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EXECUTIVE SUMMARY 
 

Core body temperature (CT) fluctuates to a circadian rhythm; a cyclical pattern of 
oscillation that occurs over a period of approximately 24 hours.  While the analysis of 
circadian rhythms provides information critical to physiological status monitoring, current 
technology presents considerable challenges to the measurement of CT outside of 
stringent laboratory environments.  This study evaluated ECTempTM, a heart rate-based 
extended Kalman Filter CT estimation algorithm, in the assessment of circadian rhythm 
indicators. 

 
Eleven participants (age, 23 ± 3 years; height, 173.8 ± 7.7 cm; body mass, 70.12 

± 8.94 kg) were assessed on two occasions in which they were confined to a 
calorimeter chamber for a 22.5-hr period.  Heart rate data were monitored continuously 
using an FDA 510(k) certified (K113054) physiological status monitoring device 
(Equivital™ EQ-02, Hidalgo, Cambridge, UK)  that received CT data from an ingestible 
thermometer pill (Jonah Pill, Mini Mitter Inc., Bend, OR). Circadian rhythm indicators 
(MESOR, amplitude, and acrophase) were determined using a mixed effect modeling 
approach to cosinor regression.  Root mean square error (RMSE), bias, and Pearson’s 
correlation coefficients were assessed between ECTempTM and observed CT. 

 
The results of this investigation showed that ECTempTM provided reasonable 

estimates of MESOR (RMSE, 0.17) and amplitude (RMSE, 0.10).  While ECTempTM 
estimates of circadian rhythm indicators were lower than observed CT, the differences 
were lower than heart-rate based models analyzed in previous studies.  As such, 
ECTempTM demonstrates strong potential for estimating circadian CT rhythm indicators, 
particularly if the algorithm is updated to fit additional data from periods of low CT and 
heart rate. 
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INTRODUCTION 
 
Nearly all human biological processes fluctuate to a circadian rhythm; a cyclical 

pattern of oscillation that occurs over a period of approximately 24 hours.  Circadian 
rhythms have become an increasingly popular research topic for investigators across a 
wide array of disciplines due to their impact on biological systems [1].  The current 
phase of a biomarker within its circadian rhythm has physiological consequences that 
can alter behavioral, cognitive, perceptual, and physical functions [2].  Moreover, 
circadian rhythm profiles can be used by clinicians in the diagnosis, prognosis, and 
treatment of serious medical conditions such as cancer [3], sleep disturbances [4] and 
cardiovascular disorders [5].  As the importance of circadian rhythms becomes 
increasingly evident, there is a growing need to for physiological models capable of 
easily capturing the circadian rhythms of key biological signals using wearable sensors. 
 

While many biological parameters have been investigated, a considerable 
amount of research has focused on characterizing the circadian rhythms of core body 
temperature (CT) [6-8].  Monitoring CT is especially important to soldier performance 
optimization and heat illness prevention when training or in combat in stressful 
environments [9].  However, most methods of measuring CT are invasive, impractical 
outside of laboratory settings, and/or shown to be largely unreliable [10].  As such, there 
is a substantial value in identifying a method to characterize CT circadian rhythms 
outside of the scope of traditional laboratory techniques. 
 

Homeostatic thermoregulation is contingent on the control of heat transfer from 
the core to the extremities [11].  As such, heart rate plays a pivotal role in 
thermoregulation as a primary determinant of the rate of blood flow to the skin.  
Additionally, the relationship between heart rate and metabolic rate has been long 
recognized, dating back to the principles established in Fick’s Principle [12].  In addition 
to its deep physiological connections with CT, heart rate is advantageous in that it is a 
non-invasive measure that can be readily assessed. 
 

