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Cameras, inertial measurement units (IMUs), and computational power have all become practical, and the demand for small and
efficient navigation systems that don’t rely on external infrastructure such as GPS is high. Combining visual information with
inertial sensing is a challenging problem. The optimal-state-constraint extended Kalman filter (OSC-EKF) is a new method
previously designed to optimally combine relative pose constraints from a monocular camera with the output of an IMU. This
framework is generalized so that any combination of sensors that can be combined to produce relative pose constraints can be
used to update the EKF. A stereo vision-structure and motion (SAM) problem and a monocular SAM problem are both used to
update the OSC-EKF without making any changes to the EKF. The efficacy of these algorithms is demonstrated by achieving
reasonable consistency and accuracy on a challenging micro aerial vehicle dataset.
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1. Introduction
Knowing the location and attitude of a mobile sensing platform is a prerequisite for
many of the functions performed by robots, unmanned aerial vehicles, wearable de-
vices, game controllers, and many other platforms. In many common applications,
GPS and similar systems greatly simplify this problem by providing location and
velocity information directly. However, GPS cannot operate indoors, underground,
underwater, near GPS jammers, or on other planets. These and other factors can
deny GPS availability, so there has been significant motivation in recent decades to
create navigation solutions that do not depend on GPS.

One configuration that has received considerable attention is an inertial measure-
ment unit (IMU) aided by landmark sightings and other visual information, both of
which existed long before GPS. Inertial navigation has become prevalent due to re-
cent advances in microelectromechanical system technology, which have resulted in
the creation of chip-scale accelerometers and gyroscopes. These devices have very
low size, weight, and power (SWaP) requirements and can be integrated at a very
high rate to provide relative position, velocity, and attitude. The problem is that even
under ideal circumstances the state estimates from an IMU diverge as a function of
time due to noise. The drift is much greater if there are deterministic errors in any
of the sensor outputs. At the same time, extremely low SWaP cameras have become
ubiquitous, and a host of computer vision algorithms have been invented to identify
points of interest in an image, and track them reliably from frame to frame.1–3 Uti-
lizing these correspondences, it is possible to aid the IMU with relative rotation and
translation information that drifts as a function of what the camera can see, rather
than time. An IMU aided with computer vision data for the purpose of navigation is
known as visual-inertial navigation system (VINS). Purpose-built VINS platforms
exist,4 and many others have been constructed with low-cost components.

Visual-inertial simultaneous localization and mapping (SLAM) and visual-inertial
odometry (VIO) are 2 closely related algorithm categories that are used to blend
image and IMU information into a navigation solution. The purpose of SLAM5–7

is to estimate the locations of the observed landmarks and the pose of the vehicle
relative to the map, whereas VIO uses the landmarks, but the primary output is
only vehicle pose because it is typically assumed that there will be no opportunity
for loop closure. Both problems are challenging because the visual measurements
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are nonlinear, tightly coupled with the vehicle pose, and usually great in number.
Despite the heavy computational cost of these algorithms, multiple real-time im-
plementations have been demonstrated.3,8–11 However, there is still significant room
for improvement in computational complexity, accuracy, and robustness in these
algorithms.

Early work in visual odometry is reviewed succinctly in Scaramuzza and Fraun-
dorfer12 and Fraundorfer and Scaramuzza.13 Most VIO algorithms proposed in the
last decade use either a Kalman filtering approach, or a sliding-window batch-
optimization approach to fuse visual correspondences with IMU output. Batch-
optimization approaches require a history of past poses and landmark correspon-
dences, and adjust vehicle poses, landmark locations, and usually sensor errors
to achieve a maximum likelihood estimate (MLE) of these parameters. With vi-
sual data, this is typically referred to as bundle adjustment or structure and motion
(SAM).14,15 This problem can quickly grow to unmanageable size for real-time im-
plementation. This issue can be addressed by using keyframes16 and solving the
MLE incrementally as measurements and poses are accumulated.17,18 “Structure-
less” methods seek to reduce complexity by eliminating the need to estimate land-
mark locations. This has been achieved algebraically by using 3-view constraints19

and by projecting the residuals onto the null-space of the sensitivity matrix corre-
sponding to landmark location errors.20 The efficiency of using IMU measurements
in a SAM framework has been improved by preintegration techniques.20,21

