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ABSTRACT

Maritime surveillance radars are critical in commerce, transportation, navigation, and

defense. However, the sea environment is perhaps the most challenging of natural radar

backdrops because maritime radars must contend with sea clutter. Sea clutter poses

unique challenges in very low grazing angle geometries, in which typical statistical as-

sumptions regarding sea clutter backscatter do not hold. As a result, traditional constant

false alarm rate (CFAR) detection schemes may yield a large number of false alarms while

objects of interest may be challenging to detect. Solutions posed in the literature to date

have been either computationally impractical or lacked robustness.

This dissertation explores whether fully polarimetric radar offers a means of enhanc-

ing detection performance in low grazing angle sea clutter. To this end, MIT Lincoln

Laboratory funded an experimental data collection using a fully polarimetic X-band radar

assembled largely from COTS components. The Point de Chene Dataset, collected on

the Atlantic coast of Massachusetts’ Cape Ann in October 2015, comprises multiple sea

states, bandwidths, and various objects of opportunity. The dataset also comprises three

different polarimetric transmit schemes. In addition to discussing the radar, the dataset,
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and associated post-processing, this dissertation presents a derivation showing that an

established MIMO radar technique provides a novel means of simultaneous polarimetric

scattering matrix measurement. A novel scheme for polarimetric radar calibration using

a single active calibration target is also presented.

Subsequent research leveraged this dataset to develop Polarimetric Co-location Layer-

ing (PCL), a practical algorithm for mitigation of low grazing angle sea clutter, which is

the most significant contribution of this dissertation. PCL routinely achieves significant

reduction in the standard CFAR false alarm rate while maintaining detections on objects

of interest. Moreover, PCL is elegant: It exploits fundamental characteristics of both

sea clutter and object returns to determine which CFAR detections are due to sea clut-

ter. We demonstrate that PCL is robust across a range of bandwidths, pulse repetition

frequencies, and object types. Finally, we show that PCL integrates in parallel into the

standard radar signal processing chain without incurring a computational time penalty.
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Chapter 1

Introduction

Radar is a relatively old technology that continues to find new applications not only

within the traditional fields of surveillance and object tracking, but also in areas like

imaging, autonomous control, terrain mapping, atmospheric measurement, and weather

pattern monitoring. Regardless of the application, at their core all radars operate accord-

ing to the same fundamental process. Pulses of electromagnetic (EM) wave energy are

emitted in a focused beam out of a transmit antenna. The waves interact with objects

in the scene, many of which reradiate or scatter the incident wave energy in some direc-

tion. The radar then measures the portion of these scattered waves that both propagate

in the direction of and couple into its receive antenna. Finally, the measured signals

are analyzed using signal processing techniques, rendering an operator-interpretable or

machine-interpretable representation of the radar scene.

The penultimate step of this process—coupling into the receive antenna—is hardly

discussed in canonical radar texts (Skolnik, 2001; Stimson et al., 2014; Richards et al.,

2010). Yet this step’s importance cannot be overstated. Whether a scattered wave

couples into a receive antenna at all depends on the polarizations of both the antenna

and the scattered wave. If the two are the same, all of the wave’s energy will couple

into the antenna, and the radar will “see” all of the scatterer’s response. If the two

are orthogonal, none of the wave’s energy will couple into the antenna, and the radar

will be “blind” to the scatterer’s presence. Polarization and whether it can be leveraged

in a practical manner to enhance a maritime surveillance radar’s ability to discriminate
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between object and environment against the most challenging of radar backdrops, the

dynamic ocean, is the focus of this dissertation.

1.1 Radar signal processing chain

It will serve the reader to be familiar with what this author will call the baseline radar

signal processing chain. This chain comprises the components of radar functionality that

lie between the digitization of signals coming into the radar receiver and the passage of

detections to a tracker that attempts to establish tracks on objects over time (see Figure

1·1). In other words, this chain is a large part of the ultimate step in the fundamental

radar process. At a minimum, the chain usually includes pulse compression (matched

filtering), multiple pulse integration (noncoherent or coherent), and constant false alarm

rate (CFAR) detection, the performance of which is dependent upon signal to noise

ratio (SNR). The exact nature of these components depends in part on whether the

radar is noncoherent, coherent, or polarimetric. That is, their nature depends upon the

dimensions of information contained within the signals measured by the radar.

1.2 Radar signal information dimensions

It has long been understood that a monochromatic EM wave can be completely charac-

terized by its amplitude, phase, and polarization. The earliest radars were noncoherent,

measuring only the amplitudes of backscattered waves. Because radar transmit pulses en-

capsulate a known waveform, pulse compression—which amounts to correlating received

amplitude signals against this waveform—enables localization in time of scatterers that

reradiated energy towards the receive antenna. A scatterer’s partial radar cross section

(RCS), which can be very roughly thought of as the electromagnetic “size” of the scat-

terer from the radar’s perspective, is captured in the SNR of the pulse compressed signal.

Because EM waves propagate at the speed of light, the time delays of scatterers’ returns

can be used to calculate the ranges of the scatterers from the radar in the direction of
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Figure 1·1: Baseline noncoherent radar functionality for a pulsed radar is shown, with
each step matched to its corresponding term(s) in the radar range equation given in
Equation 1.1. Once the signal is digitized in the receiver, the radar signal processor
performs pulse compression, which amounts to correlating the received signal against
the transmitted waveform, improving single-pulse SNR by a factor of τB, where τ [sec]
is the pulselength and B [Hz] is the waveform bandwidth. The range-time intensity
(RTI) represents a series of pulse compressed returns, each of which is a function of
range (fast time), stacked one atop the next according to pulse transmit time (slow
time). Noncoherently integrating these returns along the slow time dimension yields a
1-D amplitude signal whose SNR is further improved by roughly

√
N , where N is the

number of pulses integrated. 1-D CFAR detection is run on this integrated signal, and
its range detections are passed to the tracker.

the antenna’s beam. In sum, amplitude signals measured by noncoherent radar at any

instant of time are real-valued scalars carrying partial RCS information in the range-time

dimension.

A block diagram of noncoherent radar baseline functionality is shown in Figure 1·1.

For such a radar, which uses both pulse compression and integration as shown, the radar

range equation for a point target object can be written as
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SNRncoh =
PGT

4πR2
· σ

4πR2
· G

Rλ2

4π
· τB
√
N

L
· 1

kTSB
(1.1)

where

P = transmit power [W]

GT = transmit antenna gain, unitless

R = range to scatterer [m]

σ = scatterer RCS [m2]

GR = receive antenna gain, unitless

λ = radar wavelength [m]

τ = waveform pulsewidth [sec]

B = bandwidth [sec−1]

N = number of pulses integrated, unitless

L = losses, unitless

k = Boltzmann’s constant [W·sec/K] and

Ts = system noise temperature [K].

A deeper examination of each term and its role in the radar range equation is beyond the

scope of this document, but the interested reader is referred to Skolnik (2001) and Edde

(1995). It is, however, instructive to consider what is gained in terms of SNR and how

that gain is realized when radars can also measure other characteristics of impinging EM

waves.

When a radar can lock transmit waveform phase to that of a known stable oscilla-

tor, it can measure the phases of waves coupling into the receive antenna by using the

transmit waveform’s phase as a reference. Such radars are appropriately dubbed coher-

ent radars. They use phase information to measure the Doppler shift of scattered waves

across multiple pulses at each range bin. From the Doppler shift, scatterers’ radial ve-

locities with respect to the radar platform are calculated. Thus, coherent radar signals

at any instant of time are complex-valued scalars that carry partial RCS information in

the range-time and Doppler-velocity dimensions. A block diagram of baseline coherent

radar functionality is shown in Figure 1·2.
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Figure 1·2: The baseline coherent pulsed radar utilizes Doppler processing, which in
software amounts to computation of a Fourier transform for each range bin across slow
time, as an effective form of coherent integration, which produces a gain of N , where N
is the number of pulses integrated. 2-D CFAR detection is run on this integrated signal,
and the velocities and ranges of detections are passed to the tracker.

Despite the additional cost and complexity of coherent radar systems as compared to

noncoherent systems, virtually all modern operational radars are coherent because of the

SNR gain that coherent integration offers. For a radar that utilizes pulse compression and

coherent integration, the radar range equation for a point target object can be written

as

SNRcoh =
PGT

4πR2
· σ

4πR2
· G

Rλ2

4π
· τBN

L
· 1

kTSB
(1.2)

and therefore

SNRcoh =
√
N · SNRncoh.

Such a gain is clearly a boon to the detection process. Integrating just 10 pulses coherently

yields an additional 5 dB of margin over noncoherent integration, with another 5 dB of

margin gained for every order of magnitude by which N can be increased.
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It is not immediately clear from Equation 1.2 how a radar system designer can further

improve SNR without changing system gains, transmit power, or frequency. However, the

keen reader will have noted use of the phrase partial RCS information in the preceding

discussion. RCS is a scalar quantity, as shown in Equations 1.1 and 1.2, only from the

point of view of systems that cannot measure polarization.

Polarization is defined by the path traced by the tip of an EM wave’s electric field

vector over one period of propagation. The next section dives into the mathematics, but

for the present it suffices to note that in the general case, the tip of the electric field

traces out an ellipse over each wavelength. Thus, polarization of an EM wave at any

time instant is a vector quantity comprising two complex scalar quantities that represent

the instantaneous magnitude and orientation of the wave’s electric field in two orthogonal

directions. Hence, in order to measure polarization, a radar must have two orthogonally

polarized receive antenna elements that feed into a coherent radar system. These so-

called dual-polarized (dual-pol) receive antennas measure all of the energy of EM waves

scattered in their direction regardless of the waves’ polarizations.

However—and this is an important point that is often misunderstood within the

general radar community—dual-pol on receive capability is insufficient for measuring the

complete RCS information in a radar scene. This insufficiency is due to the scattered

wave’s polarization being dependent upon the nature of the scatterer, the geometry of the

scene, and the frequency and polarization of the EM wave that initially impinged upon

that scatterer. In other words, the response a radar gets from interrogating a scatterer

is a function not only of the object, but of how the radar interrogates that object.

As a simple example, consider a vertically polarized EM wave, as shown in Figure

1·3, impinging upon a horizontally oriented, perfectly conducting, infinitely thin wire.

Despite the wire’s ideal electromagnetic properties, the wave will not induce a current

in the wire because the wire is oriented orthogonally to the wave’s polarization. Thus,

the wire will not reradiate EM energy toward the radar’s dual-pol receive antenna; the
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radar will still be “blind” to the wire’s presence in the scene. It is in this sense that

RCS as measured by non-polarimetric radars is dubbed “partial RCS” in the preceding

discussion. The wire clearly does not have an RCS of zero. But the radar cannot perceive

the wire’s true RCS because its method of interrogation—the polarization of its emitted

wave—was mismatched to the geometry of the wire.

Figure 1·3: Assuming use of the
Cartesian coordinate system and
propagation in the +z direction as
shown, a vertically polarized elec-
tromagnetic wave has an electric
field vector whose tip traces out a
line along the vertical axis of the
x−y plane. The magnetic field vec-
tor (not pictured) traces out a line
orthogonal to both the electric field
vector and the direction of propa-
gation.

Figure 1·4 illustrates this point. Shown are four

synthetic aperture radar (SAR) images created with

a fully polarimetric SAR system. The imaged scene

contains a variety of objects, including a helix and

several wires oriented horizontally across the radar’s

field of view. The transmit and receive polariza-

tions are indicated at the top left of each figure in

sequence. So, for example, the figure labeled HH

is imaged using horizontally polarized transmit and

receive antennas; HV is imaged using horizontally

polarized transmit and vertically polarized receive

antennas; and so on.

The horizontal wires are absent from all but the

HH image. The wires do not appear in the VH and

VV images because impinging vertically polarized

energy does not cause reradiation by horizontally oriented wires. The wires do not appear

in the HV image because in response to a horizontally polarized impinging wave, the wires’

scattering properties are such that they reradiate horizontally polarized waves—to which

the vertically polarized receive antenna is blind.

If the SAR whose imagery is shown in Figure 1·4 were merely single-polarized (single-

pol), it would capture either HH or VV, depending on which of the fixed polarizations the

antenna(s) possessed. If the radar were dual-pol on receive, then the SAR would measure
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Figure 1·4: Fully polarimetric SAR imagery demonstrates the inability of a single-pol
or dual-pol radar to capture complete RCS scattering information in a scene. Wires
oriented horizontally across the radar’s field of view have no signature to a linearly
polarized radar such as this except for in HH. Consequently, the objects are invisible to
a vertically polarized radar and to a dual-pol radar that is vertical on transmit. Imagery
used courtesy of Dennis J. Blejer, MIT Lincoln Laboratory.

either HH and HV or VH and VV, depending on the radar’s fixed transmit polarization.

Only a system that is both dual-pol on receive and dual-pol on transmit can ensure that

every object in a scene will interact with the radar’s transmitted energy. Radar systems

that have this capability are dubbed fully polarimetric. Radar signals measured by fully

polarimetric systems carry complete RCS-scattering information in the range-time and

Doppler-velocity dimensions—that is, they measure the maximal amount of information

that radar signals carry for a given scene geometry and radar frequency.
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1.3 Motivation for research

Maritime surveillance radars have long been a critical component of global commerce,

defense, and transportation. Shipboard, airborne, and ground-based radars keep watch

over littoral waters, borders, and harbors. Maritime radars are also used for search and

rescue, iceberg detection, and navigation, among myriad other applications.

Like most modern radars, maritime radars are usually coherent but not polarimetric,

and thus cannot measure all the information contained in backscattered waves. The

question begs asking: Given that the technology to build polarimetric radar systems

has existed for decades—and it has, for at least three (Boerner, 2007)—why are not

all modern radar systems built with polarimetric capability? As is often the case in

engineering, the answer is that there is a cost-complexity trade-off.

A fully polarimetric radar system requires at least two orthogonally polarized antenna

elements. So, even if the same dual-polarized antenna is used for both transmit and

receive, the cost of the antenna may be as much as double that of standard single-

polarization systems. If different antennas are used for transmit and receive, the cost

may quadruple. Many modern radars utilize active phased array technology, and doubling

the number of feeds and antenna elements in these systems quickly leads to rising costs.

Beyond the antennas and receive chains, fully polarimetric systems also require additional

hardware on the transmit side, ranging from a polarization switch for each antenna pair

up to a full duplicate of the signal transmit chain for each antenna pair. Juxtaposed

with the demands imposed by the constant push for greater bandwidth, larger and more

capable arrays, and ever-present budgetary restrictions, fully polarimetric capability has

a financial cost that rarely survives the need-to-have vs. nice-to-have chopping block in

radar system design. Moreover, legacy issues with technological difficulties in polarimetric

radar implementation (Root, 1982) have colored the view of much of the modern radar

community even many years later (Boerner, 2007). Finally, because signals transmitted

from and received by fully polarimetric radars must traverse different signal paths, careful

9



equalization in both the frequency response sense and the polarimetric calibration sense is

necessary to capture the important between-channel phase relationships that characterize

polarization state vectors. Polarimetric calibration can be challenging to implement in

practice (Yueh et al., 1990; Zebker et al., 1991; Freeman, 1992). So, for many applications

and in many environments, the fully polarimetric level of system cost and complexity is

perceived as unnecessary for a radar to be able to perform its tasks reliably.

Yet, there are several applications and environments in which experimental polarimet-

ric radar has proven invaluable. Most notably, the imaging and mapping applications of

synthetic aperture radar (SAR) have leveraged polarimetry to produce the radar analog

of optical imagery’s transition from black and white to color. With that transition has

come a dramatic improvement in the ability to accurately classify radar image content

(Lee and Pottier, 2009; Mather and Tso, 2009). It has also long been understood that

polarization is the key to distinguishing different types of precipitation echoes in weather

radar (Bringi and Chandrasekar, 2001) and to distinguishing objects from precipitation

echoes in surveillance radar (Kennaugh, 1952).

The thrust of polarimetry in radar continues to be SAR-related despite the fact that

there are numerous other applications and environments in which the amplitude and

phase information of backscattered waves is simply not enough for a radar to perform at

an acceptable level of reliability. It is the contention of this author and her advisors that,

given the current trend toward multi-function radars expected to operate in a range of

environments, the merits of full polarimetry deserve to be explored within each of these

challenging applications and contexts. Only in so doing can a deeper understanding of

what is lost when polarimetric capability does not survive the chopping block be gleaned,

serving to either reinforce the present understanding of the trade space or to correct it.

One such application and environment is detection of objects of interest by a radar

looking at near horizontal incidence out to sea, which is the focus of this dissertation. In

all maritime surveillance settings, a radar must contend with sea clutter, or radar returns
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from waves scattered by the undulating sea surface. This can be challenging regardless

of the angle at which the radar’s beam intersects that surface. However, as this angle

becomes small enough to fall into the so-called low grazing angle regime at less than

10◦—or the very low grazing angle regime of less than a few degrees—the application

of standard detection techniques in other than very low sea states often yields less than

acceptable results.

In such a geometry, the sea surface creates many radar returns that look object-like,

increasing the number of false alarms produced by the radar’s detector. Indeed, the false

alarm rate due to sea clutter in only moderately rough sea conditions can become so

high that a radar’s tracking system may be overwhelmed with the number of candidate

Figure 1·5: The range-Doppler map of a single small boat in low grazing angle sea
clutter is shown. The color axis indicates relative power of returns in dB, normalized
to the peak response in the map. CFAR detections are indicated by black circles,
indicating the two-fold low grazing angle sea clutter problem. At such low grazing
angles, the assumptions underlying a CFAR detector are not valid, so 1) the detector
produces an overwhelming number of false alarms, while 2) objects of interest may be
difficult to distinguish from the clutter-dense background.
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(a) Without polarization filter (b) With polarization filter

Figure 1·6: At left, the turtle is obscured by the glare of the sun’s reflections off of the
water’s surface in the photograph taken without use of an optical polarizer. At right, a
polarizer has been applied, filtering out the glare. The turtle is revealed. Photographs
taken by and used courtesy of David C. Mooradd, MIT LL.

returns (Ward et al., 2006). Moreover, objects of interest may go undetected because of

sea clutter’s glare. Figure 1·5 illustrates this two-pronged problem.

In optics, polarizers have long been leveraged as a means of filtering out unwanted

glare, as shown in Figure 1·6. Because of this optical analogue, it has been thought for

decades that polarimetry may hold the key to distinguishing between returns from sea

clutter and returns from objects of interest (Haykin et al., 1994; Long, 2001). However,

prior solutions have either been impractical in terms of incorporation into the standard

radar signal processing chain or have lacked robustness. The lack of viable polarimetric

solutions is likely due in large part to the dearth of available data for research.

1.4 Scope of dissertation

This dissertation supplements the current body of knowledge by exploring the efficacy of

leveraging fully polarimetric radar to robustly enhance detection capability using prac-

tical approaches in a very low grazing angle maritime environment. The first part of

the research comprises collection of appropriate data utilizing an X-band radar assem-

bled from commercial off-the-shelf (COTS) components. The data collection features

low grazing angle sea clutter, a variety of objects of interest, a variety of polarimetric
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transmit schemes, a range of bandwidths, and a range of sea states. The second part of

the research comprises development of an algorithm intended to enhance detection per-

formance in low grazing angle sea clutter without restructuring the standard radar signal

processing chain or imposing currently impractical computational complexity. Implicit

in this work are development of a routine to equalize the channels in post-processing and

application of metrics to quantify improved radar detection performance. A successful

algorithm will be robust to variations in radar parameters, scene geometry, and the state

of the sea surface. Ideally, the algorithm will also be practical in the sense that it will

plug into the standard radar signal processing chain without requiring either restructur-

ing of the chain or computational complexity that slows down the radar’s near real-time

performance.

It should be noted at the outset that funding for this research was provided by MIT

Lincoln Laboratory’s (MIT LL) Advanced Concepts Committee, and it is not intended

that any collected data will be made available to the science and technology community

at large. The data will, however, be available to the MIT LL community for further

research efforts.

It should also be noted that, without loss of generality to other radar systems, the

focus of this dissertation is on monostatic radar, for which the transmit and receive

antennas are either the same antenna or are approximately co-located. Such systems

utilize the backscatter alignment (BSA) coordinate system convention for received EM

wave energy, and henceforth all reference to scattering by objects should be understood

by the reader to be backscatter - i.e., energy that is reradiated or reflected from objects

in the scene back in the radar’s direction.

Finally, the author has adopted the convention that where fundamental measurement

units are applicable to a variable quantity, they are enclosed in rectangular brackets [ ],

as was done in Equation 1.1. Vectors and matrices are denoted using bold, capital letters,
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though for ease of reading, vectors are additionally accented with the vector directional

arrow, as in ~E, while matrices are not, as in A.

The remainder of this document is organized as follows:

Chapter 2 gives the requisite background. The first part of the chapter features a

discussion of radar polarimetry, including the mathematical foundations thereof and a

brief discussion of the vast body of theoretical work completed by other researchers to

date. The second section discusses the low grazing angle sea environment and its features

and challenges from the perspective of object detection, including a brief discussion of

past work on both polarimetric and non-polarimetric approaches to object detection in

sea clutter.

Chapter 3 discusses Four Eyes, the X-band polarimetric radar assembled for a week-

long field test conducted in October 2015 on the Atlantic Coast of Massachusetts’ Cape

Ann, as well as the dataset collected during that test. The radar’s specifications and

waveform design are discussed, as is the field test. In addition, a derivation is presented

showing that Doppler division multiple access waveforms are an effective way of achieving

simultaneous polarimetric scattering matrix measurement in radars with sufficiently high

pulse repetition frequencies.

Chapter 4 describes the signal processing suite designed for Four Eyes’ data. In-

cluded in this discussion are details of the objects used for calibration, the channel equal-

ization algorithm, and the polarimetric calibration methodology. Details of the signal

processing suite developed in MATLAB specifically for Four Eyes’ data are discussed.

The data labeling methodology used to label the radar data for performance quantifica-

tion is also described here.

Chapter 5 motivates, describes, and quantifies the performance of Polarimetric Colo-

cation Layering (PCL), the practical algorithm produced through this research that suc-

cessfully mitigates the impact of low grazing angle sea clutter. PCL leverages a fun-

damental polarimetric characteristic of sea clutter to differentiate between detections
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caused by objects of interest and detections caused by the sea surface. PCL performance

is quantified using empirical probability of false alarm rates and continuity of detection

metrics across a range of different bandwidths, PRFs, and object types. Implementation

of PCL into the polarimetric radar signal processing chain is also discussed, as is the

algorithm’s computational complexity.

Chapter 6 summarizes the dissertation and suggests directions for future work.
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Chapter 2

Background

2.1 Radar polarimetry

A brief discussion of the mathematical fundamentals of polarization is presented in this

section, followed by a discussion of the polarization scattering matrix, which is synony-

mous with the RCS-scattering information dimension discussed in the previous chapter.

Polarimetric scattering matrix measurement methodologies are also presented. The sec-

tion concludes with a discussion of the application areas where work has been done that

might translate well to the problem of object detection in low grazing angle sea clutter.

2.1.1 Polarization fundamentals

The mathematical development that follows has been well established in the literature,

but is required in this dissertation to establish notation and necessary foundational con-

cepts, including those that were stated without proof in the previous chapter. The

interested reader is referred for a more exhaustive treatment to Huynen (1970), Boerner

(2007), and Lee (2009), all of which were invaluable references for this author and from

which the mathematics in Section 2.1.1 is derived.

Polarization descriptors: Jones vectors and the polarization ellipse

Consider a monochromatic constant amplitude EM wave emitted into free space by an

antenna source. Such a wave has frequency f = λ
c

[Hz], where λ = wavelength and c =

the speed of light. Without loss of generality, we can adopt the Cartesian coordinate

system, along with the convention that the EM wave propagates in the +z direction.
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Figure 2·1: The time-independent
electric field vector traces out
wave polarization once per wave-
length as the wave propagates
through space. Figure adapted from
Wikipedia Commons.

Because of the transverse nature of EM waves, this convention ensures that the electric

and magnetic field components lie perpendicular to the direction of propagation—i.e.,

they comprise only x and y components. Further, because the proportional relationship

of the electric to the magnetic fields in the far field of the antenna is well known, an EM

wave can be completely described by a mathematical description of its electric field as a

function of space and time:

~E(z, t) =

[
αx cos(ωt− kz + δx)
αy cos(ωt− kz + δy)

]
(2.1)

where radian frequency ω = 2πf ; wavenumber k = 2π
λ

; αx and αy are the wave component

amplitudes in the x and y directions, respectively; δx and δy are the phases of those wave

components; and wave attenuation is disregarded. Equation 2.1 can be written in complex

exponential notation as

~E(z, t) = Re

([
αxe

jδx

αye
jδy

]
e−jkzejωt

)
= Re

(
~E(z)ejωt

)
(2.2)

where ~E(z) is the time-independent complex electric field vector phasor propagating in

the +z direction.

Polarization is defined by the path traced by the tip of this electric field vector phasor

over one wavelength of propagation; three such wavelengths are shown in Figure 2·1.

As shown by Equation 2.2, an EM wave is of course time-dependent, but its polarization

is not. In pursuit of a polarization-only descriptor we can therefore drop the time-
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dependent term. Moreover, the spatial dependence of the electric field vector phasor can

be eliminated by projecting its path onto the x − y plane. This projection yields two

mathematically equivalent descriptions of a wave’s polarization state.

Analytically, the projection amounts to evaluating ~E(z) at z = 0, yielding

~E =

[
αxe

jδx

αye
jδy

]
. (2.3)

This complex vector is a succinct description of a wave’s polarization state known as the

Jones vector. The form of the Jones vector shows that a wave’s polarization is dependent

upon only the amplitudes of the electric field components in the x and y directions and

the relative phase between them. To see the last part of this statement, consider that

the phase of the first component can be eliminated by viewing it as an arbitrary phase

factor common to both terms. Thus, Equation 2.3 can be rewritten as

~E = ejδx
[

αx
αye

j(δy−δx)

]
, (2.4)

where the vector still represents the wave’s polarization state. When the electric field

has components in both the x and y directions and either

αx
αy
6= 1 or δy − δx /∈ {0◦, 90◦}

the polarization is neither circular, as shown in Figure 2·1, nor linear, as shown in Figure

1·3, but is elliptical.

Geometrically, in the general case the projection produces an elliptical pattern that

is regularly traced out in the x − y plane by the tip of the electric field vector. This

projection, the polarization ellipse, is characterized by an ellipticity angle, an orientation

angle, and a sense. Ellipticity angle χ is defined as

χ = arctan(
a

b
) (2.5)

18



where a = the length of the ellipse’s semi-minor axis and b = the length of its semi-major

axis as shown in Figure 2·2. Note that 0◦ ≤ χ ≤ 45◦. When χ = 0◦, polarization is

linear (a = 0), and when χ = 45◦, polarization is circular (a = b). Orientation angle

Ψ is defined as the angle made by the positive x-axis and the ellipse’s semi-major axis,

as shown in the figure; thus, 0◦ ≤ Ψ ≤ 180◦.1 The sense of the ellipse, denoted by an

arrow, indicates in what sense the vector rotates around the +z axis when the wave is

viewed from the source, propagating in the direction of the +z axis. The sense is often

called the “handedness” of the ellipse, because the well known “right hand rule” can be

evoked to determine the sense. If, when pointing the thumb of one’s right hand in the

direction of propagation, the fingers curl in the direction of rotation, the sense is called

“right-hand”; if instead the fingers curl opposite the direction of rotation, the sense is

called “left-hand.” Put another way, those ellipses whose patterns are traced out in a

clockwise fashion (when looking in the direction of propagation) are right-hand. Those

whose patterns are traced out in a counterclockwise fashion are left-hand.

