

AFRL-RQ-WP-TR-2016-0172

MODEL-BASED COMPOSITIONAL REASONING FOR
COMPLEX SYSTEMS OF SYSTEMS (SoS)

M. Anthony Aiello, Benjamin D. Rodes, Ashlie B. Hocking, Jonathan C. Rowanhill,
and John C. Knight
Dependable Computing LLC

Alec J.D. Bateman and Kevin Ehlmann
Barron Associates Inc.

NOVEMBER 2016
Final Report

THIS IS A SMALL BUSINESS INNOVATION RESEARCH (SBIR) PHASE II REPORT.

DISTRIBUTION STATEMENT A: Approved for public release.

Distribution is unlimited.

See additional restrictions described on inside pages

AIR FORCE RESEARCH LABORATORY
AEROSPACE SYSTEMS DIRECTORATE

WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7541
AIR FORCE MATERIEL COMMAND

UNITED STATES AIR FORCE

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for any
purpose other than Government procurement does not in any way obligate the U.S. Government.
The fact that the Government formulated or supplied the drawings, specifications, or other data
does not license the holder or any other person or corporation; or convey any rights or
permission to manufacture, use, or sell any patented invention that may relate to them.

This report was cleared for public release by the USAF 88th Air Base Wing (88 ABW) Public
Affairs Office (PAO) and is available to the general public, including foreign nationals.

Copies may be obtained from the Defense Technical Information Center (DTIC)
(http://www.dtic.mil).

AFRL-RQ-WP-TR-2016-0172 HAS BEEN REVIEWED AND IS APPROVED FOR
PUBLICATION IN ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

*//Signature// //Signature//
SEAN J. REGISFORD MATTHEW A. CLARK, Chief
Program Manager Autonomous Control Branch
Autonomous Control Branch Power and Control Division
Power and Control Division Aerospace Systems Directorate

//Signature//
BRYAN J. CANNON, Principal Scientist
Power and Control Division
Aerospace Systems Directorate

This report is published in the interest of scientific and technical information exchange and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

*Disseminated copies will show “//Signature//” stamped or typed above the signature blocks.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YY) 2. REPORT TYPE 3. DATES COVERED (From - To)
November 2016 Final 15 August 2014 – 14 October 2016

4. TITLE AND SUBTITLE

MODEL-BASED COMPOSITIONAL REASONING FOR COMPLEX SYSTEMS
OF SYSTEMS (SoS)

5a. CONTRACT NUMBER
FA8650-14-C-2528

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER
65502F

6. AUTHOR(S)

M. Anthony Aiello, Benjamin D. Rodes, Ashlie B. Hocking, Jonathan C. Rowanhill,
and John C. Knight (Dependable Computing LLC)
Alec J.D. Bateman and Kevin Ehlmann (Barron Associates Inc.)

5d. PROJECT NUMBER
3005

5e. TASK NUMBER
5f. WORK UNIT NUMBER

 Q1DC
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

REPORT NUMBERDependable Computing LLC
2120 North Pantops Drive
Charlottesville, VA 22911

Barron Associates Inc.
1410 Sachem Place, Suite 202
Charlottesville, VA 22901

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
Air Force Research Laboratory
Aerospace Systems Directorate
Wright-Patterson Air Force Base, OH 45433-7541
Air Force Materiel Command
United States Air Force

AGENCY ACRONYM(S)
AFRL/RQQA

11. SPONSORING/MONITORING
AGENCY REPORT NUMBER(S)

 AFRL-RQ-WP-TR-2016-0172

12. DISTRIBUTION/AVAILABILITY STATEMENT
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

13. SUPPLEMENTARY NOTES
This is a Small Business Innovation Research (SBIR) Phase II report. The contractor has waived its SBIR data rights
protections.
PA Case Number: 88ABW-2017-0371; Clearance Date: 31 Jan 2017.

14. ABSTRACT
This report was developed under a SBIR contract. A system interface abstraction technology, a novel theory and
framework that enables system of systems analysis, was developed in this effort. SoS analysis is a major challenge area
due to the complexity of behavioral interactions possible in an SoS. Testing of these systems cannot provide adequate
coverage or assurance of correct behavior. Compositional analysis, which reasons about system behaviors from
component abstractions, offers a compelling alternative, but requires that: 1) components provide the guarantees claimed
under stated assumptions and 2) assumptions stated are comprehensive. System interface abstraction technology
provides necessary support through: 1) formal analysis and argument-based reasoning of component context,
assumptions, and guarantees and 2) formal analysis and argument-based reasoning of compositional properties based on
components. System interface abstraction technology is comprised of four key elements: 1) a novel theory of SoS
engineering; 2) a novel assurance-case technology for argument composition; 3) a novel theory of enhanced formal
contracts; and 4) a novel compositional analysis framework. The technology is demonstrated by application to examples:
1) a novel, argument-based response to a hypothetical request for proposals for a simple system of systems and 2) a
hypothetical small unmanned aerial system (UAS).

15. SUBJECT TERMS SBIR Report, formal methods, assurance cases, compositional reasoning, compositional argumentation,
compositional certification, verification, validation, certification
16. SECURITY CLASSIFICATION OF: 17. LIMITATION

OF ABSTRACT:
SAR

18. NUMBER
OF PAGES

 210

19a. NAME OF RESPONSIBLE PERSON (Monitor)
a. REPORT
Unclassified

b. ABSTRACT
Unclassified

c. THIS PAGE
Unclassified

Sean J. Regisford
19b. TELEPHONE NUMBER (Include Area Code)

(937) 713-7021
Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39-18

Dependable Computing LLC
2120 North Pantops Drive, Charlottesville, VA 22911-8648

Phone: 434-563-3183
Web: www.dependablecomputing.com

January 23, 2017

Dr. Sean J. Regisford
AFRL/RQQA
2210 Eighth Street
Bldg 146, Room 300
Wright-Patterson AFB, OH 45433

Subject: Contract Number FA8650-14-C-2528, Phase II SBIR

Dear Dr. Regisford

Dependable Computing hereby waives its SBIR Data Rights to all contents of the final report for
subject contract. The Government is granted an unlimited nonexclusive license to use, modify,
reproduce, release, perform, and display or disclose this report and the data contained herein.

We affirm that we are aware that the report may be released to other contractors to the
Government and approve potential release to other contractors.

