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ABSTRACT 

The Brownian bridge movement model (BBMM) models target movement 

between two known points as a Brownian bridge. This thesis extended the BBMM to 

account for multiple starting and ending points and to account for intelligence inputs 

midway through the target movement. The BBMM is applied to a military scenario where 

U.S. forces are conducting surveillance to monitor the breakout of Chinese forces in the 

South China Sea. Probability heat maps, depicting the probability of a target location at 

discrete times, are generated through simulations in MATLAB. Using the heat maps, this 

thesis developed an algorithm to automate the placement of sensors to detect the target. 

This thesis focused on the use of a network of unmanned sensors as the means for 

target detection. The relationship between the sensors’ attributes and the probability of 

detection is explored through a meta-experiment. The experiment utilizes a three-stage 

algorithm that generates heat maps, deploys sensors and randomizes intelligence inputs, 

and measures the probability of detection. A trade-off analysis was conducted and 

showed that to achieve a higher probability of detection, it is more effective to have 

sensors cover a wider area at fewer discrete points in time than to have a greater number 

of discrete looks using sensors covering smaller areas.  
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EXECUTIVE SUMMARY 

The search and detection of a target is a classical problem that has been examined 

in numerous studies and in various applications, such as anti-submarine warfare, search 

and rescue, counter-piracy and counter-smuggling operations. There are various 

techniques in search and detection theory, like simulation, data analysis and probability 

models, to provide quantitative estimates of the probability of detection. This thesis uses 

a probability model, the Brownian bridge movement model (BBMM), to depict the 

probability density of the target’s location at discrete times, and using that probability 

density, chooses the deployment of unmanned sensors to detect the target.  

Horne et al. (2007) provide an in-depth introduction of the BBMM and used the 

BBMM to study movement and migration patterns of animals and birds. The BBMM is 

essentially a combination of Brownian bridges, which are Brownian motion tied at 

particular values at two points in time, usually the starting and ending point of the 

movement. The BBMM is largely dependent on the Brownian motion variance 

parameter, and this thesis describes a method to estimate this variance by using the 

probability that the target will travel outside the limits of a given distance. The BBMM is 

extended to account for multiple starting and ending points as well as to incorporate 

intelligence inputs of a target’s location midway. The BBMM is applied to a military 

scenario in the South China Sea, where the U.S. forces are interested in monitoring and 

tracking high-value units, such as an aircraft carrier, to prevent the projection of forces by 

the Chinese. In particular, this thesis is interested in the employment of unmanned 

sensors, especially a future system where the sensors are connected in a network to 

provide data-link relay through line-of-sight communications and surveillance 

capabilities.  

Through simulations of the BBMM, this thesis generates probability heat maps of 

the target’s location at discrete times. With the heat maps, the thesis develops an 

algorithm to automate the placement of the sensors at the highest probability regions at 

discrete time points. The probability of detection by the sensor was also estimated in the 

algorithm based on attributes of the sensors that can be specified by the user. 
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A meta-experiment is also designed using the BBMM and a three-stage algorithm. 

The first stage involves generating the probability heat map using the BBMM. In the 

second stage, the areas with the highest likelihood at specified times are identified and 

the sensors are placed at those areas. In the last stage, the sensors are given randomized 

intelligence updates, and using the sensor’s probability of detection, the total probability 

of detection by the sensors is estimated. Using this algorithm, the thesis explores the 

effects of the attributes of the sensors on the overall probability of detection.  

A trade-off analysis was conducted between the number of sensor placements and 

the size of the sensor detection region. The results were benchmarked against the sensor 

referenced from the Lynx multi-mode radar system. From the analysis, it was evident that 

having a wider detection range offers a higher probability of detection. Having multiple 

discrete sensors could reduce the variance in the probability of detection and there is a 

minimal search width required, beyond which it is difficult to detect a target even with a 

high number of discrete looks. This could, however, be because the deployment 

algorithm only places the sensors at the regions of highest probability, which may be 

along the most likely central paths, thereby limiting them to picking up Brownian bridges 

that have already been detected by prior sensors.   

The thesis recommends a possible configuration for the network of unmanned 

sensors, where multiple sensors at discrete locations should overlap one another to create 

wider detection regions. Given that the technology of unmanned systems is maturing, this 

thesis also recommends further research to develop autonomous algorithms to enable 

sensors to move and deploy themselves to strategic locations, while maximizing the 

probability of detection.  

 

References 

Horne, J. S., Garton, E. O., Krone, S. M., & Lewis, J. S. (2007). Analyzing animal 
movements using Brownian bridges. Ecology, 2354–2363. 



 xvii

ACKNOWLEDGMENTS 

I am most thankful to my thesis advisor, Dr. Dashi Singham, who has been more 

than helpful and patient throughout the writing of this thesis. I am grateful for her 

guidance and advice, as well as her nomination of my thesis for the MORS-Tidale award. 

Even though I did not win the award, it was a great experience preparing for it and 

getting a chance to present to the OR cohort. 

I would also like to thank Dr. Michael Atkinson, my second reader, for his help 

and guidance. His prompt replies and comments on the thesis have helped me to shape 

and structure it in a more complete and understandable manner.  

My wife, Hui Qun, has been very supportive of my academic effort in school and 

it has been great to have her join me in Monterey. I am thankful for her encouragement 

and support throughout the one year in NPS.  

Last but not least, I am grateful to my organization, the Singapore Armed Forces, 

for giving me the opportunity and sponsoring my studies here at NPS. It has been a 

wonderful experience in Monterey and I look forward to going back to continue serving 

my nation.  

 



 xviii

THIS PAGE INTENTIONALLY LEFT BLANK 

 



 1

I. INTRODUCTION 

The United States has publicly announced that the Asia-Pacific region is a “top-

priority” of their security policy in 2011 (BBC, 2011) and has maintained a sizeable force 

in the region since then. One key area of concern is the South China Sea, where China 

has been assertive in its influence and territorial claims and where U.S. forces have 

conducted their freedom of navigation operations. There have been a number of incidents 

in the region between the militaries of the two powers (Tomlinson, 2016), and the chance 

of a potential confrontation is not negligible. China has also been steadily constructing 

and building up defense capabilities in the region, particularly in disputed areas such as 

the Spratly and Paracel Islands, which could bolster China’s anti-access and area denial 

(A2AD) capabilities. This could potentially disrupt the combat abilities of the U.S. 

forces, especially in gathering target information and surveillance, which could in turn 

decrease the effectiveness of engagements with China and other adversaries.  

The use of unmanned vehicles or drones for surveillance and targeting operations 

in a contested area has been discussed in the literature, such as in a project by the System 

Engineering Analysis Cohort 23 (2016), which proposed the use of unmanned systems to 

create a web of sensors to overcome the A2AD capabilities by the Chinese within the 

South China Sea while providing line-of-sight relay communications and target 

information for precision strikes. An advantage that these unmanned vehicles could offer 

is resilience to an enemy’s jamming and detection, while extending the reach of a 

nation’s own military forces (SEA Cohort 23, 2016).  

Using the above scenario as the backdrop, the main motivation behind this thesis 

is to explore how mathematical methods can be used to place autonomous sensors. Next, 

we estimate the probability of detection associated with the placement of sensors in 

regions where the target is most likely to be at different points in time. Three main 

attributes of the sensors—detection range, sensor detection probability and the number of 

discrete sensor placements—are varied to explore the effects of the attributes on the 

probability of detection.   
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A. SEARCH AND DETECTION 

Searching for and detecting a target is a classical problem that has been examined 

in numerous studies and in various applications. Nuun (1981) stated that some of the 

earliest developments in search theory were made during World War II by Bernard 

Koopman and his colleagues in the Anti-Submarine Warfare Operations Research Group. 

