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Abstract—Filtering algorithms that use different forms of
numerical integration to handle measurement and process non-
linearities, such as the cubature Kalman filter, can perform ex-
tremely poorly in many applications involving angular measure-
ments. We demonstrate how such filters can be modified to take
into account the circular nature of the angular measurements,
dramatically improving performance. Unlike common alternate
techniques, the cubature methods can be easily used with angular
measurements arising from ray-traceable propagation models.

I. INTRODUCTION

The recent tutorial [9] discusses, considering examples of

3D target tracking, how cubature/ unscented/ sigma point

Kalman filtering is a realization of the best linear unbiased

estimator (BLUE) that evaluates certain integrals for expected

values using different forms of cubature integration. In [9], the

term “cubature Kalman filter” is generally applied to all such

filters to highlight the use of cubature integration,1 whereas

in [28] the term “linear regression Kalman filter” is used to

highlight how such methods can be viewed as a form of linear

regression. This paper addresses the use of the generic family

of all cubature Kalman filters2 (CKFs) with measurement and

dynamic models involving angular components without regard

to the choice of cubature points.

Though many articles on various types of cubature Kalman

filters (CKFs) consider the use of polar [20], [12], [2] or

spherical [34] measurements with Cartesian state vectors,

many more papers that consider the use of cubature integration

(usually in the form of the “unscented transform”) consider

just converting such measurements into Cartesian coordinates

and feeding the converted measurements to a standard linear

Kalman filter, such as in [19], [20], [17], [18], [1], [32].

However, in [9], it was demonstrated that when tracking

using range and direction cosine measurements, it is better

to use them in a CKF than to to use unbiased Cartesian-

converted measurements for tracking and one would expect

similar results to hold when using measurements in spherical

coordinates.

1Sometimes the term “quadrature” is used in place of cubature. Usually, the
distinction is the quadrature integration is one-dimensional, whereas cubature
integration is multidimensional. However, not all authors make the distinction.

2The term “cubature Kalman filter” was coined in the paper [2], where
third-order cubature points were used. Many authors, when discussing the
CKF only mean the CKF with that particular choice of cubature points.

However, none of the aforementioned papers considering

the use of polar or spherical coordinates in a CKF takes

into consideration the idiosyncrasies of directional statistics.

In various monographs on directional statistics [30] focussing

on circular [13] or spherical [14] measurements, problems

with traditional definitions of the mean and variance are

highlighted. For example, in numerous examples throughout

[13], the problem of averaging wind directions (in the local

tangent plane to the surface of the Earth) is considered. If one

were to simply numerically average the direction (given as

an angle, for example, North of East or East of North), then

averaging a value just above 0◦ with one just below 359◦

would produce the worst possible estimate, one close to 180◦

–exactly opposite the direction of both of the samples. Thus,

special care must be taken when computing expected values

involving numerical data. Consequently, as is demonstrated for

polar measurements in Section III, and spherical measurements

in Section IV, special care must be taken when computing the

expected values in the CKF when dealing with angular models.

Directional statistics have been used in various aspects of

filtering in the past. For example, in [26], the measurement

update step of a particle filter whose target state vector

contains an angular component is considered. In [36], parts of

a standard Kalman filter used to estimate angular distributions

are wrapped on the range (0, 2π] to handle special nonlinear

aspects of the filter. The same concept is applied in this

paper to the more general CKF problems. On the other

hand, a cubature-style filter is used with the wrapped-normal

and von Mises distributions for estimating an angle in [25].

In [24], the authors consider the more general case where

multiple angles are dependent, such as when using spherical

coordinates, where toroidal distributions and moments were

used. Though the algorithms of [25] and [24] work quite well

when estimating angular quantities, this paper considers more

general estimation problems when given correlated quantities

other than angles, for example, problems involving range or

Cartesian position in the state and/ or the measurement vectors.

Whereas in [25], [24], solutions utilizing circular probability

distributions are derived, this paper simply demonstrates how a

standard linear CKF can be modified to accommodate circular

or spherical models when the noises involved are not “too”
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large.