Most recent filter-based methods are based off of the structure of the multistate con-
straint Kalman filter (MSCKF),22 in which the strapdown navigation error-states are
augmented by a sliding window of “cloned” pose error states.23 The landmark lo-
cations are triangulated from the poses in the sliding window, and the correlation
between state and landmark location errors is avoided in the EKF update by pro-
jecting the residuals onto the null-space of the sensitivity matrix corresponding to
landmark location errors (i.e., the residuals are no longer sensitive to the landmark
location errors). This approach has become very popular because of its efficiency,
and many improvements to the basic structure have since been made. The consis-
tency of the estimator has been improved by enforcing the semi-group constraint on
propagation Jacobian24 and enforcing constraints that prevent the filter from gaining
information in unobservable directions25–27
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The optimal-state-constraint extended Kalman filter (OSC-EKF) presented in28 uti-
lizes an image-only SAM process over a fixed window of previous and current states
to estimate the relative camera poses. This SAM problem is much smaller than what
would be solved using a sliding window batch-optimization technique, and can be
solved efficiently due to its sparse nature using various open-source solvers. The
structure is marginalized out, and the motion data is combined with the IMU pre-
dictions using an EKF. The complexity of the dense matrix computations is there-
fore only dependent on the number of cloned poses, which is user-selectable. The
prior work was presented specifically for an IMU aided with a monocular camera.
The novel contribution presented here is a generalized version of the OSC-EKF,
that allows for the IMU to be aided by any measurements that can produce relative
pose constraints based on a MLE. To demonstrate this point, the algorithm is used
on the European Robotics Challenge (EuRoC) micro aerial vehicle datasets29 us-
ing both monocular and stereo configurations, without making any changes to the
OSC-EKF. Instead, only implementing the SAM required modification.

2. State Definition
The OSC-EKF algorithm works by processing the measurements from several im-
age frames at once at every EKF update, as shown in Fig. 1. The time distance
between local frames (L0, L1, etc.) is user defined and in this work is chosen to be
10 camera frames. Between consecutive local frames (e.g., L0 to L1), the inertial
measurement unit is integrated to produce an “IMU trajectory” (i.e., the predicted
state of the IMU) at the intermediate image frames (I1, I2, etc.). Concurrently, fea-
ture points are tracked between the image frames and when the next local frame is
reached, a SAM problem is solved to estimate the IMU state at the intermediate im-
age frames, and the 3-D feature point locations and other nuisance parameters rela-
tive to the local frame (i.e., the SAM trajectory). Other relative measurements such
as wheel odometry or light detection and ranging (LIDAR) measurements could
be used as well. The OSC-EKF update step then optimally combines the IMU and
SAM trajectories, which will be described in more detail in the following sections.

3
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Fig. 1 Depiction of OSC-EKF window structure

The state vector is identical to other sliding-window EKFs such as the MSCKF,
in that it consists of the current IMU quaternion, velocity, position (IkG q̄, GvIk and
GpIk , respectively), the gyroscope, and accelerometer biases (bgk and bak), and the
previous l poses (quaternions and positions). The total state vector relative to the
global reference frame is

Gx =
{
GxT1

GxT2

}T
. (1)

The IMU states are contained in Gx1, while the sliding window of the previous l
IMU poses are contained in Gx2:

Gx1 =
{
Ik
G q̄T bTgk

GvTIk bTak
GpTIk

}T
, (2)

Gx2 =
{
Ik−1

G q̄T GpTIk−1
...

Ik−l

G q̄T GpTIk−l

}T
. (3)

The OSC-EKF utilizes an indirect error-state model;30 the filter estimates error-
states, which are used to update the estimated states external to the filter itself. The
error-states (denoted by •̃) are defined by how they are applied to the estimated
states (denoted •̂) to obtain the true states. For the biases, positions, and velocities,
the error states are additive, and defined as follows:

GpIk = Gp̃Ik + Gp̂Ik ,
GvIk = GṽIk + Gv̂Ik ,

bgk = b̃gk + b̂gk ,

bak = b̃ak + b̂ak .