Figure 2·2: Projection of the time-
independent electric field vector phasor
to the x − y plane yields the polariza-
tion ellipse, a geometric representation
of polarization. In this representation,
polarization can be completely charac-
terized by an ellipticity angle χ, an ori-
entation angle Ψ, and a rotation sense,
indicated by an arrow. Figure adapted
from Wikipedia Commons.

1Note that in polarimetry, many statements vary depending upon the definitions and conventions
that are adopted. Orientation angle bounds are one such statement: Ψ can be defined as the angle the
ellipse’s semi-major axis forms with the positive y-axis. Under this convention, −90◦ ≤ Ψ ≤ 90◦.
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These analytical and geometrical representations are equivalent. A polarization’s

ellipse maps to a Jones vector by the following relation:

~E = Aejδx
[
cos Ψ sin Ψ
sin Ψ cos Ψ

] [
cosχ
j sinχ

]
(2.6)

where A is the ellipse amplitude as shown in Figure 2·2 and Ψ is understood to conform

to the convention that 0◦ ≤ Ψ ≤ 180◦. The profound and detailed derivation of this rela-

tionship is available in Huynen (1970) for the keenly interested reader. For the purposes

of this dissertation, it serves the reader to understand only that the two representations

are, up to an absolute phase term, equivalent.

Poincarè’s sphere and the canonical polarization states

Because all polarization ellipses have ellipticity 0◦ ≤ χ ≤ 45◦, orientation 0◦ ≤ Ψ ≤ 180◦,

and one of two senses, the infinite space of all polarization states with A = 1 can be

mapped to the surface of a sphere of unit radius (Deschamps, 1949).2 The Poincarè

sphere representation of polarization has some consequences that make it a useful tool

for considering polarization space, which can otherwise be difficult to conceptualize.

Figure 2·3: The infinite space of polar-
ization states can be mapped to Poincarè’s
sphere. The northern hemisphere corre-
sponds to right-hand sense polarizations
and the southern to left-hand sense polar-
izations. Ellipticity and orientation map
to latitude and longitude, respectively.
The canonical polarizations are indicated
on the sphere along with the abbreviations
this dissertations will use for them. Figure
adapted from Boerner (2007).

2Though Deschamps was the first to point out this relation for a radar-focused audience, the sphere
had been used in optics since 1892, when it was introduced by Henri Poincarè—hence the name Poincarè’s
sphere.
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The mapping is given by a few simple rules. Right-hand sense polarizations map to

latitude φlat = 2Ψ◦ on the sphere. Left-hand sense polarizations map to latitude φlat =

−2Ψ◦ on the sphere. Hence, left-hand polarizations map to the southern hemispherical

surface, while right-hand polarizations map to the northern hemispherical surface.3 At

the extremes are right-hand circular (R) and left-hand circular (L), which map to the

north and south poles respectively as shown in Figure 2·3. Polarizations are mapped to

a longitude using the relation φlon = 2χ◦, where the longitudinal coordinate indicates

degrees east of horizontal polarization (H), which maps to φlon = 0◦. Thus, vertical

polarization (V) maps to φlon = 180◦. Because their ellipticity angles are 0◦, H and V

map latitudinally to the equator, as do all linear polarizations. Of the infinitely many

linear polarizations, two in particular other than H and V are worth noting: those whose

orientations are 45◦ slant linear (X+), and 135◦ slant linear (X−), which map to φlon = 90◦

and φlon = 270◦, respectively.4

The endpoints of any diameter of Poincarè’s sphere correspond to orthogonal polar-

izations. (H is orthogonal to V, R is orthogonal to L, and so on.) Hence, the endpoints of

any diameter on Poincarè’s sphere comprise a basis for polarization space and can thus

be used to measure the polarization of any backscattered wave. The sphere also shows

that six polarizations—H, V, X+, and X−, R, L—comprise the simplest minimally dense

uniform sampling of polarization space, as shown in Figure 2·3. These six polarizations

are sometimes referred to as the canonical polarization states, and they are the ones most

often utilized in practice.

3This is another of the cases in which adopted convention can change the mathematical statement
(and confuse the newcomer to the field). If the convention is adopted that the y time-phase quadrature
component lags rather than leads the in-phase x component for right hand circular polarization, then
right-hand polarizations map to the southern hemisphere. The Jones vectors for R and L are also reversed
under this convention.

4Note that 135◦ slant linear is equivalent to −45◦ slant linear; hence the ‘−’ superscript in the
abbreviation for 135◦ slant linear.
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Polarization State Unit Jones Vector Ellipticity χ◦ Orientation Ψ◦

Horizontal (H) ~EH =
[
1
0

]
0 0

Vertical (V) ~EV =
[
0
1

]
0 90

Slant linear 45◦ (X+) ~EX+ = 1√
2

[
1
1

]
0 45

Slant linear 135◦ (X−) ~EX− = 1√
2

[
1
−1

]
0 135

Right-hand circular (R) ~ER = 1√
2

[
1
j

]
45 [0,180]

Left-hand circular (L) ~EL = 1√
2

[
1
−j
]

45 [0,180]

Table 2.1: The six canonical polarization states, their Jones vectors, and the associated
polarization ellipse ellipticity and orientation angles are given.

Unit amplitude Jones vectors5 and associated polarization ellipse parameters for the

canonical polarization states are given in Table 2.1. While polarization ellipse charac-

teristics of backscattered waves are not directly measurable by radar, a radar that is

dual-pol on receive can measure the Jones vectors of incoming waves.6

2.1.2 Measuring polarization

The amount of wave energy that will couple into a receive antenna is proportional to

the degree to which the wave and antenna polarizations are aligned (Balanis, 2012).

Poincarè’s sphere is a useful tool for conceptualizing polarization alignment and wave-

antenna coupling. If the wave and antenna polarizations are on opposite sides of the

sphere with 180◦ of angular separation between them, no coupling will occur; if the

polarizations have an angular separation of 90◦ in any direction, half the energy will

couple in; if the polarizations are perfectly aligned, all of the energy will couple in.

5Jones vectors normalized to unit amplitude are convenient mathematical descriptors of antenna
polarizations, as will shortly be seen.

6The Jones vector characterizes polarization only for completely polarized waves. If the wave is
only partially polarized (i.e., it has some constituent component that is randomly polarized), then the
polarization must be characterized by a Stokes vector. The Stokes vector is a power representation of
the wave’s polarization state, and hence does not preserve absolute phase.
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Mathematically, the voltage induced in a receive antenna by an incoming wave is the

dot product of the wave and antenna polarizations. Defining for use in the next sections

the following Jones vectors:

~Ht =

[
ht1
ht2

]
= transmit antenna polarization

~Einc = polarization of the EM wave incident on the target

~Escat = polarization of the EM wave scattered by the target

~Hr = receive antenna polarization

we can write that

e = ~HT
r
~Escat (2.7)

where the superscript T is the transpose operator and e is the complex-valued voltage

that couples into the receive antenna.7

Because polarization is a vector-valued quantity, there must be an orthogonally po-

larized receive antenna ~Hr⊥ in order to measure any vector in polarization space such

that

~Emeas =

[
e
e⊥

]
=

[
~HT
r
~Escat

~HT
r⊥
~Escat

]
(2.8)

where each component of ~Emeas captures exactly the backscattered wave energy that

is not captured in the other component (Huynen, 1965). Each received voltage thus

comprises one complex coefficient of a polarization vector measurement made using the

basis ~Hr, ~Hr⊥.

An important consequence of having measured ~Escat in one polarization basis is that,

because polarization space is spanned by these measurements, ~Emeas can be transformed

to any other polarization basis. In other words, any pair of orthogonal receive antenna

polarization measurements can be synthesized in post-processing, allowing adaptive po-

7Note that Equation 2.7 shows why Jones vectors are normalized to unit length when they are antenna
polarization descriptors: not doing so allows for mathematical amplification of the energy just by virtue
of coupling into an antenna, which is clearly incorrect.
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larimetric beamforming on receive (Poelman, 1977). While such a dual-pol on receive

radar can measure and synthesize any receive polarization, it cannot measure completely

the information in an object’s RCS-scattering information dimension.

2.1.3 The scattering matrix and its power representations

To see why the preceding statement is true, consider a point target object located at a

range r from the antenna. Factoring in the phase term related to propagation over this

distance and attenuation of the EM wave energy in one direction we can write

~Einc =
ejkr

r
~Ht (2.9)

where, as before, k is the wavenumber. Because the scattered wave polarization is also

a two-element complex vector, the response of the target to the incident energy can be

represented by a matrix S such that

~Escat = S~Einc (2.10)

from which it follows that S is 2 x 2 and complex-valued.

This matrix is the target scattering matrix (SM), and it completely characterizes the

electromagnetic scattering properties of a target at a given aspect angle and frequency

(Sinclair, 1950). Generically, the SM can be written elementwise as

S =

[
S11 S12

S21 S22

]
=

[
|α11|ejφ11 |α12|ejφ12
|α21|ejφ21 |α22|ejφ22

]
(2.11)

where S11 and S22 are the co-polarized object responses and S12 and S21 are the cross-

polarized object responses. That is, the former two elements quantify the proportion (in

amplitude and phase) of each of two orthogonally polarized incident waves (with polar-

izations indicated by subscripts 1 and 2) that will retain polarization after being scattered

by the object. The latter two elements quantify the proportion of the orthogonally po-
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larized incident waves that will depolarize, or assume the orthogonal polarization, after

being scattered by the object.

It is by now obvious to the keen reader that a single-pol on transmit, dual-pol on

receive radar cannot fully measure the information in an object’s RCS-scattering infor-

mation dimension: one cannot determine four complex values by measuring only two.

To show this explicitly, ignoring the phase and attenuation due to target distance and

combining Equations 2.9 and 2.10, we have:

~Escat =

[
S11ht1 + S12ht2
S21ht1 + S22ht2

]
. (2.12)

Now, consider for example one of the most common cases: ~Ht =

[
1
0

]
, corresponding to a

horizontally polarized radar. The second terms in each summation in Equation 2.12 go to

zero, so two of the SM elements are not measured at all. A similar argument can be made

for the vertically polarized case. Even if all of the scattering matrix elements contribute

to ~Emeas, as is the case for antenna polarizations that have non-zero amplitude in each

component direction (like X+, X−, R, or L), the system of equations is underdetermined.

Thus, there is no single transmit polarization that will allow precise measurement of S

by a radar that is dual-pol only on receive. However, if the radar can also interrogate the

object using a pair of orthogonal transmit polarizations, the system of equations will be

fully determined.8

Before proceeding, it should be noted that the elements of S depend upon the radar’s

transmit and receive polarization bases (Lee and Pottier, 2009). A given object will

respond differently to differently polarized incident energy. Thus, S sensed in one basis

will not be equal to S sensed in another basis, even for the same frequency and viewing

8There is ongoing research to explore computation of S to a tolerable degree of goodness using
measurements from a radar that is single-pol (slant linear or circular) on transmit and dual-pol on
receive (Nord et al., 2009). This area of study is called compact polarimetry. This dissertation focuses
on precise measurement of S using a fully polarimetric radar, though the results presented in Chapter 5
indicate that substantial performance improvement may be had in maritime surveillance radar by using
a form of compact polarimetric radar.
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geometry. To make this polarization dependence explicit, it is customary to denote the

elements of S by substituting for its subscripts the basis abbreviations. So, for example,

S sensed by a radar that uses the linear basis is denoted

SHV =

[
SHH sHV
sV H sV V

]
while in the slant linear basis it is

SX+X− =

[
SX+X+ SX+X−

SX−X+ SX−X−

]
and in the circular basis it is

SRL =

[
SRR SRL
SLR SLL

]
and in general,

SHV 6= SX+X− 6= SRL.

As noted in Chapter 1, this dissertation focuses on the monostatic backscattering case.

Thus, when the effects of Faraday rotation are absent, the SM in any basis is symmetric

by reciprocity—that is, S12 = S21 (Huynen, 1970).

Targets that correspond to spatially and/or temporally varying stochastic processes,

such as the sea surface, can lead to partially polarized returns. Though averaging of SM

measurements in time and space is often useful, the polarization of such scatterers can

fluctuate rapidly, with absolute phase varying uniformly over [0, 2π] (Huynen, 1970). The

mean of the SM elements for such scatterers will be zero due to this randomness of phase.

Thus, expression of the SM in an equivalent second-order power representation—which

does not preserve absolute phase—can be useful under such conditions. The most com-

monly used power representations are covariance and coherency matrices. To form these
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matrices, define the following vectorizations of constituent SM elements:9

~L =

 SHH√
2SHV
SV V

 (2.13)

~P =
1√
2

SHH + SV V
SHH − SV V

2SHV

 (2.14)

where the scaling is such that the translation from matrix to vector leaves the total

power in the elements unchanged. The vectorizations are chosen to be expansions of

the SM in orthogonal matrix basis sets that are meaningful in terms of target scattering

characteristics (Huynen, 1970; Cloude and Pottier, 1996). The covariance matrix is

defined in terms of ~L as

C = 〈~L · ~L∗T 〉

=

 〈|SHH |2〉
√

2〈SHHS∗
HV 〉 〈SHHS∗

V V 〉√
2〈SHV S∗

HH〉 2〈|SHV |2〉
√

2〈(SHV S∗
V V 〉

〈SV V S∗
HH〉

√
2〈SV V S∗

HV 〉 〈|SV V |2〉

 (2.15)

where ∗T indicates the conjugate transpose and 〈 〉 indicates averaging in either the

spatial or temporal dimensions. The coherency matrix is then defined in terms of ~P as

T = 〈~P · ~P∗T 〉

=
1

2

 〈|SHH + SV V |2〉 〈(SHH + SV V )(SHH − SV V )∗〉 2〈(SHH + SV V )S∗
HV 〉

〈(SHH − SV V )(SHH + SV V )∗〉 〈|SHH − SV V |2〉 2〈(SHH − SV V )S∗
HV )〉

2〈SHV (SHH + SV V )∗〉 2〈SHV (SHH − SV V )∗〉 4〈|SHV |2〉


(2.16)

where again ∗T indicates the conjugate transpose and 〈 〉 indicates averaging in either

the spatial or temporal dimensions.

9Definition is under the monostatic BSA convention and in the H-V basis, though definitions can also
be made under other scattering coordinate systems and in other bases.
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2.1.4 Measurement of the scattering matrix

Receiving orthogonal polarizations, as indicated above, is as straightforward as having

two orthogonal receive antennas (and as many receive channels). The antennas do the

work of separating the incident energy into its constituent basis components. However,

transmitting two orthogonally polarized waves to interrogate an object is a more difficult

proposition. If two EM waves are emitted by a radar simultaneously, the waves are

emitted in superposition and interact with the target simultaneously, so the scattered

energy is not separable into individual SM contributions by the receive antennas alone.

To illustrate this with an example, consider without loss of generality to any other

basis a linearly polarized radar from which H and V transmit waves are emitted si-

multaneously and in phase. Their energy combines in superposition, effectively forming
√

2~EX+ . This incident wave interacts with and is scattered by the object, and results

in a scattered wave identical to that in Equation 2.12 with ht1 = 1 and ht2 = 1. Again

ignoring attenuation and round-trip phase delay, the scattered energy couples into the H

and V receive antennas as

~Emeas =

[
eH
eV

]
=
√

2

[
SHH + SV H
SHV + SV V

]
. (2.17)

The antennas alone cannot fully distinguish between SM elements. Another degree of

separability is required.

In general, there are two transmit schemes for fully polarimetric radar: simultaneous

and alternating. Each scheme induces at least some signal separability in different ways.

As shown in Figure 2·4, in the simultaneous case both polarizations are transmitted at

the same time. However, the transmit waveforms wT1 and wT2 are also encoded with

orthogonal codes; one such orthogonal encoding is linear frequency modulated (LFM)

“chirp” signals with opposite chirp direction—i.e., an upchirp and a downchirp (Giuli

et al., 1993). Each receive channel in the simultaneous case measures one co-polarized

response and one cross-polarized response in superposition, as shown in the figure. But
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Figure 2·4: A simultaneous transmit scheme for a linearly polarized fully polarimet-
ric radar is shown. Orthogonally encoded transmit waveforms enable some additional
separability of the superimposed co- and cross-pol signals in each receive channel, but
that separability is often insufficient to accurately measure cross-polarized object re-
sponses that are close in range to large co-polarized object responses. Figure adapted
from work by David C. Mooradd, MIT LL.

correlating the superimposed signal in each channel against both of the transmit waveform

encodings wT1 and wT2 allows some degree of separation between the co- and cross-

pol responses. However, encoding orthogonal waveforms in fast-time10 leads to limited

signal separability (Krieger et al., 2012). That is, the cross-correlation between so-called

orthogonal waveforms does not actually offer enough isolation to permit measurement of

the cross-pol SM elements in the presence of strong co-pol returns. It can be shown that

the cross-correlation isolation of fast-time orthogonal waveforms is proportional to the

waveform’s time-bandwidth product (Mooradd, 2016), so this issue becomes increasingly

egregious for waveforms that are narrowband or that use a short pulselength.

Because of this serious shortcoming, alternating fully polarimetric radar is the stan-

dard. As shown in Figure 2·5, on odd pulses only one of the polarizations is transmitted,

10The meaning here is that encoding is done in range-time dimension; that is, each transmitted pulse
is orthogonal to the pulse in the other channel that is simultaneously transmitted.
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(a)

(b)

Figure 2·5: An alternating transmit scheme for a linearly polarized fully polarimetric
radar is shown. As shown in (a), only H is transmitted on odd pulses. On even pulses,
V is transmitted. This scheme assumes the SM is stable over two pulse repetition
intervals, but the antennas provide sufficient orthogonality to measure the full matrix.
Figure adapted from work by David C. Mooradd, MIT LL.

so the co- and cross-pol responses do not come back in superposition. Note that the

transmit waveforms wT1 and wT2 in this case need not be orthogonally encoded because

the orthogonal antennas are able to separate the responses, resulting in measurement of
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two of the SM elements. On even pulses, the other polarization is transmitted, and the

process repeats. Because measurement of the SM in the alternating scheme requires two

separate pulses, there is the potential that an object’s scattering matrix does not remain

stable from pulse to pulse. Pulse repetition intervals in maritime surveillance radar are

typically less than a millisecond; the assumption that a target SM remains stable over

that time is usually valid (Blejer, 2016a).

One of the contributions of this dissertation is theoretical application of a simulta-

neous transmit MIMO radar transmit scheme to achieve scattering matrix component

separability in the slow time dimension; this derivation will be presented in Section 3.2.

2.1.5 The RCS-scattering information dimension in post-processed data

Now that we have established that the RCS-scattering information dimension is captured

by the SM and have discussed measurement thereof, the reader will benefit from con-

sidering momentarily what this actually means in processed radar data. The baseline

coherent radar signal processing chain typically produces two data products, as shown in

(a) Range-time intensity (RTI) plot (b) Range-Doppler (RD) image

Figure 2·6: The data products generated by the baseline coherent radar signal pro-
cessing chain for a vertically polarized radar (looking at sea clutter) are shown.
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Figure 2·6: range-time intensity (RTI) data and range-Doppler (RD) data, upon which

other signal processing operations are performed.

Figure 2·7: The polarimetric radar data
cube for one CPI that can be formed using
single channel RTIs (or RDs) is shown graph-
ically, as measured in the linear polarization
basis. The cube is formed by stacking the
processed RTIs (or RDs) from each channel
along the polarimetric third dimension, which
corresponds to the RCS-scattering informa-
tion dimension.a The elements of any vector
along this dimension thus comprise the SM
measurement at that range and for that pulse
(or Doppler frequency).

aNote that under the BSA, S12 = S21, so SHV =
SV H .

Because a fully polarimetric radar mea-

sures the SM at every resolution cell and

across transmit pulses, such a radar’s RTI

and RD also have a third dimension: the

RCS-scattering information dimension. To

form this dimension, the signal processing

chain executes once on each channel—i.e.,

once on HH, HV, VH, and VV—rendering

one RTI and RD per channel. For each co-

herent processing interval (CPI), or time

period during which a given number of

pulses is transmitted and their returns

measured, the RTIs and the RDs can

be stacked to form 3-D data matrices as

shown in Figure 2·7. These matrices can

be manipulated in various ways to achieve

a number of different objectives.

An important consequence of having measured the SM in a given polarization basis

is that the SM can be transformed to any other basis. In other words, while a scattering

matrix measurement depends on the antenna polarizations used, once the measurement is

known in a known basis, it is possible to compute the SM that would have been measured

by any other orthogonal radar polarizations (Poelman, 1981). This technique is known

as polarization synthesis, and effectively, it renders the RCS-scattering matrix dimension

infinite.
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2.1.6 Relevant application areas

Radar polarimetry is a vast, deep, and complex field with a wide range of applications,

many of which have yet to be tapped. While still not fully understood, the information

contained in the RCS-scattering dimension has been leveraged effectively in some applica-

tion areas, particularly SAR and Doppler weather radar. Part of the SAR success is due

to the clear candidacy of SAR imagery for polarimetric analysis, as discussed in Chapter

1. Another part is due to the experimental SAR community’s collective recognition of

polarimetry’s value, which has resulted in both polarimetric SAR system development

and a fair amount of SAR data being made publicly available for additional research

(Lee and Pottier, 2009). Yet another part may be due to the fact that it is usually not

expected that SAR data will be optimally processed in real time.

Though polarimetric techniques can be computationally intensive, their potential to

enhance radar performance in other applications—even those where real-time perfor-

mance is expected—should not be overlooked. The computational power of hardware

continues to increase as its cost decreases. In the meantime, suboptimal yet practical po-

larimetric approaches may offer the ability to improve radar performance in applications

like object detection, tracking, and identification in a real-time capacity.

2.2 Sea clutter

Perhaps the most challenging of radar environments in which real-time performance is

often required is the maritime setting. In any state other than a perfectly calm, mirror-

like one, the complex sea surface interacts with radar energy in ways that are notoriously

difficult to model or predict. The first part of this section presents some important as-

pects of sea clutter phenomenology. There is a vast body of literature on this topic; the

interested reader is referred to Long (2001), which is a fairly exhaustive reference. The

second part discusses the challenge of detection in low grazing angle sea clutter, includ-
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ing a brief literature survey enumerating some of the polarimetric and non-polarimetric

approaches to the sea clutter problem that have been put forth to date.

2.2.1 Sea clutter phenomenology

The visible surface of the sea consists of large waves, called gravity waves. Gravity

waves can propagate as fast as the wind is blowing provided that the wind has blown for

sufficient time and over sufficient distance. Riding atop these waves are smaller, ripple-

like waves dubbed capillary waves, which result from surface tension forces as a wave

propagates through water. Both gravity and capillary waves backscatter radar energy.

Gravity waves backscatter energy from their faces—hence, look direction of a radar with

respect to the wind is a key factor in this type of scattering—while the many small

capillary waves are resonant Bragg scatterers. Gravity waves contribute a smooth, mean

modulation to the surface called the texture component, while capillary waves contribute

a speckle component. Sea surface roughness is quantified by the sea state, a value that

depends on the average height of the highest one-third of gravity waves, with height

measured wave crest to wave trough (Long, 2001; Ward et al., 2006).

Though sea surface scattering is not fully understood, there have been many dozens

of experiments to date using horizontally and/or vertically polarized radars, yielding

empirical data that reveals some clear trends (Nathanson et al., 1991). Chief among

these trends in the low grazing angle regime is that the higher the sea state, the stronger

the sea clutter. So, detection performance—which depends on the signal-to-clutter (SCR)

ratio—is inversely proportional to sea state. Moreover, clutter is highly dependent on

radar polarization. Nathanson observes that sea clutter returns measured with different

polarizations are, to a certain extent, independent. Evidence for this view can be found in

the Doppler shift of clutter, which is generally more significant for horizontal polarization
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than for vertical, leading researchers to the conclusion that different polarizations yield

returns from different types of scattering mechanisms (Ward et al., 2006).11

It is also well known that the amplitude and spatial distributions of the returns

are also polarization-dependent. Vertical polarization leads to higher mean backscatter

levels than those measured with horizontal polarization; this phenomenon becomes more

pronounced at lower sea states, grazing angles, and frequencies. Horizontal polarization,

on the other hand, leads to a “spikier” texture in the clutter. Sea spikes are defined

as unnaturally high, object-like amplitude returns that may persist in the worst case

for several seconds. Spikes are particularly prevalent at low grazing angles, and a high

number of spikes often leads to an inundation of false alarms (Ward et al., 2006). The

spike problem becomes more prevalent for finer range resolution (higher bandwidth).

For the foregoing reasons, the maritime setting makes radar system design a difficult

task. The situation gets bleaker: accurate models for mean radar backscatter from the

sea, defined as the sea RCS per square meter of area illuminated by a radar’s beam and

denoted σ0 [dBsm/m2], are necessary in order to develop radar specifications based on

a minimum detectable object RCS in a given setting. Existing models, while numerous,

are disparate in the low and very low grazing angle regimes, as shown in Figure 2·8.

Moreover, because available data comprises largely horizontal or vertical polarizations

that are often collected independently during the same experiments, there are no existing

mean backscatter models for polarizations other than horizontal or vertical. Hence, it

is difficult to arrive at a clear choice of a fixed antenna polarization if optimum radar

performance across a range of sea conditions and geometries is the objective (Nathanson

et al., 1991).

11The Doppler differential between HH and VV scattering is the cornerstone of the Polarimetric Co-
location Layering algorithm. Past literature focused on this particular topic will be reviewed in greater
detail in Chapter 5.
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(a) σ0 predictions for sea state 3, VV
polarization, upwind look direction

(b) σ0 predictions for sea state 5, VV
polarization, upwind look direction

Figure 2·8: Shown are several clutter models’ predictions over two sea states for
mean radar backscatter per unit area of sea illuminated by an X-band radar beam.
The variation across models is evident; however, they all reflect the fact that the sea’s
backscatter increases at higher sea states. The models included are the low grazing
version of the Georgia Institute of Technology (GIT) model (Antipov, 1998); the Sittrop
(SIT) model (Sittrop, 1977); the Royal Radar Establishment (RRE) model (Raynal and
Doerry, 2010); the Technology Service Corporation (TSC) model (Antipov, 1998); the
low grazing angle version of the Naval Research Laboratory (NRL) model (Gregers-
Hansen and Mital, 2009); and the Hybrid model (Reilly and Dockery, 1990).

2.2.2 Detection in sea clutter

It is also difficult to predict detection performance in sea clutter for a given radar system.

Application of statistical detection theory to radar performance prediction in any type

of clutter requires good statistical models of the clutter and of the object being detected.

