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ABSTRACT

In contrast to traditional networks, Software Defined Networking (SDN) allows
the programming of network functions via an Application Programming Interface (API).
The ability to implement the APIs in software is advantageous for traffic manipulation in
SDN. With automated logic being programmed into a centralized component of the SDN,
network operators are presented with new and scalable methods for traffic manipulation.
Enterprises and Internet Service Providers of all sizes can implement these techniques to
great effect. Of particular concern are large state-owned providers. A motivation for this
thesis came from a case study on China’s Great Cannon and how the operators redirect
benign traffic via content injection. In a technically similar fashion, we implemented
targeted redirection on a software-defined network. Our experimentation demonstrates
how an owner of the network can use man-in-the-middle (MiTM) techniques to redirect
the traffic of unknowing users. To enable these techniques we wrote a MiTM application
to redirect targeted users to a malicious server. Within a multi-switch test bed, our
experimental results show that forcing our MiTM application to pass the injected
response packet on a directed path to the switch closest to the targeted destination reduces
the overall response time. In addition to testing for a route that would reduce overall
HTTP response times, we illustrate the technical requirements of the attack in our MiTM

taxonomy.
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l. INTRODUCTION

Software Defined Networking (SDN) enables more flexible control of the
network by allowing forwarding decisions to be made through the programmed learning
of a central controller and its applications as opposed to the traditional distributed control.
Significant attention has been given to SDN based on its potential for solving persistent
problems in the network security space (Gupta & Ramakrishna, 2013). Operators of a
software-defined network can control the allocation of resources programmatically rather
than manually, which greatly reduces operational costs. Also, through the use of
OpenFlow, SDN owners have the ability to choose commodity hardware from a variety
of vendors. In contrast, traditional networking is limited by proprietary costs. Given its
operational appeal and wide-ranging ability to manipulate large-scale networks, current
knowledge detailing SDN threats and attacks is surprisingly quite limited. Our research
will demonstrate that SDN can be leveraged to perform man-in-the-middle (MiTM)
techniques. This specific problem is unique from other research endeavors in this space
because it examines MITM techniques and their corresponding effects from the

perspective of a compromised controller.

Our study will include an examination of man-in-the-middle-based maneuvers by
anyone who has command and control capability on the controller. Risks of this nature
must be considered before SDN can be implemented on a military installation or on a
large scale. These security risks can be overlooked with all of the new automated
intelligence implemented on a centralized controller that drives a SDN environment. This
centralization creates possibilities for abusing innocent users and presents itself as a
worthwhile target for nefarious actors. It is important to note that the controller has
complete and total command over the entire network. It has a view of all of the nodes and
traffic flow, and therefore has the ability to manipulate the communication flow
throughout (Dixit, Hao, Mukherjee, & Lakshman, 2013). Today’s adversaries exploit
vulnerabilities by compromising a single centralized vector in the environment (Markku
Antikainen, 2014). One can imagine the power that comes with the ability to command a

SDN controller. Once an adversary has control over this component, maximum impact
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can be induced across the entire network space. Traffic manipulation in SDN has many
side effects that can directly affect the DOD community and national security.
Specifically, exploitation often leads to active traffic redirection and manipulation, which
will be covered in depth throughout this thesis. The standout features of SDN for this
research are the new traffic engineering techniques available that can be used to reveal a
global view of the network status and flow pattern characteristics inside switch tables.
This thesis will examine the consequences of using such techniques for network control
in an SDN environment and the corresponding implications it could have to a large user

populace.

Increasing interest in SDN capabilities and the growth of applications in SDN
environments underscore the importance of security as its widespread adoption presents a
more lucrative target for network attackers around the globe. This expanded prevalence
has created a need for greater security measures. Our research will demonstrate
OpenFlow based traffic manipulation techniques that expose the compromised SDN
ecosystem potential in an effort to make it more robust and contribute to the common
body of knowledge that surrounds its security context.

A SOFTWARE-DEFINED NETWORK ARCHITECTURE

The recently emergent SDN paradigm addresses the challenge of unified network
control by separating the forwarding of packet traffic in the network from the controller,
also referred to as the main control component in SDN (Ali, Sivaraman, Radford, & Jha,
2015). These two elements are often referred to as the data and control plane of SDN.
The separation of these elements allows the forwarding of packets at the switch level on
the data plane. The data plane allows the switches to match on rules that are installed in
each of their flow tables (Ali, Sivaraman, Radford, & Jha, 2015). The OpenFlow protocol
injects the rules that are being managed remotely by the controller, which is
communicating with the switches. An example of a standard SDN architecture can be
found in Figure 1.



Application
Flang Cloud
Orchestration
Business SDN
Applications Applications
AP
Control
Plane Traffic
Enginesring
Routing Mobility
SDM Control Software
OpenFlow
Data
Plane -
~S Vs -
o ;:J /i
Fouter Other Network LAN Switch Pachket Switch
Device
Network Devices
Figure 1. SDN Logical Structure. Source: Stallings (2013).

A logically centralized controller provides an abstraction for application

developers of SDN because it enables a programmable interface that will allow

customized software to be deployed into the environment. This is different from a

distributed control plane where modes of control are coming off of several different

components (Ali, Sivaraman, Radford, & Jha, 2015). Ali et al. also explains the

abstracted environment of SDN as compared to an operating system where the controller
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acts as the operating system kernel. Specifically, the kernel is abstracting away the
forwarding hardware. In this case, this removes the need for having a separate policy on
every middle box on of the network. Instead, high-level policies for the entire network
can be defined through an Application Programing Interfaces (API) running on an
application at the controller level, which can translate and install localized flow rules into
a switch (Ali, Sivaraman, Radford, & Jha, 2015).

The topology of SDN ties back to the core difference that separates it from the
networks of today’s world. As Stallings (2013) describes, “current networks are vertically
integrated, meaning that the data and control planes are incorporated inside the
networking devices” ( p. 1). SDN breaks this vertical integration by separating out the
two planes and logic from the routers and switches that forward the traffic (Shin S..,
2013). Our MITM framework research will be incorporated into different types of
injection points in an attempt to demonstrate which are more effective and which are

affected by traffic delay. We will discuss our approach to injection in Chapter IV.

By having a single control plane for all switches on the network, an administrator
can program logic into the environment to enable flow-control capabilities from one
location. This is especially important in our research, as we require a certain level of
traffic control. This cuts out the requirement of the administrator to manage every switch
via disparate functionality. The context of the traffic manipulation within the network
pertaining to our research will be addressed in later chapters.

B. MOTIVATIONS

The northbound API is a programming interface used by SDN applications to
manage and manipulate packet flows within the network. Our research is motivated by
this capability to program flow modifications into the switch tables on the data plane of
the network. The network elements that enforce the rules provided by the application via
the northbound API may be physical or virtual, or a combination of both. In our research,
we used a purely virtual environment called Mininet and also a physical environment that

consisted of Hewlett Packard (HP) switches discussed in depth in Chapter I1.



Hypertext Transfer Protocol (HTTP) response times on the network are important
for the execution of a covert MiTM attack. As operators of a control program making
modifications to targeted traffic, we do not want our target to experience delay in their
browsing activities. Our research aims to serve the web response in a timely manner that
is comparable to a normal HTTP exchange to disguise our redirection activity. Our
research presents a modified version of our application to reduce the overall end-to-end
HTTP response times in order to mask our activities and blend in with normal network
traffic. Using switch flow manipulation techniques to achieve this, and based on our
experimentation, we seek to discern the empirically best injection route for our MiTM
attack.

1. Active Networking

“Active Networking (AN) leverages a decreasing cost of processing and memory
to add intelligence in network nodes (routers and switches) to provide enhanced services
within the network” (Jalili-Kharaajoo, Dehestani, & Motallebpour, 2003, p. 1). An
example of active networking in practice is the Defense Advanced Research Projects
Agency (DARPA) active network research program where the creators are “developing
mechanisms for dynamically deploying portable network software in active nodes, which
may be programmable routers, middle boxes, or end systems” (Braden, Lindell, Berson,
& Faber, 2012, p. 1).