Though the CKF is not suitable for all estimation problems,

it is extremely versatile and simple to use in many challenging

scenarios. For example, in the tutorial [8], it is demonstrated

that the CKF can handle refraction-corrupted measurements

well in ray-traceable atmospheric models without having

to evaluate derivatives. Additionally, since the measurement

propagation and update steps in the CKF are separate, one

can easily be replaced by another algorithm utilizing Gaussian

approximations. For example, in the tutorial [7], the CKF mea-

surement update step is paired with a cubature-based moment-

matching method for propagating a target state through a

nonlinear stochastic dynamic model with non-additive noise,

as opposed to the derivative-based nonlinear state propagation

algorithm introduced in [3].

Section II reviews basic aspects of the measurement update

step common to CKF that are discussed in detail in [9].

Sections III and IV then discuss how the CKF measurement

update step can be modified to handle polar and spherical

measurements, respectively. The results are summarized in

Section V.

II. THE BASIC FORM OF CUBATURE KALMAN FILTERS

As discussed in [9], cubature integration is based on the

Fundamental Theorem of Gaussian Integration, which states

that the definite integral of any polynomial up to a given

degree times a weighting function w having certain properties

can be determined exactly by a weighted summation of the

polynomial evaluated at certain fixed points based on the

weighting function. As an equation, for a scalar integral, this

means that
Z b

a

w(x)g(x) dx =
nX

i=0

ωig(ξi), (1)

where a and b are the bounds of the integral, w(x) is the

weighting function, g(x) is a polynomial, ωi is a cubature

weight and ξi is a cubature point (sometimes referred to

as a sigma-point in tracking literature). The cubature points

and weights are designed to be valid for all polynomials up

to a certain degree. For polynomials over that degree, the

integration can only be considered an approximation.

A monograph by Stroud [35]3 discusses aspects of cubature

integration for many different weighting functions and regions

of integration. Common scalar weighting functions for d-

dimensional multivariate integrals in R are w(x) = ekxk

and w(x) = ekxk
2

. When w(x) = 1, common regions of

integration are the unit sphere (or hypersphere in more than

3 dimensions), cube (or hypercube), and simplex (a triangle

in 2D, a tetrahedron in 3D, and similar shapes in higher

dimensions). As demonstrated in [9], cubature formulae for

the weighting function w(x) = ekxk
2

can be modified to work

3Stroud’s extensive monograph on cubature integration [35] is out of print.
Since the book was printed in 1971 and U.S copyright on a work published
in 1971 is valid 95 years from the copyright date [37], the copyright will not
expire until 2066.

for scenarios when one is performing an integral of a function

times a multivariate normal PDF having an arbitrary mean and

covariance. In other words, when dealing with integrals that

arise when deriving the CKF.4

Mathematicians have developed numerous cubature formu-

lae as tabulated in [35] and in the online encyclopedia of

cubature formulae at http://nines.cs.kuleuven.be/ecf/ described

in [6]. Many versions of the CKF use cubature integration

without having derived it from the mathetical literature on the

topic. For example, while the formula underlying Arasaratnam

and Haykin’s CKF [2] is a third-order cubature formula, which

was derived with regard to the mathematical literature on

cubature integration, the so-called “unscented transformation”

in the unscented Kalman filter [21], [16], [27] is a third-

order cubature formula that was derived independently of

past mathematical work, Similarly, the recent smart sampling

Kalman filter [33] uses a stochastic method to choose points

for integration that are de facto cubature points.

The key to the CKF is the update step, which is an

implementation of the best linear unbiased estimator (BLUE)

using cubature integration to evaluate difficult integrals. The

BLUE is described in the context of target tracking (but not

cubature integration) in [38], where solutions for tracking

using polar measurements and using spherical measurements

are given using a Taylor-series approximation assuming that no

correlation exists between the noise corrupting the components

of the measurement. In practice, however, recursion is not

necessary as the algorithm is shown to perform well against

other techniques in [22].

