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Abstract. We describe the IC3/PDR algorithms and their various gen-
eralizations. Our goal is to give a brief overview of the algorithms and
describe them using unified notation. Many crucial optimizations and
implementation details are omitted.

1 Constrained Horn Clauses

Given the sets F of function symbols, P of predicate symbols, and V of variables,
a Constrained Horn Clause (CHC) is a First Order Logic (FOL) formula of the
form:

YV (¢ Ap1[Xa] A+ A p[Xk] = h[X]), for k>0

where: ¢ is a constraint over F and V with respect to some background theory
A; X;, X C V are (possibly empty) vectors of variables; p;[X;] is an applica-
tion p(t1,...,t,) of an n-ary predicate symbol p € P for first-order terms t;
constructed from F and X;; and h[X] is either defined analogously to p; or is
P-free (i.e., no P symbols occur in h). Here, h is called the head of the clause
and ¢ A p1[X1] A ... A pgp[Xk] is called the body. A clause is called a query if
its head is P-free, and otherwise, it is called a rule. A rule with body true is
called a fact. We say a clause is linear if its body contains at most one predicate
symbol, otherwise, it is called non-linear. In this paper, we follow the Con-
straint Logic Programming (CLP) convention of representing Horn clauses as
h[X] — ¢,p1[X1], ce 7pk[Xk]~

A CHC with constraint ¢ is satisfiable if there exists an interpretation Z of
the predicate symbols P such that each constraint ¢ is true under Z. A set IT of
CHGCs is satisfiable if there exists an interpretation Z that satisfies all clauses in
1.

Satisfiability of a set IT of linear CHC is reducible to satisfiability of 3 clauses
of the form:

Init(X) — P(X) (1)
P(X) — Bad(X) (2)
P(X) A Tr(X,X') = P(X') (3)
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Input: A safety problem (Init(X), Tr(X, X'), Bad(X)).

Output: Unreachable or Reachable

Data: A cex queue @, where ¢ € @ is a pair (m, i), m is a cube over state
variables, and i € N. A level N. A trace Fo, Fi,...

Initially: Q =0, N =0, Fo = Init, Vi > 0- F; = 0.

repeat

Unreachable If there is an ¢ < N s.t. Fi41 C F; return Unreachable.

Reachable If there is an m s.t. (m,0) € @ return Reachable.

Unfold If Fy — —Bad, then set N < N + 1.

Candidate If for some m, m — Fny A Bad, then add (m, N) to Q.

Decide If (m,i + 1) € @ and there are mo and m; s.t. m1 — m, mo Am} is
satisfiable, and mo A m} — F; A Tr Am/, then add {mo, i) to Q.

Conflict For 0 < i < N: given a candidate model (m,i+ 1) € @ and clause ¢, such
that ¢ — —m, if Init — ¢, and p A F; A Tr — ¢, then add ¢ to Fj, for j < i+ 1.

Leaf If (m,i) € Q,0< i < N and F;_1 A Tr Am’ is unsatisfiable, then add (m,i + 1)
to Q.

Induction For 0 <i < N and a clause (p V) € F;, if p € Fit1, Init — ¢ and
@A F; A Tr — ¢, then add ¢ to Fj, for each j <i+ 1.

until oo;

Algorithm 1: IC3/PDR.

where X is a set of variables, X’ = {2/ | z € X}, P is a new predicate, and Init,
Tr, and Bad are constraints. We call this reduced problem Safety, and present
it as a triple (Init, Tr, Bad).

Satisfiability of a set IT of non-linear CHC is reducible to satisfiability of 3
clauses of the form:

Init(X) — P(X) (4)
P(X) — Bad(X) (5)
P(X)AP(X°) A Tr(X, X% X') = P(X') (6)

where, X° = {z° | x € X} and the rest is defined as before. We call this reduced
problem Safety as well and present it as a triple (Init, Tr, Bad). Note that the
only difference between the linear and non-linear case is that Tr depends on two
sets of state-variables: X and X°.

2 IC3 and PDR

The finite state model checking algorithm IC3 was introduced in [2] and its vari-
ant PDR in [3]. It maintains sets of clauses Fy,..., F;, ..., Fy, called a trace,
that are properties of states reachable in ¢ steps from the initial states Init.
Elements of F; are called lemmas. In the following, we assume that Fy is initial-
ized to Init. After establishing that Init — —Bad, the algorithm maintains the
following invariants (for 0 < i < N):



Invariant 1
F, — - Bad F, — Fi+1 F,NTr — Fz'/+1

That is, each F; is safe, the trace is monotone, and F;1; is inductive relative to
F;. In practice, the algorithm enforces monotonicity by maintaining F; 1 C F;.

