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ABSTRACT 
 

Gallium (Ga)-free InAs/InAsSb superlattices (SLs) are being actively explored for infrared detector applications 
due to the long minority carrier lifetimes observed in this material system.  However, compositional and dimensional 
changes through antimony (Sb) segregation during InAsSb growth can significantly alter the detector properties from the 
original design.  At the same time, precise compositional control of this mixed-anion alloy system is the most 
challenging aspect of Ga-free SL growth.  In this study, the authors establish epitaxial conditions that can minimize Sb 
surface segregation during growth in order to achieve high-quality InAs/InAsSb SL materials.  A nominal SL structure 
of 77 Å InAs/35 Å InAs0.7Sb0.3 that is tailored for an approximately six-micron response at 150 K was used to optimize 
the epitaxial parameters.  Since the growth of mixed-anion alloys is complicated by the potential reaction of As2 with Sb 
surfaces, the authors varied the deposition temperature (Tg) under a variety of Asx flux conditions in order to control the 
As2 surface reaction on a Sb surface.  Experimental results reveal that, with the increase of Tg from 395 to 440 °C, Sb-
mole fraction x in InAs1-xSbx layers is reduced by 21 %, under high As flux condition and only by 14 %, under low As 
flux condition.  Hence, the Sb incorporation efficiency is extremely sensitive to minor variations in epitaxial conditions.  
Since a change in the designed compositions and effective layer widths related to Sb segregation disrupts the strain 
balance and can significantly impact the long-wavelength threshold and carrier lifetime, further epitaxial studies are 
needed in order to advance the state-of-the-art of this material system.  
 

1. INTRODUCTION 
 

Following the proposal of type-II InAs/GaSb superlattice (SL) materials [1] for infrared application,  there has 
been a great deal of research directed toward developing these materials for photodetector focal arrays.  Owing to their 
relatively small SL periods, large absorption coefficient can be achieved due to enhanced electron-hole wave function 
overlaps [2-4].  More importantly, a large splitting between the heavy-hole and the light-hole bands in this SL reduces 
the hole-hole Auger recombination process [5], which improves device performance and operating temperature.  One of 
the problems in this system, however, is the presence of Ga-mediated Shockley-Read-Hall (SRH) defects that are 
generated during epitaxy.  The SRH defects shorten minority carrier lifetimes [6, 7] and degrade the detector 
performance [8, 9].  Recently, a similar type-II SL of InAs/InAsSb (noted herein as “Ga-free”) has been proposed, and it 
has generated a great deal of interest due to the long SRH lifetimes observed in this material system.  Carrier lifetimes up 
to ~10 microseconds have recently been demonstrated on materials with a properly band-gap engineered structure [10].  
Such SL employs shorter periods in order to shift the SL band edges away from the SRH defect energy [10], which 
results in longer lifetimes.  The epitaxial growth of Ga-free SL structures is relatively simple since only the antimony 
(Sb) composition needs to be varied across the layers.  Initial growths of this material have succeeded in rapidly 
increasing carrier lifetimes from hundreds of nanoseconds to tens of microseconds.  These results have encouraged 
several research groups to use Ga-free SLs for photodiode absorber layers.  However, the epitaxial parameter space for 
the growth of this system still remains to be explored.  Indeed, despite significant improvements in carrier lifetimes, 
most measured detectivities (D*) of Ga-free SL photodiodes [11] are still lower than those for InAs/GaSb (noted herein 
as “Ga-containing”) SL diodes [9].  In particular, D* depends not only on SRH lifetime but also on other recombination 
sources (such as Auger and radiative) as well as on the collection quantum efficiency, the background carrier 
concentration, the vertical minority carrier mobility, and other potential materials-related issues.  These issues have 
prompted a reexamination of the intrinsic electronic structure of the SL [9, 11] and of the epitaxial growth processes in 
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3. GALLIM-FREE SUPERLATTICE GROWTHS 
 