An attacker could then conduct a passive collection attack on this information.
Active attacks differ from passive attacks for two major reasons. For one, the attacker,
rather than the victim, initiates the connection. Second, the attacker specifies a target of

his/her choosing rather than being limited by the web browsing activity of the victim.

As an example, a researcher can create a customized program on a node of their
choosing and instruct it to handle packets on an individual user basis and to handle
targeted packets differently from others. This type of injected control into the traffic flow
can have a widespread effect on potentially thousands of SDN nodes. Especially from the
level of the controller, the majority of the nodes will not be able to detect that anything is

going on behind the scenes with their traffic. Although they may perceive a
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communication path between their machine and web server, they may not be able to see
that their traffic actually takes an alternative route in a different communication path on
the network on its way to the web server. This type of packet introspection is readily
available to the operator of the controller and would be hard for an unknowing user to
recognize (Gupta & Ramakrishna, 2013). Furthermore, “in an active attack scenario, a
nefarious third party manipulates a response within a legitimate session in a way that
tricks the client into issuing an unwanted request, unknown to the user that discloses
sensitive information” (Saltzman & Sharabani, 2009, p. 3). This type of activity will be
demonstrated in our research. Our research will include dictating a wide portion of
network traffic, which can be used to target a very select populace transmitting traffic
through SDN.

Conventional networks are not “programmable” in any meaningful sense

of the word. Active networking represented a radical approach to network

control via a programming interface (or network API) that exposed

resources (e.g., processing, storage, and packet queues) on individual

network nodes, and supported the construction of custom functionality to

apply a subset of packets passing through the node.” (Feamster, Rexford,

& Zegura, 2013, p. 4).

Feamster et al. (2013) continually assert that active networking offers the unique
perspective of unified control over switches on the network that could replace ad-hoc

approaches that aim to manage them separately.

We seek to apply this concept to the SDN space and refer to it as Active SDN. An
active network architecture includes hardware that can switch and route traffic while also
giving the operator an option to execute code within active packets traversing switch
fabric. In the SDN space, this is analogous to the logic that is being implemented in the
controller. “Active networking essentially places computation within packets traveling
through the network” (Varadharajan, Shankaran, & Hitchens, 1999, p. 1; Zarek, 2012).
The control plane of SDN is a functionally separate part of the overall networking
system. Instead of forwarding traffic to a destination, which is the job of the data plane,
the control plane makes a decision based on programmable logic about where traffic is

sent (Anan, Ala, Nidal, Ting-Yu, & Husnain, 2016). The relationship between active



networking and SDN is primarily based upon how the communication channels are

partitioned throughout the architecture (Stallings, 2013).

2. Toward a Man-in-the-Middle Attack Taxonomy

A main motivation of our research is the development of an extensible MiTM
Taxonomy for SDN, a large part of which was inspired by the Chinese Great Canon
(GC). We find value in the technical specifications of the tool, as described in a report by
Citizen Labs, and its potential for similarities in SDN: “With a simple modification, the
tool can even disseminate malware. The operational deployment of the GC represents a
significant escalation in state-level information control: the normalization of widespread
use of an attack tool to enforce censorship by weaponizing users” (Marczak, Dalek,
Scott-Railton, Deibert, & McKune, 2015).

Building upon the momentous effects of the GC, our research proposes a
functional MiTM taxonomy based on the inner workings of the SDN environment as
opposed to a traditional network. Figure 2 frames our functional taxonomy and breaks
down its impacts on the network into four subcategories: application traffic control,
target, informational impact, and operational impact. Ultimately, our research will
demonstrate how we can redirect users of the software-defined network to locations of

our choosing.

Our taxonomy is based from the view of the controller on a software-defined
network. Assuming that we command the controller, it defines what types of attacks we

can achieve and how will they effect the information and systems.

Traffic Control (Application): This describes a software-defined network
application that has the ability to influence traffic through the nodes on a network. Using
standard APIs, an SDN application programmer can interface directly from the controller

with switches. In our case, these switches communicate over the OpenFlow protocol.

o Flowmod Actions: A flow modification (flowmod) allows the controller to
modify the state of an OpenFlow switch (Pfaff, Lantz, & Heller, 2012).

o ADD: creates a new flow to the specified switches flow table.

o MODIFY: changes a preexisting flow in the switches flow table.
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o DELETE: removes a preexisting flow in the switches flow table.
o DROP: discard a packet coming into the switches flow table.

Targeting Traffic to Send to Controller: In a software-defined network this
describes tagging a specific flow based on its source and destination
Internet Protocol (IP) address and port number.

Redirection: This describes targeting a specific flow and sending it to
another machine or service unbeknownst to the victim. An example would
be injecting an iframe into a HTTP Response flow to a targeted victim
redirecting them to a malicious server. This will be shown as a proof of
concept in subsequent chapters.

Target: A component within a software-defined network that is altered in a

negative or otherwise unexpected manner.

Host: a system on the data plane of a software-defined network.

Switch: a system on the data plane which can be installed with a protocol,
such as OpenFlow, for communication with the controller of the network
and management of switch table rules.

Packets: Altering the contents or metadata of a packet traversing the
software-defined network.

Informational Impact: In a software-defined network, this describes the impact

an owner of the controller would have on the targets information. The following quoted

bullet points illustrate this impact:

Deny: Denying legitimate users access to information within their own
systems or networks.

Disclosure: Illegitimate access to or disclosure of sensitive or confidential
information.

Discover: Discovery of information previously unknown to the operator of
the controller, which could potentially give that operator additional
advantages during follow on operations.

Distort: Distorting or changing information in a target system in a way that
disadvantages the legitimate users of that information and or provides
advantages for the attacker (Applegate & Stavrou, 2013).

Systems Impact: This subcategory describes the impact of manipulation on

actual victim nodes of the software-defined network.
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Installation of Malware: The installation of malicious code or software
onto the target host. We can plant a dropper on an infected webpage of our
choosing and have the victim visit the site. Once they do, the malware will
be downloaded to their local machine and give us remote access
capabilities.

Denial of Service: Denying a victim access to information or system
services. For example, we can deny an end host on the network access to a
webpage.

Misuse of Resources: Using a component of the network in a way that it
was not intended. Specifically, we abuse the power of the controller and
alter switch tables to route packets through different nodes on the network
than they would have otherwise traversed.

End Host Compromise: Compromising the traffic of a targeted victim in
the network.
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C. APPLICABILITY TO DOD

Software-defined networks have become a top priority for military network
planners nationwide for the following reasons. SDN is driven by its ability to enable a
more scalable, flexible and efficient network. One of the biggest drivers of SDN adoption
for military purposes is its potential contribution to consolidation (Roach, 2015). As
agencies continue to consolidate networks and operations across the DOD, SDN can
provide a solution in this effort. For example, it can be instrumental in developing DOD’s
Joint Information Environment (JIE) framework, designed to bring together DOD’s
disparate networks into a single entity (Roach, 2015). SDN can simplify the department’s
network infrastructure and provide federal administrators with a centralized point of
control to manage the entire consolidated network (Roach, 2015). Additionally, manual
network management is highly inefficient which is why DOD has turned a laser-like
focus on network automation, enabled as a component of SDN. Automation allows
federal IT administrators to relinquish some of the responsibilities they have toward
managing the network (Roach, 2015). This frees up administrators’ time to focus on other
mission-critical items and allows the network to run more efficiently which is exactly
what the DOD wants (Roach, 2015). Additionally, “decoupling the control plane from its
underlying systems creates a more automated network that can make decisions without
manual input” (Roach, 2015). For instance, SDN may automatically reroute traffic based
on current demands, including those related to application delivery (Roach, 2015). Our
research asks these military leaders to consider the effects of traffic manipulation via
controller in SDN. A technically simple change in the GC’s configuration file could make
traffic from a specific IP address viewable, instead of traffic traversing a different
communication path going to a specific IP address. This could then allow the delivery of
malware to targeted individuals communicating with any Chinese server not employing
cryptographic protections (Marczak, Dalek, Scott-Railton, Deibert, & McKune, 2015).
Finally, we assert that understanding the consequences and impact of using SDN owned

by a nation state actor is crucial for DOD cyber personnel.
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D. SUMMARY OF CONTRIBUTIONS

This thesis:

. Introduces a new framework for MiTM attacks in a virtual and physical
SDN environment.