(4)

The quaternions in this work use a multiplicative error-state model, in which the true
quaternion is represented by the estimated quaternion, followed by an additional
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rotation through an error quaternion:

Ik
G q̄ = Ik

G
˜̄q⊗ Ik

G
ˆ̄q, (5)

where ⊗ is the quaternion multiplication operator. The estimated rotation is as-
sumed to be close enough to the true rotation that the error quaternion can be ap-
proximated by a vector of small rotation angles Ik θ̃, which enables the use of the
following approximations:

Ik
G

˜̄q ≈

{
Ik θ̃ 1

2

1

}
, (6)

C
(
Ik
G q̄
)
≈

(
I3 −

⌊
Ik θ̃×

⌋)
C
(
Ik
G

ˆ̄q
)
. (7)

The error-state vector that is estimated by the OSC-EKF is

Gx̃ =
{
Gx̃T1

Gx̃T2

}T
. (8)

Where
Gx̃1 =

{
Ik θ̃

T
b̃
T

gk
GṽTIk b̃

T

ak
Gp̃TIk

}T
, (9)

Gx̃2 =
{
Ik−1θ̃

T Gp̃TIk−1
... Ik−lθ̃

T Gp̃TIk−l

}T
. (10)

3. Propagation
Like all discrete-time Kalman filters, the OSC-EKF requires a method of predicting
the current state’s mean and covariance from the mean and covariance at the pre-
vious time step. The true IMU states are governed by continuous-time kinematic
relationships, which are used to propagate the estimated IMU states, and linearized
to propagate the IMU error state covariance. The sliding window of previous poses
is managed by a process that has come to be called “stochastic cloning”.23 The
true IMU states propagate according to the following continuous-domain kinematic
relationships:

I
G

˙̄q = Ω
(
Iω
)
I
Gq̄,

GṗI = GvI ,
Gv̇I = GaI ,

ḃg = nwg,

ḃa = nwa,

(11)
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where Iω is the angular velocity of the IMU with respect to the global coordinates,
viewed in IMU coordinates, GaI is the total acceleration of the IMU, nwg and nwa

are white noise processes that drive the IMU biases, and the matrix Ω
(
Iω
)

is de-
fined as follows:

Ω
(
Iω
)

=

[
−
⌊
Iω×

⌋
Iω

−IωT 1

]
. (12)

The IMU is assumed to provide an angular velocity measurement Iωm from the gy-
roscope and a specific force measurement Iam from the accelerometer. The models
for these measurements are given by

Iωm = Iω + bg + ng, (13)
Iam = C

(
I
Gq̄
) (

GaI − Gg
)

+ ba + na, (14)

where Gg is the gravitational acceleration expressed in the global frame, and ng and
na are white noise processes. The estimated states are propagated forward in time
by integrating the kinematic equations using the IMU measurements and assuming
the error states and noise are zero:

I
G

˙̄̂q = Ω
(
Iω̂
)
I
G

ˆ̄q,
G ˙̂pI = Gv̂I ,
G ˙̂vI = GâI ,

˙̂bg = 0,
˙̂ba = 0,

(15)

where Iω̂ = Iωm − b̂g and GâI = C
(
I
G

ˆ̄q
)T (Iam − Ib̂

)
+ Gg. The true states

and their derivatives in Eq. 11 can be expressed in terms of the estimated states
and error states according to their definitions. If this is then compared to Eq. 15,
the continuous time error state kinematics can be derived. The reader is referred
to Trawny30 for the full derivation. The continuous time error-state kinematics are
represented in matrix form as

G ˙̃x1 = FcGx̃1 + Gcn, (16)

where n =
{

nTg nTwg nTa nTwa

}T
and the system matrix and noise input matrix

6
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are given by the following:

Fc =


−
⌊
Iω̂×

⌋
−I 0 0 0

0 0 0 0 0
−C

(
I
G

ˆ̄q
)T ⌊I â×⌋ 0 0 −C

(
I
G

ˆ̄q
)T 0

0 0 I 0 0
0 0 0 0 0

 ,

Gc =


−I 0 0 0
0 I 0 0
0 0 −C

(
I
Gq̄
)T 0

0 0 0 I
0 0 0 0

 ,
(17)

The system noise is modeled by uncorrelated zero-mean white noise Gaussian pro-
cesses with the following power spectral density matrix:

Qc =


σ2
gI 0 0 0
0 σ2

wgI 0 0
0 0 σ2

aI 0
0 0 0 σ2

waI

 , (18)

where σ2
g, σ

2
wg, σ

2
a, and σ2

wa are the power spectral densities of the gyroscope noise,
gyroscope bias random walk, accelerometer noise, and accelerometer bias random
walk, respectively. For this application, the error-state dynamics are discretized by
determining the state transition matrix Φ, and discrete-time error covariance matrix
Q using the following definitions31:

i
i−1Φ = e∆tFc (19)

i
i−1Q =

∫ ∆t

0

e(∆t−τ)FcGcQcGT
c e

(∆t−τ)FT
c dτ (20)

where i is the current IMU sample time, and ∆t is the IMU sample period. Equa-
tions 19 and 20 depend on the average accelerometer output, gyroscope output, and
quaternion over the previous IMU time interval, and can be calculated either numer-
ically32 or using the closed form solutions from citeRomulouitousTR. Typically, the
IMU update rate is significantly faster than the camera frame-rate. If there are n
IMU samples per imager sample, then the following recursive relationships can be

7
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used to determine k
k−1Φ and k

k−1Q, the total state transition matrix and covariance
matrix between imager time k − 1 and k:

(k−1)n+i
(k−1)n Φ = i

i−1Φ
(k−1)n+i−1
(k−1)n Φ, (21)

(k−1)n+i
(k−1)n Q = i

i−1Φ
(k−1)n+i−1
(k−1)n Qi

i−1Φ
T + i

i−1Q. (22)

At each new image time step k, the current previous IMU pose becomes the most
recent pose in Gx2, and the oldest pose in Gx2 is discarded. This leads to the fol-
lowing linear mapping from the previous to the current error states:{

Gx̃1,k

Gx̃2,k

}
=

[
k
k−1Φ 015×6l,

L M

]{
Gx̃1,k−1

Gx̃2,k−1

}
, (23)

L =

[
N

06(N−1)×18

]
, (24)

M =

[
06×6(l−1) 06×6

I6(N−1)×6(l−1) 06(l−1)×6

]
, (25)

N =

[
I3×3 03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 I3×3

]
. (26)

This mapping is then used to propagate the error-state covariance matrix

Pk|k−1 =

[
k
k−1Φ 015×6l

L M

]
Pk−1|k−1

[
k
k−1Φ 015×6l

L M

]T
+

[
k
k−1Q 015×6l

06l×15 06l×6l

]
. (27)

4. OSC-EKF Update
The OSC-EKF utilizes the estimates and Fisher information from a user-defined
SAM problem in the EKF update step. The main assumption is that the SAM so-
lution provides motion constraints between the image frames relative to some local
frame. The measurements used in the SAM problem are assumed to have an output
of the form

z = h
(
Lx,η

)
+ v, (28)

where h is a vector-valued function of the IMU poses relative to the local frame Lx

and a collection of nuisance parameters η. The measurements are corrupted with
random noise with assumed distribution v ∼ N (0,Rv).

8
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In the example provided in this work, the measurements are pixel coordinates of
feature point correspondences tracked by a pair of calibrated cameras. The nuisance
parameters are the 3-D locations of those feature points. However, the nuisance
parameter vector could easily be extended to include camera calibration errors. In
a different application, other sensors could be included such as odometers, LIDAR
sensors, or baro-altimeters, and the nuisance parameter vector extended to include
deterministic errors in those sensors. It is important however that the IMU output
contribute no information to the SAM information matrix, because this information
is already being used by the EKF via the propagation model. The IMU poses relative
to the local frame are defined as

Lx =
{
Ik
L q̄T LpTIk . . .

