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1. Introduction and summary

The main result of this paper, theorem 4, is that there exists an infinite
sequence of binary digits which can be used to generate sliding parity check
codes for the binary symmetric channel (BSC), and the error probability for
such codes is close, in a certain sense, to minimum uniformly in all of the param-
eters: block length, probability of error for a single digit, and rate not too much
less than capacity. This result is obtained by studying the metric structure which
can be required of codes, and then relating this to the error probability. The
paper is essentially self-contained.

Let Bn be the set of 2" ordered n-tuples from B = B' = {0, 1} where an ele-
ment of B is called a binary digit or bit. For any n 2 1 we define a metric on
Bn by ab = the number of coordinates in which a and b differ. An n-code Cn is a
nonempty subset of Bn; an element c E C. is called a codeword. A code is any
set which is an n-code for some n. The code C,, in a sequence of codes C1, C2, ...
is always an n-code. The probability law of a BSC is defined as follows: for each
a C Bn there is a probability distribution on Bn given by

(1) P{bla} = p;bqn-7b
where 0 < p < 1/2 and q = 1 - p. A statement which is made for all p means
for all p such that 0 < p < 1/2. Here P{bla} is the probability that the channel
output is b given that the channel input is a. When n = 1 we have P{0I0} =

P{l } = q, P{ljO} = P{OI1} p so that the probability p of an error in a
single digit does not depend on what that digit is, hence the "symmetric"
designation.
A decoder for aii n-code C,, is a set D) of disjoint subsets of Bn and a 1 to 1

correspondence between Cn and D. Assume for the moment that the elements
of C, andD are ordered by indices so that Cn = {c1, c,* }, D = {D,, ,D}
and Ck corresponds to Dk under the 1 to 1 correspondence. In application, the
sender and receiver first decide on Cn and D and then use these repeatedly. The
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670 FOURTH BERKELEY SYMPOSIUM: THOMASIAN

sender feeds a ck E C,, into the channel and the receiver observes b E Bn at the
output with probability

(2) p7cqn-c;
If b E Di then the receiver decides that c, was sent. Thus the probability that
the receiver makes an error, if ck is sent, is P{D'Ick}. Let

(3) e,(Cn) = min max P{D|ck}.
D k

Thus e,(C.) is the smallest probability of error that can be guaranteed for all
codewords of C,, if a best decoder, for this purpose, is used and the probability
of a single digit being received in error is p.
The rate Rn = R(Cn) of an n-code C, is defined by Rn = (1/n) log (the number

of codewords in Cn), where all logarithms are to the base 2, so that Cn has 2nR-
codewords. The function H(x) = -x log x - (1 - x) log (1 - x), H(O) = 0,
H(1/2) = 1, is restricted to the interval 0 < x _ 1/2 so that it is continuous
and strictly increasing and has a unique inverse. The well-known channel
capacity for the BSC is 1 - H(p).
One of the results obtained is an upper bound for ep(Cn). The decoder used

for this purpose associates to Ck, the set
(4) Dk = {blFkb _ np' and 5kb < cjb for all j 0 k},
where p' is defined by R. = 1 - H(p'). Thus Dk consists of those b, within a
sphere of radius np' of Ck, which are strictly closer to Ck than to any other code-
word. Note that this decoder depends only on C,, and not on p. Clearly these Dk
are disjoint, so that
(5) e,(Cn) _ max P{D'ICk}.

k

In this notation Shannon's coding theorem for the BSC is
THEOREM 1. (a) Direct half: For any p and R satisfying 0 < R < 1 - H(p)

there exists a sequence of codes Cl, C2, *-* such that R(Cn) -+ R and ep(Cn) -O 0.
(b) Converse half: For any p and R > 1 - H(p), if Cl, C2, -- is a sequence

of codes with R(Cn) -+ R, then ep(Cn) -- 1.
Our concern is only with the direct half of the theorem. Now e,(Cn) can be

made to go to zero exponentially and the best exponential error rate is known
for a certain interval below capacity. Theorem 2 gives a lower bound for the
limiting behavior while theorem 3 states that this lower bound is attainable, in
the limit, for a certain interval of rates below capacity. This interval is given by

(6) 1-H (j p=) < R = 1-H(p') < 1-H(p),
where

(7) p < V; <,stthopty+ T< 2

so that the interval is always nonempty. The parameter p', defined in terms
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of R, is a useful one for the statement of the result. For later convenience the
sequence of codes in theorem 3 starts with C2.
THEOREM 2. For any p and R satisfying 0 < R = 1-H(p') < 1 -H(p),

if Cl, C2, ... is a sequence of codes satisfying R(Cn) -+ R, then

(8) liminf (1) log e,(Cn) 2 H(p') + p' log p + (1 - p') log q < 0.

