworthiness and protection metrics can be used to measure how well a system’s security
addresses confidentiality and integrity requirements.

Usability is a qualitative analysis of the system’s suitability to a task. A system that is highly
secure but incapable of delivering the required functionality is not designed well. This metric
evaluates a system’s design by considering the system’s throughput, resilience, portability,
upgradability, SWaP, and other similar parameters.

A system‘s processing requirements, threats, and protection needs vary over the course of a
system’s operation. We thus define four operational phases for a secure embedded system so
that it can be evaluated:

1. Startup: The system is being booted into a state suitable for operations; a trusted
computing base (TCB), the set of components that provide the system with a secure
environment, is established.

2. Execution: The system is in the operational state and performs functions required by the
mission.

3. Shutdown: The system is in the process of turning off.
4. Off: The system is powered down.

9

Architecture and Enabling Technologies (heading level 1)
Because the critical information of a COTS-based embedded system is mostly in the system’s
software and firmware, cryptography is the foundation of the system’s overall security. Many
efficient, secure building blocks, such as the National Security Agency-approved Suite B
cryptography [7], can be implemented with software, firmware, or hardware, and are often
obtainable as open-source intellectual property. However, simply using standard cryptographic
primitives cannot guarantee the adequate implementation of security functions. Encryption
effectiveness is based on the manner in which the cryptographic primitives are assembled and
coordinated into the desired application-specific security functions. Encryption effectiveness
also depends on key management, which includes the generation, distribution, and protection
of keys.

Lincoln Laboratory has developed a solution to address encryption key management: Lincoln
Open Cryptographic Key Management Architecture (LOCKMA), a highly portable, modular,
open software library of key management and cryptographic algorithms that are suitable for
embedded system uses. Designed to secure systems used in a wide range of missions,
LOCKMA provides user, identity, and key management functions, as well as support for
hardware and software cryptographic primitives, including the Suite B cryptographic
primitives. LOCKMA has an intuitive front-end application programming interface (API) so
developers can easily access LOCKMA’s core functionality. To use LOCKMA, developers are
not required to have advanced knowledge of the cryptography or key management algorithms
implemented by LOCKMA’s core modules; instead, they simply use the API to create security
functions. LOCKMA handles the processing of key management messages and makes extensive
use of cryptographic primitives available in several commercial and open-source libraries.
FIGURE 3 shows LOCKMA’s interfaces as high-level security functions and low-level
cryptographic primitives.

10

FIGURE 3. The LOCKMA software provides a front-end application programming interface
(API) for high-level security functions that application developers can use directly.

Complicated cryptographic algorithms are captured as core modules, which are hidden from
application developers. The back-end API supports the use of low-level cryptographic

kernels implemented in either hardware or software.

Because software-implemented security functions may not meet extreme SWaP requirements,
Lincoln Laboratory has implemented LOCKMA in a security coprocessor (S-COP), which
applies cryptographic primitives in hardware. The benefits of hardware implementation
include much faster computation times, lower power consumption, and hardware separation
and thus protection of sensitive keys from nonsensitive data and code.

FIGURE 4 shows the UAS embedded system architecture, previously shown in FIGURE 1, in
which the CPU is secured with an S-COP and a physical unclonable function (PUF), which is a
unique function that can be easily evaluated but hard to duplicate. The S-COP employs
dynamic key management and accelerated Suite B cryptography for the authentication steps
necessary to securely boot the CPU. The PUF provides an inviolable root of trust, from which a
unique cryptographic key is derived.

FIGURE 4. A security coprocessor (S-COP) is used along with a physical unclonable function
(PUF) to secure a commercial off-the-shelf central processing unit (CPU).

Lincoln Laboratory researchers have developed an optical PUF that can be implemented on a
fully fabricated printed circuit board (PCB). As illustrated in FIGURE 5, the PUF is constructed
by adding one or more light-emitting diodes (LED) and an imager to the PCB, which is then
coated with a thin polymer planar waveguide. Upon powering up, the S-COP derives a unique
numerical code from the imager, which receives light that is emitted by the LEDs and travels
through the waveguide. This code is then used for device identification and key derivation.

