
NAVAL
POSTGRADUATE

SCHOOL
MONTEREY, CALIFORNIA

THESIS
STRATEGIES USED IN CAPTURE-THE-FLAG EVENTS

CONTRIBUTING TO TEAM PERFORMANCE

by

Wye Kede Jerel Yam

March 2016

Thesis Co-Advisors: Christopher Eagle
Robert Beverly

Approved for public release; distribution is unlimited

THIS PAGE INTENTIONALLY LEFT BLANK

i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704�0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments
regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Je�erson Davis Highway, Suite 1204, Arlington, VA 22202�4302, and
to the O�ce of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE

March 2016
3. REPORT TYPE AND DATES COVERED

Master’s Thesis 09-12-2014 to 03-25-2016
4. TITLE AND SUBTITLE

STRATEGIES USED IN CAPTURE-THE-FLAG EVENTS CONTRIBUTING TO
TEAM PERFORMANCE

5. FUNDING NUMBERS

6. AUTHOR(S)

Wye Kede Jerel Yam

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Postgraduate School
Monterey, CA 93943

8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

N/A
10. SPONSORING / MONITORING

AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

The views expressed in this document are those of the author and do not reflect the official policy or position of the Department of
Defense or the U.S. Government. IRB Protocol Number: N/A.

12a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited
12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

Capture-the-flag (CTF) exercises are useful pedagogical tools and have been employed, both formally and informally, by academic
institutions. Much like their physical counterparts, cyber CTF exercises hold pedagogical value and are gaining wide popularity.
Existing studies on CTF exercises examined either how they benefit learning, or are best conducted. To our knowledge, no formal
study has yet looked at the relationship between the strategies and tactics that the CTF participants employ (as defined by their
offensive and defensive tactics), and the performance of participants in these events.

In this thesis, we studied network traffic and game state data from the DEFCON 22 CTF event. We developed tools to ex-
tract features from large volumes of network data; we then correlated these features with game state data to piece together strategies
that the participating teams seemingly employ. We learned that several teams employed effective tactics such as capturing their
opponents' exploits from the network to reuse them, employing automation to help with launching their exploits, obfuscating their
attacks and attack responses, and attacking the client hosts of other teams.

14. SUBJECT TERMS

capture-the-flag, DEF CON CTF
15. NUMBER OF

PAGES 115
16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UU
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2�89)

Prescribed by ANSI Std. 239�18

i

THIS PAGE INTENTIONALLY LEFT BLANK

ii

Approved for public release; distribution is unlimited

STRATEGIES USED IN CAPTURE-THE-FLAG EVENTS CONTRIBUTING TO
TEAM PERFORMANCE

Wye Kede Jerel Yam
Civilian, Ministry Of Defence, Singapore

Applied Science (B.A.Sc.), Nanyang Technological University, 2002

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
March 2016

Approved by: Mr. Christopher Eagle
Thesis Co-Advisor

Dr. Robert Beverly
Thesis Co-Advisor

Dr. Peter J. Denning
Chair, Department of Computer Science

iii

THIS PAGE INTENTIONALLY LEFT BLANK

iv

Abstract

Capture-the-flag (CTF) exercises are useful pedagogical tools and have been employed,
both formally and informally, by academic institutions. Much like their physical
counterparts, cyber CTF exercises hold pedagogical value and are gaining wide pop-
ularity. Existing studies on CTF exercises examined either how they benefit learning,
or are best conducted. To our knowledge, no formal study has yet looked at the
relationship between the strategies and tactics that the CTF participants employ (as defined
by their offensive and defensive tactics), and the performance of participants in these events.

In this thesis, we studied network traffic and game state data from the DEFCON 22
CTF event. We developed tools to extract features from large volumes of network data;
we then correlated these features with game state data to piece together strategies that the
participating teams seemingly employ. We learned that several teams employed effective
tactics such as capturing their opponents' exploits from the network to reuse them,
employing automation to help with launching their exploits, obfuscating their attacks and
attack responses, and attacking the client hosts of other teams.

v

THIS PAGE INTENTIONALLY LEFT BLANK

vi

Table of Contents

1 INTRODUCTION 1
1.1 Cyber Capture-the-Flag Exercises. 1
1.2 Motivation . 1
1.3 Research Questions . 2
1.4 Scope . 2
1.5 Significant Findings . 2
1.6 Thesis Structure . 4

2 BACKGROUND AND RELATEDWORK 5
2.1 Types of CTF Events . 5
2.2 Elements of an Attack-Defense CTF 6
2.3 CTF Strategies . 7
2.4 Tools Used in CTFs . 9
2.5 DEF CON CTF . 9
2.6 Network Flows . 17
2.7 Network Traffic Analysis Tools 18
2.8 Network Visualization Tools . 19

3 METHODOLOGY 21
3.1 Processing Network Traffic Data 22
3.2 Visualization of SiLK Flow Records. 23
3.3 Correlating Game State Data and Network Traffic to Narrow Search Results . 25
3.4 Searching for Tokens in Network Traffic 26
3.5 Searching for Base64 Encoded Tokens in Network Traffic 28
3.6 Searching for Exploits in Network Traffic 29
3.7 Adopting Heuristics to Reduce Work of Studying Exploit Instances 30
3.8 Similarity Measures for Exploit Data 31
3.9 Investigating Use of Exploit Polymorphism 34
3.10 Detection of Publicly Available Payloads 34

vii

4 RESULTS AND ANALYSIS 37
4.1 Interesting Discoveries . 37
4.2 Metrics . 44
4.3 Analysis of Findings . 79

5 CONCLUSION 85
5.1 Future Work . 89

List of References 95

Initial Distribution List 99

viii

List of Figures

Figure 2.1 Illustration showing how files of captured network trafficmay overlap
round boundaries . 15

Figure 2.2 Entity Relationship Diagram of game state database 17

Figure 3.1 Process of converting a team’s pcap files to SiLK flow records file 23

Figure 3.2 Process to generate and visualize network traffic trends 24

Figure 3.3 Process to generate and visualize network host-to-host conversations 25

Figure 3.4 Process of finding tokens in DEF CON 22 CTF network traffic . . 28

Figure 3.5 Process of extracting exploits fromDEFCON 22 CTF network traffic 30

Figure 3.6 Scatter plot of normalized DTW distance of the eliza exploits . . 33

Figure 3.7 Scatter plot of ppp’s eliza exploit over the course of the CTF . . . 34

Figure 4.1 Line chart showing bytes sent by three of the top five teams . . . 38

Figure 4.2 Line chart showing bytes of exploit traffic sent by hitcon 39

Figure 4.3 Line chart showing bytes of exploit traffic sent by ppp 39

Figure 4.4 Line chart showing bytes of exploit traffic sent by blue-lotus . . . 39

Figure 4.5 Network graph of hosts communications involving hackingforchimac 42

Figure 4.6 Variants of ppp’s and hitcon’s wdub exploit 62

Figure 4.7 Variants of shellphish’s and hackingforchimac’s wdub exploit . . 63

Figure 4.8 Scatter Plot showing normalized DTW distance for pairwise com-
parison of eliza exploit . 69

Figure 4.9 Scatter Plot showing normalized DTW distance for pairwise com-
parison of wdub exploit . 69

Figure 4.10 Scatter Plot showing normalized DTW distance for pairwise com-
parison of justify exploit . 70

ix

Figure 4.11 Scatter Plot showing normalized DTW distance for pairwise com-
parison of imap exploit . 70

Figure 4.12 Scatter Plot showing groups of variants for eliza exploit 72

Figure 4.13 Scatter Plot showing groups of variants for wdub exploit 73

Figure 4.14 Scatter Plot showing groups of variants for justify exploit 73

x

List of Tables

Table 2.1 Table of DEF CON 22 CTF finalist and their respective qualifiers . 11

Table 2.2 Table of Team to IP subnet mappings 13

Table 4.1 Number of client-to-client connections initiated by hitcon, msls and
gallopsled . 41

Table 4.2 Table showing the final standing and score of each team 45

Table 4.3 Table showing the number of tokens redeemed by each team . . . 47

Table 4.4 Table showing the number of tokens seen on the wire (in clear or
Base64 encoded) versus the number of tokens redeemed 49

Table 4.5 Table showing the breakdown by service of the tokens that were
Base64 encoded . 50

Table 4.6 Table showing exploit development time (in terms of Rounds) for each
team . 52

Table 4.7 Table showing the type of payloads used by each team 54

Table 4.8 Table showing average exploit rate (in terms of exploits per round) of
each team . 56

Table 4.9 Table showing the number of attacking hosts used by each team . . 58

Table 4.10 Table showing the number of different callback ports used by each
team (Teams that do not use callbacks are not shown) 59

Table 4.11 Table showing the number of tokens stolen from each team 65

Table 4.12 Table showing the number of lost tokens seen on the wire 67

Table 4.13 Table showing the two imap exploit variants (partial) 71

Table 4.14 Table showing the number of exploit variants and their use by each
team . 75

Table 4.15 Table showing the time (in rounds) each team’s service was patched 77

xi

Table 4.16 Table showing the Service Level Agreement fulfilment each team . 79

Table 4.17 Table showing the Pearson product-moment correlation coefficient
scores of each quantitative metric 80

xii

Acknowledgments

I am grateful for the advice and guidance provided by my thesis advisor, Mr. Christopher
Eagle and co-advisor, Professor Robert Beverly. The wisdom, knowledge, and insights that
they have shared with me have made this thesis a very fruitful learning experience. Thank
you both for being there and spurring me on with your passion for the subject. I would also
like to acknowledge and thank my wife for the support and encouragement she has given
me throughout the period of my studies here at NPS.

xiii

THIS PAGE INTENTIONALLY LEFT BLANK

xiv

CHAPTER 1:

INTRODUCTION

1.1 Cyber Capture-the-Flag Exercises
Capture-the-flag (CTF) exercises are simulated combat games played by two or more oppos-
ing teams. Teams compete against one another in an attempt to capture a flag (which could
be symbolic) from opposing teams, while also protecting their own flag from capture. Cyber
CTFs, like their physical counterparts, involve two or more teams competing to win flags
by solving cyber security related puzzles, or defending their assigned cyber infrastructure
against opposing teams, while also attempting to attack their opponents’ infrastructures.
The popularity of CTF events has grown beyond educational institutions, and today we see
CTF events organized by cyber security corporations and enthusiasts. In fact, CTF events
are so popular that one is organized almost on a weekly basis.

While several papers have examined the pedagogical aspects of CTF exercises, little work
has been done to examine how the game is actually played—specifically, what actions and
strategies are taken by participants in these events. In this thesis, we studied network traffic
and game state data from the DEF CON 22 CTF event in order to discover what strategies
and tactics utilized by the participants correlated to their success in the CTF event.

1.2 Motivation
No study has examined the relationship between the strategies and tactics employed by CTF
participants (as defined by the attacks and defences that they employ), and the standing of
participants in these events. Such a study would prove interesting as a means to provide:

• Support for hands-on learning as a means to measure the improvement of the partic-
ipants’ competencies across CTF events.

• Some measure of the state of hacking techniques and tactics, as well as the evolution
of the skill level of hacking groups.

• A method to determine the skill level of attackers based on network attack traffic.
• Guidance to CTF organizers in designing better competitions.

1

• Feedback to participants on their in-game actions so as to give them a better learning
experience.

• Support to advance the state of automated network traffic analysis attack detection.

1.3 Research Questions
In this thesis, we studied the activities of DEF CON 22 CTF event participants by examining
network traffic captured from the event as well as game state data made public by the event
organizers [1]. We attempted to answer the following questions:

• What attack strategies do teams employ?
– Do teams automate their attacks?
– How fast can teams find vulnerabilities and exploit them?
– Do teams protect their exploits against network-based detection or analysis?
– Do teams control their rate of attack?
– Do teams vary their attack parameters (e.g., Using different source IP addresses
when attacking, or different callback ports)?

• How effective are teams at defending their vulnerable services?
– Do teams capture exploits off the network and reuse them?
– How fast are teams able to patch their services?
– How effective are teams in keeping their services running?

• What are the prime factors that determine a team’s final standing in the event?

1.4 Scope
For this thesis, we only analyzed the network traffic and game state data from a single
CTF event, specifically the DEF CON 22 CTF. Therefore, the factors that we proposed as
contributing to a team’s success are only suggestions as the data set we used was not large
enough for a conclusive study.

1.5 Significant Findings
We gained some insights into the strategies of participating teams. We found evidence that
teams:

2

• Capture their opponents exploits from the network and reuse them.
• Employ automation to help with launching their exploits.
• Obfuscate their attacks and attack responses (albeit trivially).
• Attack the client hosts of other teams.

Concerning factors that correlated to a team’s final score in the CTF event, we discovered
that:

• A purely offensive approach may have been more effective than an approach
that balances offense and defense. We found that the number of tokens a team
loses had a low correlation to its final standing, whereas the number of tokens a team
manages to steal had a high correlation to that outcome. Therefore, it stands to reason
that resources put into attacking were more beneficial than resources dedicated to
patching.

• Patchingwas important, but not as important as keeping services up. We saw that
maintaining a high service uptime had a high correlation to a team’s final standing,
whereas there was a low correlation between tokens lost and a team’s final standing.
This implied that keeping services running, even though they were vulnerable would
be more beneficial than taking them off-line to prevent them from being exploited.

• Redeeming more flags did necessarily mean a higher final ranking. We found
that the number of tokens redeemed did not necessarily correspond to a team’s final
standing. This hints at some interplay between offensive and defensive factors such
as tokens redeemed, tokens lost, and service uptime.

• There was evidence to indicate that some teams had higher situational awareness
than others. Studying the scatter plots of polymorphic exploits, we saw that the top
two teams switched to different exploits sometime during the CTF event. Whereas
the bottom ranked team did not. As a result, the top two teams were able to exploit
most of the teams for a longer duration that the bottom ranked team. This indicated
that the top two teams had good awareness of what was happening and adjusted their
actions accordingly.

• Obfuscating ex-filtration traffic did not provide added benefit. The percentage
of tokens seen in the network traffic had low correlation to a team’s final standing.
Electing not to obfuscate ex-filtration traffic did not effect a team’s final standing. In
fact three of the top five teams in the competition ex-filtrated over 99% of their tokens

3

in the clear.
• Exploiting a service multiple times per round had no added benefit. We saw that
most teams exploited each service multiple times per round, even though exploiting a
service once successfully was sufficient to steal a token. From the Pearson coefficient
scores, we saw little correlation between how many exploits were launched per round
versus how the teams scored in the end.

• The method of ex-filtration used did not matter. We looked at two payloads that
the teams used—session-reuse payloads and callback payloads. Comparing teams
that used only one type of payload with teams that used both, we did not find any
correlation between the type of ex-filtration techniques used, and a team’s ranking.
We found half of the teams used both types of payloads and the other half used only
session-reuse payloads.

1.6 Thesis Structure
The remainder of the thesis is structured as follows:

1. Chapter 2 covers work related to studying CTFs. It also covers tools and techniques
used in the processing, visualizing, and analyzing of network traffic captures.

2. Chapter 3 covers the methodology and processes used to study the network traffic
captures and data from the scoring database.

3. Chapter 4 covers the analysis of the results and insights that were learned.
4. Chapter 5 concludes the study and recommends areas of future work.

4

CHAPTER 2:

BACKGROUND AND RELATED WORK

Previous studies on CTFs have generally fallen into two categories. The first category deals
with the utility of CTFs. It is generally accepted that CTF games are useful pedagogical
tools. For example, Dabrowski showed that using CTF-like challenges as part of a security
class motivated students to put more effort into their learning [2]. Furthermore, Carlisle
shared that incorporating CTFs into a curriculum at the United States Air Force Academy
led to increased student interest in cyber security studies, greater collaboration among
students, and greater willingness towards self-directed studies [3]. Chothia also found a
correlation between students doing well in jeopardy-style CTFs and them performing well
in more formal assessments [4].

The second category deals more with the mechanics of organizing and running a CTF,
and generally includes lessons learned from past CTFs and ideas on how to improve those
conducted in future. For example, Chung described the shortcomings and strengths of
various CTF events in terms of game design and their pedagogical efficacy [5], and both
Davis [6] and Vigna [7], respectively, wrote about the architecture of the MIT/LL CTF and
iCTF as well as their experiences in organizing these CTF events.

While participating teams do narrate their experiences in various CTF events (such as [8], [9]
and [10]), we know of no systematic study that has been done on how participants play
the CTF game. Nor do we know of any systematic studies that examine the relationship
between the tactics of the CTF participants and their corresponding final rankings. This
thesis examined game state data as well as network activities of the DEF CON 22 CTF
event participants. The goal of this thesis was to in an attempt to discover their strategies,
and derive relationships between the offensive and defensive capabilities of the teams and
their eventual ranking in the event.

2.1 Types of CTF Events
CTF events are cyber security competitions where participating teams compete with one
another to capture virtual flags. Depending of the type of CTF event, flags can be captured

5

either by solving cyber security-related puzzles or by compromising the cyber infrastructures
of opposing teams. According to CTFTime.org [11], there are three types of CTF events:

1. Jeopardy-style. These CTF events have various categories of challenges that are
linked in a chain. As teams solve the challenges, more difficult challenges higher
up in the chain are made available. Teams are awarded flags or points for each
challenge solved and are awarded more points for solving tougher challenges. The
usual categories in jeopardy-style CTFs are:

• Pwnables. These challenges require teams to find and exploit a vulnerability in
programs written by the organizers.

