
 

 

NAVAL 
POSTGRADUATE 

SCHOOL 
 

MONTEREY, CALIFORNIA 
 

THESIS 
 
 

Approved for public release. Distribution is unlimited. 

AN APPROACH FOR DETECTING MALICIOUS 
EMAILS USING RUNTIME MONITORING WITH 

HIDDEN DATA 
 

by 
 

Kristin R. Sellers 
 

September 2016 
 

Thesis Advisor:  Doron Drusinsky 
Second Reader: Man-Tak Shing 



THIS PAGE INTENTIONALLY LEFT BLANK 



 i

REPORT DOCUMENTATION PAGE Form Approved OMB  
No. 0704-0188 

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing 
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection 
of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including 
suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215 
Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork 
Reduction Project (0704-0188) Washington, DC 20503.
1. AGENCY USE ONLY 
(Leave blank) 

2. REPORT DATE   
September 2016 

3. REPORT TYPE AND DATES COVERED 
Master’s thesis 

4. TITLE AND SUBTITLE   
AN APPROACH FOR DETECTING MALICIOUS EMAILS USING 
RUNTIME MONITORING WITH HIDDEN DATA 

5. FUNDING NUMBERS 
HDTRA 139119 

6. AUTHOR(S) Kristin R. Sellers 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Naval Postgraduate School 
Monterey, CA  93943-5000 

8. PERFORMING 
ORGANIZATION REPORT 
NUMBER     

9. SPONSORING /MONITORING AGENCY NAME(S) AND 
ADDRESS(ES)  
Defense Threat Reduction Agency (DTRA), 8725 John J. Kingman Rd., Fort 
Belvoir, VA 22060 

10. SPONSORING / 
MONITORING AGENCY 
REPORT NUMBER 

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the 
official policy or position of the Department of Defense or the U.S. Government. IRB Protocol number ____N/A____. 

12a. DISTRIBUTION / AVAILABILITY STATEMENT   
Approved for public release. Distribution is unlimited. 

12b. DISTRIBUTION CODE 
 

13. ABSTRACT (maximum 200 words)  
Computer systems continue to be at risk of attack by malicious software that are attached to email. Email 

has been determined to be the cause of 80% of computer virus infections. Millions of dollars are lost yearly 
due to the damage brought by malicious emails. Popular approaches toward the defense against malicious 
emails are antivirus scanners and server-based filters. Further, state-of-the-art methods are being employed to 
enhance security against malicious programs. However, despite efforts being subjected toward the protection 
of personal information in emails, malicious programs continue to pose a significant threat. 

This thesis presents the application of a hybrid of Runtime Monitoring and Machine Learning for 
monitoring patterns of malicious emails. The system is designed in a way that it gathers malicious emails to 
determine whether they are suspicious, unknown, or benign. The application of runtime monitoring helps 
reduce the chance that suspicious emails are spread and lowers the likelihood that users will be threatened. 
Patterns were developed in Rules4business.com to facilitate the detection of threats and apply rules to the 
identified rules validation, while at the same time tracking them. The runtime monitoring application system 
entails the detection of the malicious emails by assessing the pattern in which they are sent and qualifying 
them into different states identified as suspicious, unknown, or benign. Through the application of the 
system, it would be possible to eliminate threats posed to private individuals and corporations emanating 
from the malicious emails.  

We performed deterministic runtime monitoring, built a Hidden Markov Model (HMM), and performed 
runtime monitoring with hidden data. It is the reasoning about the patterns of malicious emails with hidden 
artifacts that provides the potential of providing improved classification. 
14. SUBJECT TERMS  
malicious emails, runtime monitoring, statechart assertions, formal specifications, Hidden 
Markov Model 

15. NUMBER OF 
PAGES  

59 
16. PRICE CODE 

17. SECURITY 
CLASSIFICATION OF 
REPORT 

Unclassified 

18. SECURITY 
CLASSIFICATION OF THIS 
PAGE 

Unclassified 

19. SECURITY 
CLASSIFICATION 
OF ABSTRACT 

Unclassified 

20. LIMITATION 
OF ABSTRACT 
 

UU 
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)  

 Prescribed by ANSI Std. 239-18 



 ii 

THIS PAGE INTENTIONALLY LEFT BLANK 

  



 iii 

 
 

Approved for public release. Distribution is unlimited. 
 
 

AN APPROACH FOR DETECTING MALICIOUS EMAILS USING RUNTIME 
MONITORING WITH HIDDEN DATA 

 
 

Kristin R. Sellers 
Lieutenant, United States Navy   
B.S., Langston University, 2008 

 
 

Submitted in partial fulfillment of the 
requirements for the degree of 

 
 

MASTER OF SCIENCE IN COMPUTER SCIENCE 
 

from the 
 

NAVAL POSTGRADUATE SCHOOL 
September 2016 

 
 
 
 
 

Approved by:  Dr. Doron Drusinsky 
Thesis Advisor 

 
 
 

Dr. Man-Tak Shing 
Second Reader 

 
 
 

Dr. Peter Denning 
Chair, Department of Computer Science 
 



 iv 

THIS PAGE INTENTIONALLY LEFT BLANK 

  



 v 

ABSTRACT 

Computer systems continue to be at risk of attack by malicious software that are 

attached to email. Email has been determined to be the cause of 80% of computer virus 

infections. Millions of dollars are lost yearly due to the damage brought by malicious 

emails. Popular approaches toward the defense against malicious emails are antivirus 

scanners and server-based filters. Further, state-of-the-art methods are being employed to 

enhance security against malicious programs. However, despite efforts being subjected 

toward the protection of personal information in emails, malicious programs continue to 

pose a significant threat. 

This thesis presents the application of a hybrid of Runtime Monitoring and 

Machine Learning for monitoring patterns of malicious emails. The system is designed in 

a way that it gathers malicious emails to determine whether they are suspicious, 

unknown, or benign. The application of runtime monitoring helps reduce the chance that 

suspicious emails are spread and lowers the likelihood that users will be threatened. 

Patterns were developed in Rules4business.com to facilitate the detection of threats and 

apply rules to the identified rules validation, while at the same time tracking them. The 

runtime monitoring application system entails the detection of the malicious emails by 

assessing the pattern in which they are sent and qualifying them into different states 

identified as suspicious, unknown, or benign. Through the application of the system, it 

would be possible to eliminate threats posed to private individuals and corporations 

emanating from the malicious emails.  

We performed deterministic runtime monitoring, built a Hidden Markov  

Model (HMM), and performed runtime monitoring with hidden data. It is the reasoning 

about the patterns of malicious emails with hidden artifacts that provides the potential of 

providing improved classification.  



 vi 

THIS PAGE INTENTIONALLY LEFT BLANK 



 vii 

TABLE OF CONTENTS  

I. INTRODUCTION..................................................................................................1 
A. THE NEED FOR RUNTIME MONITORING OF MALICIOUS 

EMAILS ......................................................................................................2 
B. MOTIVATION FOR USING RUNTIME MONITORING OF 

HIDDEN DATA .........................................................................................3 
C. ORGANIZATION OF THESIS ...............................................................3 

II. MALICIOUS EMAILS .........................................................................................5 
A. DETECTING MALICIOUS EMAILS BY COLLECTING 

DATA THROUGH BULK EMAIL OR PHISHING .............................5 
B. DOD TARGETED MALICIOUS EMAILS ............................................6 

III. BACKGROUND ....................................................................................................9 
A. NATURAL LANGUAGE FORMAL SPECIFICATIONS AND 

CORRESPONDING ASSERTION FORMAL 
SPECIFICATIONS....................................................................................9 

B. RUNTIME MONITORING ....................................................................10 
C. FORMAL SPECIFICATION TRADEOFF CUBOID .........................12 
D. TRANSLATING NATURAL LANGUAGE TO FORMAL 

SPECIFICATION ....................................................................................13 
E. HIDDEN MARKOV MODELS..............................................................14 
F. THE HMM ALPHA METHOD .............................................................15 
G. COLLECTION OF DATA......................................................................15 
H. RULES4BUSINESS .................................................................................17 
I. THE STATEROVER TOOLSET ..........................................................20 

IV. OVERVIEW OF HYBRID RM: RM WITH HIDDEN DATA .......................21 
A. ARCHITECTURE ...................................................................................21 
B. ALGORITHM FOR RM WITH HIDDEN DATA ...............................22 
C. WORKFLOW ..........................................................................................23 
D. HMM LEARNING ..................................................................................24 