. Implements a MiTM SDN application outlined by Chapter 11l in a Python
program.
o Examines which injection path minimizes the delay of HTTP responses

from the controller to the targeted host.

o Compares and contrasts the different requirements in application code in a
virtual network as compared to a physical lab set up.

The remainder of this thesis will be organized as follows. Chapter Il contains
background information relevant to the inner workings of our research while also
examining related work in the area of weaponizing a software-defined network. Chapter
I11 outlines our methodology, Chapter IV includes our analysis and results, and finally,

Chapter V contains our conclusions and recommendations for future work.
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II. BACKGROUND AND RELATED WORK

This chapter addresses two key concepts in our research: background information
and related work. The background portion of this chapter presents the hardware and
software components of SDN. It also introduces the concepts of MiTM maneuvers on the
network including traffic manipulation in SDN, while examining its applications to the
DOD. The related work portion attempts to address previous work in the SDN space
while discerning the literary gap between what has been done and the differences of the
approach in our research. The benefits of total network control have been explored in the
past inside a software-defined network environment. However, most of the work has been

explored at the application or host level.

A. SDN BACKGROUND
1. Components

The standard architectural components of SDN are outlined in the following
paragraphs of this chapter. Each of these pieces of technology is utilized in an application
for this thesis.

Traditional distributed routing protocols (e.g., IGP, BGP) are used to establish
forwarding tables on switches in a dispersed fashion on the network. In contrast, SDN
programmatically centralizes this capability at the controller. In SDN, the controller is the
main component of intelligence throughout the entire ecosystem (Sezar, et al., 2013). The
controller essentially provides an abstraction to the network topology much like an
operating system abstracts the management of underlying processes and their respective
memory space. In our research, we used the Ryu controller in a virtual and physical lab
environment. Ryu is an OpenFlow controller for SDN environments that manages flow
control to enable intelligent logic that interacts with the network (Ryu SDN Framework,

2015). Ryu and our lab environments will be described in detail in subsequent chapters.

In routing, there are two common “planes” accompanied by different
responsibilities and roles in the network. The control plane is most concerned with

mapping a topology of the network. The data plane, also known as the forwarding plane,
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decides what to do with packets arriving on a particular network interface. Planes in SDN
can be thought of as separate layers of the entire architecture, each designated to perform
and handle jobs involving the traffic being routed by the switches and the hosts (Astuto,
Mendonca, Nguyen, Obraczka, & Turletti, 2014). SDN specifically is comprised of
management, application, controller, and data plane. The data plane is comprised of
network elements for traffic processing and packet forwarding and routing. The controller
plane is comprised of one or several controllers whom effectively control the network
elements in the data plane (Astuto, Mendonca, Nguyen, Obraczka, & Turletti, 2014). As
SDN scales and grows larger controllers are tasked with the responsibility of delegating
between SDN controller domains using common API such as OpenFlow. The application
plane is made up of the applications that run on the software framework of the network.
In our case this framework is Ryu. These applications have access to the resources
exposed by controllers. The management plane is made up of management consoles for
applications, network elements, and controllers (Astuto, Mendonca, Nguyen, Obraczka,
& Turletti, 2014).

The other physical component of SDN is the switch. The switches act as flow
devices for communication between hosts on the network. When hosts want to talk with
each other, switches perform lookups in their switch tables every time they receive a
packet from a host. It is the controller’s job to manage the content of flow tables. The
controller uses the OpenFlow protocol to talk to OpenFlow clients residing in the packet
forwarding hardware. The controller communicates with OpenFlow instances on the
switches by sending flow modification commands that place rules in the switch
forwarding tables. The switches provide a simple packet-forwarding abstraction, based on
a table like the one portrayed in Figure 3, which includes a prioritized list of rules that
match packets on patterns and perform actions (Keller, Ghorbani, Caesar, & Rexford,
2012). For example, OpenFlow switches match on the input port and packet header fields
(e.g., MAC addresses, IP addresses, TCP/UDP ports, VLAN tags, etc.), and perform
actions like dropping, forwarding, flooding, or directing a packet to the controller. At the
controller sits our MiTM application, where flow programming enables us to have

unprecedented flexibility, limited only by the capabilities of the implemented flow tables.
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The idea behind a soft switch is the ability to make configuration changes on
physical switches in the network from a centralized software component. As explained by
Kreutz, Ramos (2014) SDN has three main abstractions separated into forwarding,
distribution, and specification. Ideally, the forwarding abstraction should allow any
forwarding behavior desired by the SDN application while hiding details in hardware.
These abstractions aim to protect SDN applications from the ill effects of distributed
state, shifting the distributed control problem into a logically centralized one (Kreutz,
Ramos, Verissimo, Rothenberg, Azodolmolky, & Uhlig, 2014).

OpenFlow: Anatomy of a Flow Table Entry

Match Action Counter Priority Time-out

| When to delete the entry|

1. Forward packet to zero or more ports
2. Encapsulate and forward to controller
3. Send to normal processing pipeline

: 4. Modify Fields
SWItEh [VLAN | VLAN] MAC | MAC | Eth P Jw [P [P JLa L4 |
Port [Ip pcp s dst type | Src | Dst | ToS | Prot | sport | dport

Figure 3. OpenFlow: Anatomy of a Flow Table Entry.
Source: Rahman (2015).

Referenced in Figure 4, there are timers for deleting any expired rules in the table.
OpenFlow uses timeouts for each flow it sees to manage how long the flow can stay in
the table. In a paper titled “OpenFlow Timeouts Demystified” by Zarek (2012), the
author suggests that as timeouts rise, miss rates drop exponentially as the table size grows
near-linearly. The author goes on to say that one disadvantage on shortening a timeout is
the premature eviction of flow rules needed for packets that have not arrived yet.
Conversely, longer timeouts may cause overpopulation of flow tables increasing
processing rate on the switch (Zarek, 2012). More specifically, premature evictions result
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in unnecessary flow table misses which cause an extra round-trip to the controller when
the next packet arrives, adding latency and an extra packet in event for the controller to
process. Therefore, a large number of shorter timeouts adds significant load on the

controller.

Similar to the work of Zarek, researchers Kuzniar, Peresini & Kostic (2015),
found that control plane performance is variable depending on the size of the flow table,
priorities, batching of commands, and rule update patterns. They assert that rule
installation latency can force a switch to hit a timeout.

Channelto
Controller
Packets waiting
on controller
Data
Packet
Packets .
Processing
Outputqueue

Rules Counters Timers

Figure 1: SDN switch state.

Figure 4. SDN Switch State. Source: (Keller, Ghorbani, Caesar, &
Rexford, 2012).

If the switch fails to find a match then it must communicate with the controller in
order to receive the proper logic to move forward. When a packet arrives at an
OpenFlow-compatible switch the switch forwards the packet based on current flow rules,
drops the packet entirely, or defaults to sending the packet to the controller. When a
controller receives a packet from an OpenFlow switch, the event is known as a

“packet_in” event. The controller application informs the switch of the event using a
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flowmod message (Monsanto, Reich, Foster, Rexford, & Walker, 2013). Responses can
include dropping the packet, forwarding the packet back to the switch with information
about where the packet should go, modifying the packet, or installing a rule to the
originating switches flow table.

Nodes in SDN can vary from servers to client workstations and the like. All of
these nodes are distributed among the topology and are interconnected with the switches
that lie on the control plane of the network. These switches can be laid out in a linear
topology where the clients are connected to their corresponding switch. The clients
communicate with that switch via the ports instantiated into the switch table rules that are

commanded by the OpenFlow protocol, which will be described in a subsequent chapter.