Sincerely,

John C. Knight

President

i
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

Table of Contents
Section Page
List of Figures .. iii
List of Tables ... vi
1 Summary ..1
2 Introduction ..2

2.1 Problem Description...2
2.1.1 System of Systems Complexity ..2
2.1.2 Limitations in Testing, Formal Methods and System Modeling2

2.2 Solution Approach ...3
3 Methods, Assumptions and Procedures ..5

3.1 System Interface Abstraction Technology ...5
3.1.1 Motivating Example ...6
3.1.2 Reference Model ..10
3.1.3 Reference Process ..14
3.1.4 Reference Mechanics ...20

3.2 Arguing Successful Development ..27
3.2.1 Practical Argument Patterns: Pattern Flexibility ..28
3.2.2 High-Level Argument Structure: The Success Argument ...28
3.2.3 Problem, Context, and Solution Definition ..34
3.2.4 Solution Assessment ..37

3.3 Practical Argument Modularity..46
3.3.1 Integration Concepts ..48
3.3.2 Architecture ..51
3.3.3 Mechanics Overview ..60
3.3.4 Integration Scope: Perspective of Component Selection ...61
3.3.5 Integration Failure ..62
3.3.6 Integration for Change: Impact Assessment and Reversion62
3.3.7 Justifying Demand Satisfaction ..63
3.3.8 Justifying Contextual Compatibility ..68
3.3.9 Justifying Sibling Compatibility ..78
3.3.10 Justifying System-wide Compatibility ...82
3.3.11 Argument Assessment ..82

3.4 Compositional Analysis Framework for Systems of Systems ...84
3.4.1 Primitive Real-World Types ..85
3.4.2 Real-World Type Manipulation ...91
3.4.3 Correspondence Analysis with Retrenchment ...94
3.4.4 Contract Analysis ...100

4 Results and Discussion ...102
4.1 Cooling Tanks Example Problem ..102

4.1.1 Experiment Overview ..102
4.1.2 Executive Summary ...103
4.1.3 Response Prototype Conclusions ...105

4.2 Ultra Stick UAS Example Problem ...106
4.2.1 Scope ..107
4.2.2 Design Philosophy ..108

ii
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

4.2.3 Process ..111
4.2.4 Discussion ..120
4.2.5 Artifacts ..121
4.2.6 Conclusion ..135

4.3 Examples of Argument Recovery ..136
4.3.1 Motivation ..136
4.3.2 Domain Arguments ..137
4.3.3 Overview of Technique ..137
4.3.4 Analysis ..139
4.3.5 Conclusions ..146

5 Conclusions ..148
6 References ..150
List of Acronyms ...154
Appendix A Assurance-Case Technology ..155

A.1 Background ...155
A.1.1 Elements of an Assurance Case ...155
A.1.2 The Goal Structuring Notation ..156
A.1.3 Confidence ...160
A.1.4 Understanding Argument ..160

Appendix B Cooling Tank(s) Challenge Problem ..162
B.1 CONOPS ...162

Appendix C Ultra Stick ..164
C.1 Introduction ...164
C.2 Mission Scenario ...164
C.3 Overview of Demonstration Environment ..165
C.4 Air Vehicle ..166
C.5 Inner-loop Control ...167

C.5.1 Pitch Tracker ..167
C.5.2 Roll Tracker ...170
C.5.3 Yaw Damper ..171

C.6 Outer-loop Control ..172
C.6.1 Velocity Tracker ..172
C.6.2 Altitude Tracker ...174
C.6.3 Heading Tracker ..176

C.7 Path Planner/Guidance ..178
C.7.1 Guidance ..180

C.8 Pixhawk Autopilot Sensor Package ...181
C.9 Filtering/State Estimator ..182

C.9.1 Principles of a Kalman Filter ...183
C.9.2 Implementation of Kalman Filter ..184
C.9.3 Multi-Model Kalman Filter ...191
C.9.4 Unscented Kalman Filter ...193

C.10 Requirements/System Performance Analysis..195
C.10.1 Control System Input Requirements ..195
C.10.2 UKF Evaluation with Nominal Sensor Characteristics ...197
C.10.3 Closed-loop System Performance ...198

C.11 Conclusions ...200

iii
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

List of Figures

Figure Page
Figure 1: System of Systems Enabling Technology .. 4
Figure 2: System Interface Abstraction Technology Overview .. 6
Figure 3: High-Level Reference Process ... 15
Figure 5: Recursive Component Development and Integration .. 19
Figure 6: The Basic Problem Frame .. 21
Figure 7: The Toulmin Model.. 22
Figure 8: Bidirectional Interface Support .. 24
Figure 9: High-Level CLASS Infrastructure ... 26
Figure 10: Success Argument Pattern .. 29
Figure 11: Successful Problem Definition ... 30
Figure 12: Successful Context Definition .. 31
Figure 13: Successful Solution Definition ... 32
Figure 14: Successful Solution Assessment .. 33
Figure 15: General Entity Identification Pattern .. 35
Figure 16: Requirements Satisfaction Overview ... 38
Figure 17: Requirements Satisfaction Pattern .. 39
Figure 18: Safety Assessment Pattern: Top-Level Structure ... 41
Figure 19: Safety Assessment Pattern: Hazard ID and Mitigation .. 42
Figure 20: Lower Tier Hazard Identification Delegation .. 43
Figure 21: Hazard Mitigation Pattern .. 44
Figure 22: Regulatory Compliance Pattern.. 45
Figure 23: Argument Design Tracking .. 47
Figure 24: Argument Module Composition ... 49
Figure 25: Context/Assumption Propagation... 50
Figure 26: Encapsulated Success Argument .. 52
Figure 27: Design Authority — Example .. 53
Figure 28: Contract Module Reference .. 54
Figure 29: Component Contract View ... 55
Figure 30: Organizing Contextual Compatibility .. 56
Figure 31: Sibling Contract View .. 57
Figure 32: Sibling Compatibility/NonInterference .. 58
Figure 33: System Dependency View .. 59
Figure 34: Component Module Integration Process .. 61
Figure 35: Justifying Demand Satisfaction Sub-Process ... 64
Figure 36: Component Contract Argument Pattern ... 66
Figure 37: Assumption Propagation .. 67
Figure 38: Context Compatibility Justification Subprocess .. 70
Figure 39: Instantiating and Comparing Context Models.. 73
Figure 40: Component Contract Confidence Argument Pattern .. 75
Figure 41: Composition Schemes .. 77
Figure 42: Sibling Assurance Goals .. 80
Figure 43: Sibling Assurance Constraint Balancing .. 81
Figure 44: An Example Argument using Correspondence .. 97