• Crypto. These challenges require teams to break a custom encryption algorithm
or decode a given cipher text.

• Reverse Engineering. These challenges require teams to reverse engineer pro-
grams written by the organizers to understand how they work and recover a flag
from program.

• Web. These are web-based challenges that require teams to exploit a web
application to gain access to a file containing the flag.

2. Attack-Defense. In these CTF events, each team is given a network (or a single
host) with several vulnerable services that they must defend. Teams defend their
services by reverse engineering the services to understand their functionality, find
their vulnerabilities and then patch the vulnerabilities. In addition to defending their
vulnerable services, teams also attempt to compromise their opponents’ vulnerable
services to access a specific file on the target system (which is akin to capturing a
flag). Teams gain points for capturing flags and have points deducted if their services
go down or if their flags are stolen.

3. Mixed CTF. These CTFs come in a variety of formats and could be similar to an
attack-defense CTF but with the incorporation of task-based elements.

2.2 Elements of an Attack-Defense CTF
In most Attack-Defense type CTFs, there are the following elements:

• Real-Time Scoreboard. The scoreboard keeps track of the scores or the number
of flags captured by each team. This scoreboard is normally connected to the game

6

scoring server (to which teams submit their captured flags) so that the scoreboard is
updated in real-time whenever a team submits a flag.

• Rounds of play. A CTF event is normally split into rounds of equal duration. During
each round, the flags of each vulnerable service are changed (i.e., the contents of
the flag files on the servers are changed). Hence, flags captured in one round are
no longer be valid in subsequent rounds and, teams have to exploit their opponents
services in every subsequent round to capture new flags.

• Network Infrastructure. Every team is given a server running a number of vulner-
able services that they must defend. For CTF events that are held at a single site(e.g.,
DEF CON CTFs), these servers are all located on the same network. For CTF events
that are multi-site (e.g., the UCSB iCTF), teams are connected to the rest of CTF
infrastructure via a VPN tunnel. In these multi-site CTF events, the server containing
the vulnerable services may be distributed to the teams ahead of time via an encrypted
tarball. On the day of the CTF event, the encryption key for the tarball is given to
the teams. The teams then decrypt the server image and host it on their own virtual
machine infrastructure.

• Exploitation Mechanics. In some CTF events, participating teams are directly
connected to one another on the network. Hence, teams can directly attack other
servers from their own hosts. In some CTFs (e.g., UCSB iCTF), teams are not
directly connected and cannot attack other teams from their own hosts. Instead,
teams wishing to attack other teams must submit their exploits to the organizers, who
then launch the exploits on behalf of the teams.

2.3 CTF Strategies
There are many strategies and tactics that participating teams employ to gain an advantage
over other teams. Some of the these strategies are:

• Reusing Exploits. Rather than developing its own exploits, a team can choose to
capture the exploits used against them and use them to attack other teams. The
challenge here is detecting the exploit on the network.

• Detecting Exploits. Some teams use an IDS in an attempt to detect attacks launched
against them. However, since the exploits launched against them will be custom
written, there are unlikely no IDS signatures for these exploits. Hence, using an IDS

7

to find exploits on the network may not be a fruitful endeavour.
• Detecting Outgoing Flags. Since detecting attacks using IDSes may not always
be possible, teams may look instead for flags being ex-filtrated from their servers.
Since ex-filtrated flags indicate compromise, looking for flags instead of the exploits
themselves is a feasible method for detecting an attack. In some CTF events, flags
have a fixed format and are therefore easy to spot on the network.

• Obfuscating exploits. In order to prevent other teams from capturing and reusing
their exploits, teams can obfuscate their exploits to make it more difficult to analyze
them. Teams may also use multi-stage exploits to make it more difficult for their
exploits to be pieced together as a whole.

• Obfuscating ex-filtration traffic. In addition to obfuscating their exploits, teams
may obfuscate their ex-filtration traffic so that the flags they capture are not detected
on the network, which increases the likelihood that their attacks go unnoticed.

• Mangling flags. One of the best defense a team can employ to protect their services
from exploitation is to patch them. However, there is oftenmore than one vulnerability
in a service, and therefore no conclusive way to know that all vulnerabilities have
been patched. Knowing this, teams may implement code to modify the flag as it
leaves their server. This achieves the effect of frustrating the team that captured the
flag because the flag would be invalid and the game server would reject it when the
mangled flag is submitted.

• Attacking clients. Instead of attacking the servers of their opponents, teams can
choose to attack their opponents clients. Successfully exploiting their opponents
clients may give teams an opportunity to disrupt their opponents’ activities and steal
their exploits.

• Collusion. Another strategy that teams may choose adopt is to work with other teams
in a mutually beneficial way. Some examples of collusion would be sharing exploits
or tokens.

• Leverage on external resources. Teams may leverage computing resources outside
of the CTF network to perform computing intensive tasks such as brute forcing keys.
Teams may even set up Internet Relay Chat rooms to enlist the help of fellow hackers
not officially participating in the CTF to help with solving the challenges.

8

2.4 Tools Used in CTFs
The most common tools used by CTF participants are:

• Disassemblers andDebuggers. Teams use disassemblers to disassemble the services
into assembly code in order to statically analyze the services and find their vulnera-
bilities. Teams also use debuggers to dynamically analyze the runtime behaviour of
the services.

• Exploitation Frameworks. Teams may use exploitation frameworks to help them
develop exploits or payloads for the vulnerabilities they have discovered. A common
exploitation framework is the Metasploit Framework, which is a publicly available
collection of exploits and shellcodes. The exploits in the Metasploit Framework are
for publicly available software, and therefore will not work for the services in CTFs.
However, the collection of shellcodes in the Metasploit Framework can be used for
the services.

• Scripting languages. Teams need to write code to automate the launching of their
exploits. Scripting languages such as Python or Perl can be useful for this purpose.

• Network traffic analysis tools. Recall that one of the strategies employed in CTFs
is to re-use exploits captured from other teams. Teams use network traffic analysis
tools, like Wireshark, to capture network traffic going to and leaving their network to
search for exploits and/or ex-filtrated tokens.

2.5 DEF CON CTF
DEF CON is an annual cyber security conference held in Las Vegas, NV. According to its
official website, DEF CON was started in 1993 as a party for hacking enthusiasts, all of
whom were part of an electronic bulletin board service network [12]. In 1996, DEF CON
began holding formal annual CTF competitions, though prior to this, CTFs were also held,
albeit in a less formal capacity. Since then, the DEF CON CTF has grown to be the most
prestigious of all CTF events, and dubbed by CNBC as the “World Series of hacking” [13].
The DEF CON 22 CTF event was the 19th CTF event to be held at DEF CON. It was a three
day event held August 8-10, 2014.

The DEF CON CTF events throughout the years have all been attack-defense type CTFs.
While this has not changed since its inception, the organizers, the scoring rules, the types

9

of services, operating systems, and architectures have varied annually. The number of
vulnerable services for each iteration of DEF CON CTF can range from five to about
twenty. According to DEF CON CTF history by Dark Tangent [14], the services can
range from "poorly configured crypto, SQL-injection, cross-site-scripting, buffer overflows,
timing attacks, heap exploits, malformed network constructs and custom interpreters." The
operating systems are usually Linux-based (with FreeBSD being used on some occasions)
and the architectures vary widely between x86, x64, ARM, and embedded systems.

For our thesis, we chose to study DEF CON 22 CTF because it was a recent CTF, and so
the strategies and tactics employed by its participants would be current and relevant.

2.5.1 DEF CON 22 CTF Finalists
There were twenty teams in the DEF CON 22 CTF finals. According to [15], these
teams came from diverse nations such as the United States (ppp, shellphish), Taiwan (hit-
con), South Korea (raon_asrt, GoN, codered), China (blue-lotus), Russia (more smoked
leet chicken, balalaikacr3w), Australia (9447), Germany (StratumAuhuur), Japan (binja),
France (w3stormz), Denmark (gallopsled) and Poland (dragonsector). The largest repre-
sentation come from South Korea (3 teams) followed by the United States (2 teams) and
Russia (2 teams). We could not find information about the nationality of five teams: reckless
abandon, routards, penthackon, hackingforchimac, and (mostly) men in black hats.

A team may qualify for the DEF CON CTF finals in three ways. The first way is to take
part in, and win, one of several qualifying CTF events. These qualifying events are usually
jeopardy-style CTFs organized by cyber security interest groups. Examples of such CTF
events include PlaidCTF [16], Boston Key Party [17] and RuCTFE [18]. The second way
to qualify for the finals is to take part in the official DEF CON CTF qualifiers and finish as
one of the top ten teams. The third way is to return as defending champion of the previous
year’s DEF CON CTF event. Table 2.1 shows the finalists for the DEF CON 22 CTF as
well as their respective qualifying events.

10

Table 2.1: Table of DEF CON 22 CTF �nalist and their respective quali�ers

Team(s) Qualifying Event
Plaid Parliament of Pwning (PPP) DEF CON 21 CTF Winner

StratumAuhuur Boston Key Party
More Smoked Leet Chicken (mslc) RuCTFe

Dragon Sector Ghost In The Shellcode
[SEWorks]penthackon Olympic CTF

Gallopsled Codegate 2014 Finals
BalalaikaCr3w PHDays 2014

Binja SecuInside 2014
9447,

Reckless Abandon,
Routards,

Raon_ASRT,
KAIST GoN,
shellphish,
CodeRed, DEF CON 22 CTF Qualifier
HITCON,
blue-lotus,

HackingForChiMac,
(Mostly) Men in Black Hats,

w3stormz

Finalist information compiled from [19]

2.5.2 DEF CON 22 CTF Game Infrastructure
Every iteration of the DEF CON CTF event is unique and the corresponding operating
systems, architecture, and type of vulnerable services change from year to year. In the DEF
CON 22 CTF event, every team was given a single host running four vulnerable services.
Each team was responsible for defending its assigned host against attacks from opposing
teams. As described by Stratum [20], the host was running on an ARM-based ODROID-U2

11

development platform, and the four vulnerable services were as follows:

1. eliza – A text-based space economy simulator
2. wdub – A web service
3. justify – A constraint solver
4. imap – An IMAP email server

In addition to the four vulnerable services, there was also a separate hardware challenge
called Badger. Badger was an electronic circuit board that ran a radio chat service, and
teams had to exploit the firmware running on the opposing team’s circuit boards via the
radio chat service. There was also a sixth vulnerable service that the organizers created
called csniff, but it was never put into play during the event.

2.5.3 DEF CON 22 CTF Team IP Assignments
Each team in the DEF CON 22 CTF event is given a CIDR subnet and each team’s server,
that hosts the vulnerable services, is given a .2 IP within the subnet. For example, if team
PPP is given the subnet of 10.5.1.0/24, then PPP’s server will have the IP 10.5.1.2. As a
result of the IP assignments, we were able to identify traffic to/from a team’s server or client
by the IP address alone. Table 2.2 gives the IP subnets assigned to each team in the DEF
CON 22 CTF event.

12

Table 2.2: Table of Team to IP subnet mappings

Team Assigned CIDR subnet
Plaid Parliament of Pwning (PPP) 10.5.1.0/24

9447 10.5.2.0/24
Reckless Abandon 10.5.3.0/24

Routards 10.5.4.0/24
raon_ASRT 10.5.5.0/24
KAIST GoN 10.5.6.0/24
shellphish 10.5.7.0/24
CodeRed 10.5.8.0/24
HITCON 10.5.9.0/24
blue-lotus 10.5.10.0/24

HackingForChiMac 10.5.11.0/24
(Mostly) Men in Black Hats (mmibh) 10.5.12.0/24

w3stormz 10.5.13.0/24
More Smoked Leet Chicken (mslc) 10.5.14.0/24

Dragon Sector 10.5.15.0/24
[SEWorks]penthackon 10.5.16.0/24

Stratum Auhuur 10.5.17.0/24
Gallopsled 10.5.18.0/24

BalalaikaCr3w 10.5.19.0/24
binja 10.5.20.0/24

2.5.4 Game Mechanics and Scoring
The DEF CON 22 CTF event was broken up into 272 rounds that each lasted five minutes.
At the start of the CTF event, each team was assigned 2,502 flags. These 2,502 flags were
further distributed equally among the six services (even the sixth, disabled, service was
assigned flags), with each service being assigned 417 flags. Ultimately, the number of
flags a team owned (be it flags they captured or flags that belonged to them from the start)
determined their score. The team with the greatest number of flags at the end of the event

13

had the highest score.

In every round of the event, teams captured flags by exploiting the vulnerable services of
opposing teams, stealing a token, and redeeming the token with the scoring server. By
redeeming a token, a team indicated to the scoring server that it had successfully exploited
an opposing team’s service. So, at the end of a round, flags were distributed to teams that
redeemed tokens for that round. A token was a random string of letters and digits (e.g.,
zXKTilzOlxsnYZvsZqjsxnSDXi) that was associated with a specific service and a specific
round. Exploiting an opponent’s service allowed a team to read a file that contained the
token. All stolen tokens could be redeemed for points. A new token was generated for each
service every round; hence, teams needed to exploit their opponent’s services every round
in order to steal a valid token for a particular round.

At the start of each round, each team’s service had a maximum of 19 points available for
redemption (as long as there were points available). At the end of every round, all teams
that had successfully compromised a service and redeemed its associated token was given
a share of these 19 points. A team that had its service exploited lost all 19 points associated
with that service, independent of the number of opposing teams that exploited their service
in that round. Points received from one service were credited to the corresponding service
of the capturing team. For example, in one round, if five teams successfully exploited and
redeemed the token associated with the Eliza service of team PPP, then at the end of the
round, PPPwould lose the 19 points that were associated with Eliza and the five teamswould
distribute the 19 points equally among themselves, with each getting 3 flags (the 3 flags were
derived from dividing the 19 points by the 3 teams and rounding down). The remainder
of the points that were not distributed would be acquired by the organizer. The points that
each of the five teams received would be added to the point total of their respective Eliza
service. In addition, if a team’s service was down for a round, that team also would lose the
19 points associated with its service and these 19 points would be distributed between the
teams that have that particular service up.

2.5.5 Network Data Organization
The organizers of the DEF CON 22 CTF made the captured network traffic of the event
available online. It consisted of 285GB of full packet network traffic split according to

14

teams. The 285GB of captured network traffic was saved in the libpcap file format and split
across multiple files, with each file (called pcap files) containing network traffic captured
within a 5-minute window (some pcap files contain network traffic lasting over a longer
duration). Depending on how much data was sent over the network in a 5-minute window,
the size of each pcap file ranged from 100KB to well over 100MB.

Although each pcap file contained network traffic captured roughly within a 5-minute
duration, these five minutes did not necessarily fall within the window of a round in the
CTF event. Each file potentially contained network traffic that straddled two consecutive
rounds and this fact was accounted for when we inspected round-by-round network traffic.
Figure 2.1 illustrates how the network traffic files corresponded to round boundaries.

Figure 2.1: Illustration showing how �les of captured network tra�c may
overlap round boundaries

Each team’s set of pcap files should have contained all network traffic going to and from
their hosts. Hence, if a team attacked another, we expected to see their attack traffic appear
in the pcap files of both these teams (albeit with the source and destinations reversed).
However, we noticed that this was not the case and we detected a number of instances where
traffic appearing in one team’s pcap file was not present in the file of the other. We do not
know for sure the reason for this discrepancy, but it may be due to the packet capturing
system being overwhelmed and ignoring packets. Hence, when searching through the pcap
files for tokens, we had to be mindful of this fact and searched the pcap files of both teams
involved in the network conversation.

Not all traffic going to and coming from the vulnerable services was captured in these pcap

15

files, however, as one of the services, Badger, worked over a radio chat service and therefore
did not send data over the network where the organizers were capturing the traffic. As a
result, our analysis was missing all data pertaining to the Badger service. Fortunately, based
on anecdotal evidence from routard’swrite-up [21], we found that little data was exchanged
over the Badger radio service as Badger challenging and only routardswas reported to have
successfully compromised this service. Hence, we do not expect that missing data from the
Badger challenge affected our findings.

2.5.6 Game State Data
The game state data for the DEF CON 22 CTF contained information on the state of the
CTF event at every round. All data was stored in a series of PostgresSQL database tables.
The game state information that was stored in the database included:

• The tokens redeemed each round, the team redeeming the tokens as well as the team
from which the token was stolen.

• The start time and end time of each round.
• The number of flags captured for each round (as a result of flag redistribution based
on tokens redeemed).

• The rounds in which services were down.

While the game state data stored only the final scores, it was possible to calculate the scores
for any one round from the data in the database. The entity relationship diagram, which
illustrates how the tables of the diagram relate to one another, is shown in Figure 2.2.

