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1. Introduction

TURF development has been ongoing at AFRL/RQRS for over two years and has reached a stage where most of
the underlying code data-structures and interfaces are at a level of maturity at which it is possible for collaborators
to begin writing external modules for the framework. To facilitate bringing these collaborators up to speed in
writing modules for TURF, the TURF-IR has the capabilities in place to demonstrate bare-bones kinetic and
fluid simulations, including a few example input files to provide convenient starting points for the development
of additional physics capabilities. Though the framework has been designed in part to facilitate the creation of
modules that replicate the functionality of Coliseum/HPHall, it must be emphasized that the TURF-IR is intended
to stimulate academic collaboration and does not provide equivalent real-world capabilities to the Coliseum/HPHall
suite[6, 7, 4]. As such, this software by itself cannot be used to design or analyze real systems.

2. Core Structure

TURF is designed around a basic tree hierarchical object structure. TURF objects are built around this core
“General Service Object” or “GSObject” that facilitates construction of object trees and allows branches of the
tree to be recursively copied across disparate memory spaces such as from the CPU to GPU or across the message
passing interface (MPI) without losing their structural integrity. Because TURF objects are all derived from this
basic type, in addition to the core functionality required for this recursive data movement, the GSObject also
facilitates recursive auto-documentation of runtime object structure.

The objects of TURF can be divided between data objects and operation objects. The number of data objects
are intentionally restricted to provide a basic common skeleton of data storage on which a broad set of operations
can be applied. These basic data objects with minimal independent functionality facilitate code reuse by providing
a common basis though which operations interact. They also help simplify parallel communication by minimizing
the set of disparate objects that must be transferred. The operation objects define the key application programming
interface through which developers are encouraged to interact with the framework. They are intended to represent
compact mathematical operations and consist of 3 key components. Every operation includes an “init” function
that is passed a map of parameter-key values. It is the operation’s responsibility to parse this map to initialize all
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the local information, create data-structures as needed, and query the existing object hierarchy for references to 
additional required objects needed to function. For some operations such as initial conditions, this initialization 
is all that is required. For operations that evolve the problem solution, an “apply” function is defined. This 
function is called as the framework iterates through a sequence of operations to perform a specific function on the 
data. Whenever possible, this functionality should be further broken down into one or more “core” functions that 
represent the functionality in a data independent parallel form that is designed to be agnostic to whether the core 
is applied sequentially on a single process, in parallel through threads or as implemented by OpenMP, or in parallel 
on an accelerator such as the GPU.

Though additional data-structures may be created and inherited from those already included in the TURF-
IR, this practice is discouraged in favor of using existing data-structures to the greatest extent possible so that 
operations apply in the largest context possible. Both the organizational layout of the data as well as the sequence of 
operations performed on the data are then constructed at runtime facilitating rapid modular algorithm design. As 
a result of this highly modular design, library modules of operations can be included or omitted without impacting 
the functionality of other modules. This “plug-in” model implies that, if a particular release of TURF is missing 
a module (e.g. a C-R physics module), there are no hooks to indicate that a particular module is missing. In 
this way, reverse engineering the functionality of a module from the generic interfaces defined by the framework 
is impossible. For an authorized developer, however, it is critical that the interfaces between their modules and 
the framework are well-defined. Actually having a copy of the TURF-IR permits them to test the compatibility 
of their modules within the framework and helps ensure data-structure compatibility and adherence to the module 
interface for delivered code.

3. Key Data-structures

Creating modules that interface efficiently with TURF requires a detailed understanding of the layout of data 
in memory (i.e. the data-structures). These underlying data-structures are largely tied to the sort of data being 
stored (particle/field data) and the sort of mesh on which it is being stored (mesh-free/structured mesh/unstructured 
mesh) but are all based on a custom multi-dimensional matrix object called gMatrix, a GSObject encapsulation 
and extension of the matrix objects used extensively in the AFRL/RQRS’s prior research codes[9, 8, 10, 5, 11]. As 
a fundamental data object, it is generic templated container class. The mesh classes of SMesh (structured) and 
UMesh (unstructured) are compound objects of header information and gMatrix objects based on generic mesh 
classes used also extensively by AFRL/RQRS over the last five years in numerous PhD and Masters theses (refs?). 
In addition to mesh objects, the TURF-IR includes examples of basic particle and field data objects with similar 
header/gMatrix compound structure.

4. Basic Functionality

For this version of the TURF-IR, the computational domain is centered around a constant spaced global Carte-
sian coordinate system. Though this “LogicalWorld” object is derived from a more general “World” object, the 
current version of the framework assumes the existence of the global real to logical coordinate system to facilitate 
domain patching automation while varying resolution. Active regions of the global coordinate system are defined 
by “LogicalDomain” objects. These are essentially intended to be discrete axis aligned blocks for the sake of do-
main decomposition. Computation on every domain should be able to run independent of the others except for 
discrete synchronization points at which time patches between domains are guaranteed to have completed. These 
synchronization points are the end of computational stages.

Once the world and domains have been created, various “Operations” are applied. These operations can create 
additional data objects to attach to the domain, set initial and boundary conditions, solve sets of equations, write 
output, or any number of other manipulations of the data within the framework so long as they may be applied for 
one domain at a time independently. Communication between domains is restricted to stage boundaries to preserve 
this independence. The intent of this is two pronged. The first goal is to encourage as much fine grain parallelization 
as possible. Extremely broad definition of an operation is also intended to avoiding locking the framework to a 
specific set of applications due to more rigidly defined interfaces and phases of computation. The function of the 
framework is then an extremely generic statement of, “There exists a set of data on which a sequence of parallel 
operations may be applied that can be broken down into discrete stages between which communication between 
the datasets may be performed.” In general, the world typically advances in computational time looping through
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the operations, but this functionality is only included to assist in timestep synchronization between domains as 
this is a commonly required functionality not easily obtainable in a domain independent manner. The form of the 
time advancement, whether implicit, or explicit, or iteration towards steady state, must be defined as built into the 
sequence of operations rather than a pre-selected as a trait of the framework.

5. Capabilities

The ultimate capability of TURF-IR is really dictated by how the parts are used together. While TURF-IR is not 
crippled and is intended to provide reasonable parallel scaling to look at fairly computationally challenging problems. 
This scaling will be a primary thrust for verification in future infrastructure releases. However, the TURF-IR simply 
lacks the physics modules to perform real-world simulations. In particular, it does not have any of the sputtering 
capability nor HPHall interfaces which make the Coliseum suite a tool for realistic spacecraft-thruster interaction 
modeling. A similar situation exists for the fluid and Vlasov capability in the TURF-IR. They are limited to a 
low-order and low-dimensionality, respectively, to offer only limited capability for real-world simulation. They do 
provide enough framework to allow our external collaborators to add different type of high-order solvers at our 
discretion and to run many fundamental test cases used in evaluating numerical methods.

The visualization capability provided by TURF-IR is the ability to write various VTK output formats for 
structured/unstructured grids and fields as well as some line plot data output. TURF also includes a compilation flag 
that allows the framework to be compiled with VisIt (DoE) libSim[15] libraries for near-realtime in-situ visualization. 
When included, all visualizeable data-structures such as particle distributions, meshes, and field data are accessible 
automatically if attached to the GSObject hierarchy from the World. Because this process is automatic, access 
includes temporary buffered versions of the objects such as ghost and exchange particle distributions which can 
aid in debugging. Access to data is currently only available between iterations through the entire operation stack, 
but future versions of TURF may be modified to allow visualization after each operation while in debug mode to 
facilitate visual debugging. The libSim functionality is still experimental and currently only operational on a single 
MPI process, though the interface was designed for full parallel scalability.

Table 1 below provides a list of Operations included in the TURF-IR with short descriptions which are used 
in the accompanying tutorials covering a particle heatbath[13, 14], direct simulation Monte Carlo 1D shock [1], a 
1D1V collisionless electrostatic shock [3], and a 3D3V electrostatic collisionless particle in cell test case[12].

6. Extended Capabilities

Beyond the material covered in the tutorial, several additional tutorials are currently being developed. These 
include a PIC and Fluid versions of the collisionless shock tutorial using the same problem setup[2], ionizing break-
down using MCC collisions with particle merging and splitting, 1D Euler shock tube and 3D Euler shock-bubble 
fluid test cases, 3D DSMC bow-shock examples for both geometrically prescribed bodies as well as triangulated 
surface meshes, and a GPU accelerated version of the heatbath tutorial. Many of the Operations required for 
development of these tutorials are already complete but are not yet ready to be incorporated into the infrastructure 
release. The intent is to transition many of these Operations into the infrastructure in the next infrastructure 
release. These operations may nevertheless be available to select developers as part of the thermophysics universal 
research framework development (TURF-DEV) package on a case-by-case basis. Brief descriptions of the operations 
are provided in Table 2.

In addition to the TURF-DEV operations nearing incorporation in the infrastructure, another class of TURF-
DEV operations are available that are still in experimental phases of development or are potentially too specific 
research problem dependent to warrant inclusion in the infrastructure. Brief descriptions of these operations are 
included in Table 3 as reference for some future areas of development.

7. Conclusion

The TURF-IR is an interim release intended to stimulate collaboration by demonstrating code data structures 
and interfaces in the context of very basic fluid and kinetic simulation capabilities; however, by itself, this software 
cannot be used to design or analyze real systems.
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Table 1. Summary of operations included in TURF-IR.

Module Operation Description

DSMC SPDistDSMCConstantICOp Initial distribution of particles inside the domain
DSMC SPDistDSMCOp DSMC collision calculation
DSMC SPDistDSMCSampleOp Blend running average of field data
DSMC SPDistDSMCSampleOp Sample particles

Field LogicalBCConstantOp Set value of cell centers in box every iteration
Field LogicalBCXtrapOp Sets a physical boundary to extrapolation
Field LogicalFieldAddOp Adds one field variable to another
Field LogicalFieldScalarMulOp Multiplies field by scalar constant
Field LogicalFieldSetOp Set field values to constant
Field LogicalFieldSetOp Initialize the field parameters
Field LogicalFieldVolumetricMulOp Multiplies or divides field data by cell volumes
Field LogicalGradientCellCenterOp Calculates the gradient of a field vector
Field LogicalNodeGradientOp Calculate node-centered gradient of cell center field
Field LogicalNormOp Calculate Lp-norm of field variable
Field LogicalPoissonBoltzmannStrip1DOp Solves for the electric field assuming Boltzmann electrons
Field LogicalPoissonStripOp Red/Black line relaxing Poisson solve
Field LogicalResidualOp Calculate residual of Poisson solve

Particle SPDistBCSpecOp Specularly reflecting boundary condition
Particle SPDistCellIDOp Find cell ID associated with particle location
Particle SPDistCombineOp Unifies the particles from different distributions
Particle SPDistConstantBCOp Add Particles in box with uniform cell density via weights
Particle SPDistConstantICOp Initialize particle distribution & add SPDistConstantBCOp
Particle SPDistDensityToFieldOp Sum real and computational particles/cell to field
Particle SPDistDSMCConstantBCOp Injection of constant weight particles
Particle SPDistESPushOp Electrostatic particle push using node electric field
Particle SPDistMoveOp Linear particle push
Particle SPDistPatchOp Transfers particles between domains
Particle SPDistSortOp Sort particles according to cell ID
Particle SPdistSplitOp Split particle distribution into two by cell ID flag
Particle SPDistToFieldOp Sum particle charges to field entry

Plotting LogicalFieldWrite1DOp Write to output files for line plots
Plotting LogicalFieldWriteVTKOp Write to output files for 3D plots in .vts format
Plotting LogicalFieldWriteVTKROp Exports the field data in .vtr format
Plotting LogicalVlasov2DWriterOp Exports a 2D phase-space plot
Plotting VlasovMetricsOp Exports Vlasov metrics for mass and energy conservation
Plotting VolumeRenderOp Single cubic domain realtime volume rendering

Utility CriteriaStageOp Continue to next stage if quantity below criteria
Utility NextStageOp Continue to next stage

Vlasov LogicalBCVlasovExtrapolateOp Sets a velocity boundary conditions to extrapolation
Vlasov LogicalVlasovCalcDensityOp Calculates the density given a velocity distribution
Vlasov LogicalVlasovCalcFluidVariablesOp Calculate field variables given a velocity distribution
Vlasov LogicalVlasovFluidBoltzmannSetOp Boltzmann distribution initial condition for Vlasov fluid
Vlasov LogicalVlasovFluidConstantICOp Creates or initializes a new Vlasov fluid
Vlasov Vlasov1D1VSLOp Semi-Lagrangian Vlasov advection
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Table 2. Summary of operations included in TURF-DEV.