V. RESULTS: PROOF OF CONCEPT ..................................................................25 
A. DETERMINISTIC RULE DEVELOPMENT ......................................25 
B. STATEROVER RULE CREATION AND CODE 

GENERATION ........................................................................................27 
C. (AUTOMATICALLY) LEARNING THE HMM .................................29 
D. GENERATING CODE FOR THE HYBRID RM MONITOR ...........33 



 viii 

E. RUNTIME CSV’S ....................................................................................34 
F. HYBRID RUNTIME MONITORING EXAMPLE ..............................35 

VI. CONCLUSION AND FUTURE RESEARCH ..................................................37 

LIST OF REFERENCES ................................................................................................39 

INITIAL DISTRIBUTION LIST ...................................................................................41 

 

  



ix 

LIST OF FIGURES 

Figure 1. Fraudulent Email Example. Source: [5]...................................................... 5 

Figure 2. A Statechart-Assertion for Requirement Rule 9. Adapted from [8]. ........ 10 

Figure 3. Cost Space. Source: [15]. .......................................................................... 12 

Figure 4. Coverage Space. Source: [15]. .................................................................. 13 

Figure 5. Hidden Markov Model. Source [20]. ........................................................ 14 

Figure 6. Name of the Columns in R4B. Source: [8]. .............................................. 18 

Figure 7. Rules4business Rule 9 UML-Statechart. Source: [8]. .............................. 19 

Figure 8. Rules4business Rule 11 UML-Statechart. Source: [8]. ............................ 19 

Figure 9. Pattern Matching Architecture for Malicious Emails. Source: [21]. ........ 21 

Figure 10.  Workflow for Developing Pattern Matching with Hidden 
Information. Source: [21].......................................................................... 23 

Figure 11.  Capture of Rule 9 Flag Timeline. Source: [8]........................................... 25 

Figure 12.  Capture of Rule 11 Timeline Source: [8]. ................................................. 26 

Figure 13. Rule 9 Reaching Flag State. Source: [8]. .................................................. 26 

Figure 14.  Rule 11 Reaching Flag State. Source: [8]. ................................................ 27 

Figure 15. Rule 11 Statechart Assertion. Adapted from [8]. ...................................... 28 

Figure 16.  JUnit Sanity Test ....................................................................................... 28 

Listing 1. Python Code Quantization ........................................................................ 33 

Listing 2. Probability Values, One Per Cycle, of the Monitor Reaching the 
Flag State in Each Cycle (CSV File Row). ............................................... 35 



 x 

THIS PAGE INTENTIONALLY LEFT BLANK 



 xi 

LIST OF TABLES  

Table 1. Validation CSV File .................................................................................. 11 

Table 2. Snippet of Validation CSV File ................................................................ 16 

Table 3. Snippet of Learning Phase CSV File ........................................................ 16 

Table 4. Snippet of Runtime CSV File ................................................................... 16 

Table 5. Meaning of Columns................................................................................. 17 

Table 6. Instances of Rule 9 and Rule 11. Adapted from [8]. ................................ 18 

Table 8. Learning CSV File .................................................................................... 30 

Table 9. Learning Phase CSV File .......................................................................... 31 

Table 10. Matrix A of HMM State Transition Probabilities ..................................... 31 

Table 11. A Part of Matrix B, of Probability of Observation O in HMM 
States ......................................................................................................... 32 

Table 12. Runtime CSV File ..................................................................................... 34 

 



 xii 

THIS PAGE INTENTIONALLY LEFT BLANK 



 xiii 

LIST OF ACRONYMS AND ABBREVIATIONS 

CSV  Comma Separated Values 

DOD  Department of Defense 

HMM  Hidden Markov Model  

IP  Internet Protocol 

IRS  Internal Revenue Service 

LTL Linear-Time Temporal Logic 

MTL Metric Temporal Logic 

NL  Natural Language 

R4B Rules4Business (web service) 

REM  Runtime Execution Monitoring 

RM Runtime Monitoring  

RV  Runtime Verification 

SME Subject Matter Expert 

UML  Unified Modeling Language 

 



 xiv 

THIS PAGE INTENTIONALLY LEFT BLANK 

  



 xv 

ACKNOWLEDGMENTS 

I pass my gratitude to my academic advisors, Dr. Doron Drusinsky, my thesis 

advisor; Dr. Man-Tak Shing, second reader; Dr. Peter Denning, chair at the Department 

of Computer Science; and my writing coach, Michelle Pagnani. I am grateful for their 

constant support during the entire period of study. 

I further extend my gratitude to my family members and friends for the endless 

support during the whole period. 

This research was funded by a grant from the U.S. Defense Threat Reduction 

Agency (DTRA). 



 xvi 

THIS PAGE INTENTIONALLY LEFT BLANK 

 



 1 

I. INTRODUCTION 

™Email has some time for now been an internet executioner application used by 

people, organizations, and governments for imparting, sharing and dispersing data. 

However, a range of illegitimate emails is among the emails sent out. Certain fraudulent 

actors, for example, those connected with spam use email to send spontaneous mass ads 

to influence people to buy items that will create income. Other actors, for instance, those 

behind phishing use email as a means to obtain an individual’s biodata and to profile 

people who are susceptible to these types of activities. The analysis and monitoring of 

various types of malicious emails are focused on in the thesis. 

The thesis concentrates on analyzing temporal and sequencing patterns of 

malicious emails using both visible email data as well as learned hidden state 

information; it then used a hybrid run-time monitoring technique to qualify suspicious 

email sequences.  

Based off information in the emails, we developed three categories for the hidden 

states: suspicious, unknown, and benign. For example, if an individual is constantly 

receiving an email from a fraudulent actor, we would identify the pattern and classify the 

hidden state as suspicious. We will use these three states as inputs to the runtime 

monitoring algorithm described in the sequel. 

An assertion, or rule, is a mathematical rule used to predict behavior. In software 

engineering, “assertion is a statement that a predicate (Boolean-valued function, a true-

false expression) is expected to always be true” [1]. The formal specification assertion 

can monitor the sequencing and the temporal patterns of the malicious emails. By 

categorizing the emails using assertions, we are also able to compare the behavioral 

patterns to the correct behavior as specified by a formal specification [2].   

The approach taken in this thesis is as follows. First, we developed deterministic 

rules to detect threats based on temporal and sequencing patterns; by deterministic it is 

meant that the rule assumes all its inputs are visible (have a 0 or 1 probability of 

occurrence). We then validated those rules by applying them to the known threats. Next, 



 2 

we generated the Hidden Markov Model using a machine learning technique. Finally, in 

runtime, we used the validated rules to input data that contains both visible and hidden 

artifacts, for detection and tracking of incoming threats.  

Our input email-data is packaged as Microsoft Excel worksheets. Variations of 

these csv files were used to (i) perform deterministic runtime monitoring for rule 

validation, (ii) helped build deterministic rules for monitoring hidden and visible data, 

(iii) build and generate a Hidden Markov Model (HMM) in the learning phase, and 

finally (iv) to perform runtime monitoring with hidden data. 

A. THE NEED FOR RUNTIME MONITORING OF MALICIOUS EMAILS 

Often computer security threats encompass execution of unauthorized foreign 

code on the victim machine [3]. Malicious emails received with links or attachments 

serves as security threats are one example of unauthorized code. In Fiskiran and Lee’s 

paper [3], “Runtime Execution Monitoring (REM) to Detect and Prevent Malicious Code 

Execution,” they say “REM can detect program flow anomalies that occur during 

execution such as buffer overrun attacks commonly used by network and malicious 

emails.” They conclude by asserting the need for formal methods to effectively 

categorize malicious emails.  

This thesis uses a runtime monitoring program to present formal specifications as 

a way to detect malicious emails and to distinguish the hidden artifacts in an email. 

Runtime monitoring provides real-time situational awareness of conditions, a quality 

mentioned in the Fiskiran and Lee’s paper [3]. In addition, by using temporal assertions, 

we demonstrate the detection of sequential patterns of emails. Temporal assertions detect 

patterns of emails that users may not evident from a single email. Therefore, sequencing 

and temporal patterns of emails is potentially more informative than monitoring 

individual emails one by one, independently of each other. This topic is further addressed 

again in Chapter III. 