THEOREM 3. For any p and R satisfying (6) there exists a sequence of codes
C2, C3, * such that R(Cn) -- R and

(9) lim (1) log e,(Cn) = H(p') + p' log p + (1 - p') log q < 0.

If f(p) = H(p') + p' log p + (1 - p') log q, then f(p') = 0 and [the natural
logarithm of 2][(df)/(dp)] = (p' - p)/(pq) > 0 if p < p'. Now H(p) < H(p') in
theorems 2 and 3 and this implies that p < p' so that f(p) < 0 as stated.
Our interest is in theorem 3 and in certain ways that the sequence of codes

C2, C3, * * * can be restricted and still make theorem 3 true. A restricted class of
codes of interest is the parity check (PC) codes. Given an integer n and a num-
ber Rn, 0 < Rn < 1, such that nRn = k is also an integer, an n-PC code C.,
with rate Rn, is an n-code which can be generated from some matrix as,,
i = 1, * * *, n-k; j = 1, * * *, k; where each aij E B. The 2k codewords of Cn
are generated as follows: given any (b1, * *, bk) E Bk, extend it to Bn by
determining bk+l, * , bn from

k
(10) bk+i = E aijb, n=1* -*,n k

j=1

where mod 2 arithmetic is used, that is, 0 0 = 0-1 = 1 0 = O,1-1 = 1,0 +
0 = 1 + 1 = 0, 0 + 1 = 1 + 0 = 1. The codewords of Cn are the 2k n-tuples
(b1, * * *, bn) obtained in this way as (b1, - * *, bk) ranges over Bk. A special class
of PC codes is sliding parity check (SPC) codes. If the generating matrix of an
n-PC code satisfies ai, = a±+j-1, where al, * , a,, is a given sequence, the
resulting code is an n-SPC code. Thus, any binary sequence al, * , an-, deter-
mines an n-SPC code for every rate Rn = 1/n, * * *, (n - 1)/n.
Theorems 2 and 3, and the fact that theorem 3 remains true if the codes are

required to be SPC codes, were proved by Elias [1], [2], who also obtained
bounds on the probability of error. Proofs of theorems 1, 2, 3 and a modified
form of Elias' proof showing that theorem 3 remains true if the codes are required
to be PC codes can be found in Feinstein [3].
The advantages of using PC codes in the physical implementation of the

coding operation are fairly obvious. An n-SPC code requires only the storage
of (n - 1) bits, an n-PC code requires only the storage of (1 - Rn)nRnn < n2/4
bits, and a general n-code requires the storage of n2nR- bits. If Rn is, say, 1/2,
and n is moderately large, say 100 or 1000, then a general n-code would require
an astronomical amount of storage, while an n-SPC code requires only a reason-
able amount of storage, and some simple algebraic computations when in use.
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Thus the implementation of the coding operation for an n-SPC code, once
a,, * * *, a,, have been obtained, seems to be feasible for moderately large n; how-
ever, the exhaustive method of examining all 2n-1 such sequences of a1, * * -, an,
and then selecting the best one, is clearly not a workable method for finding a
satisfactory a,, *.. , an-,. Very little is known in this direction.
Now to say that theorem 3 remains true when the codes are required to be SPC