Since then, search theory has been used and applied extensively to other fields, such as 

search and rescue (Hunt, 2015), counter-piracy (Slootmaker, 2011) and counter-

smuggling (Campos, 2014) operations. Besides these extensive studies, there are also 

many techniques used to solve search-related problems.  

For example, Slootmaker (2011) examined the use of a probability model to 

combat piracy by estimating the probability of a pirate attack at various locations and 

times. In another work, Johnston (1995) applied search theory to estimate the probability 

of detection of maritime vessels by aircraft searchers for search areas of different sizes. 

He provided quantitative estimates through the use of simulations, taking into account the 

characteristics of the maritime vessels, the type of sensors, and the aircrafts used for 

detection in that area of operation (Johnston, 1995). With the development of unmanned 

aerial vehicles (UAVs), there has also been interest in the application of search theory to 

develop autonomous algorithms to conduct area searches more effectively. For example, 

Lau (2015) used two coverage algorithms in his work, a simple greedy algorithm that 

assigns search cells to UAVs based on closest distance and a fixed-lane algorithm that 

minimizes overlaps by pre-assigning search cells, to demonstrate that swarm UAVs are 

capable of coordinating among themselves to conduct autonomous area searches.  

In another work, Campos (2014) applied the use of mathematical models to 

optimize search assets to detect drug smugglers. His work included the use of a 

probability model, developed by the U.S. Naval Research Laboratory, that generates the 

probability that a pirate will attack at a given time and location in the Horn of Africa 

(Hansen et al., 2011). Campos (2014) created a conversion algorithm that could convert 

the heat map output into an optimization model, developed by Pietz and Royset (2013), to 

generate a search and interdiction plan. The optimization model by Pietz and Royset 

(2013), termed the Smuggler Search Problem, is a “specific application to a more general 
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class of problems called the Generalized Orienteering Problem with Resource Dependent 

Rewards (GOP-RDR)” (p. 294). Both models require intelligence inputs consisting of 

waypoints, departure times, velocities, drug loads and environmental factors to estimate 

the target’s location and optimize the search plan (Campos, 2014).  

The approach in this thesis is to make use of a probability model that could depict 

the probability density of the target’s location at specific times, which we would use to 

deploy sensors. Thereafter, using the model, we could estimate the probability of 

detection by the sensors and investigate the attributes of the sensors to be deployed.  

B. OVERVIEW OF THE MODEL  

In order for the placement of sensors to be modeled effectively, some prior 

information on the target would be required. Often, there could be some intelligence 

collected from other sources, such as satellite imagery, interception of enemy 

transmissions or human intelligence. Such information could give clues to the target’s 

departure point, intended route, arrival point and likely time of departure. As such, there 

is a need to develop a model that could make use of information that could be gathered, 

to better represent the likelihood of a target’s location over time and use that to deploy 

the sensors.  

Therefore, the thesis will utilize the Brownian bridge movement model (BBMM), 

which requires essentially the starting point, ending point, and likely time of departure of 

a target, as well as a Brownian motion variance parameter. These are inputs to a 

mathematical model to estimate the location of a target over a time period (Horne, 

Garton, Krone, & Lewis, 2007). The basis of the BBMM is the Brownian bridge, which 

is a stochastic process that is Brownian motion with particular values tied at two points in 

time. The BBMM is relatively simple and has been extensively employed in animal 

studies, for example, in the study of movement and migration patterns of black bears 

(Horne et al., 2007), mule deer (Bunnefeld et al., 2011) and vultures (Fischer, Walter, & 

Avery, 2013).  
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The BBMM used in the animal studies does not account for the probability 

density at a specified time period, however. Instead, they are primarily used to generate 

the probability heat map of finding an animal within a region, independent of time.  

The thesis will use the BBMM to model the movement of a target and generate 

the probability heat map of the target’s location at discrete time steps. We will extend the 

BBMM to model the scenario in the South China Sea. Some key aspects of the extension 

would include incorporating multiple starting and ending points to depict a target with 

more than one possible intended ending location. We will also update the BBMM with 

discrete intelligence inputs pertaining to the target’s location while the target is still 

moving. In addition, the thesis will discuss the method to estimate the probability of 

detection by a deployed sensor in the model.   

With the probability heat maps generated at discrete time steps, the thesis will use 

them to automate the placement of sensors by selecting areas with the highest probability 

of detection. By adjusting the sensors’ attributes and analyzing the probability of 

detection, the thesis will also conduct trade-off analysis between the number of discrete 

sensors and the sensors’ detection range.  

C. RESEARCH QUESTIONS  

The intent of the thesis is to explore the use of the BBMM in a military scenario, 

extend the BBMM to generate probability heat maps and place sensors to estimate the 

probability of detecting a target with uncertain behavior. Results from the model are 

interpreted to analyze the effect of various sensor attributes. Some extensions of the 

model include accounting for multiple starting and ending points of a target’s movement, 

way points along the target’s path, updating the heat map with discrete intelligence inputs 

and estimating the probability of detection. This thesis will thus be guided by the 

following questions:  

 How can we develop and enhance the BBMM to effectively model the 
inclusion of way points and multiple start and end points? 

 How can intelligence inputs collected from sensors be used to update the 
heat maps and target’s location?  
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 How can we generate probability heat maps using the BBMM that can be 
used to deploy sensors to increase the probability of detection? 

 Which attributes of the sensors (detection range, detection probability, or 
number of discrete sensors) are most important in increasing the 
probability of detection?  

D. BENEFITS OF THIS THESIS 

This thesis is intended to develop a viable solution to estimate and present the 

likelihood of target movement based on multiple intelligence updates in the form of heat 

maps. The main focus of this research is to use these heat maps to place sensors and to 

understand the attributes of the sensors and their effects on the probability of detection. 

This research would also lay the foundation for future researchers to develop autonomous 

algorithms to dynamically deploy a web of sensors over a course of time to maximize the 

probability of detection. With the use of such autonomous unmanned systems, militaries 

can operate on a leaner manpower structure, while extending their operating reach 

beyond the enemies’ horizon. 

E. METHODOLOGY 

This thesis begins with an in-depth review of the possible military scenario in the 

South China Sea and provides a detailed description of the BBMM. The BBMM is 

applied to the scenario and is enhanced to include way points and multiple starting and 

ending points for the movement of the target. Using the BBMM, probability heat maps of 

a target’s location over time are generated and interpreted to automate the placement of 

discrete sensors in those regions with the highest probability of finding a target. Next, we 

will estimate the detection probability of the target based on the sensors’ parameters. The 

thesis conducts a meta-experiment to examine the effects of the attributes of the sensors 

on the probability of detection, and a trade-off analysis between the number of discrete 

sensors and the detection range is conducted. This will help to determine which attribute 

is critical to improving the probability of detection.  
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II. OVERVIEW OF SCENARIO 

The South China Sea, covering about 3.5 million square km, is one of the 

world’s most vital maritime areas. An article in Time magazine (Beech, 2016) 

highlighted “that more than $5 trillion in trade flows through the waters each year, about 

one-third of all global maritime commerce” (p. 44). The area also boasts a huge supply of 

seafood and untapped oil and natural gas deposits. Such importance has led a number of 

countries to lay competing claims to various parts of this waterway. China’s increasing 

militarization of the islands and strong stance in exerting their claim would pave the way 

to possible conflicts within the region.  

A. CONTEST IN THE SOUTH CHINA SEA 

China, Vietnam, the Philippines, Taiwan, Malaysia and Brunei have 

competing claims in the South China Sea, as depicted in Figure 1. China’s claim is the 

most expansive, based on the nine-dash line, a demarcation of maritime borders from 

historic rights.  