11

Manufacturing variations ensures a unique identification code for each PCB. Invasive attempts
to learn about the PUF code (e.g., for cloning or other unauthorized actions), even when the
PCB is unpowered, will disturb and damage the coating and irreversibly destroy the PUF code.

FIGURE 5. An optical physical unclonable function (PUF) is implemented with a waveguide.
An operating concept illustration is shown in (a); implementation of the concept on a fully

fabricated printed circuit board is shown in (b).

Because many environmental conditions, such as temperature and aging, can cause the PUF
reading to vary, a technique called fuzzy extraction is employed to ensure that the same key
will be derived from the PUF under various conditions [8]. This technique allows the S-COP to
secure the boot process, load only trusted software, and confirm that the unique identity is
intact before, during, and after the boot process. In addition to protecting data at rest with
cryptography, the S-COP uses key management to support secure communications between
subsystems to protect data in transit.

This S-COP-based secure embedded architecture allows software applications to be developed
and tested initially without invoking security features. When a system is provisioned for
deployment, developers apply the PUF to its PCB and load the finalized software code
encrypted with the PUF-derived key. An incorrect PUF code will cause a failed software
decryption and the system will not start. The decoupling of the S-COP and the CPU allows DoD
embedded systems to leverage mainstream CPUs, enhancing system usability and
upgradability.

FIGURE 6 shows a test bed that we have developed to evaluate the S-COP-based secure
architecture. In an unsecured architecture, the CPU reads in the basic input/output system
(BIOS) and bootstraps the operating system (OS). Without authentication, the CPU is vulnerable
to a maliciously modified BIOS and OS.

12

FIGURE 6. A secure processing environment integrates a central processing unit (CPU), a
security coprocessor (S-COP), and a physical unclonable function (PUF).

The S-COP-based secure architecture addresses this vulnerability by authenticating the BIOS,
OS, and applications, as illustrated in FIGURE 7. When the embedded system powers up, the S-
COP halts the CPU while it performs authentication. It first reads the PUF and derives a key,
which is used to decrypt the BIOS. If the decryption is successful, the CPU is released to execute
the BIOS. The S-COP then authenticates and decrypts the OS and boots the system. Encrypted
applications are loaded and handled in the same manner. In addition to associating an
application with a designated system, the system can use LOCKMA key management to
dynamically and seamlessly adjust the authorization of application execution (e.g., in time-
specific and/or location-specific modes).

13

FIGURE 7. During the secure boot process, the central processing unit (CPU) is halted until
the security coprocessor (S-COP) successfully verifies system integrity. Data that are

protected by encryption are indicated by lock symbols.

FIGURE 8 shows data-at-rest and data-in-transit protection enabled by the S-COP. In System 1
and System 2, the S-COP encrypts the CPU-generated data before they are stored, thus
protecting them from unauthorized access. Likewise, the S-COP decrypts stored data before
sending them to the CPU. FIGURE 8 also shows the concept of using S-COPs to protect data in
transit between two systems by establishing an encrypted communication channel over which
encrypted data can flow.

FIGURE 8. The security coprocessor (S-COP) enables data-at-rest and data-in-transit
protection. Data that are protected by encryption are indicated by lock symbols.

Evaluation (heading level 1)

In terms of the CIA triad, the S-COP addresses confidentiality and integrity by protecting the
boot process, data, and communication channel from unauthorized access and alteration. The S-
COP itself does not fully ensure a system’s availability, but the decoupling of functionality and
security, which allows for the use of a mainstream CPU, results in improved system usability.
The system can be adapted to support other agility and resilience measures, such as moving

14

target technologies [9]. As an example, we evaluate the hypothetical UAS embedded system
with an S-COP-based secure architecture by using the same three security metrics:
trustworthiness, protection, and usability.

A mainstream unsecured CPU receives low trustworthiness ratings during all system operation
phases, as we assume that it needs an inherently large trusted computing base (TCB) and lacks
hardware-enforced boot attestation. The security of such a CPU enhanced with an S-COP
dramatically increases across all system operation phases, earning the CPU higher
trustworthiness ratings. However, during the execution phase, the user still needs to trust the
OS, which may have inherent vulnerabilities. The trusted boot does not completely eliminate
the risk of running untrusted or unverified codes that could potentially be exploited by
attackers to escalate user privileges on the system or exfiltrate information.