 



 3 

B. MOTIVATION FOR USING RUNTIME MONITORING OF HIDDEN 
DATA  

Every day users are receiving massive amount of emails. With intruders seeking 

information or hiding their intent by mimicking well-known websites, the user may ask 

themselves, “can I trust this email?” A straightforward answer is “analyze the content of 

the email” (i.e., analyze each email independently of others). This answer, however, fails 

to exploit sequencing and temporal information associated with a plurality of emails. 

Hence, an improved approach, demonstrated in this thesis, is to monitor sequences and 

temporal patterns of emails. Monitoring sequences of emails is potentially more 

informative than monitoring individual emails because it helps distinguish a hidden intent 

of the email sequence, an intent that is not evident from individual emails. 

For example, suppose we receive an email from an agent that works for the IRS 

and uses the same format as the IRS. The agent states that the organization has identified 

cases of fake agents sending out emails and asking for personal information, but in the 

content of this email, the agent also asks for contact information. Within the next two 

days, we receive an email from a different agent, but this individual is also using the 

same domain. This time, the agent requests date of birth. Receiving both emails within a 

week, the sequence if more suspicious than each individual email alone.  

An additional contribution of this thesis is that it demonstrates monitoring 

sequences of emails where some email properties are not contained in the email text (i.e., 

they are hidden properties). These properties are probabilistically learned and modeled as 

a Hidden Markov Model (HMM). Runtime monitoring of temporal and sequencing 

patterns of emails based on both visible and hidden artifacts has the potential to provide 

even better discovery of malicious email patterns.  

C. ORGANIZATION OF THESIS 

Chapter II addresses malicious emails that affect the DOD and the importance of 

detecting them. Chapter III provides a background on formal specification, natural 

language, collection of data, rules4business and using the StateRover toolset. Chapter IV 

explains how to use Hidden Markov Model in runtime monitoring to examine behavioral 



 4 

and temporal patterns over time from collected data to identify hidden data. Chapter V 

provides the results of validating, generating the HMM, and performing runtime 

monitoring. Chapter VI identifies shortcomings and recommendations of this thesis and a 

conclusion.  

  



 5 

II. MALICIOUS EMAILS 

A. DETECTING MALICIOUS EMAILS BY COLLECTING DATA 
THROUGH BULK EMAIL OR PHISHING 

Many email systems as well as commercial marketing packages allow bulk email 

that facilitates broad distribution of a message or documents to wide audiences quickly 

and at low cost. For example, a company can distribute a policy statement to all of its 

employees or issue a press release to hundreds of media outlets [4]. Since bulk emails are 

common, most users are unaware of fraudulent actors’ intent. The software and 

mechanisms to produce bulk mail are an easy and inexpensive way to obtain information, 

often private or sensitive (phishing), damage, disable, or modify the recipients’ computer 

[malware] and/or replicate creating a widening web of disruption (viruses) [5] (see Figure 

1).  

 

 

Figure 1. Fraudulent Email Example. Source: [5]. 



 6 

Collecting data from bulk email or phishing can help us to categorize the data. 

With the use of formal validation and verification techniques, we can further capture and 

target malicious email patterns. As a result, we can see who is targeted by the malicious 

email.  

Undesirable email, for example, spam is sent in mass to an extensive number of 

individuals on the Internet and is often unwanted, irrelevant, or inappropriate, but it is 

generally benign. Malicious emails can be similarly distributed, but have nefarious intent. 

They either prompt recipients to reveal information (account numbers, Social Security 

numbers, etc.), quietly steal information (e.g., contact lists), or impact computer 

operation. Often, the fraudulent emails take the guise of a government agency or bank 

and appear as if they are an official communication. They act, in fact, as a Trojan horse, 

not being what they appear.   

Receiving several of these emails within a week, we will likely perceive these 

emails to be suspicious. By categorizing them, an organization can more easily decide 

whether to accept or reject the email coming into their network environment. This 

especially true when some properties of incoming emails are not deterministically 

available in the email text; rather, they are probabilistically learned or hidden properties. 

In this case, reasoning about patterns of emails with hidden artifacts has the potential of 

providing improved or probabilistic classification. Using the Runtime Monitoring and 

Verification System, we can provide a way to track activity and meet the requirements to 

keep our systems safe from malicious emails. 

B. DOD TARGETED MALICIOUS EMAILS 

Malicious emails not only target individual Internet Service Provider users, but 

also financial institution and governmental agencies, for example, the Department of 

Defense (DOD). More refined attacks deploy emails that appear to be indistinguishable to 

official documents from trusted sources and are therefore a threat to the security of 

Government officials and government networks [6]. At its worst, national security is put 

at risk when agencies such as the DOD are targeted.  



 7 

Spear phishing, in particular, is a significant and widespread type of attack the 

DOD is battling. In 2006, the JTF-GNO released an article saying that its members have 

“observed tens of thousands of malicious emails targeting soldiers, sailors, airmen and 

Marines; U.S. government civilian workers; and DOD contractors, with the potential 

compromise of a significant number of computers across the DOD” [7]. Therefore, 

fraudulent actors are targeting government employees to gain more than just account or 

personal information; they are focused on collecting intelligence which may put our 

nation in peril. From the accounts that have been compromised, more infiltration of the 

DOD networks and classified information may occur. However, the true scope is 

unknown, and some government experts believe that some terrorists, subversives, and 

foreign countries have already gained a broad range of intelligences on their government 

targets and seeking additional information to target exactly what they need to next. DOD 

users are required to digitally sign their emails, but the DOD has not been able to protect 

personal emails. This thesis seeks to define a means of identifying email threats in a naval 

and DOD environment. 

  



 8 

THIS PAGE INTENTIONALLY LEFT BLANK  



 9 

III. BACKGROUND 

A. NATURAL LANGUAGE FORMAL SPECIFICATIONS AND 
CORRESPONDING ASSERTION FORMAL SPECIFICATIONS 

Consider the following generic natural language (NL) patterns, which are generic 

rule 9 and rule 11 of the rules4business website:  

 

Rule 9: Flag whenever some pair of consecutive E events is less than time T 
apart. 
 

 Rule 11: Flag whenever event P with eventual event Q within time after P. 

 

Figure 2 depicts a statechart-assertion formal specification for rule 9 as designed 

using the StateRover tool. 

A statechart-assertion is standard of UML and is designed to be reusable 

independent of a specific statechart. The statechart-assertion model, as described by 

Drusinsky in [2], includes machine representation, with corresponding flowcharting 

capabilities, defined hierarchy, a Java action language, and a Boolean flag (named bFlag, 

as show in Figure 2) that indicates if a particular pattern has been flagged. This flag’s 

initial setting is false and becomes a valid value when an assertion is detected. Drusinsky 

further explains that the statechart-pattern (shown in Figure 2) combines the flowchart 

and state-machine elements; the statechart flows through the boxes while executing their 

actions and conditions. 



 10 

 

Figure 2.  A Statechart-Assertion for Requirement Rule 9. Adapted 
from [8]. 

As shown in Figure 2, the statechart flows through the Initial flowchart box, 

executes its actions, and then checks whether the SendingIP transaction is unknown or 

not. Therefore, if rule 9 has been violated, the statechart-assertion sets the bSuccess flag 

to false, indicating that the assertion has failed (the Error state) [9]. 

Since rule 9 and 11 are generic it cannot be used verbatim. NL1 is an instance of 

generic rule 9. NL2 is an instance of generic rule 11. 

 
NL1. Flag whenever some pair of consecutive emails whose SendingIP is 
unknown is less than 30 minutes apart. 
 
NL2. Flag when there is a suspicious email within one hour of an email whose 
Sendinghost is 3ff7b9e2.cst.lightpath.net. 
 

B. RUNTIME MONITORING 

Runtime monitoring (RM) is a technique that allows the user to observe the 

behavior of the system while it is running. Also, it analyzes the system’s current behavior 

to determine if it satisfies or violates formal specifications. In [10], Drusinsky presents 

RM tools like TemporalRover and DBRover [10], along with the RM tools, from 

Havelund and Rosu’s paper [11], PaX is an RV tool used to verify Java programs, and 

RT-Mac [12] chose to use Propositional Linear-time Temporal as their specification 



 11 

language and all of the its extensions, and StateRover [13], whose specification language 

is deterministic/nondeterministic statechart assertions.  