Module Operation Description

Field BCFaceXtrapOp Extrapolate field over face direction
Field LogicalBCMirrorMoveInOp Move and add field ghost data over reflecting surface
Field LogicalBCPeriodicOneDomOp Copy ghost data for single domain periodic BC
Field LogicalFieldAccumulateOp Add one field data to another field
Field LogicalGradientOp Calculate cell centered gradient
Field LogicalICConstantOp Sets field values in box to constant
Field LogicalPoissonOp Red/Black Gauss-Seidel Poisson Solve
Field LogicalPoissonStrip1DOp Red/Black 1D strip Poisson solve w/o transverse cells
Field UFieldConstantICOp Set unstructured field data to constant value
Fluid FluidConstantICOp Set field parameters based off fluid definition
Fluid FluidESPushOp Advance fluid state with electrostatic forcing
Fluid FluidSphereICOp Set fluid parameters for cells within a sphere
Fluid IntegrateFluxOp Sum flux variables to advance fluid state
Fluid LinearSemiLagrangianOp Linear advection using semi-Lagrangian advance
Fluid RoeFluxCalc2Op Calculate 2nd order Roe flux
Fluid RoeFluxCalcHLLE2Op Calculate 2nd order Roe flux with HLLE2 limiter
Fluid RoeFluxCalcHLLEPOp Calculate 2nd order Roe flux with HLLEP limiter
Fluid RoeFluxCalcOp Calculate 1st order Roe flux
Fluid TVDFluxCalcOp Calculate total variation diminishing flux

Geometry LogicalMeshSurfaceSugarcubeOp Create sugarcube surface mesh/structured mesh intersection
Geometry SPDistBCSurfBoxICOp Add particles outside sugarcubed surface only
Geometry SPDistSugarcubeBCMoveOp Linear particle advance with specular reflection of marked cells
Geometry SPDistSugarcubeSurfBCMoveOp Linear particle advance with triangulated surface reflection

Particle SPDistBCBoxICOp Initialize particles uniformly in physical box except flagged cells
Particle SPDistBoxICOp Initialize particles uniformly in physical box
Particle SPDistDirectCellMergeOp Default RMS x & v random sign merge
Particle SPDistDirectCellSplitOp Default RMS x & v random sign split
Particle SPDistESPhiCNPushOp Crank Nicolson electrostatic particle potential push
Particle SPDistESPhiNCNPushOp Nonlinear Crank Nicolson electrostatic particle potential push
Particle SPDistESPhiNCNSpherePushOp Nonlinear Crank Nicolson in spherical ES-potential push
Particle SPDistESPhiPushOp Explicit electrostatic potential particle push
Particle SPDistMCCOp Monte Carlo Collision operator
Particle SPDistPatchICOp Inter-domain particle patch
Particle SPDistPerturbedCellIDOp Particle cell ID with added perturbation for smoothing
Particle SPDistSortedStatToFieldOp Accumulate cell velocity moments from sorted distribution
Particle SPDistTemperatureToFieldOp Calculate cell temperature from distribution
Particle SPDistToEMFieldOp Accumulate cell charge and current from distibution
Particle SPDistToFieldLinear1DOp Accumulate 1D linear weight charge to cells
Particle SPDistToFieldLinearOp Accumulate linearly weighted charge to cells
Particle SPDistVSortOp Sort particles by cell and velocity octant

Plotting LogicalFieldStatWriteVTKOp Write accumulated statistic data to VTK file
Plotting LogicalFieldWriteVTKUOp Write unstructured field data to .vtu file
Plotting LogicalVlasovFluidWrite1DProbeVDFOp Write particle VDF from particles in probe region
Plotting UFieldWriteVTKOp General unstructured field writer

SourceModel SPDistNormalMaxwellianStreamOp Maxwellian stream source from triangulated surfaces

Vlasov LogicalBCPeriodicOneDomVlasovOp Periodic BC for Vlasov
Vlasov LogicalFluidToLogicalVlasovFluidOp Create Vlasov VDF from Fluid Variables
Vlasov LogicalVlasovFieldVolumetricMulOp Multiply or divide Vlasov data by cell volumes
Vlasov LogicalVlasovFluidSetOp Set Vlasov field data to constant
Vlasov SPDistToLogicalVlasovFluidOp Accumulate particle weights to Vlasov VDF
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Table 3. Summary of additional experimental (E) and research (R) operations included in TURF-DEV.

Module Operation Description

Field ConstantAnnulusPotentialOp (R) Apply annularly symmetric potential to field
Field ConstantSphericalPotentialOp (R) Apply spherically symmetric potential to field
Field ConstantWellPotentialOp (R) Apply constant parabolic well potential to field
Field LogicalICFunctionOp (E) Set field value using external function

Geometry LogicalMeshSurfaceBBoxSplotchOp (E) Mark surface triangle bounding box on cells

Particle SPDistBCChildLangmuirOp (E) Child Langmuir surface emission
Particle SPDistBCSCLOp (E) Space charge limited flux boundary
Particle SPDistBCSecondaryOp (E) Secondary emission boundary condition
Particle SPDistBCTransOp (E) Translate particles in box to new location
Particle SPDistCFEBCOp (E) Fowler-Nordheim cold field emission BC
Particle SPDistCopyPosBoxICOp (E) Initialize particles with VDF but positions from second dist
Particle SPDistESPhiPushVerletHalfOp (E) Verlet electrostatic potential particle push
Particle SPDistDirectCellMergeMixOp (R) Position sign from xv moment merge
Particle SPDistDirectCellMergeMixXVOp (R) Position from xv moment merge
Particle SPDistDirectCellMergePCAOp (R) Principal component analysis merge
Particle SPDistDirectCellMergeXxVOp (R) Angular momentum preserving merge
Particle SPDistDirectCellSplitMixOp (R) Position sign from xv moment split
Particle SPDistDirectCellSplitMixXVOp (R) Position from xv moment split
Particle SPDistDirectCellSplitPCAOp (R) Principal component analysis split
Particle SPDistDirectCellSplitXxVOp (R) Angular momentum preserving split
Particle SPDistOrbiterICOp (R) Period synchronized particle initial condition

Plotting LogicalFieldCatalystOp (E) Kitware Catalyst plotting connection

Utility ConstantOperatorOp (E) Work to allow generic constant parsing
Utility FromGPUOp (E) Recursive GSObject transfer from GPU
Utility ToGPUOp (E) Recursive GSObject transfer to GPU

Vlasov CreateVlasovVariableOp (E) Create new Vlasov fluid variable
Vlasov LogicalVlasovFluidFunctionICOp (E) Initialize Vlasov data using external function

VlasovPIC SPDistConstantVlasBCOp (R) Constant boundary conditions for VlasovPIC
VlasovPIC SPDistConstantVlasICOp (R) Constant initial conditions for VlasovPIC
VlasovPIC SPDistVlas2wOp (R) Density to weights for VlasovPIC
VlasovPIC SPDistVlasDensityToFieldOp (R) Integrate density to field data for VlasovPIC
VlasovPIC SPDistw2VlasOp (R) Weights to density for VlasovPIC
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1. Introduction

This tutorial provides steps in setting up the DSMC example provided in the following directory:
tutorial-TURF/DSMC/DSMC 1DShock. This folder contains two subfolders, DS1V and TURF. The DS1V contains
reference cases for Argon shocks using the DS1V code described in Section 5 below. The TURF folder contains input
files to run the same Argon shock cases within TURF. For example, the TURF/M1.2 folder contains the input files
for running the Mach 1.2 shock test case. Once in the specific case directory, world.list should be pointed to the
file world.dsmc1Dshock.list by typing

projects/dat-TURF/> ln -s world.dsmc1Dshock.list world.list

in the command line, as in other examples. The script file world.dsmc1Dshock.list will execute the DSMC
operations listed in operations.dsmc1Dshock.list to simulate the 1D normal shock problem using the DSMC
method. In order to run DSMC simulations properly, the value for FNUM must be set to the same value for all
the DSMC operations, where FNUM is the number of physical particles represented by a single simulation particle.
Therefore, when introducing particles into the domain, operations that require the user specified FNUM must be
used; these operations are named as SPDistDSMCConstantICOp and SPDistDSMCConstantBCOp. The operation
SPDistDSMCConstantICOp distributes particles uniformly inside the simulation domain. On the other hand, the
operation SPDistDSMCConstantBCOp creates particles outside the domain, and a fraction of these particles flow
into the domain. The DSMC collision calculation is done in SPDistDSMCOp, and the same FNUM used in the
other operations must be used. Furthermore, SPDistDSMCSampleOp triggers the mixing of the field values between
iterations, allowing a smoother distribution at the end of simulation. These DSMC operations are explained in this
tutorial.
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2. Description of the Example Problem

In a fluid, disturbance information is communicated within a medium at the speed of sound, allowing the
upstream flow field to adjust accordingly. However, when the flow velocity is greater then the speed of sound, the
disturbance information cannot be communicated fast enough, resulting in a formation of a shock. The shock creates
a “discontinuity” or a sudden change in flow properties such as velocity, pressure, and temperature. Across a shock,
the pressure and temperature always increase while the velocity always decreases from upstream to downstream.
The example to simulate with the DSMC part of TURF is the 1D normal shock problem, in which the shock forms
in a plane perpendicular to the flow direction. In this problem, the flow properties at upstream and downstream
regions with respect to the shock location are related through the following equations [3].

ρ1u1 = ρ2u2

p1 + ρ1u
2
1 = p2 + ρ2u

2
2(1)

h1 +
1

2
u21 = h2 +

1

2
u22

where ρ is the density, u is the velocity, p is the pressure, h is the enthalpy, and subscripts 1 and 2 denote upstream
and downstream, respectively. Equation (1) is obtained by integrating the Euler equations, a set of conservation
equations for mass, momentum, and energy that are applicable for such flows [1]. In a perfect gas, the speed of
sound, a, can be determined using the isentropic relation.

(2) a2 =

(
∂p

∂ρ

)
s

=
γp

ρ
= γRsT

where γ is the heat capacity ratio defined as γ = 1 + 2/f , f is the degree of freedom (i.e. 3 for a monatomic gas
and 5 for a diatomic gas), Rs is the specific gas constant (i.e. 208.13 J/kg·K for argon), and T is the temperature.
Using Eq. (1) and the perfect gas assumption, the downstream flow properties can be determined if the upstream
flow properties are known [3].
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M2
1

(
M2

1 − 1
)

(5)

where M is the Mach number defined as M = u/a and n is the number density. In setting up the 1D normal shock
problem, the downstream flow properties need to be evaluated and input in operations.list prior to running
TURF.

3. Setting up the DSMC Example

One way to set up the 1D normal shock problem is to introduce uniformly distributed gases upstream and
downstream of the shock location. Given the upstream flow properties, appropriate downstream flow properties
are determined by Eqs. (3) to (5). Table 1 provides the downstream flow properties for argon gases of T1 = 293,
n1 = 1× 1022 m−3, and a1 = 318.8 m/s at M1 of 1.2, 1.4, 2.0, and 8.0. The upstream flow velocities corresponding
to the Mach number of 1.2, 1.4, 2.0, and 8.0 are 382.4, 446.2, 637.4, and 2549.6 m/s, respectively. In order to
maintain the gas density and the shock location, the gas should also be flowing into the domain from the upstream
boundary according to the flow 1. At the interface between the two gases at different flow properties, the properties
are initially discontinuous, while they will develop smooth profiles as time evolves. These profiles can be compared
with the profiles obtained by other DSMC models or fluid models. Examples of shock profiles are also provided in
Ref. [2].

The script file world.dsmc1Dshock.list includes important parameters that define the problem, including the
information related to computational grid, time-step, species, etc, as shown below. Referring to world.dsmc1Dshock.list,
the number of interior cells can be found by dividing (bound hi-bound lo) by delta for each direction. In this
example, the grid contains 1000 cells in x-direction and a single cell for both the y- and z-directions. The gas
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Table 1. Downstream flow properties for upstream Mach number of 1.2, 1.4, 2.0, and 8.0. The
values are for argon gas.

Downstream Upstream Mach Number, M1

Flow Property Symbol Unit 1.2 1.4 2.0 8.0
Velocity u2 m/s 294.9 282.3 278.9 667.3
Speed of Sound a2 m/s 348.4 376.0 459.4 1456
Mach Number M2 - 0.85 0.75 0.61 0.46
Number Density n2 1/m3 1.30 × 1022 1.58 × 1022 2.29 × 1022 3.82 × 1022

Temperature T2 K 350.1 407.8 608.9 6116

species is argon. Furthermore, the parameters to be output are the number of computational and physical par-
ticles which are specified as NAr and CNAr, respectively. This example uses three stages: INITIALIZE, MOVE,
and POSTOP. The script file operations.dsmc1Dshock.list contains all the operations within each of the three
stages, as listed in Table 2. This tutorial only covers the DSMC operations including SPDistDSMCConstantICOp,
SPDistDSMCConstantBCOp, SPDistDSMCOp, and SPDistDSMCSampleOp. Descriptions of the other operations can be
found in other tutorials.