The polarimetry-agnostic Swerling models are often used to capture the distribution of

object amplitude fluctuations. There has been no effort to adapt these models to classes

that encompass the polarization dependence of amplitude returns, nor has work been

done toward developing a separate set of models that does account for this dependence

(Watts, 2008).
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As for sea clutter models, the aforementioned sets of empirical data have been used

to identify families of probability distributions that accurately characterize amplitude

statistics for both horizontal and vertical polarizations. The most promising of these to

date is the compound K distribution (Ward et al., 2006), but it does not represent clutter

spikes, so detection performance will be much degraded at lower grazing angles and/or for

higher bandwidths (Watts, 2008). Moreover, at low grazing angles, the inhomogeneity of

the clutter makes estimation of model parameters very difficult in general (Greco et al.,

2008); the standard CFAR detection approach is unable to perform reliably (Watts, 2008).

Hence, approaches to mitigate the impact of sea clutter in this low grazing geometries is

an area ripe for research, a fair amount of which has been done to date.

Much of this research utilizes a single publicly available polarimetric data set: the

IPIX radar Dartmouth data (Haykin et al., 2001). McMaster University’s generous pub-

lication of a subset of this data has allowed interested researchers access to a field not

usually accessible other than by those with access to an experimental polarimetric radar.

The IPIX data subset that is freely available comprises 17 files and a variety of sea

states. However, the files feature a single type of canonical point target object (a foil

covered beach ball), a single resolution that is low by current standards for the radar

band in question (30 meters at X-band), and a very short range window (210 meters

comprising 7 range resolutions and 14 range bins given the data’s sampling rate). While

some researchers have reported modest success with enhancing object detectability in sea

clutter using this data, whether these techniques would have any effect on distributed

or extended objects at higher resolutions and across a range of viewing geometries is

uncertain.

Polarimetric approaches

Early theoretical approaches to leveraging polarimetry for improved object detection as-

sumed a priori knowledge of the statistical parameters of both the object and clutter
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(Ioannidis and Hammers, 1979; Wanielik and Stock, 1990; Novak et al., 1993). Other

approaches to polarimetric detection assume Gaussianity and/or homogeneity of the in-

terfering signal. Still other approaches rely on secondary data that can be used as training

data to estimate the parameters that will be used in computation of a detection statistic

(De Maio and Alfano, 2003). All of these assumptions are unrealistic for sea clutter,

whose inhomogeneity and non-stationarity is well known (Greco et al., 2008). Notable

recent approaches leverage a polarimetric generalized likelihood ratio detector, which is

robust to inhomogeneity and non-stationarity (Park and Wang, 2006; Hurtado and Ne-

horai, 2008). However, the assumption in this case is that the object is a deterministic

point target object. This is not the case for the vast majority of real objects.

There are also several non-statistical approaches to improving detection in sea clutter.

One such approach is the span algorithm, which simply sums the power received in each

of the channels. However, Novak showed that because this approach does not leverage

the phase information of polarimetric radar returns, it falls well short of the optimal

polarimetric detector for which object and clutter parameters are known (Novak et al.,

1989). There have also been attempts to use power matrix decompositions to classify

returns as either object plus clutter or clutter only (Wu et al., 2011; Kim et al., 2014).

However, the authors in these cases first reject all sea spike candidates before applying

the algorithm, which clearly biases the results: The metric used to identify sea spikes for

rejection does not preclude rejection of objects of interest.

Nathanson observes that it is not clear that polarization would be of any benefit in

a general object detection in sea clutter application (Nathanson et al., 1991). Based on

the research to date, this observation still largely rings true. Yet, van Zyl shows that

the ocean’s radar returns are highly polarized, indicating that there is indeed a means to

suppress these returns using polarimetric techniques (Van Zyl et al., 1987).
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Non-polarimetric approaches

Non-polarimetric approaches to enhancing object detection in sea clutter abound. The

range of techniques is impressive, though few have gained traction in the radar community

at large (Watts, 2008); all have drawbacks that may outweigh any benefit. Chief among

these is a class of algorithms known as “track before detect”; there are numerous pieces

in the literature that offer up some variant of this class (Tonissen and Bar-Shalom, 1998;

Boers and Driessen, 2001). The name is fairly self-explanatory in that detections are not

declared as such until tracks corresponding to a spatially logical sequence of associated

detections have been established on an object, placing the onus on the tracking algorithm

in a radar rather than on its detector. The algorithms are promising, but have drawbacks:

1) they may be insufficient for fleeting objects; 2) they may fail for stationary objects that

don’t “track”; 3) they may fail for high-speed objects that move faster than expected;

4) they may fail to distinguish between moving gravity wave components of the sea at

low grazing angles; and 5) many of the tracking algorithms that show the most promise

are much more computationally intensive than tracking algorithms currently used in

operational radars (Watts, 2008; Davey et al., 2008).

Other approaches that show practical promise leverage the fact that sea clutter main-

tains coherence on only relatively short timescales (Antipov, 1998). One such approach is

longer scale signal averaging (Panagopoulos and Soraghan, 2004). However, this approach

risks averaging out transient object aspects that are desirable. Additionally, the texture

component of the sea surface does not decorrelate as quickly as the speckle component

(Antipov, 1998). Another approach involves CFAR thresholding by using prediction of

sea clutter locations based on locations of clutter in previous radar scans rather than by

model-based parameter estimation (Ward et al., 2007). However, this involves the intro-

duction of memory into the radar’s range-Doppler image formation process and requires

the ability to differentiate between sea and non-sea returns to enable prediction of sea

clutter’s movement. The latter will be particularly challenging at low grazing angles.
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There is also no shortage of unconventional approaches. Some call for leveraging time-

frequency analysis to interpret different objects’ frequency signatures against that of the

ocean (Panagopoulos and Soraghan, 2004); however, the ocean’s frequency signatures

are not well understood themselves (Watts, 2008). Other approaches are quite clever,

but move quickly outside the realm of applicability in the practical sense, at least for

current and near-term systems. These include various transform methods (Carretero-

Moya et al., 2009; Davidson and Griffiths, 2002; Guan et al., 2012) and multifractal

analysis techniques (Hu et al., 2006). One unconventional area where there is great

promise in the future is application of machine learning techniques to radar data, even

in a real-time sense (Haykin, 2006; Vicen-Bueno et al., 2009).

The preceding literature review of both polarimetric and non-polarimetric approaches

to enhancing object detection in sea clutter is not exhaustive, particularly in the non-

polarimetric case. It is intended to emphasize to the reader that the object detection

problem is one of ongoing study. The focus of this dissertation is on polarimetric tech-

niques. Additional literature is reviewed in Chapter 5, where proximity to the topics

discussed therein will be of greater service to the reader.
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Chapter 3

Four Eyes and the Point de Chene Dataset

The first section of this chapter discusses Four Eyes, the X-band polarimetric radar as-

sembled to collect a low grazing angle sea clutter dataset. The second section discusses

the weeklong field test that took place in October 2015 in Rockport, Massachusetts.

The third section discusses the waveforms and transmit schemes that were programmed

into Four Eyes; this section includes a derivation showing that a slow-time phase encod-

ing provides a means of precisely measuring the SM using a simultaneous polarimetric

transmit scheme. The chapter concludes with a section summarizing the Point de Chene

Dataset.

3.1 Four Eyes polarimetric radar system

Four Eyes is a fully polarimetric, transportable, X-band radar assembled almost entirely

from COTS components. A system block diagram is shown in Figure 3·1. Four Eyes

has two distinct but identical transmit chains and separate, dual-polarized, parabolic

dish transmit and receive antennas. The channel 1 transmit chain consists of an Agilent

N8241A arbitrary waveform generator (AWG), which has up to 400 MHz of bandwidth,

feeding into an Agilent E8267D vector signal generator (VSG) configured to act as a

local oscillator by taking in I/Q data and mixing with a continuous tone at 9.705 GHz.

The upconverted signal feeds into a 1500 W traveling wave tube (TWT) amplifier, then

into the horizontal transmit antenna port. The channel 2 transmit chain is identical, but

feeds a vertically polarized transmit antenna port. The receive antenna is identical to the

transmit antenna. The receive antenna signal outputs (one horizontally polarized, one
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Figure 3·1: A block diagram for the Four Eyes X-band fully polarimetric radar is
shown. The system features independent but identical transmit chains and separate but
approximately co-located linear dual-polarized transmit and receive antennas. Timing
hardware and signals are shown in red. Transmit hardware is shown in blue; receive
hardware is green.

vertically polarized) feed into low-noise amplifiers (LNAs) and mix with a local oscillator

tuned to 8.76 GHz for downconversion to intermediate frequency (IF) 945 MHz. The

IF signals feed into a two-channel receiver that features a 400 MHz wide bandpass filter

centered at IF. The receiver outputs are digitized by a two-channel analog-to-digital

converter (ADC) at sampling frequency 1260 MHz. The data are quantized with 12-bit

depth, though at the sampling frequency used and at the IF sampled, the effective bit

depth reduces to just over 9. The data are recorded on 40 3TB hard drive disks (HDD)

configured in a redundant array of independent disks (RAID) to allow for individual disk

failure without incurring data loss.

System timing signals are generated on a Tektronix DTG5078, which triggers the

AWGs, the VSGs, the TWTs, and the ADCs. The DTG, ADCs, and IF LO are also
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Dual Transmitters:
Carrier frequency 9.705 GHz (X-band)
Pulse repetition frequency 6250-12500 Hz
Pulse width 0.25-4 µsec
Peak power 1500 W

Dual Receiver Chains:
Intermediate frequency (IF) 945 MHz
IF bandwidth 400 MHz
Gain (inc. LNA) 29 dB
Noise figure 4 dB

Dual Antennas:
Diameter 2 ft
Gain 33.75 dB
Beamwidth 3.7◦

Cross-pol isolation, Ant. 1 20 dB
Cross-pol isolation, Ant. 2 26 dB
Polarization Linear (H and V)

Data Acquisition:
Sampling rate 1260 MHz
Vertical resolution 12 bits (9 effective)
Storage medium 40x 3TB HDDs in RAID-60

Table 3.1: Four Eyes COTS system configuration

(a) View of the full radar setup. System
hardware is installed in a box truck. The
antenna pedestal and transmitters are in-
stalled on a trailer behind the truck.

(b) Transmit and system timing hardware
are in the far right rack; receiver, signal
analysis, and power hardware are in the
center; data acquisition hardware is at left.

Figure 3·2: Four Eyes on location in Rockport, MA. Photographs taken by David C.
Mooradd, MIT LL.

slaved to a common 10 MHz reference oscillator provided by a Symmetricom GPS unit.

Transmit-side operator control is via a laptop interface for loading transmit waveforms;

the transmit operator also manually triggers system timing signals via the DTG. Operator

control on the data acquisition side is via an interface that provides real-time feedback
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as well as recording-control input. See Table 3.1 for a summary of system specifications

as configured for the experiment. Photos of the system on location at the data collection

site are shown in Figure 3·2.

3.1.1 Four Eyes’ antennas

Figure 3·3: Four Eyes’ antennas mounted
in the anechoic chamber. Photograph by
Paul Theophelakes, MIT LL.

Prior to field testing, Four Eyes’ twin two-foot

parabolic dish antennas were measured in MIT

LL’s compact antenna range, as shown in Fig-

ure 3·3, to ensure similar beamwidths and gains

on both transmit and receive. The antenna

range results in Figure 3·4 show that the anten-

nas are nearly identical in beamwidth at 3.7◦

and gain at 33.75 dBi at the radar’s center fre-

quency.

A common argument against using polari-

metric radar involves what are perceived to

be very difficult-to-achieve cross-polarization

isolation requirements on the antennas (Blan-

chard and Newton, 1985). Because part of the

aim of this dissertation is to demonstrate that polarimetric radar can offer significant

performance gains without imposing these kinds of impractical requirements, note that

antenna range results show 20 dB of cross-polarization isolation on one of the antennas

and 26 dB on the other; 20 dB, in particular, is a reasonable amount of cross-polarization

isolation to expect from most practical antenna designs (Mooradd, 2016). Thus, any per-

formance improvement resulting from polarimetric algorithms developed using Four Eyes

data cannot be construed as due to unusually difficult-to-achieve cross-polarization iso-

lation in the radar’s antennas.
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Figure 3·4: Four Eyes’ transmit and receive antenna beam patterns (left and right
plots, respectively) at 9.8 [GHz] are shown. Agreement in beamwidth and gain is evident,
as is 26 and 20 dB of cross-polarization isolation, respectively.

3.2 Waveforms and transmit schemes

All Four Eyes waveforms used in the October 2015 field test were chirps, or linear fre-

quency modulated waveforms (LFMs). The LFMs were orthogonally coded across chan-

nels, so that the H channel transmitted downchirps, while the V channel transmitted

upchirps. Specifically, after upconversion to the radar center frequency and using com-

plex exponential notation,

wT1 = ej(2πfct−π
β
τ
t2), |t| ≤ τ

2

wT2 = ej(2πfct+π
β
τ
t2), |t| ≤ τ

2

(3.1)

where t =time [sec]; β = bandwidth [Hz]; τ = pulselength [sec]; and fc = center frequency

[Hz].

The principal goal of Four Eyes waveform design was to create a suite of waveforms

whose use on location would enable assessment of polarimetric algorithm robustness

across a variety of radar range resolutions and pulse repetition frequencies (PRFs). Due to

radar receiver and radio frequency authorization constraints, the bandwidth was capped
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at 400 MHz. To get a large range of resolutions, each waveform was encoded with 4 MHz,

40 MHz, 150 MHz, and 400 MHz bandwidth versions, translating to range resolutions of

37.5 m, 3.75 m, 1 m, and 0.375 m, respectively.1 Because the aim was to decimate pulses

in slow-time in post-processing to simulate PRFs lower than the PRF employed during

recording, the maximum possible PRF was used.

To determine this maximum PRF, the distance to the radar horizon is computed as

dhzn =
√

2Rh+ h2

where h = height of the antennas above mean sea level and R = Earth’s radius. The

calculation yielded a line of sight horizon just beyond 12 km. However, initial link budget

calculations using the most generous of sea clutter backscatter models showed that even

at higher sea states, sea clutter return could not reasonably be expected beyond 6 km.

Disregarding any potential for atmospheric ducting2 and opting for the more conservative

path, the 12 km maximum range was chosen, leading to the selected PRF of 12500 Hz

using the familiar relation:

rmax =
2

c · PRF

where rmax = maximum range and c = speed of light.

Chosen pulselengths aimed to strike a balance between having visibility as near to

the radar as possible while maximizing the sea clutter return by emitting more power.

Initial calculations showed that pulselengths of 4 µsec (resulting in a minimum range of

600 m) might be necessary to get strong sea clutter return as far out as the buoy at ∼1.7

km, but seeing the strong clutter returns nearer the radar proved equally important.

Hence, 2 µsec pulselength LFMs were also encoded. Additionally, 0.25 µsec pulselength

1Note that this includes one resolution lower than and three resolutions higher than the 30 m resolution
of the IPIX radar dataset files.

2Ducting is a regional phenomenon at low grazing angles whereby radar energy can get trapped in
the atmosphere and thus propagate much further than the line of sight horizon.
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Figure 3·5: Four Eyes’ polarimetric transmit schemes are depicted. Downchirps are
in red; upchirps are in blue; upchirps with starting phase modulated according to pulse
number are in gray. The schemes included the standard alternating scheme, a fast-
time orthogonal simultaneous scheme limited by chirp waveform cross-correlation, and
a variant of a slow-time phase encoding technique that has been used successfully in
MIMO radar (Kantor and Davis, 2011). The implementation as shown for the latter is
still limited by waveform cross-correlation in the fast-time dimension.

LFMs were encoded as calibration waveforms for recording files featuring the calibration

trihedral, which was located only ∼65 m from the radar.

The secondary goal of Four Eyes waveform design was that the dataset enable ad-

ditional research—though not the focus of this dissertation—in understanding the lim-

itations and benefits of simultaneous transmit schemes. As discussed in Section 2.1.4,

simultaneous transmit schemes that employ code orthogonality in the fast-time dimension

suffer from cross-correlation that is simply too high to yield meaningful cross-polarized

returns in the presence of a strong co-polarized return (Krieger et al., 2012). While pulse

compression is not sufficient for recovery of the SM, there may be other means that could
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serve to reduce the cross-correlation.3 To meet the secondary goal, three different fully

polarimetric transmit schemes were employed:

� transmission of orthogonal polarizations on alternate pulses (ALT);

� simultaneous transmission of orthogonal polarizations (SIM); and

� simultaneous transmission of orthogonal polarizations with a slow-time phase cod-
ing (SIM-PHS).

The waveform transmit schemes described above are depicted in Figure 3·5. In all

cases, as indicated by wT1 and wT2 in Equation 3.1, orthogonally coded chirps were

transmitted on each channel. Using upchirps (or downchirps) for both H and V transmit

channels would have been sufficient in the ALT and SIM-PHS schemes and would have

simplified post-processing. In fact, as the derivation in 3.2.1 will show, not using only

upchirps (or downchirps) across both H and V transmit channels in the SIM-PHS scheme

rendered the resulting scattering matrix data inseparable by Doppler processing alone.

3.2.1 Simultaneous SM measurement with Doppler division multiple access

waveforms

The derivation presented in this section shows that a variant of the SIM-PHS scheme is

indeed a valuable option for simultaneous polarimetric scattering matrix measurement

under certain circumstances. The idea is that, if a system has sufficient Doppler band-

width, then modulating pulses in slow time will allow separation of superimposed co-

and cross-polarized scattering matrix components simply by Doppler processing (which

amounts to taking the fast Fourier transform (FFT) of each range bin across the slow-

time dimension). This technique has been applied in MIMO radar, where it has been

dubbed Doppler division multiple access (DDMA), to obtain multiple measurements of

3One possibility is building a null of the orthogonal waveform’s pulse compressed peak directly into
the matched filter. This author made some headway toward implementing this approach, but further
work is required.
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a scene in order to execute space-time adaptive processing (STAP) (Mecca et al., 2006;

Kantor and Davis, 2011).

Two channel DDMA signal model

Following the derivation in Mecca et. al. (2006), let

wT1(t) = wT2(t) (3.2)

That is, let the horizontally polarized pulse waveform be encoded identically to the

vertically polarized pulse waveform.4

Assume further that the pulses are transmitted at PRF = 1
Tr
≥ Lvmax; where vmax =

maximum desired unaliased Doppler velocity and L = the number of transmit elements.

In the case of a fully polarimetric radar with a single transmit antenna like Four Eyes,

L = 2. Let M correspond to the number of pulses in a CPI. Choose M such that M/L is

an integer, and let these M pulses be transmitted in a pulse train. Then, modulate the

starting phase of each pulse in each channel such that the signals received from the pulse

trains will be separated in the slow time Doppler dimension following Doppler processing.

Mathematically, for L = 2, such pulse trains can be written:

PT i(t) =
M−1∑
m=0

wT i(t−mTr)ejπ(i−1)m, i ∈ {1, 2} (3.3)

where i corresponds to transmit channel.

The choice of slow time phase modulation above is such that the return signal from

transmit channel 1 will have its Doppler processed return centered at Doppler frequency

fd = 0 Hz, while the return signal from transmit channel 2 will have its Doppler processed

return centered at fd = PRF/2 Hz. Hence, the RD map of the transmit channel 1 image

can be recovered by low pass filtering the Doppler spectrum of the combined image, while

4Note that this constraint was not imposed in the waveform scheme shown earlier in the SIM-PHS
case. Also note that a larger number of channels requires that the waveforms on all channels be encoded
identically.
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the RD map of the transmit channel 2 image can be recovered by either high pass filtering

the combined image spectrum or by first shifting that spectrum by π rad/sample, then

low pass filtering.5

Simultaneous SM measurement with DDMA

We now show that this simultaneous transmit scheme can recover the SM in polarimetric

radars. First, write the transmit pulse sequence across channels in vector form as:

~P(t) =

[
PT1(t)
PT2(t)

]
=

[ ∑M−1
m=0 wT i(t−mTr)∑M−1

m=0 wT i(t−mTr)ejπm

]
. (3.5)

Without loss of generality, assume the radar is linearly polarized. Next, assume sufficient

cross-pol isolation on the antennas followed by polarimetric calibration such that the

transmit antenna vectors can be written after corrected distortion in matrix form as

T =

[
−~HT

Ht
−

−~HT
Vt
−

]
≈
[
1 0
0 1

]
= I2 (3.6)

and, similarly, the receive antenna vectors can be written in matrix form as

R =

[
−~HT

Hr
−

−~HT
Vr
−

]
≈ I2. (3.7)

Consider a point scatterer at distance r from the radar, moving at constant radial

velocity v with respect to the radar over the time of a CPI of M pulses. Ignoring

attenuation and round-trip phase for simplicity, the response measured at the receive

5An equally valid phase coding for the two channel case—and indeed, the encoding suggested in
(Mecca and Krolik, 2007) if L = 2—takes the form

PTi(t) =

M−1∑
m=0

wTi(t−mTr)ej
π
2 (1−2i)m, i ∈ {1, 2} (3.4)

Demodulation in this case would involve either bandpass filtering the Doppler spectra centered at fd = π
2

and at fd = −π2 , or an appropriate spectral shift in each case followed by a lowpass filter.
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antenna for such a scatterer can be written

~U(t) = ej2πfdtRSTT~P(t− t0) (3.8)

= ej2πfdtS~P(t− t0) (3.9)

= ej2πfdt
[
SHHPT1(t− t0) + SV HPT2(t− t0)
SHV PT1(t− t0) + SV V PT2(t− t0)

]
(3.10)

where the elements of ~U are the signals received by the H- and V-pol antennas, re-

spectively; T is the transpose operator, which is necessary here to preserve established

subscript notation for S; t0 = 2r
c

where r = the range to the scatterer and c = the

speed of light in air; and fd = −2v
λ

= the scatterer’s Doppler frequency, where λ =radar

wavelength.

We can write the signal component of the output of matched filtering a single pulse

wT1 with a target return at time t0 as

yT1(t) =

∞∫
−∞

wT1(s− t0)Kw∗T1(s+ τ − t)ds (3.11)

where τ is the pulselength. By the constraint imposed in Equation 3.2, yT1 is equal to

the output of matched filtering a single pulse wT2 with a target return at time t0. Thus,

the output of matched filtering the pulse trains PT i with a target return at t0 is

YT1(t) =
M−1∑
m=0

yT1(t−mTr) and (3.12)

YT2(t) =
M−1∑
m=0

yT1(t−mTr)ejπm = ejπmYT1(t), m = {0, 1, ...,M − 1}. (3.13)

Therefore, the output of appropriately matched filtering received signal ~U(t) is

~Z(t,m) = ej2πfdt
[
(SHH + SV He

jπm)YT1(t)
(SHV + SV V e

jπm)YT1(t)

]
, m ∈ {0, 1, ...,M − 1}. (3.14)

It follows that Doppler processing Z1(t) across the M received pulses and appropriately

filtering in the Doppler dimension yields the RD images for SHH and SV H . Doppler
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processing Z2(t) across the M received pulses and appropriately filtering in the RD

dimension yields the RD images for SHV and SV V .

3.3 Point de Chene field test, October 2015

The field test location is discussed, followed by a discussion of both the persistent objects

and objects of opportunity on which measurements were recorded during the week-long

data collection campaign. The section closes with a discussion of the sea states under

whose conditions data was recorded. Discussion of calibration targets used on location

is presented in the next chapter.

3.3.1 Field test location

Figure 3·6: The nautical chart indicates all locations considered in Massachusetts’
Cape Ann, along with their associated elevations. Lines of sight to persistent targets
from each position are indicated by solid lines color-coded to each of the locations.
The sea floor drops off fairly quickly off the tip of Cape Ann. Adapted from Na-
tional Oceanic and Atmospheric Administration’s Office of Coast Survey Chart 13279
at http://www.charts.noaa.gov/OnLineViewer/13279.shtml; accessed 2015-05-20.
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During the design phase of the experiment, several locations on Massachusetts’ Cape

Ann were considered, as indicated on the nautical chart in Figure 3·6. At least one

persistent target in the form of a navigational buoy was desirable, as were both means of

ocean access by kayak and sufficient space to set up calibration targets in the far field of

Four Eyes’ antennas. The ocean-facing yard at 9 Point de Chene Avenue in Rockport best

met all requirements. Four Eyes was transported during the last week of October 2015

to this east-facing location overlooking the Atlantic Ocean. See Figure 3·7 for a Google

Earth progressive zoom aerial view of the location. The test site sits at 30’ above mean

sea level, with direct ocean access over a sloping rock face. The sea floor drops off steeply

Figure 3·7: Progressive zoom aerial view of Cape Ann experiment location. The
bottom figure indicates the precise location of Four Eyes during the experiment. Aerial
images are Google Earth map data from Google and DigitalGlobe; inset photo taken by
Ellen Ebacher, MIT LL.
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near the coastline in this region, as indicated in Figure 3·6, allowing for observation of

the sea swell as it encroached on the shoreline.

3.3.2 Persistent test objects

Figure 3·8

As indicated in the previous section, the field test location offered

access to two persistent and quasi-static objects. The first of these is a

point target object in the form of a gong buoy, located at a slant range

from the radar of approximately 1.7 km. As shown in Figure 3·8, such

buoys consist of what are effectively a pair of trihedrals mounted atop

a cylindrical base.6 However, in very low grazing angle geometries,

the buoy can exhibit a fair amount of polarimetric variation. As the

sea undulates beneath the buoy, the buoy bobs slightly and the radar’s energy can impinge

upon the trihedrals horizontally. When this happens, the energy predominantly reflects

off of only the two vertically oriented faces (which by themselves form a dihedral), and

the co-polarized target returns can drop significantly.7 The second object, with an extent

of ∼75 m with respect to the radar’s line of sight, is a breakwater wall. The polarimetric

signature of the wall varies significantly along its length.

The viewing geometry of the persistent objects is shown in Figure 3·9. As shown,

the antennas are situated at ∼11 m above mean sea level and have a beamwidth of 3.7◦.

When the antenna’s boresight is trained on the gong buoy located at ∼1.7 km, the range

of grazing angles θgrz formed by the intersection of the mainlobe with the sea surface is

≤ 2.12◦. The buoy itself is at θgrz ≈ 0.37◦, while the breakwater wall’s nearest point is

at θgrz ≈ 0.24◦. In this geometry, the main beam extends all the way out to the horizon

at ∼12 km.

6It is well known that a trihedral is a strong co-polarized (odd-bounce) radar target. Moreover,
because commercial shipboard navigation radars are typically X-band, like Four Eyes, these trihedrals are
calibrated in size to have the strongest signatures in response to incident energy at X-band wavelengths.

7A dihedral is a strong cross-polarized (even-bounce) target.
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Figure 3·9: The side-looking geometry of the radar’s view to the persistent point target
object, a gong buoy, and the persistent extended object, a breakwater wall with ∼75 m
of range extent from the radar’s perspective, is shown.

3.3.3 Objects of opportunity

Cape Ann is home to numerous commercial fishing outfits and lobstermen. Consequently,

during the field test there were several small boats observable by the radar at various

aspect angles and velocities. The boats frequently crossed through the radar’s mainlobe

while their operators navigated to each of their lobster buoys. Upon arriving at each

buoy, the boats floated while the lobstermen checked their traps. Several of the boats

whose returns were recorded by the radar are shown in Figure 3·10.