iv
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

Figure 45: Possible Design Authority View for a UAS ... 109
Figure 46: Another Design Authority View for a UAS ... 110
Figure 47: FCS-Measurement Subsystem Contract Failure .. 118
Figure 48: Ultra Stick UAS — Successful Development .. 122
Figure 49: Ultra Stick UAS — Requirements Satisfaction ... 124
Figure 50: Ultra Stick UAS — Air Vehicle Contract .. 125
Figure 51: Air Vehicle — Successful Development .. 126
Figure 52: Air Vehicle — Requirements Satisfaction ... 127
Figure 53: Air Vehicle — FCS Contract ... 128
Figure 54: FCS — Successful Development ... 130
Figure 55: FCS — Requirements Satisfaction ... 131
Figure 56: FCS — Measurement Subsystem Contract .. 132
Figure 57: Measurement Subsystem — Successful Development .. 133
Figure 58: Measurement Subsystem — Requirements Satisfaction .. 134
Figure 59: Argument Retrieval and Recovery Processes .. 138
Figure 60: JSSG_2009 Rationale in GSN Form .. 141
Figure 61: Argument Markup Example — Qualification Tests .. 142
Figure 62: GSN for Qualification Tests ... 143
Figure 63: Argument Markup Example — Fuel Transfer Rates ... 144
Figure 64: GSN for Fuel Transfer Rates .. 145
Figure A-1: Major Elements of an Assurance Case ... 156
Figure A-2: GSN Elements .. 157
Figure A-3: GSN Element Relationships ... 158
Figure A-4: Example Argument in GSN ... 159
Figure A-5: Custom Assurance Claim Point Notation .. 160
Figure B-1: CONOPS High-Level Cooling Tank System ... 162
Figure C-1: Example Mission Ground Track .. 165
Figure C-2: High-level View of Demonstration Environment .. 166
Figure C-3: NASA Flight Vehicle (Image Reproduced from [53]) ... 166
Figure C-4: Inner Loop .. 167
Figure C-5: Pitch Tracker .. 168
Figure C-6: Theta Response... 169
Figure C-7: Roll Tracker .. 170
Figure C-8: Cross Track Correction Example ... 171
Figure C-9: Yaw Damper... 172
Figure C-10: Velocity Tracker ... 173
Figure C-11: Velocity Response .. 174
Figure C-12: Altitude Tracker ... 175
Figure C-13: Altitude Response... 176
Figure C-14: Yaw Tracker ... 177
Figure C-15: Cross Track correction example ... 180
Figure C-16: Kalman Filter .. 187
Figure C-17: Kalman Filter: Predict .. 188
Figure C-18: Kalman Filter: Update .. 188
Figure C-19: Kalman Filter: Compute Kalman Gain .. 189
Figure C-20: Kalman Filter: State Update ... 189
Figure C-21: Kalman Filter: Error Covariance Update ... 190

v
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

Figure C-22: Cross Track Correction Example ... 191
Figure C-23: Kalman Filter Pitch Angle Response — One Linear Model 192
Figure C-24: Kalman Filter Pitch Angle Response — Two Linear Models 193
Figure C-25: SUAS State Estimation Overview .. 194

vi
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

List of Tables

Table Page
1 Measurement Subsystem Requirements — Individual Signal Limits 113
2 Measurement Subsystem Requirements .. 114
3 Pixhawk Sensor Characteristics ... 116
4 Estimator Output with Nominal Sensors ... 117
5 Estimator Output with Scaled GPS Noise — Noise .. 119
6 Estimator Output with Scaled GPS Noise — Bias .. 119
C-1 Inputs of the Pitch Tracker ... 169
C-2 Outputs of the Pitch Tracker .. 169
C-3 Control Parameters for Pitch Tracker .. 169
C-4 Inputs of the Roll Tracker .. 170
C-5 Outputs of the Roll Tracker ... 170
C-6 Control Parameters for Roll Tracker.. 171
C-7 Inputs of the Yaw Damper ... 172
C-8 Outputs of the Yaw Damper .. 172
C-9 Inputs to the Velocity Tracker ... 174
C-10 Outputs of the Velocity Tracker .. 174
C-11 Control Parameters for Velocity Tracker ... 174
C-12 Inputs of the Altitude Tracker .. 176
C-13 Outputs of the Altitude Tracker ... 176
C-14 Control Parameters for Altitude Tracker ... 176
C-15 Inputs of the Heading Tracker ... 178
C-16 Outputs of the Heading Tracker ... 178
C-17 Control Parameters for Heading Tracker ... 178
C-18 Inputs to Dubin’s Car Path Planner ... 179
C-19 Outputs of Dubin’s Car Path Planner... 179
C-20 Reference Commands for Waypoint Tracking .. 180
C-21 Sensor Outputs Relevant to Waypoint Tracking ... 181
C-22 Controller Outputs Relevant to Waypoint Tracking .. 181
C-23 Sensor Characteristics .. 182
C-24 Kalman Filter States ... 184
C-25 Sensor Observations... 185
C-26 Error Limits for Individual Controller Inputs .. 196
C-27 Likelihood of Mission Success with Varying Bias and Noise on All Controller Inputs ... 197
C-28 Nominal Sensor Error Characteristics for Simulation ... 197
C-29 Estimator Results for Nominal Sensors ... 198
C-30 Nominal Sensor Noise, 50% Sensor Bias .. 198
C-31 Nominal Sensors, 50% Sensor Bias ... 199
C-32 Improved Pitch and Yaw Estimates with 50% Sensor Bias .. 199
C-33 Improved Pitch and Yaw Estimates with 50% Sensor Bias .. 199
C-34 75% of Nominal Sensor Noise, 50% of Nominal Sensor Bias .. 200
C-35 75% of Nominal Sensor Noise, 50% of Nominal Sensor Bias .. 200

1
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

1 SUMMARY
Systems of systems (SoS) — systems for which the supporting components are regarded as
individual systems — exhibit significant complexity. This complexity, which arises from the
richness of behavioral interactions and from the inherent complexity of the components, poses a
significant challenge to traditional verification, validation and certification approaches.

Traditionally, verification and validation of systems of systems has been attempted through
testing. Unfortunately, testing cannot provide complete coverage, even at the unit level. The
complexity of behavioral interactions that arise in a system of systems makes them essentially
untestable.

Formal methods, which use mathematical proofs to establish critical properties, have been
successfully applied at the unit level. At the system level, however, these techniques often suffer
from a state-space explosion problem similar to that of testing.

Compositional reasoning addresses these limitation by enabling reasoning about system of
systems behaviors at the architectural level using abstractions of component behaviors.
Compositional reasoning depends on two critical assumptions:

1. the components provide the guarantees they claim, under the assumptions they state; and
2. the assumptions stated are comprehensive of all of the required context under which the

guarantees are provided.