B. SDN APPLICATION PROGRAMMING INTERFACES

“The Northbound API on a SDN controller enables applications and orchestration
systems to program the network and request services from it” (Johnson, 2015, p. 1). The
benefit of Northbound APIs that is most applicable to this thesis is its ability to allow
basic network functions like routing and path computation. Without the API, we would
not be able to innovate new approaches into our application because we would have to
conform to the standard set in place by the equipment vendor. A good way to think about
this API’s functionality is to imagine that it is the application store for software-defined
networks. It allows end users, like us, to create applications that can interface with the
rest of the network without discriminating against the specific logic used inside of them
(Johnson, 2015). The details of the data plane devices in the network are abstracted away

by the controller via this northbound API.

The Southbound API is defined by the OpenFlow protocol. The OpenFlow
modules integrated between the Ryu controller and the OpenFlow switches allow the two
components to communicate traffic and routing decisions between one another. Figure 5

highlights the two API control paths in the SDN environment.
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Figure 5. Application Programming Interfaces in SDN

The northbound and southbound interfaces in SDN have direct impacts on
monitoring capabilities. The northbound interface is what enables communication
between the user side applications and the controller plane. Applications that wish to get
distributed throughout the network must use this interface to adhere to the controller
syntax so that the logic can be appropriately dispersed to the applicable network
elements. The southbound interface provides a link between the controller plane and data
plane (Hizver, 2015). For example, the controller will communicate with the switches via
this interface. A controller can exert its administrative authority to force rules to take
priority over others in the switch table. The management interfaces perform management

functions on applications, controllers, and network elements in each plane (Hizver,

2015).
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1. Software Defined Man-in-the-Middle Attack

A MITM attack is a common adversarial technique used to intercept a
communication flow between two systems. Adversaries could place themselves in the
middle of a communication channel and use a MiTM attack as a form of digital
eavesdropping to read or alter the data stream. The adversary could then manipulate the
flow of traffic or gather information about the target. A MiTM technique can have many
implications to the integrity of an entire network. An adversary’s decision to launch an
attack is often coupled with motivation. We propose that a MiTM attack stems from three
main motivations: credential access, command and control capability, and exfiltration of
data. All of these are applicable to our SDN environment. Our research characterizes the
overall structure of a typical MiTM attack on traditional networks to draw comparisons to
the same attack inside SDN.

In cryptography and computer security, MiTM is “an attack where the attacker
secretly relays and possibly alters the communication between two parties who believe
they are directly communicating with one another” (Man-in-the-middle attack, 2016, p.
1). MiTM attacks pose a very serious threat to digital communications because they
enable real time manipulation of sensitive information (Rouse & Cobb, 2016). Generally,
MiTM attacks are hard to detect because they do not rely on a compromised host on
either end of the communication channel. Instead, the attack depends more on the
communications equipment and protocol between the two systems. Since a MiTM attack
is a type of eavesdropping attack, the communication protocol is important. For example,
encrypted communication channels can stymie eavesdropping and the compromise of
data integrity in transit. An adversary has to assume that the infected traffic is
cryptographically weak so they can either see it in plaintext, or decrypt its contents in
order for their attack to be worthwhile. When we relate this attack to the SDN space, the
set of potential victims is larger due to the privileged position SDN switches have in a
network where we have ownership of the SDN controller. Financial institutions often fall
victim to a traditional MiTM attack. For example, an attacker may intercept his/her
victim’s public key as it is sent over the network. With it they can interchange his/her

own credentials to deceive the person on either end of the conversation into suspecting
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they are communicating securely. Another example of a MiTM attack is malware that
hides in the background of a victim node, and inserts itself in between the web browser
and the server that is contacted by the victim via a standard HTTP request (Rouse &
Cobb, 2016).

If a savvy adversary has full knowledge of the protocol they are looking to exploit
via a MiTM, they can specifically target certain specifications of that protocol. For
example, The United States Computer Emergency Response Team explicitly state that an
attacker can modify packets transiting industrial control systems while masquerading as
the operator. If the adversary has experience with industrial control systems on a
technical level they may be more inclined to know the detailed specifications of how the
system operates. This often gives the adversary the upper hand when launching an attack.
A malicious insider who has been involved with managing the systems of an industrial
plant may find that their knowledge proves advantageous for an attack of that specificity.
“By inserting commands into the command stream the attacker can issue arbitrary or
targeted commands. By modifying replies, the operator can be presented with a modified
picture of the process” (Overview of Cyber Vulnerabilities, 2016, p. 1).

C. TEST BED COMPONENTS

In this section we specifically discuss key components of our physical test bed

used in validating our research ideas.

1. The Ryu Controller

The controller that we used for our research is called Ryu. As previously
mentioned, Ryu is an OpenFlow controller for SDN environments that manages flow
control to enable intelligent logic that interacts with the network (Ryu SDN Framework,
2015). It is a Python-based framework that runs on Python 2.7. The developers took an
agile approach when they released Ryu (Tomonori, 2013). One of their main goals was to
have a framework for SDN application development instead of an all-purpose and
monolithic controller. With this agility comes flexibility with the API. The Ryu
framework interfaces between the northbound applications of the SDN topology. Our

MiTM application uses the Ryu API to communicate and pass along instructions to the
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Ryu controller. The Ryu controller then interfaces with the OpenFlow switches via the
OpenFlow protocol that the switches understand. This OpenFlow protocol can be thought
of as a networking language. The switches are instructed to flood and forward traffic

according to the operator of the controller.

The learning switch implementation is built into the Ryu framework and is written
in the Python programming language. Ryu also comes prepackaged with predefined
libraries that include OpenFlow Rest, Topology Viewer, Snort, and Netflow (Shie-Yuan
Wang, 2015), all of which can be referenced by the applications. The application modules
that can be built in to Ryu, like the ones discussed previously, can be modified and
tailored different from a standard setup to fit end user specifications. With the

combination of these components, a unique use case application is created.

Ryu is an open source SDN controller that supports REST APIs. Applications in
the SDN environment use REST APIs to send HTTP GET requests, a technique that is
consistent with our application for this thesis. Ryu has a built in application named
ryu.app.ofctl_rest that allows other applications to interface RESTfully with the outside
web (Shie-Yuan Wang, 2015). This built in application provides the various REST APIs
for retrieving and updating switch statistics, adding flow entries, and deleting flow
entries, all of which were utilized throughout the duration of this thesis. A lot of our work
interacts with the HTTP protocol over the web. We used various Python modules and
Ryu packages to help us parse HTTP packets and create a redirection mechanism to alter

traffic in an advantageous way.

2. OpenFlow Switches

There are thirteen HP switches in our experimental network. The switches we
used are part of the Aruba HP E3800 24G-2SFP+ and the HP 2920-24G switch series.
Each switch in the environment is equipped with a total of twenty-six ports. Twenty-four
ports on the right, which are part of the SDN environment, and two isolated on the left for
separate network connectivity. There are management ports on each switch that are used
to talk directly to the Ryu controller. Each of the twenty-four ports used for SDN are

connected to a Raspberry Pi acting as a host on the network. The Raspberry Pi, hereon
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after referred to as a Pi, is a simple processing unit that can be thought of as a low
powered, miniature computer. Each one of them can be accessed remotely over Secure

Shell (SSH) using any SDN connected computer.

D. ATTACK THREAT MODEL IN SDN

Next, we portray a threat model for the current security in SDN. We like to bucket
the model for threat sources into six different categories as exemplified in Figure 6. In
this thesis we focus on a controller-based attack because we are assuming ownership of
the controller and that we have full control. It is important to note that host and switched
based attacks and compromises have been heavily researched. In contrast, attacks

originating at the controller have not.

Before we could pursue the use of our SDN infrastructure as a weapon we felt it
important to explore what had been done before in terms of exploiting or attacking a
software-defined network, and which components were involved, that would allow an
attacker to pivot and subsequently perform attacks. Our research highlights the SDN

attack surface based on a standard architecture and network components.

Although one component may not be a direct target it could still be impacted
depending on how it is positioned on the networking plane. Many different aspects of a
MIiTM attack come into play here. For example, flow rules and switch tables could be
utilized. Depending on the topology of the network different hosts and switches will be
effected.
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SDN Attack Threat Model

Non SDN Component A system that is not part of the architecture.