If a CPU has no explicit support for physical protection, it will receive low protection ratings
during the boot phase. Although the integration of a CPU with a TPM provides key storage and
security measurements, the OS still needs to obtain, use, and revoke cryptographic keys, thus
increasing the number of security components in the TCB. A lack of overall support for physical
protection or for hardware-enforced encryption of code and data allows attackers to snoop or
modify memory in the execution phase. During the off phase, the TPM could be physically
replaced, and thus a new set of measurements could be inserted into the system. The S-COP-
based secure architecture mitigates these deficiencies by creating a root of trust with a PUF and
can be used to support physical protection.

Because the S-COP can be adapted to secure a mainstream CPU, the usability of the secure UAS
embedded architecture rates high; the architecture can leverage all the benefits of a COTS CPU,
such as high performance (e.g., for signal processing), large cache and memory support, and
widely supported software libraries.

Open-Systems Architecture Security (heading level 1)

The use of OSAs can improve the development and life-cycle efficiency of system assets.
Typically, OSAs incorporate several buses with well-defined interfaces for communication
between components. A system can then be adapted to different needs by providing proper
components and defining system interconnections.

Besides securing the CPU, LOCKMA is being developed into a cryptography-based secure
framework that has been successfully demonstrated in OSA embedded system protection. The
framework employs LOCKMA to provide encryption of data in use, data in transit, and data at
rest to prevent eavesdropping, probing, and unauthorized access. In addition, developers can
enforce a trusted configuration by accepting only predetermined payloads and preventing
unauthorized hardware and/or software substitutes.

15

FIGURE 9 illustrates an example configuration that consists of several payloads and processors
and a LOCKMA security manager (LSM). A digitally signed configuration (config) file that
specifies authorized payloads, acceptable combinations of payloads, and secure communication
channels establishes the authorized mission configuration. FIGURE 10 shows an example config
file that has three sections: principals, constraints, and channels. The authorized subsystems are
listed under the principals section; authorized configurations are noted under the constraints
section; and authorized communication channels are specified in the channels section. In this
example, the system can contain subsystems A, B, C, and D, among others. An authorized
configuration is one that includes subsystem A or subsystem B with both subsystems A and D
present. Subsystem A is given the role of a publisher (pub) and subsystems D and E are
assigned the role of subscriber (sub). A digital signature is created for the config file so that its
integrity can be verified.

FIGURE 9. In a LOCKMA-based open-systems architecture security framework, the
LOCKMA security manager (LSM) checks subsystem credentials against a config file to

ensure that the configuration is authorized.

FIGURE 10. A security config file, an example of which is shown above, is used to enforce
payload authorization and secure communication channels.

At startup, the LSM verifies the digital signature of the config file and ensures that it is
unaltered. Using the config file, the LSM collects subsystem credentials and confirms the
absence of unexpected system payloads, leading to authorized system configuration. The
system then starts and the LSM continues to set up secure communication channels.

16

FIGURE 11 illustrates how LOCKMA enables each subsystem with a key management (KM)
function and an Advanced Encryption Standard (AES) encryption and decryption function.
Subsystem A creates a key wrap containing a symmetric cryptographic key that is only
accessible by authorized subsystems D and E, and establishes a communication channel. The
channel users retrieve the common secret session key and use it for encrypted communications.
The system is then ready to perform its mission objectives.

(a)

(b)

FIGURE 11. In a LOCKMA security framework, a publisher (e.g., subsystem A) sends a key
wrap only accessible by intended subscribers (e.g., subsystems D and E) to retrieve a session
key (a). The publisher and subscribers are then able to carry out encrypted communication

(b).

Ongoing Work (heading level 1)

Security has an asymmetric nature—an attacker can compromise a system by discovering a
single, unexpected vulnerability while a defender must defend against all vulnerabilities.
Because it is impossible to correctly predict every future attack, securing an embedded system
to prevent attacks is not a guarantee of mission assurance. Being secure is not adequate; systems
must also be resilient. Lincoln Laboratory is vigorously pursuing an answer to the essential
mission-assurance question: If an attacker is successful despite implemented defenses, what can
be done so the mission can continue until completion?