Stated assumptions are often insufficiently complete to support compositional analysis.
Additional support is required to strengthen compositional reasoning. Specifically, support is
needed to:

1. enable more complete reasoning about components by more fully identifying the context
under which guarantees can be established; and

2. enable more complete compositional reasoning by accounting for the complete context.

This Phase II effort builds upon our successful Phase I effort to develop system interface
abstraction technology: a novel theory and a framework that:

1. supports formal analysis and argument-based reasoning of component context, assumptions
and guarantees; and

2. supports formal analysis and argument-based reasoning of compositional properties based on
components.

System interface abstraction technology has four critical components:

1. a novel theory of system-of-systems engineering including a reference model, a reference
development process, and reference mechanics;

2. novel assurance-case technology for systems of systems supporting argument composition;
3. a novel theory of enhanced formal contracts for systems of systems; and
4. a novel compositional analysis framework for systems of systems.

The technology is demonstrated by application to two examples:

1. an application to a hypothetical small unmanned aicract system (UAS) based on the Ultra
Stick platform; and

2. a novel, argument-based response to hypothetical request for proposals for development of a
hypothetical system based on the cooling-tanks problem.

2
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

2 INTRODUCTION

2.1 Problem Description
As processing power continues to increase, the amount of software deployed for modern systems
increases. Whereas space, weight and power considerations limit the scope and complexity of
features realized in hardware for new systems, the space, weight and power requirements of
software change relatively little based on software size and complexity. As such, software of
virtually any size and complexity can be included on virtually any system.

While the scope and complexity of software — including safety-critical software — has
increased substantially, there has not been a concomitant increase in the efficacy and capability
of tools and methods for the verification and validation of this software. This lack is particularly
striking for safety-critical software applications for modern aerospace systems, especially as
these systems incorporate more and more significant autonomy. Moreover, the composition of
these systems into systems of systems presents further challenges, as behaviors emerge from the
unexpected ways in which autonomous systems interact to produce new and unanticipated failure
modes.

2.1.1 System of Systems Complexity
A system of systems is a system for which its supporting components are regarded as individual
systems that may operate and be managed independently from each other [1] [2]. Each
component system may be similarly composed of subcomponents that can be further decomposed
recursively, forming a hierarchical decomposition.

The focus of this effort is on systems of systems for which there is a centralized managing
authority that has coercive power on component systems, and regulates, manages and certifies the
system of systems. The two applicable categories of systems of systems are therefore those in
which either (1) component systems are developed specifically for use in a given system of
systems (a directed system of systems) or (2) component systems retain independent ownership,
objectives, funding and development, etc. (an acknowledged system of systems) [1].

The behavioral complexity of systems of systems, coupled with the variability and dynamic
nature of system-of-systems components, increases the difficultly and costs for the managing
authority. The behavioral complexity of systems of systems arises from the complex behaviors of
the component systems. Frequently, component behaviors are the result of complex software that
operates in the context of the component-system hardware and the component-system
environment. The system-of-systems problem is thus heavily dependent on understanding how
physical and software-defined behaviors will compose within the novel environment of the
system of systems.

2.1.2 Limitations in Testing, Formal Methods and System Modeling
Testing, commonly used to provide assurance for cyber-physical systems, cannot provide
complete coverage — even at the unit level [3]. This lack of coverage is even more pronounced
in system integration and system of systems integration. The state-space explosion inherent to the
composition of complex systems into systems of systems is essentially untestable, leading to
concerns of apparent nondeterminism, emergence, and interoperability.

The application of formal methods to software systems has enabled many of the limitations
inherent to software testing to be redressed. Rather than sampling the input space of a piece of

3
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

software to provide some assurance of correct operation, formal methods allow formal proofs of
correctness over all inputs, providing complete assurance of correct operation under the
assumptions of the formal analysis.

Formal methods have been most successfully applied at the unit level, where software function is
relatively constrained, inputs are clearly identified, and desired outputs are well understood. This
success, combined with the success of standards like DO–178B/C, has led some researchers to
conclude that, in essence, the problem has been solved at the unit level [4] [5]. While these
claims are incomplete and optimistic — and largely inapplicable outside the domain of
commercial avionics software — they do correctly point to the more pressing issues:
requirements engineering and system specification, architecture design and modeling, especially
with respect to the composition of systems within a system of systems.

In an effort to cope with the complexity of modern systems and systems of systems, systems
engineers have developed and adopted system and architectural modeling languages. These
languages provide a more rigorous framework for developing and presenting requirements, use
cases, behaviors, and architectures. Some of the developed modeling languages even provide
formal semantics, upon which certain analytic capabilities have been developed.

System and architectural modeling languages facilitate decomposition of complex systems and
systems of systems into simpler components, by providing explicit representations of the
modularity employed. Using these languages, component interfaces are clearly described and
component contracts are illustrated through the connections between components. Tools such as
AGREE [6] enable partial analysis of these contracts using assume-guarantee reasoning.

Compositional reasoning of this form depends on two critical assumptions:

1. the components provide the guarantees they claim, under the assumptions they state; and
2. the assumptions stated are comprehensive of all of the required context under which the

guarantees are provided.

Commonly, explicitly stated assumptions are not comprehensive, but include many additional,
implicit assumptions about the system context — especially the environment in which the system
will operate. Dependence on these implicit assumptions threatens the validity of any analysis that
does not explicitly include them, reducing justifiable assurance in correct operation of the
component and thus in the correctness of the composition.

Additional support is, therefore, required to strengthen compositional reasoning. Specifically,
support is needed to:

1. enable more complete reasoning about components by more fully identifying the context
under which guarantees can be established; and

2. enable more complete compositional reasoning by accounting for the complete context.

2.2 Solution Approach
In this Phase II effort, we built upon our successful Phase I effort, furthering the development of
the system-interface abstraction technology (SIAT). System-interface abstraction technology
provides a theory and a framework that:

1. supports formal analysis and argument-based reasoning of component context, assumptions
and guarantees; and

4
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

2. supports formal analysis and argument-based reasoning of compositional properties based on
components.

System-interface abstraction technology is a system-of-systems enabling technology that
provides a comprehensive infrastructure to support compositional reasoning and assessment of
complex systems of systems.

The system-of-systems enabling technology rests on four pillars (Figure 1):

1. a novel theory of system-of-systems engineering including a reference model, a reference
development process, and reference mechanics;

2. novel assurance-case technology for systems of systems supporting argument composition;
3. a novel theory of enhanced formal contracts for systems of systems; and
4. a novel compositional analysis framework for systems of systems.

Underlying the pillars are two demonstrations:

1. an application to a hypothetical small UAS based on the Ultra Stick platform; and
2. a novel, argument-based response to hypothetical request for proposals for development of a

hypothetical system based on the cooling-tanks problem.