For these reasons, recent investigations have examined the viability of heart 
rate-based CT-estimation algorithms [7, 13, 14].  One notable example is ECTempTM, 
which utilizes an extended Kalman Filter to estimate CT from successive heart rate 
measurements[14].  ECTempTM was developed as a real-time estimator of CT for 
assessing thermal-work strain (TWS) in the heat, particularly for warfighters. 
Accordingly, ECTempTM is optimized for estimating CT when elevated above typical 
resting temperatures and not the lower temperatures associated with sleep and rest. 
Therefore, the accuracy of the ECTempTM algorithm in characterizing the circadian 
rhythm of CT has yet to be investigated.  Subsequently, this investigation sought to 
examine the performance of ECTempTM in estimating CT circadian rhythm indicators. 
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METHODS 

PARTICIPANTS 
 

Circadian rhythms were retrospectively analyzed from data collected during a 
previous investigation [15].  Prior to data collection, participants were briefed on the 
procedures, benefits, and risks of the study and each participant gave their informed 
consent.  The investigators adhered to the policies for protection of human subjects as 
prescribed in Army Regulation 70-25. In order to be included in this investigation, 
participants must have attended both experimental visits and have a minimum of twelve 
hours of both heart rate and core temperature data per visit. Consequently, a total of 
eleven participants (age, 23 ± 3 years; height, 173.8 ± 7.7 cm; body mass, 70.12 ± 8.94 
kg) including nine men (age, 23 ± 3 years; height, 175.6 ± 7.1 cm; body mass, 72.16 ± 
8.60 kg) and two women (age, 25 ± 6 years; height, 165.6 ± 4.0 cm; body mass, 60.92 ± 
0.91 kg) were included in this investigation.   

PROCEDURES 
 

Participants attended two experimental visits (Visit1 and Visit2) in which they were 
enclosed in a calorimeter chamber for an approximately 22.5-hr period (Table 1).  Prior 
to entering the calorimeter chamber on the day of each visit, participants were provided 
a standardized breakfast and lunch.  Upon arrival at the laboratory, participants were 
immediately outfitted with an FDA 510(k) certified (K113054) physiological status 
monitoring device (Equivital™ EQ-02, Hidalgo, Cambridge, UK) which was 
subsequently used to monitor changes in heart rate and CT at 15-sec intervals.  The 
device recorded CT by receiving transmissions from a thermometer pill (Jonah Pill, Mini 
Mitter Inc., Bend, OR) which had been ingested orally prior to the start of data 
collection.  The pill was constructed from food grade polycarbonate and conforms to 
U.S. Food and Drug, Cosmetic Act and Food Additive Regulations 21 CFR 177.1580. 
 

Table 1.  Overview of the first (Visit1) and second (Visit2) experimental visit protocols. 

Time  Event 

1700  Issued EQ-02 Sensor and Pill 
1730  Enter Chamber 
1800-1830  Dinner 
1830-2300  Leisure 
2300-0630  Sleep 
0700-0730  Breakfast 
0730-0930  Leisure 
0930-1000  Warm-up* 
1000-1100  Exercise Protocol* 
1100-1200  Post-Exercise Recovery* 
1200-1230  Lunch* 
1230-1600  Leisure 
1600  Dismissal 

 



3 
 

* = Exercise and post-exercise exercise excluded from data analysis. 
 

After being equipped with the physiological status monitoring device, the 
experimental procedures were reviewed before the participant was enclosed within the 
calorimeter chamber at 1730 hr for the remainder of the visit.  During resting conditions, 
room environmental conditions were set to the temperature and relatively humidity of 
the participant’s preferences. During the exercise protocol, temperature was set to 22°C 
with a relative humidity of 50%.  Once inside the calorimeter chamber, participants were 
allowed to consume water ad libitum.  However, food intake was restricted to three 
standardized meals; dinner at 1800 hr, breakfast at 0700 hr, and lunch at 1200 hr.  All 
participants were instructed to finish consuming each standardized meal within 30 min. 

 
 During designated leisure periods, participants were required to restrict physical 

activity to sedentary tasks (e.g., computer work, watching television).  At 2300 hr, 
calorimeter lights were extinguished and participants were instructed to lie quietly in bed 
until awoken at 0630 hr the following morning.  At 0930 hr, participants began a series 
of warmup procedures before performing an exercise protocol (5 mph pace for 60-min 
at 0% grade incline) on a standard powered treadmill (Smooth Fitness 7.11.HR) from 
1000-1100 hr.  The protocols differed in whether the participants exercised using their 
own pacing strategy (Visit1) or a computationally derived policy based upon their 
thermal-work strain state, distance completed, and the time remaining (Visit2).  To 
minimize the influence of the exercise and any effects related to the differences in 
pacing strategies, data between 0930 and 1230 hr were excluded from circadian rhythm 
analysis. 
 