16

Scorebot domain model

Availability

dingus string
memo text
status integer
token_string string

Penalty

Capture

Team

address string
certname string
joe_name string
name string
uuid uuid

Flag

Instance

Token

digest string
key string
memo text
status integer

Redemption

uuid uuid

Round

distribution json
ended_at datetime
nonce string
payload json
signature string

Service

enabled boolean
name string

Ticket

body text
resolved_at datetime

Timer

ending datetime
name string

Figure 2.2: Entity Relationship Diagram of game state database

ERD diagram taken from LegitBS �ScoreBot Domain Model," 2014 [1]

2.5.7 DEF CON 22 CTF Visualization
The organizers created a real-time visualization to update the the participants and spectators
on the progress of the CTF event. As described in [22], the visualization had boxes that
represented each team, and their physical position within the room. Every successful attack
by a team was displayed as projectiles launching from the attacking team to the exploited
team. The visualization for the DEF CON 22 CTF can be found at https://www.youtube.
com/watch?v=1UT3qXHduts&feature=youtu.be

2.6 Network Flows
In this thesis, we made use of network flows to analyze trends in network traffic. As defined
in SiLK FAQ [23], Network flow is a summary of a network conversation that covers all
traffic matching five attributes that are relevant for addressing: "the source and destination
addresses, the source and destination ports, and the protocol. These attributes (sometimes

17

called the 5-tuple), together with the start time of each network flow, distinguish network
flows from each other."

2.7 Network Traffic Analysis Tools
A major part of this thesis focused analyzing network traffic captures of the DEF CON 22
CTF event. Given the amount of network activity, it would have been infeasible to manually
process and inspect. Hence, we used the following tools to aid our analysis.

2.7.1 SiLK
The System for Internet-Level Knowledge (SiLK) is termed as "a collection of traffic
analysis tools developed by the CERTNetwork Situational Awareness Team (CERTNetSA)
to facilitate security analysis of large networks" [24]. SiLK utilizes its own space-efficient
binary flat-file format to store network flow information and has a set of analysis tools that
can be used to perform queries on this file format. The analysis tools interoperate using
pipes, which made it convenient for us to chain them together to perform complex analyses.
Specifically, we used the following tools in SiLK:

• rwp2yaf2silk. This tool reads the content of one or more pcap (libpcap library
format) files and coverts the data into SiLK flow records. It creates a flow record
from associated packets and is also able reassemble fragments into packets prior to
conversion.

• rwfilter. This tool filters flows from SiLK flow data based on properties such source
or destination IPs and ports. It can be used to read SiLK flow records from stdin
and send its output to stdout. As a result, several instances of rwfilter can be chained
together to create complex filtering rules.

• rwcut. This tool essentially prints out SiLK flow data in human readable format. It
is generally used as an interface to pipe SiLK flow records to other programs that do
not accept SiLK flow records.

2.7.2 nGrep
ngrep is a tool written by Jordan Ritter and used to analyze network packets [25]. It
is mainly used to search for byte patterns within pcap files (or live network traffic) by

18

specifying regular expressions. Like tcpdump, it accepts the Berkeley Packet Filter (BPF)
syntax for specifying filters to select only specific traffic within which to search.

2.7.3 tcpflow
tcpflow is touted as a TCP/IP session assembler. Supplied with pcap files (or live network
traffic), tcpflow will reassemble packets belonging to the same flow, extract the payload,
and save each flow’s payload into a separate file.

2.8 Network Visualization Tools
Often, having a good visual representation of the network data will aid in its analysis. For
example, being able to visualize network traffic trends across time could provide hints about
the work tempo of each team, or being able to see who the hosts on the network are talking
to could reveal anomalous conversations. We used an ensemble of the following tools to
help us visualize the DEF CON 22 CTF network traffic.

2.8.1 Google Charts
Google Charts is a toolbox for drawing interactive charts, such as line charts and pie charts,
and is a convenient way for visualizing data. It does not require 3rd party plugins and is
based on JavaScript and HTML 5 [26], which are supported by all modern web browsers,
making it convenient to use.

2.8.2 Flow Plotter
FlowPlotter is a tool developed by Jason Smith that reads in SiLK flow data and generates
visualizations such as line charts, bubble charts, and directed graphs [27]. FlowPlotter uses
Google and D3 charts to generate its visualizations. We used FlowPlotter to visualize the
DEF CON 22 CTF network traffic and were able to spot interesting network trends that
provided hints as to how teams used automation as part of their attack methodologies.

2.8.3 Gephi
Gephi is open source software for visualizing and understanding graphs and networks [28].
It contains functionality for visualizing and interacting with network and graph data, and it

19

utilizes a plugin framework so that new functionality can be added to Gephi. By using the
zoom and pan functions, we were able to spot suspicious connections between hosts.

20

CHAPTER 3:

METHODOLOGY

While it may be tempting to treat the analysis of DEF CON 22 CTF data like that of network
intrusions (since both deal with studying malicious network traffic), and therefore adopt a
similar methodology, there are in fact fundamental differences between the two. The key
differences being:

• The majority of the traffic in DEF CON 22 CTF was malicious traffic, whereas in a
normal network, the bulk is comprised of benign traffic.

• The networks respective definitions of anomalous traffic are different. In regular
networks, anomalous traffic often exhibits adversarial behaviour. In the DEF CON
22 CTF traffic, almost all traffic we expected to see was adversarial and therefore
anomalous by normal standards. Hence, we needed a different set of considerations
to differentiate traffic that is considered anomalous by DEF CON CTF standards.

• Exploits used in normal networks target known services and have known signatures.
In the DEF CON 22 CTF event, the services were custom written for the competition.
Therefore, the exploits that the participants develop for use against them have no
available public signatures.

Bearing in mind the above differences and the fact that we had a tremendous amount of
network data to sift through, we found that identifying interesting network packets by relying
on signatures or performing an exhaustive search was not possible. Therefore, we adopted
the following methodology:

1. We processed the network traffic (that contains the full payload) into a light-weight
representation so that we could more effectively visualize and summarize.

2. We used data visualization techniques to help zoom in to areas of interest.
3. We correlated network data with game state data as well as with source code of

scoring infrastructure to efficiently narrow down the network traffic of interest.
4. We adopted the approach of using one successful exploit from each team as repre-

sentative for every instance of a team’s exploit. This saved us the work of having to
inspect every instance of every exploit from each team, and reduced it to inspecting

21

one exploit instance for every exploit from each team. For example, throughout the
CTF event, team ppp launched 1000 instances of its exploit against the Eliza service.
Instead of studying all 1000 instances, we assumed that all 1000 instances of the
exploit are identical, or nearly so, and we studied only one of the instances.

The sources of data used in our analysis are as follows:

1. Network Traffic of the DEF CON 22 CTF competition
2. Game state data from the scoring database
3. Final scores of the teams

3.1 Processing Network Traffic Data
The DEF CON 22 CTF network traffic that we obtained were full packet captures, which
contained not only packet headers, but also the payload. In addition to being large, they
also potentially contained traffic that did not directly relate to our analysis. For example,
the packet captures contained a lot of Internet-bound traffic that were erroneously routed
into the game network. There were also a lot of multicast packets that were sent by services
running on the team’s client machines that were not intentional attack traffic. Therefore, we
needed to convert the packets to a representation that was more efficient in terms of storage
requirements while remaining suitable for statistical analysis. For this purpose, we chose
the SiLK file format as the format in which to save the network traffic flow information.

The organizers split the network traffic of each team into 306 pcap files. With 20 teams and
306 pcap files per team, we had a total of 6120 pcap files to process. Such a large number of
pcap files made the analysis cumbersome. For performing network traffic trends analysis,
we did not require payload information; hence, we used the rwp2yaf2silk script to extract
flow records from the 306 pcap files of each team. We then saved the extracted flow records
into 20 SiLK files—one SiLK file for each team—thereby greatly reducing the number of
files we had to process.

Using SiLK flow records, we greatly sped up the analysis of areas that required only flow
record information. For example, in studying the number of hosts each team used to launch
their attacks and the number of callback ports each team used for their reverse connect
payloads, we used flow record data. For other analysis that required extraction of tokens

22

and exploits, we used the processes described in section 3.4, 3.5, and 3.6. The process of
converting the pcap files to SilK flow records is illustrated in Figure 3.1.

Figure 3.1: Process of converting a team's pcap �les to SiLK �ow records
�le

3.2 Visualization of SiLK Flow Records
Often visualizing information allows one to come up with insights that would otherwise be
impossible. Especially when it comes to searching for anomalies, visualizing data may be a
helpful technique. For example, we wanted know whether teams automate their attacks. By
visualizing network traffic trends, we could spot possible instances of automation from the
presence of regular spikes in network activity. In addition, we also wanted to know whether
teams attempted to exploit the clients of other teams. This could be determined by observing
a network graph that captured host-to-host conversations and looking for instances where
clients of one team connected to clients of another team . Hence, we used two visualization
tools to help visualize the DEF CON 22 CTF network traffic. The tools are flowplotter,
which we used to visualize network traffic trends, and Gephi, which we used to visualize
conversations between hosts.

As we had already extracted network flow information from the pcap files into SiLK
flow records, we could easily use flowplotter and Gephi to visualize those flow records.
Figure 3.2 shows the process of using the SiLK toolkit with flowplotter to generate network
traffic trends so that we can visually spot regular occurring network spikes. We first read in
the SiLK flow records of each team and used rwfilter to filter non CTF-related traffic (such

23

as Internet-bound packets that were erroneously routed into the CTF network and multicast
service discovery related packets). We then piped the rwfilter output to flowplotter and then
combined all of their individual line charts into one single line chart.

Figure 3.3 shows how we use the SiLK toolkit with Gephi to visualize host-to-host conver-
sations so that we could spot conversations that only involved clients. Similar to processing
the SiLK flow records for visualizing network traffic trends, we read in the SilK flow records
for each team, and used rwfilter in series to select only network conversations that involved
client hosts and filtered away non CTF-related traffic. We then piped the output of rwfilter
to rwcut to convert the filtered SiLK flow records into a textual form. Finally, we used sed
to covert the output of rwcut to a dot file format, which we then displayed with Gephi.

Figure 3.2: Process to generate and visualize network tra�c trends

24

Figure 3.3: Process to generate and visualize network host-to-host conver-
sations

3.3 Correlating Game State Data and Network Traffic to
Narrow Search Results

While visualizing network conversations and trends may have provided interesting insights,
we needed to go deeper and actually inspect the payloads of the network packets in order to
gain a better understanding of the offensive techniques employed by the teams. Specifically,
we were interested in knowing if:

1. Teams obfuscated their exploits to minimize the presence of attack indicators.
2. Teams obfuscated their ex-filtration traffic to hosts they compromised in order to

minimize indicators of compromise.
3. Teams used public shellcodes, like those found in the Metasploit Framework or those

found on public shellcode repositories.
4. Teams limited the rate of exploitation.

However, there were two challenges to more deeply inspecting the networks’ traffic:

25

1. There was too much network traffic to manually sort through in a reasonable amount
of time.

2. We were initially unable to extract exploits automatically because we did not have
any reference data to use as signatures. In addition, tokens were random strings of
digits and letters of 26 characters in length and using a general regular expression for
matching against tokens would yield a large number of false positives.

In order to overcome these two challenges, we used game state data to help narrow the
search space. From the game state data, we were able to:

• Discover the rounds (and therefore the time window) within which tokens were
redeemed. Knowing the time window gave an approximate time when a service was
attacked, since a team must have successfully compromised a service before stealing
a token. In addition, knowing the time window in which a token was redeemed also
narrowed the search space of network traffic in which to look for stolen tokens, an
absence of which indicated obfuscated tokens.

• Discover the partial token which we used as a search pattern to automatically
find the tokens in network traffic. Unfortunately, the game state database did not
store the full token, rather, it stored every other character of the token. For example,
if a token was “1234ABCD,” then the information stored in the database would only
be “13AC.” Presumably, this measure was taken for the sake of security, so that if
the database was compromised, the whole token was not revealed. The hash of the
whole token was stored in the database; hence, when a team redeemed a token, the
scoring system could verify that the token was indeed valid. Consequently, we were
not able to do a simple pattern search of the network traffic to look for partially known
tokens, but instead used regular expression and verified the tokens we found against
the hashes in the database.

3.4 Searching for Tokens in Network Traffic
By correlating the number of tokens found on the network to the number of tokens redeemed
by each team, we were able to get a sense of how much effort teams put into hiding the
presence of stolen tokens on the network. This in turn gave us a proxy for how well teams
obfuscated traffic to the hosts they have successfully compromised. A commonly used tactic

26

in CTFs is to look for stolen tokens in one’s own network traffic as a means of discovering
that a token has been stolen. However, for DEF CON 22 CTF, tokens were random strings of
numbers and characters of 26 bytes in length, and using a simple pattern-matching approach
to identify stolen tokens increases the likelihood of false positives.

In order to reliably and efficiently spot tokens in network traffic, we used two pieces of
information obtained from game state data. The first piece of information is the time
window in which the token was on the wire. This allowed us to narrow down the number of
pcap files in which to look for the token. The second piece of information was the partial
token. As explained previously, the game state database only stored alternate characters of
the token. Hence, to search for a given token within the network traffic, one would have
to use a regular expression to find strings with alternate characters equal to those in the
game state database. For example, if the token in the game state database was listed as
“zKizlsYvZjxSX,” then the regular expression used would be “z.K.i.z.l.s.Y.v.Z.j.x.S.X.”

To accomplish the task of finding all the tokens in the network traffic, we developed the
following tools:

• SQL string to extract the partial tokens that were redeemed and the time window
within which they were redeemed.

• Python script called “insert_dot.py” to create the regular expression from the partial
token.

• Bash shell script called “search_flags_in.sh” to search for all redeemed tokens from
within the network traffic.

• Bash shell script called “getroundcaps.sh,” which find all of the pcap files that con-
tained traffic that corresponded to a given time window.

Figure 3.4 illustrates the process used to search for all redeemed tokens from the DEF CON
22 CTF network traffic.

27

Figure 3.4: Process of �nding tokens in DEF CON 22 CTF network tra�c

3.5 Searching for Base64 Encoded Tokens in Network
Traffic

As part of our research, we wanted to find tokens in network traffic that were Base64
encoded. However, as explained in section 3.4, the complete token was not stored in the
database, and therefore we were unable to simply search the network traffic for encoded
tokens. Fortunately, we found a a way to spot encoded tokens. All token strings were 26
characters in length, and encoding these tokens resulted in a Base64 encoded string of 36
characters that ended with the letter "K" (due to the padding that was added by the linux
Base64 program). There would still be a lot of false positives if we simply accepted all
strings of 36 characters that ended with the letter "K." However, we reduced the number of
false positives by Base64-decoding the identified string to see if it yielded a valid ASCII
string and then subsequently validated the decoded string against the hash of the token
stored in the database.

28

3.6 Searching for Exploits in Network Traffic
Searching for exploits in network traffic was a challenge since we did not have an instance
of an attack to use as reference for signature creation. Furthermore, competent attackers,
knowing that opposing teams were monitoring network traffic for their exploits, may have
obfuscated their exploits to make analysis harder and/or may have sent decoy traffic to make
identifying attacks more time consuming.

In order to reliably and efficiently find exploits in the network traffic, we made use of the
list of tokens that we had already found within the network traffic. As a by-product of
the process of finding the tokens (described in the previous section), we were also able to
locate the network flow (which described the flow of data from the server to attacker) that
contained the stolen token. Given this, we were also able to find the preceding flow (i.e.,
the flow from the attacker to the server) and we were able to discover the exploits in one or
more of those flows. For example, if we found a stolen token in a flow from 10.5.1.2:8888 to
10.5.2.101:58358, it would imply that host 10.5.2.101 was the attacker and very likely had,
at some point in the recent past, sent an exploit over the network. As such, we would need
to find the flow that corresponded to host 10.5.2.101:58358 and destination 10.5.1.2:8888
and we would frequently see the exploit in that particular flow. There are some cases where
this methodology did not work, such as cases where tokens are sent via a backdoor or cases
where the payload of an exploit returns the token over a new connection. In these cases, it
was difficult to assert which preceding session was responsible for the actual exploit.

To accomplish the task of finding exploits that returned tokens on established sessions (i.e.,
not backdoors or exploits that establish a new connection via callback), we developed the
following tools:

• A bash script called “extract_exploit.sh” that, when given a network flow that contains
a token, found the corresponding network flow containing the exploit that was used
to compromise the service and steal the token.

Figure 3.5 illustrates the process used to search for exploits within the DEF CON 22 CTF
traffic.

29

Figure 3.5: Process of extracting exploits from DEF CON 22 CTF network
tra�c

3.7 Adopting Heuristics to Reduce Work of Studying Ex-
ploit Instances

As part of this thesis, we attempted to study two areas related to attack strategies:

1. Investigate if teams in the CTF turn around attacks used against them and reuse them
to attack their opponents (commonly referred to as "replay attacks"). In order to do
this, we first determined if two exploits are similar. Only then could we determine if
an exploit was been taken from one team and reused by another.

2. Investigate if teams used publicly available payloads.

In order to investigate the above two areas, we first extracted and studied each team’s exploits.
However, throughout the duration of the CTF event, each team launched multiple instances
of their exploit against a service. Each instance of the exploit may have been exactly the
same or they may have slightly varied to accommodate for changes in the address space of
the service or to accommodate for the nature of the vulnerability requiring different input
values. As long as the service remained vulnerable to the exploit, the exploit continued to
work and teams continued to use the same (or similar) exploit to steal tokens. By the end
the CTF, each team may have launched hundreds of instances of each exploit, so searching

30

for and studying every instance of every exploit was not feasible.