An important aspect of RM is rule validation, where the rule is certified to meet 

the cognitive expectations of the rule developer. Given that the human cognitive process 

is often ambiguous and error prone, it is important to test that the formal specification 

captures the expected behavior to the letter. This is done by manual testing of the formal 

specification rule. In this thesis, we will use rules4business (described below) to develop 

formal specification rules; rule validation in rules4business is done by uploading a csv 

data file called a validation csv file), and checking that the rule indeed flagged when 

expected to flag, and did not flag when expected not to. Table 1 shows such a validation 

csv file. 

Table 1.   Validation CSV File 
Date SendingIP Sendinghost MessageIDhEmailAddreSubject AttachmenHiddenState
2014-09-08 13:5  63.247.185.223ff7b9e2.cst.lig<001b01cfcbinfonum@ Order is pr ET-349031S
2014-09-08 15:5  63.247.185.223ff7b9e2.cst.lig<000901cfcbhelp@startThe order #   ET-684355S
2014-09-08 16:3  63.247.185.223ff7b9e2.cst.lig<000901cfcbsecurity@aThe order #   ET-404189S
2014-09-08 17:2  63.247.185.223ff7b9e2.cst.lig<002d01cfcboperator@Order NR0 ET-915787S
2014-09-08 17:2  64.68.213.1 prisma-lan-64. <001501cfcbverificationYour order     ET-450485S
2014-09-08 20:2  201.130.71.17host064170.me<000901cfcbcustserviceYour ticket ET-423592S
2014-09-09 04:0  202.126.172.1unknown.telstr<002301cfcbcustservicePlease dow   ET-679436S
2014-09-09 13:1  63.247.185.223ff7b9e2.cst.lig<001201cfcccustomers Your order     ET-040674S
2014-09-09 13:5  63.247.185.223ff7b9e2.cst.lig<001001cfccreference@Order NR0 ET-608856S
2014-09-09 14:0  63.247.185.223ff7b9e2.cst.lig<001b01cfcbinfonum@ Order is pr ET-349031S
2014-09-09 15:3  63.124.7.24 US, Houston - M    <001b01cfccsupport@cOrder #007   ET-996348S
2014-09-09 18:2  209.156.34.19mail.strataprod<001e01cfccsupport@cYour order     ET-113361S
2015-09-23 20:0  49.231.227.9 host1.west-sanunknown daquanchuHELLO htttps://wwB
2015-09-27 06:5  157.11.65.180mta1234.mail. <144333710Optima..IROptima - IR  click on Sho      B
2015-10-19 13:5  157.69.181.17readytobeparto1445288174MetLife@rGet Life Ins       click on Sho      U
2015-10-19 14:0  45.57.234.181realwindowtes<144528893Cheap.auto$50/month      click on Sho      U
2015-10-19 15:3  14.5.18.204 mirtelecom-bd1445294143Reverse.MSeniors, eli     click on Sho      U
2015-10-20 19:2  45.57.200.150realwindowtes1445394502Sex.OffendChild Preda  click on Sho      U
2015-11-03 23:3   157.11.98.183imortexport67 <144659346Tara@imo My secret     click on Sho      U
2015-11-04 10:1  23.238.14.169specific.abidenbounce-213 sales@spe Hi Kristin click on lin S
2015-11-04 10:3  157.70.109.24onesuccessfull <144664204Credit.CardSearch Exc   click on Sho      B
2015-11-04 12:3  157.69.141.26internationnew1446640617Wall.Stree $1 per wee    click on Sho      B
2015-11-04 13:0  199.250.229.8respecttomajo 1446633402Lexington. Lexington   click on Sho      B
2015-11-27  14:2  42.171.11.34 HELO 07ouq.ss180631043.332wjbjco0edonna59 h       use this pa       S
 



 12 

C. FORMAL SPECIFICATION TRADEOFF CUBOID 

Traditionally, formal specifications are used for Validation and Verification 

(V&V). Verification means to ensure a product is built correctly. As Meseguer and 

Preese states [14], “Validation is a process aimed at demonstrating that a system meets 

the user’s true requirements--often called ‘building the right system’” [14]. To select a 

validation and verification technique that is appropriate for detecting temporal patterns of 

malicious emails, we used the visual tradeoff space from Drusinsky, Michael, and 

Shing’s paper in [15], which compares three predominant formal validation and 

verification techniques. Noted in Drusinsky, Michael, and Shing’s paper, the three 

techniques include theorem proving, model checking, and runtime monitoring.  

The “cube” is a three dimensional comparison known as the formal validation and 

verification tradeoff cube; it is illustrated in Figures 3 and 4 [15]. The tradeoff cubes 

depict the coverage and cost of each of the three techniques. The three dimensions of the 

coverage and cost cubes are (i) specification dimension—the technique’s capacity to 

specify complex properties, (ii) the efficiency of verification dimension, and (iii) the 

complexity of programs that can be verified.  

Ultimately, we chose RM as the best method of monitoring malicious emails 

because we are not concerned with the verification and program dimensions of the cube. 

When monitoring for patterns of malicious emails, there is no underlying program to 

verify.  

 

Figure 3. Cost Space. Source: [15]. 



 13 

 

Figure 4. Coverage Space. Source: [15]. 

 

D. TRANSLATING NATURAL LANGUAGE TO FORMAL 
SPECIFICATION 

In software engineering, formal specifications are scientifically based procedures 

that help with the implementation of systems and software. They are used to portray a 

system, to examine its conduct, and to help in its configuration by confirming key 

properties of interest. These specifications are formal in the sense that they help improve 

the clarity and precision of requirements. So, the question is asked, “why convert natural 

language to formal specifications?” 

Natural language (NL) is inherently ambiguous, rendering accurate specification 

problematic [16]. However, formal specifications allow us to convey the exact intent of 

the natural language requirement. Essentially, a formal specification is meant to pinpoint 

particular information that the user seeks to extract from the natural language. Drusinsky, 

Michael, and Shing’s paper [17] presents patterns for ensuring that formal specifications 

catch the intent of underlying natural language requirements [18].  

For example, we give a generalization of how natural language can be ambiguous. 

No restaurants will allow smoking inside. Here no can qualify the rest of the sentence, 

meaning thereby there is not a restaurant that will allow smoking inside. On the other 

hand, it can qualify only the phrase restaurant, meaning thereby there are restaurants 



 14 

designated as no restaurants, which, however, allow smoking inside. By using formal 

specification, it makes sure it is doing exactly what it means to do.  

E. HIDDEN MARKOV MODELS 

Markov Models are stochastic models that are used in randomly alerting systems. 

As described in Rabiner [19], HMM components are: (i) a set of states, (ii) observations 

made in those states, (iii) state transition probabilities, and (iv) initial state distribution. 

HMM is a statistical model where the set of states are not fully visible, while its state 

outputs are visible. Figure 5 illustrates an example of an HMM. Its state set X, set of 

observables y, state transitions matrix A, and the matrix B of emission probabilities are 

all depicted visually.  

 

Figure 5. Hidden Markov Model. Source [20]. 



 15 

F. THE HMM ALPHA METHOD 

The alpha method (also known as the Forward algorithm) is a well-known 

technique for calculating the probability an HMM reaches each one of its state at time i, 

(0≤ i≤ T), given an observation sequence of length T.  

Specially, αt+1(j) =[ ∑i=1...N αt (i)aij ] bj Ot+1),1 ≤ t ≤  T − 1,1 ≤ j ≤ N, with the 

initialization: α1(j) = πjbj(O1). Note that P(O1O2 ...Ot|λ) = ∑i=1...N αt(i). α′ is the normalized 

version of α: α′ t(j) = P(qt = si|O1O2 ...Otλ,).  

G. COLLECTION OF DATA 

We used data from Naval Postgraduate School Information Technology and 

Communications Services (ITACS) and bulk and phishing emails from a personal 

account. We read through the emails to gather specific information such as date and time, 

the sending IP and host address, whether the email had an attachment or link, and so on. 

This information was stored in a CSV file; to do so, we acted as the expert pulling 

information from the emails. In fact, we created three csv file versions (each being a 

table): a validation table, learning phase, and runtime table. Tables 1 through 3 show 

snippets of these csv file, respectively. In Table 4, we show the meaning of table 

columns.  

Note that the three csv file versions do not have the same schema: 

1. The validation csv file consists of visible data we were able to gather from 
the email and its hidden state column is populated (i.e., it is visible—not 
hidden). 

2. The learning phase csv file is used to learn the HMM; it also contains a 
hidden-state column, populated by a subject-matter expert.  