In order to investigate how the epitaxial growth conditions impact the Sb incorporation for the selected 77 Å 
InAs/35 Å InAs0.7Sb0.3 SL design, SL samples were grown on GaSb (100) substrates by MBE.  The 45 repeated SL 
periods (0.5 µm thick) were deposited on the undoped GaSb buffer layer (0.5 µm thick) and capped with a 100 Å GaSb 
layer.  To grow the intended structure, a V/III beam equivalent pressure (BEP) ratio of 3 for the InAs layer growth, and a 
Sb/As BEP ratio of ~0.4 for the InAsSb layer growth, were used.  Since the composition of the individual layers is 
extremely sensitive to the incident anion flux and its surface reaction at the growth surface, the SL layers were deposited 
at growth temperatures (Tg) ranging from 395 to 440 °C in order to optimize Sb incorporation during epitaxy, and the 
growth rate between 1.0 and 0.5 Å/s was used for InAs (RInAs) layer.  The Sb cracking zone temperature was fixed at 950 
°C, however the As cracking zone temperature was varied from 950 to 750 °C in order to investigate Asx surface reaction 
during InAsSb layer growth.  Triple axis (004) high-resolution x-ray (HRXRD) was collected for all grown SL samples 
to extract the SL period and residual strain; commercial X’pert epitaxy simulation software was used to estimate 
individual layer thicknesses and their compositions.  Figure 3 shows the X-ray diffraction profile of a typical, strain-
balanced, Ga-free SL structure, demonstrating the excellent crystalline quality that can be achieved by using the growth 
conditions described above.  Figure 4 shows a transmission electron microscopy image of a Ga-free SL structure grown 
for the present study.  The image was obtained using the high-angle annular dark-field imaging technique, wherein the 
InAs and InAsSb layers exhibit dark and bright contrast, respectively.  The average SL period was measured to be 114 ± 
1 Å, with an average layer thickness of 76 ± 2 Å for InAs and 38 ± 3 Å for InAsSb (with accuracy limited by 
uncertainties in input parameters), which is close to the intended SL structure.  

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Figure 3. X-ray diffraction patterns of a strain-balanced, Ga-free superlattice structure of a 77 Å InAs/35 Å InAs0.7Sb0.3. 
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Figure 4. A High-angle annular dark field transmission electron microscopy image for the Ga-free superlattice structure of a 77 Å 
InAs/35 Å InAs0.7Sb0.3. 
 
 
 

4. RESULTS AND DISCUSSIONS  
 

Since the band gap of the SL and related optical properties are very sensitive to the layer fluctuations and 
compositional variations, the most challenging aspect of Ga-free SL growth is the precise growth control of the 
individual layers and their alloy compositions, which is non-trivial.  Since the growth of mixed anion alloys is 
complicated by the potential reaction of As2 with Sb surfaces, we varied the deposition temperature in order to control 
the As2 surface reaction on a Sb surface under two different Asx flux conditions.  Since As2 is much more volatile than 
Sb2, the competition between As2 and Sb2 for reactive sites on the growth surface is preferentially weighted toward As2, 
and generally uncracked As4 species can suppress surface reaction more than cracked As2 ones [17], we investigate the 
As4 effect on the efficiency of Sb2 incorporation by manipulating Tg and As cracking zone temperatures, no systematic 
study was done to determine the As2/As4 ratio as a function of cracking zone temperature for our Mark V 500 cc Arsenic 
Valved Cracker.  A first series of five SL samples with Tg set at 395, 405, 415, 430, and 440 °C was grown back to back 
under the following growth condition, designated as “high As flux condition”: V/III BEP ratio of 3 for InAs layer 
growth, RInAs of ~1 Å/s, Sb/As BEP ratio of ~0.4, and cracking zone temperature of 950 °C for both Sb and As.  Figure 5 
shows the HRXRD profiles of the (400) reflection for the SL sample series.  The profiles show a systematic change in 
the separation between the substrate and SL peak, indicating that the Sb composition x in InAs1-xSbx layer (and the 
corresponding tensile strain) gradually decreases (increases) with increasing Tg (see Figure 5 insert).  Table I provides a 
summary of the structural results measured by HRXRD.  It is important to realize that while the SL periods and SL net 
strain could be determined accurately by HRXRD, the individual layer thicknesses (d) and x could only be estimated 
using the calibrated growth rate and the simulations.  Based on the simulated results, the sample grown at the lowest Tg 
of 395 °C had the highest x that is close to the intended x of 0.3, and the Sb incorporation was suppressed by 21 % as Tg 
increased from 395 to 440 °C, which proves that the incorporation efficiency of Sb is sensitive to the deposition 
temperature.  This finding differs from the results observed in such mixed-cation alloy system as InAs/InGaSb SLs, 
where the SL net strain remains constant regardless of Tg [18-22]. 
 