Alg. 1 summarizes, in a simplified form, a variant of the IC3 algorithm. The
algorithm maintains a queue of counter-examples ). Each element of @ is a
tuple (m,i) where m is a monomial over v and 0 < i < N. Intuitively, (m, )
means that a state m can reach a state in Bad in N — i steps. Initially, @ is
empty, N = 0 and Fy = Init. Then, the rules are applied (possibly in a non-
deterministic order) until either Unreachable or Reachable rule is applicable.
Unfold rules extends the current trace and increases the level at which coun-
terexample is searched. Candidate picks a set of bad states. Decide extends a
counter-example from the queue by one step. Conflict blocks a counterexample
and adds a new lemma. Leaf moves the counterexample to the next level. Fi-
nally, Induction generalizes a lemma inductively. A typical schedule of the rules
is to first apply all applicable rules except for Induction and Unfold, followed
by Induction at all levels, then Unfold, and then repeating the cycle.

Queue. The queue is ordered by the level:
(m,i) <(n,j) <= i<j (7
This drives the algorithm to the shortest counterexample.

Inductive Generalization. The Conflict and Induction rules are based on the
principle of inductive generalization. Let Fy, ..., F;, ..., Fiy be a valid trace, and
let ¢ be a clause that is relatively inductive to F;:

Init = o OAF;ANTr = ¢ (8)

Let G = Gy, ...,GpN be defined as follows:

RS ©
’ ifi+l<j<N

{Fju{w} if j <i+1
G; =

Then G is a valid trace. The proof is by induction on ¢ and follows from mono-
tonicity of the trace.

Generalizing predecessors. The Decide rule picks a predecessor mg in Tr of
some (partial) state m. While it is possible to simply pick a predecessor state,
the rule attempts to find a generalized predecessor instead. The conditions of the
rule is sufficient to ensure that mg is an implicant of ¢ = (F; A3X’- (Tr Am’)).
Finding a prime implicant of 9 would have been even better, but is too expensive
in practice.



Input: A safety problem (Init(X), Tr(X, X'), Bad(X)).

Output: Unreachable or Reachable

Data: A cex queue @, where a cex ¢ € @ is a pair (m, 1), m is a conjunction of
constraints over state variables, and ¢« € N. A level N. A trace Fy, Fi, ...

Notation: F(A) = (A(X) A Tr) V Init(X').

All rules of IC3/PDR from Alg. 1, with Decide and Conflict replaced by the

following;:

Decide If (P,i+ 1) € Q and there is a model m(X, X') s.t. m = F(F;) A P, add
(P,,i) to Q, where P, = MBP(X', m, F(F;) A P').

Conflict For 0 <i < N, given a counterexample (P,i+ 1) € Q s.t. F(F;) A P’ is
unsatisfiable, add P" = ITp(F(F;)(X°, X), P) to F; for j <i+ 1.

Algorithm 2: APDR.

Propagating lemmas. The Induction rule propagates lemmas to higher level,
optionally generalizing them as possible. This makes the trace “more” inductive,
eventually leading to convergence.

Long counterexamples. The Leaf rule lifts blocked counterexamples to higher
levels. As a side-effect, it makes it possible to discover counterexamples longer
than the current exploration bound N. For example, assume that m is blocked
at level 7. This means that there is a path of length N — i from m to Bad (but
no path of length at most ¢ from Init to m). Assume that Leaf lifted m to level
j > 1, and then m was reachable from Init. Then, the discovered counterexample
is a concatenation of a path of length k from Init to m and a path of length
N — i from m to Bad. The total length of the counterexample is (N — i + k)
which is bigger than N.

3 Extending IC3/PDR to Theories

Extending IC3 to theories (such as Linear Arithmetic) requires changing Decide
and Conflict rules to the ones shown in Alg. 2 [1]. The Decide rule computes
a predecessor using an under-approximation of existential quantifier elimination
called Model Based Projection (MBP). The Conflict computes new lemmas
using Craig Interpolation (ITP). Note that Conflict no longer based on the
principle of inductive generalization. In the following, we briefly define MBP
and ITP.

Model Based Projection. Let ¢ be a formula, U C Vars(p) a subset of variables
of ¢, and P a model of . Then, ¢y = MBP(U, P, ) is a model based projection
if (a) ¢ is a monomial, (b) Vars(¢) C Vars(e) \ U, (¢) P =, (d) ¢ — 3V - .
Furthermore, for a fixed U and a fixed ¢, MBP is finite. In [5], an MBP function
is defined for LRA based on Loos-Weispfenning quantifier elimination. Note that
finiteness of MBP ensures that Decide can only be applied finitely many times
for a fixed set of lemmas Fj.



Input: A safety problem (Init(X), Tr(X, X°, X'), Bad(X)).

Output: Unreachable or Reachable

Data: A cex queue @, where a cex {co,...,cx) € Q is a tuple, each ¢; = (m, 1),
m is a cube over state variables, and ¢ € N. A level N. A trace Fy, Iy, ...

Notation: F(A, B) = Init(X") V (A(X) A B(X°) A Tr), and F(A) = F(A, A)

Initially: Q =0, N =0, Fo = Init, Vi >0-F;, =)

Require: Init — —Bad

repeat

Unreachable If there is an ¢ < N s.t. Fiy1 C F; return Unreachable.

Reachable if exists ¢ € @ s.t. for all (¢,i) € t, i = 0, return Reachable.
Unfold If Fy — —Bad, then set N < N +1 and Q « 0.