The field test plan also included data collection on a kayaker who was part of the test

team. The kayaker is shown in Figure 3·11 approaching the buoy and breakwater wall

described in the previous section. The day on which kayak data was collected featured a

low sea state and hence the data was not as compelling as originally hoped.

3.3.4 Observed sea states

Sea state was briefly mentioned in Section 2.2.1 because it is true that in low grazing

angle geometries, the higher the sea state, the stronger the sea clutter. This is captured

by all of the low grazing angle models for σ0 that were shown in Figure 2·8. Predictions

across sea states at low grazing angles from two of these models, the GIT and SIT models,

are shown in Figure 3·12. Because sea backscatter increases at higher sea states, object
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(a) Red fishing boat (b) White lobster boat

(c) The “After Five” (d) The “New Englander”

Figure 3·10: Several of the boats whose returns were recorded by the radar are shown.
All photographs are zoomed in; the boats are at various distances from the radar.
Photographs taken by David Mooradd and Dean Mailhiot, MIT LL.

Figure 3·11: The kayaker can be seen in the foreground paddling toward the persistent
objects, the buoy and the breakwater wall, in the background. Photograph taken by Dean
Mailhiot, MIT LL.

detection in sea clutter becomes increasingly challenging at higher sea states. Thus, a

mixture of observed sea states is a valuable attribute for a sea clutter dataset.

The sea state models shown in Figures 2·8 and 3·12 refer to the hydrographic sea state,

which is also known as the Douglas Sea Scale (Nathanson et al., 1991); it is this sea state
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scale that is used in radar. Mariners, on the other hand, consider sea state in terms of

the Beaufort wind force scale. It is the Beaufort scale to which the National Oceanic

and Atmospheric Administration (NOAA) maps observations by its numerous weather

buoys distributed throughout the world’s oceans. The Douglas sea state is a function

of significant wave height (SWH), which is defined as the average crest-to-trough height

of the highest one-third of waves. The Beaufort scale, on the other hand, is a function

of wind speed and fetch, defined as the distance over which a nearly constant wind has

been blowing (Nathanson et al., 1991). Because of this difference in reference scales,

determining observed sea state can be a bit of a tricky business.

While Four Eyes was on location, the remnants of Hurricane Patricia moved through

the area, enabling observation of a range of higher sea states.8 Four Eyes was on location

for a full week, but the days during which the bulk of data was recorded were October

27, 28, and 29. Without access to a portable wave buoy to determine SWH as a function

8These higher sea states are actually the reason a relaunch of the kayaker did not occur on a later
day. The seas had quickly turned too treacherous to risk launching a small craft.

(a) Low grazing angle GIT model for σ0 (b) SIT model for σ0

Figure 3·12: Low grazing angle models for mean RCS per square meter of area illu-
minated by the radar beam reflect the increase in sea clutter as sea state increases.
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of time—and thus sea state—specifically for the field test area of interest, there are three

methods by which sea state may be estimated.

The first is by computing σ0 from processed data, then mapping to one of the many

available empirical models. Because of the disparity in these models at low grazing

angles, this approach is a better avenue for model validation than for determining true

sea state. The second is by leveraging NOAA weather buoy data. This is an excellent

option provided that the NOAA weather buoy is in close proximity to the field test area

of interest.

Figure 3·13: NOAA buoy 44098’s location rela-
tive to the radar is shown. Adapted from NOAA
buoy location map at www.ndbc.noaa.gov; accessed
2016-09-13.

In the case of the Point de Chene

field test, the nearest NOAA weather

buoy is the Jeffrey’s Ledge waverider

buoy, #44098, located just over 35 km

north by northeast of Four Eyes’ loca-

tion, as shown in Figure 3·13. The

buoy measures SWH every hour9; the

data is made freely available (National

Oceanic and Atmospheric Adminis-

tration National Data Buoy Center,

2015). A plot of these measurements

from October 27-29 is shown in 3·14.

The thresholds between Douglas sea

states as a function of SWH (Nathanson et al., 1991), are indicated with red dashed

lines. The plot shows that, over the course of the three most significant data collection

days, the buoy recorded SWHs consistent with five different sea states. However, because

of the distance between the NOAA buoy and the experiment location and because the

9Note that this buoy does not measure wind speed or direction.

58



Figure 3·14: NOAA buoy data for the waverider buoy nearest the field test site shows
evidence for observation of five sea states as the remnants of Hurricane Patricia moved
up the coast.

buoy sits over deeper ocean,10 the data provides only a rough estimate of the sea states

observed and their times of occurrence.

The third alternative for estimating sea state involves mapping empirical observations

and data to the Beaufort wind scale via photographs of the sea in the radar field of view.

An example of this is shown in Figure 3·15. At left is a NOAA image that corresponds

to Beaufort scale force 5; at right is a comparable photograph taken during the Point de

Chene field test. This is largely a subjective mapping process, but the team was able

to support the process with observations of an anemometer located on site that regis-

10It is well known that ocean wave velocity is related to the wavelength and the depth of the ocean.
Wave velocity is actually not directly dependent on wind speed.
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(a) Beaufort force 5: winds 17-21 knots
Image from Wikipedia Commons.

(b) Beaufort force 5 at Point de Chene
Photo by David C. Mooradd, MIT LL.

Figure 3·15: An example of estimating Beaufort wind force based on photographic
evidence is shown.

tered wind speeds in accordance with the Beaufort scale force estimations attained from

a sequence of photographs. Once the Beaufort force is estimated, it is relatively straight-

forward to roughly map from Beaufort to Douglas, though the demarcation between the

two is also inexact, as shown in Figure 3·14. The mapping from Beaufort wind force scale

to Douglas sea state to SWH shown in Figure 3·14 is adapted from Nathanson et. al.

(1991).

The result of the compendium of this analysis is that, while it can be difficult to say

for certain which recordings correspond to which sea states, the Point de Chene dataset

certainly comprises Douglas sea states 2, 3, and 4, and includes data that appears to be

on the border of sea state 5.

3.4 Point de Chene Dataset

A summary of the full Point de Chene Dataset is given in Table 3.2.
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Size:
Number of files 488
Recording length 55 minutes
Total size 15.5 TB

Calibration 1.3 TB
Clutter-only 4.0 TB
Clutter-plus-object (persistent) 5.8 TB
Clutter-plus-object (dynamic) 4.4 TB

Waveforms:
Polarimetric transmit schemes ALT, SIM, SIM-PHS
Pulselengths 0.25, 2, and 4 µsec
Bandwidths 4, 40, 150, 250, and 400 MHz
Pulse repetition frequencies 6250 and 12500 Hz

Radar scenes:
Objects of interest Nine total

Persistent Buoy and breakwater wall
Dynamic Kayaker and fishing boats

Sea states 2, 3, 4, 4+
Clutter-limited range swath Waveform minimum range to 4 km

Table 3.2: Point de Chene Dataset summary

3.4.1 Algorithm development data subset

The reader will recall that the second major contribution of this dissertation is develop-

ment of practical means to mitigate the impacts of low grazing angle sea clutter on the

standard CFAR detection process. With this aim in mind, a handful of files were selected

after post-processing as containing data that a) comprised various range resolutions, b)

featured various objects of interest, and/or c) contained strong sea returns that occasion-

ally obscured those objects. These files, summarized in 3.3, are the foci of the algorithm

development and assessment research presented in Chapter 5.
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File ID τ µsec β MHz Est. SS Objects of Interest

266 2 400 4

White fishing boat

The New Englander

Buoy (in Sidelobe/Null)

267 2 40 4 White fishing boat

270 2 400 4 Buoy

271 2 150 4 Buoy

272 2 40 4 Buoy

273 2 4 4 Buoy

325 4 150 5 The New Englander

Table 3.3: The subset of files chosen from the larger Point de Chene dataset as foci
for algorithm development is listed. Note that τ = pulsewidth and β = bandwidth in
the table, while estimated sea state (SS) is from the Douglas sea state scale.
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Chapter 4

Signal Post-Processing

It is critical in polarimetric radar, as with any form of multi-channel radar, that each

channel be transverse equalized both respect to itself and to the other channels in the

system. That is, the magnitude response of each channel must be flat so as to render

distortionless output, while the phase response must be corrected such that the time

delays incurred across signal paths through multiple channels are equivalent. Moreover,

numerous tasks in polarimetry, including polarization synthesis and scattering matrix

decompositions, also require that the channels be polarimetrically calibrated. That is, the

system response must be corrected in order to render the correct polarimetric signature

measurements for objects with known scattering matrices.

The first section of this chapter discusses the calibration targets used at Point de

Chene that played key roles in post-processing for achieving channel equalization and

polarimetric calibration. The second section discusses the algorithm developed for cross-

channel transverse equalization of Four Eyes data and the associated equalization results.

The third section discusses the polarimetric calibration methodology for Four Eyes and

gives evidence of calibration quality. The fourth section describes the full signal pro-

cessing chain that has been implemented for Four Eyes data, including details of signal

pre-conditioning steps. The chapter closes with a section on the methodology used to

create data labels for performance analysis purposes in the algorithm assessment portion

of Chapter 5.
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4.1 Point de Chene calibration targets

Each channel in a system consists of a chain of several cascaded components, each with

its own frequency response. In Four Eyes’ case, the frequency response of a given channel

comprises the chain of frequency responses of an AWG, a VSG, a TWT, the transmit

(Tx) and receive (Rx) antennas, an LNA, the receiver, and the ADC, as was shown in

the system diagram in Figure 3·1. So, for the HH channel, we have frequency response:

HHH(f) = HADC1
(f)HV SG1

(f)HTWT1
(f)HTxH(f)HRxH(f)HLNA1

(f)HRcv1(f)HADC1
(f) (4.1)

where the subscripts on the right side of the equation indicate the components in the

chain. Similar equations can be written for HHV (f), HV H(f), and HV V (f), the frequency

responses of the other channels.

Performing transverse equalization requires measurement of the frequency response of

each channel in the system. There are various ways this measurement may be obtained.

Often, the measurement involves direct inject, or feeding the upconverted signal directly

into the receiver. This approach ignores the contributions of several components to the

channel’s frequency response. In the case of Four Eyes, such a measurement would

exclude the terms HTWT1(f), HTxH(f), HRxH(f), and HLNA1(f) in Equation 4.1. To

avoid this, we used a delay line situated in the far field of the antenna. A delay line

receives a signal on its input port, amplifies or attenuates it according to operator pre-

sets, then re-transmits the signal through its output port. The delay line is given its

name because it contains a fixed quantity of fiber optic line, traversing the length of

which delays the re-transmitted signal. In the case of delay line used with Four Eyes, the

delay is approximately 15 km.

The setup was as follows: The vertical port of an antenna identical to Four Eyes’

antennas was hooked up to the delay line’s input port; however, the antenna was rotated

45◦ about the z axis, yielding in Four Eyes’ reference frame an X+ polarized delay line
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Figure 4·1: A depiction of the delay line setup with respect to Four Eyes is shown. The
antennas on the delay line were rotated 45◦ so that half of Four Eyes’ transmitted energy
would couple into the delay line regardless of whether Four Eyes was transmitting on
the H or the V channel. Half of the delay line’s retransmitted energy would then couple
into each of Four Eyes H and V receive channels.

input antenna. Another identical antenna rotated in the same fashion was connected to

the delay line’s output port. This configuration is shown in Figure 4·1. The horizontal

ports on the delay line antennas were unused. The consequence of aligning the antennas

in this way is that, as discussed in Chapter 2, half of the energy in Four Eyes’ H-pol

transmit signal couples into the delay line’s X+ receive antenna; then, half of the X+

polarized energy re-transmitted by the delay line couples into each of Four Eyes’ H and

V receive antenna ports. The same is true for the case of Four Eyes’ V-pol transmit

signal. Four Eyes’ antennas and one of the delay line antennas had rifle scopes mounted

to their dish edges to enable careful alignment between the two sets of antennas. The

delay line is shown in Figure 4·2.

Given this set-up, the frequency response of each of the four channels to a given

waveform pair wT1, wT2 can be measured by

1. transmitting one second of only H-pol wT1 pulses;

2. recording responses on both channels; and

3. repeating steps 1 and 2 for V-pol wT2 transmit.
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Because nine different waveforms comprising different pulsewidths and bandwidths were

programmed into Four Eyes, this process was repeated once for each waveform. Given

that the frequency response of a system can vary somewhat over time, the full process

was executed at the start and end of each data collection day.

Figure 4·2: A close up of the delay line set up
in Cape Ann.

As indicated above, measuring the

channel frequency responses in this way

enables inclusion of all components in the

channel paths in the frequency response

measurements. The keen reader will no-

tice, however, that this also includes three

components that will not be in the chan-

nel paths: the delay line’s antennas and

the delay line itself. However, because the

same input and output antenna ports were used on the delay line antennas, all signals

through the delay line must follow the same path. Thus, any distortion induced by the

components along that path will be imparted to all channels. It will therefore not impact

the outcome of the cross-channel equalization.

The delay line served a second purpose: It was also a polarimetric calibration target.

A polarimetric calibration target is one for which the scattering matrix S is known. The

delay line’s SM in the radar’s linear polarization basis can be computed1 as

Sdl =
1

4

[
1 1
1 1

]
(4.2)

simply by considering the coupling sequence of the chain of antennas (Freeman et al.,

1990; Allan, 1995), as shown in Figure 4·3.

1That is, computed up to an absolute phase term that depends on the range of the delay line from the
radar. Huynen showed that an object’s SM properties are independent of range, and hence the absolute
phase can be disregarded (Huynen, 1970).
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The second polarimetric target was a trihedral, which is well known in the linear basis

to have SM

Stri =

[
1 0
0 1

]
(4.3)

(Lee and Pottier, 2009), where an amplitude and arbitrary phase factor has been disre-

garded.

Figure 4·3: The delay line scattering
matrix can be determined (up to an
arbitrary absolute phase factor) in the
linear basis by inspecting the trans-
mitted energy’s coupling sequence in
Four Eyes’ reference frame.

The trihedral also served a second purpose: It

was built to a known RCS at X-band such that

the absolute gain of the system could be calibrated

using its return. Trihedral recordings were taken

with the trihedral in place and with the trihedral

removed to enable background subtraction in post-

processing, ensuring that land clutter and the tar-

get’s support tripod did not contaminate its mea-

surement. As with the delay line, data was recorded

on the trihedral at the beginning and end of each

data collection day. The full calibration suite set

up, including Four Eyes’ perspective of the targets, is shown in Figure 4·4.

4.2 Cross-channel transverse equalization

It is well known that the matched filter that maximizes SNR in a received signal takes the

form of the time-reversed complex conjugate of the original signal (Richards, 2014). That

is, if we let x(t) equal the original transmitted signal, then the filter that maximizes the

SNR in the received signal is m(t) = αx∗(−t)↔ αX∗(f), where filter gain α has no effect

on SNR and ↔ indicates Fourier domain transformation. The scheme described below

aims to modify these matched filters such that the time delay and frequency response of

every channel through Four Eyes is equivalent across the bandwidth of interest, regardless

of the channel, following pulse compression with the modified matched filters.

67



Figure 4·4: Four Eyes calibration set-up: Delay line is shown at left; the calibrated
trihedral is shown at top; and the targets’ positions with respect to Four Eyes on site
at Point de Chene is shown at right.

4.2.1 Signal model

In the following sections, we adopt the usual convention that lowercase letters indicate

time domain signals, while capital letters indicate their frequency domain counterparts.

Let the basebanded2 signals received from the delay line be denoted

x11(t) = wT1(t− td) ∗ h11(t)↔ WT1(f)H11(f)e−j2πftd

x12(t) = wT1(t− td) ∗ h12(t)↔ WT1(f)H12(f)e−j2πftd

x21(t) = wT2(t− td) ∗ h21(t)↔ WT2(f)H21(f)e−j2πftd

x22(t) = wT2(t− td) ∗ h22(t)↔ WT2(f)H22(f)e−j2πftd

(4.4)

where xij(t) for i, j ∈ {1, 2} indicates the received signal from the delay line through the

channel path indicated by the subscript sequence; wT1(t) indicates the horizontally po-

larized downchirp transmitted on channel 1 and wT2(t) indicates the vertically polarized

upchirp transmitted on channel 2, as given in Equation 3.1; ∗ indicates the convolution

2The process of basebanding Four Eyes’ IF data is discussed in Section 4.4. For the purposes of this
section, without loss of mathematically accuracy, the data is assumed to be at baseband upon digitization
by the ADC.
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operator; hij(t) for i, j ∈ {1, 2} is the impulse response of the system through the channel

path indicated by the subscript sequence; and td corresponds to the time delay induced

by signal passage through the delay line. To simplify notation going forward, we will drop

the statement that i, j ∈ {1, 2}, but the reader should understand that the statement is

implied.

The signals in Equation 4.4 are, of course, digitized by the ADC at sampling frequency

fs = 1260 MHz so that the actual basebanded signal on which the equalization operations

are performed is

xij(t)|t=nTs = xij[n]↔ Xij[k], k = 0, 1, . . . , N − 1 (4.5)

where Ts = 1
fs

and n = 0, 1, . . . , N − 1. The xij(t) signals embody the channels’ impulse

responses in the frequency band of interest; thus, Xij[k] is the frequency response of the

system, over the waveform’s bandwidth, to a point target.

We seek a set of matched filters mij[n]↔Mij[k] such that matched filtering incoming

pulses corrects the distortions and the time delays induced by different hij[n] ↔ Hij[k].

Take as these initial matched filters m0ij the time-reversed conjugates of the synthetic

signals exactly as programmed into Four Eyes, where the additional subscript 0 indicates

that these filters comprise the 0th order matched filter, without any adjustments to its

weights having been yet computed.

4.2.2 Transverse equalization algorithm

Starting with these 0th order matched filters and using the difference between the actual

and theoretical point target response as a correction factor for the matched filter weights,

the equalization algorithm is a process of iteratively adjusting the matched filter weights

for each of the four channels until the frequency response for each channel matches the

ideal response over the passband of interest. Additional corrections are then made to the

filters to time align the channels with respect to each other. Finally, a gain correction
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Figure 4·5: A high-level block diagram of the cross-channel transverse equalization
algorithm implemented for Four Eyes data is shown.

factor is built into the filters to align the peak amplitude responses. A high level block

diagram of the algorithm is given in Figure 4·5.

Mathematically, this process is as follows. Matched filter P pulses of Xij[n] with the

initial matched filters to yield

y
{p}
0ij

[n]↔ Y
{p}
0ij

[k] = M0ij [k]X
{p}
ij [k], p = 1, 2, . . . , P (4.6)

where the superscript p indicates pulse number and the signals are sufficiently zero-

padded to avoid aliasing due to circular convolution. To smooth out any timing jitter

across pulses within each channel, coherently average the P pulse-compressed returns,

yielding

z0ij [n] =
1

P

P∑
p=1

y
{p}
0ij

[n] (4.7)

as shown in Figure 4·6.

Because we seek to equalize only the received signal range swath that comprises the

delay line’s response, we can trim the coherently integrated signal z0ij [n] in each channel

to only those samples corresponding to the extent of the convolution of m1ij [n] and xij[n].

This can be done using a rectangular window of length l = 2L − 1 to trim the signal

in each channel, where L is the number of samples in m0ij prior to zero padding and

the window’s midpoint is aligned with the peak of the delay line response in z0ij [n]. An
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(a) Full-range view of integrated compressed delay line returns

(b) Zoomed-in view of integrated compressed delay line returns

Figure 4·6: The full-range swath of the P coherently integrated pulse-compressed
delay line responses for the 2 µsec 150 MHz waveform is shown across each of the
four channels in the top figure. In the legend, H corresponds to channel 1, while V
corresponds to channel 2. The differences in the shape of the point target’s response
induced by frequency response variation across channels are not apparent on this range
scale, but become apparent in the bottom figure, which is zoomed in to the peaks of the
point target’s response across channels.
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example of these time-trimmed compressed responses for the 2 µsec 150 MHz waveform

is shown in Figure 4·6, which shows that the impulse response is not identical across

channels. Moreover, the impulse response is distorted such that its response deviates

from the ideal sinc response of a point target.

To correct these deviations, first transform the impulse response cutouts to the fre-

quency domain. Compute the inverse matched filter as

M−1
0ij

[k] =


1

M0ij
[k]

if M0ij [k] 6= 0

0 else

(4.8)

and strip off the matched filter from z0ij [n], leaving just the frequency response averaged

over P pulses:

S0ij [k] = Z0ij [k]M−1
0ij

[k] =
1

P

P∑
p=1

Y
{p}
0ij

[k]M−1
0ij

[k]

=
1

P

P∑
p=1

X
{p}
ij [k]M0ij [k]M−1

0ij
[k]

=
1

P

P∑
p=1

X
{p}
ij [k]. (4.9)

It is this estimate of the frequency response of each channel that we wish to correct to

have a flat magnitude response across the passband and thereby produce the transverse

equalized matched filter

M1ij [k] =
G[k]S∗0ij [k]

S0ij [k]S∗0ij [k] + .001
∗ e−j2π

k
N
L (4.10)

where G[k] is a Gaussian-edged passband gate designed to mitigate the spectral ripple

at the passband edge and the constant is added to avoid division by zero.3 The delay in

3An alternative approach involves using a window function designed to reduce the sidelobe level of
the pulse compressed response (e.g., Taylor, Hamming, or Chebyshev windows). However, using such a
function for G[k] means the chosen window is “baked into” the matched filter implementation. In order
to experiment with pulse compression results using different window functions, this must be avoided.
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(a) HH channel (b) VV channel

Figure 4·7: The transverse equalization process’ third iteration results are shown for
the HH and VV channels. The desired frequency response across the channels is a flat,
Gaussian-edged passband, G(f). The estimated channel frequency responses S3ij (f) are
shown in dark blue, while the frequency responses of the matched filters M3ij (f) that
correct these estimates to yield G(f) are shown in red.

Equation 4.10 is chosen such that the peak of the pulse compressed response achieved

using this matched filter will align with the center of the uncompressed pulse. In the

average case, we have that

M1ij [k]Xij[k] = G[k]. (4.11)

That is, matched filtering an incoming received pulse with M1ij [k] corrects the system

frequency response to the desired Gaussian-edged flat passband response. Iterating over

this sequence of steps three times, as shown in Figure 4·5, produces matched filters that

are not further adjusted on subsequent iterations. The matched filters out of this process

are thus M3ij [k]. Figure 4·7 shows frequency domain results of the third iteration of

computation over the terms in Equation 4.10 for the HH and VV channels (ij = 11 and

ij = 22, respectively).

Computing G[k] such that the edges taper off quickly achieves the effect of edge ripple mitigation while
retaining flexibility in pulse compression later on.
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With the magnitude responses across channels thus equalized, we equalize the phase

response of the system across channels. The algorithm for so doing is as follows:

1. pulse compressing P pulses in the HH channel (where again ij = 11) using the
magnitude response transverse equalized matched filter M311 [k];

2. finding the subsample location npk of the point target’s peak response in the first
pulse;

3. computing the number of samples d
{p}
s required to shift each of the subsample peaks

of the remaining P pulses to align at npk;

4. coherently averaging the number of samples shifted across all P pulses to yield

d =
1

P

P∑
p=1

d{p}s ;

5. shifting the matched filter by that corresponding quantity as

M411 [k] = M311 [k]ej2π
k
N
d;

6. repeating for each of the remaining channels, aligning to npk in every case.

At this stage, the matched filters are equalized. The final step is to render the gain and

phase of the target’s point response equivalent across channels. We accomplish this by

again compressing P pulses in each channel using M4ij[k], then coherently averaging the

result to determine z4ij [npk], the average complex scalar value at the location of each

channel’s delay line response peak. Each matched filter is then scaled by the complex

value that compensates for any offset in gain and phase with respect to channel HH as

M5ij = M4ij

z411 [npk]

z4ij [npk]
. (4.12)

The results of cross-channel transverse equalization in the time domain using this routine

can be seen in Figure 4·8.4

4The figure also demonstrates that the Gaussian-edged frequency passband shown in Figure 4·7
almost ideally preserves the sinc-response expected of an ideal (brick-walled) matched filter. The -13 dB
sidelobes typical of such a filter are evident, indicating that the preceding algorithm indeed mitigates
spectral ripples at the edges of the passband whilst preserving the freedom to experiment with various
sidelobe reduction windows in data post-processing.
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Figure 4·8: Results of cross-channel transverse equalization on the delay line’s point re-
sponse show that the channel’s frequency responses are indeed equalized, as are channel
gains.

The preceding algorithm is executed on delay line calibration recordings for each of

the nine waveforms, yielding a set of 36 transverse equalized matched filters for each day

of data collection. These filters are stored in processor memory and retrieved for pulse

compression of incoming data, as discussed further in Section 4.4.

4.3 Polarimetric calibration

To this point, the post-processing calibration work has ensured that the scattering matrix

measurement in a given RTI range bin or RD cell is aligned across polarimetric channels.

That is, we can be sure that the value in the range bin at, say, 2 km in the HH channel

corresponds with the value in the corresponding range bin in each of the VH, HV, and VV

channels. Thus, we can be sure that selecting a scattering matrix measurement along the

third dimension of the data shown in Figure 2·7 is actually the data corresponding to the

scattering matrix produced by the same scatterers across all channels. Moreover, we can

be sure that the scattering matrix measurements have been filtered so as to render their
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respective channel responses identical. Much can be accomplished using polarimetric

radar that has not also been polarimetrically calibrated; however, polarimetric calibra-

tion ensures that important between-channel phase relationships are preserved, enabling

numerous computational operations on measured scattering matrices (Freeman, 1992;

El-Darymli et al., 2014). Polarimetric calibration is therefore highly desirable whenever

possible.

A measured scattering matrix can be written as

M = AejφRSTT + N

= Aejφ
[
RHH RHV

RV H RV V

] [
SHH SHV
SV H SV V

]T [
THH THV
TV H TV V

]
+

[
NHH NHV

NV H NV V

] (4.13)

where the superscript T indicates the transpose; A encompasses radar system gains and

losses and round trip attenuation; φ is the phase shift due to round trip delay; T and R

are the transmitter and receiver polarimetric distortion matrices, respectively; S is the

scatterer’s true scattering matrix; and N is the additive noise induced on each channel

path (Freeman et al., 1990). Ideally, T and R are identity matrices, so that no polari-

metric distortion is introduced on transmit and receive. In reality, this is not the case.

Thus, achieving polarimetric calibration amounts to determining and then compensating

for distortion due to non-identity elements of T and R.

For a monostatic radar, we can assume by reciprocity that RHV = RV H and THV =

TV H . Thus, assuming measurement of objects with known scattering matrix S, Equation

4.13 represents four equations in six unknowns that must be determined and corrected.

Typically, this requires measurements with three different polarimetric calibration targets

in order to determine the system of equations (Freeman, 1992). However, if the system

has “good” cross-polarization isolation, then polarimetric calibration can be achieved

using fewer calibration targets (Sarabandi et al., 1990). To see this, note that when a

system has good polarimetric isolation, RHV and THV are approximately 0. Thus, for a
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monostatic system, we can rewrite Equation 4.13 as

M = Aejφ
[
RHH 0

0 RV V

] [
SHH SHV
SV H SV V

]T [
THH 0

0 TV V

]
(4.14)

where the distortion due to noise has been treated as negligible.