 

Figure 1.  Disputed Claims in the South China Sea.  
Source: Rosenberg (n.d.).  
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China has been very active in establishing its claim and control, through the 

reclamation of islands and maintaining a “maritime militia” comprised of Chinese fishing 

fleets (Glaser, 2015). Their reclamation efforts have been astounding, as seen in the 

images of Fiery Cross Reef in Figure 2. In a brief span of two years running tracks, 

basketball courts and an aircraft runway have been introduced (Center for Strategic & 

International Studies, n.d.). These reclamation efforts have been seen by analysts as a 

means to militarize the area and have been dubbed the “Great Wall of Sand,” by Admiral 

Harry Harris Jr., head of the U.S. Pacific Command (Browne, 2016). In addition, these 

islands would definitely boost China’s anti-access, area denial capabilities through the 

deployment of a variety of weapons, equipment and platforms such as radar, surface-to-

air missiles (SAM), anti-ship cruise missiles and electronic jamming equipment (Glaser, 

2015). They could also possibly serve as military outposts during times of conflict.  

 

Figure 2.  Construction and Reclamation of Fiery Cross Reef. Adapted from 
the Center for Strategic & International Studies (n.d.).  

While the U.S. does not have any claims to the islands in the South China Sea, 

President Barack Obama has presided over a pivotal shift in focus to Asia, including the 

deployment of more American troops to the region, as well as a projected 60% of the 

U.S. Navy fleet to the Pacific by 2020 (Marcus, 2012). See Figure 3 for the number of 
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forces stationed in Southeast Asia. U.S. forces continue to patrol the region in their 

attempt to ensure navigation freedom in the region.  

 

Figure 3.  The Number of U.S. Forces Deployed in Southeast Asia. 
Source: Center for Strategic & International Studies (2014). 

In July 2016, an international tribunal, the Permanent Court of Arbitration in The 

Hague, dismissed China’s claims to the Spratly and Paracel Islands and Scarborough 

Shoal. The arbitration was initiated unilaterally by the Philippines to seek a peaceful 

resolution to the matter, but China has refused to participate and maintains that it will not 

acknowledge the court’s decision (BBC, 2016). China continued to maintain its 

uncompromising stance on its claims in the South China Sea and has continued to bolster 

its military presence on the man-made islands, as well as closing off a part of the South 

China Sea for military exercises (Bodeen, 2016).  

As U.S. forces continue to patrol and survey the waters in the South China Sea as 

part of their freedom of navigation operations, the number of incidents between Chinese 

forces and U.S. forces in the region has been increasing. One such incident occurred on 

June 7, 2016, when a RC-135 reconnaissance plane from the U.S. Air Force was 
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intercepted “unsafely” by a Chinese J-10 fighter jet, reportedly in international airspace 

(Starr, 2016). In the report, the unsafe manner was defined as the high speed with which 

the Chinese fighter closed in and that it was flying at the same altitude as the U.S. 

reconnaissance plane (Starr, 2016). This incident came on the heels of another incident 

the previous month, where another U.S. reconnaissance plane was intercepted by Chinese 

jets, which came within 50 feet of the U.S. plane at one point during the incident (Kube, 

2016). Admiral Sun Jianguo, Deputy Chief of the Joint Staff Department of the Central 

Military Commission, stated that China opposes these freedom of navigation patrols and 

that such military freedom of navigation could play out in a disastrous way (Blanchard, 

2016).  

The contest for the South China Sea could potentially spark a dangerous 

confrontation between the two superpowers that would involve all countries within the 

region. It is this scenario that sets the stage for the research in this thesis.  

B. CHINA’S CARRIER PROGRAM 

In the lead-up to any military confrontation, Chinese forces would probably have 

to project a number of forces to the buffer islands to provide perimeter security for 

mainland China and to deny access to the South China Sea. In the 2015 Annual Report to 

Congress, it was mentioned that China has started to pursue an indigenous aircraft carrier 

program and could build multiple carriers in the next 15 years, which would give Chinese 

forces the capability to project large forces and extend their operating reach (Office of the 

Secretary of Defense, 2015). Currently, China has begun carrier training onboard 

Liaoning (shown in Figure 4), an ex-Soviet aircraft carrier that was bought from Ukraine, 

refurbished and commissioned in 2012. On December 15, the Chinese People’s 

Liberation Army Navy (PLAN) qualified a new batch of aviators flying the Shenyang J-

15 Flying Shark onboard the carrier. It would seem that China is making remarkable 

progress in learning the science and art of carrier aviation and likely will have a powerful 

fleet in the next 15 years (Majumdar, 2015).  



 11

 

Figure 4.  China’s Aircraft Carrier, Liaoning. Source: Shrivastava (2013). 

Besides providing protection and a buffer to the South China Sea, these aircraft 

carriers are also important assets that could extend the reach of China’s military into the 

Pacific to deter enemies from coming close to the South China Sea. These aircraft 

carriers would thus be considered as high-value units that would require constant 

tracking and monitoring of their locations. With the A2AD capabilities of the Chinese, 

however, it could prove difficult to do so using conventional means, particularly during 

times before the start of a conflict when key assets have not yet been deployed. Thus, a 

system of unmanned drones autonomously moving and detecting targets would be an 

attractive solution.  

C. ADVANCEMENT OF UNMANNED VEHICLES  

Development of UAVs or drones has been increasing in recent years, with both 

commercial and military entities looking to harness their capabilities for various uses, 

such as surveillance, making deliveries, filming or aerial photography and many more 

(Top 12 Nonmilitary Uses, n.d.). For example, an Israeli startup company, Airobotics, 
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has developed a fully autonomous drone that is capable of taking off, conducting a 

surveillance flight and then landing to charge batteries and prepare for the next mission 

(Ackerman, 2016).  

In particular, the development of cooperative and swarming drone technology 

would certainly shape the battlefield of the future. Many militaries have embarked on 

programs in this area, such as the U.S. Office of Naval Research, which started the Low-

Cost UAV Swarming Technology (LOCUST) (Hambling, 2016) to look into firing many 

small drones as a means of ship attack, rather than using just one missile. The Navy also 

developed a swarming operation using unmanned boats that could swarm toward an 

enemy ship, to prevent it from getting close to the high-value boat (McGarry, 2014). 

Besides developing swarming technology, the use of renewable energy sources to 

create long-endurance airplanes has also become a possibility. One such plane, the Solar 

Impulse 2, a zero-fuel aircraft, embarked on and completed a journey around the world 

without using a single drop of fuel. Its longest flight lasted five days and five nights, from 

Nagoya, Japan to Hawaii (“About Impulse,” n.d.).  

Thus, it would be very possible, in the near future, that militaries can field a large 

number of surveillance drones, with long endurance and cooperative knowledge, to 

monitor and communicate on the battlefield. One of the capstone projects by SEA-23, 

students discussed the use of unmanned systems in integrating cross-domain naval fire 

for the year 2025. They proposed a system that could create a web line-of-sight 

communication using unmanned systems comprising aerial, surface and sub-surface 

vehicles, which could relay target information back to a “mother ship” for precision fire 

(see Figure 5). These systems with line-of-sight relay communications could provide an 

ad-hoc network that would be resilient to the enemy’s reach and jamming. With the need 

to maintain distance between the sensors, however, the sensors would need to move in 

cognizance of other sensors’ position and not employ conventional search techniques. 

Therefore, it would be ideal if algorithms existed to achieve autonomous deployment 

while maximizing the probability of detection of targets.   
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Figure 5.  Capstone Project by SEA-23, a Web of Sensors. 
Adapted from SEA Cohort 23 (2016). 

This thesis will build upon the use of such a communications web for the 

detection of targets in the South China Sea. Specifically, the thesis will utilize the 

BBMM to generate probability heat maps for a target location. These heat maps help 

determine where to employ sensors in a web. This thesis also will discuss the type of 

unmanned systems, the detection range, and the quantity and quality of sensors required 

in such a web.  