On the other hand, a cubature-based BLUE can handle

more general scenarios, such as when correlation between the

components of measurements is taken into account or when

using empirical models of range-Doppler coupling, such as the

model of [5]. The estimation step in the BLUE/ CKF is

x̂k|k =x̂k|k−1 +

Wk

z }| {

Pxz
k|k−1

⇣

Pzz
k|k−1

⌘−1 (
zk − ẑk|k−1

)
, (2)

Pk|k =Pk|k−1 −Pxz
k|k−1

⇣

Pzz
k|k−1

⌘−1 ⇣

Pxz
k|k−1

⌘0

, (3)

where x̂k|k−1 is the predicted (prior mean) target state with

covariance matrix Pk|k−1 (a Gaussian distribution is assumed)

and x̂k|k is the updated (posterior mean) target state with

covariance matrix Pk|k. zk is the measurement, and the term

Wk is known as the “gain” of the filter. The other quantities

are given in terms of expected values as

ẑk|k−1 =E
⇥
h(xk,wk)|Z1:(k−1)

⇤
, (4)

Pxz
k|k−1 =E

h(
xk − x̂k|k−1

) (
zk − ẑk|k−1

)0
∣
∣
∣Z1:(k−1)

i

, (5)

Pzz
k|k−1 =E

h(
zk − ẑk|k−1

) (
zk − ẑk|k−1

)0
∣
∣
∣Z1:(k−1)

i

, (6)

4Cubature formulae for the weighting function w(x) = e
kxk could

be similarly transformed to work with the Laplace distribution. Cubature
formulae for w(x) = 1 over regions of various shapes could be used for
evaluating polynomial integrals over uniform distributions of various shapes.
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where the conditioning Z1:(k−1) is on all prior information

(which is assumed to result in a Gaussian prior distribution),

and h(xk,wk) is the function that transforms that state xk into

the measurement, including Gaussian measurement noise wk,

which could be additive or included in a nonlinear manner. To

simplify the discussion in this paper, the measurement noise

is assumed additive. That is h(xk) + wk is used in place of

h(xk,wk). However, the concepts of this paper can be applied

to general noise models as in Section IX.C of [9]. In [38],

the BLUE problem is formulated slightly differently so that

the measurement is converted into the target state (Cartesian)

domain, whereas here, ẑk|k−1 is the conversion of the target

state into the measurement domain.

Though cubature estimation techniques have been developed

for circular probability distributions such as in [23], there

are no cubature estimation methods explicitly for measure-

ment models where only some of the components of the

measurement are circular, such as when given a range and

an azimuth measurement. Thus, this paper demonstrates how

linear models can be adapted to such applications.

Note that the assumption that the noise corrupting the

measurement is Gaussian-distributed is kept here. Strictly

speaking, the assumption regarding noise corrupting the an-

gular component is best described as wrapped normal, which

is described in [30, Ch. 3.5.7]. By approximating the noise

corrupting the measurement as being multivariate normal, it

is possible to approximately model cross-correlations between

angular and linear components. Also note that if the noise

variance on the angular component is small, standard methods

(possibly modified with a modulo operation) can be used to

approximately estimate the covariance matrix of the measure-

ments from measurement and truth data. This becomes clear

when examining the (scalar) clipped mod normal distribution

used in [11], which differs very little from a standard normal

distribution, but which can be applied to circular data without

explicit wrapping.

III. USING POLAR MEASUREMENT IN A CUBATURE

FILTER

A. The Method

In the standard CKF, one would expect problems to arise

when taking the differences of the angular components in

(2) when computing x̂k|k, as well as in (5) and (6), when

computing Pxz
k|k−1 and Pzz

k|k−1, due to the difference between

angles being discontinuous at the 0 − 2π boundary in the

angular components of the innovation term zk−ẑk|k−1 and the

z− ẑk|k−1 terms. Additionally, the evaluation of the expected

value in (4) to compute the predicted measurements involves a

conversion of the target state into the coordinate system of the

measurement. When given measurements in polar coordinates

and a target state in Cartesian coordinates, however, problems

related to averaging angles can arise.