While each team may have launched multiple instances of each exploit (each with slight
variations), each instance was likely to be almost the same. We used this fact to reduce
the number of exploits we needed to study. Hence, instead of studying every instance of
an exploit, we assumed that all exploit instances were the same and studied only the first
instance of an exploit (i.e., the first exploit that was launched that successfully stole a token).
There is a caveat here, and that is servicesmay havemultiple vulnerabilities. Therefore, each
team may have had one exploit for each vulnerability within the same service, resulting in
each team having more than one exploit to attack a single service. By studying only the first
successful exploit, we overlooked the other exploits that attacked different vulnerabilities
within the same service.

3.8 Similarity Measures for Exploit Data
As explained in the shellcoders handbook [29], an exploit can have two parts—the sequence
of bytes that trigger the vulnerability, and the payload that is executed when the vulnerability
is triggered and control is handed over to the payload. Determining similarity between two
instances of an exploit is different from determining the differences in their payloads alone.
As far as we are aware, research done in this area has looked for similarities between exploit
code (i.e., payload) rather than the exploit itself. For example, work by done Deguang
Kong et al. [30] on exploit code attribution used a statistical model derived from a Markov
model for attribution of shellcode. In a similar vein, work done by Manoj Cherukur [31]
disassembled shellcodes and computed the mean of Cosine Similarity, Extended Jaccard
Similarity and Pearson Correlation measures based on the frequencies of the opcodes to
determine similarities of shellcodes. Both pieces of work mentioned above focused on
similarities between shellcodes and not the entire exploit. This did not work in our case,
where we wanted to compare the entire exploit. In addition, some of the exploits were
return-oriented programming (ROP) based, which means that the payload of the exploit did
not contain opcodes, but data. Hence, Deguang Kong et al and Manoj Cherukur’s work
could not be applied to our study, since their work was based on using opcodes to determine
similarities.

Determining the similarity of exploits cannot be done by a simple byte-by-byte comparison

31

since the sequence of bytes of an exploit can be somewhat changed without altering its
behaviour. An example of this is inserting extraneous new line characters in a text-based
exploit. The sequence of bytes has changed from the original exploit, but the exploit may
still function as the original. Therefore, a better approach to determining the similarity of
exploits was required for this study.

Initially, we used edit distance to measure similarity between exploits. While we found
that edit distance was able to indicate if two exploits were dissimilar, it did not tolerate
extraneous bytes sequences in similar exploits that were being compared. For example,
some exploits were text based and differed because one variant of the exploit had newline
characters, whereas the other variant did not. Realistically, we wanted to consider these
two exploits as the same, since in these text-based exploits, the newline introduction of
newlines characters did nothing to change the nature of the exploit. However, the edit
distance measurement was affected by these newline characters. Hence, we did not adopt
edit distance as a similarity measure.

In observing the characteristics of an exploit, we found them similar in characteristics of
time series data in that:

1. It can tolerate stretching and shrinking of its length and still retain its prominent
features (as explained above, in the case of exploits, adding extraneous characters is
sometimes possible without affecting the functionality of the exploit).

2. The sequence of the data matters and can be an identifying trait. While exploits do
not necessarily require the spatial relationship between byte sequences to be fixed,
they do require that the order of byte sequences relative to one another be consistent.
For example, some payloads may have the instruction sequence to “push /bin/sh” onto
the stack, followed sometime later by an “int 0x80.” While the absolute offset from
the “push /bin/sh” instruction to the “int 0x80” need not be fixed (i.e., an arbitrary
number of instructions can lie between them), the order in which they occur needs to
be preserved (i.e., “push /bin/sh” needs to come before “int 0x80”).

Given this similarity between time series data and exploit bytecodes, we felt that Dynamic
TimeWarping (DTW), an algorithm used to compare time series data, would also be suitable
to compare exploits. However, we could not simply use the DTW score directly, since we
expected to see greater difference for larger exploits. Hence, in order to the account for

32

larger exploits having larger tolerable variances, we divided the DTW by the median size
of all the exploits of a given service.

For example, given three exploits for eliza, each developed by ppp, hitcon and routards
respectively, we did a pairwise comparison of each of the exploits (i.e.,

(
N
2

)
). For each

comparison, we calculated the DTW distance between the exploits and divided the value
by the median size of the three exploits. We considered two exploits to be similar if their
DTW ratio is smaller than some threshold value. In order to determine this threshold value,
we generated a scatter plot of all the DTW distances for a given exploit and observed that
there were clusters. The threshold value was taken as the smallest value that separated one
cluster from the other. As an example, look at Figure 3.6. It shows a scatter plot of the
normalized DTW distance for the eliza exploit. The x-axis shows the two teams whose
exploits are being compared and the y-axis shows the normalised DTW distance. We can
see a continuous cluster of dots at the bottom of the scatter plot that are clustered around the
normalized DTW distance between 0 and 0.02. Hence, in this case, we would determine the
threshold to be 0.02. In other words, if the normalized DTW distance between two exploits
is less than or equal to 0.02, we consider these two exploits to be similar.

Figure 3.6: Scatter plot of normalized DTW distance of the eliza exploits

33

3.9 Investigating Use of Exploit Polymorphism
In addition to comparing the exploits of different teams, we also looked at the exploits of a
single team throughout the duration of the event. We did so to find out whether teams varied
their exploits (perhaps in response to the patching of services) as the game progressed, and
if they did, how many exploit variants they created. In order to study whether teams varied
their exploits, we looked through every pcap file for each team and extracted every exploit
that was successful in stealing a token. We then grouped all the exploits from one team
that targeted the same service into one group. Within each group, we took the first exploit
as the baseline and compared it to every other exploit. The comparison function we used
was DTW. We did this for every team and generated a scatter plot for each team and each
service. Figure 3.7 shows an example of the scatter plot for ppp’s eliza exploit. We can see
from the scatter plot that over the course of the CTF, ppp used roughly three variants of the
exploit, as is visible from the three linear group of dots.

Figure 3.7: Scatter plot of ppp's eliza exploit over the course of the CTF

3.10 Detection of Publicly Available Payloads
One of the metrics we wanted to examine with respect to the competency of teams was their
reliance on publicly available payloads. We hypothesized that competent teams developed

34

their own payloads, and it would be a surprising discovery if any of the teams did indeed
use publicly available payloads. Before we could determine if teams used publicly available
payloads, we first needed to identify and extract the payload from the rest of a given exploit.
This was not a trivial task, and in the absence of a reliable and automated way to extract
the payload from the exploit, we had to perform the task manually. But once we had all the
payloads, we performed a byte-by-byte comparison to determine similarity. Since we were
comparing payloads, the methods explained in [30] and [31] could also have been used.

There are many sources of publicly available payloads (Metasploit, for example, is an
exploitation toolkit that has a collection of customizable payloads) and the public payloads
that we used as references are:

• execve("/bin/sh", ["/bin/sh"], NULL) 30 bytes x64 shellcode from shellstorm [32]
• execve("/bin/sh", ["/bin/sh"], 0) 30 bytes Linux/ARM shellcode from shellstorm [33]
• execve("/bin/sh") Linux/Armle shellcode from Metasploit v4.9.3
• execve("/bin/sh") x86_64 shellcode from Metasploit v4.9.3

If teams used payloads that were similar byte-by-byte to any of the four payloads mentioned
above, we determined that the team has used a publicly available payload.

35

THIS PAGE INTENTIONALLY LEFT BLANK

36

CHAPTER 4:

RESULTS AND ANALYSIS

This chapter covers findings from our study on the network traffic capture files downloaded
from [34]. The chapter consists of three parts. The first part describes interesting discoveries
that we made through data visualization and manual packet inspections. The second part
describes the metrics we developed in an attempt to correlate team strategies to their final
game standing. The third part of the chapter provides an analysis of the metrics.

4.1 Interesting Discoveries
This section describes the interesting discoveries resulting from our analysis. The method-
ology used to make these discoveries involved visualizing the network traffic data to spot
interesting or anomalous artifacts along with a manual analysis of the captured network
packets.

4.1.1 Use of Automation for Attacks
Figure 4.1 shows the number of bytes sent per second to the vulnerable services for Round
91 and Round 92. The red line indicates where Round 91 ended and Round 92 began. We
chose Round 91 and 92 as an example to highlight. These two rounds were near the end of
Day One, and we expected teams to have settled into their routines by then. We also looked
at the traffic patterns of subsequent rounds in Day Two and Day Three of the competition,
and we also saw similar patterns.

37

Figure 4.1: Line chart showing bytes sent by three of the top �ve teams

Looking at the chart we observe that:

• Three of the top five teams had regular spikes in their network traffic. Figure 4.2 shows
only traffic for Round 91 and Round 92 that originated from hitcon’s clients and was
destined for the ports of vulnerable services of which other teams were listening. We
can see that there was periodic traffic sent to the elsa and wdub service. Similarly, in
ppp’s and blue-lotus’ traffic, we see that they too had regular spurts. Figure 4.3 shows
only network traffic that originated from ppp that were destined to the vulnerable
services. We can clearly see that there were regular spikes of traffic going to the
wdub service. Likewise, Figure 4.4 shows only network traffic that originated from
blue-lotus that was destined for the vulnerable services. We can see that there are
regular spikes of traffic going to the eliza and wdub service.

38

0 100 200 300 400 500 600 700
Time (s)

0

1000

2000

3000

4000

5000

6000

7000 Exploit Traffic(wdub)

Exploit Traffic (Eliza)

Exploit Traffic(imap)

Exploit Traffic(justify)

Figure 4.2: Line chart showing bytes of exploit tra�c sent by hitcon

0 100 200 300 400 500 600 700 800
Time (s)

0

3000

6000

9000

12000

15000
Exploit Traffic(justify)

Exploit Traffic(imap)

Exploit Traffic (Eliza)

Exploit Traffic(wdub)

Figure 4.3: Line chart showing bytes of exploit tra�c sent by ppp

0 100 200 300 400 500 600 700 800
Time (s)

0

400

800

1200

1600

2000

2400

Exploit Traffic (justify)

Exploit Traffic(imap)
Exploit Traffic (Eliza)

Exploit Traffic(wdub)

Figure 4.4: Line chart showing bytes of exploit tra�c sent by blue-lotus

39

• From Figure 4.1, there appeared to be no difference in the frequency of launching
exploiting between one round and the next. For three of the top five teams, we did
not see any special activities taken by the teams as they transit from Round 91 to
Round 92. However, this does not mean that in subsequent rounds the teams did not
modify their behavior. One area of future work to look at would be to study how
teams change their behavior as they progress through the CTF event.

• Comparing Figure 4.2, Figure 4.3 and Figure 4.4, we see that the frequencies that
they launched their respective exploits were different. blue-lotus appears to have had
a higher frequency of launching exploits compared to hitcon and ppp. However, this
does not mean that the teams did not vary their behaviors as they progress through the
CTF event. In Section 4.2, we looked at the rate of exploitation to study the frequency
at which teams launched their exploits.

From our observations above, it seems likely that teams used automation to launch their
exploits at regular intervals. This makes sense since each team needed to launch their
exploits at regular intervals (based on round lengths) during the competition and automating
this process released manpower for other tasks.

4.1.2 Scanning and Exploiting Hosts
We examined the number of connections initiated by clients of one to clients of other teams
(i.e., only client-to-client connections) to discover if teams attempted to connect to and/or
exploit the clients of other teams. We discovered four hosts that initiated a large number
of connections to other clients, which we deemed suspicious, since we expected clients to
only attack servers running vulnerable services. The four hosts (belonging to three teams)
were 10.5.9.102, 10.5.9.106, 10.5.14.107 and 10.5.18.21. The first two hosts belonged to
hitcon, the 3rd belonged to mslc and the last host belonged to gallopseld. Table 4.1 shows
the number of connections initiated by each host.

40

Table 4.1: Number of client-to-client connections initiated by hitcon, msls
and gallopsled

Team Client Number of Outgoing Connections

hitcon
10.5.9.102 4869
10.5.9.106 4867

mslc 10.5.14.107 4445
gallopsled 10.5.18.21 3843

Since the number of outgoing connections for the four hosts seemed anomalous, we decided
to investigate further and learned that:

• The various hosts (i.e., 10.5.9.102, 10.5.9.106, 10.5.14.107 and 10.5.18.21) were
conducting port scans against various clients.

• Hitcon made several attempts to exploit 10.5.18.114. Manually inspecting hitcon’s
packet captures, we learned that hitcon discovered a phpMyAdmin site running on
10.5.18.114 and was attempting to exploit one of the clients. Hitcon tried several urls
such as "pma/main.php," "pma/login.php," "pma/index.php" and even tried
an SQL injection attack with the string "/PMA/main.php?reload=1&sql
_query=select+111+into+outfile+%27C%3A%5C%5CAPM_Setup%5C%5C

Server%5C%5Capache%5Chtdocs%5Cas.txt%27&token=7bdf3857c49f1

da281915b7105fcc00f." However, we do not see any traffic indicating that hitcon
was able to execute any commands on the remote host, and we concluded that hitcon
was unsuccessful in exploiting the host 10.5.18.114.

From our observations above, it seems that teams did not limit their attacks to the organizer-
supplied servers. Any computer connected to the network was fair game.

4.1.3 Suspicious Traffic Between Teams
We created network connection graphs that showed client-to-client connections to visually
aid us in spotting anomalous activities. From the network graph consisting of client-to-client
connections that involved hackingforchimac clients, shown in Figure 4.5, we discovered that
host 10.5.14.107 made several connections to clients belonging to mslc. The color of the
nodes represent the teams that owned the nodes (red nodes represent hackingforchimac and

41

blue nodes represent mslc). The direct edges represent flows from one host to another (all
flows with the same origin and destination are represented by one edge). At the bottom left,
we see a red node representing host 10.5.14.107 initiating connections to a number of blue
nodes representing hosts belonging to mslc.

10.5.1.1

10.5.11.1

10.5.11.101

10.5.11.102

10.5.11.103

10.5.11.104

10.5.11.105

10.5.11.106

10.5.11.107

10.5.11.108

10.5.11.109

10.5.11.110

10.5.11.111

10.5.11.112

10.5.11.113

10.5.11.114

10.5.11.115

10.5.11.11710.5.11.11810.5.11.119

10.5.11.120

10.5.11.121

10.5.11.3

10.5.12.6

10.5.14.107

10.5.14.111

10.5.15.3

10.5.19.117

10.5.2.1

10.5.2.11

10.5.2.117

10.5.2.119

10.5.2.120

10.5.2.121

10.5.2.3

10.5.3.204

10.5.4.103 10.5.5.101

Figure 4.5: Network graph of hosts communications involving hackingforchi-
mac

Manually inspecting the network traffic associated with these connections, we discovered
a large number of packets sent between host 10.5.11.113 (belonging to hackingforchimac)
and 10.5.14.107 (belonging to mslc). A partial dump of one of the packets is shown below:

42

00000000 16 03 01 02 6f 02 00 00 46 03 01 53 e6 9f 68 fb |....o...F..S..h.|

00000010 52 08 e4 9a 90 7f 00 c1 b9 5f 34 fd 5c 4f d5 15 |R........_4.\O..|

00000020 f9 2b 82 af 9d 57 71 a2 34 8a 3b 20 af 15 00 00 |.+...Wq.4.;|

00000030 de ed 80 b3 ad 73 c5 c7 62 78 fa d0 73 f9 2d fb |.....s..bx..s.-.|

00000040 f7 a6 8e d7 91 25 ff 7d 9a 1f 47 df 00 2f 00 0b |.....%.}..G../..|

00000050 00 02 1d 00 02 1a 00 02 17 30 82 02 13 30 82 01 |.........0...0..|

00000060 7c a0 03 02 01 02 02 10 35 11 c4 f9 00 f1 9e 80 ||.......5.......|

00000070 46 81 27 39 45 43 49 21 30 0d 06 09 2a 86 48 86 |F.’9ECI!0...*.H.|

00000080 f7 0d 01 01 05 05 00 30 48 31 46 30 44 06 03 55 |.......0H1F0D..U|

00000090 04 06 13 3d 55 53 2c 53 54 3d 43 41 2c 4c 3d 53 |...=US,ST=CA,L=S|

000000a0 61 6e 20 46 72 61 6e 63 69 73 63 6f 2c 4f 3d 42 |an Francisco,O=B|

000000b0 69 74 54 6f 72 72 65 6e 74 2c 4f 55 3d 75 54 6f |itTorrent,OU=uTo|

000000c0 72 72 65 6e 74 2c 43 4e 3d 75 54 6f 72 72 65 6e |rrent,CN=uTorren|

000000d0 74 30 1e 17 0d 31 34 30 37 30 38 31 33 33 39 35 |t0...14070813395|

000000e0 32 5a 17 0d 31 35 30 37 30 38 31 39 33 39 35 32 |2Z..150708193952|

000000f0 5a 30 48 31 46 30 44 06 03 55 04 06 13 3d 55 53 |Z0H1F0D..U...=US|

00000100 2c 53 54 3d 43 41 2c 4c 3d 53 61 6e 20 46 72 61 |,ST=CA,L=San Fra|

00000110 6e 63 69 73 63 6f 2c 4f 3d 42 69 74 54 6f 72 72 |ncisco,O=BitTorr|

00000120 65 6e 74 2c 4f 55 3d 75 54 6f 72 72 65 6e 74 2c |ent,OU=uTorrent,|

00000130 43 4e 3d 75 54 6f 72 72 65 6e 74 30 81 9f 30 0d |CN=uTorrent0..0.|

00000140 06 09 2a 86 48 86 f7 0d 01 01 01 05 00 03 81 8d |..*.H...........|

00000150 00 30 81 89 02 81 81 00 f4 bd 8e a2 56 d0 7e 8c |.0..........V.~.|

00000160 33 38 51 e3 a3 9f 27 6a 4d df 92 c8 d9 b5 31 9d |38Q...’jM.....1.|

00000170 14 b4 d1 de b4 74 7b f1 d1 0f 80 f3 8d bc 48 26 |.....t{.......H&|

00000180 92 68 cf 56 da 53 6f 7d 65 82 6a f3 b4 fc 4c bb |.h.V.So}e.j...L.|

00000190 d3 c7 89 35 67 a6 eb 94 9a a6 29 79 5b 17 2e 53 |...5g.....)y[..S|

000001a0 08 4e 6b cc 36 7e f0 16 38 48 55 01 f6 54 be 02 |.Nk.6~..8HU..T..|

000001b0 01 f6 2c 09 c0 bf 37 e4 89 f5 13 56 13 d0 aa e7 |..,...7....V....|

000001c0 dc fd 8a b1 a2 e0 38 f2 9c 68 1f 62 67 c8 5a 02 |......8..h.bg.Z.|

000001d0 12 73 b4 2d 51 e5 c7 71 02 03 01 00 01 30 0d 06 |.s.-Q..q.....0..|

000001e0 09 2a 86 48 86 f7 0d 01 01 05 05 00 03 81 81 00 |.*.H............|

The contents of the packets seemed to indicate that the traffic is secure Bittorrent negotiation
traffic as it containedwhat looks like a x.509 certification with uTorrent as a canonical name.
We are unable to explain why two clients of opposite teamswould be communicating in such
a fashion. There is a possibility that one of hackingforchimac’s clients was compromised
and the traffic we see is obfuscated data that was being ex filtrated. It is also possible that
these two teams were collaborating, and the traffic we see is them exchanging information.
We leave this as area for future research.