ECTEMPTM ALGORITHM 
 

One-minute average CT and heart rate data were downloaded from the EQ-02 
before analysis by the ECTempTM algorithm [14].  Data were visually inspected for 
outliers and for water consumption signatures. For the first time point (t=1) of each trial, 

the estimated CT (Est.CTt=1 ) was set as the corresponding observed CT value with 
estimated variance set equal to 0 (𝐸𝑠𝑡. 𝑉𝑎𝑟𝑡=1).  Subsequently, the following six 
equations were applied iteratively with each additional time point: 

 

1. A preliminary estimate of CT for the current time point (Pre.CTt) was made using 
the estimated CT from the previous time point (Est.CTt-1).   
 

𝑃𝑟𝑒. 𝐶𝑇𝑡 = 𝐸𝑠𝑡. 𝐶𝑇𝑡−1 
 

2. A preliminary estimate of the variance of the estimate of CT for the current time 

point (Pre.Vart) was made by incorporating the estimated variance from the 
previous time point (Est.Vart-1) into the following equation: 
 

𝑃𝑟𝑒. 𝑉𝑎𝑟𝑡 = 𝐸𝑠𝑡. 𝑉𝑎𝑟𝑡−1 + 0.000484 
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3. The extended Kalman filter mapping function variance coefficient (Ct) was 
computed using the following equation: 
 

𝐶𝑡 = −9.1428 × 𝑃𝑟𝑒. 𝐶𝑇𝑡 + 384.4286 
 

4. The Kalman gain weighting factor for the current time (Kt) was computed using 
the following equation: 
 

𝐾𝑡 =
𝑃𝑟𝑒. 𝑉𝑎𝑟𝑡 × 𝐶𝑡

𝑃𝑟𝑒. 𝑉𝑎𝑟𝑡 × 𝐶𝑡
2 + 356.5654

 

 

5. A final estimate of CT for the current time point (Est.CTt) was made by 
incorporating the heart rate observed at the current time (HRt) the following 
equation: 
 

𝐸𝑠𝑡. 𝐶𝑇𝑡 = 𝑃𝑟𝑒. 𝐶𝑇𝑡 + 𝐾𝑡 × (𝐻𝑅𝑡 − [−4.5714 × 𝑃𝑟𝑒. 𝐶𝑇𝑡
2 + 384.4286 × 𝑃𝑟𝑒. 𝐶𝑇𝑡 − 7887.1]) 

 

6. The variance of the final estimate of CT for the current time point (Est.Vart) was 
calculated using the following equation: 

 

𝐸𝑠𝑡. 𝑉𝑎𝑟𝑡 = 𝑃𝑟𝑒. 𝑉𝑎𝑟𝑡 × (1 − 𝐶𝑡 × 𝐾𝑡) 
 

CIRCADIAN RHYTHM INDICATORS 
 

As the period was assumed to be 24-hr for all trials, three circadian rhythm 
indicators were computed (see Figure 1).  The first circadian indicator compared was 
the Midline Estimating Statistic Of Rhythm (MESOR); a rhythm-adjusted mean value 
around which the biological signal oscillates [1].  The second indicator was the 
amplitude; the maximal predictable variation that the biological signal oscillates from the 
MESOR[16].  The last circadian indicator compared was the acrophase; the time point 
within the period at which the circadian rhythm reaches its apex [7].   
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Figure 1. Overview of circadian rhythm indicators analyzed. 

 
MESOR, Midline Estimating Statistic Of Rhythm.  
 

STATISTICAL ANALYSES 
 

Heart rate and CT time series were visually inspected for outliers and drink 
artifacts. Core temperatures from CT and ECTempTM were subsequently averaged over 
5-min time intervals (T) across the period which was assumed to be 24-hr across all 
trials. Once the estimated values of CT were obtained from ECTempTM, circadian 
rhythms were determined using cosinor regression [16] and incorporating a mixed effect 
model approach. Mixed effect models are similar to conventional regression models in 
that they describe the population-mean (fixed) effects of independent variables on the 
outcome variable.  However, mixed models also describe random effects, which are 
effects on the outcome variable specific to one or more grouping variables (e.g. 
participant, visit) within the dataset. The mixed model approach was selected since it 
provides a better description of fixed effects by accounting for the influence of each 
participant and visit on their repeated measures [17].  Furthermore, the random effects 
coefficients determined could be used to calculate circadian rhythm indicators for each 
participant at each visit.  