17

Our objective is to define a standardized reference secure and resilient architecture for DoD
embedded systems. We want to ensure that systems continue to function when a situation does
not go as we expect. Our work is guided by the four stages of actions involved with the
resiliency of an embedded system against cyberattacks: anticipate, withstand, recover, and
evolve [10]. Our current research and development focuses on approaches that enable a system
to defend against threats; withstand attacks and complete mission goals; recover from a
degraded state and return to a normal state; and evolve to improve defense and resilience
against further threats.

Our ongoing work also includes the development of mission-level resiliency metrics to answer
the following question: Is the mission more likely to be successful when our system is used? A
system specification such as system restart time is a good design objective, but by itself does not
provide information about availability and mission assurance. We are developing a systematic
approach to connect mission-level resiliency metrics to system specifications.

Acknowledgments (heading level 1)

The authors would like to acknowledge technical contributions from the team members:
Thomas Anderson, Walter Bastow, Robert Bond, Brendon Chetwynd, Robert Cunningham,
Ford Ennis, Benjamin Fuller, Michael Geis, Karen Gettings, Antonio Godfrey, Raymond
Govotski, Kyle Ingols, Eric Koziel, Joshua Kramer, Theodore Lyszczarz, and Merrielle Spain.

References

1. T.M. Takai, “Department of Defense Instruction, Subject: Cybersecurity,” 14 Mar. 2014,
available at http://www.dtic.mil/whs/directives/corres/pdf/850001_2014.pdf.

2. D.R. Martinez, R.A. Bond, and M. Vai, ed., High Performance Embedded Computing
Handbook: A Systems Perspective. Boca Raton: CRC Press, 2008.

3. Department of Defense Open Systems Architecture Data Rights Team, “DoD Open
Systems Architecture Contract Guidebook for Program Managers V. 1.1,” June 2013,
available at
http://www.acqnotes.com/Attachments/Open%20System%20Architecture%20(OSA)%
20Contract%20Guidebook%20for%20Program%20Managers%20June%2013.pdf.

4. T. Huffmire, C. Irvine, T.D. Nguyen, T. Levin, R. Kastner, and T. Sherwood, Handbook of
FPGA Design Security. New York: Springer, 2010.

5. Trusted Computing Group, “How to Use the TPM: A Guide to Hardware-Based
Endpoint Security,” 2009, available at
http://www.trustedcomputinggroup.org/files/resource_files/8D42F8D4-1D09-3519-
AD1FFF243B223D73/How_to_Use_TPM_Whitepaper_20090302_Final_3_.pdf.

6. Intel, “Software Guard Extensions Programming Reference,” Sept. 2013, available at
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf.

18

7. National Security Agency, “Suite B Cryptography,” 25 Sept. 2014, available at
https://www.nsa.gov/ia/programs/suiteb_cryptography/.

8. M. Spain, B. Fuller, K. Ingols, and R. Cunningham, “Robust Keys from Physical
Unclonable Functions,” Proceedings of the 2014 IEEE International Symposium on Hardware-

Oriented Security and Trust, 2014, pp. 88–92.
9. H. Okhravi, T. Hobson, D. Bigelow, and W. Streilein, “Finding Focus in the Blur of

Moving-Target Techniques,” IEEE Security & Privacy, vol. 12, no. 2, 2014, pp. 16–26.
10. D.J. Bodeau and R. Graubart, “Cyber Resiliency Engineering Framework,” MITRE

Technical Report, Document Number MTR110237, Sept. 2011, available at
https://www.mitre.org/sites/default/files/pdf/11_4436.pdf.