DEFINE WORLD

NAME = DSMC_example

op_file = operations.dsmc1Dshock.list

coordinates = cartesian

origin = (0.0,0.0,0.0)

delta = (2.0e-5,2.0e-3,2.0e-3)

end_time = 1.0e-4

start_dt = 1.0e-8

fields = [NAr, CNAr]

species = [Ar]

stages = [INITIALIZE, MOVE, POSTOP]

start_iteration = 0 # Number of Poisson Iteration Before Start

END WORLD

############################################################################

## Domain Geometry

############################################################################

DEFINE DOMAIN DOM000

bound_lo = (0.0,0.0,0.0)

bound_hi = (2.0e-2,2.0e-3,2.0e-3)

END DOMAIN

4. DSMC Operations

4.1. SPDistDSMCConstantICOp. This operation sets up uniformly distributed particles within a box placed
inside the simulation domain. An example of inputs for SPDistDSMCConstantICOp are shown below. Unlike
SPDistConstantICOp, the real to computational particle wieght ratio,FNUM, is specified as an input. The box to
be filled with particles is bounded by BOUND LO and BOUND HI, in which the lower and higher bounds in Cartesian
coordinate are specified, respectively. The gas species is argon, and the corresponding mass of each molecule is
39.659 times the proton mass, Mp. In order to set up the 1D shock problem properly, the upstream and downstream
regions inside the computational domain are filled with particles according to flow properties 1 and 2. The initial
particle distribution obtained by the DSMC example is shown in Fig. 1. This example corresponds to the case with
M1 = 1.2, where the downstream flow properties are given in Table 1. Note that NAr is related to the number
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Table 2. Summary of operations listed in operations.dsmc1Dshock.list.

Stage Operation Description

INITIALIZE SPDistDSMCConstantICOp Initial distribution of particles inside the domain

SPDistConstantICOp Null particle distribution in ghost cells

MOVEOP SPDistDSMCConstantBCOp Injection of particles

SPDistMoveOp Advancement of particles

SPDistBCSpecOp Specular boundary condition

SPDistCellIDOp Find cell ID associated with particle location

SPDistSortOp Sort particles according to cell ID

SPDistDSMCOp DSMC collision calculation

LogicalFieldSetOp Initialize the field parameters

SPDistDensityToFieldOp Sum real and computational particles/cell to field

LogicalFieldVolumetricMulOp Multiplies or divides field data by cell volumes

SPDistDSMCSample2Op Blend running average of field data

POSTOP LogicalFieldWriteVTKOp Write to output files for 3D plots

LogicalFieldWrite1DOp Write to output files for line plots

density n such that n =NAr/∆V where ∆V is the size of a cell in m−3. There is a statistical noise associated with
the number of computational particles as the particle locations are determined using the random number generator;
the noise can be reduced by increasing the number of simulation particles.

DEFINE OPERATION

TYPE = SPDistDSMCConstantICOp

DATA_NAME = Ar-DST

MAX_NP = 12800000

BOUND_LO = (0.0,0.0,0.0)

BOUND_HI = (1.0e-2,2.0e-3,2.0e-3)

TEMPERATURE = 293.0

Z = 0

MASS = 39.659 Mp

NUMBER_DENSITY = 1.0e22

FNUM = 9.1892e8

VEL = (382.447,0.0,0.0)

END OPERATION
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Fig. 1. Initial particle distribution.

4.2. SPDistDSMCConstantBCOp. This operation sets up uniformly distributed particles within a box placed
outside the simulation domain. The size of box is modified such that it lies within the ghost cell region. An example
of inputs for SPDistDSMCConstantBCOp are shown below. Similar to SPDistDSMCConstantICOp, the box to be filled
with particles is bounded by BOUND LO and BOUND HI.

In the DSMC example, particles flowing out the simulation domain from ±x boundaries are simply discarded,
while fraction of particles created in the box flows into the simulation domain. When the simulation is at steady-
state, the particle counts flowing in and out the domain are maintained to be nearly equal.

DEFINE OPERATION

TYPE = SPDistDSMCConstantBCOp

DATA_NAME = Ar-DST

TEMPERATURE = 293.0

NUMBER_DENSITY = 1.0E22

FNUM = 9.1892e8

VEL = (382.447,0.0,0.0)

BOUND_LO = (-0.01e-2, 0.0e-3, 0.0e-3)

BOUND_HI = ( 0.00e-2, 2.0e-3, 2.0e-3)

END OPERATION

4.3. SPDistDSMCOp. This operation finds the number of collisions to perform within all the grid cells and apply
collisions based on the DSMC method. The variable hard sphere (VHS) molecular model is used to determine the
deflection of particles which requires inputs of ALPHA and DIAM where ALPHA and DIAM are the empirical factors that
determine the diameter variation and reference diameter of the molecule, respectively. The DIAM is the reference
molecular diameter at 273K such that a hard sphere of that diameter would have the correct fluid viscosity and
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ALPHA is viscosity-temperature power law coefficient, ω, minus the hard sphere value of 0.5. It is important to note
that ALPHA should not be confused with the variable soft sphere (VSS) model’s α parameter. These parameters can
be found in Ref. [2].

DEFINE OPERATION

TYPE = SPDistDSMCOp

SPDIST_DATA_NAME = Ar-DST

MASS = 39.659 Mp

ALPHA = 0.31

FNUM = 9.1892e8

KOVERM = 208.132

DIAM = 4.17e-10

FREQUENCY_TO_RESAMPLE_MFS = 2000

SORT_OP_NAME = Sort_Ar-DST

END OPERATION

4.4. SPDistDSMCSampleOp. This operation is similar to SPDistDensityToFieldOp except that it starts to
mix the fields after the time specified as an input. An example of inputs for SPDistDSMCSampleOp is shown below.
In the DSMC example, the fields NAr and CNAr are computed from the particle distribution at the computational
grid. After the time given to MIX START TIME, mixing between iterations is initiated. MIX START TIME should be
set to the time when the simulation becomes steady-state. This operation allows a smooth field distribution at
the end of simulation without using a very large number of simulation particles. The field distributions at 2,000
and 10,000 time-steps are shown in Figs. 2 and 3, respectively. In this example, mixing has been performed after
8,000 time-steps; the distribution is smoothed out significantly after mixing the field parameters for the last 2,000
iterations.

DEFINE OPERATION

TYPE = SPDistDSMCSampleOp

FIELD_DATA_NAME = FieldData

SPDIST_DATA_NAME = Ar-DST

PSORT_NAME = Sort_Ar-DST

FIELD_NAME = NAr CNAr

MIX_START_TIME = 8.0e-5

END OPERATION

4.5. SPDistDSMCSample2Op. This operation is another version of SPDistDSMCSampleOp needed for long sam-
pling times. Because TURF uses single precision floating point numbers for particles and fields for the sake of
GPU performance, the direct DSMC sampling starts to loose accuracy for large numbers of samples. For the
direct sample operation, the value of the sampled average field is first scaled by (nsample − 1)/nsample and then
particle weights are accumulated into the sample average scaled by wp/nsample. This means that in each cell, a
number of order (particles/cell) ∗nsample smaller than the total is added for each particle during the accumulation
phase. At approximately O(1, 000 − particles/cell) and O(10, 000) samples, the added pieces are O(1e7) times
smaller than the total resulting in lost single precision digits and bulk fluctuation of the sample values. Instead, the
SPDistDSMCSample2Op uses two density buffers to help alleviate this issue, NAr and NbarAr (along with particle/cell
counterparts). The instantaneous density is first accumulated in NAr using the standard SPDistDensityToFieldOp

operation, and then the sample averaged value is updated via N̄Ar = (NAr + (nsample − 1)N̄Ar)/nsample for each
cell. Furthermore, all calculations on the right hand side are performed in double precision prior to rounding to
attempt to help retain as many digits of precision as possible during the calculation which is impossible with the
sum updated in memory per particle as in the original version. The example shown also demostrates the use of the
LogicalFieldVolumetricMulOp to divide the value of NAr by the cell volume to convert absolute number of real
particles per cell into number density. These modifications are not necessary for the simple tutorial versions of the
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shock case because of the minimal sampling performed, but help in converging the results to the DS1V solution as
part of the code verification process in the next section.

DEFINE OPERATION

TYPE = SPDistDensityToFieldOp

FIELD_DATA_NAME = FieldData

SPDIST_DATA_NAME = Ar-DST

FIELD_NAME = NAr CNAr # Computational and Physical Number per cell

END OPERATION

DEFINE OPERATION

TYPE = LogicalFieldVolumetricMulOp

DATA_NAME = FieldData

FIELD_NAME = NAr

OP_OPTION = DIV # Divide by Volume (Default is Multiply)

RUN_AT_INIT = true

END OPERATION

DEFINE OPERATION

TYPE = SPDistDSMCSample2Op

FIELD_DATA_NAME = FieldData

SPDIST_DATA_NAME = Ar-DST

PSORT_NAME = Sort_Ar-DST

SRC_FIELD_NAME = NAr CNAr # Instantaneous Computational and Physical Number/Cell

DST_FIELD_NAME = NbarAr CNbarAr # Sampled Average Computational and Physical Number/Cell

MIX_START_TIME = 8.0e-5

SKIP = 5

END OPERATION

Distribution A: Approved for public release; unlimited distribution; PA (Public Affairs) Clearance Number TBD#XXXXX.

7

Distribution A: Approved for public release; unlimited distribution; PA (Public Affairs) Clearance Number 15200.



TURF 1D SHOCK WAVE EXAMPLE - DSMC SAMUEL J. ARAKI

Fig. 2. Particle distribution after 2,000 steps.

Fig. 3. Particle distribution after 10,000 steps.
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5. Comparison of Shock Profiles with Bird’s DSMC Code

The 1D shock profiles from the DSMC part of TURF can be compared with other DSMC programs for code
verification; in this tutorial, the results are compared with the 1D DSMC code, DS1V, developed by G. A. Bird
(available at www.gab.com.au). The DS1V code along with input files (ds1vd.dat) for the cases with M1 =1.2, 1.4,
2.0, and 8.0 are also provided in this tutorial. In order to obtain a smooth distribution at the end of simulaiton,
DS1V is run twice; first, the simulation is started using the “new run” (#3) option in the terminal, the simulation
is then stopped at a time greater than 2 × 10−5 sec, and finally the simulation is restarted using “new sample”
(#2) followed by the “adapt the cells” (#1) option. The resulting profile of density as a function of position can
be extracted from the output file, “PROFILE.DAT.”

Figure 4 compares the shock profiles computed with TURF and DS1V for the upstream Mach number of 1.2
and 2.0. The values are normalized according to,

(6) ρ̃ =
ρ− ρ1
ρ2 − ρ1

The original profile obtained by TURF fluctuated considerably compared to the profile by DS1V when time averaged
only over the last 20µs as shown in Figure 2. With the modification to the sampling procedure for 720µs of time
averaging (similar to DS1V) as described in Section 4.5, Figure 4 show the agreement between the two programs is
quite satisfactory.

(a) M=1.2 (b) M=2.0

Fig. 4. Normalized density computed by TURF and DS1V.
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1. Introduction

The purpose of this tutorial is to provide information on the setup of the collisionless electrostatic shock test
case. By this point it is assumed that you already have an basic understanding of how the operators in TURF work
and the purpose of both the world.list and the various operations.*.list files. For a review of the purpose of
these files please refer to the heatbath example tutorials. Instead this tutorial will focus on aspects that are specific
to this simulation and will only provide a cursory overview of basic topics. This tutorial is divided up into three
main sections, Section 2 provides an overview of the collisionless electrostatic shock experiment.

2. The Collisionless Electrostatic Shock

The collisionless electrostatic shock simulation is based on the experiment by Taylor, et.al, [2]. Figure 1 shows
the experimental setup as planned for upcoming validation experiments at AFRL/RQRS including a pulse shape
needed to drive a soliton used a related problem also originally performed in the same experimental device[1]. In
this experiment, Argon gas is fully ionized and separated into driver and target sections of a vacuum chamber.
The separation is maintained by a negatively biased grid held at a fixed potential. The number density of the
driver side is higher then the target but they share the same ion and electron temperature. At the start of the
experiment a ramp potential is applied to the driver side and a shock moves into the target side. For all cases the
ion temperature and driven number density was held at 0.2 eV and 109 cm−3 respectively. A sweep of parameter
space was accomplished by varying the electron temperature and the density of the driver gas. The electron to ion
temperature varies between 6 and 20 while the density varies from 1 to 20 percent. The initial setup that saw the
most study was at a density jump of 25 percent and an electron temperature of 7.5 and 15 eV.