 
The single component cosinor regression model for a biological signal can be 

written as: 
 

Y (t) = β0 + β1cos(2πt/τ) + β2sin(2πt/τ) 
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where Y = biological signal analyzed for circadian rhythmicity; t = time during the phase, 
β0 = MESOR; β1 = coefficient for the cosine term;; τ = period (length of one complete 
circadian rhythm cycle); and β2 = coefficient for the sine term. 
 

In order to determine circadian rhythm indicators for each participant at each 
visit, the cosinor regression model can be modified to the following mixed effects model: 
 

Y (t) = β0 + β1cos(2πt/τ) + β2sin(2πt/τ) + (β0 + β1 + β2 | ID / Visit) 
 

Where ID = participant; Visit  = experimental visit (Visit1 or Visit2); (β0 + β1 + β2 | ID / 
Visit) = random effects of participant and visit within participant on β0, β1, and β2. 
 
Consequently, the models for CT and ECTempTM were specified as: 
 

CT (t) = β0 + β1cos(2πt/τ) + β2sin(2πt/τ) + (β0 + β1 + β2 | ID / Visit) 
 

ECTempTM (t) = β0 + β1cos(2πt/τ) + β2sin(2πt/τ) + (β0 + β1 + β2 | ID / Visit) 
 

The circadian rhythm indicators for each trial were subsequently determined 
based on the random effects coefficient estimates produced by each model.  Firstly, the 
MESOR of each trial was considered as the intercept.  Secondly, the amplitude of each 
trial was estimated using the following equation: 

 

𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 = √(𝛽1 + 𝛽2) 
 

Thirdly, the acrophase of each trial was estimated using the following equation: 
 

𝐴𝑐𝑟𝑜𝑝ℎ𝑎𝑠𝑒 = tan−1(−𝛽2/𝛽1) + 𝐾𝜋 
 
where K = 
0 if β1 > 0 and β2 > 0 
1 if β1 < 0 
2 if β1 > 0 and β2 < 0 
 

All statistical analyses were performed using RStudio (Version 0.98.1056 , 
RStudio, Inc).  Mixed effects models were conducted using the “lme4” package via the 
“glmer” and “glm” functions respectively[18].  P-values were determined using the 
lmerTest function [19] with the level of statistical significance set at p ≤ 0.05.  All data 
are reported as mean ± standard deviation (SD) unless noted otherwise. Pearson’s 
correlation coefficients (r) were calculated for each circadian rhythm indicator to 
evaluate the strength of the relationship. Root Mean Square Error (RMSE) was 
calculated for each circadian rhythm indicator as the square root of the mean of the 
squared differences between ECTempTM and CT.  



7 
 

RESULTS 
 
Figure 2 displays CT over time of day across all data points.  CT remained elevated after the exercise protocol until 
returning to close to pre-exercise values after approximately 1.5 hr.  Heart rate also remained well above pre-exercise 
values for approximately 1.5 hr (Figure 3).  Dotted lines represent time period that was excluded from analysis due to 
masking effects from the exercise protocol, gap in data represents time between the end and start of the experimental 
period 
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Figure 4 contains all of the temperatures estimated by ECTempTM and the 
corresponding measured CT across all data points. A moderately strong positive 
correlation was observed between ECTempTM and CT (r = 0.68). Overall, CT had both 
higher mean and standard deviation (36.82 ± 0.38 °C) than estimated CT by ECTempTM 
(36.65 ± 0.23 °C).   

 
Table 2 displays the fixed and random effects estimates as well as model fit 

indices for each mixed effect model.  Across both models, significant interactions were 
detected for the fixed effects estimates of β0, β1, and β2.  Trend lines of the fixed effects 
estimates of the core temperature circadian rhythm by CT and ECTempTM can be seen 
in Figure 5.  ECTempTM estimates were slightly lower for MESOR (36.70 °C vs.  36.86 
°C) and amplitude (0.24 °C vs. 0.31°C) as well as an earlier acrophase (1456 hr vs. 
1639 hr) compared to CT. 
 

The mean MESOR, amplitude, acrophase values across all participants and 
visits for ECTempTM and CT can be seen in Table 3. There were no significant 
differences between Visit1 and Visit2 in MESOR, amplitude, or acrophase for either CT 
(p = 0.10, 0.24, and 0.67 respectively) or ECTempTM (p = 0.16, 0.26, and 0.74 
respectively).  Subsequently, circadian rhythm indicators from both visits were compiled 
together and compared between CT and ECTempTM. Estimates of MESOR, amplitude, 
and acrophase were significantly lower for ECTempTM than CT (p < 0.01 for each).   