codes means that for every p and R satisfying (6) there exists a sequence
d2, d3, * * X where dn C B"-', such that the corresponding sequence of SPC
codes satisfies (9) and Rn -+ R. A natural question to ask is whether there exists
one infinite sequence a = (a,, a2, * *) such that we can let dn = (a,, * * * Xa,-0.
It would be better yet if this same a could be used for all p and R satisfying (6).
This will be shown to be true (theorem 5). From a practical point of view this
fact still leaves the concern that any such a might produce only terrible codes
for moderate n. Thus what we do (theorem 4) is prove that there exists an a
such that any SPC code Cn constructed from it has its ep(C.) bounded above
by a certain simple function of n, Rn, and p; and this bound has the obvious
desired asymptotic behavior for any R, p satisfying (6). To the extent that the
error bound is satisfactory, and assuming that the restriction on Rn is not objec-
tionable, the result says that there is one a which can be used to design satis-
factory SPC codes for all parameter (n, Rn, p) values for the BSC. Unfortunately,
we cannot exhibit such an a.
The method of proof has several advantages in addition to being fairly simple

and making the results more transparent. For one thing, if a particular n-PC
code Cn is being considered, one can compute a certain function, Nd, and then
immediately obtain a bound on e,(C.), and also immediately make statements
like the following: "Regardless of which codeword c is the input, the receiver
will not make a mistake if cb < 34, where b is the received n-tuple; also, the
receiver will make a mistake in at most 2 per cent of the cases where cb = 41."
The more usual, and much longer, computational approach is first to get all of
the data similar to that in the previous sentence, and then compute e,(C.).
Statements like the quoted one are particularly powerful in that they don't
depend on the probability law of the binary channel and so have some use everi
when the errors are dependent and nonstationary.

Let B be the class of infinite sequences a = (a,, a2, * where each ai C B.
Let Q be the probability measure on the usual a-field of subsets of B which
makes the coordinate random variables independent and uniformly distributed,
that is, Q{ala, = a', a2 = a', ** an = a'} = (1/2)". The principal result is
THEOREM 4. For any d > 1 there is a set Bo C B with Q(BO) _ 1 - (1/13)

such thatfor every a = (a,, a2, * * *) C Bo the following is trite: For any p, R,,, n > 2
such that nRn is an integer and

(11) ~1 -H ( , < Rn = 1 -H(pn) < 1 -H(p),

the n-SPC code Cn with rate Rn which is generated from a,, * , an-I satisfies
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(12) 1lo e,(C.) < log + 5 log n

+ H(p ) + p' log p + (1 - pn) log q.

Q {B,} > 0 so that Bp is not empty; and since the first term on the right
side of (12) goes to 0 as n goes to infinity, such a sequence of codes satisfies
theorem 3.
By taking ,B 2, 3, * and letting F = U1'=2 Bi, it is clear that theorem 4

immediately implies
THEOREM 5. There is a set F C X with Q(F) = 1 such that for any a =

(a,, a2, *.. ) E F, and any p, R satisfying (6), the following is true: If {Rn} is a
sequence of rates with R. -n R, and {nRn} is always integer-valued, and C. is the
n-SPC code of rate R. generated from (a,, - * *, a-,1), then (9) holds.
Thus if an ca Ez is selected at random, according to the Q distribution, then

with Q-probability 1 it will generate an asymptotically optimum sequence of
SPC codes for every p, R satisfying (6). However, Q(F) = 1 implies that there
is at least one a E F with only, say, one 1 in its first 1000 coordinates, and it is
easy to show that the n-SPC codes such an a generates for n _ 1000 are usually
terrible. Such possibilities make a result like theorem 4 more useful than theo-
rem 5.

2. The existence of codes with certain metric properties

It is intuitively reasonable that a code whose codewords are far apart should
be a good code. Given an n-code C. = {c1, * *, c,} and an integer d, 1 < d < n,
let Nd(cm) equal the number of codewords whose distance from codeword cm is d.
The existence of codes with specified upper bounds for Nd(Cm) will be proved,
and then, in lemma 3 and the proof of theorem 4, such bounds will be converted
into upper bounds on e,(Cn).

There is a simple way to guess at the nature of the bounds that can be
obtained for Nd(cm). Say that we wish to construct an n-code with rate R,,
and attempt to do so by selecting 2nRm elements of Bn at random. If Cm is the

mth codeword selected then there is probability (n)(1/2n) that any particular

one of the 2nR- - 1 other selections will result in a codeword at distance d
from cm. Thus the expected number of codewords at distance d from cm is about

2nR.(n)(1/2n), and this is the form of the bound that we will obtain for Nd(cm).