3. The runtime csv file includes all the real data except the hidden state 
column—the HMM is used in run-time instead of that column. In Chapter 
V, we will see the results of using these three csv files. 

 



 16 

Table 2.   Snippet of Validation CSV File 

 
 

Table 3.   Snippet of Learning Phase CSV File 

Initialstate Sendinghost HiddenState SendingIP
Y 3ff7b9e2.cst.lightpath.net S 63.247.185.226

3ff7b9e2.cst.lightpath.net S 63.247.185.226
3ff7b9e2.cst.lightpath.net S 63.247.185.226
3ff7b9e2.cst.lightpath.net S 63.247.185.226
prisma-lan-64.68.213.1.bordercomm.com U 64.68.213.1
host064170.metrored.net.mx U 201.130.71.170
unknown.telstraglobal.net U 202.126.172.110
3ff7b9e2.cst.lightpath.net S 63.247.185.226
3ff7b9e2.cst.lightpath.net S 63.247.185.226

 
 

Table 4.   Snippet of Runtime CSV File 

Date Sendinghost SendingIP
2014-09-08 13:59 UTC 3ff7b9e2.cst.lightpath.net 63.247.185.226
2014-09-08 15:59 UTC 3ff7b9e2.cst.lightpath.net 63.247.185.226
2014-09-08 16:35 UTC 3ff7b9e2.cst.lightpath.net 63.247.185.226
2014-09-08 17:22 UTC 3ff7b9e2.cst.lightpath.net 63.247.185.226
2014-09-08 17:29 UTC prisma-lan-64.68.213.1.bordercom64.68.213.1
2014-09-08 20:21 UTC host064170.metrored.net.mx 201.130.71.170
2014-09-09 04:07 UTC unknown.telstraglobal.net 202.126.172.110
2014-09-09 13:16 UTC 3ff7b9e2.cst.lightpath.net 63.247.185.226
2014-09-09 13:52 UTC 3ff7b9e2.cst.lightpath.net 63.247.185.226  

 



 17 

Table 5.   Meaning of Columns 

Columns Meaning 

Date/time The date and time when the email was received 

SendingIP The sender’s IP address, where the email is coming from 

Sendinghost Remote domain that send emails to your server 

MessageID Unique ID for Internet messages 

EmailAddress Who the email is coming from 

Subject A title that alerts to read or delete 

Attachment A file, link, malware, etc., that sent along with the email 

 

H. RULES4BUSINESS 

Rules4Business (R4B) is a website that allows users to create rules based on 

events and timing patterns. The rules are a way of analyzing and verifying the behavior of 

the patterns in the csv file. The user can use R4B to choose, customize statechart 

assertions, and edit instances of the generic rule. In R4B, users have two interfaces for 

customizing and validating assertions. First, users select a rule according the NL 

specifications. On the second page of R4B, users upload the validation csv file, explained 

in Section G, with the required columns to be able to validate assertions. Figure 6 shows 

an example of how to specify the column indexes before uploading the csv file. We 

specify the column indexes from the columns in our csv file that we want R4B to 

validate. 



 18 

 

Figure 6. Name of the Columns in R4B. Source: [8]. 

In this thesis, we chose to customize two generic R4B rules: rule 9 and rule 11; 

their instances are shown in Table 6. Figures 7 and 8 show the corresponding UML-

statecharts for each rule. Customization is done by specifying specific attributes for the 

generic attributes within the generic rules. The resulting instances are shown in Table 6. 
 

Table 6.   Instances of Rule 9 and Rule 11. Adapted from [8]. 

Rule 9 

Generic 
Pattern 

Flag whenever some pair of consecutive E events is less 
than time T apart 

Custom 
properties 
(Events and 
Limits) 

E=HiddenState===“U,” Time bounds: T=30, Time units: 
minutes 

Description Flag whenever some pair of consecutive unknown 
SendingIP are less than 30 minutes apart. 

Rule 11 

Generic 
Pattern Flag whenever event P with eventual event Q within 

time T after P. 
Custom 
properties 
(Events and 
Limits) 

P= Sendinghost.indexOf(“3ff7b9e2.cst.lightpath.net”)>=0, 
Q=HiddenState===“S,” Time bounds: T=1, Time units: 
hours 

Description Flag when there is a suspicious email within one hour of an 
email from 3ff7b9e2.cst.lightpath.net 

 



 19 

 

Figure 7. Rules4business Rule 9 UML-Statechart. Source: [8]. 

 

Figure 8.  Rules4business Rule 11 UML-Statechart. Source: [8]. 

In this thesis, Rules4business is used for the specification and validation of 

natural language and formal specification rules. It checks an uploaded data (csv format) 

file against the rule instance (i.e., the pattern), thereby performing runtime monitoring 

(RM) using the formal specification statechart assertion. The output from this operation 

shows, visually, where the rule has flagged or not flagged. Results will be shown in 

Chapter V. Note that the rules we developed using rules4business are used in the results 

chapter, by applying them to data that is partially hidden. 



 20 

I. THE STATEROVER TOOLSET 

In this research, the StateRover is used as part of the code generation process. The 

code generation process is implemented by the dtracg tool (see Chapter V.B), which 

relies on code generated from the StateRover. There is no other reason for using the 

StateRover in this research, other than this purely technical reason; therefore, 

uninterested readers can jump to Chapter V.B. 

According to Drusinsky [9], the StateRover used in this research “extends the 

statechart diagrammatic notation with Java as an action language, resulting in a Turing-

equivalent notation.” Before using the StateRover code generator, we perform validation 

testing to ensure that assertion drawn in the StateRover is the behaviorally equivalent to 

the rule taken from rules4business.  



 21 

IV. OVERVIEW OF HYBRID RM: RM WITH HIDDEN DATA 

A. ARCHITECTURE 

In Chapter III, we overviewed deterministic RM. In this chapter we introduce a 

recent architecture that enables RM of data streams that contain hidden artifacts, using 

HMM’s in the loop [21]. This architecture is depicted in Figure 9. 

 

 

Figure 9. Pattern Matching Architecture for Malicious Emails. 
Source: [21]. 

The manner in which the HMM is used as part of the RM system is as follows. In 

runtime, transaction data (being email data, in our case, as described in section V) is fed 

into the HMM, which executes an iterative probability estimation algorithm [21]. Using 

the Alpha-method described in Chapter III.E, the HMM outputs the stream of pairs 

<HMM-state, associated state visitation probability>. This stream is used as an input to 

the rule’s implementation code, code that implements a special weighted RM algorithm, 

described below.  



 22 

B. ALGORITHM FOR RM WITH HIDDEN DATA 

RM monitor of Figure 9 performs RM of a data stream that contains both visible 

and hidden data. The outline of the algorithm is as follows [2]. The monitor’s input is a 

sequence of pairs: {K1,P1},{K2,P2}, {K3,P3}…{KN,PN}. Ki is an event that is visible (e.g., 

Sendinghost and SendingIP) or hidden (e.g., HiddenState column). Pi is the probability 

Ki. In general, Ki is given in UML format: eventi [conditioni], either could be visible or 

hidden.  

The runtime behavior of the monitor is as follows. Each assertion contains a 

collection of one or more instances called configurations. Collection is labeled as Col and 

the configuration as Conf. Each Conf has a present state PS(Conf) and probability value 

called P(Conf) a probability measure indicating the weight of that Conf within Col. Upon 

startup Col contains a single Conf whose probability is 1. In cycle i, if Pi=1, the Conf acts 

like a traditional state machine, causing PS(Conf) to change. If Pi≠1, i.e., eventi is hidden, 

then the Conf is substituted by two configurations called Conf1 and Conf2. Probabilities 

and states of Conf1 and Conf2 as follows: 

• If eventi is hidden,  

P(Conf1)=P(Conf)*Pi and P(Conf2)=1-P(Conf1) 

PS(Conf1) is the next state decided by transition, if event fired. If not then, 
PS(Conf) assigned to PS(Conf2). 

• If conditioni is hidden,  

P(conditioni) is calculated according to the constitutive components. For 
instance, if conditioni is HiddenState=M || HiddenState=S, 
P(conditioni)=P(HiddenState=M) + P(HiddenState=S). And then 
P(Conf1)=P(Conf)*P(conditioni) and P(Conf2)=1-P(Conf1) 

PS(Conf1) and PS(Conf2) are calculated as conditioni is true and false.   

Configurations that have same present state are joined in a one configuration as 

Confcombined by summing all P’(Conf).  