Ik−(l−1)

L q̄T LpTIk−(l−1)

}T
, (29)

C
(
Ik
L q̄
)

= C
(
Ik
G q̄
)

C
(
L
Gq̄
)T
, (30)

LpIk = C
(
L
Gq̄
) (

GpIk −
GpL

)
. (31)

This definition is particular to the convention of using the reference frame defined
by the oldest IMU pose in the sliding window as the local frame. Notice that if there
are l poses in the sliding window, only l−1 of them will be independent in the SAM
motion with relative constraints.

The OSC-EKF update is performed when the sliding window has progressed l im-
age samples beyond the previous update. This is to ensure that the measurements
used in the EKF update are uncorrelated with previous measurements, and no infor-
mation is re-used. The SAM problem computes the maximum likelihood estimate
(MLE) of Lx, which will be denoted Lx̂MLE , and the MLE of the nuisance param-
eters η̂MLE . The predicted local states Lx̂ can be computed by substituting Gx̂ for
Gx in Eqns. 30 and 31 and this prediction makes a good initial guess for Lx̂MLE .
That is

C
(
Ik
L

ˆ̄q
)
≡ C

(
Ik
G

ˆ̄q
)

C
(
L
G

ˆ̄q
)T
, (32)

Lp̂Ik ≡ C
(
L
G

ˆ̄q
) (

Gp̂Ik −
Gp̂L

)
. (33)

Assuming the measurement errors in Eq. 28 are independent, the MLE is equivalent

9
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to the following nonlinear least squares problem:{
Lx̂MLE , η̂MLE

}
= argmin

Lx,η

(
z − h

(
Lx,η

))T R−1
v

(
z − h

(
Lx,η

))
. (34)

The error-state vector relating the predicted local states to the true local states is
given by

Lx̃ =
{
Ikφ̃

T Lp̃TIk . . . Ik−(l−1)φ̃
T Lp̃TIk−(l−1)

}T
, (35)

Ik
L q̄ = Ik

L
˜̄q⊗ Ik

L
ˆ̄q, (36)

Ik
L

˜̄q ≈

{
Ikφ̃ 1

2

1

}
, (37)

LpIk = Lp̂Ik + Lp̃Ik . (38)

The error states relating the MLE local states to the true local states are denoted
Lx̃MLE , and have the same form. The problem in Eq. 34 is usually solved using
a Gauss–Newton or Levenberg–Marquardt iterative approach. The Jacobian of the
measurement equation with respect to the error-states takes on the form

JMLE =
[
JLx̃MLE

, JLη̃MLE

]
. (39)

The information matrix at convergence is approximated by

HMLE ≈ JTMLER−1
v JMLE ≡

[
Hx̃ x̃ Hx̃ η̃

Hη̃ x̃ Hη̃ η̃

]
. (40)

The MLE is asymptotically efficient, so if there are a sufficient number of measure-
ments it is reasonable to make the following assumptions:

E
[
Lx̃MLE

]
≈ 0, (41)

E
[
Lx̃MLE

Lx̃TMLE

]
≈

(
Hx̃ x̃ −Hx̃ η̃H−1

η̃ η̃Hη̃ x̃

)−1

. (42)

Because the MLE is also asymptotically normal, it will be assumed Lx̃MLE ∼
N (0,RMLE), where RMLE is given by Eq. 42. The updated Lx̂MLE can there-
fore be treated as a direct measurement of Lx corrupted by zero-mean Gaussian
noise. The pose residuals between Lx̂MLE and Lx̂ are formulated in terms of the

10
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error states

Ik
L

˜̄q = Ik
L

ˆ̄qMLE ⊗
Ik
L

ˆ̄q−1, (43)
Lp̃Ik = Lp̂IkMLE − Lp̂Ik . (44)

The small rotation angles Ikφ̃ are computed from Eq. 37. The EKF update requires
a linear transformation that maps the tracked error-states to the measurement resid-
uals. The tracked error states are Gx̃, and the measurement residuals are Lx̃, so
the linear transformation can be found by applying perturbation analysis to Eqs. 30
and 31. It is helpful to denote separately the global error states for the local frame
by position error Gp̃L and small angles Lψ̃ . Writing the true states in terms of the
estimated and error states turns Eq. 30 into(

I−
⌊
Ikφ̃×

⌋)
C
(
Ik
L

ˆ̄q
)
≈
(

I−
⌊
Ik θ̃×

⌋)
C
(
Ik
G

ˆ̄q
) [(

I−
⌊
Lψ̃×

⌋)
C
(
L
G

ˆ̄q
)]T

.