Figure 1: System of Systems Enabling Technology

5
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

3 METHODS, ASSUMPTIONS AND PROCEDURES
This section presents the development of system-interface abstraction technology, a system-of-
systems enabling technology that provides a comprehensive infrastructure to support
compositional reasoning and assessment of complex systems of systems. System-interface
abstraction technology is comprised of a reference model, reference processes, and reference
mechanics.

3.1 System Interface Abstraction Technology
Certification of complex systems and systems of systems is a significant challenge. Their scope
and complexity makes reasoning about critical properties challenging and makes assessing the
system for regulatory acceptance challenging. The only viable approach to such systems is to
reason about them and certify them compositionally.

Compositional reasoning for complex systems and systems of systems requires two critical steps:

1. Showing that the demands of the architecture on its components satisfy system requirements;
and

2. Showing that selected components satisfy the demands of the architecture.

These two reasoning steps provide compositional assurance that the system successfully satisfies
its design goals.

Compositional certification for complex systems and systems of systems similarly requires two
critical steps:

1. Arguing successful development by showing that architectural demands satisfy success goals;
and

2. Arguing the compatibility of selected components with architectural demands and the
compatibility of component context with system context.

These two argument steps, which naturally align with the reasoning steps, provide compositional
certification.

These four steps require careful attention to several critical artifacts of systems engineering:

• requirements,
• context,
• architecture (or specification), and
• interfaces.

System interface abstraction technology provides support for compositional reasoning for
certification of complex systems and systems of systems. The technology is composed of three
parts:

1. The SIAT reference model: describes the essential systems-engineering artifacts that are
associated with successful development and the general relationships between these artifacts.

2. The SIAT reference development process: describes general engineering activities that are
undertaken to produce the reference model artifacts.

3. The SIAT reference mechanics: describes example instantiations of the engineering artifacts
and development activities.

6
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

The rationale of this division is to separate the SIAT theory from SIAT application. Generally, a
reference model is a framework codifying goals/concepts and their interrelationships. A reference
model does not specify a particular instantiation of these concepts but instead provides general
organization and structure.

The reference development process provides more detail about how reference model concepts are
used in a development effort; however, the process is still generally described to minimize
coupling with specific engineering paradigms or tools.

The reference mechanics add further detail to the reference development process, describing
specific development tools and techniques. Some of the mechanics are based on technologies
developed as part of this Phase II effort, specifically, mechanics are based on an assurance case
technology, theory of component contracts, and composition analysis tools, as shown in Figure 2.

Figure 2: System Interface Abstraction Technology Overview

The fundamental goal of the three components of SIAT is to provide system developers with a
practical framework for establishing justifiable assurance that the development effort is
successful.
To aid the presentation of the technology, we start by considering a motivating example.

3.1.1 Motivating Example
System-interface abstraction technology provides the developer with clear identification of
requirements, context, architectural demands, and interfaces. These are essential artifacts that
support compositional reasoning and compositional certification of complex systems and systems
of systems.

7
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

To illustrate system interface abstraction technology, we present and discuss a motivating
example of a simple pitch-attitude monitoring capability for an unmanned aircraft.

3.1.1.1 Understanding the Problem
The customer has been flying a remotely piloted aircraft for a while and is concerned because
sometimes the pitch attitude becomes excessive without warning. The customer might say to the
developer, simply, “my pitch attitude becomes excessive without my realizing it,” but, more
likely, the customer will have already decided that he or she would like to have a monitoring
system. The customer might therefore state his or her need like this:

A system is needed to provide pitch-attitude monitoring for a small, remotely piloted aircraft. The
system should continuously monitor pitch attitude and alert the pilot when pitch attitude exceeds
± 45°.

We call this need a problem, and cast the development effort in terms of solving the customer’s
problem. A successful development effort solves the customer’s problem completely — or
sufficiently completely that the customer will be satisfied. Integral to solving the customer’s
problem are business-related concerns — such as managing the effort so as to complete the
solution on budget and on time — and regulatory concerns — such as adhering to any regulations
that might inhibit the customer’s use of the solution.

Often contrary to initial statements, which focus entirely on functionality, assurance is integral to
the problem. The first step in solving a problem is therefore understanding the problem as
completely as possible. This means that the statement of functionality must be refined, the overall
system context must be defined, and assurance must be defined. The developer, upon receiving
the problem statement, might ask questions like:

• Is there additional functionality desired that has not been expressed?

Or:

• Is the aircraft fitted with a pitch sensor?
• Does the aircraft system have an alerting capability?
• Does the aircraft have a computer system that can be used to conducting monitoring and

activate the alert?

Or:

• What level of assurance is required?
• Does the assurance arise as a result of regulations?

Upon receiving answers to these questions, the refined problem statement might be written:

A system is needed to provide pitch-attitude monitoring for a small, remotely piloted aircraft. The
system should continuously monitor pitch attitude and alert the pilot when pitch attitude exceeds
± 45°. The system is comprised of a pitch sensor, a computer, and an alarm. The pitch sensor
provides input to the computer through memory-mapped input/output (I/O). The alarm is
activated by the computer through memory-mapped I/O. The system must provide at least five
nines of availability (99.999% availability).

8
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

3.1.1.2 Defining the Solution
The problem statement is equivalent to a set of very high-level requirements: it captures the
essence of what the customer wants. But requirements are best thought of as being about the
solution, describing what functionality/behavior the system must provide, in terms of changes to
the environment, to solve the problem. We therefore separate the problem statements from the
requirements. Additionally, there is typically more than one set of requirements for a given
problem statement, just as there is more than one possible implementation that satisfy a given set
of requirements.

The second step in solving a problem is identification of the context in which the problem exists
and the solution must operate. This identification actually takes place concurrently with
understanding the problem, extends into the identification of solution requirements and continues
through design and implementation. The context consists of the physical environment and
potentially other factors, such as regulatory constraints.

The third step in solving a problem is to work with the customer to identify the requirements that
will constrain the solution to the problem. This task is among the most difficult in system and
software engineering, as it is fundamentally informal and fraught with opportunities for
misunderstanding and miscommunication. This task is also among the most important in system
and software engineering, as errors introduced in requirements are exponentially more expensive
to fix than errors introduced later in the development cycle. Working from a clear understanding
of the problem helps to ensure that requirements are accurately and completely identified, but
does not guarantee it.

The requirements for the pitch-attitude monitoring system might include the following:

The system shall raise the alarm when pitch attitude is greater than 45° or less than –45°.