Candidate If for some m, m — Fn A Bad, then add ((m, N)) to Q.
Decide If thereis a t € Q, with c = (m,i+ 1) € ¢, m1 — m, lo Am§ Am] is

with ¢ replaced by two tuples (lo, %), and (mo, ).
Then, add ¢ = ITP(F(F;),m') to Fj, forall 0 < j <i+ 1.

Leaf If there is t € Q with ¢ = (m,i) €t,0 <i < N and F(F;_1) Am’ is
unsatisfiable, then add £ to Q, where £ is ¢ with ¢ replaced by (m, i+ 1).

then add ¢ to F}, for all j <7+ 1.

until oo;

Algorithm 3: GPDR.

Craig Interpolation. Given two formulas Alz, z] and Bly, z| such that A A B is
unsatisfiable, a Craig interpolant I[z] = ITP(A[x, 2], Bly, 2]), is a formula such
that Alz, z] — I[z] and I[z] — =By, z]. We further require that the interpolant
is a clause. An algorithm for extracting LRA clause interpolants from the theory
lemmas produced during DPLL(T) proof is given in [4].

4 Generalized PDR

GPDR algorithm [4] shown in Alg. 3 extends IC3/PDR to non-linear CHC and to
constraints over Linear Rational Arithmetic (LRA). The main difference is that
each element of the queue @ is a tuple of counterexamples. Intuitively, the tuple
corresponds to leafs of a counterexample tree. Each application of the Decide
rule expands one leaf of a counterexample. The extension to Linear Arithmetic
is via the use of interpolation in the Conflict rule. However, since Decide is
based on projection, GPDR is incomplete for LRA. That is, it might get stuck
alternating between Decide and Conflict rules, never making progress.

This version of GPDR does not cache reachability information. Hence, it
might need to expand the derivation tree completely to find a a counterexample.
Thus, it is worst case exponential even for CHC over propositional constraints.

satisfiable, and lo Am§ Amj — F; A F? A Tr Am’ then add t to Q, where t =t

Conflict If there is a t € Q with ¢ = (m,i+ 1) € ¢, s.t. F(F;) Am' is unsatisfiable.

Induction For 0 <i < N and a clause (p V) € F;,if o € Fip1, F(pAF;) = &',



Input: A safety problem (Init(X), Tr(X, X°, X'), Bad(X)).

Output: Unreachable or Reachable

Data: A cex queue @, where a cex ¢ € @ is a pair (m, i), m is a cube over state
variables, and i € N. A level N. A set of reachable states REACH. A trace
Fo, Fu,. ..

Notation: F(A, B) = Init(X’) V (A(X) A B(X°) A Tr), and F(A) = F(A, A)

Initially: Q =0, N =0, Fo = Init, Vi > 0- F; = (), REACH = Init

Require: Init — —Bad

repeat

Unreachable If there is an ¢ < N s.t. Fi41 C F; return Unreachable.

Reachable If REACH A Bad is satisfiable, return Reachable.
Unfold If Fy — —Bad, then set N < N +1 and Q <« 0.
Candidate If for some m, m — Fny A Bad, then add (m, N) to Q.

Successor If there is (m,i+ 1) € @ and a model M M [= ¢, where
¢ = F(VREACH) A m’. Then, add s to REACH, where s’ € MBP({X, X°}, ).
DecideMust If there is (m,i+ 1) € @, and a model M M = ¢, where
i = F(F;, VREACH) Am/. Then, add s to @, where s € MBP({X?°, X'}, ).
DecideMay If there is (m,i+ 1) € @ and a model M M [ 1, where
¥ = F(F;) Am'. Then, add s to @, where s° € MBP({X, X'}, ).
Conflict If there is an (m,7 + 1) € Q, s.t. F(F;) Am’ is unsatisfiable. Then, add
¢ =ITP(F(F;),m’) to Fj, for all 0 < j < i+ 1.
Leaf If (m,i) € Q, 0 < i< N and F(F;—1) Am’ is unsatisfiable, then add (m,i + 1)
to Q.
Induction For 0 <i < N and a clause (p V) € Fi,if o € Fip1, F(PAF;) — &,
then add ¢ to F}, for all j <i+ 1.

until oo;
Algorithm 4: Rule-based description of SPACER.

5 Spacer

SPACER [5], shown in Alg. 4 extends APDR to non-linear CHC. Unlike other
variants of IC3/PDR discussed so far, it maintains the set of reachable states
REACH. This set is used, among other things, to cache reachability information.

We briefly outline the key difference between Spacer and APDR. First, the

Reachable rule checks whether a Bad state became reachable. This is inefficient
for linear CHC since reachability is known before the REACH set is computed.

The single Decide rule of APDR is replaced by three rules: Successor,

DecideMust, and DecideMay. DecideMay is most similar to Decide. De-
cideMust uses reachability cache to skip over right-most predicate application.
Successor uses reachability cache to compute a new reachable state.

For linear CHC, SPACER is equivalent to APDR.
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