There are several favorable parameters unique to this experiment that makes it an ideal test-case for a Vlasov-
Poisson simulation.

• Ion-Ion collisions can be neglected because the mean-free-path between collisions is on the order of 300
Debye lengths (λD) and the total domain of the chamber is about 1000λD.

• There are no applied magnetic fields and induced currents can be assumed to be neglibible which obviate
the need to solve the full Maxwell equations.

• The spatial symmetries of the experiment limit variations to be in only one direction so that a 1D1V Vlasov
simulation of the flow is sufficient.

In addition to these parameters, several additional assumptions are made which will be tested throughout the
upcoming TURF code validation and verification campaign.

• Modeling ion kinetic effects is important due to the collisionless nature of the plasma. This is to be validated
through comparison of kinetic and fluid solutions.
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Fig. 1. Design of AFRL/RQRS double plasma device experiments.

• The electrons can be accurately modeled as a Boltzmann equilbirum fluid sothat the fastest time scale that
needs to be resolved is the ion plasma frequency. This will be tested through comparison with experimental
results as well as future fully kinetic simulations which include electron kinetic effects.

• The flow is robust against spontaneously generated transverse modes so that the one-dimensional character
of the flow is preserved far enough from the boundaries.
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1. Introduction

The purpose of this tutorial is to provide an overview of how to setup and run a Vlasov simulation in the
Thermophysics Universal Research Framework (TURF). By this point it is assumed that you already have an
basic understanding of how the operators in TURF work and the purpose of both the world.list and the various
operations.*.list files. For a review of the purpose of these files please refer to the heatbath example tutorials.
Instead this tutorial will focus on aspects that are specific to this simulation and will only provide a cursory overview
of basic topics. This tutorial is divided up into three main sections: Section 1 of this tutorial provides an overview of 
the collisionless electrostatic shock experiment, Section 2 provides an explination of the world.list file, and finally
Section 3 details the operators necessary to run the collisionless electrostatic shock simulation with the Vlasov
solver within TURF.

2. World.list

The world.list file defines important parameters that are not unique to any one particular operator. This
includes information about the mesh, the time step and total run time, as well as the global variables. The only
new information included in the world.list that is unique to Vlasov solvers is the definition of the velocity space
origin and mesh spacing. These variables are defined via:

velocity_origin = (0.0,-0.5,-0.5)

velocity_delta = (15.625,1.0,1.0)

At this time each species can have its own unique bounds in velocity space but they must share the same mesh
spacing and origin.

This simulation uses seven different field variables including the electron and ion densities, the electric field vector,
the electric potential, a density for the electric field solver, mean Velocity, and temperature and are defined:

fields = [rhoE, rhoI, Ex, Ey, Ez, phi, rho_source]

fields = [Vmeanx, Vmeany, Vmeanz, Temperature]
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3. operations.vlasov.list

This section explains how to solve this problem using Vlasov methods within TURF. It is assumed that the
reader has a basic understanding of how to setup a simulation in TURF and only the information relevant to
Vlasov and this simulation in particular are detailed. The operations.vlasov.list file are broken up into three stages,
INIT, MOVE, and POSTOP which are responsible for the initialization, solvers, and plotting respectively.

3.1. operations.vlasov.list Initialization. In the initialize stage it is necessary to set the initial conditions which
includes defining a new phase-space variable. The phase space variable, fAR+, is defined using:

DEFINE OPERATION

TYPE = CreateVlasovVariableOp

DATA_NAME = VlasovFluidData

VBOX_LO = (-6000.0,-0.5,-0.5)

VBOX_HI = ( 6000.0, 0.5, 0.5)

VBOX_NGHOST = [3 0 0]

SPECIES_NAMES = fAr+

SPECIES_COMPOSITION = Ar

END OPERATION

The different fields are relatively self explanatory, but it should be noted that VBOX LO/HI are in units of meters
per second and the unused dimensions, Vy and Vz, need to have a length of one. Another important parameter is
the VBOX NGHOST which set the number of ghost cells in each velocity direction. If left unset, the default value of 3
ghost cells in the unused direction increases memory requirements by a factor of 49. The variable name is defined in
SPECIES NAMES, multiple species can be defined in this field. At a minimum the solver needs to know the mass and
charge of each species. This is accomplished in one of two ways. The preferred method is to define the individual
species that makes up each SPECIES NAMES. This is defined in SPECIES COMPOSITION. SPECIES COMPOSITION will
parse a chemical formula and calculate its mass and charge using an internal database of elements. Any values
defined in M and Z will be ignored. The second method is to manually set the mass and charge via M in kg and Z

respectively. For this method to work you must set the SPECIES COMPOSITION to None. These two methods can be
used together, but place holder will be needed in M and Z for the species defined via their SPECIES COMPOSITION.
For example the following code will use the internal database to calculate the mass and charge of fAr+ and fAr

but will set FakeVar using the values in M and Z. Note that place holders in M and Z are required.

SPECIES_NAMES = fAr+, FakeVar, fAr

SPECIES_COMPOSITION = Ar, None, Ar

M = -1.0, 1.0e-12, 23.3

Z = 1, -2, 0

This operator will not set the initial value of fAR+ so we will need to call another operator to set the distribution.
This is accomplished by:

DEFINE OPERATION

TYPE = LogicalVlasovFluidBoltzmannSetOp

PHASESPACE_TYPE = VlasovFluidData

BOUND_LO = (-100.0e-3,-0.5,-0.5)

BOUND_HI = ( 0.0e-3, 0.5, 0.5)

PHASESPACE_NAME = fAr+

TEMPERATURE_K = 2320.8 # 1.5ev

NUMBER_DENSITY = 1.25e15

INIT_ONLY = true

NUMBER_OF_DIMENSIONS = 1

END OPERATION

This sets up the initial VDF with a Boltzmann distribution for the driver side. The target side is set using the
same operator but with different BOUND LO/HI values and density. The important parameters are TEMPERATURE K
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and NUMBER DENSITY which sets the temperature in Kelvin and the total number density per cell in m−3. It should
be noted that the molecular mass does not need to be defined because that information is stored within the variable
fAr+. Another important parameter is INIT ONLY which tells the operator that it should only run once at the
beginning of the simulation. Otherwise the operation will overwrite the update with the initial conditions, though
this could also be used as Dirichlet boundary condition at domain edges in other simulations.

3.2. operations.vlasov.list Move. The next stage to run is the MOVE stage. This stage contains the advection of
the fluid in phase space as well as the electric field solver and is broken up into four main steps: (1) X-advection
(half ∆t), (2) Electric field solver, (3) Vx-advection (full ∆t), (4) X-advection (half ∆t). This dimensionally
split procedure was originally developed for the Vlasov equation by Cheng and Knorr and provides a second order
integration in time[1]. The advection in phase space uses a Semi-Lagrangian method with WENO style interpolation
and was developed by Qiu and Christlieb[2]. This method was chosen because it was found to be an accurate and
efficient solver. The X-advection consists of two different operations, the first sets the ghost cells while the second
advects the fluid in the X direction.

DEFINE OPERATION

TYPE = LogicalBCVlasovExtrapolateOp

NAME = PeriodicBCX1

DATA_NAME = VlasovFluidData

FIELD_NAME = fAr+

DIRECTION = X

END OPERATION

DEFINE OPERATION

TYPE = Vlasov1D1VSLOp

NAME = Vlasov1D1VSL_X1

DIRECTION = X

VARIABLE_NAME = fAr+

TIME_SCALE = 0.5

VARIABLE_TYPE = VlasovFluidData

END OPERATION

It should be noted that TIME SCALE is set to 0.5 which indicates that only a half time step should be taken.
The next set of operations are used to calculate the electric field using Boltzmann equilibrium electrons. Many of

the variables are self explanatory but one parameter, RUN AT INIT, needs further explanation. RUN AT INIT signifies
that the apply function of the operator should also be run during the initialization stage. Typically, during the
initialization stage the operator will only parse the input file, create the required memory, and if necessary set
the initial conditions. In most cases this is enough, but some variables, such as the electric filed, its value is not
explicitly known and a routine must be used to calculate it. Since the method used to calculate the initial electric
field is the same used during the simulation it is more practical to define these operators once during the MOVE stage
and set the RUN AT INIT to true.

DEFINE OPERATION

## Calculates several useful field variables from a velocity distribution

## including density, mean velocity and temperature. This routine may be used

## instead of LogicalVlasovCalcDensityOp

TYPE = LogicalVlasovCalcFluidVariablesOp

NAME = CalcFluidVariables

PHASESPACE_TYPE = VlasovFluidData

PHASESPACE_NAME = fAr+

DENSITY_TYPE = FieldData

DENSITY_NAME = rho_tmp

MEAN_V_PREFIX = Vmean

TEMPERATURE_NAME = Temperature
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MEAN_V_DIRECTIONS = [x, y, z]

RUN_AT_INIT = true

END OPERATION

DEFINE OPERATION

## Calculates Density by integrating over velocity space

TYPE = LogicalVlasovCalcDensityOp

PHASESPACE_TYPE = VlasovFluidData

PHASESPACE_NAME = fAr+

DENSITY_TYPE = FieldData

DENSITY_NAME = rhoI

RUN_AT_INIT = true

END OPERATION

DEFINE OPERATION

## Sets electric potential (phi) to zero

TYPE = LogicalFieldSetOp

DATA_NAME = FieldData

VALUE = 0.0

FIELD_NAME = phi

INIT_ONLY = false

RUN_AT_INIT = true

END OPERATION

DEFINE OPERATION

## Add electron and ion density

TYPE = LogicalFieldAddOp

DATA_NAME = FieldData

FIELD_SRCB_NAME = rhoE

FIELD_SRCC_NAME = rhoI

FIELD_DST_NAME = rhoE

RUN_AT_INIT = true

END OPERATION

DEFINE OPERATION

## Multiples the ion density by the mass of an electron to convert

## from number density to mass density and set to rho_source

TYPE = LogicalFieldScalarMulOp

DATA_NAME = FieldData

FIELD_SRC_NAME = rhoI

FIELD_DST_NAME = rho_source

SCALAR = 1.602189200e-19

RUN_AT_INIT = true

END OPERATION

DEFINE OPERATION

## Finds mass of ions in each cell, i.e., no longer density

TYPE = LogicalFieldVolumetricMulOp

DATA_NAME = FieldData

FIELD_NAME = rho_source

RUN_AT_INIT = true

END OPERATION

Distribution A: Approved for public release; unlimited distribution; PA (Public Affairs) Clearance Number TBD#XXXXX.

4

Distribution A: Approved for public release; unlimited distribution; PA (Public Affairs) Clearance Number 15200.



DAVID BILYEU TURF COLLISIONLESS ELECTROSTATIC SHOCK - PART 2: VLASOV

DEFINE OPERATION

## Sets Electric field boundary conditions on the left hand side

TYPE = LogicalBCXtrap

NAME = Neumann-X-

DATA_NAME = FieldData

FIELD_NAME = phi

BOUND_LO = (-120.0e-3,-1.0,-1.0)

BOUND_HI = (-95.0e-3, 1.0, 1.0)

END OPERATION

DEFINE OPERATION

## Sets Electric field boundary conditions on the right hand side

TYPE = LogicalBCConstantOp

NAME = Electrode-X+

value = 0.0 #

DATA_NAME = FieldData

FIELD_NAME = phi

BOUND_LO = ( 95.0e-3,-1.0,-1.0)

BOUND_HI = ( 120.0e-3,1.0, 1.0)

END OPERATION

DEFINE OPERATION

TYPE = LogicalPoissonBoltzmannStrip1DOp

FIELD_NAME = phi

SOURCE_NAME = rho_source

NUMBER_DENSITY_REF_CGS = 1.0e9

ELECTRON_TEMPERATURE_CGS = 3.0

ELECTRON_DENSITY_NAME = Ne-

NEUMANN_LEFT = TRUE

SUBCYCLE = 1

# INIT_ONLY = TRUE

END OPERATION

DEFINE OPERATION

## Finds the electric filed from the gradient of the electric

## potential and multiplies by a constant

TYPE = LogicalGradientCellCenterOp

FIELD_DATA_NAME = FieldData

FIELD_POTENTIAL_NAME = phi

FIELD_GRADIENT_PREFIX = E

FIELD_MULTIPLY_CONSTANT = -2.415365e6 #ec/(MW*amu) -2.415365e6

FIELD_GRADIENT_DIRECTIONS = [x, y, z] ## Ex,Ey,Ez

RUN_AT_INIT = true

BOUNDARY_TYPE = EXTRAPOLATE

END OPERATION

The Vx-advection consists of two different operations, the first sets the ghost cells while the second advects the
fluid in the Vx direction.