When finding the mean and variance of circular values, the

mean direction µθ is typically used in place of the arithmetic

mean and the circular variance σ2
θ in place of the more

traditional standard deviation. Given an angle θ, the mean

direction and circular standard deviation are generally defined

in terms of average components ūx and ūy of an algebraic

average of unit vectors5 ū as well as the mean resultant length,

ρ such that

ūx ,E [cos θ] ūy ,E [sin θ] . (7)

The mean resultant length, ρ, and mean direction, µθ, are

defined through the polar relation [30, Ch. 2.2]

ūx + jūy = ρejµθ , (8)

where j =
p
−1. Thus,

ρ ,

q

ū2
y + ū2

x µθ , arctan2 (ūy, ūx) , (9)

where arctan2 refers to a four-quadrant inverse tangent func-

tion. The circular standard deviation is defined as [30, Ch.

2.3]

σ2
θ , −2 ln ρ (10)

When deriving an angle-only recursive filtering algorithm

in [25], the authors made use of such circular statistics in the

context of circular probability distributions. However, here,

we consider the more general problem of handing both linear

(range) and circular (angle) measurement components, which

could possibly be correlated. In [30, Ch. 11.1], the concept

of a cross correlation between circular and linear terms is

defined and in [30, Ch. 11.3] the topic of performing regression

between circular and linear quantities is broached. However,

the regression technique is not sufficiently well developed to

completely replace the CKF and it would be inappropriate

to replace Pzz
k|k−1 and Pxz

k|k−1 with components having fully

circular terms as long as the design of the overall measurement

update remained linear.

Even though a version of the CKF for mixed circular

and linear variables is not trivial to derive, one can assume

that a simple modification to a linear estimator would work

well. For example, in [10], when considering range ambiguity

resolution, which results from aliasing in range measurements

(a circular property), it is demonstrated that a simple algorithm

based on a linear model works nearly as well as an optimal

algorithm, because there is not much noise in a realistic sys-

tem. In the problem at hand here, simple ad-hoc corrections to

eliminate the 0−2π discontinuity can eliminate any problems.

Thus, the expected value in (4) is not implemented in the

traditional manner described in [9], which is

ẑk|k−1 =

NCX

i=0

ωiζ
z
i , (11)

where

ζz
i = h(x̂k|k−1 +P

1

2

k|k−1ζi) (12)

is the ith cubature weight out of a total of Nc that has been

transformed to model the moments of the noisy target state

after measurement prediction, and the matrix square root in

5The algebraic mean of unit vectors is usually not a unit vector.
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(12) should be a lower-triangular Cholesky decomposition.

Rather, if the measurement function contains a circular com-

ponent, then that has to be averaged separately from the other

components in the manner of (9). Note that in (12), h is the

polar measurement function

h(x) = [
p

x2 + y2, arctan2(y, x)]0. (13)

For the case where one has 2D range and position compo-

nents the steps are

1) Compute cubature points for the distribution of the

predicted measurement in the manner normally done

for cubature integration. That is, use (12). The cubature

point ζz
i = [ζz,ri , ζz,θi ]0 is composed of a range compo-

nent ζz,ri and an angular component ζz,θi .

2) The mean of the range components is found the standard

way as a linear sum

ẑrk|k−1 =

NCX

i=0

ωiζ
z,r
i . (14)

3) The mean angular component, on the other hand, is the

weighted average of the direction vectors (the sample

mean)

ui =

2

4

cos
⇣

ζz,θi

⌘

sin
⇣

ζz,θi

⌘

3

5 , (15)

ū =

NCX

i=0

ωiui. (16)

ẑθk|k−1 =arctan2 (uy, ux) . (17)

In other words, the cubature integration is used to

approximately evaluate the integrals in (7).

4) The predicted measurement is now ẑk|k−1 =
[ẑr

k|k−1, ẑ
θ
k|k−1]

0.

On the other hand, when evaluating the innovation term

zk − ẑk|k−1 in (2), as well the angular differences in(5), (6)

for Pxz
k|k−1 and Pzz

k|k−1 via cubature integration, an ad-hoc

method of dealing with the circular nature of the azimuth

component of the measurement is to realize that all differ-

ences between angles must be bound between ±π. Thus, all

differences between angles should be wrapped into that region.