Define p' by Rn = 1 - H(p'); then an elementary fact, lemma 4b, implies that

(13) 2nRn (n) 1 < 2[H(d/n)-H(p'.)n)

and by use of Stirling's formula this can be converted inlto an1 approximate
equality for large n. This indlicates that the parameter np' may be interpreted
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as the distance d at which Nd(cm) becomes significant, if the code is selected at
random.
One of the nice properties of PC codes is that if C. = {ci, cJ} is an n-PC

code then Nd(cm) is independent of m. In order to prove this, define the weight
w(b) of an element b C Bn to be the number of coordinates of b which equal 1.
If b = (b1, * , bn) and b' = (bl, * * *, b') are elements of Bn then let b + b' =
(bi + bl, * * , b,, + bn') where the addition is mod 2. Clearly there will be a con-
tribution of 1 to w(b + b') from the ith coordinate of (b + b') if and only if
bi # bs, so that 57 = w(b + b'). Thus Nd(cm) equals the number of times that
w(c,. + c) equals d when c ranges over C. precisely once. Now let Cn be an n-PC
code of rate k/n generated by a matrix aij. Clearly 0 = (0, * * *, 0) E C. and
Nd(O) = Nd = the number of codewords of weight d = the number of times that

/ k k\
(14) w (b, bk, E aijb;, * * -, E a,k,jbj

j=1 j=1

equals d, as (b1, * *, bk) ranges over Bk precisely once. Let cm be a particular
codeword generated by, say, (bl, *--, bl), then Nd(cm) is the number of times
that

k k
(15) w bi + bl, , bk + blt, E aijb, + E_ aijbi, *.*.*

j-1 jl1

k k

E an-k,,bj + E an-k,jbj

j-l j-l~~~j-(b, +b'l, k + bk aijb, j n +k b))

equals d as (ba, * *, bk) ranges over Bk precisely once. However (b, + b', **,
bk + bt) ranges over Bk precisely once if (ba, * * *, bk) ranges over Bk precisely
once; so that Nd(Cm) = Nd. We henceforth restrict ourselves to SPC codes and
we will work with Nd, although some of the results, for example, lemma 3, can
be applied to any code.
LEMMA 1. For any ,B, n, k, d satisfying,i> 1, n >_ 2, 1 <k < n, 1 < dn n,

there is a set Bp(n, k, d) C X with Q{Bp(n, k, d)} . 1 - (1/j3) such that for any
a = (a,, a2, . - *) G Bp(n, k, d) the n-SPC code of rate k/n which is generated from

al, * , a,,- satisfies Nd <12k-n(n).
PROOF. Let 13, n, k, d be given and let b1, * k,di,b a, *, dn-, be random

bits, that is,
(J\n+k-I

(16) P(51 = bi, * * *,bk = bk, al = a,, dn1,a = an-1) = )-

for any bits bi, * , bk, al, * , a-,,. Define the random variables 6±+1, * *,bn
just as in the definition of an SPC code, that is,
(17) bk+' = adrl + ar+152 + * - + ar+k-1k, 1 _ r _ n - k.
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Now let b = (b, * * *, ), b' = (k+l ... ,*,n) and 0 = (0, 0, * , 0). Clearly
P{b' = olb = O} = 1.
We first prove
(i) If 0 b fE Bk, b' E BI-k then P{b' = b'1b = b}l 1/2n-k. That is, if we

are given b = b 5 0 then 5k+l, - * *, bbn are random bits. Fix b #6 0 and let
P'{-} = P{II = b} be the distribution conditioned on b = b. Thus we wish to
prove that P'{b' = b'} = 1/2n-k for all b' E Bn-k. Let b1 be the last coordinate
of b which is 1, so that b1= 1, b1+1 = * = bk = 0, and
(18) bk+± arbi + ad+lb2 + * + ar+i_2bz-_i + ar+1-1.
Now
(19) P'{bk+l = b1+,Iad = a,, di-,al_ = a,-I}