We now show that cross-channel transverse equalization calibration in the preceding

section actually polarimetrically calibrates Four Eyes. Expanding Equation 4.14, we have

that

M = Aejφ
[
RHHSHHTHH RHHSV HTV V
RV V SHV THH RV V SV V TV V

]
. (4.15)

Vectorizing and reordering terms yields
MHH

MV H

MHV

MV V

 = Aejφ


THHRHH

TV VRHH

THHRV V

TV VRV V



SHH
SV H
SHV
SV V



= Aejφ


QHH

QV H

QHV

QV V



SHH
SV H
SHV
SV V

 (4.16)

= Aejφ~Q⊗ ~S

where ⊗ indicates the Hadamard product. Thus, we have that
SHH
SV H
SHV
SV V

 =
QHH

Aejφ


1

QHH
QVH
QHH
QHV
QHH
QV V

⊗

MHH

MV H

MHV

MV V

 . (4.17)

Up to an arbitrary scale factor and absolute phase, this is exactly the final step that was

performed in the cross-channel transverse equalization algorithm detailed in Section 4.2.

Sarabandi et. al. (1990) achieve satisfactory calibration results for a monostatic

system with 25 dB of cross-polarization isolation, but offer no further quantification of

the criterion for good isolation. As was shown in Section 3.1.1, Four Eyes’ antennas
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were measured as having cross-pol isolations of 20 dB and 26 dB. Sarabandi et. al. also

note that, ideally, calibration for systems with good cross-polarization isolation would be

performed with a single calibration target with a known scattering matrix that has both

co-polarized and cross-polarized signatures. Such a target is not easy to find or orient

with respect to the radar’s incident energy, but the delay line set up provides exactly such

a calibration target. However, because the delay line antennas have their own distortion

matrices and because it is unknown whether Four Eyes’ cross-polarization isolation is

good enough, it is also necessary to assess the quality of polarimetric calibration achieved

by using the assumption of good cross-polarization isolation.

4.3.1 Polarimetric calibration results

A good metric for the quality of polarimetric calibration is the transformation of a tri-

hedral’s response in the linear H-V basis to the circular R-L polarization basis (Blejer,

2016b). The transformation can be computed via circular-from-linear polarimetric syn-

thesis equations

SRL =
1

2
(SHH + SV V )

SRR =
1

2
(SHH + 2jSHV − SV V )

SLL =
1

2
(SHH − 2jSHV − SV V )

(4.18)

where, because of reciprocity in monostatic systems, SRL = SLR.5 If the calibration is

sufficient, the cross-polarization isolation shown in the H-V basis should be reasonably

well preserved after the basis transformation (Blejer, 2016b). Figure 4·9, which shows

the calibrated trihedral response in each basis, evidences the quality of polarimetric cal-

ibration for Four Eyes. Following synthesis of the linear basis response in the circular

basis, <1 dB of cross-polarization isolation is lost. Thus, we conclude that the polari-

metric calibration of Four Eyes sufficiently enables further computational operations on

measured scattering matrices.

5Equations are straightforward to derive using SHV and ~ER and ~EL, the Jones vectors for right and
left circularly polarized antennas.
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(a) In the linear basis, ∼28 dB of
cross-polarization isolation is evident.

(b) Following transformation to the
circular basis, ∼27 dB of cross-
polarization isolation is preserved.

Figure 4·9: Polarimetric calibration quality assessment using transformation of the
trihedral response, calibrated via matched filters computed in cross-channel transverse
equalization, from the linear basis to the circular basis via polarimetric synthesis. Note
that in normalizing the amplitude, both responses were normalized to the peak in the
linear basis.

4.4 Radar data processing flow

With matched filters in hand that achieve both cross-channel transverse equalization

and polarimetric calibration for Four Eyes, attention turns now to the pre-polarimetric

processing code suite that has been developed in MATLAB for Four Eyes data. The

discussion below presumes the reader has familiarity with the signal processing operations

implicit in the suite’s radar signal processing blocks. Thus, implementation details rather

than their theoretical foundations are given in this section. The reader seeking exposition

of the underpinnings for the operations below is referred to Richards (2014) and Edde

(1995).

Four Eyes records real-valued data centered at IF. A copy of the Point de Chene

Dataset comprising 15.5 TB of IF data is locally stored on a RAID connected for pro-

cessing to a custom server that has 512 GB of RAM and dual 8-core CPUs. The server
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Figure 4·10: A block diagram of the pre-polarimetric signal processing chain developed
for Four Eyes data is shown. Computational blocks are in blue highlighted boxes, inputs
and control parameters are in dark blue text, and outputs are in dark red text.

houses a signal processing suite that has been written specifically to accommodate Four

Eyes’ data and its various transmission schemes, as well as to maintain flexibility in pro-

cessing. A block diagram of the pre-polarimetric processing suite is shown in Figure 4·10.

Each of these processing blocks will be addressed in turn.

4.4.1 Recorded data retrieval and signal conditioning

As discussed in Section 3.2, the maximum possible PRF for each waveform scheme was

used to enable decimation of pulses in slow-time, thus allowing for exploration of any

polarimetric algorithm’s efficacy over various PRF timescales. The focus in Chapter 5 is

entirely on files recorded using the ALT transmit scheme. We therefore focus exclusively

on this scheme in the following discussion.
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In the ALT transmit scheme, the maximum PRF is 6250 Hz on each channel because

interleaving of transmit pulses produces an effective PRF of 12500 Hz, which maps to

the range of the Four Eyes’ horizon. In other words, the ALT scheme assumes negligible

decorrelation of the scattering matrix in a given cell over a staggered H and V transmit

pulse pair. So, H and V returns from these staggered pulses are aligned in post-processing

to produce full scattering matrix measurements. However, because the other channel’s

transmit occurs halfway through a given channel’s PRI, the second half of the PRI pro-

duces unusable data in range. Thus, the usable data corresponds to an effective PRF of

12500 Hz, but the actual PRF of the retrieved data is 6250 Hz. To illustrate this concept,

a diagram of this scheme is reproduced in Figure 4·11 with the pulse repetition interval

PRI = 1
PRF

[sec] denoted. We proceed with the remainder of the dissertation bearing in

mind that the PRF of this data is 6250 Hz.

Several operator-input parameters are fed in at the recorded data retrieval stage to

control later processing. Most notable among these is the slow-time decimation factor,

m, which controls the quantity by which the actual PRF will be decimated. If m = 1,

the PRF is not decimated; every pulse is retrieved and aligned to form the scattering

matrix measurement across the CPI. If m = 5, for example, then every 5th pulse will be

retrieved, reducing the ALT PRF to 1250 Hz. So, if H transmit pulses are odd-numbered

Figure 4·11: A diagram of the ALT transmit scheme is reproduced here, showing that
while the actual PRF on each channel is 6250 Hz, the usable range data for a staggered
pair of pulses corresponds to an effective PRF of 12500 Hz.
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and V transmit pulses are even-numbered, as shown in Figure 4·11, then setting m = 5

retrieves pulse 1 from the HH and HV channels, pulse 6 from the VH and VV channels,

pulse 11 from the HH and HV channels, pulse 16 from the VH and VV channels, and

so on.6 Thus, decimating data recorded using the ALT scheme allows one to explore the

effects of having used the ALT transmit scheme at a lower actual PRF.

The amount by which the data can be decimated is limited by the Doppler velocities

in the radar scene. Clearly, choosing a decimation factor so high as to render the PRF

too low to recover the full Doppler spectrum produces aliasing in the Doppler-velocity

dimension. Because the maximum Doppler velocities of sea clutter are determined by

the sea state, the maximum slow time decimation factor used depends upon the sea state

featured in a given recording. We found that m = 7, corresponding to a PRF of ∼893

Hz, was usually the slow time decimation limit for higher sea state recordings. CPI

length is another user-input parameter. For our purposes, we typically use a CPI length

of 100 pulses in later processing regardless of PRF. This decision enables evaluation of

algorithmic performance across different scene-decorrelation timescales.

Once the data is retrieved according to slow time decimation and CPI length param-

eters, it is arranged in a fast-time (N range samples) by slow-time (P pulses) matrix for

each channel, yielding four matrices that are stacked along the polarimetric dimension

to form an N x P x 4 data matrix Din. The real-valued data at this point is in ADC

counts. We scale it to voltage by multiplication with the constant

c =
10

a
20

2(b−1) − 1

where a is the maximum voltage input of the ADC [dBm] and b is the number of bits per

sample used for quantization of the incoming analog signal. A final signal conditioning

step removes DC bias by subtracting the mean voltage from each channel.

6Note that decimation by an even number of pulses is not allowed. Doing so would result in retrieving
recorded data from the same two channels each time, prohibiting formation of the full scattering matrix
measurements.
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Figure 4·12: IF signals are at second Nyquist, so the spectrum centered at fs
4 is

reversed.

4.4.2 Basebanding

Figure 4·13: A representation of the dis-
cretized spectrum shows that basebanding the
desired spectrum amounts to a counterclock-
wise rotation of π

2 [rad/sample].

Because the data is digitized at IF 945

MHz and the ADC sampling frequency

is fs = 1260 MHz, the spectrum of the

digitized data lies in the second Nyquist

zone. That is, the spectrum centered at

fs
4

= 315 MHz, which is folded in at folding

frequency 630 MHz, is frequency-reversed,

while the spectrum centered at −fs
4

is not,

as shown in Figure 4·12. In discrete normalized frequency space, one way of recovering

the basebanded analytic signal amounts to rotating the spectrum by π
2

rad/sample, as

shown in Figure 4·13. This amounts to taking the Hadamard product of each pulse in

Din with the vector ej
π
2
n, n = 0, 1, 2, ..., N − 1. Following conversion to baseband, the

data is lowpass filtered to attenuate any frequencies outside the waveform’s bandwidth.

4.4.3 Downsampling

As discussed in Section 3.2, the waveform bandwidths programmed into Four Eyes ranged

from 4 to 400 MHz. Because the sampling frequency of the ADCs is fs = 1260 MHz, the
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incoming data is oversampled for all waveforms. In lower bandwidth cases, the data is

very heavily oversampled. This results in the scattering matrix for a single radar range

resolution mapping to many range bins, as shown in 4·14. In order to resolve this, the

data are downsampled to twice the critical Nyquist rate.7 So, for example, data from

the 4 MHz waveform is downsampled to fs = 8 MHz; data from the 40 MHz waveform

is downsampled to fs = 80 MHz; and so on. Following the downsampling stage, we have

data for which each scattering matrix measurement is repeated in exactly two contiguous

range bins, as shown in 4·15, regardless of the waveform used. Without this step, appli-

cation of any signal processing operations that rely upon sampling the background—e.g.,

CFAR processing or statistical estimation—will draw many samples from the same reso-

lution cell. Such samples will clearly not be independent and identically distributed (iid),

which is a key assumption underlying the success of these processing operations. Hence,

downsampling is a critical enabler of subsequent processing techniques.

4.4.4 Pulse compression and Doppler processing

Following downsampling, the data is pulse compressed and Doppler processed. As was

briefly mentioned in Section 4.2, not building a sidelobe reduction window directly into

the matched filters enables experimentation in the pulse compression stage with various

sidelobe reduction windows.8 Each such window significantly reduces the -13 dB range

sidelobes a point response will have following matched filtering. Sidelobe reduction comes

at the expense of SNR and range resolution degradations that depend upon the window

used. The window functions implemented in the code suite include Hamming, Blackman,

Chebyshev, and Taylor windows, where the latter two have -50 dB sidelobes. Neither the

window functions nor mathematical details of pulse compression and Doppler processing

are within the scope of this dissertation, as all are very well documented in the literature.

7Because the data are complex-valued following the basebanding operation, the critical Nyquist rate
is equal to the bandwidth of the waveform.

8Sidelobe reduction in radar is necessary because without it, objects with small radar responses can
be masked by the sidelobes of responses from nearby objects with larger signatures (Skolnik, 2001).
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The interested reader is referred to Richards (2014) and Skolnik (2001). All results shown

in Chapter 5 use a Taylor window with -50 dB sidelobes in the range dimension and a

Blackman generalized cosine window in the Doppler dimension. The choice of windows

was arrived at empirically, following exploration of results achieved with various window

combinations.

Figure 4·14: Prior to downsampling,
lower bandwidth waveforms are heavily
oversampled in range.

Figure 4·15: Following downsampling to
twice critical Nyquist, exactly two range
bins correspond to the waveform’s range
resolution.

For each CPI, the code suite’s pulse

compression and Doppler processing steps

produce two important data products:

RTI and RD data stacked across polari-

metric space in the linear basis, as was

shown in Figures 2·6 and 2·7. Two addi-

tional products, the coherent and nonco-

herent averages of the RTI, are also com-

puted. The averaged signals and the RTI

are inputs into a 1-D CFAR detection al-

gorithm, while the RD is input into a 2-D

CFAR detection algorithm.

4.4.5 CFAR detection

A full exposition of CFAR detection is be-

yond the scope of this dissertation. The

interested reader is referred for an excel-

lent and thorough treatment of the topic

to Richards (2014). At a high level, CFAR detection assumes that noise and cluttter

background signal power follows a particular probability distribution, then estimates a

statistic of that distribution from samples of background data that are presumed to be
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iid.9 Estimation of the power in the background is repeated for each of the cells under-

going detection, and hence the detector adapts to what may be changing backgrounds

across a radar scene. The number of background samples N used for statistical estima-

tion and a fixed probability of false alarm Pfa determine how many times larger than the

estimated statistic the power in a given radar cell must be in order to declare that the

data in the cell does not belong to the background. When the power in the cell exceeds

this threshold, the detector declares a detection.

There are numerous types of CFAR detectors. Two were implemented in Four Eyes’

processing suite: the cell-averaging CFAR (CA-CFAR) and the order statistic CFAR

(OS-CFAR). Both variants make the usual assumption that the power of the back-

ground—whether the background is noise-only or clutter plus noise—is described by an

exponential random variable (Rohling, 2006). That is, it assumes that the background’s

voltage amplitude is Gaussian-distributed. What varies is the estimated statistic and the

factor α, by which that statistic is scaled in order to determine the overall threshold.

The CA-CFAR statistic is the mean, computed from the set of amplitude samples as

zca =

[
1

N

N∑
i=1

xi

]
(4.19)

where i is the sample index. A CA-CFAR detection is declared in a given cell if its value

is larger than αcazca, where αca takes the form

αca = N
(
P

1
N
fa − 1

)
(4.20)

(Richards, 2014). In the OS-CFAR, the statistic is the kth order statistic. An order

statistic k is simply the kth value in a the set of N samples after the N samples have

been sorted in order of increasing value. For example, if a set contains 21 numbers, then

9Note that these assumptions are the reasons that the standard CFAR detection approach fails in the
presence of low grazing angle sea clutter. Not only does such clutter fail to obey the usual distribution
assumptions, but it is non-stationary and inhomogeneous, so the iid assumption fails as well (Greco
et al., 2008).
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choosing k = 11 selects the median value in the set—i.e., x11. Clearly, 1 ≤ k ≤ N . In

the OS-CFAR implementation for Four Eyes, k is chosen such that the order statistic is

nearest the 75th percentile. An OS-CFAR detection is declared in a given cell if its value

is larger than αosxk=αoszos where

Pfa =
N ! (αos +N − k)!

(N − k)!(αos +N)!
(4.21)

(Richards, 2014). Rather than implementing this numerically, Four Eyes uses the look-up

table of αos values given in Rohling (1983).

In both CA-CFAR and OS-CFAR, the background is sampled using windows to de-

termine which surrounding cells will be included in the background statistic estimate for

a given cell under test (CUT). Figure 4·16 shows a notional window in a 1-D detection

operation. Figure 4·17 shows a notional window in a 2-D detection operation. For CA-

CFAR, a guardband is used as protection against contaminating the statistical estimate

of the background with samples from an object in the CUT, which may be extended

in range and/or Doppler. The OS-CFAR does not use a guardband. In the Four Eyes

processing suite, the choice of N depends on the waveform used, and is made so as to

keep the length of the windows in range roughly constant across waveforms even as the

range resolution of the waveforms varies.

Figure 4·16: A notional 1-D CFAR window used for sampling the background of a
CUT is shown. The window selects an equal number of samples to use in the leading
and lagging halves of the window. In CA-CFAR, a guardband is employed to protect
against including samples of objects with larger range extents in the background statistic
estimate. In Four Eyes processing, the window size is determined based on the waveform.
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The OS-CFAR is designed to be resilient to changes in the clutter background, and

to allow detection of multiple objects that may be closely spaced without allowing the

presence of another object in the window to skew the estimated statistic and artificially

inflate the threshold value. We found that the OS-CFAR did not outperform the CA-

CFAR in terms of fewer false alarms, because sea clutter returns do, in fact, look object-

like in many cases. We also found that the OS-CFAR detector is so resilient to changes

in the background that it did not detect extended objects without modification of the

CFAR to include a guardband, which changes the essence of the detector. Given that

the performance difference of the two CFARs in low grazing angle sea clutter was very

small, we opted to focus exclusively on the more common CA-CFAR in the algorithm

development research presented in the next chapter.

Figure 4·17: A notional 2-D CFAR win-
dow used for sampling the background of
a CUT in an RD image is shown. The
guardband, consisting of some number of
guard cells, is used in CA-CFAR, and may
include guard cells in the Doppler dimen-
sion as well as in the range dimension.

The output of the CA-CFAR process-

ing stage are sets of detections. In the

1-D cases, the detections are functions of

range only; in the 2-D cases, the detections

are functions of range and Doppler. These

CFAR detections are passed to the polari-

metric processing stage along with the RTI

data, RD data, and (non)coherently aver-

aged data.

4.5 Data labeling

Now that discussion regarding the radar

signal processing flow and products is complete, we turn our attention to the final pre-

processing component. Data labeling is a critical step that enables quantification of an

algorithm’s performance. It is very challenging to label radar data, which is dynamic by

nature, has different processing outputs depending upon user-input processing control
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τ [µsec] β [MHz] Bins to 4 km Range per Bin [m]

2 4 198 18.74
2 40 1975 1.874
2 150 7406 0.5
2 400 19749 0.187
4 4 182 18.74
4 40 1815 1.874
4 150 6806 0.5
4 400 18150 0.187

Table 4.1: The number of range bins that remain following downsampling, up to the
4 km range extent, depend upon the waveform and its minimum range. The table gives
this number of range bins by waveform as well as the range extent of each bin.

parameters, and features objects whose range and Doppler signatures vary as functions

of time and are themselves dependent upon processing control parameters. This section

discusses the approach taken for data labeling.

The locations of objects in RTI data, which is a function of range and pulse time

(slow-time), more readily offer labeling means than does RD data, which is a function

of range and Doppler as well as of CPI length. Therefore, we focused on RTI data as a

means of data labeling generation.10 The data recordings identified in Table 3.3 are all

∼10 sec in length, comprising some 62500 pulses each. As noted in Table 3.2, the radar

returns were really only clutter-limited (as opposed to noise-limited) to a range extent

of 4 km, at which point sea clutter return power was reduced significantly enough that

standard 2-D CFAR on RD maps easily yielded object detections without also producing

numerous false alarms caused by sea clutter returns. Hence, we limited our data labeling

focus to the more challenging range extent between the waveform minimum range and

4 km. The number of range bins this extent comprises for a given file following the

downsampling operation described in Section 4.4.3 depends upon the waveform used.

These figures are given in Table 4.1.

To create a meaningful set of labels for each file, every range bin must have an

associated label—1 if the range bin contains an object, 0 if it does not—for every

10The consequence of this choice is that RD data is not a candidate for follow-on algorithm development
work without first performing substantial additional data labeling work; however, RD data is still a key
component of the PCL algorithm, as shall be seen in Chapter 5.
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recorded pulse. In the best case, a file featuring the 4 µsec 4 MHz waveform, requires

(62500)(182) > 11x106 labels; in the worst case, a file featuring the 2 µsec 400 MHz

waveform requires (62500)(19749) > 1.2x109 labels. Clearly, this is a vast number of

labels to determine, store, and quickly access.

Recognizing that the number of range bins in each pulse that actually contain an

object is very small relative to the number of range bins contained in the pulse, sparse

matrices were natural candidates for label storage. To populate these label matrices,

rather than looking at 62500 pulses individually and selecting known object locations,

we opted to process slow time decimated RTIs and interpolate between target start and

end locations to yield regions corresponding to object labels for that RTI.

To see how this was done, first consider the RTIs of File 325 shown in Figure 4·18.

The file features returns from the 4 µsec 150 MHz waveform and contains a single of

object of interest, The New Englander, whose returns over time are framed in black on

each image and whose picture is shown on the HH image inset. All returns outside the

black frame are due to sea clutter and/or noise. The RTIs show the entire 10 seconds of

the recorded file and are formed with slow time decimation factor m = 7, corresponding

to ∼893 Hz PRF. In Figure 4·19, the images have been zoomed in to a 50 m range swath

centered on the object.

Creating a label matrix populated with zeros equivalent in size to the full RTI provides

a convenient starting point for label population. Imagine now dividing the full HH RTI

into contiguous chunks across slow time, then using continuous lines to mark on each

of these shorter RTIs the boundaries of the object’s signature in range.11 Mapping the

continuous region between these lines to the corresponding discrete region in the label

matrix, then changing labels therein to ones to indicate the presence of an object, allows

data labeling across the full range extent in RTI space. The RTIs are divided into the

11We utilize only the HH RTI because the RTIs are time-aligned. Any object responses will map in
range to the object responses in other polarizations, even if the signatures in other polarizations may be
stronger or weaker.
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(a) Full file RTI, File 325, HH polarization

(b) Full file RTI, File 325, VV polarization

Figure 4·18: Full file RTIs show the returns from a single object of interest, The
New Englander, in sea clutter. Variation in the range extent and relative power in the
object’s signature over time is apparent.
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(a) Full file RTI, File 325, HH polar-
ization, zoomed in on object

(b) Full file RTI, File 325, VV polar-
ization, zoomed in on object

Figure 4·19: Full file RTIs show the path followed by the single object of interest, The
New Englander with a close up view. Variations in signature and range extent across
pulses are even more apparent.

Figure 4·20: The data labels for File 325 are shown. The gray area indicates the region
labeled as containing an object’s return; the black regions are labeled as not containing
an object’s return; and the white regions indicate areas that are unlabeled and will not
be used in algorithm performance assessment.
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minimal number of chunks necessary to capture variation in an object’s range extent and

signature across time. This process is repeated for each object in each file of interest.

Figure 4·21: The zoom-in on the data
labels for File 325 demonstrates excellent
agreement with the slow time decimated
RTIs shown in Figures 4·19a and 4·19b.

The results can be seen for File 325 in

Figure 4·20. The zoomed-in range extent

corresponding to that in Figures 4·19a and

4·19b is shown in Figure 4·21. The label

images have in both cases been decimated

in slow time identically to the RTIs shown

in Figures 4·18 and 4·19 to enable easier

comparison. The gray regions in these im-

ages correspond to the region in the label

matrix that indicates an object is present.

The black regions correspond to regions in

the label matrix that indicate no object is

present. The white regions correspond to

“do not use” regions in the label matrix,

which are intended to prevent inaccurate labeling of returns near an object. The “do not

use” regions together with the “object” regions form a rectangle across the full extent of

the RTI for each target, which is partly an artifact of the overall label generation process.

Every file of interest for algorithm development, as delineated in Table 3.3, has an as-

sociated sparse data label matrix whose contents are determined according to the process

described above. For each CPI processed in Four Eyes’ processing suite, a file’s sparse

data label matrix is sampled according to the specifications of the CPI. That is, the

labels for each pulse in the RTI data cube are extracted across the ranges the cube con-

tains. These extracted labels are carried with the pre-processed data through subsequent

processing stages to enable assessment of algorithm and classification performance.
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Having addressed details of the achievement of the first major contribution of this

dissertation, we turn attention now to the second major contribution: development of

practical means to mitigate the impacts of low grazing angle sea clutter on the standard

CFAR detection process.
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Chapter 5

Polarimetric Co-location Layering (PCL)

This chapter presents a novel algorithm that is one of the major contributions of this

dissertation. The aim of the algorithm development phase of this research was to leverage

polarimetric dimensionality to find an approach to mitigating the impact of low grazing

angle sea clutter that is robust across PRFs, bandwidths, and object types in the Four

Eyes Point de Chene Dataset. As was shown in the brief review of polarimetric ap-

proaches to enhancing detection performance in low grazing angle sea clutter in Chapter

2, there are numerous creative approaches to sea clutter mitigation that are impractical

in terms of the standard radar signal processing chain. Such approaches require intro-

ducing large computational complexity into the standard radar signal processing chain

or require restructuring the processing chain entirely. Hence, the other aim of the al-

gorithm development component of this research was design of an approach that would

plug directly into the standard processing chain, imposing neither chain restructuring

nor infeasible computation times.

The result of this research is Polarimetric Co-location Layering (PCL), an algorithm

that leverages a fundamental characteristic of the Doppler spectra of sea clutter and

man-made objects to classify detections produced using the standard CFAR detection

approach as either detections on objects or on clutter. The first section of the chapter

discusses the sea clutter Doppler spectrum, including a review of work that has been

done on the topic and a review of other detection techniques that leverage in tandem

the Doppler and polarization characteristics of sea clutter. The second section motivates

PCL, describing the fundamental polarimetric principles that are the basis of its efficacy.
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The third section details the core PCL algorithm and introduces metrics by which the

performance of PCL can be compared to that of standard CFAR detection processes.

Included in this section is a discussion showing that the algorithm plugs directly into the

standard radar signal processing chain, operating in parallel with the addition of efficient

computational blocks. The third section shows results demonstrating that PCL is indeed

robust across PRFs, bandwidths, and object types. The fourth section discusses PCL

performance results across bandwidths and PRFs. The adaptation of PCL to detection

of dynamic targets is also discussed in this section, as are the results of the adapted

algorithm. The fifth section discusses integration of PCL into the standard radar signal

processing chain. The section also includes an analysis of PCL’s computational com-

plexity, showing that except in degenerate cases, use of the algorithm does not impose

any processing delays as compared to standard radar processing times. The final section

summarizes the chapter.

5.1 Sea clutter Doppler spectrum

This section first reviews the literature related to the polarization and look angle depen-

dence of the sea clutter Doppler spectrum. Thereafter, we review other approaches that

involve using Doppler techniques with polarimetric radar for mitigation of sea clutter;

this review includes references to literature wherein such techniques have been suggested

as a promising means of achieving this aim.

5.1.1 On the polarization dependence of sea clutter Doppler spectrum

The polarization dependence of the sea clutter Doppler spectrum has long been under-

stood, with publications dating back nearly 50 years. In 1968, Pidgeon reported that

at low grazing angles, the Doppler shift of HH sea clutter at C band was 2-4 times as

large as the Doppler shift of VV sea clutter, but that the two orthogonally polarized

Doppler spectra had approximately the same spectral width (Pidgeon, 1968). Pidgeon
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posited that the difference was due to the responses of HH and VV to different sea surface

scattering components. The following year, Valenzuela and Laing of the Naval Research

Laboratory published data from a multi-band experiment aimed at more completely char-

acterizing the Doppler spectra of radar sea echo (Valenzuela and Laing, 1970). Their data

comprised P, L, C, and X bands; HH and VV polarizations; some azimuthal look varia-

tion with respect to the upwind direction; a few different sea states; and grazing angles

ranging from a few degrees to 45◦. Among other observations, the researchers reported

that the average differential velocity of Doppler spectra in HH and VV first reported by

Pidgeon appears to increase at lower grazing angles. Unsurprisingly, they found that sea

clutter Doppler spectra are radar frequency as well as polarization dependent, and that

the differential Doppler across HH and VV polarizations increases with increasing sea

state.