An unauthorized system within the SDN network that is
Rogue SDN Component engaging in authorized activities

A compromised application or a user engaged in
Malicious SDN Application malicious activities via the application

o A compromised controller or a user engaged
Malicious Controller in malicious activities on the controller

A compromised network element or user engaged
in malicious activities using the network element
Malicious Network Element (i.e., a switch or client)

A compromised management console or user engaged
in malicious activities using the console (i.e.,
centralized policy management consoles,
or infrastructure support tasks not done by
Malicious Management Console the application, controller, or data plane)

Figure 6. SDN Attack Threat Model

1. SDN Applications

The SDN infrastructure is simply viewed as a control plane and takes forwarding
direction from a central controller, in essence an application running on a server. Each
layer two or layer three networking device queries the controller for forwarding
decisions. One can think of an application as the controller, assuming capabilities with

the same permissions and influence as the controller.

2. OpenFlow Protocol

The OpenFlow protocol can be thought of as an enabler of SDN. The protocol
defines commands that a SDN controller operator could use to interact with switches
enabled for the OpenFlow protocol. Braun & Menth (2014) explain that each of these
switches maintains a flow table, and each table contains a set of flow entries. The authors
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further explain that each of these flow entries contain a match field that is compared to
incoming packets. This logic enables actions to specify a particular port number to flood,
or it can enable certain packets to be permitted on matched packets. The actions can also
be built with custom made counters correlated to statistics pertaining to a certain flow. As
explained by Heller (2009), a matching field could contain one specific value or wild
card indicating that all packets are a match. According to the same report, when the
switch cannot match a particular packet it will send the packet to the controller as a
packet_in message. The controller then implements customized logic to handle the
packet, via a flowmod command, directing the switch on how to handle similar packets in
the future (Porras, Cheung, Fong, Skinner, & Yegneswaran, 2012). This is critical to the
execution of our application that will run on the compromised controller in our test bed.
Utilizing a flowmod command, we can redirect traffic to our application without end

users being privy to what has happened.

“Within the OpenFlow network stack, the control layer is the key component
responsible for mediating the flow of information and control functions between one or
more network applications and the data plane (i.e., OpenFlow-enabled switches)” (Porras,
Cheung, Fong, Skinner, & Yegneswaran, 2012, p. 1). Porras et al. highlights that because
a controller communicates with all reachable switches, it provides a means to distribute a
pre allocated set of flow rules to these switches. An OpenFlow based application can
implement more complex flow management logic. This application could be used for
tagging traffic by incorporating stateful flow rules of a malicious connection not easily

perceived by the flow participants.

There is a fundamental challenge with SDN to date. This is mainly the lack of a
“security mediation layer between the OpenFlow application layer, where security and
traffic engineering must co-exist, and the data plane; where switches implement flow
policies embodies in the flow rules produced by OpenFlow applications” (Porras,
Cheung, Fong, Skinner, & Yegneswaran, 2012, pp. 1-2). Additionally, OpenFlow
provides applications with a wide range of switch commands and probes, which can be
exploited for nefarious purposes. An example expressed by Porras et al., includes the idea
that applications may reconfigure a configuration on a switch to change how the switch
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will processes flow rules coming into it. Perhaps even more importantly, applications can
issue vendor-specific commands to the switch. In our use case, we have HP switches that
we can probe via our malicious MiTM application. An adversary can take advantage of
these security gaps by creating an OpenFlow application to manipulate OpenFlow
switches in the network. Via the application, the operator can install new flow rules on

the switch and then redirect tagged traffic to a location of their choosing.

“OpenFlow based software defined networks lower the barrier for mounting
sophisticated attacks on the control and data planes because they allow any unmatched
packets to be sent to the controller” (Dhawan, Poddar, Mahajan, & Mann, 2015, p. 1).
Packet spoofing in SDN has little chance of being detected; allowing switches and hosts
to use the technique maliciously to alter the controller’s perception about the nodes on the
data plane (Dhawan et al, 2015). SDN switches are entirely dependent on the rules
installed by the controller for forwarding packets. We will demonstrate that if the
controller is compromised or owned by the SDN application operator there are several
ways to construct a MiTM attack by utilizing the rules installed or modified on the
switches.

3. Iframe Web Traffic Redirection

We demonstrate our attack by intercepting traffic coming from a legitimate web
service to a requesting SDN host previously tagged by the control program, via IP
address, as a target. This technique is particularly sly because we can act as a man in the
middle and receive requests from the initiator, pass them on to the destination server, and
return requested information to the initiator with an injected iframe that will redirect them
to a malicious server. This type of redirection attack is a well-known MiTM technique

and prevents the initiator and the destination node from realizing what is happening.

Traffic manipulation on a network comes in various forms. One such use case that
will be utilized in this thesis is injecting a pre-crafted object, such as an iframe. “Iframes
are elements of webpages where you can load other web pages either from the same site
or from some third-party site” (“Evolution of Hidden Iframes,” 2009, p. 1). In other

words, it is essentially a separate website within the main displayed website. One could
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draw comparisons to a symbolic link in the Linux operating system. Ad blockers use
iframes for sound business reasons (e.g., Google displays AdSense in iframes) and
therefore their use is taken advantage of by nefarious actors that inject hidden iframes
into a legitimate but compromised website. “Invisible iframes allow one to silently load
exploits while unsuspecting web surfers browse visible content of infected websites”
(“Evolution of Hidden Iframes,” 2009, p. 1). Saltzman & Sharabani (2009) explain that
this unintended request can redirect the victim traffic to infrastructure located elsewhere.
More specifically, the author describe that when the victim makes a request for a new site
one could modify code running on the SDN controller and return a modified web page
that appears identical to the original. However, there will be an extra line containing a
malicious, invisible iframe. Finally, the authors state the browser will then send a
separate request for the site coded into the iframe as it renders the response back to the

victim.

An <iframe></iframe> element allows the placement of an inline frame within a
Hypertext Markup Language (HTML) document, which allows the display of another,
separate document. Any content between the start and close tag of the <iframe> element
is ignored. The iframe will always load the entire webpage with the designated SRC
attribute. Figure 7 depicts an iframe implementation in our code that essentially injects an

HTTP web page address with an IP and port pair of our choosing via the SRC attribute.

_mitm_attack(self, datapath, msg, out_port, dst, src, pkt):
ofproto = datapath.ofproto

data = pkt.data

eth = pkt.get_protocol(ethernet.ethernet)

ip = pkt.get_protocol(ipv4.ipv4)

pkt_tcp = pkt.get_protocol(tcp.tcp)

inject =

Figure 7. Code Snippet of Iframe Injection

Creating an iframe with zero-length sides is considered to be a stealthy malware

technique. However, malware scanners often “search for iframes with zeros in width and
26



height, so the iframe started to be crafted differently” (“Evolution of Hidden Iframes,”
2009, p. 1). Code writers began to use zeros in one dimension only, which is an area of
rectangles where the width or height is still zero — in effect having nothing to display.
Taking it even further, iframe writers had to defeat the malware scanners searching for
zeros. One workaround is to use a barely visible frame inside the page. “If it occupies
only a few pixels on screen it looks like a dot that is hard to spot especially if it is located
at the very top or bottom of infected web pages” (“Evolution of Hidden Iframes,” 2009,

p. 1), an example is given in Figure 8.

<iframe src= width=2 height=

style= ></iframe>

Figure 8. Dimension Iframe

More recently iframes are being used with absolutely no code that essentially makes them
invisible (“Evolution of Hidden Iframes,” 2009). To enable them to be displayed in web
browsers the trick was to place an invisible iframe inside an invisible div, shown in

Figure 9.

<div style= ><iframe src=

width= height= ></if rame></div>|

Figure 9. Invisible Iframe

4. Active Attack Flow

A generic attack flow for traffic redirection via an iframe is described in the
following paragraphs. In the first phase, a victim browses to a website as depicted in
Figure 10.
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Phase 1:

An unknowing victim browses to their favorite sports news website. An HTTP request is sent to http://www.espn.com

Step 3: The Web Server

Step 2: The attacker
processes the request

Step 1: Victim requests a
transfers the request as is

web page
“e
e
b > ve
/11
Victim browser Attacker
espn.com

Figure 10. Phase 1: Victim Request to Webpage

In the next phase, the attacker machine intercepts the response coming back from

the webpage requested by the victim and injects an iframe, as shown in Figure 11.