DEFINE OPERATION

TYPE = LogicalBCVlasovExtrapolateOp

NAME = PeriodicBCY
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DATA_NAME = VlasovFluidData

FIELD_NAME = fAr+

DIRECTION = VX

END OPERATION

DEFINE OPERATION

TYPE = Vlasov1D1VSLOp

NAME = Vlasov1D1VSL_Vx

DIRECTION = VX

VARIABLE_NAME = fAr+

WAVE_SPEED_NAME = Ex

TIME_SCALE = 1.0

VARIABLE_TYPE = VlasovFluidData

END OPERATION

The final step of the MOVE stage is the second advection in the X-direction, which uses the same two operations
used before.

DEFINE OPERATION

TYPE = LogicalBCVlasovExtrapolateOp

NAME = PeriodicBCX2

DATA_NAME = VlasovFluidData

FIELD_NAME = fAr+

DIRECTION = X

END OPERATION

DEFINE OPERATION

TYPE = Vlasov1D1VSLOp

NAME = Vlasov1D1VSL_X2

DIRECTION = X

VARIABLE_NAME = fAr+

TIME_SCALE = 0.5

VARIABLE_TYPE = VlasovFluidData

END OPERATION

3.3. operations.vlasov.list Postop. The third and final stage is the POSTOP stage. This stage is responsible for
preparing and saving the results to various output files.

The first output file is a two-dimensional phase-space plot. The purpose of this operator is to take any two
dimensions, X,Y, Z, Vx, Vy, or Vz and a coordinate in phase space and slice along those planes. This is controlled
by the following variables, SPACE CORD, VELOCITY CORD, X PLOT DIRECTION, and Y PLOT DIRECTION which sets the
spatial coordinate, phase space coordinate the coordinate to plot along the “X” axis and the phase space coordinate
to plot along the “Y” axis respectively. This operator looks like:

DEFINE OPERATION

INCLUDE_GHOST = false

TYPE = LogicalVlasov2DWriterOp

DATA_NAME = VlasovFluidData

FILE_HEAD = shockdata/phase_

FIELD_NAME = fAr+

SKIP = 5

SPACE_CORD = (0.0, 0.0, 0.0)

VELOCITY_CORD = (-5.0, 0.0, 0.0)

X_PLOT_DIRECTION = X
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Y_PLOT_DIRECTION = VX

BINARY = false

RUN_AT_INIT = true

END OPERATION

The next plotting operator is a bit of a hack and could be changed in future releases. The operator is designed
to save the spatial data, e.g., density, electric field, and it is desirable to use the same operator regardless of the
number of spatial dimensions. Unfortunately the VTK file format does not have a convenient mechanism to save
one-dimensional data. To get around this an additional parameter SAVE AS CSV was added that saves the data in
csv file format rather than the standard VTR format. The operator is set via:

DEFINE OPERATION

TYPE = LogicalFieldWriteVTKROp

DATA_NAME = FieldData

FILE_HEAD = shockdata/field_data

FIELD_NAME = rhoI, phi, Ex, rho_source, Vmeanx, Vmeany, Vmeanz, Temperature, Ne-

SKIP = 2

DIMENSIONS = 2

nFIELD_NAME = 4

RUN_AT_INIT = true

SAVE_AS_CSV = true

END OPERATION

The final operator in this stage is used to save various metrics including the density, energy, entropy and electric
filed norms over time. The operator is set up via:

DEFINE OPERATION

TYPE = VlasovMetricsOp

PHASESPACE_TYPE = VlasovFluidData

SPACE_TYPE = FieldData

PHASESPACE_NAME = fAr+

DENSITY_NAME = rhoI

E_FIELD_PREFIX = E

E_FIELD_DIRECTIONS = [x, y, z]

FILE_NAME = shockdata/norms.csv

SKIP = 1

RUN_AT_INIT = true

END OPERATION
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4. Appendix

Table 1. Summary of operations listed for the collisionless shock Vlasov example.

Stage Operation Description

INITIALIZE CreateVlasovVariableOp Create a Vlasov variable

LogicalVlasovFluidBoltzmannSetOp Sets initial conditions of a Vlasov variable using a Boltz-
mann distribution

MOVE LogicalVlasovCalcFluidVariablesOp Calculate field variables given a velocity distribution

LogicalBCVlasovExtrapolateOp Sets a velocity boundary conditions to extrapolation,
i.e. simple non-reflecting

Vlasov1D1VSLOp Advects a Vlasov variable using the Semi-Lagrangian
method

LogicalVlasovCalcDensityOp Calculates the density given a velocity distribution

LogicalFieldSetOp Set field values to constant

LogicalFieldAddOp Adds one field variable to another

LogicalFieldScalarMulOp Multiplies field by scalar constant

LogicalFieldVolumetricMulOp Multiplies or divides field data by cell volumes

LogicalBCXtrapOp Sets a physical boundary to extrapolation

LogicalBCConstantOp Sets a physical boundary to be a constant

LogicalPoissonBoltzmannStrip1DOp Solves for the electric filed assuming a Boltzmann elec-
tron

LogicalGradientCellCenterOp Calculates the gradient of a field vector

POSTOP LogicalVlasov2DWriterOp Exports a 2D phase-space plot

LogicalFieldWriteVTKROp Exports the filed data, e.g, density, velocity,. . .

VlasovMetricsOp Exports Vlasov metrics data e.g., mass and energy con-
servation

References

[1] C.Z Cheng and Georg Knorr. The integration of the vlasov equation in configuration space. Journal of Computational Physics,

22(3):330–351, November 1976.

[2] Jing-Mei Qiu and Andrew Christlieb. A conservative high order semi-lagrangian WENO method for the vlasov equation. Journal
of Computational Physics, 229(4):1130–1149, February 2010.

Distribution A: Approved for public release; unlimited distribution; PA (Public Affairs) Clearance Number TBD#XXXXX.

8

Distribution A: Approved for public release; unlimited distribution; PA (Public Affairs) Clearance Number 15200.



TURF 3D-ESPIC EXAMPLE - PART 1: GROUNDED BOX

ROBERT MARTIN, ERC INC, AFRL/RQRS

Contents

1. Introduction 1
2. world.list 2
3. operations.list 3
3.1. INITIALIZE 3
3.2. SOLVE 6
3.3. MOVE 9
3.4. PLOT 10
4. results 12
5. Appendix 14
References 14

1. Introduction

This tutorial demonstrates running a simple 3D electrostatic particle in cell (PIC) case in the Thermophysics
Universal Research Framework (TURF). This tutorial assumes familiarity with the simple heatbath tutorials.
New users are referred to those tutorials for further explanation. The TURF input files can be located in
tutorial-TURF/GroundedBox/ES-PIC. You should see several files with the .list extension, which act as the
scripting files for TURF.

The grounded box test case was developed to verify TURF’s PIC algorithms with respect to AFRL/RD’s ICEPIC
particle in cell code running in electrostatic PIC mode [1]. The initial conditions are a uniform unit meter cube
of zero velocity protons at a density of 1e10/m3. In one octant of the cube, the proton charge is neutralized
with 1e10/m3 electrons with neither velocity nor thermal velocity. The walls of the cube are set to a fixed 0-Volt
potential. The electrons are then accelerated by the field due to the charge of the non-neutralized protons in the
remaining 7 octants of the box. The field evolves as the electrons accelerate such that the cloud oscillates and
evolves within the box. Particles that hit the edge of the box are assumed to be neutralized and removed from the
simulation.

Date: 1/31/2015.
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2. world.list

Running the TURF executable in the working directory will have TURF search for the default script file,
world.list, and parses it automatically. We can take a look at the script by opening the file. The first block that
defines the WORLD is shown below.

DEFINE WORLD

NAME = ICEPIC-Bench

op_file = operations.list

coordinates = cartesian

origin = (0.0,0.0,0.0)

delta = (0.02,0.02,0.02)

end_time = 10.0e-6

start_dt = 2.50e-9

# Names Should not be fully contained in an earlier name for Plotting

fields = [rho, Enx, Eny, Enz, phi, residual_phi, Np+, Ne-, CNp+, CNe-]

stages = [INITIALIZE, SOLVE, MOVE, PLOT]

END WORLD

The options defined in this file should look familiar after completing the heatbath tutorial. In this example, the
world is named “ICEPIC-Bench” to denote that it was originally intended to serve as a benchmark verification run
against the ICEPIC code. The sample uses the operations.list operations file to define the simulation algorithm
which will be discussed below. The remainder of the world definition sets a global cartesian coordinate system
with 2cm cells along with 2.5ns time steps up to a final simulation time of 10µs. The next line defines 10 field
variables for charge density (rho), 3 node centered electric field components (En), the electrostatic potential (phi),
an auxiliary variable for calculating the residual of the potential during the field solve (residual phi), and proton
and electron physical and computational particle counts in cells (Np+,Ne-,CNp+,CNe-).

The example run is broken into 4 stages named INITIALIZE, SOLVE, MOVE, and PLOT. The two additional stages
compared to the heatbath example are to accommodate an iterative electrostatic potential solve stage (SOLVE) and
to ensure synchronization prior to the plotting operation stage (PLOT) though the later is not strictly necessary.

The last section of world.list defines the active domain for the simulation. In this example, it is simply a 1m
unit cube starting from the coordinate origin. Using the global mesh spacing of 2cm from the WORLD definition
results in a 50x50x50 active cell cube with the default 3 “ghost”-cells added to the high and low side in each
direction for application of boundary conditions.

############################################################################

## Domain Geometry

############################################################################

DEFINE DOMAIN DOM000

bound_lo = (0.0,0.0,0.0)

bound_hi = (1.0,1.0,1.0)

END DOMAIN
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3. operations.list

In this tutorial, the operations file will be considered in stages.

3.1. INITIALIZE. This stage creates new particle electron and proton particle distributions. The
SPDistConstantICOp operation should be familiar from the heatbath example. Notable differences are that the
charges, Z, are non-zero and the electron mass is defined in units of electron mass instead of proton mass.

DEFINE STAGE INITIALIZE

####################################################################

## Initial Particle Distributions and Ghost/Exchange Distributions ##

####################################################################

DEFINE OPERATION

TYPE = SPDistConstantICOp

DATA_NAME = e-DST

MAX_NP = 2000000

FILL_RATIO = 1.0 #4.0

BOUND_LO = (0.0,0.0,0.0)

BOUND_HI = (0.5,0.5,0.5)

temperature = 0.0 #11604.5059 # 1ev

number_density = 1.e10

Z = -1

Mass = 1.0 Me

vel = (0.,0.,0.)

END OPERATION

DEFINE OPERATION

TYPE = SPDistConstantICOp

DATA_NAME = p+DST

FILL_RATIO = 0.0625

MAX_NP = 2000000

BOUND_LO = (0.0,0.0,0.0)

BOUND_HI = (1.0,1.0,1.0)

temperature = 0.0 #11604.5059 # 1ev

Z = 1

Mass = 1.0 Mp

number_density = 1.e10

vel = (0.,0.,0.)

END OPERATION

Next, empty “ghost” particle distributions are created again using SPDistConstantICOp. These are empty
buffers where particles that have escaped the domain get copied later on in the sort.

DEFINE OPERATION

TYPE = SPDistConstantICOp

DATA_NAME = e-GST

MAX_NP = 2000000

END OPERATION

DEFINE OPERATION

TYPE = SPDistConstantICOp

DATA_NAME = p+GST
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MAX_NP = 2000000

END OPERATION

The next set of operations sort the particles by the cell in which they reside. Though still part of the “INITIALIZE”
stage, they will run every time the simulation loops back through that stage. The SPDistCellIDOp operation iden-
tifies which cell the particle resides in and saves it to the “CellID” variable within the particle distribution. The
SPDistSortOp operation sorts the particles by their “CellID” and any particle that has escaped the domain gets
separated into the ghost distribution.