= P'{adb1 + * + adilbi-, + ad = bt+1iad = a,, * *, adi- = a,}=I
for any bits b1+ , a,, ** , at-,, because the addition is mod 2. Thus P'(5k+i = 0) =
P'(bk+l = 1) = 1/2 and in order to prove (i) it will be enough to show that

(20) P'{bk+= +l.=bk+i-bk.r_1 = bl+r-i} = 2

for all b' C Bt-k and all r with 2 _ r _ n - k. But bk+l, *. k+r-j are functions
of only ad, d* , az.2 so that it is enough to show that

(21) P'{bk+r = bk+,lal = a, al+r-2 = alr-21 = 2

for all bits bk+r, a,, aa1+2 and all r with 2 _ r _ n - k. But this is clearly
true from (8) so that (i) is proved.

Clearly (i) implies that

(22) P{(b, b') = } = 2k

(23) P{(, b') = (b, b')} = I if b £ 0.

If Tn = w[(bi, *.* * ,b)] then

(24) P{Tn = d} -<

because P{b, = bi, *--, = bn} = 1/2 , or 0, for any (bi, bn) with
w[(b^ * * * bn)] = d. Let A" C BI' consist of those a such that

(25) P{Tn = dla = a} > #P{Tn = d

where a = (ad, , a,,), so that

(26) P{Tn = d} _ P{Tn = d|a E A"}P{a C A'} > #P{Tn = d}P{a E A"}
hence P{a C API _ 1/a. Thus there exists a set Ao C Bn-' such that
P{a E A } > 1 - 1/,3 and such that

(27) P{Tn = did = al _ OP{Tn = d} < , (n) 2n
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for all a E A#. But this is just the conclusion of lemma 1 with Bp(n, k, d) = the
set of a' = (a,, a2, * * *) E B such that (a,, * * *, a,,-) E Ap; because, if we take
such an a' and generate the n-SPC code of rate k/n from it, then

(28) P{Tn= dia = a} = 2k
so that lemma 1 is proved.
LEMMA 2. For any # > 1 there is a set Bo C B with Q(Bp) >: 1 - (1//) such

that for every a = (a,, a2, - * *) E Bp thefollowing is true: For any n, k satisfying 1 .
k < n, > 2, the n-SPC code of rate k/n which is generated from a,, a2, ...* anI
satisfies

(29) Nd dn421- (d) for all d, 1 < d _ n.

PROOF. Using lemma 1, let
x n n&

(30) B = n n n Bn,(n, k, d)
n=2 k=1 d=1

so that

(31) Q(BO) _ I - , Q[Bn (n, k, d)] > 1 -EEE,
n kc d n kc d On'

12 1

n=213n -

and lemma 2 is proved.
Given an n-code Cn let Md = the number of b E Bn such that w(b) = d and

such that there exists a c E Cn with bc _ d. Recalling the decoder definition (4)
and assuming d _ np', for the moment, we see that Md equals the number of
b E Bn, of weight d, which will not be decoded as 0. Let Vn(d) = the volume
of a sphere of radius d in Bn, that is,

(32) V kO(d)

LEMMA 3. Let Cn be an n-code such that for all d, Nd _ A (n ). Then for all d,

l11d _ A (n) Vn(d)-
PROOF. Let bi, be an indexing of all the elements of Bn such that

(33) w(b j) = i, i = O, 1, n; j = 1, 2, (n).
let S(x) = 1 for 0 _ x _ d, S(x) = 0 otherwise, where d is fixed. Let

(n)
(34) eij= E S[w(bdk + bi,)]

k=1

and notice that ei, is independent of j. This is intuitively clear from the geometric
interpretation and may be proved by observing that w(bdk + bi,) is invariant
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under a simultaneous permutation of the coordinates of both bdk aild bij. In the

summations the range of i is 0,1,* *, n; the range of j is 1, 2,* (); and

the range of k is 1, 2, (n)
Let bij = 1 if bij G C,, and 0 otherwise, so that Ni = F_j 5,j _ A (n). Now if

there is a c & C,, such that Ubdk _ d, then

(35) Z E S[w(bdk + bij)]6i,
i J

will be _ 1 so that ld .-the summatioii over k of (35). Interchanigiing the order
of summation we have 3M:d _ i ^, eijij, but eij is independent of j, so that

(36) 3Md _. eij.7 j _A (i3 ) ei = A 5 cie

= A| ZZZ E S[w(bdk+ bij)].
k i j

But (bdk,+bj-,) ranges over Bn precisely once as i, j cover their range so that

(37) Z7 S[w(bdk + bij)] = E S[w(bi)] = V.n(d)
i i i j

and lemma 3 is proved.