D. SCENARIO TO BE USED IN THE MODEL 

China’s primary naval operating base is off Hainan, and China has been 

constructing important and vital defense assets in several areas in the Spratly and Paracel 

Islands. At the Shangri-La dialogue in Singapore in May 2015, Admiral Sun Jianguo, 

China’s representative, mentioned that these islands will provide all-round and 

comprehensive services to meet civilian demands, but he also noted that they will be used 

to meet necessary defense needs (Glaser, 2015). Indeed, China has begun to deploy 

defensive capabilities such as its advanced fighter aircraft, J-11, and its SAMs to Woody 

Island, which can be seen as a move to militarize these islands (Minnick, 2015).  

Separately, China has always maintained its stance on a “one-China” policy, 

which states that Taiwan is part of China. The delicate balance between China and 

Taiwan, however, has been upset with the election of the Democratic Progressive Party 



 14

(DPP) into Taiwanese government, a party that has strongly advocated the preservation 

of freedom and democracy of Taiwan. Taiwan’s location in the South China Sea could 

also provide military significance for China to establish buffers in the region, especially 

against an invading force. As such, Taiwan could become a likely target of interest in the 

wake of military confrontations.  

Thus, the thesis will use the scenario of tracking Chinese aircraft carriers through 

three passage lanes, from Hainan to the three possible locations of the Spratly Islands, 

Scarborough Shoal off the Philippines, and Taiwan, as shown in Figure 6. These passage 

lanes could be also used by Chinese forces to break out of the South China Sea region 

into the Pacific, to control buffer islands and to deter any establishment of a naval 

blockade that could affect freedom of navigation and trade in China. Therefore, it would 

be ideal if targets could be tracked and intercepted by the web of sensors before they 

could reach their intended location.  

 

Figure 6.  Possible Passage Lanes in the South China Sea during Conflicts. 
Adapted from Cribb (n.d.). 
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III. THE BROWNIAN BRIDGE MOVEMENT MODEL 

Given the starting and ending points of a target trajectory, the target’s location in 

between can be modeled as a Brownian motion, the parameters of which are controlled 

through the choice of variance parameters (Horne et al., 2007). This approach, termed the 

Brownian bridge movement model (BBMM), models uncertainty in a target’s path and 

allows for path dependency, where a target’s location is highly dependent on its previous 

locations. While a relatively simple model, the randomness can capture aggregate-level 

fluctuations due to environmental factors, tactics and timing. 

This chapter provides an understanding of the BBMM and how it will be applied 

in this thesis. The thesis will also extend the BBMM in order to model a target using 

three possible paths to traverse the South China Sea. Multiple Brownian bridges of a 

target’s possible paths will be simulated, and they will be compiled to generate 

probability heat maps of the target’s location at discrete time steps.  

A. THE BROWNIAN BRIDGE MOVEMENT MODEL 

The Brownian bridge is a stochastic process in which Brownian motion is tied 

to particular values at two points in time. The standard Brownian bridge has a variance 

of 1 and exists over the time range [0,1], taking the value zero at times 0 and 1. It can be 

rescaled according to time, distance and variance (Ross, 1983). Bullard (1991) described 

a Brownian bridge model that uses two-dimensional Brownian bridges to estimate an 

animal’s location and plot the probability density function as a contour map (see 

Figure 7). This thesis will utilize a similar approach, but instead of determining the 

distribution over an aggregate period of time, the model will look into the distribution at a 

particular instance or specific time t, and display the probabilities in a heat map.   
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Figure 7.  Contour Map of a Bear’s Movement, Modeled Using Brownian 
Bridges. Source: Bullard (1991). 

1. Two-Dimensional Brownian Bridges 

In a two-dimensional Brownian bridge, Brownian movement is allowed in a 

two-dimensional space. While the movement of a target between two points cannot be 

exactly predicted, it could be approximated by the use of random walk or its 

continuous counterpart, Brownian motion (Turchin, 1998), which can be characterized by 

Gaussian probability distributions. By conditioning on the starting and ending points and 

applying Brownian motion in between, we have the stochastic process of a Brownian 

bridge (Ross, 1983). 

With the knowledge of the starting and ending points of a target at given times, 

such that a target begins at a point (0, 0) at time t = 0 and will end at a point ሬܾԦ = (b1, b2), 

at time T, the target’s position between time 0 and T can be estimated using the two-

dimensional Brownian bridge. The position (x, y) can be written as (Bullard, 1991):  
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The parameter ߪଶ௕  is the variance of the Brownian motion and I2 is a 2 x 2 

identity matrix. Using this model, the variance will be small when t is near times 0 and T 

and will be largest when t = T/2 (Bullard, 1991). The probability that multi-dimensional 

Brownian bridges cross a boundary is studied in Atkinson and Singham (2016). 

While it is relatively easy to obtain information on the possible starting and 

ending points of a target, it is, however, difficult to determine the value of ߪଶ௕. Horne et 

al. (2007) estimated this variance by using observed locations and assumed that the path 

connecting the two locations is a Brownian bridge. They went on to construct a 

likelihood function comprising the unknown estimate of Brownian motion variance. Its 

maximum likelihood estimate is obtained numerically by optimizing the likelihood 

function over values of ߪଶ௕, using the Golden Search routine (Horne et al., 2007).  

This thesis will attempt to estimate the Brownian motion variance parameter 

without using tracking data of the target, since such data are not available for this 

research. The variance parameter represents the deviations in the path that the target will 

travel relative to when it travels in a straight line. A smaller variance implies a more 

straightforward path, while a higher variance would indicate a more indirect path, with a 

higher probability of it traveling backwards from its destination. Here, we used a method 

to estimate the variance parameter by using probabilities that the target will stray outside 

a given distance from the central direct path. Figure 8 shows this distance, a, for a 

Brownian bridge B(t) over time ݐ	 ∈ ሾ0, ܶሿ.   
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Figure 8.  Brownian Bridge over Time [0, T].  

If P is defined as the probability that a target will travel outside the limits of a 

given distance, bounded by (-a, a), then the variance can be found using the following 

equations (Atkinson & Singham, 2016):   

ܲ ∶ൌ |ሻݐሺܤ|ሺܾ݋ݎܲ ൐ ܽሻ ൌ ݁
ିଶ௔మ

ఙమ்ൗ  

⇛ ଶߪ ൌ െ
2ܽଶ

ܶ	 ln ܲ
 

The value of P is a probability that we assumed is estimated by a subject matter 

expert. Subsequently, the simulated paths can be checked to see if they align with the 

expected behavior or any available tracked data of the target, to determine if the 

estimated variance is satisfactory.  

2. Uncertainty of Starting and Ending Points  

In this thesis, the BBMM assumes uncertainty in the starting and ending points as 

well as the departure times of the target. It is often true that a target’s starting location 

and departure timing are not known exactly, given that intelligence sources are not 

perfectly accurate. In the model, the thesis will introduce this uncertainty by randomizing 

the starting points, ending points and departure times of each Brownian bridge simulated, 

by assuming a uniform distribution over time and space over the ranges of uncertainty.  
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B. USE OF THE BBMM IN ANIMAL STUDIES 

The use of such a model was first proposed by Bullard (1991), who applied the 

model in estimating the home ranges of animals. Since then, the BBMM has been used 

widely in understanding the movement patterns of animals (Horne et al., 2007). In the 

work by Horne et al. (2007), the use of the BBMM to estimate the home range of a male 

black bear was studied. The BBMM was used to generate an overall probability map for 

the black bear’s location by aggregating many Brownian bridges based on tracked 

movement, collected through GPS collars. Horne et al. (2007) also compared the 

probability map with that generated using a fixed-kernel method, and found that the 

results were similar (see Figure 9), with a 77% overlap in the areas represented by both 

the BBMM and the fixed-kernel estimate. The model has also been expanded to other 

studies such as “stopover” habitats used by migrating mule deer (Bunnefeld et al., 2011) 

and home ranges of black vultures (Fischer et al., 2013).  