The statechart assertions proclaims the probability of violation of its 

corresponding requirements also known as probability of failure (POF) [2] by computing 

the weight of all Conf’s that are in the Error state (also known as the Flag state). 



 23 

C. WORKFLOW 

In this thesis, we show that when monitoring for patterns of malicious emails, 

there is no underlying program to verify the system correctness. We are using a powerful 

formal specification that allow RM to detect these malicious emails. We are going to 

combine HMM consisting of hidden data and RM of statechart assertions. HMM is used 

for deducting categorized hidden data such as S, U, or B emails by using observable data 

and sequences. Figure 10 depicts a workflow chart using RM with hidden data.  

 

 

Figure 10.  Workflow for Developing Pattern Matching with Hidden 
Information. Source: [21]. 

 
 
 

 



 24 

D. HMM LEARNING  

In the learning phase, an HMM is created from learning data, being a learning 

phase csv file in our case.  

In general, the learning phase csv file contains visible columns and one special 

column, the HiddenState column, that is manually populated by a subject-matter  

expert (SME). For simplicity, let’s assume there is a single visible column k. Let k, s, and 

N be the visible output column, hidden state column, and the total number of rows, 

respectively; let ki and si are the values of the visible output and hidden state columns in 

row i. In Drusinsky’s paper [2], an HMM is derived from these artifacts as follows: 

• The HMM state transition probability is calculated by dividing the number 
of specific transitions to N-1 (total number of transitions in the csv file). 
For example, suppose there are 15 transitions from the suspicious (S) state 
to unknown (U) state and N is 31, then the probability of the S->U 
transition is 15/30=0.5 

• For every hidden state S and every observable O, the probability of O 
being emitted in S is the number of rows i where ki =O and si =S. 

• An initial-state probability is assigned to every hidden state S; it is denoted 
π(S).  π(S) is calculated number of rows of the spreadsheet that contain S 
and is also marked as an initial state, divided by the number of rows that 
are marked as an initial state row.  

  



 25 

V. RESULTS: PROOF OF CONCEPT 

In this chapter, we demonstrate the process of monitoring and validating the 

sequence and temporal behavior of detecting malicious email. We also demonstrate a 

hybrid system where RM combined with an HMM is able to monitor both visible and 

hidden data.  

A. DETERMINISTIC RULE DEVELOPMENT 

In Chapter III.D, we discussed how to create and validate the rules using R4B 

website. In our validation phase, we validated rules 9 and 11. Rule 9 determines whether 

the emails are less than 30 minutes apart if the sending IP is an unknown (U) threat. As 

discussed in Chapter III.D, rule 11 determines whether a suspicious email within one 

hour is from a specific Sending host address. In Figures 11 and 12, we show whether the 

results were what we expected. Figures 13 and 14 show each rule reaching the Flag state. 

 

Figure 11.  Capture of Rule 9 Flag Timeline. Source: [8]. 

 



 26 

 

Figure 12.  Capture of Rule 11 Timeline Source: [8]. 

 

 

Figure 13. Rule 9 Reaching Flag State. Source: [8]. 

 



 27 

 

Figure 14.  Rule 11 Reaching Flag State. Source: [8]. 

 

Rule 9 flagged an unknown email within 30 minutes, and rule 11 flagged a 

suspicious email within one hour from the specific Sending host. Therefore, we validated 

both rules and found that both flagged what we expected them to or not. 

B. STATEROVER RULE CREATION AND CODE GENERATION 

In Chapter III, Section I, we discussed the purpose of the StateRover, which we 

used in our process to save development time and money when creating the DTRA 

toolset.   

In this section, we show the conversion of R4B diagrams to StateRover diagrams. 

A snapshot of the statechart assertion of rule 11 is shown in Figure 15. The statechart 

assertion starts with the initial state, and then the events transition between states. The 

final state is known as the flag state, which lets us know whether the assertion succeeds 

or fails. Whenever the StateRover reaches the final state, it yields a false value to 

bSuccess because the assertion sees a flagged event. 



 28 

 

Figure 15. Rule 11 Statechart Assertion. Adapted from [8]. 

The StateRover implements two steps process to verify the rules. First, 

StateRover generates Java code based on our statechart diagrams. Second, we run a JUnit 

test to verify that the StateRover has the same behavior patterns for each statechart 

assertion as in R4B. Figure 16 shows a successfully run JUnit sanity test. 

 

 

Figure 16.  JUnit Sanity Test 



 29 

C. (AUTOMATICALLY) LEARNING THE HMM 

The first step in this learning phase is to define the HMM’s state set. Using the 

information from our email data set, we determined that the HMM should contain the 

following three states, reflecting three types of emails:  

• Suspicious (S)—indicates that the subject-matter expert (SME) witnessed 
some suspicious behavior associated with some of the other datum in this 
row, such as a suspicious geographic location of an IP.   

• Unknown (U)—indicates that the SME could not determine whether the 
email is suspicious of not. 

• Benign (B). 

Some of the email artifacts used to make the abovementioned state determination 

were: email date and time, source IP address, internal links, and attachments. Figure 19 

shows a snippet of our learning phase csv file. Two annotation examples are: 

• Row 12 is considered to be suspicious because looking at the email pattern 
we see that the sender has sent out from the same sending host or based on 
the geographical location of the sending IP. 

• Row 15 is considered to be benign because based off of the geographical 
location of the sending IP, it was a relatively safe zone.  

HMM learning was performed based on the technique described in Chapter IV.D, 

using the corresponding dtrahmm tool [22]. The learning phase uses a special version of 

csv data file called a learning table; Table 8 depicts a snippet of the learning table used in 

this thesis. 



 30 

Table 8.   Learning CSV File 
Initialstate Sendinghost HiddenStatSendingIP
Y 3ff7b9e2.cst.lightpath.nS 63.247.185.226

3ff7b9e2.cst.lightpath.nS 63.247.185.226
3ff7b9e2.cst.lightpath.nS 63.247.185.226
3ff7b9e2.cst.lightpath.nS 63.247.185.226
prisma-lan-64.68.213.1U 64.68.213.1
host064170.metrored.nU 201.130.71.170
unknown.telstraglobal. U 202.126.172.110
3ff7b9e2.cst.lightpath.nS 63.247.185.226
3ff7b9e2.cst.lightpath.nS 63.247.185.226
3ff7b9e2.cst.lightpath.nS 63.247.185.226
US, Houston - MCI Com   S 63.124.7.24
mail.strataproducts.comS 209.156.34.194
host1.west-sands.com B 49.231.227.9
mta1234.mail.bf1.yahoB 157.11.65.180
readytobepartofanythinU 157.69.181.175
realwindowtestingy.comU 45.57.234.181
mirtelecom-bd.net U 14.5.18.204
realwindowtestingy.comU 45.57.200.150
imortexport67.com U 157.11.98.183
specific.abidening.com S 23.238.14.169
onesuccessfulltranspor B 157.70.109.241
internationnewsmediawB 157.69.141.26
respecttomajorthings.c B 199.250.229.83
HELO 07ouq.ssl-certific S 42.171.11.34
EHLO senlicand.com U 44.21.93.23
ho8mh.ssl-certificate39U 42.209.133.218
hqqz6.ssl-certificate963U 42.209.184.92
uaeive.org B 111.254.149.208  

 

The last phase to generate HMM is to run the command for generating hmm.json 

file which includes the quantized visible data for the hidden states as shown in Table 9. 

The hmm.json is the output from the HMM parameters. The HMM parameters learned in 

this phase are:   

• Matrix A, the state transition probability matrix, shown in Table 10. 

• Matrix B, observable emission probability matrix (the probability of an 
observable O being emitted in state S), shown in Table 11.  

• Π(i), Initial state probability; We assume the following initial state 
probability: <1, 0, 0> for <S, U, B>, respectively.  