(45)
By applying properties of the skew-symmetric matrix, and using definition from
Eq. 32, this simplifies to⌊

Ikφ̃×
⌋

C
(
Ik
L

ˆ̄q
)
≈
⌊
Ik θ̃×

⌋
C
(
Ik
L

ˆ̄q
)
−
⌊

C
(
Ik
L

ˆ̄q
)
Lψ̃×

⌋
C
(
Ik
L

ˆ̄q
)
. (46)

So the linear transformation for the small angles is

Ikφ̃ ≈
[
I −C

(
Ik
L

ˆ̄q
)]{Ik θ̃

Lψ̃

}
. (47)

In a similar fashion, Eq. 31 becomes

Lp̂Ik + Lp̃Ik =
(

I−
⌊
Lψ̃×

⌋)
C
(
L
G

ˆ̄q
) (

Gp̂Ik + Gp̃Ik −
Gp̂L − Gp̃L

)
. (48)

By using the definition from Eq. 33, and neglecting products of error-states, Eq. 48
simplifies to

Lp̃Ik ≈
[
C
(
L
G

ˆ̄q
) ⌊

Lp̂I×
⌋
−C

(
L
G

ˆ̄q
)]

Gp̃I
Lψ̃
Gp̃L

 . (49)

Through proper arranging of Eqs. 47 and 49, the total transformation used in the
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EKF between Gx̃ and Lx̃ is defined by

Lx̃ = HGx̃. (50)

The OSC-EKF update estimates the current error states through the standard Kalman
update. The residual covariance is given by

S = HPk|k−1HT + RMLE. (51)

The Kalman gain is calculated as

K = Pk|k−1HTS−1. (52)

The error states are calculated
Gx̃ = KLx̃. (53)

The error-state covariance is updated by

Pk|k = (I−KH) Pk|k−1 (I−KH)T + KRMLEKT . (54)

The error states are then used to correct the estimated states using Eqs. 4 and 5, and
subsequently set to zero.

5. Practical MLE Issues
One obvious potential flaw in OSC-EKF is that without sufficient information, the
MLE can fail to converge or converge to a local minimum. For example, in the
stereo vision case this can occur if too few features are extracted and matched be-
tween cameras. In the case of monocular vision, a lack of motion will cause the Hes-
sian matrix in Eq. 40 to become ill-conditioned or singular. Although optimization
methods such as the Levenberg Marquardt algorithm can compensate for this and
prevent divergence, a poorly conditioned problem is less likely to progress towards
a well-defined global minimum. The OSC-EKF is not well suited to acquiring im-
ages such that they will have strong geometry.14 While the window of poses could
be updated with this goal in mind (instead of at fixed time intervals), the ability
to do this is limited because over time the small perturbation assumptions used in
Section 3 will become less valid. It is important that the predicted IMU trajectory
not contribute to the Fisher information of the MLE, because this would violate
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the EKF assumption that the state errors and measurement errors are independent.
However, it has been found that using the predicted states and covariances as priors
in the MLE estimate can significantly aid in the convergence process. Once sta-
ble convergence has been reached, the Fisher information matrix can be calculated
without priors for use in the EKF update. While this method may introduce a small
bias in the MLE, it was found to significantly improve the overall performance of
the algorithm, particularly when using monocular vision.