4.1.4 Trivial Backdoors
We wanted to study whether teams installed backdoors in the servers that they exploited.
Hence, we wrote a script to look for callbacks in the network traffic (i.e., traffic initiated by

43

the server to send tokens back to clients that had exploited it). Our script discovered evidence
of trivial backdoors. These "backdoors" are simple shell scripts that ran periodically. The
shell script below is an example of the callback that raon_asrt used to periodically send
tokens.

while true; do nc 10.5.5.101 22212 < /home/eliza/flag; sleep 60; done.

4.2 Metrics
This section describes the metrics we used in our attempt to correlate teams strategies to
their final standing in the event. Though some of these metrics may indicate correlation
with the team’s final standing, they by no means indicate causation. These metrics are
derived from the network traffic captures and the game state data from the scoring servers.
Table 4.2 shows the final standing of each team and their respective scores (which were
determined by the flags they owned at the end of the CTF competition).

44

Table 4.2: Table showing the �nal standing and score of each team

Team Rank Score
ppp 1 11263
hitcon 2 7833

dragonsector 3 4421
reckless 4 4020
blue-lotus 5 3233
mmibh 6 2594
raon_asrt 7 2281
stratum 8 1529
team9447 9 1519

kaist 10 1334
routards 11 1262
mslc 12 1248
binja 13 1153

codered 14 997
w3stormz 15 987
penthackon 16 979

balalaikacr3w 17 937
gallopsled 18 921
shellphish 19 899

hackingforchimac 20 546

Rank and Score Information taken from [35]

4.2.1 Teams’ Offensive Capabilities
In this subsection, we investigate how much a team’s offensive capabilities contributed to
its success in the CTF competition. The metrics we used to determine offensive capabilities
are:

• Number of tokens redeemed

45

• Percentage of tokens found on wire during ex-filtration
• Average time to develop an exploit
• Use of publicly available payloads
• Exfiltration techniques
• Rate of exploitation
• Variation of attack parameters
• Exploit polymorphism

Number of Tokens Redeemed
One of the most straightforward metrics to measure the offensive capabilities of a team
was the number of tokens that each team had redeemed. Intuitively, a large number of
tokens redeemed implies that the team was able to find vulnerabilities and successfully
exploit them. However, it is important to note that the number of tokens redeemed did not
necessarily equate to winning more flags. This was due to two reasons:

• Flags were shared between any teams that successfully exploited a service and
redeemed a token. As explained in Section 2.5, for a given round, flags were
equally distributed among teams that stole and redeemed a token from a service they
exploited. Hence, if many teams redeemed a token for a given round, then each of
these teams would have had a smaller share of the flags since the flags are distributed
equally among them. However, if a team was the only team that redeemed a token for
a given round, then all the flags associated with the service were given to the team.

• Teams could lose flags. As explained in Section 2.5, teams that had their services
exploited for a given round lost a portion of the flags associated with the service.
Teams can also lose flags for not keeping their services up.

Table 4.3 shows the number of tokens redeemed by each team.

46

Table 4.3: Table showing the number of tokens redeemed by each team

Team Rank No. of Tokens Redeemed
ppp 1 2411

raon_asrt 7 1589
hitcon 2 1531
reckless 4 1447
mslc 12 1155

blue-lotus 5 1136
mmibh 6 811
kaist 10 803

dragonsector 3 778
codered 14 742
routards 11 722
team9447 9 662
stratum 8 615

gallopsled 18 587
hackingforchimac 20 576
balalaikacr3w 17 537
penthackon 16 489
w3stormz 15 478
shellphish 19 386

binja 13 234

Percentage of Tokens Found on Wire During Ex-filtration
One strategy that teams employ is to capture and re-use exploits off the wire. However,
identifying exploits on the wire can be difficult. Hence, most teams adopt the approach of
monitoring the network for stolen tokens leaving their servers. Tokens leaving their server
indicate that a service has been successfully compromised, and finding the corresponding
exploit becomes a matter of examining network data sent prior to the point the tokens were
leaked. In the case of DEF CON 22 CTF, tokens were random strings; hence, there was no

47

one signature that a team could use to detect all tokens leaving their servers. They could
however, write scripts that read their own tokens every round to find out what their token
was and then look for those tokens in their egress traffic to detect leaked tokens.

Given that teams were actively looking for exploits and tokens on the wire, it makes sense
that competent teams obfuscated their ex-filtration traffic, so that the tokens that they stolen
were not visible on thewire. It also stands to reason that preventing other teams from stealing
and re-using one’s exploit was a good way to maintain one’s standing in the competition.
Hence, we examined the number of un-obfuscated tokens stolen by a team to identify any
correlation between this strategy and a team’s final ranking. For the purposes of this metric,
we also considered tokens that were trivially encoded using the Base64 encoding scheme
to be un-obfuscated.

Table 4.4 shows the number of tokens redeemed by each team versus the number of tokens
found on the network (either in the clear or trivially encoded using the Base64 encoding
scheme). Any tokens unaccounted were counted as obfuscated using stronger methods or
possibly obtained via out-of-band means (such as trading with other teams). As future
research, we could study the exploit payloads in more detail to determine what type of
obfuscation techniques teams employ.

48

Table 4.4: Table showing the number of tokens seen on the wire (in clear or
Base64 encoded) versus the number of tokens redeemed

No. Of No. Of No. Of No. Of Percentage
Team Rank Tokens Tokens Tokens Tokens Of Tokens

Redeemed Found Found Not Found
(In Clear) (Base64) Accounted

hitcon 2 1531 760 23 748 51.14%
reckless 4 1447 805 23 619 57.22%
gallopsled 18 587 295 80 212 63.88%
routards 11 722 566 0 156 78.39%
binja 13 234 170 31 33 85.90%
kaist 10 803 772 0 31 96.14%
mslc 12 1155 1118 0 37 96.80%

codered 14 742 728 0 14 98.11%
balalaikacr3w 17 537 532 0 5 99.07%

ppp 1 2411 2218 173 20 99.17%
blue-lotus 5 1136 1018 113 5 99.56%
w3stormz 15 478 476 0 2 99.58%

dragonsector 3 778 775 0 3 99.61%
raon_asrt 7 1589 1583 0 6 99.62%
mmibh 6 811 809 0 2 99.75%
hacking-
forchimac 20 576 575 0 1 99.83%
stratum 8 615 615 0 0 100.00%
team9447 9 662 631 31 0 100.00%
penthackon 16 489 489 0 0 100.00%
shellphish 19 386 283 103 0 100.00%

It should be noted that there are teams that obfuscated some tokens but not others. Table 4.5
shows for each service, how many of the stolen tokens were Base64 encoded. We can see
that teams like ppp and 9447 only Base64-encode tokens stolen from one type of exploits
and teams like blue-lotus and gallopsled Base64-encoded tokens stolen from two service.

49

There were no teams that Base64-encoded tokens stolen from all services. One area of
future work would be to investigate why teams only obfuscate the stolen tokens for some
services and not others (could it be that for some exploits, obfuscation is not possible?) and
what factors contribute to a team’s decision to obfuscate.

Table 4.5: Table showing the breakdown by service of the tokens that were
Base64 encoded

No. Of Tokens
Obfuscated

TeamName eliza wdub justify imap
ppp 0 0 0 173

team9447 0 0 31 0
reckless 11 0 12 0
routards 0 0 0 0
raon_asrt 0 0 0 0
kaist 0 0 0 0

shellphish 103 0 0 0
codered 0 0 0 0
hitcon 23 0 0 0

blue-lotus 0 0 84 29
hackingforchimac 0 0 0 0

mmibh 0 0 0 0
w3stormz 0 0 0 0

mslc 0 0 0 0
dragonsector 0 0 0 0
penthackon 0 0 0 0
stratum 0 0 0 0

gallopsled 58 0 22 0
balalaikacr3w 0 0 0 0

binja 0 0 31 0

50

Average Time to Develop an Exploit
How quickly a team is able to develop a successful exploit may indicate how skilled a team
is at vulnerability discovery and exploit development. The measurements for this metric
were derived from game state data and not from the network packet captures. We used
the round in which a team first successfully redeemed a token as a proxy for when it first
successfully exploited a service. The assumption here was that a team launched an exploit
as soon as they had a working exploit (i.e., they do not delay using an exploit). If a team was
not able to exploit a given service throughout the event, then we used the value of 273 as the
Average Time to represent this fact (there are 272 rounds in total for the entire CTF, hence
we chose a value of 273 to indicate that a particular team failed to exploit the service).

51

Table 4.6: Table showing exploit development time (in terms of Rounds) for
each team

Exploit Development Time (in Rounds)
TeamName Rank eliza wdub badger justify imap TavgED

hitcon 2 32 54 273 162 93 122.8
ppp 1 51 60 273 155 113 130.4
raon_asrt 7 36 70 273 166 110 131
blue-lotus 5 43 69 273 171 113 133.8
stratum 8 82 63 273 206 113 147.4
codered 14 44 63 273 219 163 152.4
team9447 9 68 63 273 246 117 153.4
reckless 4 139 63 273 205 114 158.8
dragonsector 3 58 87 273 273 119 162
mslc 12 46 63 273 161 273 163.2
kaist 10 118 70 273 219 137 163.4
routards 11 118 77 272 243 130 168
balalaikacr3w 17 100 63 273 174 273 176.6
shellphish 19 84 238 273 226 113 186.8
w3stormz 15 58 63 273 273 273 188
hackingforchimac 20 63 63 273 273 273 189
mmibh 6 66 70 273 266 273 189.6
binja 13 54 244 273 228 273 214.4
penthackon 16 273 66 273 273 195 216
gallopsled 18 118 226 273 225 273 223

Use of Publicly Available Payloads
Using publicly available payloads for their exploits may indicate a lack of sophistication on
the part of the team. Intuitively, we expected that sophisticated teams developed custom
payloads to achieve effects unique in a CTF environment. As mentioned in Section 3.10,
we compared the exploit payloads to the following publicly available payloads:

52

• execve("/bin/sh", ["/bin/sh"], NULL) 23 bytes x86 shellcode from shellstorm [32]
• execve("/bin/sh","/bin/sh",0) 30 bytes Linux/ARM shellcode from shellstorm [33]
• execve("/bin/sh") Linux/Armle shellcode from Metasploit v4.9.3
• execve("/bin/sh") x86_64 shellcode from Metasploit v4.9.3

We did not detect the use of any of the above mentioned payloads. However, it should be
noted that the method used to compared the payloads was an extremely naïve byte-by-byte
comparison. This means that if a teams modified the payload even by even a single byte, we
would not have detected the payload. Also, we only compared the first four payloads, which
is extremely limited. Teams may have used any number of publicly available payloads to
include bind shells and reverse shells. We did not search for such payloads as they look
for configurable parameters (specifically the reverse connect IP address and port number)
which our byte-by-byte comparison method was not equipped to handle. In future work, we
could propose better methods for detecting the use of publicly available shellcodes, such as
those detailed in [31].

Ex-filtration Techniques
For this metric, we considered only two techniques used by teams to ex-filtrate flags. The
first technique involved reusing existing connections to send tokens back to the attacking
host, and the second technique created a second connection that called back to the attacker
from the exploited server. Callback payloads make it more difficult to associate the network
flow that ex-filtrated the token to the flow that contains the exploit. Thus, callback payloads
may be a good anti-intrusion detection measure as they required additional time on the part
of the defender to sieve out the associated exploit from the network packet captures.

It should be noted that in gathering measurements for this metric, we only studied payloads
that either sent tokens in the clear, or sent them as Base64-encoded data. If more sophisti-
cated obfuscation techniques were used, we could not tell if the data on the network was an
ex-filtrated token, and we could not ascertain whether or not the payload was a callback.

Payloads that ex-filtrated tokens by reusing existing connections had flows with source port
belonging to one of the services (such as 143, 4444, 6969 or 8888). Hence, we identified
callbacks by flows that contained the token, had a server source IP address and a non-service
source port.

53

Table 4.7: Table showing the type of payloads used by each team

Team Session Reuse Callback
ppp X

hitcon X
dragonsector X X
reckless X
blue-lotus X X
mmibh X
raon_asrt X X
stratum X
team9447 X X

kaist X X
routards X X
mslc X X
binja X

codered X X
w3stormz X
penthackon X

balalaikacr3w X X
gallopsled X X
shellphish X

hackingforchimac X

It is interesting to note that for the top two teams ppp and hitcon, we did not find them
using callbacks. However, as mentioned, it does not mean that these two teams did not use
callback payloads, but that we simply failed to find the network traffic that contained the
tokens they ex-filtrated using callbacks. This is entirely possible since from Table 4.4, we
know that both ppp and hitcon had tokens that we were unable to find in the network data.

54

Rate of Exploitation
From observations made in Subsection 4.1.1, we determined that teams were automating
their exploit tasks. We were interested to find out if the rate at which teams exploit a service
had any bearing on their finals standing. In a given round, a team is allowed to redeem a
token at most one time, hence launching an exploit multiple times per round against the
same target yields at most one score (as you would only manage to steal the same token again
and again). In fact, launching exploits indiscriminately increased the chances of detection
and potential reuse.

There are legitimate scenarios where teams make multiple exploit attempts per round. One
possible scenario is for redundancy, where teams are unable to ascertain from the scoring
server if their exploits were successful. Another scenario is when teams are not aware of
when a round begins, and they keep launching their exploits to avoidmissing the opportunity
to score points in a round.

To calculate the average number of exploits launched per round, we searched through the
network packets and counted the number of exploit attempts that successfully returned a
token that was subsequently redeemed. We then took this number of exploit attempts and
divided it by the number of active rounds. An active round was defined as a round where,
according to the game state data, a team has redeemed at least 1 token. Table 4.8 shows the
average exploit rate of each team.

55

Table 4.8: Table showing average exploit rate (in terms of exploits per round)
of each team

Total Number of Average Exploit
Team Exploit Instances Number of Active Rate

Launched in Event Rounds (in exploit instance
per round)

ppp 64445 208 309.8317
hitcon 13481 209 64.50239

dragonsector 9904 164 60.39024
reckless 16659 183 91.03279
blue-lotus 48076 207 232.2512
mmibh 8737 150 58.24667
raon_asrt 31721 218 145.5092
stratum 27853 178 156.4775
team9447 10148 141 71.97163

kaist 5444 164 33.19512
routards 6627 146 45.39041
mslc 73016 185 394.6811
binja 2678 45 59.51111

codered 16929 164 103.2256
w3stormz 9908 117 84.68376
penthackon 7758 89 87.16854

balalaikacr3w 80537 149 540.5168
gallopsled 2508 85 29.50588
shellphish 7327 153 47.88889

hackingforchimac 62113 154 403.3312

Since there were twenty teams, each running four services, an ideal rate of exploitation was
76 exploits per round (1 exploit for each service of each team). Comparing the exploitation
rate of the top five teams and the bottom five teams, we found that they had exploitation
rates that ranged from under 30 exploits per round to over 400 exploits per round.