 

Figure 9.  Estimated Home Range of a Male Black Bear using both the BBMM 
and Fixed-Kernel Methods. Source: Horne et al. (2007). 

It is noted, however, that most animal studies created probability maps that only 

depict the probability distribution of an animal’s location, independent of time. Whereas 

in this thesis, we developed a BBMM that would generate probability heat maps as time 
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changes, such that it could be updated with discrete intelligence inputs. The BBMM was 

first modeled in the defense context to examine the case of interdicting drug smugglers 

using naval assets, and to generate probability heat maps that are used to present the 

likelihood of the target’s location in the present and future. Such heat maps would 

provide operators with a map-based visual view of uncertainty in target location, which 

would greatly aid in their decision in allocating detection and interdiction assets.  

C. GENERATING PROBABILITY HEAT MAPS   

This thesis follows an approach outlined by Horne et al. (2007) to determine the 

probability of finding a target in a specific area at a specific time, t. The starting and 

ending points of the target are known. We employ a two-dimensional Brownian bridge 

between the starting and ending points, which uses independent Brownian bridges to 

model movement in the x and y directions in Թଶ. The functions, ݂ሺݔሻ and ݂ሺݕሻ are the 

probability density functions of the Brownian bridge in each direction at a given point in 

time t. Next, denote ܼ௧ as a Brownian bridge at time t. The probability the target is in 

region A at time ݐ	is defined as  

ܲሺܼ௧ ∈ ሻܣ ൌ 	ඵ݂ሺݔሻ݂ሺݕሻ݀ݕ݀ݔ.
஺

 

Instead of calculating these integrals, which can be numerically tedious especially 

when we incorporate intelligence updates, this thesis would employ the use of 

simulations in MATLAB to estimate the probability of the target’s location at a specific 

time, t. To determine the probability of the target’s location in an area, the region of 

interest is divided into multiple cells. The starting and ending points of the target are 

randomized according to some specified distribution and used to simulate multiple 

Brownian bridges. At a specific time period, t, the number of the Brownian bridges 

located within a cell A is recorded and divided by the total number of Brownian bridges 

to calculate the probability that the target is in that cell. This information is subsequently 

plotted in heat maps, which change over time, as shown in Figure 10.  
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Figure 10.  Probability Heat Map of a Target Moving across the South China 
Sea over a Time Period.  

The simulation allows for the generation of the Brownian bridges through a few 

parameters, which include the variance of the Brownian motion, the velocity of the target 

and the expected time range of departure of the target.  

D. EXTENSIONS TO THE BBMM 

As discussed in the scenario in Chapter II, there is a likelihood that the target will 

end up at one of three different locations. Also, with the deployment of sensors, one 

would expect that there could be intelligence updates at snapshots of time, which could 

be used to update the BBMM. Therefore, this thesis will discuss three extensions of the 

BBMM in the simulations such that it could be applied to the scenario.  

1. Incorporating Waypoints   

If there is a known path of which the target will travel on, waypoints can be 

included in the BBMM to mimic that known path. The model does this by assuming that 

the paths connecting the waypoints would be independent Brownian bridges. This is 

depicted in Figure 11 by the grey lines between Point A and Point D. As the Brownian 

bridges are assumed to be independent, we also assumed that the heat map associated 

with the Brownian bridges connecting Point A to B is independent of the heat map 

connecting Point B to C, and so on.  
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Figure 11.  Example of Three Brownian Bridges Connecting the Way Points 
between Points A, B, C and D.  

2. Incorporating Multiple Starting and Ending Points  

To model the three paths shown in the South China Sea scenario, there is a need 

to include multiple end points. This was achieved by generating multiple, independent 

Brownian bridges to the different end points and weighting them by probabilities that 

the target will travel towards that end point. Such probabilities could be deduced from 

other intelligence sources or scenario experts. In addition, the starting and ending points 

are simulated with uncertainty to generate the Brownian bridges. The combined weighted 

probability heat maps across the three paths are then plotted accordingly. Figure 12 

shows the probability heat map of a target moving from the island of Hainan according to 

the three paths illustrated in the scenario. Notice that at t = 100hrs, the probability heat 

map of the target’s location is a lot smaller compared to the earlier times. This is because 

the target has reached the possible ending locations. Since the variance of the Brownian 

motion is small at the starting and ending points, the probability heat map shown will 

have a narrower density at the three ending points.    
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Figure 12.  Example of Probability Heat Maps with Multiple Ending Points.  

3. Incorporating Intelligence Inputs  

As the target moves along the path, there could be real-time intelligence inputs, 

whether through detection by sensors or other means of intelligence, to update the 

location of the target. These inputs are modeled with a binary variable {0, 1} in the 

BBMM, to indicate if the target is detected within the sensor coverage area or not at that 

specific time. If the target is detected, it will be assigned a value of 1, and only the 

Brownian bridges that pass within the sensor coverage area are retained. If the target is 

not detected, the Brownian bridges within the sensor coverage area are filtered out 

instead. This is illustrated in Figure 13, where we have three red boxes denoting the 

presence of sensors at these boxes. At t = 30hrs, the first sensor is not active; therefore, 

we did not observe any changes to the probability heat map. At t = 50hrs, the heat map 
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indicates that the target is present in the sensor coverage area, and we observe that the 

heat map collapses within the box, indicating that only the Brownian bridges within the 

box are retained. At t = 60hrs, the intelligence input is that the target is not present in the 

new sensor coverage area, which could be due either to a failed detection or the fact that 

the target is outside the sensor detection range at that point of time. Here, we observe that 

the heat map in the rightmost red box is empty, indicating that the Brownian bridges 

within the box have been filtered. At t = 70hrs, we observe the target continuing to move 

to its likely ending point based on the remaining Brownian bridges left in the model.    

 

Figure 13.  Probability Heat Maps Incorporating Intelligence Updates. 
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IV. ESTIMATING THE PROBABILITY OF DETECTION 

With the probability heat maps generated to depict the probability of a target’s 

location over time, the probability of detection of a target by a sensor at that snapshot of 

time (called a discrete look) can be estimated. This chapter will outline the various steps 

used to calculate and simulate the probability of detection of a target, which will be the 

main measure of effectiveness of a given sensor configuration.   

A. THE PROBABILITY OF DETECTION BY A SENSOR  

In signal detection theory, the goal is to estimate two key parameters, the first 

being the signal strength relative to the noise signals, and the second is the response on 

whether the target is present or not (Abdi, n.d.). Table 1 lists the four possible scenarios 

that could occur based on the response and the presence of signals. From these four 

scenarios, we are able to estimate the probability of a false alarm (positive reading when 

the target is not there) and the probability of a missed detection (negative reading when 

the target is there).  

Table 1.   List of Four Possible Scenarios in Signal Detection Theory.  

 
Target Present 
“Signal” 

Target not Present 
“Noise” 

Positive Sighting Detection False Alarm 
Negative Sighting Missed Detection Correct Rejection 

 

From the probability heat maps generated, we can obtain the probability that a 

target is at a certain location at a discrete point in time. As such, we can summarize the 

information we can estimate thus far in Table 2. 
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Table 2.   Probabilities and Their Representations. 

Probability Representations 

ܲሺܶሻ 
Probability that the target is within an area at a discrete point in time, 
which is obtained from the probability heat maps. 

ܲሺܣܨሻ 
Probability of a false alarm by the sensor, which is based on the sensor’s 
signal to noise ratio.  

ܲሺܦ|ܶሻ 
Probability that the sensor gives a positive sighting given that the target 
is in the area, which is obtained usually through field tests of the sensor. 

ܲሺܦሻ 
Probability that the sensor gives a positive sighting, regardless of 
whether the target is present or not  
= ሾܲሺܦ|ܶሻ ൈ 	ܲሺܶሻሿ ൅ ሾܲሺܣܨሻ ൈ ሺ1 െ ܲሺܶሻሻሿ. 