There are numerous publications in later years that supplement the seminal work

discussed above. The remainder of this brief discussion focuses on literature specific to

very low grazing angle geometries. Chief among these are the reports of H.C. Chan

(Chan, 1987; Chan, 1990), who analyzed an MIT LL multi-band sea clutter dataset col-

lected on the Atlantic-facing coast of North Truro, MA. Chan also noted the polarization

dependence of sea clutter Doppler spectra. He also defined metrics by which to quan-

tify the spectral spread and offset from DC, then applied those metrics across HH and

VV polarizations and look directions with respect to upwind. The results of his work

supported the findings of the aforementioned publications and further added that the

avergae Doppler differential is dependent on look direction. Specifically, he reported that

the upwind and downwind directions have the largest polarization-dependent average dif-

ferential Doppler, but that the differential approaches zero when looking in the crosswind

direction.

The findings of these early large-scale experiments have continued to be borne out

with smaller data collections reported in the literature. Werle reported an X-band data
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collect verifying Pidgeon’s conjecture that different scattering processes are responsible

for the difference in HH and VV Doppler spectra (Werle, 1995). Smith et. al. reported

that wave groups and breaking waves had markedly different mean Doppler frequencies

across HH and VV polarizations, again particularly in the upwind direction (Smith et al.,

1996). Lamont-Smith used laboratory-generated wind waves in a wave tank to show that

both the maximum and mean Doppler velocities show strong dependence on polarization

at low grazing angles to frequencies as high as W band (Lamont-Smith, 2000).

Figure 5·1: A corrected and generalized re-
production of a plot from (Ward et al., 2006)
that was originally printed in (Ward et al.,
1990) shows the trend followed by the mean
Doppler differential of sea clutter in HH and
VV polarizations as a function of look di-
rection. HH typically exhibits more a more
significant mean Doppler than does VV.

Much of this early data was not col-

lected with fully polarimetric radar in its

modern sense. Instead, the data was

collected for a given grazing angle, sea

state, and look direction using HH po-

larization. Then, immediately afterward

and before shifting to a new geometry, the

antenna was manually rotated to provide

the orthogonal VV co-polarization. It is

not surprising, though, that the findings

of researchers using modern polarimetric

radars continue to support the large body

of earlier work (Walker, 2001; McLaughlin

et al., 1995). The polarization and look an-

gle dependence of the sea’s Doppler spec-

trum is presently so well known that the

preceding relationships feature prominently in the “Characteristics of Radar Sea Clutter”

chapter of (Ward et al., 2006), which is currently among the most exhaustive available

texts on the topic of sea clutter.
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In that text, Ward et. al. present a plot showing that the Doppler differential of

sea clutter echo has a co-sinuosoidal dependence on look direction, with the average

HH Doppler frequency being more significant than the average VV Doppler frequency.

Neither a source for the data nor a frequency band is definitively given in the text or

the paper from which it was reproduced (Ward et al., 1990). However, it is instructive

to consider the general trend the data follows. Hence, a corrected version of that plot

is reproduced in Figure 5·1 for the reader’s consideration. Note the inversion of the

Doppler frequency axis, which is the convention that has been adopted in RD images

in this dissertation. The reader should not infer any relationship from the plot save for

the general trend in Doppler shift as a function of look direction and the fact that the

Doppler shift is more pronounced in the HH polarization.

Given the preceding discussion, it is not surprising that several researchers are in-

deed looking to Doppler techniques with polarimetric radar as a means of sea clutter

mitigation, and have been doing so for decades.

5.1.2 On sea clutter mitigation using Doppler techniques in polarimetric

radar

It bears reiterating at the outset of this section that, as discussed in Chapter 2, much

of the open literature features approaches designed using data collected by McMaster

University’s IPIX X-band radar. A small subset of this data, recorded over two different

outings in 1993 and 1998, was made publicly available on the web in 2001. Despite

the system’s original characterization by its designers as “dual-polarized,” the radar in

today’s terminology is actually fully polarimetric. That is, it records the full polarimetric

scattering matrix - i.e., HH, HV, VH, and VV - in each cell utilizing the ALT transmit

scheme. The IPIX data features a single canonical point target floating in sea clutter

across a range of sea states. It is the only publicly available polarimetric sea clutter

dataset, though it is very limited in its look angles, range resolutions, and range extents.
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The principal investigator for the McMaster research laboratory that stood up the

IPIX radar was and still is Prof. Simon Haykin, though the lab is now called the Cognitive

Systems Laboratory. Haykin was the originator of the now-popular notion of “cognitive

radar,” and for over 25 years he has championed building remote sensing systems that

can measure and leverage any combination of the dimensions of signal information—time,

space, frequency, and polarization—to understand and discriminate between the objects

it senses in its surroundings (Haykin, 1990; Haykin, 2006). Haykin has erected one corner

of his vast body of work upon the study of radar sea clutter, a fair portion of which is

focused on utilizing polarimetric Doppler techniques to detect targets in clutter.

As early as 1985, Haykin and his team posited that fusing polarimetric information

together with Doppler signatures would prove useful for the application of sea ice and

growler detection in shipboard radars (Haykin et al., 1985). Five years later, Haykin’s

team published work using early IPIX data, postulating that shipboard radars have

difficulty detecting small objects precisely because they ignore clutter’s two most distin-

guishing characteristics: Doppler and polarization (Currie et al., 1990). In this work,

the authors present several images across polarization space in the H-V basis of a radar

reflector in sea clutter, noting the Doppler spectrum differences between sea and object

across looks in the polarimetric dimension. In 1991, the team published work indicating

that for object detection, using the Doppler spectrum in only the co-polarized returns

was at least as advantageous as using the Doppler spectrum in cross-polarized returns

(Haykin et al., 1991).

There are more instances of such findings by Haykin and his team, but perhaps the

most pointed statements Haykin makes are that “The [feature] most extensively studied

has been dual [sic] polarization. Results were presented showing the differing properties

of HH and VV for sea clutter, whereas for ice targets and rain clutter the HH and VV

returns were highly correlated. This difference could be exploited to provide both the

identification of the source of the clutter, and for improved target detection” (Haykin
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et al., 1994). Haykin makes a similar note in a 1996 publication that the sea clutter

Doppler spectrum will change over time and across polarizations more quickly than will

that of a moving object. He goes on to develop a theoretical framework for detection

across a higher number of dimensions (Jones and Haykin, 1996). It is Haykin’s early

work that has laid the foundation for PCL.

While Haykin’s work is really the cornerstone of research in this area, numerous other

researchers have been pursuing joint polarization-Doppler based techniques for sea clutter

mitigation. Wanielik and Stock proposed execution of CFAR on a vector at each cell-

under-test consisting of that cell’s polarimetric scattering matrix measurement (Wanielik

and Stock, 1990). A research team out of the TNO Physics and Electronics Laboratory

published work using range-Doppler data across the polarimetric dimension to discrim-

inate between sea clutter returns and returns from a small sloop (Smith et al., 2002).

There are numerous other publications that do not leverage mutual information across

polarimetric channels, but do demonstrate the differences in Doppler power spectral den-

sity in sea clutter cells versus sea clutter cells containing objects (Greco et al., 2010; Li

and Shui, 2016).

Additionally, there is at least one other application area in which the fusion of mutual

information in the Doppler and polarization dimensions has led to greatly enhanced clas-

sification capability: polarimetric Doppler weather radar. The weather radar community

has a near 30-year history of leveraging differential reflectivity—i.e., polarization ratio of

HH returns to VV returns—and other polarization-based metrics to differentiate between

precipitation types and sea clutter in Doppler radar weather maps (Husson et al., 1989;

Bringi and Chandrasekar, 2001; Islam et al., 2012).

The preceding references are by no means exhaustive. Studies in this area are and

will continue to move forward on a wide scale. Bearing this in mind, we now turn our

attention to PCL.
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5.2 The fundamental principle behind PCL

The fundamental principle behind PCL is that while sea clutter exhibits an average

Doppler differential across polarizations, man-made objects do not. That is, the sea

clutter scattering mechanisms that respond to horizontal polarization tend to move at

different velocities on the average with respect to the radar than do those scattering

mechanisms that respond to vertical polarization. For man-made objects, this is untrue.

If an object is moving at Doppler velocity v m/s with respect to the radar, then that

object will be moving at v m/s with respect to the radar in both horizontally and ver-

tically polarized RD images, provided that the object has a signature in both images.

The preceding statement is certainly valid for a rigid point target; consider a moving

trihedral or the IPIX radar beach ball, for example, to see that this is true. As will

shortly be shown, the statement is also true for extended objects, which comprise many

rigid scatterers. However, accommodations must be made for variation in polarimetric

signatures over the extent of the objects. Accommodating this variation is precisely what

PCL does. Before explicating the means by which PCL accomplishes this task, we orient

the reader using Four Eyes data to the fundamental principle we have just discussed and

its manifestation in the outputs produced by the signal processing chain detailed in the

preceding chapter.

For the sake of continuity, we constrain discussion for the present to the data file to

which the reader has already been exposed: File 325—which contains a single object of

interest, The New Englander—whose full file RTIs and data labels were shown in Section

4.5. The reader will recall that File 325 features the 4 µsec 150 MHz waveform, and thus

has a range resolution of 1 m. The RD images for a 50 pulse CPI of this file, taken from

the center of the data recording, are shown in Figure 5·2. The images were formed using

data slow-time decimated by m = 7 to ∼893 Hz PRF; the images are zoomed in on the

Doppler velocities that feature the strongest sea clutter return. The look direction for

this data is within 45◦ of upwind, so the average differential maps to a location between
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(a) File 325, 50 pulse CPI, HH (b) File 325, 50 pulse CPI, VV

Figure 5·2: The fundamental principle behind PCL is captured by a pair of RD images,
one in HH and one in VV. The images show that while the average Doppler velocity
of sea clutter is stronger in HH than in VV, the return from the object is at the same
Doppler in both polarizations.

90◦ and 135◦ region on the average Doppler differential cosinusoidal trend plot shown in

Figure 5·1. In the RD images, the average Doppler differential is apparent, though clearly

the Doppler spectrum across range shows significant overlap across images.1 However,

the radar return from The New Englander exhibits the same Doppler velocity in both

polarizations.

Consider running a 2-D CFAR detector on these images independently. Note that an

operation often layered onto a CFAR detector is peak-picking. That is, when the data

are oversampled, as is Four Eyes’ data after downsampling to twice critical Nyquist, then

contiguous range bins may surpass the detection threshold such that multiple detections

are declared on the same scatterer. To mitigate this, one can select only the peak re-

sponses as detection candidates. Peak-picking is implemented simply by examining cells

whose values have surpassed the CFAR threshold and checking whether those values are

larger than their neighbors in both the range and Doppler dimensions. That is, if the

1Some of the features of sea clutter that were discussed in 2 are visible here as well. Specifically, the
HH returns look “spikier” than the VV returns, while the VV returns are generally stronger than the
HH returns.
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value in cell y[m,n], where m = range index and n = Doppler index, surpasses the CFAR

threshold, then a detection is only declared if also

y[m,n] > y[m± 1, n± 1] (5.1)

The set of detections produced by this sequence of operations for the RD images in 5·2

is shown in Figure 5·3, where Pfa for CA-CFAR detection was set to 10−6. The impact

of sea clutter on CA-CFAR detection in both channels is clear: Despite there being only

a single object of interest in the radar scene corresponding to a single detection in each

channel, hundreds of detections are actually produced. Specifically, detection in the HH

channel produces 226 false alarms, while detection in VV produces 213 false alarms;

the fact that sea clutter background characteristics do not obey the exponential power

distribution assumption imposed by CFAR detection results in a significantly higher Pfa

than required.

The keen reader will observe that detections on the object of interest are approxi-

mately co-located in range and Doppler across channels. Therefore, a naive first step to

false alarm mitigation might be requiring that detections be co-located in range-Doppler

across polarizations to be declared object detections rather than sea clutter false alarms.

In fact, this approach occasionally works well on very low resolution waveforms. We

found that in the 4 MHz bandwidth (37.5 m range resolution) data, this approach was

often sufficient to mitigate most false alarms due to sea clutter. However, at such low

resolutions, the number of false alarms produced by sea clutter is negligible in comparison

to the numbers of false alarms produced in 40 MHz or higher bandwidth data, as will

shortly be seen. The more challenging cases are thus the higher resolution waveforms,

with the 400 MHz waveform (0.375 m range resolution) being the most challenging.

The reasons higher resolution waveforms are more challenging are twofold. First, as

discussed in Chapter 2, higher bandwidths result in spikier sea clutter textures. This

phenomenon leads to more false alarms due to clutter because the background clutter-
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(a) File 325, HH, CA-CFAR detections

(b) File 325, VV, CA-CFAR detections

Figure 5·3: CA-CFAR detections produced independently in HH (detections indicated
by black markers) and VV (detections indicated by magenta markers) show the high
number of false alarms produced in a 50-pulse CPI from File 325 across both polar-
izations. Only one of the detections in each case is on the signature of the object of
interest, The New Englander.

105



plus-noise signal power sampled by a CFAR window is not uniformly increased. Second,

higher bandwidth waveforms resolve finer object structure because of their better range

resolution. Polarimetric signature variations across the extent of an object will thus

produce detections on that object that are not necessarily co-located in range across

polarizations. The consequences of requiring co-location across polarization in RD images

for higher bandwidths, therefore, are that detections on objects may be thrown out

because they are co-located in Doppler but are not co-located in range, while false alarms

on sea clutter may be retained because false alarms in one channel happen to be co-

located in both dimensions with some of the many false alarms in the other. Moreover,

a detection in one channel may be approximately co-located with numerous detections

in the other channel. In such cases, it is not clear how one should associate detections

across polarizations to declare them “co-located,” for several different associations are

possible.

The key to addressing these issues is to realize that the Doppler differential of sea

clutter, while not necessarily evident from one detection to another, is evident on the

average. With this in mind, we turn attention to the specifics of the PCL algorithm.

5.3 PCL

This section builds intuition for PCL by first examining the algorithm’s components as

applied to the simplest case in the Four Eyes Point de Chene Dataset. This section

culminates with the reader’s first exposure to the empirical false alarm and continuity of

detection metrics, which are means of quantifying PCL performance in 1-D.

5.3.1 Core algorithm

To simplify illustration of the core PCL algorithm, we focus on File 273, which features

the 2 µsec 4 MHz waveform. Because this is Four Eyes’ lowest resolution waveform, the

preliminary steps of PCL will be easiest to visualize. File 273 contains data collected
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(a) File 273, HH, 100 pulse RTI (b) File 273, VV, 100 pulse RTI

Figure 5·4: RTIs show 100 pulses of compressed data from File 273 in each of the HH
and VV channels.

on the buoy, which has a strong return relative to the background and is stationary in

range at ∼1.7 km. The buoy exhibits a Doppler signature over time that takes on values

in the approximate range of [−1, 1] m/sec as the buoy bobs atop the undulating ocean

surface. Few false alarms are produced for a waveform of this bandwidth and the buoy

is not obscured by a clutter background on an RD image because of its low Doppler and

range from the radar. Hence, it is not a challenging case, but it is an instructive one.

Let us first consider RTIs from one CPI of this file across HH and VV polarizations.

The CPI comprises 100 pulses, slow-time decimated by factor m = 7, yielding an ∼893

Hz PRF. The RTIs for HH and VV are shown in Figure 5·4. The buoy’s return is evident

throughout the RTIs and is indicated on the images. All other returns are due to sea

clutter.

Recalling from Chapter 1 that the SNR of a given object is dependent upon the

number of pulses integrated (or, equivalently, averaged) in the radar processing chain,

we compute the basic coherent average of each of these RTIs to yield 1-D range profiles
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(a) File 273, HH, 100 pulse coherent
average

(b) File 273, VV, 100 pulse coherent
average

Figure 5·5: Coherent averages of 100 pulses of the buoy scene in File 273. Coherent
averaging is a means of capturing the average Doppler response in each range bin.

of the radar scene. That is, we compute coherent averages

shh[n] =
1

P

∣∣∣∣∣
P∑
p=1

y
{p}
hh [n]

∣∣∣∣∣
svv[n] =

1

P

∣∣∣∣∣
P∑
p=1

y{p}vv [n]

∣∣∣∣∣
(5.2)

where p corresponds to the RTI pulse index, n corresponds to the range index, and

subscripts hh and vv indicate the channel whose RTI is being coherently averaged. The

signals shh and svv for the RTI data shown in Figure 5·4 are shown in Figure 5·5. The

reader will recall that, for our purposes, we somewhat arbitrarily fix P = 100 for all CPIs,

regardless of waveform. The rationale behind this choice is that it is well known that

the transient characteristics of sea clutter decorrelate on timescales less than 10 msec at

X-band (Chan, 1987; Antipov, 1998). Consequently, choosing P = 100—which comprises

∼16 msec at Four Eyes’ highest PRF—ensures averaging over timescales at least as long

as the usual decorrelation time of transient sea clutter characteristics.
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The effect of coherently averaging these P pulses is that we have averaged over the

Doppler response of the scatterers in each range bin—that is, we have captured the

average Doppler frequency of each channel in each bin. To see that this is true, consider

a scatterer at range R0 from the radar, moving at constant radial velocity v with respect

to the radar. The location of this scatterer as a function of slow-time in either channel

can be written as

y[p] = Ae
−j 4π

λ

(
R0−v

(
pT+

2Rp
c

))

= Ae
−j 4π

λ

(
R0−

2vRp
c

)
ej2π(

2v
λ )pT (5.3)

where the “stop-and-hop” approximation, which assumes target motion stops while the

radar pulse is in transit, has been used; A captures signal amplitude and attenuation; c =

the speed of light; p = the pulse number in the CPI pulse sequence; Rp = the scatterer’s

range to the radar on the pth pulse; T [sec] is the pulselength. The first exponential term

captures a phase shift relative to all terms of the slow-time sample sequence. The second

exponential term captures the Doppler frequency of the scatterer (Richards, 2014).

The reader will recall that the operation typically performed by the coherent radar’s

standard radar signal processing chain on a CPI of pulses is Doppler processing. Doppler

processing amounts to computing the discrete Fourier transform of samples across slow-

time in each range bin to determine the strength of each of the complex exponentials

measured across the CPI time—at each of the velocities measured by the radar’s slow-time

sampling frequency, the PRF—comprised by the second exponential term in Equation

5.3. By coherently averaging across slow-time instead of Doppler processing, we are still

improving our signal SNR by a factor of P , but rather than doing so by integrating the

strength of the individual Doppler velocities of all scatterers in each range bin, we are

capturing the average Doppler velocity in each range bin in each channel.

We return our attention to the coherent averages shh and svv with the understanding

that these signals capture the strength of the average Doppler response in each range bin.
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Consider now passing shh and svv through a 1-D CFAR detection process, yielding two sets

of detections that are functions of range-only in each channel. The detections produced

by CA-CFAR for the signals in Figure 5·5 are shown in Figure 5·6. The probability of

false alarm for the CA-CFAR results shown was again set to Pfa = 10−6. (The reader is

reminded that we are exploring the 4 MHz waveform as an instructive case; conclusions

should not be drawn regarding the number of detections that 1-D CFAR operations will

yield in the cases of finer resolution waveforms.) Two pairs of detections are co-located

in range across HH and VV polarizations, as indicated. One of these pairs comprises

detections on sea clutter while the other comprises detections on the buoy; the latter is

expected per the discussion in Section 5.2 regarding object signatures across polarizations.

Figure 5·6: The output of the 1-D CA-
CFAR operation on coherently averaged sig-
nals yields a set of detections for each channel.
In this CPI, two pairs of detections—one on
the buoy and one on sea clutter return—are
co-located in range.

Imagine now that the radar is an ob-

server, floating in the sea at the stationary

range equal to the waveform’s minimum

range. The locations of detections on the

moving sea surface will change from CPI

to CPI. However, because HH and VV cap-

ture different scattering mechanisms of the

sea surface with different mean Doppler

frequencies and the mean Doppler of HH is

more significant than the mean Doppler of

VV, we expect that even those sea clut-

ter detections that persist from CPI to

CPI will move across range at different

rates with respect to one another. In other

words, sea clutter detections that are co-

located on one CPI will not remain co-located across a series of CPIs. Such detections in
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HH will “wash over” the observer—or move away from the observer, depending on look

direction—faster than will the corresponding detections in VV.

Thus, we can set a minimum number of CPIs across which a pair of detections must

retain their co-location in range in order to be declared detections on objects rather

than detections on the sea. Recognizing also that the strength of an extended object’s

signature will vary somewhat in range as a function of polarization for higher bandwidth

measurements, we can opt to relax the requirement that detections must be precisely

co-located in range. This brings us to a definition of polarimetric co-location: a pair of

detections on the coherently averaged signals shh and svv are considered polarimetrically

co-located if they remain approximately co-located in range across a certain number of

CPIs. “Approximate co-location” in range is captured by algorithm input parameter δn,

which is the maximum permitted offset in range that will still allow a detection in HH to

be considered co-located with an associated detection in VV. The number of CPIs across

which a given detection pair must remain approximately co-located in range is captured

by another algorithm input parameter, the PCL CPI criterion, which we denote nCPI .

The easiest way to show the operation of PCL is with a video whose frames comprise

images like Figure 5·6 across a contiguous sequence of CPIs. Since video does not lend

itself well to a dissertation, we opt now to show a short sequence of these images using

the instructive case of File 273. For this sequence, no slow-time decimation was used in

formation of the 100-pulse CPIs; the PRF of the data underlying these images is thus

6250 Hz. At this PRF, the full sequence of CPIs shown in Figure 5·8 comprises just over

one-third of a second of data. The sequence of images is in order row-wise; thus, the

reader should read left-to-right and top-to-bottom, as is indicated by the CPI sequence

number appearing in the caption for each image. The ordinate units are relative power

in dB, normalized to the peak response over the entire sequence of CPIs. To generate

this sequence, PCL parameters were nCPI = 3 and δn = 0. As the sequence shows, for

the 4 MHz waveform, the resolution is low enough such that it suffices to allow no range
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(a) CPI 1 (b) CPI 2 (c) CPI 3

(d) CPI 4 (e) CPI 5 (f) CPI 6

(g) CPI 7 (h) CPI 8 (i) CPI 9

Figure 5·7: PCL sequence on File 273, part A: δn = 0 and nCPI = 3
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(a) CPI 10 (b) CPI 11 (c) CPI 12

(d) CPI 13 (e) CPI 14 (f) CPI 15

(g) CPI 16 (h) CPI 17 (i) CPI 18

Figure 5·8: PCL sequence on File 273, part B: δn = 0 and nCPI = 3
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offset between detection pairs. Moreover, so few detections are generated on the 4 MHz

waveform data that three CPIs sufficiently allows sea clutter detection pairs to separate

over time due to sea clutter’s mean Doppler differential.

On this image sequence, HH and VV detections are indicated as usual. Detection

pairs that have remained co-located in range for as long as nCPI CPIs are indicated as

PCL detections. We see from the sequence that on CPI 3, the buoy has been declared

a PCL detection; it retains this status throughout the remainder of the sequence. Note

also that a co-located detection pair on sea clutter appears in CPI 10, but because this

detection pair does not remain co-located over three CPIs (or even over two, in this case),

it never reaches PCL detection status. Moreover, approximately co-located pairs appear

in CPIs 2, 4, 6, 15, and 18. Because δn = 0, these pairs are never considered for PCL

detection candidacy across CPIs.

We are, for the moment, constraining ourselves to the case of low bandwidth wave-

forms, high-SNR stationary objects, and a high PRF. The reader will bear with this

example for a short time longer to allow introduction of metrics by which we can quan-

tify PCL performance in one dimension. We will thereafter expand our consideration to

more challenging scenarios before discussing integration of PCL into the standard radar

signal processing chain.

5.3.2 1-D performance metrics

To quantify PCL performance relative to standard single-polarization CFAR processing

in 1-D, we leverage the precomputed sparse data label matrices described in Section 4.5.

The reader will recall that each such matrix contains one row for each pulse in the recorded

file and one column for each range bin up to a distance of 4 km. Entries containing object

returns are labeled 1 in the matrix; entries containing sea clutter and/or noise are labeled

0. There is also a small do-not-use region surrounding each object’s returns over time

that guards against human labeling errors. This matrix is sampled to align with the
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pulses and range bins included in a given CPI. From there, it is straightforward to map

detections occurring in 1-D HH CFAR, 1-D VV CFAR, and PCL to detections either on

objects (hits) or on sea clutter and/or noise (false alarms) for a given CPI. Repeating

this process across a sequence of CPIs provides a means of comparing performance of

PCL to single-polarization detection.

Examining Figure 5·9 will orient the reader to the means by which we visually capture

object detections (hits) over a sequence of CPIs. The sole object of interest in the

processed range extent to 2 km, the buoy, is shown along the ordinate. For each CPI

during which at least one detection occurred on the object of interest in the 1-D CFAR

operation in HH, a blue patch is plotted along the bottom for that CPI; likewise for 1-D

CFAR in VV, shown along the middle in green; and PCL, shown at the top in red. If

an object is detected continuously across the CPI extent by any of the three detection

operations, then that operation’s hit line is unbroken. If an object goes undetected by

a given operation, then that operation’s hit line will be broken at each CPI for which a

detection was not made on the object. As shown, PCL has a transient period of at least

nCPI CPIs before a PCL detection can be declared on a co-located pair.

Empirical false alarm rate can also be quantified over a sequence of CPIs. As shown

in Figure 5·10a, the total number of detections ndet, including both hits on objects and

false alarms, is computed and plotted for each detection process. Again, the transient

period equal to nCPI for PCL is evident. The total number of detections for each process

is mapped to the false alarm rate pfa for each process shown in Figure 5·10b using the

straightforward relation

pfa =
nfa
ndets

(5.4)

where nfa is the number of detections whose data label is 0 out of the ndets total detections

made at that CPI. The thick dotted line shown atop the false alarm rate for each process

is the mean false alarm rate produced by that process across all CPIs. The reader should

note that the key takeaway of the false alarm rate plot is the relative reduction in empirical
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Figure 5·9: Hits by detection operation, File 273, 1st 100 CPIs: The con-
tinuous detection bar metric is shown in the plot, with the initial latency
to PCL detection indicated. An unbroken bar indicates that the detection
process maintained continuous detections on the object indicated along the
ordinate. A broken bar indicates a missed detection on the object, where the
length of the break coincides with the number of CPIs in which the object’s
detection was missed.

pfa from 1-D HH CFAR to PCL and from 1-D VV CFAR to PCL.2 Also, Figure 5·10a

is shown only to assist the reader in appreciation of the performance assessment process.

Henceforth, only false alarm rate results like the one in Figure 5·10b will be presented.