The concurrency of solution requirements and solution context identification is essential because
the requirements are phrased in terms of context. This is clear from the example above:

• raise the alarm refers to the alarm — a part of the identified context, as stipulated in the
refined problem statement

• pitch attitude refers to a state of the aircraft — a part of the environment from the point of
view of the monitoring system, because it is beyond the system boundary

• the thresholds also refer to the state of the aircraft

Requirements describe how the environment should change to solve the problem. Additionally,
elements of the solution context may contribute requirements that are not explicit in the problem
statement. The regulatory environment, in particular, is a frequent source of additional
requirements.

3.1.1.3 Developing the Solution
The fourth step in solving a problem is, broadly speaking, building the solution. This step
includes specification, design and implementation.

The specification is a high-level description of how the system will satisfy its requirements.
Ideally, the specification should be sufficiently abstract to support multiple paths of
implementation. In this respect the specification can be thought of as “what” the system must do
to satisfy its requirements, and further design specifies “how” the specification is satisfied. The

9
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

distinction between “how” and “what” is often unclear and dependent on point of view [4]. The
specification for the pitch-attitude monitoring system might include the following:

The system shall issue the alarm command to the transmitter when the pitch input provided by
the pitch sensor is greater than 45° or less than 45°.

3.1.1.4 Identifying Solution and Problem Discrepancies
Careful examination of the example from the specification and the example from the
requirements reveals a problem. The requirements are stated in terms of the environment, but the
specification is stated in terms of the system. There is an implicit assumption encoded in the
specification that “the pitch input provided by the pitch sensor” is the same as the “pitch attitude”
described in the requirements.

This assumption is fundamentally flawed. While it is desirable for the pitch input from the sensor
to be the same as pitch attitude, they are in reality distinct phenomena. The input received from a
properly designed, properly installed, and properly functioning sensor should closely correspond
to the phenomenon it observes, but it cannot be relied upon to perfectly represent that
phenomenon at all times. Instead, the input from the sensor approximates the phenomenon, but is
subject to latency, inaccuracy, imprecision, range limits, etc.

Without identifying the flaw in this assumption, the validation effort might conclude that the
specification satisfies the requirements simply because it includes the same thresholds. The result
would be a system that, once fielded, sometimes satisfies the requirements but sometimes does
not. If the customer considers ±45° pitch to be a hard limit, the system will not satisfy the
customer and development will be unsuccessful.

3.1.1.5 Validating the Solution
Validating that the specification satisfies the requirements therefore requires identifying the
correspondence between elements of the specification and elements of the environment. In this
example, the pitch input from the pitch sensor corresponds to the pitch attitude of the aircraft.
The identification of the correspondence includes identifying what is lost in the approximation of
the pitch attitude by the pitch sensor, to include accuracy, precision and latency.

If the pitch sensor promises ±1° accuracy, then the system may not warn the pilot until the pitch
attitude has exceeded ±46°. If the pitch sensor furthermore promises ±2° precision, the warning
may not take place until the pitch attitude has exceeded ±48°. Moreover, if the pitch sensor
promises 0.5 seconds latency, the response may be delayed even further. Exactly when the
warning will be issued will depend on the dynamics of the aircraft and how quickly pitch attitude
can change in 0.5 seconds.

Having identified the approximation of pitch attitude by the pitch sensor in the correspondence, it
is now clear that validation cannot succeed. In identifying the requirements, we have unwittingly
stipulated a requirement that cannot possibly be satisfied. We cannot show that the specification
will satisfy the requirement because, most of the time, it will not.

There are two solutions to this problem:

1. We modify the requirement so that it is satisfiable;
2. We change our understanding of validation to include the necessary approximation made by

the sensor.

10
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

The first approach is much better than the second approach. While the second approach has the
advantage of being simpler and more expedient, it prevents the issue from being clearly
documented and explained. If instead we modify the requirement, we will clearly document the
problem of approximation of pitch attitude by the sensor. Doing this will force us to consider
other requirements related to pitch attitude — we are thus likely to identify and correct all of the
related requirements issues at once. A risk in modifying the requirement, however, is that the new
requirement is overly tailored to the details of the solution. We must be careful to express the
revised requirement so that the new requirement admits the necessity of approximation but does
not depend upon or assume a specific approximation.

3.1.1.6 Refining the Problem and Solution
There are a number of ways in which the revised requirement might be stated. The exact phrasing
will depend upon the needs of the customer — in particular, how precise the customer requires
the pitch-attitude monitoring to be. Simple, straightforward phrasing of the requirement is no
longer possible: acknowledgement of the approximation requires consideration of false positive
as well as false negatives for the alarm — even when all parts of the system are operating
correctly.

While we might be tempted to say that the rate of false positives and false negatives is a design
detail, the discussion above shows that it is not. The customer may not be used to thinking of
these kinds of details, but they are fundamentally part of the requirements that define the
solution.

In this example, the customer may not be overly concerned with precision, and may accept
requirements that say:

The system shall raise the alarm when pitch attitude is greater than 45° or less than –45°. The
system shall not raise the alarm when pitch attitude is less than 40° or greater than –40°.

These requirements state the limit of acceptability for false positives and false negatives without
resorting to probabilities — probabilities that, mostly likely, the customer does not know.
Between these stated limits, the behavior of the system is not constrained. The alarm may be
raised or not and the requirements will still be satisfied.

With a sufficiently accurate and precise sensor, with sufficiently low latency given the dynamics
of the aircraft, we can ensure that an alarm is never raised when it should not be and is always
raised when it should be — provided that the system is working correctly.

3.1.1.7 Summary and Conclusions
The steps described above correspond to typical systems engineering activities. The artifacts and
processes described map to those identified by system interface abstraction technology. With this
example in mind, we present the system interface abstraction technology rigorously, in the
following sections.

3.1.2 Reference Model
The prior motivating example speaks to the underlying difficulties in development as largely an
issue of understanding the problem and its environment, and assessing the solution with respect
to the identified problem and environment. The SIAT reference model is largely based upon

11
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

these observations and upon prior related work on problem-oriented development
approaches [7] [8] [9].

Generally, a problem oriented reference model consists of four abstract components:

1. the Problem;
2. the Environment;
3. the Solution; and
4. the Argument.

The Argument tells us that the Solution in its intended Environment solves the Problem.

The SIAT reference model extends the basic problem-oriented concepts to include the following
artifacts:

1. the Problem;
2. the Requirements;
3. the Context;
4. the Correspondence;
5. the Specification;
6. the Implementation; and
7. the Argument.