 

 

Proc. of SPIE Vol. 9609  960906-5

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 02/23/2017 Terms of Use: http://spiedigitallibrary.org/ss/termsofuse.aspx

5 
Distribution A. Approved for public release (PA): distribution unlimited.



108

107

106

105

104

103

102

30.3 30.4 30.5 30.6

O (degree)

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5. X-ray diffraction profiles of the (400) reflection, showing the GaSb substrate and superlattice (SL) peaks for Ga-free SL 
samples deposited at various temperatures (Tg) under high As flux condition.  The insert shows the Sb composition as a function of 
Tg. 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 
 
 
 

 

 

Table I.  Structural parameters of InAs/InAs1-xSbx superlattices (SLs). Growth temperature, 
SL period, layer thickness, and Sb composition are noted by Tg, P, d, and x, respectively.  
Commercial X’pert epitaxy simulation software was used to estimate the d and x.  The arsenic 
cracking zone temperature was set at 950 °C. 
 

Sample Tg ± 3 
(oC) 

P ± 0.5 
(Å) 

Strain 
(%) 

dInAs ± 0.5 
(Å) 

dInAsSb ± 0.5 
(Å) 

 

x ± 0.01 

SL1 395 109 -0.08 76 33 0.28 

SL2 405 108 -0.11 75 33 0.27 

SL3 415 109 -0.18 76 33 0.25 

SL4 430 109 -0.24 76 33 0.23 

SL5 440 109 -0.30 76 33 0.22 
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A second series of four SL samples with Tg set at 395, 410, 420, 430, and 440 °C was grown back to back under the 
following growth conditions, designated as “low As flux condition”: V/III BEP ratio of 3 for InAs layer growth, RInAs of 
~0.5 Å/s, Sb/As BEP ratio of ~0.4, and cracking zone temperature of 950 °C for Sb and 900 °C for As.  Figure 6 shows 
the X-ray diffraction profiles for the SL sample series.  The X-ray profiles show a systematic change in the separation 
between the substrate and the SL peak, indicating the Sb composition x in the InAs1-xSbx layer (and the corresponding 
tensile strain) systematically decreases (increases) with increasing Tg (see Figure 6 insert).  The sample grown at the 
lowest Tg also produced the highest x that is close to the intended x of 0.3, and its Sb incorporation was suppressed only 
by 14 % as Tg increased from 395 to 440 °C.  It is apparent that the incorporation efficiency of Sb is extremely sensitive 
to minor variations in epitaxial parameters.  Table II summarizes the structural results for second sample series.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6. X-ray diffraction profiles of the (400) reflection, showing the GaSb substrate and superlattice (SL) peaks for Ga-free SL 
samples deposited at various temperatures (Tg) under low As flux condition.  The insert shows the Sb composition as a function of Tg. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Table II.  Structural parameters of InAs/InAs1-xSbx superlattices (SLs). Growth temperature, 
SL period, layer thickness, and Sb composition are noted by Tg, P, d, and x, respectively.  
Commercial X’pert epitaxy simulation software was used to estimate the d and x. Arsenic 
cracking zone temperature was set at 900 °C. 
 

Sample Tg ± 3 
(oC) 

P ± 0.5 
(Å) 

Strain 
(%) 

dInAs ± 0.5 
(Å) 

dInAsSb ± 0.5 
(Å) 

 

x ± 0.01 

SL6 395 109 +0.05 76 33 0.30 

SL7 410 110 -0.04 76 34 0.28 

SL8 420 111 -0.07 76 35 0.27 

SL9 440 112 -0.10 76 36 0.26 
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5. CONCLUSIONS 
 
In conclusion, we investigated the effect of growth temperature (Tg) on Sb-mole fraction x in InAs1-xSbx layers, 

using a nominal 77 Å InAs/35 Å InAs0.7Sb0.3 SL structure that is tailored for an approximately six-micron response at 
150 K.  Experimental results show that the SL samples grown at the lowest investigated Tg of 395 °C produce the 
highest Sb content (x) of ~0.3 in general.  However, Sb composition decreased by 21 % under the high As flux condition 
and by only 14 % under the low As flux condition, when Tg increased from 395 to 440 °C, which demonstrates the 
sensitivity of Sb incorporation to epitaxial conditions.  According to our theoretical calculations, absorption for the Ga-
containing SLs is stronger and rises faster than for the Ga-free SLs due to the differences in the SL layer widths.  Theory 
predicts that Ga-containing SLs generally have the advantage of higher absorption, sharper absorption onset, and longer 
Auger lifetimes than Ga-free SLs.  Antimony segregation will affect the band structure, the wave functions, and the 
oscillator strengths, hence the resulting near-band-gap absorption, the long-wavelength threshold, carrier lifetime, and 
mobility.  Therefore, there is a need for continued epitaxial study in order to advance the state-of-the-art of the Ga-free 
material system.  
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