About the Authors (heading level 1)

Michael Vai is a senior staff member in the Secure Resilient Systems and Technology Group.
From 2012 to 2015, he served as an assistant leader of the same group. Previously, he was an
assistant leader of the Embedded and Open Systems Group in the Intelligence, Surveillance, and
Reconnaissance and Tactical Systems Division. He has worked in the area of embedded systems

and technology for more than 25 years, leading the development of advanced embedded systems

and publishing his research extensively. Prior to joining Lincoln Laboratory in 1999, he was on
the faculty of the Department of Electrical and Computer Engineering at Northeastern
University. During his tenure, he conducted multiple research programs funded by the
National Science Foundation, Defense Advanced Research Projects Agency, and industry. His
current research interests include secure and resilient embedded systems and technology,
particularly systems involved in tactical operations. He received his master’s and doctoral
degrees from Michigan State University, in 1985 and 1987, respectively, in electrical engineering.

David J. Whelihan is a technical staff member in the Secure Resilient Systems and Technology
Group. He started at Lincoln Laboratory in 2002 as a summer intern working on advanced
radar processing hardware while earning his doctorate in electrical and computer engineering
from Carnegie Mellon University. After graduating in 2004, he joined the startup company
DAFCA, where he led the development of an advanced application-specific integrated circuit
and field-programmable gate array debug tool. He then worked for a hardware cybersecurity
startup. Prior to graduate school, he spent three years at Intel as an architectural validation
engineer working on next-generation microprocessors. In 2010, he rejoined Lincoln Laboratory
as a technical staff member, leading the Laboratory’s efforts in the Defense Advanced Research
Projects Agency’s Photonically Optimized Embedded Microprocessors program and serving as
the lead architect on the Self-Contained High-Assurance MicRO Crypto and Key-Management
Processor system, which won a 2012 MIT Lincoln Laboratory Best Invention Award. His current
work involves several programs dealing with secure and resilient hardware and software
systems.

19

Benjamin R. Nahill is a technical staff member in the Secure Resilient Systems and Technology
Group, specializing in secure hardware and embedded systems. He works on solving problems
in secure processing and data protection by leveraging novel hardware architectures. Prior to
joining the Laboratory in 2014, he worked in a variety of areas, including embedded system
design in resource-constrained environments, satellite communications, and signal processing.
He received a bachelor’s degree in computer engineering in 2010 and a master’s degree in
electrical engineering in 2013, both from McGill University.

Daniil M. Utin is a technical staff member in the Secure Resilient Systems and Technology
Group. Previously, he cofounded several successful Internet technology and gaming-related
companies, including WorldWinner.com and Cambridge Interactive Development Corporation.
He has substantial expertise in developing secure, scalable, high-transaction-volume software
systems coupled with dynamic, rich front-end graphical user interfaces. He joined Lincoln
Laboratory in 2009 and has been designing cryptographic key management systems and
utilizing his commercial software background to lead the development of secure usable
solutions. He earned his bachelor’s and master’s degrees in computer science from Brandeis
University in 1996 and 1997, respectively.

Sean R. O’Melia is a technical staff member in the Secure Resilient Systems and Technology
Group. He joined Lincoln Laboratory in 2008. His work to support secure communications in
tactical networks includes the development of cryptographic key management technology for
small unmanned aircraft systems. Most recently, he has concentrated on the design of a key
management architecture for future tactical satellite communications capabilities and the
development of security for open-architecture airborne platforms. He received bachelor’s and
master’s degrees in computer engineering from the University of Massachusetts, Lowell, in 2005
and 2007, respectively. His graduate research focused on instruction set extensions for
enhancing the performance of symmetric-key cryptographic algorithms.

Roger I. Khazan is the associate leader of the Secure Resilient Systems and Technology Group.
He has led programs and conducted research in the areas of systems and communication
security. His expertise and research interests are in usable security, key management and
distribution, and applied cryptography, with specific focuses on disadvantaged tactical
environments and embedded devices. He is passionate about creating technology that
significantly simplifies the task of adding strong and usable cryptographic protections to
software and hardware applications. He earned his master’s degree in 1998 and doctoral degree
in 2002 from MIT in the Department of Electrical Engineering and Computer Science, and he
completed a minor in management at the MIT Sloan School of Management in 2002. He earned
a bachelor’s degree from Brandeis University in 1996, with a double major in computer science
and mathematics and a minor in economics.