5.4 PCL results

To this point, a single file has been examined in order to explicate the basics of PCL

and to introduce the metrics by which performance is quantified in one dimension. This

section extends the problem space by exploring PCL’s performance on higher resolution

waveforms; lower PRFs; and dynamic extended objects. As these areas are explored,

necessary variations of PCL parameters are discussed, as are modifications to the core

PCL algorithm that are needed to handle more difficult cases.

2There is no meaning in terms of absolute pfa here; one can simply reduce the absolute probability
of false alarm by extending the ranges considered to ranges too distant to produce any detections.
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(a) Detections, File 273, 1st 100 CPIs: The total detections made by each
process, including both false alarms and object detections, is indicated. The
latency to PCL’s original detection on the object is also indicated.

(b) False alarm rate, File 273, 1st 100 CPIs: The total number of detections
shown in 5·10a above is used in conjunction with data labels to determine an
overall empirical 1-D false alarm rate for each process in each CPI. Overlaid
on each process with a thick dashed line is the mean empirical probability
of false alarm for each process, where again HH CFAR is in dark blue, VV
CFAR is in dark green, and PCL is in dark red.

Figure 5·10

5.4.1 PCL performance across bandwidths

For this section, focus remains on files containing persistent objects that were collected at

approximately the same time as File 273, but that feature higher bandwidth (finer range
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resolution) waveforms. As was the case with File 273, the radar beam was focused on the

buoy for these files, so the buoy is a very high-SNR object. Because SNR is proportional

to the time-bandwidth product of the waveform, the files now under consideration have

even higher SNR on the buoy. Hence, these cases are not challenging in the SNR-based

detection sense, but demonstrate that PCL filters out false alarms due to sea clutter

across a wide range of waveform bandwidths.

Note that each of the plots in this section shows the first 100 CPIs of 100 pulses of

data at 6250 Hz PRF. Consequently, each plot corresponds to the first 1.6 seconds of

each recorded file. The results discussed in each of the subsections below are summarized

in Table 5.1 at the end of this section.

File 272: 40 MHz bandwidth

For 40 MHz bandwidth data, the range resolution is 3.75 m. The data is oversampled in

range at twice critical Nyquist as discussed in Section 4.4.3. At this finer oversampled

resolution, pulse compression can result in a single range bin offset between the peak

response of a point target object across HH and VV polarizations. Hence, the first

adjustment made to PCL parameters is increasing δn to 1. The result is that any HH

and VV detections offset by a single range bin will now be considered potential PCL

detections in the next CPI. As shown in Figure 5·11a, the empirical mean pfa of PCL is

significantly lower than that of standard CFAR in either HH or VV.

The reader will observe, however, that Figure 5·11b shows that PCL does not maintain

continuous detection on the buoy. This is due to variation in the polarimetric signature

of objects, which becomes increasingly evident at finer range resolutions. For File 272,

as the buoy bobs atop the sea surface and its polarimetric signature varies, HH and VV

CFAR detections on the buoy are offset by two range bins in CPI 72, as shown in the

sequence of images in Figure 5·12. The images are zoomed in on the buoy’s signature

across polarizations. At left (CPI 71), the buoy’s detections are polarimetrically co-
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(a) Empirical pfa (b) Object detections

Figure 5·11: Performance comparison of standard single polarization CFAR with PCL,
δn = 1 and nCPI = 3, on File 272 (40 MHz bandwidth) shows that PCL significantly
outperforms single polarization detection in terms of false alarm rate. PCL drops the
buoy at CPI 72, and it takes nCPI = 3 CPIs to recover it.

(a) CPI 71 (b) CPI 72 (c) CPI 73

Figure 5·12: Variation in the buoy’s polarimetric signature results in a dropped PCL
detection when the buoy detection in HH is offset by two range bins from its VV detec-
tion. The PCL CPI count restarts once co-location resumes in CPI 73.

located in HH and VV despite the variation in its polarimetric signature across HH and

VV. In the center (CPI 72), the polarimetric signature has changed such that HH and

VV detections on the buoy’s signature are offset by two range bins; the buoy ceases to be
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considered a PCL detection. At right (CPI 73), the variation again becomes less severe;

HH and VV detections are offset by only one range bin, and the process of accumulating

contiguous detections across CPIs begins anew. The PCL bar in Figure 5·11b shows

the ramification of a dropped PCL detection: There is a latency of at least nCPI CPIs

before the object has had the requisite number of co-located detections occur and can

again classified as a PCL detection. This is because the core algorithm restarts its CPI

criterion count any time a PCL detection is dropped. A modification that addresses this

will be introduced in Section 5.4.3.

One means of resolving the polarimetric signature variation issue is to increase δn to

2, allowing the peaks of the object’s response to be offset by a full range resolution cell.

Because this means that any HH and VV detections offset by up to 2 range bins will

be considered for polarimetric co-location in subsequent CPIs, more candidate pairs will

pass PCL criteria. Consequently, the empirical false alarm rate will increase. Despite

the increase, the mean pfa for PCL is still significantly better than that of HH or VV

CFAR alone, as shown in Figure 5·13a. The trade-off is that the buoy now passes the

PCL criterion in all CPIs. As shown in Figure 5·13b, the PCL detection bar is unbroken.

However, PCL’s increased false alarm rate incurred by increasing δn can be reduced by

increasing nCPI . That is, by requiring that candidate detection pairs be co-located across

a greater number of CPIs, the additional spurious detection pairs considered because of a

higher δn can be filtered out by requiring that all pairs maintain polarimetric co-location

over a greater time. Figure 5·14a reflects the order of magnitude decrease in pfa that

results from changing nCPI from 3 to 5. It is not generally expected that increasing nCPI

will impact object detections. As Figure 5·14b shows, increasing nCPI does not impact

detections on the buoy. Nevertheless, there is a trade-off for increasing nCPI : greater

latency in both initial declaration of PCL detections and in picking up any PCL object

detections that are dropped due to polarimetric signature variation.
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(a) Empirical pfa (b) Object detections

Figure 5·13: Performance comparison of standard single polarization CFAR with PCL,
δn = 2 and nCPI = 3, on File 272 (40 MHz bandwidth) shows that PCL still significantly
outperforms single polarization detection despite the increased false alarm rate due to
incurred by increasing δn. PCL no longer drops the buoy.

(a) Empirical pfa (b) Object detections

Figure 5·14: Performance comparison of standard single polarization CFAR with PCL,
δn = 2 and nCPI = 5, on File 272 (40 MHz bandwidth) shows that the increased false
alarm rate incurred by increasing δn can be mitigated by increasing nCPI . Increasing
nCPI comes at the price of longer latency in declaration of PCL detections, as shown.
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The reader should now have an appreciation for the two basic PCL parameters and

their impacts on empirical false alarm rate and object detections. Bearing these things

in mind, attention turns now to even higher bandwidths.

File 271: 150 MHz bandwidth

On higher bandwidth files, the range resolution will of course be finer. The polarimetric

signature of an object will therefore usually exhibit at least as much variation as it did

with a lower bandwidth waveform. Hence, the last set of PCL parameters, δn = 2 and

nCPI = 5, are preserved as we transition to analysis of File 271, which features the 150

MHz waveform. Figures 5·15a and 5·15b demonstrate that PCL is still significantly more

effective than standard single-polarization CFAR detection, even at increasingly higher

bandwidths.

(a) Empirical pfa (b) Object detections

Figure 5·15: Performance comparison of standard single-polarization CFAR with PCL,
δn = 2 and nCPI = 5, on File 271 (150 MHz bandwidth) demonstrates the superiority
of PCL over single polarization CFAR at increasingly higher bandwidths.
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(a) Empirical pfa (b) Object detections

Figure 5·16: Performance comparison of standard single polarization CFAR with PCL,
δn = 2 and nCPI = 5, File 270 (400 MHz bandwidth) demonstrates the superiority of
PCL over single polarization CFAR at increasingly higher bandwidths.

File 270: 400 MHz bandwidth

The trend continues for the highest bandwidth data in the Point de Chene Dataset. The

comparison of PCL with standard-single polarization CFAR for File 270, which features

400 MHz bandwidth buoy data, is shown in Figures 5·16a and 5·16a. The PCL parameters

for the data in the figures have again been set to δn = 2 and nCPI = 5 in keeping with

preservation of PCL parameterization from the next lowest bandwidth. PCL remains

significantly more effective than standard CFAR in either HH or VV.

For higher bandwidth data, the empirical false alarm rate increases for PCL while it

holds relatively stable for single-polarization CFAR. The increase is due to the increase

in the raw number of detections produced by the HH and VV CFAR operations. That is,

while the raw number of false alarms nfa is increasing in HH and VV CFAR detection,

so too is ndets; hence pfa as computed in Equation 5.4 holds relatively steady. But

the number of possible PCL detection pairs increases faster than ndets increases in each

channel, so PCL’s nfa increases at a higher rate than ndets in HH and VV CFAR. Yet,
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(a) Empirical pfa (b) Object detections

Figure 5·17: Performance comparison of standard single polarization CFAR with PCL,
δn = 2 and nCPI = 8, on File 270 (400 MHz bandwidth) demonstrates the superiority
of PCL over single polarization CFAR at increasingly higher bandwidths.

Figure 5·16a shows that the PCL’s false alarm rate clearly does not increase fast enough

that PCL becomes inferior to single-polarization CFAR detection for bandwidths as high

as 400 MHz.

Moreover, as Figure 5·17a shows, PCL pfa can always be further reduced by increasing

nCPI as was done previously on File 272 data. The trade is again the longer latency

required in order to declare a PCL detection. The longer latency is captured in Figure

5·17b.

Overall PCL performance across bandwidths

PCL performance across bandwidths is quantified for the results discussed above in Table

5.1. The superiority of PCL in terms of empirical false alarm rate is evident; PCL im-

proves upon standard 1-D CFAR operations by at least 1 or 2 orders of magnitude. PCL

parameters are denoted in the table’s rightmost columns for the reader’s convenience.
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Mean pfa PCL Params

File β [MHz] HH CFAR VV CFAR PCL δn nCPI

273 4 .02017 .01328 0 0 3

272 40 .01980 .01437
.00073 1 3
.00114 2 3
.00027 2 5

271 150 .01754 .01503 .00056 2 5

270 400 .01801 .01737
.00112 2 5
.00055 2 8

Table 5.1: Empirical 1-D pfa comparison across detection operations shows the per-
formance improvement gained by using PCL rather than standard single-polarization
CFAR. Moreover, the comparison shows that PCL retains its efficacy across a wide
range of bandwidths.

5.4.2 PCL performance across PRFs

To this point, PCL results have demonstrated robustness across a range of bandwidths at

the highest PRF in the Point de Chene Dataset, 6250 Hz. This section demonstrates that

PCL is also robust across a range of PRFs. To show this, the same files considered in the

preceding subsection are reconsidered here, but the CPIs are now slow-time decimated

with factor m = 7, yielding a PRF of ∼893 Hz. Files 270-273 feature a sea state estimated

via the process described in Section 3.3.4 as Douglas sea state 4, so slow-time decimating

by m > 7 results in aliasing in the Doppler dimension. Hence, PRF∼893 Hz represents

the lowest bound on PRF.

Note that the CPI length is still fixed to 100 pulses. Decimating with m = 7 thus

yields a CPI whose length in time is approximately 112 msec. The full 10 seconds recorded

for each file comprise 89 such CPIs. The limit on the abscissa for all performance metric

plots shown in this section is thus 89, but each plot now shows performance over the full

length of the data.

In order to fairly assess PCL performance for this new lower PRF, we fix δn and

nCPI to the values set in the previous section, with two exceptions. First, we omit the

results on File 272 (40 MHz bandwidth) that were shown previously with δn = 1 and
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nCPI = 3 because it was already concluded in the previous section that increasing δn

to 2 was necessary in order to avoid dropping the buoy detection. Second, we include

additional results for File 273 (4 MHz bandwidth) to further demonstrate the reduction

in false alarm rate that is achieved by increasing nCPI .

The results for File 273 are shown in Figures 5·18 and 5·19. In both cases, δn = 0

as before. In Figure 5·18, nCPI = 3, again as before, while in Figure 5·19, nCPI = 5. In

both cases, PCL significantly outperforms single-polarization CFAR detection in HH and

VV, even at this lowest possible PRF. Further, increasing nCPI indeed reduces PCL’s

false alarm rate as shown.

Results for File 272 (40 MHz bandwidth) are shown in Figures 5·20 and 5·21. Results

for File 271 (150 MHz bandwidth) are shown in Figure 5·22. Finally, results for File

273 (4 MHz bandwidth) are shown in Figures 5·23 and 5·24. In all cases, PCL maintains

continuous detections on the buoy while achieving significantly lower empirical false alarm

rates than those of CFAR in HH or VV alone. Because these results demonstrate that

PCL retains its efficacy across all bandwidths at both PRF extremes, we conclude that

PCL is indeed robust to variations in PRF.

Overall PCL performance across PRFs

The overall performance of PCL across bandwidths for the ∼893 Hz PRF is shown in

Table 5.2. The PCL parameters used to generate the preceding results are again shown in

the rightmost columns for the reader’s convenience. As the table evidences, PCL actually

performs slightly better at lower PRF than at higher PRF for bandwidths above 4 MHz.

This is likely due to the fact that using 100 pulses in the coherent averaging step of PCL

amounts to averaging over 112 msec. While sea clutter’s transient characteristics usually

decorrelate in less than 10 msec at X-band (Chan, 1987; Antipov, 1998), aspects of sea

clutter that cohere on longer timescales are likely averaged out by fixing the CPI length

over lower PRFs.
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Mean pfa PCL Params

File β [MHz] HH CFAR VV CFAR PCL δn nCPI

273 4 .02654 .02189
.00387 0 3
.00116 0 5

272 40 .01541 .01143
.00028 2 3
.00002 2 5

271 150 .01775 .01418 .00046 2 5

270 400 .01354 .01476
.00106 2 5
.00057 2 8

Table 5.2: Empirical 1-D pfa comparison at ∼893 Hz PRF demonstrates that the
improvement of PCL over standard single-polarization CFAR is evident even at the
dataset’s PRF lower bound.

5.4.3 PCL performance across object types

Now that it has been established that PCL is robust across bandwidths and PRFs for

persistent, high-SNR objects, attention turns to the extended dynamic objects of oppor-

(a) Empirical pfa (b) Object detections

Figure 5·18: Performance comparison of standard single polarization CFAR with PCL,
δn = 0 and nCPI = 3, on File 273 (4 MHz bandwidth) decimated to ∼893 Hz PRF
demonstrates the superiority of PCL over single-polarization CFAR for low-bandwidth,
low-PRF data.
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(a) Empirical pfa (b) Object detections

Figure 5·19: Performance comparison of standard single polarization CFAR with PCL,
δn = 0 and nCPI = 5, on File 273 (4 MHz bandwidth) decimated to ∼893 Hz PRF
demonstrates that increasing nCPI further reduces PCL’s false alarm rate at the expense
of greater initial detection latency.

(a) Empirical pfa (b) Object detections

Figure 5·20: Performance comparison of standard single polarization CFAR with PCL,
δn = 2 and nCPI = 3, on File 272 (40 MHz bandwidth) decimated to ∼893 Hz PRF
demonstrates the superiority of PCL over single-polarization CFAR for moderate band-
width, low-PRF data.
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(a) Empirical pfa (b) Object detections

Figure 5·21: Performance comparison of standard single polarization CFAR with PCL,
δn = 2 and nCPI = 5, on File 272 (40 MHz bandwidth) decimated to ∼893 Hz PRF
demonstrates that increasing nCPI further reduces PCL’s false alarm rate at the expense
of greater initial detection latency.

(a) Empirical pfa (b) Object detections

Figure 5·22: Performance comparison of standard single polarization CFAR with PCL,
δn = 2 and nCPI = 5, on File 271 (150 MHz bandwidth) decimated to ∼893 Hz PRF
demonstrates the superiority of PCL over single-polarization CFAR for moderately high-
bandwidth, low-PRF data.
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(a) Empirical pfa (b) Object detections

Figure 5·23: Performance comparison of standard single polarization CFAR with PCL,
δn = 2 and nCPI = 5, on File 270 (400 MHz bandwidth) decimated to ∼893 Hz PRF
demonstrates the superiority of PCL over single-polarization CFAR for high bandwidth,
low-PRF data.

(a) Empirical pfa (b) Object detections

Figure 5·24: Performance comparison of standard single polarization CFAR with PCL,
δn = 2 and nCPI = 8, on File 270 (400 MHz bandwidth) decimated to ∼893 Hz PRF
demonstrates that increasing nCPI further reduces PCL’s false alarm rate at the expense
of greater initial detection latency.
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tunity in the Point de Chene Dataset. Because these objects are not stationary, their

ranges to the radar change as a function of time. Additionally, their view aspects and

polarimetric signatures exhibit substantial variations. PCL must be modified to accom-

modate these variations.

The question we must first address is how to make the notion of polarimetric co-

location meaningful for moving objects. To this point, new polarimetrically co-located

pairs have had to be in the same location across slow-time as a co-located pair in the

previous CPI in order for the two pairs to be associated from one CPI to the next. That

is, in order to increment nCPI for a co-located pair in a given range bin, a co-located pair

must have been in the same range bin on the previous CPI.

Figure 5·25: The approximate maximum
velocity at which sea clutter and object re-
turns may be coincident is indicated by the
dashed line.

To understand how PCL is adapted for

moving objects, first consider the RD im-

age shown in Figure 5·25, on which the

approximate maximum velocity of the sea

clutter response is indicated by the dashed

white line. This maximum Doppler veloc-

ity of sea clutter is determined by the sea

state. The sea state is in turn determined

predominantly by wind speed, as discussed

in Section 3.3.4. Thus, it is reasonable to

conclude that

vmax ' wmax(s) (5.5)

where vmax [m/sec] is the maximum sea clutter Doppler velocity, wmax is the maximum

wind speed [m/sec], and s is a unitless variable representing the Douglas sea state.

Once sea state is estimated for the data by one of the methods discussed in Section

3.3.4 and mapped to vmax, we can derive a third PCL parameter: maximum target
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displacement, denoted γmax. This unitless parameter is computed as

γmax =
tcpivmax
rbin

(5.6)

where tcpi [sec] is the CPI time and rbin [m] is the width of each range bin. The role

of γmax is to set the maximum number of range bins that a polarimetrically co-located

detection pair may be displaced from one CPI to the next.3 That is, nCPI for a given

polarimetrically co-located pair will be incremented from one CPI to the next provided

that another polarimetrically co-located pair is detected within γmax range bins of the

previous pair’s location.

The second necessary adaptation of PCL accommodates the polarimetric signature

variation of extended objects across HH and VV. In some sense, δn already captures

this: Increasing δn, as discussed in Section 5.4.1, allows for a greater offset between the

peaks of detected responses whilst still permitting them to be deemed polarimetrically

co-located. However, in certain CPIs, peak detections for moving extended objects can

be offset by a number of range bins that is large enough to render the requisite increase

in δn too significant. In other words, because increasing δn is accompanied by an increase

in empirical pfa, there is a point at which increasing δn cancels out a fair amount of the

reduction in empirical false alarm rate that PCL achieves. As previously discussed, this

false alarm increase can be mitigated by increasing nCPI in conjunction with the increase

in δn, but there is also a point at which the latency induced by increasing nCPI becomes

undesirable.

Hence, the second adaptation of PCL instead takes the form of a fourth parameter:

the propagation parameter, denoted nprop. The propagation parameter is the number of

CPIs over which a given PCL detection pair may retain PCL status without an associated

PCL detection occurring. For example, consider a PCL detection in CPI 12 located at

3Some objects, like birds, may be moving faster than sea clutter, but we are not concerned with
polarimetrically co-locating detections on such objects. Their returns will be in a noise-limited back-
ground as opposed to a clutter-limited one, and hence standard CFAR is sufficient for detection without
producing a significant number of false alarms in the vicinity of the object.
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range bin 200. If nprop = 3, then even if that detection has no associated polarimetrically

co-located pair in CPI 13, CPI 14, or CPI 15, if a PCL detection pair occurs within γmax

of range bin 200 on CPI 16, then that pair will automatically achieve PCL status. In

other words, the new pair will not need to start the count toward nCPI from scratch. It

will instead inherit the nCPI count from the co-located pair that was in CPI 12. Thus,

the polarimetric signature of an object is allowed to vary significantly enough that a

co-located pair may not be detected on that object for up to nprop CPIs.

Notice that there is a trade-off in permitting PCL detection propagation in this fash-

ion. Sea clutter false alarms in PCL can spawn other false alarms on sea clutter, provided

that the new false alarms occur within nprop + 1 CPIs and are within γmax range bins of

the earlier sea clutter false alarm. However, as will shortly be seen, PCL still significantly

outperforms standard single-polarization CFAR detection.

Focus in the remainder of this section is on three files—Files 267, 325, and 266—com-

prising the three most challenging bandwidths previously examined. Each of the files

features at least one dynamic extended target. The next subsections explore PCL results

for each of these cases, with results shown for both high and low PRFs as well as for

a variety of PCL parameters. In each case, γmax was computed based on an estimated

Douglas sea state of 4 and a range bin width determined by the downsampling process

discussed in Section 4.4.3. The final section includes a tabular summary of PCL com-

pared to standard single-polarization CFAR detection performance for all cases whose

results are shown below.

File 267: 40 MHz bandwidth, high PRF

File 267 features the 40 MHz waveform and a single object of interest, the white lobster

boat shown in Figure 3·10b, at∼850 m from Four Eyes and closing radially at∼6.6 m/sec.

Considering first the higher PRF case where slow-time decimation factor m = 1 and thus

the PRF is 6250 Hz, Figure 5·26 shows that the two PCL parameters used for PCL
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(a) Empirical pfa (b) Object detections

Figure 5·26: Performance comparison of standard single polarization CFAR with PCL,
δn = 2, nCPI = 5, and nprop = 0 on File 267 (40 MHz bandwidth) at 6250 Hz PRF
provides the baseline for performance without permitting propagation.

detections on persistent point objects are insufficient to produce continuous detections

on dynamic extended objects. Note the breaks in both the HH and VV CFAR detection

bars, which lead to missed PCL detections. Each time a PCL detection is missed, the

count toward nCPI starts over. Increasing δn from 2 to 3, as done in Figure 5·27, accounts

for some of the polarimetric signature variation of such objects; for the increased cost

of a higher pfa, there are fewer breaks in PCL detection, while the remaining breaks in

detection are shorter in duration.

Setting PCL parameter nprop to 1, as shown in Figure 5·28, is sufficient to address

the remaining detection breaks. That is, allowing for a missed detection in only one

CPI mitigates the PCL missed detections incurred because of the inability of HH CFAR

and VV CFAR to detect the object simultaneously in a given CPI. Consequently, PCL

not only outperforms HH and VV CFARs in terms of pfa, but it maintains continuous

detection on the object when both HH CFAR and VV CFAR fail to do so. Note that in

conjunction with increasing nprop to 1, we increased nCPI to 6 to mitigate the increase in
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(a) Empirical pfa (b) Object detections

Figure 5·27: Performance comparison of standard single polarization CFAR with PCL,
δn = 3, nCPI = 5, and nprop = 0 on File 267 (40 MHz bandwidth) at 6250 Hz PRF
demonstrates that allowing for a larger δn addresses part of the missed PCL detections
by allowing for greater polarimetric variation across object signatures in HH and VV.

(a) Empirical pfa (b) Object detections

Figure 5·28: Performance comparison of standard single polarization CFAR with PCL,
δn = 3, nCPI = 6, and nprop = 1 on File 267 (40 MHz bandwidth) at 6250 Hz PRF
shows that allowing a single CPI’s worth of propagation addresses the remainining PCL
missed detections at the cost of a higher pfa.
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(a) Empirical pfa (b) Object detections

Figure 5·29: Performance comparison of standard single polarization CFAR with PCL,
δn = 3, nCPI = 8, and nprop = 1 on File 267 (40 MHz bandwidth) at 6250 Hz PRF
shows that increasing nCPI reduces pfa at the cost of increased initial latency.

pfa that results from increasing nprop. Moreover, as was done previously on Files 270-273,

increasing nCPI even further to 8 reduces PCL’s pfa, as shown in Figure 5·29.

File 267: 40 MHz bandwidth, low PRF

Attention now turns to the lower bound PRF version of the same file, wherein slow-

time decimation factor m = 7 and the resulting PRF is ∼893 Hz. As shown in Figure

5·30, there is a lower false alarm rate in PCL at the reduced PRF—again, likely due

to the longer integration time over sea clutter’s transient characteristics. There are also

fewer breaks in detection in HH and VV CFAR processes, which leads to fewer breaks

in detection in PCL. The reader will note the second break in the PCL detection bar

despite the lack of a break at that location in either the HH or VV CFAR detection bars.

This is due to the object’s polarimetric signature variation in HH and VV. As shown in

Figure 5·31, increasing δn to 3—as was done in the high PRF case—mitigates this second

break in PCL’s detection bar.
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(a) Empirical pfa (b) Object detections

Figure 5·30: Performance comparison of standard single polarization CFAR with PCL,
δn = 2, nCPI = 5, and nprop = 0 on File 267 (40 MHz bandwidth) at ∼893 Hz PRF
provides the baseline for performance at low-PRF without permitting propagation.

(a) Empirical pfa (b) Object detections

Figure 5·31: Performance comparison of standard single polarization CFAR with PCL,
δn = 3, nCPI = 5, and nprop = 0 on File 267 (40 MHz bandwidth) at ∼893 Hz PRF
demonstrates that allowing for a larger δn addresses part of the missed PCL detections
by allowing for greater variation across polarimetric object signatures in HH and VV.
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(a) Empirical pfa (b) Object detections

Figure 5·32: Performance comparison of standard single polarization CFAR with PCL,
δn = 3, nCPI = 5, and nprop = 1 on File 267 (40 MHz bandwidth) at ∼893 Hz PRF
shows that propagating by one CPI does not address remaining PCL missed detections.

(a) Empirical pfa (b) Object detections

Figure 5·33: Performance comparison of standard single polarization CFAR with PCL,
δn = 3, nCPI = 5, and nprop = 2 on File 267 (40 MHz bandwidth) at ∼893 Hz PRF
shows that further increasing nprop addresses the remaining PCL missed detections at
the cost of a higher pfa.
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(a) Empirical pfa (b) Object detections

Figure 5·34: Performance comparison of standard single polarization CFAR with PCL,
δn = 3, nCPI = 8, and nprop = 2 on File 267 (40 MHz bandwidth) at ∼893 Hz PRF
shows that increasing nCPI reduces the false alarm rate incurred because of propagation.
In this case, pfa reduces to 0.

Shown in Figure 5·32 are the results achieved when nprop is increased to 1. While

the duration of PCL’s detection break drops by one CPI, the propagation increase is

insufficient to address the full break in PCL detection because the object is dropped by

VV CFAR in two CPIs. However, as Figure 5·33 shows, increasing nprop to 2 is sufficient

to address the VV CFAR gap, and PCL retains its detections on the object for the

duration of the file at the cost of a higher pfa due to propagation of sea clutter false

alarms. Also increasing nCPI , as done in Figure 5·34, reduces the increased false alarm

rate in exchange for longer initial detection latency. In this case, increasing nCPI to 8 is

sufficient to reduce PCL’s false alarm rate to 0.