To wrap a value to the region (a, b), where a < b, one can

use the function

hwrap(x, a, b) = mod(x− a, b− a) + a, (18)

where mod refers to the modulo operation (the mod func-

tion in Matlab). For example, mod (12, 5) = 2. Thus,

equation (2) becomes

x̂k|k = x̂k|k−1 +Pxz
k|k−1

⇣

Pzz
k|k−1

⌘−1

hwrap
polar

(
zk − ẑk|k−1

)
,

(19)

where for some difference parameter ∆z = [∆r,∆θ]0,

hwrap
polar(∆z) =

"

∆r

hwrap(∆θ,−π, π)

#

. (20)

Using the wrapping function hwrap
polar, (5) and (6) are similarly

evaluated as

1) Compute cubature points for the distribution of the

predicted state in the manner normally done for cubature

integration. That is, use (12) to get ζz
i = [ζz,ri , ζz,θi ]0.

Also, save the non-transformed cubature points,

ζx
i = x̂k|k−1 +P

1

2

k|k−1ζi. (21)

2) Pxz
k|k−1 and Pzz

k|k−1 are evaluated as

Pxz
k|k−1=

NC−1X

i=0

ωi

(
ζx
i − x̂k|k−1

)
hwrap

polar

(
ζz
i − ẑk|k−1,−π, π

)0
,

(22)

Pzz
k|k−1=

NC−1X

i=0

ωih
wrap
polar

(
ζz
i − ẑk|k−1

)
hwrap

polar

(
ζz
i − ẑk|k−1

)0
.

(23)

B. An Example

As an example, consider the problem of tracking a target

moving with a nearly-constant velocity in two dimensions.

This is a 2D order-1 version of the generalized model given

in Appendix A. Under this model the target state has the form

x = [x, y, ẋ, ẏ]0 for 2D position (x, y) and velocity (ẋ, ẏ)
components.

Two scenarios are considered. The initial target states in the

scenarios are

x
(0)
0 =

⇥
100 km 0 −200m/s 0

⇤0
, (24)

x
(1)
0 =

⇥
− 100 km 0 200m/s 0

⇤0
. (25)

In both instances, the target is heading toward the origin

(where the sensor is located), but the target is on either side of

the y-axis. For polar measurements, where the range ranges

±π measured counterclockwise from the x-axis, this means

that one would expect the traditional CKF to have significant

problems with the track having initial state x
(1)
0 .

The simulations are run assuming that the components of the

Gaussian noise corrupting the range and angle measurements

are uncorrelated with range standard deviation σr = 20m

and angular standard deviation σθ = 0.5◦. The time between

measurements is a constant T = 3 s. The process noise

intensity parameter is q = 1m2/s3.

The simulation is run using four filters. The first is a stan-

dard Kalman filter, which uses uses the first-two moments of

the Cartesian converted measurements computed using ninth-

order cubature integration, as done is in [9]. However, since the

fifth-order cubature relations given in [9] require points to have

three or more dimensions, the arbitrary-order 1-dimensional

routine of [15] is used with the product rule of [35, Ch. 2] to

make it two-dimensional. The second filter is the approximate
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Fig. 1. A comparison of the different filtering algorithms. In (a) and (b) the RMSE performance of the different filtering algorithms is shown. In (a), where
the initial target state is on the right of the y-axis, far from the ±π boundary in polar angle, all of the filters perform similarly, though if plotted, one would
see that the average normalized estimation error squared (ANEES) performance of the converted measurement filter is somewhat less statistically consistent.
However, in (b), where the initial target state is on the left of the y axis, near the ±π boundary, the performance of naı̈ve CKF is extremely poor. Observing
a sample Monte Carlo run, one would see that the naı̈ve filter experiences wild gyrations; the proper CKF implementation of this paper does not.

BLUE filter of [38], which avoids problems with angles by

performing the measurement update step with a different

formulation using Cartesian coordinates. The third filter is a

naı̈ve CKF with ninth-order cubature points, implemented as

described in [9] without accounting for the circular nature

of the measurements. The fourth filter is a “proper” CKF,

which has been adjusted as described in this paper to avoid

problems with measurements near a ±π boundary. The two

implementations of the CKF use the same fifth-order cubature

points as used in the simulations in [9].