 



 31 

Table 9.   Learning Phase CSV File 
Initialstate Sendinghost HiddenStatSendingIP
Y 3ff7b9e2.cst.lightpath.nS 63.247.185.226

3ff7b9e2.cst.lightpath.nS 63.247.185.226
3ff7b9e2.cst.lightpath.nS 63.247.185.226
3ff7b9e2.cst.lightpath.nS 63.247.185.226
prisma-lan-64.68.213.1U 64.68.213.1
host064170.metrored.nU 201.130.71.170
unknown.telstraglobal. U 202.126.172.110
3ff7b9e2.cst.lightpath.nS 63.247.185.226
3ff7b9e2.cst.lightpath.nS 63.247.185.226
3ff7b9e2.cst.lightpath.nS 63.247.185.226
US, Houston - MCI Com   S 63.124.7.24
mail.strataproducts.comS 209.156.34.194
host1.west-sands.com B 49.231.227.9
mta1234.mail.bf1.yahoB 157.11.65.180
readytobepartofanythinU 157.69.181.175
realwindowtestingy.comU 45.57.234.181
mirtelecom-bd.net U 14.5.18.204
realwindowtestingy.comU 45.57.200.150
imortexport67.com U 157.11.98.183
specific.abidening.com S 23.238.14.169
onesuccessfulltranspor B 157.70.109.241
internationnewsmediawB 157.69.141.26
respecttomajorthings.c B 199.250.229.83
HELO 07ouq.ssl-certific S 42.171.11.34
EHLO senlicand.com U 44.21.93.23
ho8mh.ssl-certificate39U 42.209.133.218
hqqz6.ssl-certificate963U 42.209.184.92
uaeive.org B 111.254.149.208  

 

Table 10.   Matrix A of HMM State Transition Probabilities 

Transition  
Source\Target  

Suspicious Unknown  Benign  

Suspicious .206 .058 .058 

Unknown  .058 .176 .058 

Benign  .058 .058 .147 
 
 
 
 
 
 



 32 

Table 11.   A Part of Matrix B, of Probability of Observation O in HMM 
States 

O\state  Suspicious Unknown Benign 

<0,1,0>  .853 .066 .080 

<0,2,1>  .611 .130 .388 

<1,0,0>  .644 .172 .206 
 
 

HMM observables are discrete. Clearly, the more observables an HMM has, the 

larger the required training set becomes. In particular, floating point values induce a 

potentially infinite set of observables. 

To solve this problem, we introduce a quantification step, where observables that 

have very large ranges, such as floating point or string observables, are quantized into a 

small set of discrete possibilities. For example, consider a concrete event SendingIP, 

which has a huge ranges of possible values; we decided to quantize this range into four 

quantized values: 

• Type 1 represents the beginning of the IP address starting with 63. 

• Type 2 represents the beginning of the IP address starting with 157. 

• Type 3 represents the beginning of the IP address starting with 45. 

• Type 4 represents any IP address that is not specific within Types 1–3. 

The quantization operation is executed using a Python script. Listing 1 shows one such 

quantization code snippet.  

 

 

 

 

 

 

 



 33 

import sys 
 
list =  sys.argv 
if (len(list) != 2): 
    print(“CallError: expecting two arguments (path to this script and a string of data); got 
%d” %len(list))  
    sys.exit(0) 
#print (“%s %s” %(‘data:’,list[1])) 
cells = list[1].split(“_”) #split on “_” 
#print (“%s %s” %(‘cells:’,cells)) 
 
#quantization 
outStr = ““ 
SendingIP = ““ 
for cell in cells: 
    cell = cell.replace(,’”‘““); 
    cell = cell.replace(,”‘“““); 
    #****** THIS IS WHERE YOU MAKE CHANGES TO THE CODE TO REFLECT 
YOUR QUANTIZATION 
 
     
    if cell.startswith(‘63’): 
        SendingIP=“TYPE1” 
    elif cell.startswith(‘157’): 
        SendingIP=“TYPE2” 
    elif cell.startswith(‘45’): 
        SendingIP=“TYPE3” 
    else: SendingIP=“TYPE4” 
     
    print(SendingIP) 

Listing 1. Python Code Quantization 

 

D. GENERATING CODE FOR THE HYBRID RM MONITOR 

In this phase, we generated code for the RM block of Figure 9 Chapter IV.A. This 

step is completely automated, using the dtracg tool [22], which implements the algorithm 

described in Chapter IV.B [22]. 

 



 34 

E. RUNTIME CSV’S 

In the final phase of this thesis, we perform RM with hidden data using incoming 

streams of emails represented as a runtime csv file (aka runtime table) depicted in Table 

12. Our typical runtime table has four columns: date, sending host, and sending IP. 

Clearly, the hidden state column is not presented in the runtime table—it is now using the 

HMM, as explained in Chapter IV.B.  

As explained in Chapter IV.B, the hybrid RM method uses the runtime-table and 

the outputs of the HMM Alpha method as its inputs. Hence, we first executed the Alpha 

method using the HMM and the runtime table. This step is automatic, using the dtraalpha 

tool [22].    

Table 12.   Runtime CSV File 

Date Sendinghost SendingIP
2014-09-08 13:59 UTC 3ff7b9e2.cst.lightpath.net 63.247.185.226
2014-09-08 15:59 UTC 3ff7b9e2.cst.lightpath.net 63.247.185.226
2014-09-08 16:35 UTC 3ff7b9e2.cst.lightpath.net 63.247.185.226
2014-09-08 17:22 UTC 3ff7b9e2.cst.lightpath.net 63.247.185.226
2014-09-08 17:29 UTC prisma-lan-64.68.213.1.border64.68.213.1
2014-09-08 20:21 UTC host064170.metrored.net.mx 201.130.71.170
2014-09-09 04:07 UTC unknown.telstraglobal.net 202.126.172.110
2014-09-09 13:16 UTC 3ff7b9e2.cst.lightpath.net 63.247.185.226
2014-09-09 13:52 UTC 3ff7b9e2.cst.lightpath.net 63.247.185.226
2014-09-09 14:04 UTC 3ff7b9e2.cst.lightpath.net 63.247.185.226
2014-09-09 15:38 UTC US, Houston - MCI Communica   63.124.7.24
2014-09-09 18:26 UTC mail.strataproducts.com 209.156.34.194
2015-09-23 20:01 UTC host1.west-sands.com 49.231.227.9
2015-09-27 06:58 UTC mta1234.mail.bf1.yahoo.com 157.11.65.180
2015-10-19 13:57 UTC readytobepartofanything.com 157.69.181.175
2015-10-19 14:09 UTC realwindowtestingy.com 45.57.234.181
2015-10-19 15:35 UTC mirtelecom-bd.net 14.5.18.204
2015-10-20 19:29 UTC realwindowtestingy.com 45.57.200.150
2015-11-03 23:31:02 UT  imortexport67.com 157.11.98.183
2015-11-04 10:11 UTC specific.abidening.com 23.238.14.169
2015-11-04 10:36:42 UT onesuccessfulltransport.com 157.70.109.241
2015-11-04 12:36:57 UT internationnewsmediaworks.c 157.69.141.26
2015-11-04 13:00:42 UT respecttomajorthings.com 199.250.229.83
2015-11-27  14:25:37 UTHELO 07ouq.ssl-certificate34242.171.11.34  

 
 



 35 

F. HYBRID RUNTIME MONITORING EXAMPLE 

Hybrid RM is where the rubber meets the road, as far as this thesis is concerned. 

We executed the hybrid monitor (the output of the dtracg tool discussed in section V.D), 

using yet another tool: dtrarm tool [22]. The results of this step are in Listing 2, which 

shows a list of probabilities associated with the instance of Rule 9 depicted in Figure 8. 

Note that the probability listed in row i is the probability this rule instance reached a Flag 

state. For example, row 1 through 13 shows 0% probability of reaching the Flag state; on 

row 21, that probability reached 73%. Indeed, on row 21, SendingIP being unknown 

(with probability 92%) for the second time within 30 minutes induces the probability of 

Flag to jump to 73% given that the rule’s NL is “Flag whenever some pair of consecutive 

emails whose SendingIP is unknown is less than 30 minutes apart.”   

 
OK! The following is a list of probability values, one per cycle (CSV file row), being the 
probability of the monitor reaching the Flag state in that cycle  
Row 1: probability of Flag=0.0 
Row 2: probability of Flag=0.0 
Row 3: probability of Flag=0.0 
Row 4: probability of Flag=0.0 
Row 5: probability of Flag=0.0 
Row 6: probability of Flag=0.0 
Row 7: probability of Flag=0.0 
Row 8: probability of Flag=0.0 
Row 9: probability of Flag=0.0 
Row 10: probability of Flag=0.0 
Row 11: probability of Flag=0.0 
Row 12: probability of Flag=0.0 
Row 13: probability of Flag=0.0 
Row 14: probability of Flag=0.0 
Row 15: probability of Flag=0.0 
Row 16: probability of Flag=0.0 
Row 17: probability of Flag=0.0 
Row 18: probability of Flag=0.0 
Row 19: probability of Flag=1.1102230246251565E-16 
Row 20: probability of Flag=1.1102230246251565E-16 
Row 21: probability of Flag=0.7312539202828306 
Row 22: probability of Flag=0.7312539202828306 
Row 23: probability of Flag=0.7312539202828308 
Row 24: probability of Flag=0.7312539202828305 
Done 

Listing 2.  Probability Values, One Per Cycle, of the Monitor Reaching 
the Flag State in Each Cycle (CSV File Row). 