The extensions of the SIAT reference model are as follows:

• Separation of the requirements from the problem: Traditionally, requirements define a
problem to solve; however, elicited requirements might not define the right problem. Often
development begins with an abstract problem description that is further refined into
requirements. The SIAT model separates the abstract problem from the requirements to better
align with how systems are developed and to explicitly address the risks associated with
abstract problem identification and requirements elicitation separately.

• Replacement of the environment with context: SIAT defines a more general notion of
context that subsumes the physical environment, providing additional and important
information for development beyond what is defined in terms of physical phenomena.
Regulation, for example, is part of a system’s context but not necessarily its physical
environment.

• Addition of correspondence: Correspondence is an explicit relationship between phenomena
of the real-world and phenomena specific to the solution. Correspondence is helpful in
justifying that an implemented solution actually solves the problem by showing how
phenomena are related.

• Refinement of the solution into the specification and implementation: The “solution” is
essentially the implemented system; however, solutions are not engineered directly from the
problem in practice. Refining the concept of “solution” into the specification and
implementation is more aligned with how systems are developed. A specification is developed
to satisfy requirements, and an implementation is developed to satisfy the specification. Risks
associated with development of the specification and the implementation are therefore crucial
in justifying the solution system solves the problem.

The result of this separation is the ability to make a more compelling and comprehensive
argument. Specifically, the argument tells us that:

1. the Problem, Context and Requirements are adequately defined and

12
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

2. the Implementation of the Specification in Correspondence with its intended Context satisfies
the Requirements of the solution to the Problem.

We refer to the assurance goal implied by this kind of argument as successful development.
The remainder of this section further discusses the details of each SIAT reference model artifact.
Questions concerning the production of these artifacts during development are further addressed
in Section 3.1.3.

3.1.2.1 Terminology
Before describing each of these components of the reference model in detail, we first introduce
some definitions for recurring concepts.

Phenomenon A phenomenon is an observable entity. Examples of phenomena include events,
values and relationships.

Variable A variable describes a phenomenon that has values.
Type A type describes the set of possible values for variable.
Instance An instance is a particular value of a given type.
Domain (or Knowledge Domain) A community of like-mindedness and shared mental space. A

domain refers to the knowledge ecology of an expertise or field. Although a domain can be
partially captured in artifacts documenting regulations, protocols, operational definitions,
relevant phenomena, etc., domains are abstract concepts, defined by a collective of mental
models and social convention/agreement of experts.

Optative Optative expresses realizable intention or desire.
Indicative Indicative expresses a statement of fact.
Successful Development System development is considered successful if (1) the problem is

adequately defined and (2) the problem is solved. More specifically, the problem is solved if
the system implementation of the system specification in correspondence with its intended
context satisfy the requirements of the solution to the problem.

3.1.2.2 The Context
The context is a comprehensive and indicative description of constraining aspects of the world
that the system under development will operate in. Context typically cannot be fully documented
due to scope. Instead, context is defined largely based on domain specific reckoning of context.
Context is therefore defined operationally; however common entities of the context include the
physical environment, the system domain, staff/support infrastructure, maintenance
infrastructure, regulations, etc.

The concept of context is an extension of environment or world (the physical environment)
within a problem-oriented approach. Since all systems operate within the a physical setting, the
physical environment is a mandatory component of the SIAT context. The rationale for extending
the physical environment into the notion of context is the observation that often other indicative
factors that are not easily expressed as physical phenomena constrain development. For example,
the domain in which the system is developed and regulations.

The environment is a highlighted component of the context within the SIAT reference model, not
only because the environment is a mandatory component, but the environment the perhaps the
most pervasive element of context throughout the system development. Regulatory context, for
example, influences requirements and constraint design and implementation, but environment

13
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

influences all phases of system development. Further, a system is typically alters some
phenomena of the physical environment in some manner to solve the problem, whereas other
components of the context are not altered by the system. We therefore provide a more rigorous
definition of the environment as follows:

The Environment includes a set of related Indicative Phenomena that are usually treated as a
unit in problem analysis. The Types associated with the Phenomena of the Environment exist in
the world outside of the System. These Environment Types are sometimes also called Real-World
Types.

3.1.2.3 The Problem
In SIAT, the problem captures the essence of the customer’s need as simply and succinctly as
possible with respect to the context. Hence, the problem in SIAT is an abstract problem
description and/or a set of abstract requirements, not a completed requirements document. The
rationale is to first focus the abstract problem and then refine the problem into requirements in
subsequent development activities.

We think of the problem as being the first component of the SIAT reference model as it drives
development, but it cannot be defined without reference to its context, and, in particular, its
physical environment. This is natural, as the problem emerges from the context and is typically
defined to alter some set of phenomena of the environment. Rigorously,

A Problem describes an alternate optative Environment in which some Phenomena differ from
those in the actual, indicative Environment as defined in the Context.

3.1.2.4 The Requirements
The requirements refine the identified problem, constraining the solution space of the problem
further by identifying elements of the solution that are of particular importance to the customer.
Rigorously,

Requirements express the solution to the Problem in terms of Variables or Values of the
Phenomena shared between the Problem and the Environment. Because Requirements,
through Problem they solve, express a possible, future Environment, they are an Optative
description.

While the problem speaks about the future environment in simple, succinct terms, the
requirements speak about the future environment in detail. Because the requirements are
restricted to environmental phenomena, engineers are limited to describing what the solution will
accomplish. Without reference to the phenomena of the system, engineers are precluded from
saying how the system will solve the problem.

3.1.2.5 The Specification
The specification is the beginning of the realization of the solution requirements. Rigorously,

The Specification describes an Optative set of Phenomena that is the System. The Types
associated with the Phenomena of the Specification exist in the System. These System Types are
sometimes also called Machine-World Types.

14
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

While the requirements speak about the future environment in detail, the specification speaks
about the future system in detail. The specification is restricted to system phenomena, limiting
engineers to describing the system that will solve the problem.

3.1.2.6 The Correspondence
The requirements express the solution in terms of environmental phenomena. The specification
expresses the solution in terms of system phenomena. In order to show that the specification
indeed satisfies the requirements, and thus solves the problem, the relationship between system
phenomena referenced in the specification and environmental phenomena referenced in the
requirements must be described. The correspondence expresses this relationship. Rigorously,

The Correspondence between System Types and Environment Types is made through an
Indicative description of the Environment. This description provides a Correspondence Model
of critical relationships amongst Phenomena that are shared between the Environment and the
Specification.

3.1.2.7 The Implementation
The implementation is the realization of the specification and by extension the solution
requirements. Rigorously,

The Implementation expresses the realization of the Specification in terms of the System Types
introduced in the Specification. Additionally, the Implementation may rely on hidden
Phenomena of the System — that is, System Phenomena that were not shared between the
Specification and the Environment and are not described in the Correspondence.