Figures 1a and 1b show the root-mean-squared error per-

formance of the filters in the two different scenarios. In 1a,

when all of the filters are far from the ±π boundary, the

performance is comparable, though the average normalized

estimation errors squared (ANEES) of the filters (a measure

of the consistency of the covariance matrix with actually

observed error, discussed in [9])6 are comparable, except

for the converted measurement filter, which more frequently

leaves the 95% confidence interval (not plotted).

In 1b, when near the boundary, the naı̈ve CKF has extremely

poor performance. Viewing a sample Monte Carlo of the poor

scenario in Figure 1, one would see that the naı̈ve CKF has

wild jumps. On the other hand, when far from the boundary,

the performance of the filters is comparable.

The proper CKF avoid the problems of the naı̈ve CKF

having comparable performance and statistical consistency as

the approximate BLUE estimator of [38]. However, it should

be noted that unlike the BLUE estimator of [38], the CKF

can be used with polar measurements originating from other

propagation models. That is, the measurement function in the

filter can include some type of ray tracing or other effects.

For example, the measurement could consist of a 2D bistatic

6The ANEES is a less reliable measure of the accuracy of a covariance
matrix than the noncredibility index and the inclination indicator of [29], but
it is easier to understand at a glance than using two different measures.

range and angle. The filter of [38] has only been formulated

for the monostatic, refraction-free scenario.

IV. USING SPHERICAL MEASUREMENTS IN A CUBATURE

FILTER

A. The Method

When given measurements in spherical coordinates, the

same approach as in Section III-A is taken to approximate the

integrals in (4), (5), and (6) and to deal with the differencing

of direction components in (2). That is, find the average

direction instead of the linear mean, when averaging angular

components to get ẑk|k−1, and wrap all differences between

angles to the appropriate region in spherical space.

The evaluation of ẑk|k−1 is straightforward since the aver-

age direction in spherical coordinates is a weighted set of unit

vectors. Note, however, that the computation of the unit vector

varies depending on how spherical coordinates are defined.

For example, a common representation of a point in spherical

coordinates is (r, θ, φ), where θ is an azimuth measured in

the x− y plane, as radians counterclockwise from the x axis

and φ is an elevation above the plane. In such an instance, the

equations for a point (x, y, z) in Cartesian space given a point

in spherical coordinates is

x = r cos(θ) cos(φ) y = r sin(θ) cos(φ) z = r sin(φ).
(26)

The inverse transformation is consequently,

r =
p

x2 + y2 + z2 θ =arctan2 (y, x) φ =arcsin
⇣z

r

⌘

.

(27)

To find unit vectors for averaging, it given a Cartesian state

with position components xp = [x, y, z]0, a unit vector up is

simply

up =
xp

kxpk
. (28)

1554



When given angular components, a unit vector uθ can be found

by evaluating (26) with r = 1.

The steps to find ẑk|k−1 are consequently,

1) Compute the transformed cubature points ζz
i =

[ζz,ri ,uz
i ]

0 using (12), where the function h computes

the range as in the transformation from Cartesian to

spherical coordinates in (27), but the unit direction

vector is computed using with the position components

of the cubature point 28.

2) The mean of the range components is found the standard

way as a linear sum,

ẑrk|k−1 =

NCX

i=0

ωiζ
z,r
i . (29)

3) Average 3D unit vectors for all of the cubature points:

ū =

NCX

i=0

ωiu
z
i , (30)

ẑθk|k−1 =arctan2 (ūy, ūx) , (31)

ẑφ
k|k−1 =arcsin

✓
ūz

kūk

◆

. (32)

where ū = [ūx, ūy, ūz]
0.

4) The predicted measurement is now ẑk|k−1 =

[ẑr
k|k−1, ẑ

θ
k|k−1, ẑ

φ

k|k−1]
0.