56

It should be noted that we see a wide range of exploitation rates. The top team, ppp had
a high rate of exploitation at about 309.8 exploits per round. This works out to be about
3.8 times more than the ideal rate. On the other hand, hitcon, who came in 2nd place,
had a seemingly much lower rate of exploitation of only 64.5 exploits per round. However,
we could not find a large number of hitcon’s ex-filtrated tokens (we ony found 54.14% as
opposed to 99.17% of ppp’s) and the rate of exploitation is determined over the exploits
that we have found to have successfully stole tokens. Therefore, hitcon’s rate of exploitation
may possibly be higher than what we recorded.

Variation of Attack Parameters
To measure how a team varied its attacks, we examined the following two behaviours:

• The number of hosts it used to attack
• The number of different callback ports used for reverse connect payloads

In order to acquire the number of hosts a team used to attack the other teams, we counted
the number of unique destination IP addresses in flows that originated from servers and
contain tokens. The assumption here is that if a flow originated from a server and contained
a token, then the destination host must have exploited the server or was used as a callback
listener. In either case, we considered the host as being involved in the attack on the server.

As for the different number of callback ports used, we derived this by searching for flows
that had a source IP address belonging to a server and a source port that is not used by
any of the vulnerable services (i.e., a source port that is not 143, 4444, 6969 or 8888).
The assumption here is that if a team reuses an existing connection in an attack, the source
port for flows going from the server to the attacker would be one of the ports used by the
vulnerable services. Hence, if we saw a flow that originated from a server that had a source
port that was not one of the service ports, then the server must have been the one to initiate
the connection and the destination port must have been a port used by a listener. One
point to note is that teams also use their servers to exploit other servers; hence, if we relied
solely on looking for servers that initiated connections to determine callback ports used,
we would erroneously include exploits attempts. Tables 4.9 and 4.10 show the number
of attacking hosts used by each team and the number of different callback ports each team
used, respectively.

57

Table 4.9: Table showing the number of attacking hosts used by each team

Team Number of Attacking Hosts
ppp 3
hitcon 2

dragonsector 2
reckless 2
blue-lotus 4
mmibh 2
raon_asrt 2
stratum 2
team9447 4

kaist 4
routards 5
mslc 4
binja 3

codered 2
w3stormz 2
penthackon 3

balalaikacr3w 6
gallopsled 4
shellphish 2

hackingforchimac 12

From Table 4.9, we can see most teams used two to four hosts to launch their attacks. This
could imply some level co-ordination within the teams (e.g., a distribution of roles or used
of designated hosts for attacking), since each team consisted of more than four members and
we expected to see more than four attacking hosts if every team member were to work on
their own to launch attacks. There were two outliers—balalaikacr3w and hackingforchimac.
These two teams used a large number of hosts for attacking, but it appears that the strategy
did not work too well for them, considering that they were ranked within the last four of the
CTF event.

58

Table 4.10: Table showing the number of di�erent callback ports used by
each team (Teams that do not use callbacks are not shown)

Team Number of Callback Ports Ports Used
dragonsector 2 16637, 18877
blue-lotus 5 7331, 9876, 9877, 9878,

9879
raon_asrt 3 15554, 22212, 22213
team9447 1 10101

kaist 1 44444
routards 7 1337, 1338, 4444, 8888, 8890, 8891,

8892
mslc 3 1010, 10101, 1013

codered 1 1337
balalaikacr3w 3 1489, 1514, 1518
gallopsled 28 1336, 34934, 35206, 37901,

38655, 40212, 41738, 42031,
43431, 45426, 48890, 49515,
51005, 51537, 51870, 51908,
52803, 52910, 53339, 53474,
54154, 54957, 55083, 57489,
57702, 58846, 58952, 59095

From Table 4.10, we see that most teams that used callback payloads generally used callback
ports that had some pattern to them. For example, blue-lotus used the port 7331 (which is
a moniker for "elite" in hacker speak). They also used sequential port numbers 9876, 9877,
9878 and 9879. raon_asrt used port numbers that had lots of repeating digits such as 15554,
22212 and 22213. gallopsled’s method of assigning callback ports appread different from
the rest. Their port assignments appeared more random, though a large number of these
ports were in the 40 thousand to 50 thousand range. Observing the data from Table 4.10, if
the callback ports were not truly randomized, it may have been possible for a team to detect
that its tokens were being ex-filtrated by looking at the callback port of the ex-filtration

59

traffic. Hence, a good strategy would be to use random callback ports.

Exploit Polymorphism
As the CTF event progressed, teams could change their exploits to react to changing
situations. For example, teams could change their exploits in anticipation that other teams
developed signatures for their exploits and block their attacks. In addition, vulnerabilities
that teams were originally targeting could have been patched, so they had to develop another
exploit to attack a different vulnerability.

For this metric, we looked at how the exploits of each team changed over the course of
the CTF event. For each team, we extracted from the packet captures all their successful
exploits that targeted the same service. A successful exploit was an exploit that successfully
exploited the service it was targeting and stole a token. We then compared the exploits
against a baseline exploit for the service. This baseline exploit was the first exploit that we
found on the network that had successfully exploited the service.

In Figure 4.6 we see the scatter plot for the wdub exploits of the top two ranked teams ppp
and hitcon. The scatter plot shows the DTW distances of all the exploits targeting wdub
compared to the baseline exploit (which is the first successful wdub exploit of each team
found on the network). The y-axis of the scatter plot marks the DTW distance while the
x-axis marks the time the exploit was launched. On the scatter plot, each linear group
of dots represent an exploit variant. From the scatter plots, we can see that as the CTF
progressed, there were periods where ppp and hitcon used different exploits variants, as
indicated by the disjointed linear grouping of dots. In addition, from the step like nature of
the scatter plot, it seemed that ppp and hitcon do not use previous variants once they have
launched they new variants. We can also see that the teams may have simultaneously used
two variants (as noted by the two parallel linear group of dots).

We contrast this to Figure 4.7, where we see the scatter plot for the wdub exploit for the
bottom two ranked teams shellphish and hackingforchimac. For both these teams, we can
see parallel linear groups of dots (just like with ppp and hitcon), indicating they may have
used two variants simultaneously. We can observe that hackingforchimac appeared to have
used only one variant for the most part, except near the end of the CTF where it appeared to
have about four variants which it used simultaneously. As for shellphish, they only launched

60

their wdub exploits late in the game (on the third day of the competition); hence, we could
not draw any conclusions from their scatter plot.

The fact that ppp and hitcon did not use previous variants once they started using a new
variant may indicate that these teams knew something about the state of the game (e.g., that
teams may have patched one of the vulnerabilities in their services). This implies that these
two teams may have had good situational awareness. In contrast, hackingforchimac used
the same variant all the way through to near the end of the CTF. This may indicate that a
lack of situational awareness and they may have used exploits that did not work against all
teams. A quick check against the game state database seemed to support this conclusion.
Beyond round 89, there were teams that hackingforchimac did not redeem tokens from their
wdub service, whereas ppp was able to.

61

Figure 4.6: Variants of ppp's and hitcon's wdub exploit

62

Figure 4.7: Variants of shellphish's and hackingforchimac's wdub exploit

We could not draw any conclusions on whether the number of variants and how teams used
these variants (e.g., using them simultaneously or sequentially) affected a team’s standing as
we believe there were other factors that affected exploit polymorphism. For example, both

63

competent and weak teams captured and reused the exploits of other teams, which resulted
in them having multiple variants. A area of future work could be to study the polymorphism
of only exploits that are not reused. This would give us a better idea whether morphing
their exploits would result in teams having a better standing.

4.2.2 Teams’ Defensive Capabilities
In this subsection, we investigate how much a team’s defensive capabilities contribute to its
success in the CTF competition. The metrics we used to determine defensive capabilities
are:

• Number of tokens lost
• Percentage of tokens lost that were found on wire during ex-filtration
• Reuse of exploits
• Average time to patch a service
• Service uptime

Number of Lost Tokens
Analogous to using the number of captured tokens as an indicator of a team’s offensive
capability, the number of tokens stolen from a team was a direct indicator of how well that
team defended their services. Information on the number of tokens a team had lost was
acquired from the game state database. Each team may have lost its token more than once,
since a team’s services may have been exploited by more than one team. Table 4.11 shows
the number of tokens a team had lost to all other teams.

64

Table 4.11: Table showing the number of tokens stolen from each team

Team No. of Tokens Lost
(1 count for each token lost to each team)

ppp 360
hitcon 505

dragonsector 932
reckless 607
blue-lotus 270
mmibh 943
raon_asrt 786
stratum 686
team9447 827

kaist 870
routards 672
mslc 1814
binja 16

codered 1082
w3stormz 1094
penthackon 744

balalaikacr3w 2802
gallopsled 1697
shellphish 331

hackingforchimac 651

From the table, we observe that teams that lose the least tokens do not necessarily rank
better. binja for example lost only 16 tokens but ranked somewhere in the middle. Similarly,
dragonsector lost more tokens than the bottom two teams (shellphish and hackingforchimac)
yet performed better than both of them. Recall that the scoring system works in a way that
flags are distributed among all teams that have successfully compromised a service and
redeemed its token. Therefore, the effect of losing the tokens could possibly be distributed
across many teams, not giving any one team a significant lead. In addition, the number

65

of tokens lost can be offset by how many tokens a team manages to capture. Hence, the
number of tokens lost would not have a direct impact on a team’s final ranking.

Percentage of Tokens Stolen that were Found on Wire During Ex-filtration
In addition to how many tokens were lost by a team, we also looked at what percentage
of those stolen tokens were ex-filtrated in the clear (or trivially encoded using the Base64
encoding scheme). Teams losing tokens have a higher chance of discovering and reusing
their attacker’s exploit if they were able to detect the actual token ex-filtration events.
Table 4.12 shows the number of lost tokens that were visible in the network traffic captures.

66

Table 4.12: Table showing the number of lost tokens seen on the wire

No. Of No. Of No. Of
No. Of Lost Lost Tokens Percentage

Team Rank Tokens Tokens Tokens Not Of Tokens
Lost Found Found Accounted Found

(In Clear) (Base64)
penthackon 16 744 170 11 563 24.33%

ppp 1 360 227 7 126 65.00%
hacking-
forchimac 11 651 444 50 157 75.88%
hitcon 9 505 380 7 118 76.63%

shellphish 7 331 272 0 59 82.18%
blue-lotus 10 270 222 1 47 82.59%
raon_asrt 5 786 638 40 108 86.26%
team9447 2 827 742 0 85 89.72%
routards 4 672 587 20 65 90.33%
stratum 17 686 607 13 66 90.38%
reckless 3 607 547 10 50 91.76%
kaist 6 870 739 71 60 93.10%

dragonsector 15 932 852 20 60 93.56%
mmibh 12 943 848 47 48 94.91%

gallopsled 18 1697 1549 81 67 96.05%
mslc 14 1814 1700 46 68 96.25%

w3stormz 13 1094 1045 9 40 96.34%
codered 8 1082 1040 7 35 96.77%

balalaikacr3w 19 2802 2593 137 72 97.43%
binja 20 16 16 0 0 100.00%

We see from the table the the teams that had most of their tokens ex-filtrated in the clear
are not necessarily the team that ranked the best. ppp, who was ranked first, had 65%
of their lost tokens ex-filtrated in the clear, while hackingforchimac, who was ranked last

67

had more of their lost tokens ex-filtrated in the clear. It could mean that teams that had a
higher number lost tokens ex-filtrated in the clear, yet ranked badly had low competency in
capturing and reusing exploits.

Reuse of Exploits
When a team is unable to find a vulnerability and/or develop an exploit for a vulnerable
service, a strategy they may turn to is to capture exploits that the other teams are using
against them, and repackage them as their own.

We wrote a script to extract the first successful exploit for each team for each service
(i.e., the first exploit that was launched that successfully stole a token). The script worked
based on the heuristics that if we saw a token on the network, then the associated packets
preceding it contained the exploit. This heuristic allowed us to extract all but one of the
"first exploit" sent by each team. The exploit that we failed to extract was blue-lotus’ exploit
for the imap service. From manually inspection, we discovered that the "exploit" we had
extracted was a series of shell commands (such as ls, cat flag), which indicated that the
exploit came sometime before. We had to rely on manually searching the network traffic to
find blue-lotus’ imap exploit.

In order to determine whether teams reused exploits from other teams, we performed pair-
wise comparison of every team’s exploit with every other team’s to measure the difference
between each exploit pair for a given service. For each service, the score was calculated by
finding the distance between the two exploits (usingDynamic TimeWarping code from [36])
being compared and normalizing by dividing by the median exploit size of the all the teams
for that service. We then plotted the scores on a scatter plot as shown in Figures 4.8, 4.9,
4.10 and 4.11. These scatter plots are sorted by their DTW distance. The x-axis gives
the team pairs and the y-axis gives the corresponding normalized DTW distance. Teams
missing from the scatter plot failed to redeem any tokens for the service, from which we
concluded they failed to exploit the service.

68

Figure 4.8: Scatter Plot showing normalized DTW distance for pairwise
comparison of eliza exploit

Figure 4.9: Scatter Plot showing normalized DTW distance for pairwise
comparison of wdub exploit

69

Figure 4.10: Scatter Plot showing normalized DTW distance for pairwise
comparison of justify exploit

Figure 4.11: Scatter Plot showing normalized DTW distance for pairwise
comparison of imap exploit

70

Inspecting the scatter plots, we can see:

• There are clear threshold values we can use to identify exploits that are similar.
On the scatter plots, we should only look at the group of dots that have normalized
DTW distance ranging from 0 to the first gap in the linear group of dots. For example,
in Figure 4.8, we can clearly see a gap at a value of 0.02. Hence, for eliza, we consider
exploits similar if they have a normalized DTW distanace of 0.2 or less.

• The groups of linear dots indicate variants. Looking at the scatter plots, we can
see isolated groups (except for the imap exploit). These isolated groups indicate that
there are a number of exploits that have equal DTW distance from a reference exploit
and therefore show the existence of variants.

Except for the imap exploit’s scatter plot shown in Figure 4.11, we can clearly see groupings,
indicating exploit reuse. For the imap exploit, no such groupings appeared. Manually
inspecting the imap exploit, we realized that the nature of the exploit did not lend itself to
methods that used byte-value comparisons (like DTW) because the exploit was text-based
and the text is changed between exploit instances. Therefore, to determine similarity and
variants, we resorted to manual inspection. We determined that there were two variants to
the imap exploit, as shown in Table 4.13. One used the IMAP commands in the sequence
LOGIN, CREATE, SELECT and the other variant used the sequence, LOGIN, CREATE,
APPEND, FETCH.

Table 4.13: Table showing the two imap exploit variants (partial)

Variant A Variant B
a049 xresuwen uokq cuvl 000b XRESUWEN 791858c5c8779...

a050 login uokq cuvl 000c LOGIN 791858c5c8779...

a051 create 1111111... CREATE a

AAAAA 000e SELECT ////////////...

a053 fetch 11111111... ...

a054 select 1111111... ...

By comparing all the team’s exploits to a baseline exploit (we used ppp’s exploit as the

71

baseline because they won the CTF and they had exploits for every service), we can clearly
see which team’s exploits were similar (with the exception of imap). Figures 4.12, 4.13,
and 4.14 show the number of variants for each exploit type, and we compiled the exploit
variant information in Table 4.14. The teams missing from any of the figures and the table
are teams that failed to exploit that service.

Figure 4.12: Scatter Plot showing groups of variants for eliza exploit

72

Figure 4.13: Scatter Plot showing groups of variants for wdub exploit

Figure 4.14: Scatter Plot showing groups of variants for justify exploit

Table 4.14 shows the number of variants we found for each exploit that targeted each service.

73

It also shows the teams that used similar variants. From the table, we see that eliza had
two variants, A and B, while wdub, justify and imap had three, three and two variants,
respectively. What is interesting to note is that there were variants used by more than one
team, indicating exploit reuse. For example, variant B of the eliza exploit was used by
reckless, hitcon, kaist andmmibh, whereas variant A was used by the rest of the teams. This
implies that teams were not taking sufficient measures (if at all) to prevent their exploits
from being captured and reused.

From Table 4.6 that shows the exploit development time of each service, we know that
hitcon was the first team to develop the exploits for eliza, wdub and imap, and ppp was
the first team to develop the exploit for justify. Therefore, comparing that with Table 4.14,
we deduces that for eliza’s variant A exploit, ppp’s exploit was most likely captured and
reused. Likewise, for eliza’s variant B exploit, hitcon’s exploit was the one that was most
likely captured and reused. For wdub and imap, it is likely that hitcon’s exploits were also
captured and reused since hitcon was the first team to develop the exploits, and many teams
were found to be using the same variants as hitcon.