 
Figure 6 displays the individual circadian rhythm indicator estimates from both 

visits combined for ECTempTM and CT.  Positive correlations were observed between 
ECTempTM and CT for MESOR (r = 0.66), amplitude (r = 0.55), and acrophase (r = 
0.43). 
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Figure 2. Scatter plot of observed core temperatures over time of day. 

 
 

Dotted lines represent time period that was excluded from analysis due to masking effects from the exercise protocol, gap 
in data represents time between the end and start of the experimental period 
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Figure 3. Scatter plot of observed heart rates over time of day. 

 
 
 

Dotted lines represent time period that was excluded from analysis due to masking effects from the exercise protocol, gap 
in data represents time between the end and start of the experimental period 
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Figure 4. Scatter plot of ECTempTM by CT. 

 
 
CT, observed core temperature; ECTempTM, Kalman Filter-estimated core temperature, 
dotted line, line of identity.
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Table 2.  Fixed and random effects for mixed effects models. 

   
Fixed Effects 
(Mean ± SE) 

 Random Effects (SD)  

    ( | Visit : ID ) 
 

( | ID )   

Model  Β0 Β1 Β2  Β0 Β1 Β2 
 

Β0 Β1 Β2 ε  

CT  36.86 ± 0.05* -0.11 ± 0.04* -0.29 ± 0.04*  0.09 0.11 0.07 
 

0.14 0.11 0.13 0.21  

ECTempTM  36.70 ± 0.04* -0.17 ± 0.02* -0.17 ± 0.01*  0.08 0.06 0.04 
 

0.11 0.05 0.03 0.11  

 

SE, standard error;  SD, standard deviation;  Visit, experimental visit;  ID, participant; Β0, intercept;  Β1,  coefficient for 
the cos(2πt/τ) term;  Β2,  coefficient for the sin(2πt/τ) term;  ε, residual error;  CT, observed core temperature; 

ECTempTM, Kalman Filter-estimated core temperature; *, significant interaction (p < 0.05). 
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Figure 5. Fixed effects estimates of core temperature circadian rhythms. 

 
Solid and dotted lines represent the population-mean estimates of circadian rhythm 
waveforms for observed core temperature and ECTempTM respectively; Red and blue 
fills represent the standard deviations of the errors for the CT and ECTempTM models 
respectively. 

 
 
 
 
 
 

 

 

  

 



14 
 

Table 3. Between-visit comparisons in circadian rhythm indicators. 

Indicator ###### Visit ###### ECTempTM ###### CT 

MESOR  1  36.72 ± 0.07*  36.89 ± 0.08* 

(°C)  2  36.68 ± 0.05*  36.82 ± 0.08* 

  ∆1-2  0.04 ± 0.10*  0.07 ± 0.12* 

Amplitude  1  0.26 ± 0.07*  0.35 ± 0.08* 

(°C)  2  0.23 ± 0.04*  0.30 ± 0.06* 

  ∆1-2  0.03 ± 0.09*  0.04 ± 0.11* 

Acrophase  1  14.93 ± 0.41*  16.78 ± 1.03* 

(hr)  2  15.01 ± 0.47*  16.55 ± 0.99* 

  ∆1-2  -0.08 ± 0.76*  0.21 ± 1.62* 

  

Table 4. Comparison of circadian rhythm indicators between ECTempTM and CT. 

Indicator #### CT #### Mean ± SD 

MESOR  ECTempTM  36.70 ± 0.08* 

(°C)  CT  36.86 ± 0.09* 

  Bias  -0.24 ± 0.08* 

  RMSE  0.17 

Amplitude  ECTempTM  0.24 ± 0.06* 

(°C)  CT  0.32 ± 0.07* 

  Bias  -0.08 ± 0.06* 

  RMSE  0.10 

Acrophase  ECTempTM  14.97 ± 0.43* 

(hr)  CT  16.67 ± 0.99* 

  Bias  -1.55 ± 0.98* 

  RMSE  1.91 

 
ECTempTM, Kalman Filter-estimated core temperature;  CT, observed core temperature;  
*, significant difference between CT and ECTempTM (p < 0.05);  RMSE, Root mean 
square error;  MESOR, Midline Estimating Statistic Of Rhythm. 
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Figure 6.  Relationships between ECTempTM and CT estimates of MESOR, amplitude, and acrophase. 