Similarly to how the differences in Section III-A for the

polar coordinates are wrapped to the circle when computing

Pxz
k|k−1 and Pzz

k|k−1 from (5) and (6) as well as the difference

in (2), they will be wrapped to the sphere in this instance.

To wrap the differences to the sphere, note that differences

in azimuth and elevation can only vary in the range (±π).
However, if the elevations are limited to the range ±π/2, then

there will be no issues (i.e. with directional statistics) taking

differences of points at the ±π/2. Thus, it is assumed that all

points are first wrapped such that the elevation is in the range

±π/2. Though normally not an issue, Appendix B says how

to perform this type of wrapping.

Thus (2) for spherical measurements becomes

x̂k|k = x̂k|k−1 +Pxz
k|k−1

⇣

Pzz
k|k−1

⌘−1

hwrap
spher

(
zk − ẑk|k−1

)
,

(33)

where for some difference parameter ∆z = [∆r,∆θ]0,

hwrap
spher(z) =

2

6
4

r

hwrap(θ,−π, π)

φ

3

7
5 . (34)

The algorithm for finding Pxz
k|k−1 and Pzz

k|k−1 for spherical

measurements is then very similar to the algorithm for the case

with polar measurements:

1) Compute cubature points for the distribution of the pre-

dicted state in the manner normally done for cubature in-

tegration. That is, use (12) to get ζz
i = [ζz,ri , ζz,θi , ζz,φi ]0

where ζz,φi 2 (±π/2). Normally, nothing extra has to

be done to keep ζz,φi in the proper range. Also, save the

non-transformed cubature points,

ζx
i = x̂k|k−1 +P

1

2

k|k−1ζi. (35)

2) Pxz
k|k−1 and Pzz

k|k−1 are evaluated as

Pxz
k|k−1=

NC−1X

i=0

ωi

(
ζx
i − x̂k|k−1

)
hwrap

spher

(
ζz
i − ẑk|k−1,−π, π

)0
,

(36)

Pzz
k|k−1=

NC−1X

i=0

ωih
wrap
spher

(
ζz
i − ẑk|k−1

)
hwrap

spher

(
ζz
i − ẑk|k−1

)0
.

(37)

where for some difference parameter z = [r, θ, φ]0,

B. An Example

To demonstrate the necessity and limitations of the wrap-

ping algorithms four scenarios are considered, each differeing

in the initialization used. The initializations are

x
(0)
0 =

⇥
100 km 0 0 −200m/s 0 0

⇤0
, (38)

x
(1)
0 =

⇥
−100 km 0 0 200m/s 0 0

⇤0
, (39)

x
(2)
0 =

⇥
0 0 100 km 0 0 −200m/s

⇤0
, (40)

x
(3)
0 =

⇥
a 0 a b 0 b

⇤0
, (41)

where

a =

s

(100)
2

2
km b =−

r

2002

2
m/s. (42)

In all instances, the target starts at the same distance and

speed, heading toward the origin. However, with x
(0)
0 , the

target is far from the spherical poles and the ±π boundary

in azimuth; in x
(1)
0 it is near the ±π boundary in azimuth, but

far from the poles; in x
(2)
0 it is directly at the poles, and in

x
(3)
0 , it is at a 45◦ elevation and far from the ±π boundary in

azimuth.

The same dynamic model is used as in Section III-B,

generalized to three dimensions, and range and azimuth and

elevation standard deviations are respectively σr = 20m and

σθ = σφ = 0.5◦, which is the same range and azimuth

accuracy as in Section III-B.

Figure 2 shows the RMSE performance of the four filters

previously considered in the polar case, with the approximate

BLUE filter for spherical coordinates taken from [38]. For the

measurement conversion and cubature filters, the same fifth-

order cubature points were used as in [9]. As expected, all of

the filters have comparable performance in Scenario 0, which

is far from any boundaries and is not plotted, but in 2a, near the

azimuthal ±π boundary, the naive CKF performs very poorly.