################################################

## Initial Sort Sets Cell Edges for Fast Sums ##

################################################

DEFINE OPERATION

TYPE = SPDistCellIDOp

DATA_NAME = e-DST

END OPERATION

DEFINE OPERATION

TYPE = SPDistCellIDOp

DATA_NAME = p+DST

END OPERATION

DEFINE OPERATION

TYPE = SPDistSortOp

NAME = Sort_e-DST

SRC_NAME = e-DST

DST_NAME = e-GST

END OPERATION

DEFINE OPERATION

TYPE = SPDistSortOp

NAME = Sort_p+DST

SRC_NAME = p+DST

DST_NAME = p+GST

END OPERATION

The next sections accumulates particle quantities into the cell field variables. Before the data can be accumulated,
the field variables must be cleared using the LogicalFieldSetOp. In future version of TURF, these operations
may be optionally fused, but the separate combination is more general. The actual accumulation of field data is
performed by the SPDistDensityToFieldOp and SPDistToFieldOp. The first is used to set diagnostic fields for
number of real (Nx) and computational (CNx) particles per cell. It is worth noting that these numbers are both raw
sums. To obtain the density, “n” from N, a LogicalFieldVolumetricMulOp. This usage can be seen in the Vlasov
collisionless shock tutorial. The second operation multiples by particle charge while doing the accumulation such
that the charge density is computed. More computationally efficient calculations can now be performed using field
multiplication and summation operations, but the example in this tutorial was created using an early version of
TURF that existed before those operations had been completed. This functionality can also be seen in the Vlasov
collisionless shock tutorial.

###################

## Sum to Fields ##

###################

# Clear Variables First
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DEFINE OPERATION

TYPE = LogicalFieldSetOp

DATA_NAME = FieldData

FIELD_NAME = CNe-

VALUE = 0.0

END OPERATION

DEFINE OPERATION

TYPE = LogicalFieldSetOp

DATA_NAME = FieldData

FIELD_NAME = CNp+

VALUE = 0.0

END OPERATION

DEFINE OPERATION

TYPE = LogicalFieldSetOp

DATA_NAME = FieldData

FIELD_NAME = Ne-

VALUE = 0.0

END OPERATION

DEFINE OPERATION

TYPE = LogicalFieldSetOp

DATA_NAME = FieldData

FIELD_NAME = Np+

VALUE = 0.0

END OPERATION

# Accumulate

DEFINE OPERATION

TYPE = SPDistDensityToFieldOp

FIELD_DATA_NAME = FieldData

SPDIST_DATA_NAME = e-DST

PSORT_NAME = Sort_e-DST

FIELD_NAME = Ne- CNe- # Computational and Physical Number per Cell

END OPERATION

DEFINE OPERATION

TYPE = SPDistDensityToFieldOp

FIELD_DATA_NAME = FieldData

SPDIST_DATA_NAME = p+DST

PSORT_NAME = Sort_p+DST

FIELD_NAME = Np+ CNp+ # Computational and Physical Number per Cell

END OPERATION

DEFINE OPERATION

TYPE = LogicalFieldSetOp

DATA_NAME = FieldData

FIELD_NAME = rho
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VALUE = 0.0

END OPERATION

DEFINE OPERATION

TYPE = SPDistToFieldOp

FIELD_DATA_NAME = FieldData

SPDIST_DATA_NAME = e-DST

FIELD_NAME = rho

END OPERATION

DEFINE OPERATION

TYPE = SPDistToFieldOp

FIELD_DATA_NAME = FieldData

SPDIST_DATA_NAME = p+DST

FIELD_NAME = rho

END OPERATION

Finally, the “INITIALIZE” stage is completed with the NextStageOp operation to proceed to the “SOLVE” stage.

DEFINE OPERATION

# Default Criteria to Proceed to the Next Stage

TYPE = NextStageOp

END OPERATION

END STAGE INITIALIZE

############################################################################

3.2. SOLVE. This stage iterates on solving for the electrostatic potential until the residual is small enough to
proceed. The first step of the iterative field solve is to set the boundary condition potential to 0 on all six faces of
the box. This is done using the LogicalBCConstantOp operation. The operation is relatively straightforward. The
phi variable of the default FieldData object is set to a potential of 0 Volts inside of the box defined by BOUND LO

and BOUND HI. In this configuration of TURF, the potential is assumed to be cell centered. More specifically, the
potential is set to 0 for every cell which has a cell center inside the physically defined box. This may lead to
errors on the order of ∆x on the location of the application of the boundary condition, but with the boundary
conditions defined physically, the solution should converge to the exact solution with grid refinement without manual
reconfiguration of the operations. This same approach is used when creating the domains which snap to the nearest
approximation of cells based on the physical constraints independent of the underlying mesh resolution. Once again,
the NAME variable for the operation is simply a designator label for output readability and the value in the NAME

is not evaluated by the code to influence application of the operation. Boundary condition boxes are chosen to be
large enough to contain at a minimum the first few layers of cell centers even at the coarsest resolutions run. In
regions where the physical boundary conditions overlap, the value will be set repeatedly.

############################################################################

DEFINE STAGE SOLVE

DEFINE OPERATION

TYPE = LogicalBCConstantOp

NAME = Electrode-X-

DATA_NAME = FieldData

FIELD_NAME = phi

Distribution A: Approved for public release; unlimited distribution; PA (Public Affairs) Clearance Number TBD#XXXXX.

6

Distribution A: Approved for public release; unlimited distribution; PA (Public Affairs) Clearance Number 15200.



ROBERT MARTIN TURF 3D-ESPIC EXAMPLE - PART 1: GROUNDED BOX

VALUE = 0.0 #

BOUND_LO = (-0.1,-0.1,-0.1)

BOUND_HI = (0.0,1.1,1.1)

END OPERATION

DEFINE OPERATION

TYPE = LogicalBCConstantOp

NAME = Electrode-X+

VALUE = 0.0 #

DATA_NAME = FieldData

FIELD_NAME = phi

BOUND_LO = (1.0,-0.1,-0.1)

BOUND_HI = (1.1,1.1,1.1)

END OPERATION

DEFINE OPERATION

TYPE = LogicalBCConstantOp

NAME = Electrode-Y+

VALUE = 0.0 #

DATA_NAME = FieldData

FIELD_NAME = phi

BOUND_LO = (-0.1,1.0,-0.1)

BOUND_HI = (1.1,1.1,1.1)

END OPERATION

DEFINE OPERATION

TYPE = LogicalBCConstantOp

NAME = Electrode-Y-

VALUE = 0.0 #

DATA_NAME = FieldData

FIELD_NAME = phi

BOUND_LO = (-0.1,-0.1,-0.1)

BOUND_HI = (1.1,0.0,1.1)

END OPERATION

DEFINE OPERATION

TYPE = LogicalBCConstantOp

NAME = Electrode-Z+

VALUE = 0.0 #

DATA_NAME = FieldData

FIELD_NAME = phi

BOUND_LO = (-0.1,-0.1,1.0)

BOUND_HI = (1.1,1.1,1.1)

END OPERATION

DEFINE OPERATION

TYPE = LogicalBCConstantOp

NAME = Electrode-Z-

VALUE = 0.0 #

DATA_NAME = FieldData

FIELD_NAME = phi

BOUND_LO = (-0.1,-0.1,-0.1)
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BOUND_HI = (1.1,1.1,0.0)

END OPERATION

After the boundary conditions have been set, the actual Poisson solve can be performed. Currently, the set of
elliptic solvers in TURF is relatively minimal and includes only red-black Gauss-Seidel and tri-diagonal ADI-type
solvers as indicated below by the LogicalPoissonStripOp operation. There is also degenerate 1D version of the
solver that can be used in fundamentally 1D problems or as an accelerated initial guess for solutions that are
primarily one dimensional. The only non-default options for the solver selected were to not cycle sweep directions
and to sub-cycle the operation 3 times before continuing. The operation is also applied in a red-black checkerboard
in the iterative directions so that the solution is independent of the order in which the line relaxation sweeps are
performed.

DEFINE OPERATION

TYPE = LogicalPoissonStripOp

DATA_NAME = FieldData #Default

FIELD_NAME = phi #Default

SOURCE_NAME = rho #Default

MESH_NAME = SMesh #Default

DIRECTION = 0 #Start with X-sweep

SUBCYCLE = 3

DIRCYCLE = FALSE # Default TRUE

END OPERATION

The last part of the SOLVE stage is defining the criteria to iterate the stage or continue to the next. First,
the residual of phi is computed in every cell and stored in residual phi using the LogicalResidualOp. The
LogicalNormOp operation calculates the norm of the residual. The NORM parameter defines the power p for any
Lp-norm. The operation creates a new scalar variable SUMresidual phi L2.00e+00 based off the name of the
field in which the residual resides and the power of the norm to store the accumulated total residual. Finally, the
CriteriaStageOp evaluates whether the summed residual is below the required threshold CRITERIA. Each domain
applies this operation independently. At the end of each stage, every process collects one vote from every domain
as to whether or not to proceed to the next stage or to loop to iterate on the stage. These votes are broadcast
across all processes and evaluated by the world when determining whether or not to proceed.

DEFINE OPERATION

TYPE = LogicalResidualOp

FIELD_NAME = phi #Default

RESIDUAL_NAME = residual_phi #Default+(FIELD_NAME)

SOURCE_NAME = rho #Default

END OPERATION

DEFINE OPERATION

TYPE = LogicalNormOp

FIELD_NAME = phi #Default

RESIDUAL_NAME = residual_phi #Default+(FIELD_NAME)

NORM = 2.0 #Default

END OPERATION

DEFINE OPERATION

# Threshold Criteria to Proceed to the Next Stage

TYPE = CriteriaStageOp

QUANTITY_NAME = SUMresidual_phi_L2.00e+00

CRITERIA = 5.0e-4 # High Density!
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END OPERATION

END STAGE SOLVE

############################################################################

3.3. MOVE. In the next section, the particle positions are updated using the field solved in the prior step.
To do this, the node centered electric field, En, is evaluated first using the LogicalNodeGradientOp operator.
Because the field is the negative gradient of the potential, the FIELD MULTIPLY CONSTANT of -1.0 is included. The
FIELD GRADIENT DIRECTIONS are suffixes attached to the root name En that the operator uses to construct the
three components of the field names needed to store the result.

############################################################################

DEFINE STAGE MOVE

DEFINE OPERATION

TYPE = LogicalNodeGradientOp

FIELD_DATA_NAME = FieldData

FIELD_POTENTIAL_NAME = phi

FIELD_GRADIENT_PREFIX = En

FIELD_MULTIPLY_CONSTANT = -1.0

FIELD_GRADIENT_DIRECTIONS = [x, y, z]

END OPERATION

The next two operations use the field to advance the electron and ion positions. The inputs are similar to the
basic linear push described in the heatbath tutorials with extra field options so that the operator knows which field
data to use for the acceleration.

DEFINE OPERATION

TYPE = SPDistESPushOp

FIELD_DATA_NAME = FieldData

FIELD_EN_PREFIX = En

FIELD_EN_DIRECTIONS = [x, y, z]

SPDIST_DATA_NAME = e-DST

END OPERATION

DEFINE OPERATION

TYPE = SPDistESPushOp

FIELD_DATA_NAME = FieldData

FIELD_EN_PREFIX = En

FIELD_EN_DIRECTIONS = [x, y, z]

SPDIST_DATA_NAME = p+DST

END OPERATION

After the push, the particle distribution is split between particles that remain within the domain and particles
that escaped into the grounded wall. Particle that escape are marked with a CellID flag set within the push. This
push does not actually test boundary intersections during the push which is a fast method for simple boundary
conditions. Triangulated boundary surface intersecting pushes with and without field are still in testing and will
appear in future revisions of the TURF-IR. The last operation in the stage is another NextStageOp.

DEFINE OPERATION

TYPE = SPDistSplitOp

SRC_NAME = e-DST
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DST_NAME = e-GST

END OPERATION

DEFINE OPERATION

TYPE = SPDistSplitOp

SRC_NAME = p+DST

DST_NAME = p+GST

END OPERATION

##############################################

DEFINE OPERATION

# Default Criteria to Proceed to the Next Stage

TYPE = NextStageOp

END OPERATION

END STAGE MOVE

############################################################################

3.4. PLOT. The last stage of the simulation is plotting. The first operation in the plotting section is the CUDA
accelerated real-time volume ray tracing operation, VolumeRenderOp. The code is primarily a wrapped version of
the NVIDIA CUDA SDK’s VolumeRender example. The infrastructure launches that set of code in a separate
window. When the operation is applied during the code’s main thread loop, a second buffer is filled from the field
variable specified by the DATA NAME and FIELD NAME parameters. It then signals the visualization thread to swap
buffers. It is restricted to single cubic domains in this version of the infrastructure because it uses the rendering
kernels from the example with few modifications to apply in other geometries. Most of the settings for producing
the coloring and view were obtained by interacting with the visualization to determine a ’good’ view. This mode
of interaction is described below the file listing. Other options include the commented FILE HEAD and SAVE IMG

options. If re-enabled, the operation outputs a ’.ppm’ image file for every iteration that is drawn. Iteration
skipping can be adjusted by the SKIP parameter to reduce the number of files. The VIEW ORBIT parameter tells
the visualization to rotate by the indicated number of degrees once per iteration automatically in addition to the
interactive rotations to help make the 3D nature of the volume rendering more intuitive.