6. Experimental Results
The OSC-EKF as described was implemented in MATLAB33 and evaluated with
the EuRoC micro aerial vehicle (MAV) datasets.29 The datasets were created by
flying a AscTex Firefly MAV equipped with 2 global shutter greyscale cameras and
an ADIS16448 IMU through 2 separate indoor environments. Position and attitude
ground truth measurements are provided with the datasets from a postprocessing
solution aided by a VICON system or a Leica laser tracker depending on the en-
vironment. The IMU data was provided at 200 Hz, and the image data at 20 Hz.
Camera and IMU calibrations were provided, so only IMU biases were included
in the state vector as described in Section 2. IMU sensor noise parameters were
provided with the dataset, but they were not used. Instead, the discrete state error
covariance matrix was estimated from the IMU data and ground truth and the mod-
eled power spectral densities adjusted so that Eq. 20 produced a similar matrix.
This noise model produced more consistent estimates when incorporated into the
OSC-EKF.

A rudimentary image-processing front end was created. Images were first histogram-
equilized to aid in tracking features in low-light images. Scale invariant feature
transform (SIFT) feature points were tracked using the VLFeat34 MATLAB im-
plementation. Outliers were rejected between frames using RANSAC, and between
cameras using epipolar constraints. The OSC-EKF used a window size of 10 frames.
The SAM problem was constructed using an inverse-depth feature position param-
eterization as described in Appendix A. In the stereo implementation, the Hessian
was naturally well conditioned because only features seen in both cameras where
included in the optimization. The SAM was solved with a custom Levenberg Mar-
quardt solver. In the monocular implementation, the convergence was aided by the
state prediction as described in Section 5. In both cases, residual outliers were re-
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jected by keeping those points with a residual norm less than 6 times the median
residual norm.

The algorithm performance from 2 of the dataset trajectories is presented here. The
“MH 05 difficult” sequence contained rapid motion of the MAV in a dark machine
hall. The “V2 03 difficult” sequence contained rapid motion of the MAV and motion
blur in the images. The ground truth and stereo OSC-EKF estimated trajectories of
these sequences are shown in Fig. 2. The actual position errors are displayed for
both the stereo and monocular implementations in Figs. 3 and 4. The errors were all
less than 1 percent of the distance traveled except for the monocular implementation
on the V2 03 difficult sequence. The monocular implementations perform slightly
worse than the stereo implementations, which is to be expected because no absolute
scale information can be extracted from the vision measurements.
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Fig. 2 Stereo position tracking (MH 05 difficult left, V2 03 difficult right)

0 50 100

distance traveled (m)

0

0.5

1

1.5

2

||
p
o
si
ti
o
n
er
ro
r|
|

||p̃|| (m)
||p̃|| (% distance traveled)

0 50 100

distance traveled (m)

0

0.5

1

1.5

2

||
p
o
si
ti
o
n
er
ro
r|
|

||p̃|| (m)
||p̃|| (% distance traveled)

Fig. 3 Position error for the MH 05 difficult sequence (stereo left, mono right)

14



Approved for public release; distribution is unlimited.

0 50 100

distance traveled (m)

0

0.5

1

1.5

2

||
p
o
si
ti
o
n
er
ro
r|
|

||p̃|| (m)
||p̃|| (% distance traveled)

0 20 40 60

distance traveled (m)

0

0.5

1

1.5

2

||
p
o
si
ti
o
n
er
ro
r|
|

||p̃|| (m)
||p̃|| (% distance traveled)

Fig. 4 Position error for the V2 03 difficult sequence (stereo left, mono right)

The consistency was analyzed by examining the ratio of the norm of the position
error to the square root of the sum of the position error covariance terms reported by
the OSC-EKF. Ideally, this ratio should fluctuate around 0.65, and this seems to be
the case for both the stereo and monocular implementations on the MH 05 difficult
sequence as illustrated in Fig. 5. Both implementations were less consistent on the
V2 03 difficult sequence as illustrated in Fig. 6. It is likely that much of the blame
for this is due to updates in which very few feature points were successfully tracked
for use in the SAM problem. The number of features used in each OSC-EKF update
is labeled on the right axis of Figs. 5 and 6. Some updates in the V2 03 difficult
sequence have fewer than 30 useable feature points with which to solve a 10-frame
SAM problem. While the algorithm does not diverge, it is likely that the asymptotic
normality assumption is violated and the RMLE used to update the OSC-EKF is
inaccurate. Overall, the similarity in consistency between stereo and monocular
implementations demonstrates the generality of the OSC-EKF algorithm.
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Fig. 5 Consistency analysis for the MH 05 difficult sequence (stereo left, mono right)
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Fig. 6 Consistency analysis for the V2 03 difficult sequence (stereo left, mono right)