 
  MESOR  Amplitude  Acrophase  

  
 

 
    

 

C
T

 

 

 

 

 

 

 

 

       

 

    ECTemp
TM

    

 
MESOR, Midline Estimating Statistic of Rhythm;  CT, observed core temperature;  ECTempTM, Kalman Filter-estimated 
core temperature, dotted line, line of identity.
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DISCUSSION 
 

 The results of this investigation show that ECTempTM provides close estimates of 
circadian rhythm indicators. Specifically, mean estimates for MESOR and amplitude 
were within 0.25°C and 0.10°C respectively.  Though ECTempTM estimates of MESOR 
and amplitude were consistently lower than CT, the differences were well within the 
error of measurement of CT devices[20].  Furthermore, core temperature, MESOR, 
amplitude, and acrophase were all positively correlated between ECTempTM and CT. 
 

ECTempTM performance compared favorably to the findings of Sim et al.[7].  In 
the present study, twenty heart rate-based parameters were fitted to CT data using 
polynomial regression and extended Kalman filter models.  The order of each 
polynomial and extended filter model (between 1st and 8th) was selected based on 
lowest RMSE. Compared to all of the models that were analyzed, ECTempTM had a 
lower RMSE than the best fitting model for MESOR (0.17 vs. 0.22°C) and amplitude 
(0.10 vs. 0.20°C).  While ECTempTM was not as accurate in estimating the acrophase 
as the best model (1.91 vs. 1.10 hr), it provided a closer estimate than 31 of the 40 
models reported. 
 

The observed correlation (r = 0.68) between ECTempTM and CT shows that 
ECTempTM sufficiently reflected the directionality of the oscillations in CT. However, the 
reduced amplitude indicates that ECTempTM somewhat underestimates the magnitude 
of the oscillations.  This is also evident in the overall lower variance displayed by 
ECTempTM (SD = 0.23) versus CT (SD = 0.38).  When the lower MESOR estimates are 
taken into consideration, it appears that ECTempTM provides slightly conservative 
estimates of CT during resting conditions. 
 

Of the three circadian rhythm indicators assessed, ECTempTM was least accurate 
in estimating acrophase (mean bias, -1.55 ± 0.98 hr). However, this disparity may have 
stemmed from some of the limitations of the current study. For example, participants 
entered the calorimeter chamber at 1730 hr and left at 1600 hr the following day.  This 
gap in data collection is notable in that previous studies have shown that the acrophase 
of CT to occur around this time[2].  Additionally, participants were provided CT pills at 
various times prior to entering the chamber, some in close proximity to the start of data 
collection. Consequently, some of the initial CT data was lost due to artifacts caused by 
water consumption[21].  Although data were excluded for the 1.5 hr that followed the 
exercise protocol, differences between CT and heart rate in post-exercise recovery 
rates [22] may have partially explained the discrepancies in acrophases. 
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Figure 7. Scatter plot of the development data points from the original investigation 
showing HR by CT. 

 
 
 Regardless, the findings of the current investigation are encouraging given that 
ECTempTM was originally developed with the purpose of estimating CT during strenuous 
physical activity in hot environments[14].  Figure 7 displays the original developmental 
data points used for the ECTempTM model. Notably, there were few core temperature 
datapoints below 36°C that were included. Although ECTempTM was validated against 
data compiled from nine studies, only one of the studies[23] included data collected 
during sedentary periods.  The precision of ECTempTM estimates of circadian rhythm 
indicators could be further improved if the algorithm is updated to fit additional data from 
periods of low CT and heart rate. 
 

CONCLUSION 
 
In summary, this investigation determined that ECTempTM provided reasonable 

estimates of CT circadian rhythm indicators.  Additionally, the RMSE of ECTempTM 
estimates of circadian rhythm indicators was lower than the majority of models 
assessed in prior research.  Although further research is required, ECTempTM appears 
to be a viable alternative to direct measurement of CT during circadian rhythm analysis 
particularly if the algorithm is adapted to better estimate CT during sedentary periods. 
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