The reader should now have an appreciation for how PCL is adapted to accommodate

moving objects. Moreover, the reader should appreciate the trades involved in varying

the control parameters used to make this accommodation. Bearing these trades in mind,
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we move to discussion of higher bandwidth files featuring dynamic extended objects of

interest.

File 325: 150 MHz bandwidth, high PRF

File 325 features the 150 MHz waveform and the “New Englander,” shown in Figure 3·10d,

at ∼1030 m from Four Eyes and closing radially at ∼2.75 m/sec. The New Englander

is the most challenging dynamic extended object observed in that it exhibited the most

significant polarimetric signature variation of any of the objects considered here when

observed at the aspect angles in this file. As before, we consider first the higher PRF

case where slow-time decimation factor m = 1 and thus the PRF is 6250 Hz.

Figure 5·35 shows the performance baseline achieved by setting δn = 2, nCPI = 5, and

allowing no propagation, as was done for File 271, which featured the same waveform and

the stationary buoy. Numerous detection breaks are evident due to both dropped VV

CFAR detections and strong polarimetric signature variation. Setting δn = 3 mitigates

(a) Empirical pfa (b) Object detections

Figure 5·35: Performance comparison of standard single polarization CFAR with PCL,
δn = 2, nCPI = 5, and nprop = 0 on File 325 (150 MHz bandwidth) provides the baseline
for high-PRF performance without permitting propagation.
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(a) Empirical pfa (b) Object detections

Figure 5·36: Performance comparison of standard single polarization CFAR with PCL,
δn = 3, nCPI = 5, and nprop = 0 on File 325 (150 MHz bandwidth) at 6250 Hz PRF
shows that increasing δn to 3 addresses many of the missed detections.

(a) Empirical pfa (b) Object detections

Figure 5·37: Performance comparison of standard single polarization CFAR with PCL,
δn = 3, nCPI = 5, and nprop = 1 on File 325 (150 MHz bandwidth) at 6250 Hz PRF
shows that increasing nprop to 1 mitigates only a portion of the remaining detection
breaks but incurs a substantial false alarm rate increase.
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(a) Empirical pfa (b) Object detections

Figure 5·38: Performance comparison of standard single polarization CFAR with PCL,
δn = 3, nCPI = 8, and nprop = 2 on File 325 (150 MHz bandwidth) at 6250 Hz PRF
shows that increasing nCPI to 8 and nprop to 2 addresses all but one dropped detection
while mitigating much of the false alarm rate increase incurred by longer propagation.

(a) Empirical pfa (b) Object detections

Figure 5·39: Performance comparison of standard single polarization CFAR with PCL,
δn = 3, nCPI = 10, and nprop = 3 on File 325 (150 MHz bandwidth) at 6250 Hz PRF
demonstrates that increasing nprop to 3 addresses the remaining detection gap.
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many of the detection breaks due to the latter, as shown in Figure 5·36. Figure 5·37

shows that increasing nprop to 1 fails to address the remaining detection breaks while the

accompanying increase in false alarm rate is significant. Increasing nprop to 2 while also

increasing nCPI to 8, as in Figure 5·38, addresses all but one of the remaining detection

breaks. However, it is necessary to increase nprop to 3 in order to yield an unbroken

PCL detection line, as shown in Figure 5·39, where nCPI has also been increased to 10

to mitigate the false alarm rate increase caused by longer propagation times. Again, the

trade-off in initial detection latency incurred as a result of a higher nCPI is evident at

the start of the PCL detection bar.

File 325: 150 MHz bandwidth, low PRF

It has now been shown that, even for dynamic extended objects with significant polarimet-

ric signature variation, PCL outperforms standard single-polarization CFAR detection

in the high-PRF case. Attention turns now to the low-PRF version of the same file,

(a) Empirical pfa (b) Object detections

Figure 5·40: Performance comparison of standard single polarization CFAR with PCL,
δn = 2, nCPI = 5, and nprop = 0 on File 325 (150 MHz bandwidth) at ∼893 Hz PRF
provides the baseline for low-PRF performance without permitting propagation.
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(a) Empirical pfa (b) Object detections

Figure 5·41: Performance comparison of standard single polarization CFAR with PCL,
δn = 3, nCPI = 5, and nprop = 0 on File 325 (150 MHz bandwidth) at ∼893 Hz PRF
shows that increasing δn to 3 does not mitigate any PCL detection breaks.

(a) Empirical pfa (b) Object detections

Figure 5·42: Performance comparison of standard single polarization CFAR with PCL,
δn = 3, nCPI = 8, and nprop = 1 on File 325 (150 MHz bandwidth) at ∼893 Hz PRF
shows that one CPI of propagation addresses all PCL detection breaks. Concurrently
increasing nCPI helps to mitigate the propagation-induced pfa increase.
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(a) Empirical pfa (b) Object detections

Figure 5·43: Performance comparison of standard single polarization CFAR with PCL,
δn = 3, nCPI = 10, and nprop = 1 on File 325 (150 MHz bandwidth) at ∼893 Hz
PRF shows that increasing nCPI to 10 further reduces the increase in pfa incurred by
propagation.

in which slow-time decimation factor m = 7 yields ∼893 Hz PRF. We again begin by

considering the baseline results achieved without allowing propagation.

Figure 5·40 shows this baseline performance. While there are no breaks in HH CFAR

detections on the object, missed detections in VV CFAR lead to missed detections in

PCL that are longer in duration than VV misses because nCPI = 5 and no propagation

is allowed. Increasing δn to 3 does not address the missed PCL detections, as shown in

Figure 5·41. However, as shown in Figure 5·42, allowing one CPI of propagation and

increasing nCPI to 8 mitigates all PCL detection breaks while reducing the false alarm

rate increase that propagation incurs. The increase in pfa is further reduced in Figure

5·43, where nCPI has been increased to 10.

So far, PCL retains its superiority over standard single-polarization CFAR detection

in 1-D for all dynamic extended targets considered across both 40 MHz and 150 MHz
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bandwidths at both ends of the dataset’s PRF spectrum. We turn attention now to the

highest bandwidth case.

File 266: 400 MHz bandwidth, high PRF

File 266 features the 400 MHz waveform and three objects of interest: the white lobster

boat at ∼1025 m from Four Eyes, closing radially at ∼6.6 m/sec; the “New Englander”

at ∼1440 m from Four Eyes, closing radially at ∼1 m/sec; and the buoy at ∼1711 m

from Four Eyes, stationary in range but exhibiting Doppler variation in [-1,1] m/sec. The

buoy response in File 267 is in the radar’s sidelobes; thus, its response is much lower SNR

than was true for previous buoy files. The reader will note that in all object detection

plots in this section, ordinate axis labels for the objects have been abbreviated for the

sake of legibility. Specifically, the white lobster boat is abbreviated as “W.L.B”; the New

Englander is abbreviated as “N.E.”; and the buoy is indicated as was done previously,

though the reader should remember that the buoy has very low SNR.

(a) Empirical pfa (b) Object detections

Figure 5·44: Performance comparison of standard single polarization CFAR with PCL,
δn = 2, nCPI = 5, and nprop = 0 on File 266 (400 MHz bandwidth) at 6250 Hz PRF
provides the baseline for high-PRF performance without permitting propagation.
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(a) Empirical pfa (b) Object detections

Figure 5·45: Performance comparison of standard single polarization CFAR with PCL,
δn = 3, nCPI = 5, and nprop = 0 on File 266 (400 MHz bandwidth) at 6250 Hz PRF
shows that increasing δn to 3 mitigates some of the PCL detection breaks on the W.L.B.
and the N.E.

Figure 5·44 provides the PCL performance baseline using the PCL parameters δn = 2

and nCPI = 5 without allowing propagation. As shown, there are several dropped PCL

detections on all objects. In the cases of the white lobster boat and the New Englander,

because HH and VV CFAR both maintain continuous object detections, all missed PCL

detections are due to polarimetric signature variation. Thus, many of the dropped PCL

detections on these objects are mitigated by increasing δn to 3, as shown in Figure 5·45,

where the accompanying increase in pfa is also evident. The remaining missed PCL

detections on the white lobster boat and the New Englander are mitigated by allowing

propagation for one CPI, as shown in Figure 5·46. In Figure 5·46, nCPI has also been

increased to 8. However, the increase in pfa incurred due to propagation is not reduced

to its earlier level unless nCPI is increased to 10, as shown in Figure 5·47.

These figures all show that while PCL significantly outperforms HH and VV CFAR

for the white lobster boat and the New Englander in terms of both pfa and continuity of
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(a) Empirical pfa (b) Object detections

Figure 5·46: Performance comparison of standard single polarization CFAR with PCL,
δn = 3, nCPI = 8, and nprop = 1 on File 266 (400 MHz bandwidth) at 6250 Hz PRF
shows that allowing one CPI of propagation mitigates the remaining detection breaks
on the extended objects, but pfa is elevated despite the accompanying increase in nCPI .

(a) Empirical pfa (b) Object detections

Figure 5·47: Performance comparison of standard single polarization CFAR with PCL,
δn = 3, nCPI = 10, and nprop = 1 on File 266 (400 MHz bandwidth) at 6250 Hz PRF
shows that increasing nCPI to 10 cancels out most of the pfa increase due to propagation.
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object detection, the same is not true for the very low-SNR buoy. There are modifications

that can be made to PCL to accommodate low-SNR objects, but modifications will not

be addressed in this dissertation.

File 266: 400 MHz bandwidth, low PRF

Finally, attention turns to the low-PRF version of File 266, in which slow-time decima-

tion factor m = 7 yields ∼893 Hz PRF. As shown in Figure 5·48, PCL has a strong

performance at low PRF on both the white lobster boat and the New Englander, achiev-

ing a substantial reduction in pfa. The two breaks in detection on the white lobster

boat are due to polarimetric signature variation. The variation is not accommodated by

increasing δn to 3, as shown in Figure 5·49. However, as shown in Figure 5·50, increasing

nprop to 1 is sufficient to mitigate PCL’s dropped detections; in this case, nCPI was con-

currently increased to 8 to mitigate the resultant increase in pfa, as was done in the high

PRF case. Figure 5·51 shows the reduction in pfa achieved by further increasing nCPI

(a) Empirical pfa (b) Object detections

Figure 5·48: Performance comparison of standard single polarization CFAR with PCL,
δn = 2, nCPI = 5, and nprop = 0 on File 266 (400 MHz bandwidth) at ∼893 Hz PRF
provides a performance baseline in the high-PRF case.
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(a) Empirical pfa (b) Object detections

Figure 5·49: Performance comparison of standard single polarization CFAR with PCL,
δn = 3, nCPI = 5, and nprop = 0 on File 266 (400 MHz bandwidth) at ∼893 Hz PRF
shows that increasing δn to 3 does not address the dropped PCL detections.

(a) Empirical pfa (b) Object detections

Figure 5·50: Performance comparison of standard single polarization CFAR with PCL,
δn = 3, nCPI = 8, and nprop = 1 on File 266 (400 MHz bandwidth) at ∼893 Hz PRF
demonstrates that allowing one CPI of propagation is sufficient to address dropped PCL
detections.
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(a) Empirical pfa (b) Object detections

Figure 5·51: Performance comparison of standard single polarization CFAR with PCL,
δn = 3, nCPI = 10, and nprop = 1 on File 266 (400 MHz bandwidth) at ∼893 Hz PRF
shows the reduction in pfa achieved by increasing nCPI to 10.

to 10. Again, HH and VV CFAR detection operations both outperform PCL in terms

of detection continuity on the very low-SNR buoy, as evidenced by all of the preceding

figures.

Overall PCL performance across object types

The overall performance in terms of pfa for PCL across bandwidths and PRFs for dynamic

extended objects is shown in Table 5.3. PCL parameters used to generate the results are

again shown in the rightmost columns for the reader’s convenience. As the table shows,

PCL again performs slightly better at low PRF than at high PRF. The improvement of

PCL over that of standard single-polarization CFAR is evident: PCL’s pfa is consistently

two orders of magnitude better than the pfa of HH and VV CFAR operations.
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Mean pfa PCL Params

File
β

[MHz]

PRF

[Hz]

HH

CFAR

VV

CFAR
PCL δn nCPI nprop

267 40

6250 .02186 .01691

.00044 2 5 0

.00054 3 5 0

.00104 3 6 1

.00056 3 8 1

∼893 .01263 .01040

.00013 2 5 0

.00014 3 5 0

.00038 3 5 1

.00115 3 5 2

.00000 3 8 2

325 150

6250 .01949 .01635

.00105 2 5 0

.00164 3 5 0

.00361 3 5 1

.00419 3 8 2

.00392 3 10 3

∼893 .01463 .01182

.00054 2 5 0

.00099 3 5 0

.00095 3 8 1

.00067 3 10 1

266 400

6250 .01467 .01433

.00095 2 5 0

.00147 3 5 0

.00194 3 8 1

.00156 3 10 1

∼893 .00956 .00963

.00065 2 5 0

.00089 3 5 0

.00069 3 8 1

.00040 3 10 1

Table 5.3: Empirical 1-D pfa comparison demonstrates the significant improvement
of PCL over standard single-polarization CFAR across object types, bandwidths, and
PRFs.

5.5 Integrating PCL into the standard radar signal processing

chain

The reader will recall that in addition to robustness across bandwidths, PRFs, and object

types, it was highly desirable that the algorithm also be feasible within the bounds of

standard radar signal processing chain structure. Thus, neither excessive computational

complexity nor restructuring of the processing chain is desirable. The question thus be-
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Figure 5·52: A diagram of the radar signal processing chain shows the key compu-
tational steps that lie between data digitization and passing detections to the track-
ing/parameter estimation process: namely, pulse compression, Doppler processing,
and 2-D CFAR detection.

comes how PCL may be made functional in terms of the standard radar signal processing

chain, which is reproduced for the reader’s convenience in Figure 5·52.

This is the point at which the notion of layering comes into play; the ultimate word

in PCL’s name derives from its method of incorporation into the standard processing

chain. The reader will recall that in executing PCL, no unusual computational processes

were required. Only coherent integration on already pulse-compressed data followed by

1-D CFAR detection operations in HH and VV channels are required for PCL to execute.

Hence, we can “layer” PCL into the standard radar signal processing chain as a parallel

process, as shown in Figure 5·53.

5.5.1 PCL detection filtering

The output of PCL in this structure and for each CPI is a set of range bins containing PCL

detections. PCL detection filtering simply filters out 2-D CFAR detections (produced by

the standard radar signal processing chain) whose ranges are not included in PCL range

bin set. To see how this works, consider a 2-D CFAR that produces detections in all
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Figure 5·53: A diagram of PCL as integrated as a parallel layer in the standard radar
signal processing chain shows that PCL requires neither unavailable forms of data nor
restructuring of the processing chain’s major computational blocks. Moreover, PCL
is implemented as a parallel process that executes while Doppler processing and 2-D
CFAR detection are performing computations. The only new block included serially
in the chain is PCL filtering of 2-D CFAR detections.

positions indicated with a 1 in the notional binary matrix

Dcfar =



0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 1 0 1 1 0 1 0 0 1
0 0 1 0 1 0 0 0 1 0
0 0 0 0 0 0 0 1 0 0
1 1 1 0 0 1 0 1 0 0


(5.7)

where the row corresponds to the Doppler bin and the column corresponds to the range

bin. A 1 in the matrix on the right-hand side of Equation 5.7 is analogous to 2-D CFAR

producing a black circle indicating a detection on the CFAR detection RD images shown

in Figure 5·53, though the size of the matrix here is significantly reduced to illustrate the

concept of PCL filtering. Now consider that PCL, running in parallel, has determined
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that only detections in range bins 5 and 9 are on objects, while the rest are on sea clutter.

Following PCL filtering, the binary matrix in Equation 5.7 will become

Dpcl =



0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0



(a) 2-D CA-CFAR detections, HH (b) 2-D CA-CFAR detections, VV

Figure 5·54: 2-D CA-CFAR detections on RD data for File 325, which contains The
New Englander at the location and Doppler indicated on the figures, are shown for HH
(detections indicated by black circles) and VV (eetections indicated by red circles) for
a single CPI. Hundreds of false alarms are evident in each case, along with a single
detection on the object of interest.

To illustrate this with actual radar data, consider the 2-D CFAR detections produced

for a single CPI of File 325 in the HH and VV channels shown in Figure 5·54. The

figures show that there are hundreds of false alarms resulting from the 2-D CA-CFAR

operations run on each channel’s data. In each case, the object of interest—The New

Englander, at the range and Doppler velocity indicated on the figures—is the source of

a single detection. Following PCL filtering, detections in all but four range bins are
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(a) 2-D CA-CFAR detections, HH (b) 2-D CA-CFAR detections, VV

Figure 5·55: 2-D PCL detections on RD data for File 325, which contains The New
Englander at the location and Doppler indicated on the figures, are shown for HH and
VV for a single CPI. PCL detections are those that remain following PCL filtering of
2-D CA-CFAR detections by range bin. The decrease in false alarm rate is evident, as
is retention of the detection on The New Englander.

removed by the filter, leaving the detections shown in Figure 5·55. Hundreds of false

alarms are eliminated by the PCL filter, while the detections on the object of interest are

preserved. As was the case with 1-D detection operations, PCL routinely achieves two

orders of magnitude decrease in false alarm rate compared to standard 2-D CFAR on a

single polarimetric channel.

5.5.2 Computational complexity

To integrate PCL in parallel without incurring additional computation time, the com-

putational complexity of PCL should be at least as small as the combined complexity of

the Doppler processing and 2-D CFAR operations with which PCL runs in parallel. We

consider first the complexity of Doppler processing.

As previously discussed, Doppler processing amounts to taking the fast Fourier trans-

form (FFT) at each range bin across slow-time. It is well-known that the computational

complexity of the FFT is O(m logm), where m is the length of the discrete signal be-
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ing transformed. Therefore, the computational complexity of Doppler processing is each

channel is O(np log p), where n is the number of range bins being processed and p is the

number of pulses in the CPI, because we must compute n FFTs each of length p.

In the time domain, CFAR is the convolution of the CFAR sampling window with the

fast-time by slow-time data matrix on which detection is being performed. Convolution is

usually most efficiently implemented as multiplication in the frequency domain. The 2-D

FFT of the CFAR sampling window can be computed and stored offline; hence, CFAR

window computation does not incur a time penalty. However, range-Doppler data must

also be transformed to the frequency domain on each CPI. It is well-known that for an

n x p data matrix, the 2-D FFT has computational complexity O(np log p+ pn log n) =

O(np(log p + log n)), because the FFT must be computed across each row and each

column. In our case, n and p are again the numbers of range bins and pulses, respectively,

in the CPI. The CFAR thresholding process then requires np comparisons. Moreover,

if the CFAR uses the peak-picking process described in Section 5.2, an additional 4np

comparisons are required. Hence the total 2-D CFAR detection process has computational

complexity O(np(log p+ log n+ 5)).

We thus have that the combined computational complexity of Doppler processing and

2-D CFAR detection is

O(np log p) +O(np(log p+ log n+ 5)) = O(np(2 log p+ log n+ 5))

= O(np(2 log p+ log n))

= O(np(log p+ log n))

(5.8)

If PCL has computational complexity less than or equal to the complexity shown in

Equation 5.8, it is computationally efficient in the sense that it operates as fast or faster

than the operations with which it runs in parallel. PCL requires two coherent averages

over n range bins. Averaging requires p complex additions at each of n range bins,

followed by one complex division. Across two channels, this process thus has complexity
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O(2(2np + 2)) = O(2np) = O(np). PCL also requires 1-D CFAR detection in each

channel. One-dimensional CFAR detection can be implemented as described for the 2-D

CFAR detection process, but because it is 1-D, the overall computational complexity of

both processes is O(2(n log n+ 3n)) = O(n(2 log n+ 6)) = O(n(log n+ 3)), where the 3n

is incurred because of comparison of each cell under test to the threshold as well as to

its two neighboring values in the peak-picking operation.

The finer details of PCL’s implementation are not given in this dissertation. However,

PCL is presently implemented such that each CPI also requires: n real-valued additions

and subtractions; O(2dhhδn) comparisons, where dhh is the number of CFAR detections

in HH; and O(2dpclγmax) comparisons, where dpcl is the number of co-located detection

pairs in the CPI. Consequently, PCL’s overall computational complexity is

O(np+ n(log n+ 3) + n+ 2dpclγmax + 2dhhδn) =

O(n(p+ log n+ 4) + dpclγmax + dhhδn).

For any given PCL instantiation, γmax and δn are both constants. Thus, the right-hand

side of the preceding equation simplifies to

O(n(p+ log n+ 4) + dpcl + dhh).

Because neither dpcl nor dhh can exceed n, we can write that

O(n(p+ log n+ 4) + dpcl + dhh) ≤

O(n(p+ log n+ 4) + n+ n) = O(n(p+ log n+ 6)). (5.9)

Comparing Equations 5.8 and 5.9, we see that when n > 64, the computational

complexity of PCL is lower than the computational complexity of Doppler processing

and 2-D CFAR detection unless p = 1. That is, PCL is more efficient than combined

Doppler processing and 2-D CFAR detection operations unless Doppler processing is not
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possible (because the CPI contains only one pulse) and thus 2-D CFAR detection in

the radar signal processing chain is reduced to 1-D CFAR detection. In this degenerate

case, the additional operations that PCL requires beyond its own 1-D CFAR processes

result in a sequence of operations that will slow down the radar’s overall processing time.

Therefore, provided each CPI consists of more than one pulse, the only computational

time penalty incurred by using PCL is the negligible amount of time required by the PCL

detection filter.

5.6 Summary

We began discussion of PCL by first reviewing the extensive literature that has empha-

sized the mean Doppler differential of sea clutter in HH and VV. This was followed by a

discussion of techniques designed to enhance detection performance in low grazing angle

sea clutter by jointly leveraging information in both the Doppler and polarization dimen-

sions. The fundamental principle behind PCL is that while sea clutter returns generally

exhibit different mean Doppler signatures in HH and VV, objects will not. PCL thus

executes a series of steps to determine which detection pairs produced by standard 1-D

CFAR processes in HH and VV retain polarimetric co-location on the average over time.

The algorithm deems such detection pairs potential object detections and filters out all

others.

Extensive results shown in this chapter demonstrate that PCL is robust across band-

widths, PRFs, and object types, regularly achieving a reduction of two orders of mag-

nitude in 1-D empirical false alarm rate over that of standard CFAR while maintaining

continuous detections on objects. PCL is also practical. It can be layered in parallel into

the standard radar signal processing chain without introducing undue computational

complexity or requiring restructuring of the chain. For CPIs comprising more than one

pulse and at least 64 range bins, PCL is more efficient than the standard radar processes

with which it runs in parallel.

159



As a final point, the keen reader will have already noted that while PCL was designed

using a fully polarimetric radar, only HH and VV measurements are actually required

for the algorithm to function. Thus, a compact polarimetric radar—that is, one that can

measure both HH and VV co-polarizations, regardless of its ability to accurately recover

cross-polarized signatures—can implement PCL. It is also likely that PCL will be suc-

cessful even without polarimetric calibration. Even though Four Eyes is polarimetrically

calibrated (using the method described in Section 4.3), having antennas that are H- and

V-polarized should provide measurements that are “good enough” for PCL, regardless of

any reasonable distortions induced on transmit and receive.
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Chapter 6

Summary and Future Work

The aim of this dissertation was to demonstrate that polarimetric dimensionality can be

an effective means of mitigating low grazing angle sea clutter. Implicit in this demonstra-

tion were two major contributions: 1) collection of a low grazing angle sea clutter dataset

using a fully polarimetric X-band radar assembled largely from COTS components and

2) development of a practical algorithm capable of leveraging polarimetric dimensionality

to mitigate low grazing angle sea clutter. Both of these aims were achieved. While this

dissertation made multiple contributions to research in the field, there are many paths

forward for additional work.

6.1 Summary

The Point de Chene Dataset collected in October 2015 comprises a large dataset fea-

turing multiple sea states and look directions with respect to the wind in a very low

grazing angle geometry. The dataset comprises bandwidths ranging from 4 to 400 MHz,

a high PRF that can be decimated in post-processing to form low-PRF data, and multiple

objects including both stationary and dynamic extended objects of opportunity. More-

over, the dataset features three polarimetric transmit schemes that included the usual

alternating polarimetric scattering matrix measurement scheme (ALT) as well as two si-

multaneous scattering matrix measurement schemes (SIM and SIM-PHS). While neither

scheme proved a successful means of simultaneous scattering matrix measurement, their

use led to a simultaneous measurement scheme that leverages Doppler division multi-

ple access waveforms. A derivation showing that this scheme, which we will abbreviate
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SIM-DDMA, is an effective means of simultaneous scattering matrix measurement was

presented in Section 3.2; this derivation is one of the contributions of this dissertation.

A signal processing suite for Four Eyes’ data was developed in MATLAB to ac-

commodate the various polarimetric transmit schemes and to transverse equalize and

polarimetrically calibrate Four Eyes’ data, as discussed in Chapter 4. The polarimetric

calibration scheme utilized is another contribution of this dissertation, as it leveraged

a single active target with equal co- and cross-polarized scattering matrix signatures to

achieve polarimetric calibration. The active target was a delay line with transmit and

receive antennas both oriented in X+ slant linear configuration with respect to Four Eyes’

dual-polarized (H and V) transmit and receive antennas. To the author’s knowledge,

this work represents the first time that polarimetric calibration has been achieved using

a single target in the field.

The third and most significant contribution of this dissertation is Polarimetric Co-

location Layering, an algorithm that mitigates the impact of low grazing angle sea clutter

on standard CFAR detection processes. Results demonstrated that PCL is robust across

bandwidths, PRFs, and object types, regularly achieving a reduction of two orders of

magnitude in 1-D empirical false alarm rate over that of standard CFAR while maintain-

ing continuous detections on objects. PCL is also practical. It can be layered in parallel

into the standard radar signal processing chain without introducing undue computational

complexity or requiring restructuring of the chain. The computational complexity of PCL

was derived, and proved to be lower than the computational complexity of the standard

radar processes with which PCL runs in parallel.

6.2 Future Work

The Point de Chene Dataset collection, processing suite, and data labeling mechanism

has opened the door for numerous avenues of study that may contribute to development

of cognitive radar in the future. Chief among these is exploration of machine learning
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techniques applied over polarimetric features to the problem of detection in low grazing

angle sea clutter. This work is presently in process.

In addition, while we have shown that SIM-DDMA will be an effective means of

simultaneously measuring scattering matrix components, an additional data collection

will be required in order to demonstrate SIM-DDMA in practice. Such data will enable

an understanding of what may be gained by instantaneous SM measurement (other than

the obvious, which is effective radiated power) in terms of scene understanding.

Finally, while we have demonstrated that PCL is effective for a maritime radar in a

littoral environment, it is not yet understood whether having a non-stationary radar will

impact PCL performance. Intuitively, we anticipate that PCL will retain its efficacy, but

cannot demonstrate this is so without additional data collections. Moreover, because the

sea clutter mean Doppler differential is more pronounced at low grazing angles, further

study using additional data is needed in order to understand the upper bound on grazing

angle at which PCL performance degrades to the level of standard CFAR performance.
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