 36 

THIS PAGE INTENTIONALLY LEFT BLANK  



 37 

VI. CONCLUSION AND FUTURE RESEARCH 

Malicious emails continue to cause a significant challenge because of the threat 

that they present. Measures that have been imposed to help in dealing with the malicious 

have not been successful. Potential threats imposed by the malicious emails adjust to the 

inventions that are introduced. Even though the complete eradication of programs that are 

malicious appears to be a difficult task, the information possessed regarding the 

availability of the malicious programs is crucial in limiting the threat that exists. 

In this thesis, we have exhibited a technique to perform RM with hidden data. The 

motivation behind this thesis is to determine whether this technique can be used for the 

detection of malicious emails. The high-level strategy for identifying such malicious 

emails is to monitor the sequences and temporal pattern behavior. 

An additional property of out technique is its capability to handle datasets where 

not all data is observable. The abovementioned time and sequencing monitoring 

capabilities allows us to reveal potentially malicious email by not only using individual 

emails events, but sequences of such. 

  



 38 

THIS PAGE INTENTIONALLY LEFT BLANK  



 39 

LIST OF REFERENCES 

[1]  R. Sedgewick and K. Wayne, Algorithms, 4th ed. Boston: Addison-Wesley 
Educational Publishers, 2011. pp. 30–35. 

 
[2] D. Drusinsky, “Runtime monitoring and verification of systems with hidden 

information,” Innovations in Systems and Software Engineering, vol. 10, no. 2, 
pp. 123–136, 2014. Available: http://www.time-rover.com/articles.html 

[3] A. M. Fiskiran and R. B. Lee, “Runtime execution monitoring (REM) to detect 
and prevent malicious code execution,” Princeton University. ICCD 2004, IEEE 
International Symposium, pp. 452–457, October 2004. Available: 
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1347961 

[4] A. A. Slack, “Digital authentication for official bulk email,” M.S. thesis, Dept. of 
Comp. Eng., Naval Postgraduate School, pp. 5–10, 2009. Available: 
http://cisr.nps.edu/downloads/theses/09thesis_slack.pdf 

[5] E. Sharf, “Fake malware notifications from “Websense Labs,” Websense Security 
Labs Blog, 2011. Available: https://blogs.forcepoint.com/security-labs/fake-
malware-notifications-websense-labs Accessed August 2016. 

 
[6]  J. W. Ragucci, S. A. Robila, “Societal aspects of phishing,” Technology and 

Society, 2006. ISTAS 2006, IEEE International Symposium, pp. 1–5, June 2006. 
Available: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4375893. 
Accessed September 2015. 

[7]  B. Brewin, “DOD battles spear phishing,” The Business of Federal Technology, 
2006. Available: https://fcw.com/articles/2006/12/26/dod-battles-spear-
phishing.aspx. Accessed August 2016. 

[8]  D. Drusinsky. “Rules for business.” Rules4Business. Available: 
http://www.rules4business.com/acmeBank/index.html 

[9] D. Drusinsky, “UML-based specification, validation, and log-file based 
verification of the Orion Pad Abort software,” technical report NPS-CS-10-007, 
Naval Postgraduate School, pp. 1–24, 2010. Available: http://calhoun.nps.edu/
bitstream/handle/10945/549/NPS-CS-10-007.pdf 

[10] D. Drusinsky, The Temporal Rover and the ATG Rover. Springer-Verlag Lecture 
 Notes in Computer Science, 1885, pp. 323–329. 
 
[11] Havelund, K.,  Rosu, G., “An Overview of the Runtime Verification Tool Java 

PathExplorer,” Formal Methods in System Design, vol. 24, 189–215, 2004. 
 



 40 

[12] U. Sammapun, I. Lee, and O. Sokolsky, “RT-MaC: Runtime Monitoring and 
Checking of Quantitative and Probabilistic Properties,”  Proc. 11th IEEE Int’l 
Conf. Embedded and Real-Time Computing Systems and Applications, IEEE, pp. 
147–153, 2005.  

 
[13] The StateRover. (2016, June 10). Time-Rover. [Online]. Available: 

http://www.time-rover.com. Accessed June 10, 2016. 
 
[14] P. Meseguer and A. D. Preece, “Verification and validation of knowledge-based 

systems with formal specifications,” University of Aberdeen, pp. 1–4, 1990. 
Available: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.17.7692&rep 
=rep1&type=pdf 

[15] D. Drusinsky, J. B. Michael, and M. T. Shing, “A visual tradeoff space for formal 
verification and validation techniques,” Systems Journal, IEEE, vol. 2, no. 4, pp. 
513–519, Dec. 2008. 

[16]  K. Shimizu, D. L. Dill, and A. J. Hu, “Monitor-based formal specification of 
PCI,” Formal Methods in Computer-Aided Design, vol. 1954, pp. 372–390, Jun. 
2000.  

[17] D. Drusinsky, J. B. Michael, T. W. Otani, and M. T. Shing, “Validating UML   
statechart-based assertions libraries for improved reliability and assurance,” in 
SSIRI’08 Second International Conference, Yokohama, Japan, pp. 47–51, 2008. 

[18] J. J. Galinski, “Formal Specifications for an Electrical Power Grid System 
Stability and Reliability,” M.S. thesis, Naval Postgraduate School, pp. 1–11, 
2015. Available: http://cisr.nps.edu/downloads/theses/15thesis_galinski.pdf 

[19] Rabiner, L.W., “A tutorial on hidden Markov models and selected applications in 
speech recognition,” Proc. of the IEEE, vol. 77, no. 2, 1989. 

 
[20] Hidden Markov model. (2016, June 10). Wikipedia. Available: 

https://en.wikipedia.org/wiki/Hidden_Markov_model. Accessed June 10, 2016. 

[21]  D. Drusinsky, “Behavioral and temporal pattern detection within financial data 
with hidden information,” J. UCS, vol. 18, no. 14, pp. 1950–1966, Jul. 2012. 

[22] D. Drusinsky, “A hidden Markov Model based runtime monitoring tool,” 
technical report NPS-CS-16-001, Naval Postgraduate School, pp. 1–34, 2016. 
Available: http://calhoun.nps.edu/handle/10945/47575 

  



 41 

INITIAL DISTRIBUTION LIST 

1. Defense Technical Information Center 
 Ft. Belvoir, Virginia 
  
2. Dudley Knox Library 
 Naval Postgraduate School 
 Monterey, California 


	NAVAL
	POSTGRADUATE
	SCHOOL
	I. INTRODUCTION
	A. THE NEED FOR RUNTIME MONITORING OF MALICIOUS EMAILS
	B. MOTIVATION FOR USING RUNTIME MONITORING OF HIDDEN DATA
	C. ORGANIZATION OF THESIS

	II. MALICIOUS EMAILS
	A. DETECTING MALICIOUS EMAILS BY COLLECTING DATA THROUGH BULK EMAIL OR PHISHING
	B. DOD TARGETED MALICIOUS EMAILS

	III. background
	A. natural language formal specifications and corresponding assertion formal specifications
	B. Runtime monitoring
	C. Formal specification Tradeoff Cuboid
	D. translating natural language to Formal SpecifIcation
	E. Hidden Markov Models
	F. THE HMM Alpha method
	G. Collection of Data
	H. Rules4Business
	I. THe StateRover Toolset

	IV. overview of hybrid rm: rm with hidden data
	A. Architecture
	B. Algorithm for RM with hidden data
	C. Workflow
	D. HMM learning

	V. RESULTS: PROOF OF CONCEPT
	A. Deterministic Rule development
	B. StateRover Rule Creation and Code Generation
	C. (Automatically) LEARNING the HMM
	D. generating code for the hybrid rm monitor
	E. RUNTIME CSV’S
	F. hybrid Runtime Monitoring EXAMPLE

	VI. conclusion and future research
	List of References
	initial distribution list