74

Table 4.14: Table showing the number of exploit variants and their use by
each team

Exploit Variants Teams Using Variant

eliza
A

ppp, team9447, routards, raon_asrt
shellphish, codered, blue-lotus

hackingforchimac, w3stormz, mslc
dragonsector, stratum, gallopsled

balalaikacr3w, binja
B reckless, hitcon, kaist, mmibh

wdub
A

ppp, team9447, reckless, routards,
raon_asrt ,codered, blue-lotus,

hackingforchimac, w3stormz, mslc
dragonsector, stratum, hitcon,
balalaikacr3w, kaist, mmibh

B binja, gallopsled
C shellphish, penhackton

justify

A

ppp, reckless, shellphish,
kaist, codered, hitcon,

blue-lotus, mmibh, mslc,
balalaikacr3w

B raon_asrt, routards
C stratum, binja
D gallopsled, team9447

imap
A

ppp, reckless, routards,
kaist, codered, hitcon, blue-lotus,

dragonsector, stratum

B
raon_asrt, shellphish,team9447,

penthackton

Average Time to Patch
Time to Patch is a metric that measures how fast on average (in terms of rounds) a team
was able to patch its vulnerable services. We made the assumption that for a given round,

75

if a team lost a token for a particular service, then the service was exploitable/unpatched.
A service was considered patched in round N, if for all rounds greater than or equal to
N, the service lost no tokens. In this way, we measured Time to Patch using game state
data as a proxy rather than manually inspecting the network traffic to determine whether a
service has indeed been patched. While this method was not full proof, it did offer a simple
and efficient way to measure Time to Patch. Note that if a team installed a backdoor on a
server it exploited, then they could still retrieve and redeem tokens even though the service
they had previously exploited had subsequently been patched. In such cases, the database
showed that tokens were redeemed even though the service was patched. Follow-on research
work could improve this metric by attempting to use network traffic to determine when a
service was patched. One could look for cases in the network traffic where an exploit that
has been known to work in one round (as evidenced by its ability to steal tokens) but fails
subsequently.

It is important to note that in calculating the average time to patch, we only considered the
four services, namely eliza, wdub, justify and imap. The badger service was omitted since
only one team was shown to have redeemed a token for it. Therefore the badger service was
considered an outlier. Also note that each service had more than one vulnerability. Hence,
even if a team had patched one of the vulnerabilities, it could still have been exploited.
Table 4.15 shows the rounds in each team’s service that were patched.

Note that the following team’s services never had a token stolen from them. The game
state data indicated that these services were up intermittently, and we could not determine
whether these services were patched. Hence, we considered these services to be unpatched
for the duration of the event, and we assigned a value of 273 as their Time to Patch value:

• team binja’s wdub service
• team binja’s justify service
• team binja’s imap service
• team stratum’s imap service
• team balalaikacr3w’s imap service
• team gallopsled’s imap service

76

Table 4.15: Table showing the time (in rounds) each team's service was
patched

Time to Patch (in Rounds)
Team eliza wdub justify imap Average
ppp 250 273 237 112 218
hitcon 132 273 224 159 197

dragonsector 220 273 193 113 199.75
reckless 228 268 273 119 222
blue-lotus 174 270 196 113 188.25
mmibh 186 273 224 273 239
raon_asrt 266 273 211 273 255.75
stratum 268 273 202 273 254
team9447 189 273 225 173 215

kaist 227 273 273 272 261.25
routards 273 273 226 273 261.25
mslc 271 273 273 112 232.25
binja 259 273 273 273 269.5

codered 239 273 273 154 234.75
w3stormz 270 273 240 247 257.5
penthackon 273 273 273 254 268.25

balalaikacr3w 261 273 273 273 270
gallopsled 273 273 273 273 273
shellphish 245 273 221 206 236.25

hackingforchimac 272 273 242 273 265

From the table, we can observe the following:

• The top five teams were able to patch their services before the 224th round. Con-
versely, four of the bottom five teams only patched their services after the 265th
round.

• The top five teams were able to patch at least one of their services before the 136th

77

round, which was the midpoint of the CTF. Conversely, all of the bottom five teams
did not patch any of their services until after the 206th round.

We expected correlation between the average time to patch and a team’s final standing.
In addition, a team’s ability to analyze a service and find its vulnerability had bearing on
its ability to patch it, since before a team could patch the service, it first had to find the
vulnerability.

Service Level Agreement
The Service Level Agreement metric measured the percentage of the 272 rounds that a
team’s services were up and judged to be functioning correctly. The game state database
had information on all the penalties incurred by each team for having a service go down.
The maximum uptime a team may have occurred when all services were up for all rounds,
which would be 1360 (272 rounds multiplied by 5 services). Hence, the service level
agreement fulfilment ratio (SLA) for each team was calculated as follows:

SL A = (1 − (penalties/max.uptime(inrounds))

Table 4.16 shows the Service Level Agreement fulfilment ratio of each team. We see that
teams who were ranked higher (e.g., ppp, dragonsector, reckless and blue-lotus) had higher
SLA values than teams who were ranked lower. Therefore, we believe there is a strong
correlation between keeping a service up and a team’s final standing.

78

Table 4.16: Table showing the Service Level Agreement ful�lment each team

Team Num. of Penalties SLA
ppp 145 0.893382

hitcon 67 0.950735
dragonsector 82 0.939706
reckless 86 0.936765
blue-lotus 111 0.918382
mmibh 69 0.949265
raon_asrt 134 0.901471
stratum 166 0.877941
team9447 117 0.913971

kaist 73 0.946324
routards 171 0.874265
mslc 137 0.899265
binja 272 0.8

codered 208 0.847059
w3stormz 211 0.844853
penthackon 174 0.872059

balalaikacr3w 157 0.884559
gallopsled 180 0.867647
shellphish 171 0.874265

hackingforchimac 254 0.813235

4.3 Analysis of Findings
We used the Pearson product-moment correlation coefficient to calculate how much each
quantitative metric was correlated to a team’s final standing. The Pearson coefficient is a
value ranging from -1 to +1 and tells us how correlated two series are. -1 implies a negative
correlation and +1 implies a positive correlation. 0 implies no correlation [37].

79

Table 4.17: Table showing the Pearson product-moment correlation coe�-
cient scores of each quantitative metric

Metric Pearson Coefficient
Scores

Number of Tokens Redeemed by Each Team -0.72851
Percentage of Redeemed Tokens Seen in Ex-filtration Traffic 0.211748

Number of Tokens Lost By Each Team 0.361034
Percentage of Stolen Tokens Seen in Ex-filtration Traffic -0.02029

Average Time To Develop an Exploit 0.723385
Rate of Exploitation 0.173

Number of Attacking Hosts Used 0.4738
Number of Callback Ports Used 0.26404

Average Time to Patch 0.716801
Service Level Agreement -0.70693

In addition to studying the quantitative metrics, we also looked at qualitative metrics such
as the ex-filtration techniques, variation of attack parameters, and reuse of exploits. Based
on the metrics we have discussed, we made the following observations and analysis:

1. Attacking first mattered. Both the number of tokens redeemed and the average
time to develop an exploit had relatively high correlation to a team’s final ranking.
This observation was expected. The earlier a team was able to successfully attack a
service, the longer they had to capture tokens and accrue points. This observation
also indicates that a skilful team should perform better since the more skilful a team
is, the faster we expect them to discover and exploit the vulnerabilities present in the
service.

2. Obfuscating ex-filtration traffic did not provide added benefit. The percentage of
tokens seen in the network traffic had low correlation to a team’s final standing. Of
the top five teams, three of them (ppp, dragonsector and blue-lotus) ex-filtrated over
99% of their tokens in the clear. Therefore, it appear that obfuscating ex-filtration
traffic did not influence a team’s final standing in this CTF. However, one could argue

80

that the benefits of obfuscating ex-filtration traffic and exploits was not apparent in
this CTF. In this CTF, most of the teams sent their exploits without obfuscation and
also ex-filtrated most of their tokens in the clear. This practice may have given less
skilful teams (who were unable to develop an exploit on their own) a chance to capture
exploits off the network and use them to steal tokens when they would otherwise not
be able to. Hence, it may be the case that less skilful teams were able to achieve a
better standing simply because teams did not protect their exploits and/or ex-filtration
traffic.

3. The method of ex-filtration did not matter. We looked at two payloads that the
teams used—session-reuse payloads and callback payloads. Comparing teams that
used only one type of payload with teams that use both, we did not find any correlation
between the type of ex-filtration techniques used to a team’s final standing. We found
that half of the teams of various standings used both types of payloads and the other
half used only session-reuse payloads. In this CTF, most of the payloads we saw were
straight forward shell command execution payloads. It seemed that teams did not
require sophisticated payloads to be able to steal tokens, and therefore they used the
most simple and efficient payload they had.

4. Exploiting a service multiple times per round had no added benefit. The Pearson
coefficient score for rate of exploitation is low, suggesting that whether one used
automation to attack rapidly, or with a more modest frequency, did not have a large
effect on a team’s final standing. Wewere expecting teams to avoid launching exploits
indiscriminately to reduce the chances of their exploits being captured. However, we
saw that teams were launching exploits multiple times per round. The top team ppp,
had an exploitation rate of 309.8 exploits per round, which was equivalent to sending
3.8 exploits to each service of each team. Perhaps teams were not aware of when
each round begins and ends, and therefore launched their exploits continuously to
avoid missing the opportunity to score points in a round. Or perhaps teams were not
concerned so much about their exploits being captured as they were about scoring
points.

5. Patching was important, but not as important as keeping services operational.
The Pearson Coefficient score for SLA was high, whereas the Pearson Coefficient
score for Tokens Stolen from a team was relatively low. Having a service go down
for a round would mean losing all 19 flags associated with that service for that round,

81

which was costly. Having an unpatched service up did not necessarily mean the
service would be exploited. Hence, it would make more sense to have a service up,
even though it was unpatched than to have it go down. In addition, the consequence
of having a service exploited may not have been as detrimental to a team’s standing
as it appeared since the effect of losing tokens may have been distributed across many
teams, thus not giving any one team a significant advantage. From an attacker’s
perspective, bringing a service down could be an effective strategy. In cases where
developing an exploit that steals a token is more difficult than developing a lesser one
that simply crashed the service, it may be viable for a team to simply use the lesser
exploit. Crashing an opponents service would not necessarily gain a team any flags,
but it would cause the opposing teams to lose flags.

6. There is evidence to indicate that some teams had a higher situational awareness
than others. Studying the scatter plots of polymorphic exploits, we saw that the top
two teams switched to different exploits sometime during the CTF event. Whereas
the bottom ranked team did not. As a result, the two top teams were able to exploit
most of teams for a longer duration that the bottom ranked team. This indicates that
the top two teams had good awareness of what was happening and adjusted their
actions accordingly.

7. There is an interplay of factors other than tokens redeemed, tokens lost, and
SLA. Redeeming more tokens did not necessarily mean a higher final ranking. ppp
redeemed the most tokens at 2411 and was ranked first, but raon_asrt who redeemed
the second most number of tokens was only ranked 7th. Likewise, binja, who
redeemed the least number of tokens at 234, was not placed last but 13th. In a similar
vein, losing the most tokens does not necessarily mean a low scorer. raon_asrt lost
786 flags, which is more flags than the 16 lost by binja, but raon_asrt was still ranked
higher. This hints at some interplay between factors other than tokens redeemed,
tokens lost, and SLA. This implies that an effective strategy cannot be simply one
that focuses purely on attack, defence or uptime, but has to be mindful also of the
scoring and penalising mechanisms of the CTF. Recall that for each round, flags of
a service were equally distributed among all the teams that had successfully stolen a
token from that service. Therefore, simply attacking services that had been exploited
frequently would not yield as large a share of flags than attacking services that had
been exploited less frequently.

82

8. Protecting exploits from capture and reuse would only be useful if everyone
participated. From our data, we see that the exploits used be each team are similar
to exploits used by other teams. This implies that teams were reusing exploits from
other teams. Protecting exploits from capture and reuse would incur extra effort that
may not pay off. In scenarios like this CTF, where majority of the teams were not
obfuscating their exploits, being the sole team to obfuscate its exploit would bring no
benefit. Teams that were unable to capture and reuse the exploit of one team because
the exploits were obfuscated, could choose to capture and reuse the exploits of the
other teams that did not obfuscate their exploits. Hence, instead of investing effort
into developing exploits that are hard to capture or analyze, it may be more profitable
for teams to spend time finding new vulnerabilities and developing exploits for them.

9. A purely offensive approach may have been more effective than an approach
that balances offense and defense. Since the number of tokens a team lost had low
correlation to its final standing, whereas the number of tokens a team managed to
steal had a high correlation, it stands to reason that resources put into attacking would
be more beneficial than resources dedicated to patching. This would affect on how
one should make up a team to compete in the CTF. Based on our observations, it
stands to reason that a team that had a majority of its members skilled at offense may
perform better than a team who had a majority of its members skilled at defense.

83

THIS PAGE INTENTIONALLY LEFT BLANK

84

CHAPTER 5:

CONCLUSION

In this thesis, we studied DEF CON 22 CTF traffic and game state data in an attempt to learn
strategies employed by the participating teams as well as to discover factors that correlated
a team’s skill to its overall standing in the CTF event.

In order to efficiently process the large amounts of network packet captures, we used the
following methodology:

1. Processed network traffic (that contains the full payload) into a light-weight represen-
tation so that we could more efficiently visualize and generate statistics.

2. Used data visualization techniques to help zoom in to areas of interest.
3. Correlated features and observables network data with game state data of scoring

infrastructure to efficiently narrow down traffic and behaviours of interest.
4. Adopted the heuristics of using one successful exploit fromeach teamas representative

for every instance of a team’s exploit for a given service. This saved us the work of
having to inspect every instance of every exploit from each team and reduced it to
simply inspecting one exploit instance for every exploit from each team.

We created quantitative and qualitative metrics, and we studied how each correlated to a
team’s final standing in the event. For quantitative metrics, we used the Pearson product-
moment correlation coefficient. The metrics included:

• Number of tokens redeemed
• Percentage of tokens found on wire during ex-filtration
• Average time to develop an exploit
• Use of publicly available payloads
• Exfiltration techniques
• Rate of exploitation
• Variation of attack parameters
• Exploit polymorphism
• Number of tokens lost

85

• Percentage of tokens lost that were found on wire during ex-filtration
• Reuse of exploits
• Average time to patch a service
• Service uptime

We learned that:

• Teams automated their attacks to exploit other teams at regular intervals. From
the network traffic, we saw regular spikes corresponding to exploit traffic. This
indicated that the teams were using some form of automation to launch their attacks.

• Teams actively scanned the host systems of the other teams and attempted to
exploit them. We saw evidence that teams were scanning address ranges of other
teams in an attempt to find active hosts. We observed an instance where one of the
teams tried to exploit a phpMyAdmin interface running on one of the other team’s
client PCs.

• There was a high correlation, as indicated by the Pearson Coefficient score,
between the number of tokens redeemed, the average time to develop an exploit
and a team’s final standing. This implied that attacking was important and being
able to find a vulnerability, and exploit it as early in competition as possible, had
benefit. This was expected, as the earlier in the competition one developed an exploit,
the more time one had to use it and accrue points.

• Obfuscating ex-filtration traffic did not provide added benefit. The percentage
of tokens seen in the network traffic had low correlation to a team’s final standing.
Electing not to obfuscate ex-filtration traffic did not effect a team’s final standing.
In fact, three of the top five teams in the competition ex-filtrated over 99% of their
tokens in the clear.

• Method of ex-filtration did not matter. We looked at two payloads that the teams
used—session-reuse payloads and callback payloads. Comparing teams that used
only one type of payload with teams that used both, we do not find any correlation
between the type of ex-filtration techniques used to a team’s final standing. We found
half of the teams of various standings using both type of payloads and the other half
using only session-reuse payloads.

• Exploiting a service multiple times per round had no added benefit. We saw that
most teams exploited each service multiple times per round, even though exploiting a

86

service once successfully was sufficient to steal a token. From the Pearson coefficient
scores, we saw little correlation between how many exploits were launched per round
versus how the teams scored in the end.

• Patching was important, but not as important as keeping services operational.
We saw that maintaining a high Service Level Agreement ratio had a high correlation
with a team’s final standing, whereas there was a low correlation between tokens lost
and a team’s final standing.

• There was evidence to indicate that some teams had a higher situational aware-
ness than others. Studying the scatter plots of polymorphic exploits, we saw that the
top two teams switched to different exploits sometime during the CTF event. Whereas
the bottom ranked team did not. As a result, the two top teams were able to exploit
most of teams for a longer duration that the bottom ranked team. This indicates that
the top two teams had good awareness of what was happening and adjusted their
actions accordingly.

• There was an interplay of factors other than tokens redeemed, tokens lost, and
SLA. Redeeming more tokens did not necessarily mean a higher final ranking. ppp
redeemed the most tokens at 2411 and was ranked first, but raon_asrt, who redeemed
the second most number of tokens was only ranked 7th. Likewise, binja, who
redeemed the least number of tokens at 234, was not placed last but 13th. In a similar
vein, losing the most tokens did not necessarily mean a low scorer. raon_asrt lost
786 flags, which is more flags than the 16 lost by binja, but raon_asrt was still ranked
higher. This hints at some interplay between factors other than tokens redeemed,
tokens lost, and SLA.

• Protecting exploits from capture and reuse would only be useful if everyone
participated. From our data, we see that the exploits used be each team are similar
to exploits used by other teams. This implies that teams were reusing exploits from
other teams. Protecting exploits from capture and reuse would incur extra effort that
may not pay off. In scenarios like this CTF, where majority of the teams were not
obfuscating their exploits, being the sole team to obfuscate its exploit would bring no
benefit. Teams that were unable to capture and reuse the exploit of one team because
the exploits were obfuscated, could choose to capture and reuse the exploits of the
other teams that did not obfuscate their exploits. Hence, instead of investing effort
into developing exploits that are hard to capture or analyze, it may be more profitable

87

for teams to spend time finding new vulnerabilities and developing exploits for them.
• A purely offensive approach was more effective than an approach that balanced
offense and defense. Since the number of tokens a team lost has low correlation to
its final standing whereas the number of tokens a team managed to steal had a high
correlation, it stands to reason that resources put into attacking were more beneficial
than resources dedicated to patching.