On the other hand, when the trajectory starts at 90◦ elevation

in 2b, all of the filters except for the converted measurements

Kalman filter perform very poorly. For the cubature filters, this

can be explained by the fact that at exactly 90◦, the azimuth

coordinate provides no information, but the (linear) method of
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Fig. 2. RMSE performance of the four filters under consideration when tracking in spherical coordinates. In Scenarios 0 and 3, the performance of all of the
filters is similar and is not shown. In (a), the target is near the ±π boundary in azimuth. In (b), the target starts at 90◦ elevation and goes down towards the
sensor.

computing the correlation matrices in (5) does not assign zero

correlation terms due to artifacts of wrapping. In Scenario 3

(not plotted), the filters all appear to again be equivalent.

V. CONCLUSIONS

Corrections adapting CKFs to polar and spherical measure-

ments were provided, eliminating extremely bad performance

seen in certain regions with uncorrected filters. In the polar

scenario, the corrected CKFs had similar performance when

compared to an approximate BLUE estimator and were more

consistent than using a converted-measurement Kalman filter.

In the spherical scenario, the corrected CKF was found to be

more consistent that the converted measurement filter or the

BLUE at moderate elevation angles. With proper corrections

for the circular nature of the components, the CKF can handle

spherical and polar measurements arising from general ray-

traceable measurement models as in [8], making the routine

more generally applicable than the approximate BLUE esti-

mators.
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APPENDIX A

A GENERAL DISCRETIZED NEARLY-CONSTANT LINEAR

DYNAMIC MODEL

The tutorial [7] discusses continuous-time stochastic dy-

namic model. A linear time-invariant stochastic dynamic

model has the form

dxt = Axtdt+Ddvt, (43)

where xt is the continuous-time state with differential dxt (for

a differential time increment dt), dvt is the differential Wiener

noise process, and A and D are constant matrices.

For one dimensional motion with an nth order model, with

n = 1 being nearly constant velocity, n = 2, nearly constant

position, and so on, the matrices are

A =

8

><

>:

0 for n = 0 (the scalar case)
"

0n,1 In,n

0 01,n

#

for n > 0
(44)

D =

"

0n,1

1

#

q, (45)

where q is the process noise intensity. The A matrix just

integrates the moments upwards (velocity to position), and the

D matrix injects noise into the model. This implies that dvt

is scalar.

The mathematics for discretizing such a system are de-

scribed in [4, Ch. 6.2] and [31, Ch. 4.9]. If the interval between

discrete-time step k and k + 1 is T seconds, the discretized

dynamic model simplifies to

xk+1 = F(T )xk + vk, (46)

where the covariance matrix of the discrete-time noise is

Q(T ). The elements in row r and column c of the matrices

F(T ) and Q(T ) are

[F(T )]|r,c=

8

<

:

T c−r

(c− r)!
if c− r ≥ 0

0 otherwise

(47)

[Q(T )]|r,c=
T (n−r)+(n−c)+1

(n− r)!(n− c)!((n− r)+(n− c)+1)
q2. (48)

To extend the model to multiple dimensions, multiple inde-

pendent 1-dimensional dynamic models can be stacked. If the

target state is should be in n-dimensional Cartesian space con-

sisting of components x = [x1, . . . , ẋn, ẋ1, . . . , ẋn, ẍ1 . . .]0,
where a dot above the variable represents a derivative, then

Qn(T ) =Q(T )⌦ In,n Fn(T ) =F(T )⌦ In,n, (49)
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where Qn(T ) and Fn(T ) are the process noise covariance

matrix and state transition matrix for n-dimensions, In,n is

the n ⇥ n identity matrix and ⌦ is the Kronecker product

operator, which is the kron command in Matlab.
APPENDIX B

HOW TO WRAP WITH MIRRORING

Given a direction in spherical coordinates (θ, φ), where θ
is azimuth and φ is elevation, but to which offsets have been

added so that θ is no longer necessarily in the range of ±π
radians and φ is no longer in the range ±π/2 radians, the

point can be mapped back to the sphere as follows:

If mod

✓

(|φ|−π

2 )
π

, 2

◆

> 1 then

θ =hwrap(θ,−π, π) φ =arcsin(sin(φ)) (50)

otherwise

θ =hwrap(θ + π,−π, π) φ =arcsin(sin(φ)). (51)
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