############################################################################

DEFINE STAGE PLOT

DEFINE OPERATION

TYPE = VolumeRenderOp

DATA_NAME = FieldData

# FILE_HEAD = VolViz0T

# SAVE_IMG = TRUE

FIELD_NAME = Ne-

SKIP = 1

# INVERT = TRUE

DENSITY = 0.04

BRIGHTNESS = 1.7

TRANSFERUPPERBOUND = 3.8e5

TRANSFERLOWERBOUND = 2.5e3

LOG_PLOT = FALSE

INVERT = FALSE

VIEW_TRANSLATION = (0.0,0.0,-3.6)

VIEW_ROTATION = (0.4,51.6,0.0)
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VIEW_ORBIT = (0.0,-2.0,0.0)

WINDOW_SIZE = (960,960)

END OPERATION

An example of the output displayed with the default settings by the realtime visualization can be seen in Figure
1. This shows the electron cloud density in the box after 828 timesteps using the default visualization parameters.

Fig. 1. Volume rendering example output of electron density in grounded box

Left-clicking and dragging the mouse rotates the visualization. Right-clicking and dragging the mouse scales the
view. Center or simultaneous left and right clicking while dragging the mouse pans the viewport. The ’-+’ keys
adjust the density for the ray tracing. Lower values make the electron cloud more translucent and higher makes
the rendering thicker and only values closer to the surface of the cloud are visible. The square bracket keys, ’[]’,
adjust the ’brightness’ of the display. The keys on the next row down, ’;’’, adjust the ’transferUpperBound’, which
is essentially the top edge of the colormap. The next row down from there, the ’,.’ keys adjust the ’transferLower-
Bound’. This is similarly the bottom edge of the colormap. The ’i’ key inverts the coloring of the display to a
black box on a white background. As the keys adjust the settings, the visualizer displays the adjusted parameters
interwoven with normal output from the infrastructure. Once a good view has been determined, the options can
then be fed back into the operation’s parameters for future runs. The output of holding the ’-’ is shown below with
some additional whitespace for clarity while a similar line is produced by the mouse adjustments as well.

Iteration 1747: Time=4.367510e-06 dt=2.500000e-09 [Wall Clock:477.743864]

density = 0.07, brightness = 2.10, transferUpperBound = 3.45e+05,

transferLowerBound = 1.39e+04, invert = F

density = 0.06, brightness = 2.10, transferUpperBound = 3.45e+05,

transferLowerBound = 1.39e+04, invert = F

density = 0.05, brightness = 2.10, transferUpperBound = 3.45e+05,
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transferLowerBound = 1.39e+04, invert = F

NORM: 4.386121e-04

Iteration 1748: Time=4.370010e-06 dt=2.500000e-09 [Wall Clock:478.055719]

The last additional operations are a commented version of the LogicalFieldWriteVTKOp which writes the field
data to output files rather than relying on the realtime visualization. This is necessary for running the tutorial on
systems that do not include NVIDIA GPU’s that are compatible with the direct OpenGL interface used by the
volume renderer. The options are similar to those of the heatbath tutorial. The last operation is a final NextStageOp
to tell the code to advance to the next stage, or in this case, loop back to the first stage.

# DEFINE OPERATION

# TYPE = LogicalFieldWriteVTKOp

# DATA_NAME = FieldData

# FILE_HEAD = plt/plt_

# FIELD_NAME = Ne- CNe- Np+ CNp+ phi rho

# SKIP = 5

# # FORMAT = BINARY # Won’t open!

# HELP = TRUE

# END OPERATION

DEFINE OPERATION

# Default Criteria to Proceed to the Next Stage

TYPE = NextStageOp

END OPERATION

END STAGE PLOT

############################################################################

4. results

The example in this tutorial was originally developed to verify TURF functionality with respect to the ICEPIC
code. Using as similar parameters as possible between the two codes, the example was run and visualized in
ParaView as shown in Figure 2. The setup was nearly identical to what was outlined above except more particles
were used to provide smoother output. In particular, a FILL RATIO of 4.0 was used with the e-DST, and the default
value of 0.5 was used for the p+DST to ensure a similar number of particles were used in TURF as in ICEPIC.
For the realtime visualization, the low proton numbers make little difference in the electron density visualization,
but they make charge density plots like those used to compare the code much more noisy. The agreement between
the two codes was very reasonable considering all the particle trajectories are coupled to the field solution and vice
versa. A major difference is the appearance of more charge neutrality on the surface of the ICEPIC result, but this
is essentially a difference due to node-centered versus cell-centered output between the two codes. The background
in ICEPIC is slightly noisier as well because the real to computational weights of particles in TURF are modified
to ensure the intended cell densities rather than randomly inserting equal weight particles throughout the domain.
On longer timescales after the protons have had the opportunity to move further, the noise level in TURF would
appear more similar to that in the ICEPIC result. The SPDistBoxICOp available in the TURF-DEV development
package would provide a more directly comparable initialization with constant particle weights, but it was added
after the original verification runs were performed and will not be included in the infrastructure core until the next
revision.
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Fig. 2. Comparison of ICEPIC (left) and TURF (right) grounded box results
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5. Appendix

Table 1. Summary of operations listed in operations.list.

Stage Operation Description

INITIALIZE SPDistConstantIC Initial particle distribution

SPDistCellIDOp Flag cell in which particle resides

SPDistSortOp Sort particles in cells by CellID

LogicalFieldSetOp Set field values to constant

SPDistDensityToFieldOp Sum real and computational particles/cell to field

SPDistToFieldOp Sum particle charges to field entry

NextStageOp Continue to next stage

SOLVE LogicalBCConstantOp Set value of cell centers in box every iteration

LogicalPoissonStripOp Red/Black line relaxing Poisson solve

LogicalResidualOp Calculate residual of Poisson solve

LogicalNormOp Calculate Lp-norm of field variable

CriteriaStageOp Continue to next stage if quantity below criteria

MOVE LogicalNodeGradientOp Calculate node-centered gradient of cell center field

SPDistESPushOp Electrostatic particle push using node electric field

SPdistSplitOp Split particle distribution by CellID flag

PLOT VolumeRenderOp Single cubic domain realtime volume rendering

LogicalFieldWriteVTKOp Write to output files for 3D plots

References

[1] Matthew Bettencourt and Andrew Greenwood. Performance improvements for efficient electromagnetic particle-in-cell computation
on 1000s of cpus. IEEE Transactions on Antennas and Propagation, 56(8):2178–2186, August 2008.
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1. Introduction

This tutorial is the first of two parts which give an overview of the heatbath example in TURF. Prior to running
this example you should already have installed TURF and verified that it was installed properly. For information
on this please read THE INSTALL GUIDE. All relevant files can be located in dat-SMMURF/tutorial/heatbath.
You should see several files with the .list extension, which act as the scripting files for TURF. In addition to the
TURF software you will also need a scientific visualization software that can read VTK files such as Paraview1 or
VisIt2. Also useful is a text file comparison utility such as Meld3 or diff.

The heatbath example studies particles undergoing thermal expansion confined within a box. As mentioned
before, this tutorial is the first of two parts. We will discuss setting up a coordinate system, logical domain
and other necessary databases required for a TURF simulation in Section 2. It also explains the use of World-
Rank.html for visualizing the simulation space. Lastly, section 3 details the addition of particles to the domain and
the operations necessary for TURF to output data compatible with VisIt[1]. In TURF Heatbath Example: Part 2
we will discuss the details of moving particles around the domain and having these particles specularly reflect off
the boundary of the domain. Lastly we will construct the same simulation using multiple domains.

Date: 11/25/2014.
1 www.paraview.org
2 https://visit.llnl.gov
3 http://meldmerge.org
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2. world.list

Running the TURF executable in the working directory will have TURF search for the default script file,
world.list, and parses it automatically. In this example, world.list is a symbolic link to the file world.heatbath.list.
We can take a look at the script by opening either file.

DEFINE WORLD

NAME = Heatbath-Example

##########################################################

### Initially all turned off - Code does not advance ###

### ###

##########################################################

### Timestep advaces but code does nothing ###

### op_file = operations.null.list ###

##########################################################

### Add a a particle distribution object with some ###

### particles in a box ###

### op_file = operations.addparticles.list ###

##########################################################

### Write vtk field output files periodically ###

### op_file = operations.writeoutput.list ###

##########################################################

We begin by defining the world and giving it a name. This name is arbitrary and can be anything. We then have a
block of commented lines which are calls to different operation files. Each operation.list file when uncommented
will run a different example, building on itself and adding functionality. Over the course of this tutorial we would
like to elaborate on the commands used to achieve this functionality.
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We then define the world coordinate system, time step, field names and stages used in the example. TURF is
written to assume all units are in MKS. With this in mind, the cell size is 100µm and our time step is 1ns. The
length of the simulation is defined by the end time of 250ns. Dividing end time by start dt will give us the
number of iterations in the simulation, 250. Defining the various fields ensures there is memory to save the number
of helium per cell and the computational number of helium per cell. The heat bath example has two stages named
INITIALIZE and MOVE. A stage is a communication synchronization point after which all of the domains within
the simulation can vote on whether to proceed to the next stage or repeat the current stage. This synchronization
is important because different processes may finish operating on their domains before other processes do. Failure
to properly synchronize may cause the simulation to produce incorrect results. Note that the names for fields
and stages are only labels similarly to the world name and do not refer to any existing information in the code.
However, if used elsewhere in the code it is important to reference the same name. Here we have a field named NHe

which stores the physical number of Helium particles per cell and CNHe which contains the computational number
of Helium particles per cell.

coordinates = cartesian

origin = (0.0,0.0,0.0)

delta = (100.0e-6,100.0e-6,100.0e-6)

end_time = 250.0e-9

start_dt = 1.0e-9

# Names Should not be fully contained in an earlier name for Plotting

fields = [NHe, CNHe]

stages = [INITIALIZE, MOVE]

END WORLD

Lastly we define our domain. The location of the domain is relative to the origin of the world coordinate system.
The mesh spacing is global to the coordinate system and must be the same across all domains. In this example our
domain is a cube with a length of 3.2mm with a mesh spacing of 0.1mm in all directions.

############################################################################

## Domain Geometry

############################################################################

DEFINE DOMAIN DOM000

bound_lo = (0.0,0.0,0.0)

bound_hi = (3.2e-3,3.2e-3,3.2e-3)

END DOMAIN
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2.1. operations.null.list. The first example details the creation of a domain, followed by 250 iterations of nothing.
To run this case, we uncomment the following line in the world.list file.

##########################################################

### Timestep advaces but code does nothing ###

op_file = operations.null.list ###

##########################################################

By doing so we call the operations.null.list file which defines the different operations used within the stages of
the simulation. You will notice that for both the initialize stage and the move stage, there exist only one operation
of the type NextStageOp. This operation simply tells the code to continue onto the next stage.

####################################################################

## Initial Particle Distibutions and Ghost/Exchange Distributions ##

####################################################################

DEFINE STAGE INITIALIZE

DEFINE OPERATION

# Default Criteria to Proceed to the Next Stage

TYPE = NextStageOp

END OPERATION

END STAGE INITIALIZE

############################################################################

DEFINE STAGE MOVE

DEFINE OPERATION

# Default Criteria to Proceed to the Next Stage

TYPE = NextStageOp

END OPERATION

END STAGE MOVE

############################################################################

It is important to remember that the stage names initialize and move are just that, only names. Despite being
named initialize, this stage is called every iteration and the GPU cores must sync before moving onto the move
stage. As we will see in later examples, it is hard coded in the operations whether it is an initial operation or one
that occurs iteratively.
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2.2. World-Rank.html. When TURF is run, a html file named World-Rank.html is automatically generated.
When opened, the user can view the object hierarchy of the example. At the base of the tree is the logical
world, which was named Heatbath-Example. The branches include GSObject named GSMemberVector which have
the functionality of a vector and can be used by the GPU, there is a material database, a logical domain and
the coordinate system defined by the world.list file. It is possible to expand the hierarchy to investigate any
underlying databases or arrays which are automatically generated. Another useful feature is the visualization of
the simulation environment. For this current example there exist only a single domain as shown by the blue cube.
The surrounding gray region is a layer of three ghost cells which are automatically generated when the domain is
formed.

Fig. 1. World-Rank(0).html with contracted database hierarchy.

Fig. 2. World-Rank(0).html with expanded database hierarchy.

By selecting on the visualization and pressing the ’m’ key, we can cycle through volume view, line view and point
view. This is useful for visualizing objects within the domain as we will see in the later examples.
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Fig. 3. World-Rank(0).html in line view.