From what we have observed from the data, we found the following to be surprising:

• Teams were aggressive in launching their exploits. We expected that teams would
be judicious in their rate of exploitation so as to reduce the chances of their attacks
being discovered and their exploit captured. However, what we observed was that
teams continuously launched their exploits throughout the duration of the game.
Presumably, they were more concerned about stealing tokens than they were about
protecting their exploits from capture.

• Few teams bothered with obfuscating their exploits and their ex-filtration traffic.
Similar to the point above, it appeared that teams were not concern with hiding their
attacks or indicators of compromise. We had expected that teams would operate in a
more stealthy manner and attempt to make it more difficult for other teams to detect
their offensive activities.

• Teams used relatively simple exploits and payloads. Related to the above point, we did
not see evidence that teams obfuscated their exploits nor used sophisticated payloads.
All the payloads that we found on the network were relatively simple that ran shell
commands to read the token file, or created a reverse connection to send the token
file back to the attacker. Some of the teams had experienced and skilful members
that had won several CTFs previously; hence, we expected their attacks to have had a
higher level of sophistication.

• A purely offensive approach may be more effective than one that balances between
offense and defense. An attack-defense type CTF should take into account both
the offensive and defensive abilities of the participating teams. However, from our
findings, it appeared that an offensive-biased strategy may be a more effective one
that a strategy that balanced offense and defense.

88

5.1 Future Work
There are still a number of areas that warrant further study:

Investigate Collusion Between Teams
Wenoted communication between hostmachines of two competing teams that did not appear
to be attack traffic. We were unable to determine the nature of this communication. For the
purposes of understanding how feasible collusion can be as a strategy, it would be interesting
to study whether teams are colluding (either over the CTF network or out-of-band), how
they are colluding, and how much does collusion contribute to their performance. Future
work could look at the kinds of collusion and study whether teams trade/share exploits or
flags.

Implement Better Techniques for Measuring Payload and Exploit Differences
We chose to utilize Dynamic TimeWarping (DTW) formeasuring distance between exploits
and payloads. However, this did notworkwell for comparing the exploits for the imap service
or for comparing publicly available shellcodes. DTW focused on the value of each byte
and its relation to other bytes, whereas a better technique might have been to measure the
semantic differences between two payloads. A better technique to measure payload and
exploit differences would have allowed us to make better assessment on whether teams
used publicly available payloads. It would also have allowed us to be more accurate in
determining the number of exploit variants used in the CTF.

Compare Exploit Payloads Against a Larger Corpus of Public Shellcodes
For this thesis, we only compared each team’s exploit against four publicly available shell-
codes taken from shell-storm.org and the Metasploit Framework. This should be expanded
to include more shellcodes from more repositories. It would be interesting to know whether
utilizing publicly available exploits was a worthwhile strategy. Intuitively, we would expect
DEF CON CTF participants to use custom payloads, since the architecture and execution
environments may be customised in these CTFs, so that public payloads would not work. It
would be surprising to discover teams that use and even perform well in DEF CON CTFs
using only publicly available payloads.

89

Study the Use of Backdoors
A interesting area of future work would be to determine whether teams install backdoors
(as opposed to simple shell scripts) in the systems they exploit and study if the utilization
of such tactics helps a team to perform better. Additionally, it would be interesting to
categorize the types of backdoors used and how that too affects a team’s ranking. Such
a study would help in developing a strategy on how backdoors can be effectively used to
enhance a team’s performance.

Study the Time to Turn Around Exploits
A metric to measure the defensive capabilities of a team might be to examine how quickly
a team can repurpose a captured exploit to suit its own needs. Teams that want to prevent
other teams from reusing their exploit would then attempt to obfuscate their exploits to
frustrate any reverse-engineering attempts. It would be interesting to know whether purely
reusing exploits (as opposed to finding the vulnerabilities and developing their own exploit)
would be a worthwhile strategy, and if so, what turnaround time would be required for the
strategy to be effective.

Study the Employment of Chaffing or Similar Techniques
As mentioned, teams monitored their network traffic in hopes of finding an exploit they
could reuse. Obfuscating attack traffic may not always be possible, so teams may employ
chaffing instead—which involves flooding the network of their target before sending their
exploit. The desired effect of chaffing is to overwhelm the target with network traffic in
order to hide the actual exploit in the resulting noise. It would be interesting to learn what
kind of chaffing techniques that teams employ and how effect each of the techniques can be
in positively affecting the performance of a team.

Analyze the Rationale for Exploit Polymorphism
From our findings, we know that teams polymorph their exploits. However, what we do not
yet know, and therefore should investigate, would be:

• Whether teams developed a new variant for an exploit in response to key events. For
example, do teams develop variants upon learning that their exploits were captured
and re-used? If so, how do teams learn that fact?

90

• Whether the use of variants was guided by some underlying strategy. For example,
do teams develop a number of variants at once but use them only over a period of
time?

Study the Re-use of Exploits from a Temporal Perspective
Our findings show that team do indeed capture and re-use the exploits of other teams.
However, we did not study how these captured exploits propagated to other teams. For
example, pppwas the first to develop the exploit for justify, and this exploit was subsequently
re-used by a number of teams. It would have been interesting to find you:

• Who was the first team that captured ppp’s exploit?
• Did the other teams that used ppp’s exploit also captured it from ppp, or did they
capture it from another team that reused the exploit.

In addition, it would be interesting to test our hypothesis that teams discovered exploits
by tracing back traffic that contained leaked tokens. It is plausible to believe that not all
exploits that a team launched were successful. In such cases, did the teams on the receiving
end of failed exploits detect these failed exploits and used these failed exploits as blueprints
to develop their own?

Compare Study Findings Across Multiple DEF CON CTFs
Currently we only studied the data from one DEF CON CTF event. Hence, all our observa-
tions and findings only pertain to the DEF CON 22 CTF. As future work, we should study
other CTFs to and test whether our findings and hypothesis hold across other DEF CON
CTFs.

Study CTF Dynamics and How it Affects Game Play
Other iterations ofDEFCONCTFswould have different variety of services and architectures
as well as different number of participating teams of various competency levels. As future
work, we could look at how different services, architectures, participant composition and
their resulting dynamics affect how teams operate. For example, we could investigate if
teams avoided attacking other teams that they knew were experts at capturing and reusing
exploits.

91

Perform Temporal Study to Learn How Strategies and Competencies Have Evolved
Understanding how strategies and competencies have evolved over time could indicate the
rate at which cyber security research is advancing. Therefore, an area for future work would
be to compare the metrics we have from a temporal perspective and study the evolution of
competencies. Intuitively, as analysis and development tools and techniques become more
advanced, we can expect the metrics to reflect this. Questions we would be interested in
answering include:

• Are teams finding vulnerabilities and developing exploits faster?
• Are teams patching vulnerabilities faster?
• Are teams using more sophisticated exploits?
• Are teams using more sophisticate strategies?

Perform a Team-Focused Study for Team-Specific Strategies
Understanding team-specific strategies would give us an idea of how sophisticated teams
have become. Therefore, an area of future work would be to investigate whether teams
have their own specific strategies. In addition, we would also want to investigate whether
the strategies employed by teams differ regionally. Questions we would be interested in
answering include:

• Are there certain actions that each team performs across all CTFs?
• Are these strategies dependant on who their opponents are?
• What specific strategies or actions do teams from a certain regions employ? (e.g., Do
the Korean teams have different strategies from Russian teams?)

• How different are strategies employed by one team (or region) different from the
others?

• How effective are these strategies?
• What if team members defect to join other teams. Would the team member bring
their strategies over to the new team?

Analyze Other Attack-Defend CTFs
In order to improve how CTFs are conducted, it would be useful to also study other Attack-
Defend type CTFs to learn how participating teams operate in those CTFs. Examples for

92

other Attack-Defend type CTFs include iCTF, SSCTF and RuCTF. Questions we would like
to answer include:

• How do strategies employed by the participating teams differ between each CTFs. Do
they differ from those employed in DEF CON 22 CTF?

• What metrics can we measure for the other CTFs and what can we learn from these
metrics?

• What interesting or surprising findings can we discover about how teams play these
CTFs?

Study the Players Themselves
In addition to studying the captured network traffic and game state data, we could also learn
a lot from studying the players themselves. Some areas to investigate are:

• How and with whom do the players interact with within the team, and between teams?
• Do teams have some form of organization or distribution of roles that make them
effective? If so, what different roles are there?

• How homogeneous are teams and does the diversity of the team affect its game-play
or performance?

• What are the average stress levels like for each team? Do more competent teams
experience less stress compared to less competent teams? Are stress levels consistent
throughout the CTF event or are there times that teams consider to be more stressful?

In order to get data related to the players themselves, we may have to resort to recording the
teams on video, and providing pulse monitoring wristbands.

Create New Ways to Instrument the CTF to Collect the Data We Need
The data for what we want to study may not be available if the CTFs are executed in their
current form. Therefore we would need to think about how we can better instrument the
CTF and/or change the CTF format if necessary in order to be able to get the data we need.

93

THIS PAGE INTENTIONALLY LEFT BLANK

94

List of References

[1] L. B. Syndicate, 2016. [Online]. Available: https://media.defcon.org/DEF\
%20CON\%2022/DEF\%20CON\%2022\%20ctf/DEF\%20CON\%2022\%20ctf\
%20scoreboard.rar

[2] A. Dabrowski, M. Kammerstetter, E. Thamm, E. Weippl, and W. Kastner, “Lever-
aging competitive gamification for sustainable fun and profit in security education,”
in 2015 USENIX Summit on Gaming, Games, and Gamification in Security Edu-
cation (3GSE 15). Washington, D.C.: USENIX Association, Aug. 2015. [Online].
Available: http://blogs.usenix.org/conference/3gse15/summit-program/presentation/
dabrowski

[3] M. Carlisle, M. Chiaramonte, and D. Caswell, “Using ctfs for an undergraduate
cyber education,” in 2015 USENIX Summit on Gaming, Games, and Gamifica-
tion in Security Education (3GSE 15). Washington, D.C.: USENIX Association,
Aug. 2015. [Online]. Available: http://blogs.usenix.org/conference/3gse15/summit-
program/presentation/carlisle

[4] T. Chothia and C. Novakovic, “An offline capture the flag-style virtual machine and
an assessment of its value for cybersecurity education,” in 2015 USENIX Summit on
Gaming, Games, and Gamification in Security Education (3GSE 15). Washington,
D.C.: USENIX Association, Aug. 2015. [Online]. Available: https://www.usenix.
org/conference/3gse15/summit-program/presentation/chothia

[5] K. Chung and J. Cohen, “Learning obstacles in the capture the flag model,” in
2014 USENIX Summit on Gaming, Games, and Gamification in Security Education
(3GSE 14). San Diego, CA: USENIX Association, Aug. 2014. [Online]. Available:
https://www.usenix.org/conference/3gse14/summit-program/presentation/chung

[6] A. Davis, T. Leek, M. Zhivich, K. Gwinnup, and W. Leonard, “The fun and fu-
ture of ctf,” in 2014 USENIX Summit on Gaming, Games, and Gamification in Se-
curity Education (3GSE 14). San Diego, CA: USENIX Association, Aug. 2014.
[Online]. Available: https://www.usenix.org/conference/3gse14/summit-program/
presentation/davis

[7] G. Vigna, K. Borgolte, J. Corbetta, A. Doupé, Y. Fratantonio, L. Invernizzi, D. Ki-
rat, and Y. Shoshitaishvili, “Ten years of ictf: The good, the bad, and the ugly,” in
2014 USENIX Summit on Gaming, Games, and Gamification in Security Education
(3GSE 14). San Diego, CA: USENIX Association, Aug. 2014. [Online]. Available:
https://www.usenix.org/conference/3gse14/summit-program/presentation/vigna

95

[8] O. Tsai, “Orange: Hitcon win the 2nd in defcon 22 ctf final,” 2014. [Online]. Avail-
able: http://blog.orange.tw/2014/08/hitcon-win-2nd-in-defcon-22-ctf-final.html

[9] Jeffxx.com, “Defcon 22 final hitcon - jeffxx blog,” 2014. [Online]. Available: http:
//www.jeffxx.com/blog/2014/08/13/2014-defcon-22-final-can-sai-xin-de-shang/

[10] Ddaa.logdown.com, “defcon 22 ctf final diaries « no ctf no life,” 2014. [Online].
Available: http://ddaa.logdown.com/posts/220500-defcon-22-ctf-diaries

[11] c. team, “Ctftime.org / all about ctf (capture the flag),” 2016. [Online]. Available:
https://ctftime.org/ctf-wtf/

[12] T. Tangent, “Def con® hacking conference - about,” 2016. [Online]. Available:
https://www.defcon.org/html/links/dc-about.html

[13] C. Sabrina Korber, “Cyberplayers duke it out in a world series of hacking,” 2013.
[Online]. Available: http://www.cnbc.com/2013/11/08/defcon-capture-the-flag-
competition-is-only-for-top-hackers.html

[14] T. Tangent, “Def con® hacking conference - ctf history,” 2016. [Online]. Available:
https://www.defcon.org/html/links/dc-ctf-history.html

[15] ctftime, “Ctftime.org / ctf teams,” 2016. [Online]. Available: https://ctftime.org/
stats/2014

[16] P. Pwning, “Welcome to plaid ctf 2015,” 2016. [Online]. Available: http://www.
plaidctf.com/

[17] Bostonkey.party, “bkp ctf,” 2016. [Online]. Available: https://bostonkey.party/

[18] Ructf.org, “Ructfe 2014 index,” 2016. [Online]. Available: https://ructf.org/e/2014/

[19] L. B. Syndicate, 2016. [Online]. Available: https://media.defcon.org/DEF\
%20CON\%2022/DEF\%20CON\%2022\%20ctf/DEF\%20CON\%2022\%20ctf\
%20pre-qual\%20stat\%20dump.rar

[20] S. 0, “Def con 22 capture the flag - stratum 0,” 2014. [Online]. Available: https://
stratum0.org/blog/posts/2014/08/29/defcon-ctf-2014

[21] Routards.org, “Routards team blog: Defcon 22 ctf - badger,” 2016. [Online]. Avail-
able: http://www.routards.org/2014/08/defcon-22-ctf-badger.html

[22] 2016. [Online]. Available: https://legitbs.net/2014/

[23] Tools.netsa.cert.org, “Silk — faq,” 2016. [Online]. Available: http://tools.netsa.cert.
org/silk/faq.html\#what-is-flow

96

[24] Tools.netsa.cert.org, “Silk,” 2016. [Online]. Available: https://tools.netsa.cert.org/
silk/

[25] J. Ritter, “ngrep - network grep,” 2016. [Online]. Available: http://ngrep.
sourceforge.net/

[26] G. Developers, “Charts | google developers,” 2016. [Online]. Available: https:
//developers.google.com/chart/

[27] J. Smith, “automayt/flowplotter,” 2014. [Online]. Available: https://github.com/
automayt/FlowPlotter

[28] Gephi.org, “Gephi - the open graph viz platform,” 2016. [Online]. Available: https:
//gephi.org

[29] C. Anley and J. Koziol, The shellcoderś handbook. Wiley Pub., 2007.

[30] D. Kong, D. Tian, Q. Pan, P. Liu, and D. Wu, “Semantic aware attribution analysis
of remote exploits,” Security and Communication Networks, vol. 6, no. 7, pp. 818–
832, 2013. [Online]. Available: http://dx.doi.org/10.1002/sec.613

[31] M. Cherukuri, S. Mukkamala, and D. Shin, “Similarity analysis of shellcodes in
drive-by download attack kits,” in Collaborative Computing: Networking, Appli-
cations and Worksharing (CollaborateCom), 2012 8th International Conference on,
Oct 2012, pp. 687–694.

[32] H. Megahed, “Linux/x86 execve /bin/sh shellcode 23 bytes,” 2016. [Online]. Avail-
able: http://shell-storm.org/shellcode/files/shellcode-827.php

[33] J. Salwang, “Linux/arm - execve(/bin/sh, /bin/sh, 0) - 30 bytes,” 2016. [Online].
Available: http://shell-storm.org/shellcode/files/shellcode-665.php

[34] 2016. [Online]. Available: https://media.defcon.org/DEF\%20CON\%2022/DEF\
%20CON\%2022\%20ctf/DEF\%20CON\%2022\%20ctf\%20teams/

[35] Legitbs.net, “Def con ctf 2014,” 2016. [Online]. Available: https://legitbs.net/2014/

[36] Pypi.python.org, “dtw 1.2 : Python package index,” 2016. [Online]. Available: https:
//pypi.python.org/pypi/dtw/1.2

[37] Wikipedia, “Pearson product-moment correlation coefficient,” 2016. [Online].
Available: https://en.wikipedia.org/wiki/Pearson_product-moment_correlation_
coefficient

97

THIS PAGE INTENTIONALLY LEFT BLANK

98

Initial Distribution List

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

99