3. The proof of theorem 4

Now theorem 4 follows quite directly from lemmas 2 and 3 but before proceed-
ing to the proof we collect together some needed analytical details in

LEMMA 4. (a) If P{S,, = d} = (n)pdqn-d and np < d _ n then
I d

(38) 1 log P Sn > d} _ II (d) + d log p + I--) log q

(b) If 0. d < n/2 then

- log Vn(d) _ H (d)
(c) If 1 _ d _ n/2 then

(40) V,,(d) _ ( - I) V,,(d- 1).
PROOF. (a) If t _ 0 then

(41) P{Sn- d > 0' < Eet(Sn-d) = etd-Eets- = f7"(t)
wheref(t) = exp [-(d/n)t] (pet + q). Setting df/dt = 0, the solution to is given by

(42) t 1-d/n p
and part (a) follows by evaluating f(to).



678 FOURTH BERKELEY SYMPOSIUM: THOMASIAN

(b) If t _ 0 then

d (n) :n (n)(43) k-O (n (fk)ed-k) = gn(t)
where g(t) = exp [t(d/n)][1 + exp (-t)]. Setting dg/dt = 0, the solution to is
given by

(44) et: d 1d =

and part (b) follows by evaluating g(to).
(c) From Feller [4], p. 140, (3.6) with p = 1/2, it follows that

(45) Vn(d- 1) < n1) n -d +2Vn( (d 1-/n -2d + 3

so that

(46) V =(d)-1 + > n-2d+3
( Vn(d-1) Vn(d-1) = n 1) n-d + 2

1+ n-d + 1 n-2d + 3 1 + n-d + 1 _d -1
d n-d + 2 d kn n-d- +2

> + n -d + 1 (1_ d + )=n + 1_1

and lemma 4 is proved.
Proceeding to the proof of theorem 4 we wish to exhibit a BB, and naturally we

use the Bp whose existence is guaranteed by lemma 2. Let a = (a,, a2, * * *) E B
n >2 1 < nRn = n[l - H(pn)] k < n, and let C. be the n-SPC code of rate
k/n which is generated from al, * , an-1. Let p, pn satisfy (11) so that p < pn <
x/p/(v\p + \/q), and let r be the unique integer such that

(47) pn 1n < n-Pn <\r + V-, < 2p~~~
Label the codeword 0 by cl and let Di be given by (4) so that

(48) P{IDfI} _ Mdpdqnd + P{Sn > r + 1}
d=1

and from lemmas 2 and 3

(49) P{DI10} < fln42-H(p)n (n) pdqn-dVn(d) + P{Sn > r + 1}.

Now, Nd(cm) is independent of m, and lemma 3 can be applied to cm, as well as
to 0, so that the same bound holds for P{Dc lcm} and hence for e,(Cn). If
1 _ d < r then from lemma 4(c) and (47).
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(50) (nd) pdq-dVn(d)
( )pd-lqn-d+lVn(d - 1)

> (n + _1) P (n + l_1) 2 (n _ 1)2 P > 1

so that the terms in the summation are increasing and since there are at most n/2
of them we get

(51) e,(C ) < 2 n52-H(p')n (n) prqn rVn(r) + P{Sn - r + 1}

But 2-H(p,)nVn(r) _ 1 by lemma 4(b) and (47) so that using P{Sn > r} _
P{S. 2 np' - 1} we get

(52) ep(Cn) - 2 nrP{Sn _- 1} -

Now lemma 4(a) and H[p' - (1/n)] _ H(p') imply that

(53) - log ep(Cn)n

< - + p- log p + (1- p' + 1) log q

< 1 log - n5 q + H(p') + p; log p + (1- p') log q

and theorem 4 is proved.
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