 

We can use Bayes’ theorem to calculate	ܲሺܶ|ܦሻ, which is the probability that the 

target is in a given area for which the sensor gives a positive reading. ܲሺܶ|ܦሻ  will 

henceforth be denoted as “probability of detection,” which will be our main measure of 

effectiveness in later experiments. The following formula shows how we calculate the 

probability of detection: 

ܲሺܶ|ܦሻ ൌ
ܲሺܦ|ܶሻ ൈ ܲሺܶሻ

ܲሺܦሻ
	. 

 

B. USING THE BBMM TO ESTIMATE THE PROBABILITY OF 
DETECTION OF A SINGLE SENSOR 

We first assumed that the sensor coverage area is rectangular in shape and that the 

sensors deployed will have a constant probability of detection and false alarm throughout 

one experiment run. To estimate the probability of detection, the sensor coverage area 

was first plotted onto the probability heat map. At that snapshot of time when the sensor 

is active, the number of Brownian bridges passing through the sensor coverage area is 

flagged. The probability of the target passing through the coverage area or areas was 

estimated by dividing that number of Brownian bridges flagged by the total number of 

Brownian bridges rendered in the simulation. This estimates the value for	ܲሺܶሻ, which is 

the probability of the target passing through sensor coverage areas. In a scenario where 
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there are multiple end points, the number of Brownian bridges flagged from each path is 

weighted accordingly. An example is shown in Figure 14, where the red box in the figure 

depicts the sensor coverage area. Afterward, we can calculate the probability of detection, 

ܲሺܶ|ܦሻ,	with specified values of ܲሺܦ|ܶሻ and	ܲሺܣܨሻ, which are inputs to the model that 

define the capabilities of the sensors.  

 

Figure 14.  Estimating the Probability a Target is Present in a Discrete Sensor 
Using a Multiple Paths Scenario.  

C. THE PROBABILITY OF DETECTION WITH MULTIPLE SENSORS 
AND INTELLIGENCE INPUTS 

To determine the value of ܲሺܶሻ  when we have multiple sensors, we use the 

number of different Brownian bridges that have been flagged with a positive sighting at 

each sensor coverage area. As such, Brownian bridges that passed through a sensor 

coverage area with negative sighting, or a Brownian bridge that has already been detected 

before will not be counted. The value of ܲሺܶሻ is then calculated by dividing the number 
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of Brownian bridges flagged by the sensors by the total number of Brownian bridges 

simulated. This is the value of the probability of locating the target at all sensor coverage 

areas with a positive sighting. With ܲሺܶሻ found, we apply the approach in Section A to 

determine the probability of detection by the sensors based on the assumption that all 

sensors have the same detection capabilities in each experiment run. 

An example is shown in Figure 15, where we have a target moving to three 

multiple end points and three discrete sensors are placed at t = 40hrs, 50hrs and 60hrs. 

It happens that all three sensors gave a positive sighting of the target, so we see that 

only the Brownian bridges within the sensor coverage areas (denoted by the red boxes) 

are depicted.  

In this simulation run, we simulated 20,000 Brownian bridges for each of the 

three paths. The value of ܲሺܶሻ is then obtained by the method described above, and 

was 0.0552. The sensors here have a detection probability of 0.8 with a detection range 

of 0.4 degrees (approximately 45km) and a false alarm rate of 0.05. Using Bayes’ 

theorem, the probability of detection was found to be 0.48. 
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Figure 15.  Probability Heat Maps Showing Discrete Sensors 
Detecting a Target.  
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V. META-EXPERIMENT    

In order to understand the different attributes of the sensors and how they affect 

the probability of detection, a meta-experiment was designed and carried out, using the 

BBMM as the underlying model. The experiment uses a three-stage algorithm to generate 

probability heat maps, deploy sensors at discrete times, and estimate the probability of 

detection based on intelligence inputs. Certain key parameters are varied to study and 

understand their effect on the probability of detection. The results are compared to 

provide an analysis on the relationship between the attributes of the sensors and the 

probability of detection.  

A. A THREE-STAGE ALGORITHM FOR THE EXPERIMENT 

In order to evaluate the different configurations of the sensors, an algorithm was 

designed to automate the placement of sensors and calculate the total probability of 

detection. The algorithm is broken down into three stages, as seen in Figure 16.  

 

Figure 16.  Three-Stage Algorithm for the Meta-Experiment.  
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The first stage involves generating the probability heat map using the BBMM 

based on inputs for the target information. In the second stage, the areas with the highest 

likelihood of a target’s location at the specified time steps are identified and the sensors 

are deployed to those areas. The sensors deployed will observe the location at varying 

discrete times, but only one sensor will be active at each discrete time. Figure 17 

illustrates the probability heat map of a target moving to three possible locations with one 

discrete sensor placed at the highest likelihood of the target’s location at t = 40, 50, 60hrs.  

 

Figure 17.  First and Second Stage of the Meta-Experiment.  
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In the last stage, the sensor sightings are randomized to either a positive or a 

negative detection using a Bernoulli distribution with ܲሺܦሻ, probability a sensor gives a 

positive sighting, assigned as the probability parameter. The sensor sightings are 

randomized in each replication and the heat maps are updated accordingly. The 

randomized sightings are based on the sensors’ detection probability and a higher 

detection probability means a higher chance of a positive sighting. With the updated heat 

maps, the total probability of detection by the sensors is estimated for each replication 

and consolidated for statistical analysis. The results are illustrated in Figure 18, where we 

observed that each of the sensors was able to detect the target in one replication of the 

experiment. The probability of detection was estimated and recorded. The experiment 

was replicated 100 times with randomized intelligence updates and the probability of 

detection for each run was compiled for further analysis. See Figure 19 for the boxplot of 

the probability of detection in the 100 runs. The boxplot shows the 25% quantile, the 

median value, and the 75% quantile. The black dots represent the outliers from the 

dataset and the whiskers of the boxplot extends to the outermost data that falls within 1.5 

times the interquartile range from the third and first quartile. The mean of the probability 

of detection here is 0.448, with a 95% CI of [0.4379, 0.4581]. From the data, we 

observed some outliers, which could be due to the varying intelligence inputs. If only one 

out of the three sensors registered a positive sighting, the overall probability of detection 

could be affected greatly, hence the low probability of detection. However, with the 

sensors’ detection probability set at 0.8, this does not happen frequently and thus the low 

probability becomes an outlier in this dataset.  
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Figure 18.  Third Stage of the Meta-Experiment.  

 

Figure 19.  Boxplot of the Probability of Detection.  
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B. LIMITATIONS AND ASSUMPTIONS 

There are some limitations in the model and algorithm, specifically in the 

deployment of sensors, as it is not possible to represent a web of sensors fully. The 

experiment currently is based on the number of discrete time sensor placements available 

during the target’s movement, and has yet to represent a sensor deployed continuously. A 

continuous time sensor placement can, however, be approximated by dividing the time 

duration of deployment into a number of discrete looks, but it could be computationally 

expensive. Instead, the thesis will see each discrete time sensor placement as a different 

sensor that is stationary, and each sensor will only have one chance to detect a target 

moving across the South China Sea.  

One limitation in the model is that the deployment algorithm for the sensors is 

based on the initial probability heat map generated without any intelligence input and 

the sensors are placed at the regions with the highest likelihood of locating a target. 

This is because the plotting of the probability heat map with intelligence inputs is 

computationally expensive, especially if a high number of sensors are placed. Therefore, 

the thesis took the simpler and faster approach to deploy the sensors without accounting 

for intelligence inputs. A dynamic deployment algorithm whereby sensors deployed will 

be based on the updated probability heat map conditional on information collected by the 

prior sensor could be investigated in future research.    