Phase 2:

The attacker intercepts the response from http:/www.espn.com and injects and iFrame to redirect to a source |IP

10.10.0.99

Step 4: Step 5: Attacker actively Step 6: The server
ep & injects and iFrame into the responds
Browser receives the response
response “e
“e
“e
< «—
/1717
Attacker espn.com

Victim browser

Figure 11. Phase 2: Attacker Intercepts the Response

In the final phase, the victim’s browser will render the hidden iframe put into the

response by the attacker and be redirected to the webpage of the attacker’s choosing, as

seen in Figure 12.
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Phase 3:

The victim's browser renders the iFrame object in the response and sends an automatic request to the source of the
iFrame 10.10.0.99. The attacker now controls the response from 10.10.0.99. The attacker can now perform passive

attacks such as impersonating the victim, injecting arbitrary JavaScript into the response, and execute transactions on
behalf of the victim.

Passive:
The attacker can perform
passive attacks, like

Active:
Browser invisibly requests

Frame URL injecting JavaScript
- »
C — )
Victim browser Attacker

Figure 12. Phase 3: Attacker Redirect

E. RELATED WORK

Various research endeavors are analyzed in an effort to demonstrate the coverage
in the SDN attack space. For example, in one case the switch is used as an adversarial
component and the controller is the victim (Kruetz, Ramos, & Verissimo, 2013). In
another example, a host in the network is the malicious actor and the switch becomes the

victim.

Sezar et al. (2013) points out that “controllers are a particularly attractive target
for attack in the SDN architecture, open to unauthorized access and exploitation” (p. 9).
Sezar et al. (2013) explains that there is a possibility for an attacker to spoof the
controller behavior and take advantage of its privileged actions over the network. With
full access to the controller, network operations can be faked to deceive unknowing users
and benefit the attacker. The overall operational capability of the network could be
manipulated in a more granular sense to include the targeting of specific hosts or users.
We, along with the authors, believe that these issues must receive due consideration in
the platform design of SDN (Sezar et al., 2013). The research by Sezar, Scott-Hayward,
& Fraser (2013), much like the works of Hong (2015) and Dhawan et al (2015), describe
the effects of a compromised controller and relate network manipulation to the
perspective of an attacker. Furthermore, the majority of research today often seeks to
exploit a vulnerability on a network component in the OpenFlow protocol. To our

knowledge, there has yet to be research exploring how an owner in a SDN environment,
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such as China with the GC, could abuse the controller to manipulate traffic in a way that

is much easier to do than on a traditional network.

1. Switch and Host Based Attacks

The previous chapter highlighted the absence of research involving traffic
maneuvers and attacks originating from a SDN controller owned by the attacker or
operator. Coverage of attacks with a targeted focus on host and switch based operations

has far more coverage.

Host and switch-based attacks are possible in SDN; however, we will not examine
their effects. In spite of the “control and data plane separation, this protocol requirement
opens up possibilities for malicious hosts to tamper with network topology and data plane
forwarding, both of which are critical to the correct functioning of SDN” (Dhawan et al,
2015, p. 3). Dhawan et al. detail an attack where malicious hosts can forge packet data so
that packets would be sent by the switches up to the controller as regular packet _in
messages, effectively creating a denial of service (DoS) attack on the controller and
switches involved while also potentially creating a side-channel mechanisms for
extracting flow table information. “Compromised virtual soft switches can not only
initiate all the host-based attacks but also trigger dynamic attacks on traffic flows passing
through the switch, resulting in network DoS, and traffic hijacking or re-routing”
(Dhawan et al, 2015, p. 3).

An example of a host-based attack is explained by Dhawan et al.(2015). The
authors note that network packets that flow through the controller are encapsulated in
different types of protocols to include Address Resolution Protocol (ARP), Internet
Control Message Protocol (ICMP), and Link Layer Discovery Protocol (LLDP). These
packets, sent as packet_in messages from the switches, can be pieced together to form an
overarching topological view of all the nodes. Additionally, LLDP messages forward
ARP requests and replies in order to build up the ARP cache and route table, and can also
be used for topology discovery. “Compromised hosts can spoof the above messages to
tamper with the controller’s view of the topology, and fool it into installing flow rules to

carry out a variety of attacks on the network” (Dhawan et al. 2015, p. 2). Dhawan et al.
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also reveal through their research that an end host “can send arbitrary LLDP messages
spoofing connectivity across arbitrary network links between the switches in the
communication path.” “When the controller tries to route traffic over these phantom links
it results in packet loss, and if this link is on a critical path it could even lead to a black
hole” (Dhawan et al, 2015, p. 3). We are not concerned with host-based attacks in our
research but believe they play an important role in understanding the different attack

injection points in SDN.

2. Centralized Control

Many researchers have declared controller centralization a major vulnerability for
SDN and ascertain the high value target it presents to adversaries. During a SDN program
review hosted late last year by Energy, the National Science Foundation (NSF), and the
Networking and Information Technology Research and Development Program, the
authors highlighted the security tradeoff for government agencies looking to deploy SDN.
They state that the main vulnerability stems from the centralization of control. SDN
concentrates risk given that it collapses traditional, physical systems, networks and data
onto a single software layer, which leads to a single point of failure and attack. “All your
eggs are in one basket, so to speak. This is similar to what happens with virtualization
and cloud infrastructure,” Chiu noted (Moore, 2014, p. 1). Consequently, “organizations
adopting SDN will need to pay special attention to securing the SDN controller, a
measure that becomes critical for addressing the concentration of risk and the potential
for catastrophic failure” (Moore, 2014, p. 2). Chris Wright, senior principal software
engineer for open software developer Red Hat, came to a similar conclusion. He
emphasized that if you have a logically centralized controller in your system, it becomes
a point of interest for an attacker (Moore, 2014, p. 2). In our research we examine the
effects of a trusted entity being able to impose their will on the network traffic, via the
controller, rather than via the data plane. We assume the controller is already

compromised and in our control.

Research summarized in the paper “Towards Secure and Dependable Software

Defined Networks,” mentions the possibility of a compromised controller. They examine
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attacks on and vulnerabilities in controllers. Furthermore, they assert that a compromised
controller could impact the entire network and allow the attacker to view and infiltrate
any network node. Similarly, a malicious application has unfettered access and control
because “controllers only provide abstractions that translate into issuing configuration
commands to the underlying infrastructure” (Kruetz, Ramos, & Verissimo, 2013, p. 3).
While the authors choose to look at the attack vectors into a software defined network,
they also emphasize the impact of network control if a controlled were to be
compromised. In contrast, we take the approach of having already compromised a

vulnerability that results in our unlimited access to the controller and thus the network.

3. Man-in-the-Middle

In the study by Hong et al. the authors once again touch on the severity of a
compromised controller but do not go into great implementation detail. They emphasize
the controller is the core mechanism/software running the software defined network,
essentially defining how the software will instruct the traffic to move across all of the
nodes. Therefore, if this controller can be exploited by a design or implementation
vulnerability, the entire network would be thrown into chaos, completely commanded by
the attacker (Hong, Xu, Wang, & Guofei, 2015). Specifically, the routing services and
applications inside the OpenFlow controller can be used to induce a black hole route on
the network or MiTM attack (Hong, Xu, Wang, & Guofei, 2015). Similarly, our research
takes advantage of having control of an OpenFlow compatible application to perform a
MiTM attack but with deeper understanding. Once again, as either implicit or inherited
owners of the infrastructure we want to investigate what goes into creating an application
that gives us fine grained network control that could be imposed on a large scale utilizing

many unknowing hosts on the network level of our environment.