7. Conclusions and Future Work
A generalized version of the OSC-EKF has been presented that can use any combi-
nation of sensors to create the relative pose constraints used in the update step. The
implementation is efficient because Kalman filtering is naturally recursive, and the
state size is fixed and user definable. The generality of the algorithm was demon-
strated by implementing both a stereo and monocular SAM construct with which
to generate the relative pose constraints without changing the structure of the OSC-
EKF itself. Reasonable drift rates and consistency were demonstrated on a challeng-
ing MAV dataset. The navigation performance was mainly hindered by the success
of the visual feature tracker, which was not the main objective of this work.

Reliable implementation will require a more robust visual front-end for tracking
features. Efficient execution will require a method of dealing with processing de-
lays. The OSC-EKF is actually well suited to this because allowing for delayed
EKF updates would enable parallel processing of the OSC-EKF propagation and
the previous SAM problem. Extended experimentation with different sensors, and
implementing loop closure could also serve as future research directions.
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Appendix A. Feature Parameterization

21



Approved for public release; distribution is unlimited.

The example structure and motion (SAM) problem uses calibrated cameras to de-
termine the maximum likelihood estimate (MLE) the local error states Lx̂MLE and
nuisance parameters η̂MLE (feature point locations). A computer-vision front-end
tracks visual feature points between consecutive frames and between cameras. The
measurements used are the direct pixel coordinates of these points from each cam-
era; no prior rectification or depth estimation is performed by the front-end. In pa-
rameterizing these measurements, it is useful to start with the position of feature
point f relative to the reference frame attached to the camera j at image time-step
k, denoted Cjk

Cjkpf = C
(
Cjk

Ik
q̄
)(

C
(
Ik
L q̄
) (

Lpf − LpIk
)
− IkpCjk

)
. (A-1)

The position and rotation of the camera relative to the inertial measurement unit
IkpCjk

, and Cjk

Ik
q̄, are assumed to be known from the calibration and constant. The

feature points use an inverse-depth parameterization citeInverseDepth

Lpf =
1

ρf


αf

βf

1

 . (A-2)

The feature point in the left camera frame then becomes

Cjkpf =
1

ρf

C
(
Cjk

Ik
q̄
)C

(
Ik
L q̄
)


αf

βf

1

− ρfLpIk

− ρf IkpCjk


 . (A-3)

The term in the brackets can be replaced by the nonlinear functions hx, hy, hz

Cjkpf =
1

ρf


hx

(
αf , βf , ρf ,

Ik
L q̄, LpIk

)
hy

(
αf , βf , ρf ,

Ik
L q̄, LpIk

)
hz

(
αf , βf , ρf ,

Ik
L q̄, LpIk

)
 . (A-4)
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The normalized pixel coordinates {u, v}, are then calculated as

{
u

v

}
fjk

=


hx

(
αf ,βf ,ρf ,

Ik
L q̄,LpIk

)
hz

(
αf ,βf ,ρf ,

Ik
L q̄,LpIk

)
hy

(
αf ,βf ,ρf ,

Ik
L q̄,Lp

kI

)
hz

(
αf ,βf ,ρf ,

Ik
L q̄,LpIk

)

 . (A-5)

Equation A-5 is the general form used to calculate normalized pixel coordinates for
every feature point observed in the SAM window in both cameras.
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List of Symbols, Abbreviations, and Acronyms
3-D 3-dimensional.

BA bundle adjustment.

EKF extended Kalman filter.

GPS global positioning system.

IMU inertial measurement unit.

LIDAR light detection and ranging.

MAV micro aerial vehicle.

MLE maximum likelihood estimate.

MSCKF multiple state constraint filter.

OSC optimal state constraint.

SAM structure and motion.

SLAM simultaneous localization and mapping.

SWaP size, weight, and power.

VINS visual inertial navigation system.

VIO visual inertial odometry.
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