One point about the model is that the regions with the highest probability of 

locating a target could be at the starting and ending points, given that there is less 

variability at those locations. It would therefore be intuitive to locate sensors at these 

points. In this model, however, we also assume that sensors should not be deployed near 

the starting and ending points. This is because the starting point could be under the 

enemy’s influence and defense systems, which could take down the sensors easily. Inputs 

from sensors deployed near the ending points would not provide any tactical advantage 

since the enemy has already reached their intended location.   
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Another assumption that the model makes is that we are not able to cover the 

entire area of interest with unmanned sensors such that no areas are unmonitored at any 

discrete point of time. We believe that the number of sensors to achieve such a feat would 

be logistically challenging and such a full coverage network could be susceptible to 

environmental factors or enemy jamming and interference.  

C. PARAMETERS FOR THE EXPERIMENT 

In the design of the algorithm, the data inputs and parameters are kept separated 

from the model, in another file, such that a user can adjust and calibrate the model 

accordingly. The data parameters that can be varied are categorized into two sections; the 

first section contains the information on the target and the second section contains the 

attributes of the sensors. The key information required for the target includes the starting 

and ending points, velocity of travel and probability weightings on each path. Parameters 

that will affect the Brownian bridges are the variance of the Brownian motion and the 

estimated departure times of the target. These parameters will affect the variance of the 

Brownian bridges in two dimensions and thus affect the range of the probability heat map 

distribution. The data parameters required for the target are listed in Table 3. Here, we 

will be using parameters of a Chinese aircraft carrier, as described in Chapter II.  

Table 3.   Data Parameters Required for the Target. 

Parameters  Representation 

Starting and ending 
points 

There will be uncertainty in the starting and ending points of the 
target.   

Variance Variance parameter of the Brownian bridges.  

Weighting 
Estimated probability that the target will traverse along the path. 
This probability could be gathered from subject matter experts 
or prior intelligence.  

Velocity Estimated speed of the target.  

Time interval  Time range of the departure of the target from the starting point. 
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The data parameters for the sensors are listed in Table 4. These parameters will 

affect the placement of the sensors, as well as the calculation of the probability of 

detection.  

Table 4.   Data Parameters Required for the Sensors.  

Parameters  Representation 

Discrete sensor 
placement  

Number of discrete sensors available for placement to detect the 
target.  

Time interval 
Time range for the detection by sensors. In the experiment, this 
is used to control the distances away from the starting and 
ending points.  

Sensor size 
The sensor detection area half-width. A high-quality sensor will 
have a higher range of detection capability. The units used here 
will be in degrees.  

Detection probability 
The probability of detection of the sensor. A high-quality sensor 
will have a higher probability of detection.  

Rate of false alarm  
False alarm rate of the sensor. A high-quality sensor will have a 
lower rate of false alarm.  

 

To determine the parameters used for the sensor configuration, some references 

were made based on current unmanned aerial systems. For example, Lynx multi-mode 

radar provides high-resolution imagery and has a range of about 80km with an endurance 

of close to 48 hours (General Atomics Aeronautical, n.d.). It is utilized on the newer U.S. 

Army Gray Eagle unmanned aircraft system, which has a unit cost that is close to USD 

$7 million, and 36 of the improved versions had been purchased by the U.S. Army 

(Drew, 2015). Given the high costs, it would not be possible to field a large number of 

these unmanned sensors to collect intelligence.  

In contrast, if an autonomous network systems of sensors is developed, one could 

expect that a large number of sensors would be required. Given the need to field a large 

number, the cost of each sensor would have to be cheaper, meaning that its capabilities 

could be less effective.  
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Therefore, the thesis will seek to conduct a trade-off analysis between the number 

of sensor placements and the size of the sensor detection region. This would allow us to 

determine the quantity of less effective sensors required to achieve a comparable 

probability of detection by the higher quality sensors, like those found in the Gray Eagle.  

D. MEASURE OF EFFECTIVENESS 

The measure of effectiveness used in the experiment is the probability of 

detection, which is calculated based on the method outlined in Chapter IV. In the 

following experiments, single factors are varied one at a time, to provide an initial 

analysis of the model. A total of 100 replications are carried out within each experiment 

and the mean and 95% confidence interval are recorded. Version 12 of JMP (2016) was 

used as the statistical tool to analyze the results.  

E. VARYING THE NUMBER OF DISCRETE TIME SENSORS 

The number of discrete time sensors is varied in the first experiment, with a 

detection range of 0.4 degrees and a detection probability of 0.8. From Figure 20, we see 

that the median of the probability of detection increases as the number of discrete sensors 

increases. We observe an increase of approximately 0.03 in the mean probability of 

detection between 3 and 10 sensors, and an increase of 0.04 in the probability of 

detection between 10 and 20 sensors, as listed in Table 5. The table includes the values of 

the mean, 95% confidence interval, standard deviation and standard error of the mean. 

While it is logical that as the number of sensors increases, the likelihood of detection 

would increase, from the results, the increase was not as significant as we would expect it 

to be. Presumably, this could be due to the placement of the sensors, which focused on 

the high-probability detection points, which meant that additional sensors might not 

detect the target that traversed on the lower probability paths. We also observed some 

outliers in the dataset, particularly more so when the number of discrete sensors is small. 

The small probability occurs when all, or almost all of the sensors report a negative 

sighting and this is more likely to happen when the number of discrete sensors is small. 

When the number of discrete sensors is high, the probability the majority of the sensors 

register a negative sighting is small, hence fewer outliers.  
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Figure 20.  Boxplot of the Probability of Detection by Varying the Number of 
Discrete Time Sensors.  

Table 5.   Probability of Detection with Increasing Discrete Time Sensors.  

Number of 
Discrete Sensors 

Mean Lower 
95% CI 

Upper 
95% CI 

Std Dev Std Error 
Mean 

3 0.4214 0.4148 0.4279 0.03312 0.00331 

10 0.4578 0.4400 0.4755 0.08947 0.00895 

20 0.5054 0.4941 0.5168 0.05737 0.00574 

 
 

F. VARYING THE SENSOR DETECTION PROBABILITY 

Next, the thesis varied the sensor’s probability of detection using 10 discrete 

sensors with a size of 0.4. From Figure 21, we observe an increase in the probability of 

detection as the detection probability increases. Also, the variability of the results is 

higher when the detection probability is low, which can be observed from the size of the 

boxplot and the standard deviations reported in Table 6. It would seem that the sensor 

detection probability plays a significant role in the probability of detection, given that 
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there was a difference of approximately 0.15 when the sensor’s detection probability is 

reduced from 0.9 to 0.6. This could be due to the fact that a high detection probability 

would mean higher chances of locating a target so it is more likely that many of the 

sensors deployed would indicate a positive sighting, thereby reducing the variability of 

the results. Additional sightings of the same target do not add to the probability of 

detection. 

 

Figure 21.  Boxplot of the Probability of Detection by Varying Sensor the 
Detection Probability.  

Table 6.   Probability of Detection by Increasing 
the Sensor Detection Probability.  

Sensor 
Detection 

Probability 

Mean Lower 
95% CI 

Upper 
95% CI 

Std Dev  Std Error 
Mean  

0.3 0.1652 0.1486 0.1818 0.08368 0.00837 
0.6 0.3687 0.3529 0.3845 0.07963 0.00796 
0.9 0.5137 0.5043 0.5225 0.04579 0.00458 
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G. VARYING THE SENSOR DETECTION REGION 

In the last experiment, we varied the sensor’s detection region, using 10 discrete 

sensors each with a detection probability of 0.9. The boxplot in Figure 22 shows an 

increase in the probability of detection as the detection region increases. There are a few 

outliers in the dataset for each case. In Table 7, we see that 10 sensors with a detection 

region of 0.8 (in degrees), similar to those for the Lynx multi-mode radar, can offer a 

probability of detection close to 0.8. If that region is reduced by half to 0.4, however, the 

probability of detection decreases by about 0.3. Thus, it would seem that a wider 

detection range can capture a higher number of Brownian bridges per sensor, thereby 

increasing the likelihood of locating the target.   