The authors also experiment with traffic redirection that has similarities to our
applications functionality. Media Access Control (MAC) addresses provide a layer of
granular identification for hosts associated with OpenFlow controllers, and therefore the
authors conclude that ARP requests are an effective technique for probing hosts and

revealing their topology (Hong, Xu, Wang, & Guofei, 2015). After a successful probe,
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they can begin to map out their MiTM attack. As depicted in Figure 13, an Apache2 web
server was deployed with IP address “10.0.0.100” along with OpenFlow enabled hosts.
Before they launch the Host Location Hijacking Attack, hosts were permitted access to
the genuine web server with the assigned IP address “10.0.0.100.” On a compromised
host, they also run a standard web service over port 80 and send an ARP request to probe
the MAC address for “10.0.0.100.” They use a tool called Scapy, a packet manipulator, to
inject fake packets spoofed as their target, which is the genuine web server with IP
address of “10.0.0.100.” After that, the client requesting the web page from the server,
“10.0.0.100,” is directed to the malicious server (Hong, Xu, Wang, & Guofei, 2015). This
is a great example of a passive collection attack. The authors get in the middle of the
communication stream between two entities but are only able to observe traffic flow. Our
application will redirect and alter the traffic stream around SDN to exemplify a greater
control. This attack ultimately highlights their emphasis on the host being the victim and
attacker, our research looks at a MiTM attack from a different perspective. We assume

that there are no malicious hosts inside the network.

10.0.0.100

Figure 13. Hong et al. MiTM Attack

Benton et al. discuss MiTM attacks on a high level. They make an interesting
point that OpenFlow may be running on top of a network owned by an adversarial
Internet Service Provider (ISP) (Benton, Camp, & Small, 2013). They argue that if a
switch is configured with a passive listening port the avenue for attack grows wider and
larger. In our own SDN environment, several switches are configured by default with a

passive listening port that can be directly used by controller applications although this is
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not germane to our research. The authors scan the network to discover a passive listening
port on one of the switches to demonstrate that an attack could use this method to dump
the flows out of the switch table. Then, an attacker could choose to insert their own
custom flows to provide different traffic functionality, hijack downstream traffic, capture
traffic, or act as a proxy to perform reconnaissance for future attacks (Benton, Camp, &
Small, 2013).

We argue that our research attempts to exemplify potentially large-scale control
similar to that of an ISP. For example, if we have control of the controller and we redirect
client traffic to different nodes on the data plane via the switch listening port, we can
effectively MiTM a large populace of traffic and send them to infrastructure not
otherwise expected. That infrastructure could be used as a proxy, as a command and

control server, or as a simple traffic-collecting server.

“The risks posed by a successful MiTM attack in an in-band (i.e., links carrying
both data and OpenFlow traffic) managed OpenFlow network are arguably worse than in
current networks. In regular networks an attacker has to wait until an operator logs into
each switch management interface using an insecure protocol to capture credentials”
(Benton, Camp, & Small, 2013, p. 151). Conversely, OpenFlow utilizes a Transmission
Control Protocol (TCP) control channel with limited authentication, therefore an
adversary could capture and control any downstream switches and execute an
eavesdropping MiTM attack that would essentially get lost in the TCP traffic traversing
through the communication channel (Benton, Camp, & Small, 2013). Although this
technique demonstrates a part of the SDN threat space, we assume ownership of the SDN
controller and do not need to attack the OpenFlow traffic in our research. Our study does
however take the Benton et al. research to the next step. After passive scanning there is
often an operationally active attack flow. Our MiTM control program will accomplish a

goal offensive in nature.

Dhawan, et al., discuss forged messages that can be sent to a controller as
standard looking packet_in messages from the switches. They assert that the controller
will not be able to distinguish them from malicious and benign creating a false topology

of the network. “Adapting traditional defenses for SDN will require either patching the
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controller for specific vulnerabilities, or a fundamental redesign of the OpenFlow
protocol to provide a comprehensive defense, without which many traditional attacks,
including ARP poisoning and LLDP spoofing, will continue to manifest in software
defined networks” (Dhawan et al, 2015, p. 1). Once again the authors highlight the
impacts on SDN by malicious hosts and switches while our research will address the
importance of the effects of a controller owned and used by a nation-state or other

formidable adversary.

Larish et al. point out that a key consequence for defensive cyber operations
(DCO) is that network devices will only forward packets into the network if the SDN
controller has explicitly instructed the device how to handle those packets. Although
many alternatives to OpenFlow have been proposed, the authors focus on OpenFlow
because, at the time of this writing, it is the only multi-vendor protocol that gives the
control plane fine-grained control over the data plane. That fine-grained control enables
many DCO capabilities (Bishop, Boyer, Buhler, Gerthoffer, & Larish, 2015).

4. Existing Taxonomies

Rutherford et al. developed a basic taxonomy and schema for defining attacks that
ties the attacker’s methods, techniques, and objectives to the services and effects of the
particular attack. They build of a set of comprehensive data-models that will combine
network traffic with outside data sources. They also hope to incorporate data modeling of
network traffic and other parameters. As they expand the models to include a richer set of
data, they believe it will provide them with a detailed internal picture filled with
information, that when collated at the larger level, will allow them to develop a fuller
picture of the health of the entire community (Rutherford & White, 2016).

Researchers Scott Applegate and Angelos Stavrou propose a Cyber Conflict
Taxonomy in their paper for the 2013 Fifth International Conference on Cyber Conflict.
In their study, they highlight the impacts of cyber actions and actors on modern day cyber
operations. They created a taxonomy in the hope that it could be applied to cyber conflict
in general on a wide scale. Their taxonomy explores the relationships between cyber

actors and cyber actions and how they impact a cyber operation in order to build a better
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picture and identify a set of patterns unique to one actor set. With this in mind, they hope
that their work can be repeatable and built upon to enhance the overall state of cyber
operations practices (Applegate & Stavrou, 2013). They compared their taxonomy to two
other taxonomic systems, one being Howard’s Computer & Network Attack Taxonomy.
John Howard was a graduate student at Carnegie Mellon University and titled his
dissertation ‘An Analysis of Security Incidents on the Internet’ in which he proposed his
own ideas for an attack taxonomies. That taxonomy classifies attacks using five different
categories: attacker, tools, access, results and objective (Howard, 1997). Applegate and
Stavrou (2013) state that Howard’s taxonomy lacked several important characteristics:
vector, defensive actions, and the specific actors involved The other taxonomic system
that they contrast is the AVOIDIT taxonomy, which similarly classifies attacks using the
following categories: Attack Vector, Operational Impact, Informational Impact, Defense
and Target. Once again Applegate and Stavrou argue that it lacks specificity in
identifying actors involved in a particular attack (Applegate & Stavrou, 2013). While
both of these studies were used to draw a comparison to the SDN space, we decided to
look at the taxonomy purely from a controller point of view. We strive to formulate an
SDN specific taxonomic system that can address a wide range of attack capabilities from
the controller specific to SDN components. From there, we will study the impacts in the

following categories: Traffic Control, Target, Informational Impact, and Systems Impact.

5. Case Study

It is important to understand the use case behind our methodology and the
powerful potential of a MiTM attack inside a software defined network on a global scale.
In the following chapter we will explore a case study that portrays the potential for wide

scale network traffic control. Not all cases are meant to deceive the victimless clients.

a. China’s Great Canon

Following the debilitating attacks to Github, a web-based git repository hosting
service, a plentiful amount of network traffic was directed toward their servers with much
of the initial attribution pinned to the infamous Great Firewall of China. In summary, the
Chinese government was able to target their exploitation of thousands of innocent victims
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by injecting iframe-like javascript following analytic requests to Baidu in China. This
capability has been dubbed The Great Cannon (GC). The operators essentially took
samples of the high-volume traffic coming into Baidu, a popular search engine like
Google, and injected responses containing javascript, which in turn made repeated
requests of the GitHub servers causing a complete denial of service (Marczak, Dalek,
Scott-Railton, Deibert, & McKune, 2015).