The usefulness of the World.Rank output will become evident as we add functionality to example. The object
hierarchy and visualization will allow us to directly see the changes we have made in the course of this tutorial.
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3. Adding Particles

The following example creates a distribution of helium particles to fill a portion of the domain. We will then
observe the changes made in the World.Rank file and learn how to output the data in VTK format so it can be
studied using a visualization software such as VisIt.

3.1. operations.addparticles.list. To change the example we simply call a different operation.list file. We
will do this by commenting out the previous op file operations.null.list and also uncommenting the next line
named operations.addparticles.list as shown below.

##########################################################

### Timestep advaces but code does nothing ###

### op_file = operations.null.list ###

##########################################################

### Add a a particle distribution object with some ###

### particles in a box ###

op_file = operations.addparticles.list ###

##########################################################

If we open both operations files with meld, we can directly compare changes between these two files, we can see
that there is one additional operation defined of the type SPDistConstantIC shown below. This operation does is
define a box with upper and lower boundary, and distribute particles with a given number density and temperature.
The particles themselves will have a given charge, mass (in units on proton mass) and drift velocity. This specific
operation is an initial condition so it will only do something when it is first read.

DEFINE OPERATION

TYPE = SPDistConstantIC

DATA_NAME = He-DST

MAX_NP = 1280000

FILL_RATIO = 0.25

BOUND_LO = (0.10e-3,0.10e-3,0.10e-3)

BOUND_HI = (2.32e-3,2.32e-3,2.32e-3)

temperature = 11604.5059 # 1ev

number_density = 1.e14

Z = 0

Mass = 4.0 Mp

vel = (0.,0.,0.)

END OPERATION

Since there are no push operations, the particles will remain at their locations for the length of the simulation.
Looking at the World-Rank.html we can see the bounding box for which the particles will be distributed within.
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Fig. 4. World-Rank(0).html visualizing both the domain and region in which particles will be
distributed. You may notice the code automatically generated objects when SPDistConstantIC is
called.

3.2. operations.writeoutput.list. To run the next example, open the world.list file again. Comment the line
op file = operations.addparticles.list and uncomment the line op file = operations.writeoutput.list,
similarly as before. This simulation is exactly the same as the previous except now we will output the particle
density distribution in a VTK format compatible with visualization software such as VisIt. This output is generated
every five iterations. To do so we will use the following operations in the move stage:

##############################

## Sum to Fields for Output ##

##############################

DEFINE OPERATION

TYPE = LogicalFieldSetOp

DATA_NAME = FieldData

FIELD_NAME = CNHe

VALUE = 0.0

END OPERATION

DEFINE OPERATION

TYPE = LogicalFieldSetOp

DATA_NAME = FieldData

FIELD_NAME = NHe

VALUE = 0.0

END OPERATION

DEFINE OPERATION

TYPE = SPDistDensityToFieldOp

FIELD_DATA_NAME = FieldData

SPDIST_DATA_NAME = He-DST

PSORT_NAME = Sort_He-DST

FIELD_NAME = NHe CNHe # Computational and Physical Number per Cell

END OPERATION

######################

## Write VTK Output ##

######################

DEFINE OPERATION
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TYPE = LogicalFieldWriteVTKOp

DATA_NAME = FieldData

FILE_HEAD = heatbath_1/plt_

FIELD_NAME = NHe CNHe

SKIP = 5

HELP = TRUE

END OPERATION

The operation LogicalFieldSetOp sets the value of the field to zero for the given field name, in this case we have
an operation for CNHe and another for NHe. The operation SPDistDensityToFieldOp sums the quantity of helium
for each cell and stores it into CNHe and NHe. The last operation LogicalFIeldWriteVTKOp outputs the field data
for CNHe and NHe in VTK format every five iterations.

Opening the VTK files with visualization software such as VisIt we notice TURF has created a cube with a
uniform density of helium particles just as we expected. As the simulation progresses in time, the particles remain
unchanged. In the next tutorial TURF Heatbath Example: Part 2 we will discuss how to push particles through
the domain and how to handle particles that leave the specified domain.

Fig. 5. The final state of the helium particles visualized in VisIt.

4. Appendix

Table 1. Summary of operations listed in operations.dsmc1Dshock.list.

Stage Operation Description

INITIALIZE SPDistConstantIC Initial particle distribution

MOVEOP NextStageOp Continue to next stage

SPDistDensityToFieldOp Sum particles per cell for field entry

SPDistSortOp Sort particles according to cell ID

LogicalFieldSetOp Initialize the field parameters

POSTOP LogicalFieldWriteVTKOp Write to output files for 3D plots

References

[1] Brad Whitlock. Getting Data Into VisIt. Lawrence Livermore National Laboratory, Version 2.0.0 edition, July 2010. LLNL-SM-
446033.
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1. Introduction

This tutorial is the second of two parts which give an overview of the heatbath example in TURF. If you
have not yet gone over the first heatbath tutorial, it is advised that be done prior to running this example. You
should already have installed TURF and verified that it was installed properly. For information on this please
read THE INSTALL GUIDE. All relevant files can be located in dat-SMMURF/tutorial/heatbath. You should see
several files with the .list extension, which act as the scripting files for TURF. In addition to the TURF software
you will also need scientific visualization software that can read VTK files such as Paraview1 or VisIt2[1]. Also
useful is a text file comparison utility such as Meld3 or diff.

In the first part of the heatbath tutorial we discussed the basics of constructing a world coordinate system,
domain and the operations needed to add particles to the simulation. In this tutorial we plan on expanding our
simulation by adding a time dependence. Section 2 we will discuss how to thermally expand particles and how to
handle particles which have left the domain. In Section 3 we will impose boundary conditions which specularly
reflect incoming particles, thus completing the heatbath example. Lastly, we would like to construct the same
simulation with multiple domains requiring changes to both the world.list and operations.list files.

Date: 11/25/2014.
1 www.paraview.org
2 https://visit.llnl.gov
3 http://meldmerge.org
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2. Particle Pushing

In TURF Heatbath Example: Part 1 our final example had particles which remained stationary for the length
of the simulation. The next logical step is to allow the particles to thermally expand.

2.1. operations.push-untrimmed.list. Pushing particles is quite simple, requiring one additional operation. We
begin by running the operations.push-untrimmed.list file the same way as before. In this case after initially
distributing the particles in a cube, the operation SPDistMoveOp will thermally expand the particle distribution
over time.

DEFINE OPERATION

TYPE = SPDistMoveOp

SPDIST_DATA_NAME = He-DST

END OPERATION

You may notice the total number of particles in the simulation decreasing over time. This is due to a lack of
boundary conditions for our domain; particles continue on their trajectory beyond the bounds of the simulation.

Fig. 1. The final state of the helium particles visualized in VisIt for the push-untrimmed example.

2.2. operations.push.list. Running this example shows an output identical to the push-untrimmed case however,
it now has functionality to sort through the particle list and explicitly remove those that have moved into the ghost
cells as opposed to the previous example where these particles would be ignored and continue on their trajectory.
It does so using the following operations:
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DEFINE OPERATION

TYPE = SPDistConstantIC

DATA_NAME = He-GST

MAX_NP = 1280000

END OPERATION

###################################################

## Initial Sort Removes Particles Outside Domain ##

###################################################

DEFINE OPERATION

TYPE = SPDistCellIDOp

DATA_NAME = He-DST

END OPERATION

DEFINE OPERATION

TYPE = SPDistSortOp

NAME = Sort_He-DST

SRC_NAME = He-DST

DST_NAME = He-GST

END OPERATION

From the previous example we have added a distribution for helium named He-GST. The operation SPDistCellIDOp

determines what cell every particle is in and the operation SPDistSortOp moves particles in ghost cells from He-DST
to He-GST.

Fig. 2. The final state of the helium particles visualized in VisIt for the push example.
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3. Particle Heatbath

3.1. operations.heatbath.list. The final example is the particle heatbath, thermally expanding in a box. To do
so, we impose boundary conditions and have particles specularly reflect off the walls of the domain. By running
operations.heatbath.list, we use an operation named SPDistBCSpecOp which creates a region that share a
surface with the domain. These regions will reflect incoming particles in a given direction. An example of the use
of this operation is shown below. The code requires us to write this operation six times, one for every surface of
the cubic domain. A visualization of these regions can be seen below in the .html file.

###############################

## 1-Walls reflect particles ##

###############################

DEFINE OPERATION

TYPE = SPDistBCSpecOp

DATA_NAME = He-DST

DIRECTION = xm

BOUND_LO = (-100.e-4,-100.e-4,-100.e-4)

BOUND_HI = ( 0.00001e-4, 132.e-4, 132.e-4)

END OPERATION

Fig. 3. World-Rank(0).html visualizing both the domain and boundary condition region which
specularly reflects incoming particles.

Taking a look at the output in VisIt we notice the total number of particles remains unchanged. If the simulation
is run longer, it will eventually approach steady state.
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Fig. 4. The final state of the helium particles visualized in VisIt for the heatbath example.

3.2. Multiple Domain Case. The final example demonstrates the ability to use multiple domains. Doing this
requires us to change the domain geometry in the world.list file. Luckily for us we already have a file we can change
the pointer to named world.heatbathx2.list. We first remove the previous pointer and create a new pointer with
the same name to world.heatbathx2.list.

user@comp:~/SMMURF$ projects/dat-SMMURF/> rm world.list

user@comp:~/SMMURF$ projects/dat-SMMURF/> ln -s world.heatbathx2.list world.list

Comparing the two world.list files the domain geometry is the only modification.

############################################################################

## Domain Geometry

############################################################################

DEFINE DOMAIN DOM000

bound_lo = (0.0,0.0,0.0)

bound_hi = (1.6e-3,3.2e-3,3.2e-3)

END DOMAIN

DEFINE DOMAIN DOM001

bound_lo = (1.6e-3,0.0,0.0)

bound_hi = (3.2e-3,3.2e-3,3.2e-3)

END DOMAIN

When using multiple domains, it must be possible to exchange particles between the different domains. Looking at
the operations.list file we notice two significant differences between the single domain and multiple domain cases.
The first of which handles the exchange of particles from one domain to the other using a distribution named
He-EXC. The operation SPDistCombineOp unifies the particles from He-EXC distribution with He-DST at the
beginning of every loop.

DEFINE OPERATION

TYPE = SPDistConstantIC

DATA_NAME = He-EXC

MAX_NP = 1280
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END OPERATION

##########################################################

## Combine EXC into DST from Patch at End of Move Stage ##

##########################################################

DEFINE OPERATION

TYPE = SPDistCombineOp

SRC_DATA_NAME = He-EXC

DST_DATA_NAME = He-DST

# VERBOSE = TRUE

END OPERATION

If the particle moves between the two domains, it is temporarily removed from He-DST placed into the distribution
He-EXC until the beginning of the next iteration which we saw in the previous block of code.

###########################################################

## Split Particles Still Outside Active Domain for Patch ##

###########################################################

DEFINE OPERATION

TYPE = SPDistCellIDOp

DATA_NAME = He-DST

END OPERATION

DEFINE OPERATION

TYPE = SPDistSplitOp

SRC_NAME = He-DST

DST_NAME = He-EXC

END OPERATION

DEFINE OPERATION

TYPE = SPDistPatchOp

SRC_NAME = He-EXC

DST_NAME = He-EXC

END OPERATION

DEFINE OPERATION

TYPE = NextStageOp

END OPERATION

Running the simulation we see that the output is similar to the single domain heatbath case as we would expect it
to be, do note however in the world.list file the overlapping ghost cells in the volume domain which are required
for the exchange of particles between domains.
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Fig. 5. Volume domain split into two pieces.

Fig. 6.

This completes the TURF Heatbath Example. If you have any questions or concerns, please direct them to
Jonathan Tran4 at ARFL/RQRS.

4 jonathan.tran.3.ctr@us.af.mil
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4. Appendix

Table 1. Summary of operations listed in operations.dsmc1Dshock.list.

Stage Operation Description

INITIALIZE SPDistConstantIC Initial particle distribution

MOVEOP NextStageOp Continue to next stage

SPDistMoveOp Advancement of particles

SPDistDensityToFieldOp Sum particles per cell for field entry

SPDistSortOp Sort particles according to cell ID

LogicalFieldSetOp Initialize the field parameters

SPDistBCSpecOp Specularly reflecting boundary condition

SPDistCombineOp Unifies the particles from different distributions

SPDistCellIDOp Marks the cell ID in which particles reside

SPDistSplitOp Splits particle distribution into two by cell ID

SPDistPatchOp Transfers particles between domains

POSTOP LogicalFieldWriteVTKOp Write to output files for 3D plots

References
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446033.
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