 

Figure 22.  Boxplot of the Probability of Detection by 
 Varying Detection Region Size.  
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Table 7.   Probability of Detection by Increasing Detection Region Size.  

Sensor Region 
Half Width 

Mean Lower 
95% CI 

Upper 
95% CI 

Std Dev Std Error 
Mean  

0.2 0.2272 0.2241 0.2303 0.0158 0.00158 
0.4 0.5137 0.5043 0.5225 0.0458 0.00458 
0.6 0.6832 0.6680 0.6984 0.0767 0.00767 
0.8 0.7876 0.7757 0.7995 0.0598 0.00598 

 
 

H. TRADE-OFF ANALYSIS  

A trade-off analysis was conducted between the number of discrete sensors and 

the detection range, to investigate whether having a higher number of short-range 

unmanned sensors, like a swarm of small-sized drones, could replace the more expensive 

UAVs such as the Gray Eagle. The thesis varied the configuration of the parameters, as 

shown in Table 8, replicated the experiment 100 times with each configuration, and 

compared the results to those of a sensor having capabilities referenced from the Lynx 

multi-mode radar system. The sensors’ detection probability in the configurations was 

kept constant at 0.8. The summary of results is shown in Table 8. In the first 

configuration, the mean of the probability of detection was the highest at 0.68, but it also 

has the highest variability, with its standard deviation at 0.168. The second configuration 

produces a probability of detection of 0.6, which is within one standard deviation of the 

first configuration. Both the third and fourth configurations have the lowest values for the 

probability of detection at about 0.2. From the boxplot in Figure 23, we observed a 

noticeable decrease in the probability of detection as the sensor width decreases, even 

though the number of discrete sensors is increasing.  
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Table 8.   Probability of Detection for the Various Configurations.  

Configurations Mean 
Lower 

95% CI 
Upper 

95% CI 
Std Dev 

Std Error 
Mean 

Benchmark, based on 
Lynx multi-mode radar 
and 10 discrete sensors 

0.7876 0.7757 0.7995 0.0598 0.00598 

Configuration 1: 
15 discrete sensors, 
sensor width of 0.7 

0.6821 0.6487 0.7155 0.1682 0.0168 

Configuration 2: 
20 discrete sensors, 
sensor width of 0.5 

0.5962 0.5843 0.6080 0.0598 0.00598 

Configuration 3: 
30 discrete sensors, 
sensor width of 0.2 

0.2031 0.1953 0.2109 0.0392 0.00393 

Configuration 4: 
125 discrete sensors, 
sensor width of 0.2 

0.1987 0.1890 0.2084 0.0489 0.00489 

 

 

Figure 23.  Boxplot of the Probability of Detection by Various Configurations.  
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From the results, it seems that a high-quality sensor, like that of the Lynx, is still 

effective in detecting a target even if the number of discrete sensors is small. As the 

sensor size decreases, intuitively, it is expected that a higher number of discrete sensors 

would be required. Looking at the third and fourth configurations, it would seem that a 

minimal sensor width is required, beyond which there is only a very low chance of 

detecting a target. This could, however, be due to the method used to estimate the 

probability of detection with intelligence inputs. At each sensor coverage area, only 

Brownian bridges that are not yet flagged will be flagged and added up. Coupled with the 

small sensor size and the fact that we deploy the sensors at the highest probability 

regions, the sensors would likely be concentrated along the most likely paths of the 

target. As such, these sensors would keep picking up Brownian bridges that have already 

been flagged, which could explain the low probability. One possible idea to avoid this 

issue would be to regenerate the Brownian bridges based on the intelligence inputs at 

each discrete time step by treating the sensor coverage area as a waypoint. Future work 

will develop more complex algorithms for deploying sensors that will avoid this overlap. 

It is recommended that more research be done in exploring the relationship of the 

sensors’ attributes and the probability of detection through other forms of deployment 

algorithms, such as random deployment or a fixed deployment scheme. It could also be 

followed up with a nearly-orthogonal Latin hypercube (NOLH) design of experiment to 

fully investigate the relationship between the attributes and the probability of detection.  

I. ANALYSIS OF RESULTS  

In summary, the probability of detection of a target is largely dependent on the 

sensor width and the number of discrete sensors. The sensors’ detection probability has 

an impact on the variability of the probability of detection. From the trade-off analysis, it 

would seem that a Lynx multi-mode radar or equivalent is still effective at detecting 

targets even when just deploying a small number of discrete sensors.    

Given the limitations of size and electrical power of an unmanned system, it could 

be difficult to boost the range of a sensor any further. As such, the thesis would 

recommend that if the sensor’s detection range is small, it is perhaps cost effective to 
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overlap the sensors to achieve a wider detection range at a discrete time, as shown in 

Figure 24. This could be programmed through cooperative algorithms that are described 

in Lau’s (2015) work. If not, it would probably be ideal to continue using unmanned 

vehicles with capabilities close to those of the Lynx multi-mode radar sensor for the 

deployment of the networked sensors, instead of using cheaper but less effective 

alternatives.  

 

Figure 24.  Overlapping Multiple Sensors to Achieve Wider Search Areas 
in a Networked System.  
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VI. CONCLUSION AND RECOMMENDATIONS 

Given that the technology of unmanned systems is advancing and maturing, we 

believe that it is a good opportunity to research cooperative and autonomous algorithms 

to deploy such sensors. This research developed one such model that we could employ to 

automate the placement of sensors, as part of the work to achieve a fully autonomous 

algorithm in a “field and forget” concept. In Chapter V, we also demonstrated the use of 

the model to provide an analysis of the attributes of the sensors to be deployed to improve 

the probability of detection.   

A. DEVELOPING THE BBMM 

The thesis focused on developing the BBMM to represent a possible military 

scenario and utilized it as a model to estimate the probability of detection. We describe 

modifications and extensions to the BBMM to make it useful in generating heat maps for 

target location given uncertain intelligence. We were able to use the BBMM to determine 

the locations with highest probability of detection at discrete points in time and deploy 

the sensors to those locations. Using the BBMM, the thesis demonstrated one approach 

to automate the placement of sensors, laying the foundation for future research in 

autonomous algorithms involving a network of sensors.  

B. EMPLOYING THE BBMM TO STUDY ATTRIBUTES OF SENSORS 

Using the BBMM, the thesis also went on to investigate the attributes of the 

sensors and their effect on the probability of detection of the target. The thesis also did a 

simple trade-off analysis between the number of discrete sensors and the size of the 

detection region, using parameters referenced from current unmanned sensors. The 

analysis provided an initial recommendation that such a network of sensors should 

exploit a wider sensor detection region at discrete points of time. The thesis also 

suggested a possible configuration for the deployment of such a network, which is to 

have wider search areas by overlapping multiple sensors.  
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C. FUTURE WORK  

There is room for more follow-on research in two areas. The first is to continue 

work to extend the BBMM, such that it could account for continuous looks using sensors 

that are either stationary or moving. One possible extension of the model would be to 

look at the deployment algorithm, using a random deployment or deploying the next 

sensor based on the intelligence inputs from the previous sensor. This would allow us to 

understand the different possible types of deployment configurations and how it could 

affect the probability of detection as well.  

The second area is to continue to investigate the effects of the attributes of the 

sensors on the probability of detection. This could be achieved through the design of a 

NOLH experiment, to ensure a more comprehensive understanding of the effects and 

their interactions.  

With more time and research, we foresee that we can truly exploit a network of 

fully autonomous systems to make better decisions in the face of uncertainty in 

intelligence collection. 
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