Similar to the SDN environment, the clients within the ecosystem must
communicate with an internal component of the network. In SDN, the client must go
through a switch that reports to the controller that has the ability to affect traffic stream
much like the operators of the GC did. A very similar aspect of the GC to our SDN
MiTM application is its insertion of altered content into benign traffic. The GC operator
had the ability to modify HTTP traffic after interception from a specific IP and inject
malicious content into the response. Then the target made repeated requests to a
designated server. Unbeknownst to the victim, they would not be able to tell that their
request was actually being sent to servers in China via analytic requests hosted on the
website they were visiting (Marczak, Dalek, Scott-Railton, Deibert, & McKune, 2015).
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1. METHODOLOGY

Our methodology includes several phases. First, we introduce a new application
framework for MiTM techniques on a software defined network. Next, we implement a
MiTM application written in Python to redirect targeted users to a malicious web server.
We run the application through various iterations to experiment with targeted and non-
targeted clients. Finally, we demonstrate a modified version of our application to reduce
the overall end-to-end HTTP response times in order to mask our nefarious activities and

blend in with normal network traffic.

In order to identify the practical issues with our MiTM attack in a software
defined network, we draw comparisons of the framework in a simulated environment as
well as in a physical environment. For the simulated environment, we used a Mininet
Virtual Machine (VM), as opposed to the physical environment, where we set up HP
switches with OpenFlow enabled and a Ryu controller attached. The exact details of our

implementation approach in both environments will be expanded upon in this chapter.

A MAN-IN-THE-MIDDLE ATTACK STRUCTURE

Usually if a particular SDN node connected to a switch on the data plane wished
to send a web request, the traffic from their machine would flow through the local switch.
The switch would then check to see whether they had a flow rule installed in its flow
table to handle this particular packet. If not, then the packet would be handed up to the
controller via a packet_in message to make the decision for it. The controller would then
send its decision back to the switch as a flowmod action along with a packet out
message. The switch would then act upon the newly provided flowmod rule. If a flow
rule were already installed, then the switch would simply pass the packet off to the
specified outgoing port number in the action specified for the flow rule. As long as the
control program installed the appropriate flow rules onto the local switch table, then the
packets originating from the connected node would not be passed off to the controller and

would instead flow from one port to the next as directed in its flow table. This is depicted
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in Figure 14. In this chapter we discuss how the owner of the controller could modify a

switch’s flow table in a way that facilitates the redirection of end nodes.

( Controller J

Switch

Key:
HTTP REQUEST e—

HTTP Response ssssssss

Figure 14. Web Request and Response Packets Flowing on a Software-
Defined Network after the Appropriate Flow Rules are Installed

We imagine a scenario where, as owners of the controller, we will have several
avenues for traffic manipulation and switch table exploitation, ultimately leading to a
successful man-in-the-middle attack, where a user’s traffic to a web server is redirected
without the originators knowledge. A detailed example of this scenario is shown in

Figure 15 and further explained in Table 1.
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Figure 15. Man-in-the-Middle Application Redirection
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Table 1. A Step-by-Step Explanation of MiTM Application Redirection

Step # Process

Step 1 Targeted client sends HTTP GET request

Step 2 Switch sends packet_in to Controller

Step 3 Controller flags targeted traffic and sends back a flow_mod message
Step 4 Switch forwards packet to the switch closest to the web server

Step 5 Switch send packet to the web server

Step 6 Web server sends HTTP response packet

Step 7 Switch receives response and forwards it to the controller

Step 8 Controller sends the response to the MiTM application

MiTM application parses response packet, injects an iframe, builds a new
response packet and sends it back to the controller

Step 10 Controller sends the injected MiTM response to the switch

Step 11 Switch forwards injected response to switch closest to the targeted host

Step 12 Switch sends injected response to the targeted client

Step 13 Targeted client renders the iframe and is redirected to the malicious web server

Step 9

B. PHYSICAL TESTBED TOPOLOGY

Our work was based in the Center for Cyber Warfare (CCW). The CCW is an
interdisciplinary laboratory located at the Naval Postgraduate School (NPS) that focuses
on offensive cyber operations. Our network topology consists of thirteen HP switches, all
switches are either a HP 3800 24G switch or a HP 2920-24G switch, all enabled with
OpenFlow version 1.0 functionality. Additionally, we have a pool of Raspberry Pi’s that
will act as host infrastructure on the network. Figure 16 shows a subsection of our
physical lab environment, while Figure 17 shows a more logical set up of our
environment. We are using a Ryu controller that provides API support for the Python
programming language. These switches will communicate with our MiTM controller
application and we will be able to redirect and manipulate network traffic flowing
through them. In our experiments we demonstrate various path injection points
throughout the network and provide an empirical comparison of HTTP response time

speeds.
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Figure 16. SDN Physical Test Bed
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C. MININET INSTALLATION AND SET UP

Before experimenting with our application on a physical network we first built a
prototype to test our theory on a virtual network emulator called Mininet. Mininet is a
virtual environment that allows you to emulate various components of a network, such as
hosts, controllers, switches and their links (Mininet Overview, 2016). For our virtual
experimentation we downloaded a pre-built SDN tutorial virtual machine (VM) located at
http://sdnhub.org/tutorials/sdn-tutorial-vm/. There are several SDN controllers to choose
from, such as POX, Floodlight, OpenDaylight and Ryu. The virtual environment gave us

an option of which controller we wanted to use.

Since our physical lab is configured with Ryu we opted to use this controller in
our virtual experiment as well. “Ryu provides software components, a well-defined API
that make it easy for developers to create new network management and control
applications” (Build SDN Agilely, 2014). There are two ways to install Ryu. First option
is to use the pip command by running pip install ryu in the VM terminal. The
other option is to install from source code, which requires the user to first issue the
command git clone git://github.com/osrg/ryu.git in the VM
terminal. Next, the user should change directory into the Ryu folder with the command
cd ryu. Lastly, the user should run the python setup program by issuing the command
python ./setup.py install. After running through these commands our virtual

lab environment was ready for testing.

Within Mininet we created three virtual hosts each connecting to separate
OpenFlow switches. The hosts were named h1, h2 and h3 while the switches were named
s1, s2 and s3, respectively. Each host had a single interface that was represented by its
name followed by its Ethernet mnemonic. For example, hl had interface h1l-ethO while
h3 had interface h3-eth0. s1 and s3 each had two interfaces with one interface linking to a
host and the other interface linking to s2. s2 had three interfaces, one linking to a host and
the other two interfaces linking to s1 and s3. The switches maintained a similar naming
convention as the hosts. For example, s2 had interface s2-ethl, s2-eth2 and s2-eth3.
Having a link among the switches and between each host and their switch created a linear
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topology. The final component of our virtualized SDN was the controller, which had the

name of c0. Figure 18 and Figure 19 depict our network topology.

[ Controller (c0) _J

Switch( s1) Switch( s2) Switch( s3)
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Figure 18. Mininet Linear Topology

mininet> net
hl hl-eth@:sl-ethl

h2 h2-eth@:s2-ethl

h3 h3-ethd:s3-ethl

51 lo: sl-ethl:hl-eth® sil-eth2:s2-eth2

52 lo: s2-ethl:h2-eth8 s2-eth2:sl-eth2 sZ-eth3i:s3-eth2
53 lo: s3-ethl:h3-ethd s3-eth2:s52-eth3

ce

Figure 19. Mininet Linear Topology via the Command Line

The command used to start the Mininet emulation environment and create this
linear topology was mn --topo linear,3 --switch ovsk --controller
remote, as shown in Figure 20. After starting Mininet the user must next run the
controller by issuing the command xterm cO. This will create a new terminal for the
controller where the user then needs to change directory to the Ryu application folder. In

our case this folder was located in the directory /home/ubuntu/ryu/ryu/app. TO
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enter  this  directory the user would type the command cd
/home/ubuntu/ryu/ryu/app and then run the controller in verbose mode via the
command ryu-manager --verbose application.py, where “application.py”
is the name of the SDN application, as seen in Figure 21. An example of a pre-built SDN

application is seen in the following section.

File Edit View Terminal Tabs Help

root@sdnhubvm: /home/ubuntu/ryu# mn --topo linear,3 --switch ovsk
--controller remote

*** Creating network

*** Adding controller

Unable to contact the remote controller at 127.0.0.1:6633

*** Adding hosts:

hi h2 h3

*** Addi