The specification can be conceptualized as a high-level system design. During implementation,
the specification is further decomposed into a detailed design until the level of granularity is
sufficient to build the actual system.

3.1.2.8 The Argument
In SIAT, the reference model artifacts are tied together by the last reference model artifact, the
argument. The argument provides the rationale for belief that the problem has been identified and
the implemented system successfully solves the identified problem. Rigorously,

The Argument is an explicit and comprehensive logical structure, supported by a body of
evidence, justifying that the developed/implemented system is Successful. Successful
development requires not only a justification that the developed system solves the identified
Problem within the given Context (e.g., Environment and regulatory considerations), but also
requires justification that the Problem and Context are correctly, completely and appropriately
identified.

Where possible, the argument can be based on deductive/formal logic; however, requirements are
fundamentally informal and doubts exist about the fidelity of formal models. Consequently, the
argument is primarily informal based on inductive logic.

3.1.3 Reference Process
To better situate the reference model within a development process, this section describes the
SIAT reference process. The reference process defines a set of high-level SIAT development
activities. The purpose and rationale of the reference processes is to organize general engineering

15
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

activities associated with the application of SIAT and to relate these activities to the reference
model artifacts defined in the previous section. The reference process grounds the reference
model in abstract development activities, providing more structure/guidance for the application
and further discussion of the SIAT concepts. The reference process also introduces basic
concepts for the composition of components in system development, to be the focus of later
sections. The reference process does not provide detailed descriptions of development activities,
but rather describes the general activities that surround the reference model artifacts. In general,
reference processes produce reference model artifacts as outputs.

SIAT, as a problem-oriented approach, can be conceptualized in terms of three primary
development activities (shown in Figure 3):

1. understanding the problem,
2. developing the solution, and
3. assessing the solution.

Figure 3: High-Level Reference Process

While these activities speak to the rationale underpinning a general problem-oriented approach,
they are too abstract and do not provide sufficient granularity to align with all of the SIAT
reference model artifacts. The SIAT reference process is therefore refined into five development
activities to expose the relationship between reference model artifacts, and further, to expose the
mechanics of composition (shown in Figure 4):

1. Problem Definition;
2. Solution Definition;
3. Solution Specification;
4. Solution Development;
5. Solution Assessment.

16
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

Figure 4: Detailed Reference Process

The remainder of this section further describes the detailed processes and relationships shown in
Figure 4. To simplify the discussion, and to separate out the mechanics of the adoption of these
processes, the model is described as a linear progression of activities (a waterfall model).
Feedback loops between any set of processes, either for development or to accomodate future
system change and maintenance, are neither precluded nor mandated by the reference process.

3.1.3.1 Problem Definition
The problem, as described in the reference model, is the fundamental driver of system
development in SIAT. The first process component of the reference process is therefore the
activity of defining the problem. The inputs to this activity are any initial customer ideas about
the problem and knowledge about the problem’s context. In some cases, the context and/or
problem may be previously or partially defined. The output artifacts are the problem (the abstract
problem description) and an an initial description of the context, which are conceptually
developed in two subprocesses:

1. problem elicitation and
2. initial context elicitation.

A specific order in which the outputs are produced is not assumed. The problem and context will
likely be elicited concurrently. The produced context should be complete with respect to the
identified problem, but, as is discussed in more detail below, the context is considered “initial”
since further refinement of the problem in subsequent development activities often reveals
deficiencies in the originally developed context.

17
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

3.1.3.2 Solution Definition
The second process component is the definition of the solution. The primary purpose of solution
definition is to engineer system requirements by refining the previously identified problem;
however, in the process of developing system requirements, engineers often reveal more
information about the problem necessitating refinements to the context. For example, a new
requirement may reference an environmental phenomenon that was never defined, or reference
functionality necessitating further explication of relevant regulations. Solution definition
therefore consists of two subprocesses:

1. continued context elicitation and
2. requirements engineering.

The problem and the initial context are inputs from the problem definition activity. The solution
requirements and the context are outputs.

The formality by which requirements are documented is not specified in SIAT. Requirements can
sometimes be refined into formal descriptions, but not all requirements are amenable to
formalization (e.g., usability requirements). Whenever possible, formalizing requirements is
advisable to avoid issues associated with the ambiguity of natural language.

3.1.3.3 Solution Specification
The third process component of the reference process is the specification of the solution
behavior. For this process component, the requirements and the context are inputs from the
solution definition activity. The specification and the correspondence are outputs, produced by
means of two subprocesses:

1. correspondence analysis and
2. specification.

The specification development activity produces the specification artifact that stipulates the how
the solution system will be developed to satisfy the system requirements. Correspondence
analysis examines those phenomena in the environment that must be accessed by the system
under development and relates those environmental phenomena to system phenomena for use by
the specification. Correspondence analysis can be performed after the specification is produced,
but could also be performed iteratively or concurrently with the specification activity as system
phenomena are identified within the specification artifact.

3.1.3.4 Solution Development
The fourth process component is the development of the solution. In this process component, the
specification is refined through a detailed system design activity, resulting in detailed design
demands. Design demands are traditionally specified to a level of granularity sufficient to allow
system engineers to directly implement a solution to satisfy the demands. Conceptually, solution
development consists of two subprocesses:

1. solution design and
2. implementation.

SIAT, however, also supports satisfying design demands by integrating other modular
components. During design, developers assess the possible benefits in integrating other modular
components into the implemented system rather than implementing the system in house. For

18
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

example, developers may find cost and organizational benefits by using existing and reusable
components, or by further decomposing the solution into subproblems to be compartmentalized
and developed in parallel development efforts.

The use of components to satisfy design demands implies a third solution development
subprocess, component integration, see Figure 5. The implemented system is produced by some
combination of local (in house) implementation and component integration. The exact
distribution of local implementation and component integration is based on system-specific
design decisions. Design demands earmarked to be satisfied by components are said to be
delegated or allocated to components.

The component integration activity requires the selection or development of components.
Components may or may not be previously developed, developed by third parties or developed
under the concepts of SIAT. Regardless of the origin and development methodology of
components, justification is required to demonstrate that the composed components are
compatible and that the design demands delegated to components are satisfied by the provided
behavior of referenced components.

If components are developed under SIAT, the relationship between development processes is
shown in Figure 5. General compatibility is assessed through assessment and comparison of
contexts. Delegated demands are satisfied by contractural agreement between the delegated
demand and component requirements. This approach keeps to the SIAT problem-oriented
approach, hiding component detailed design from high-level components, promoting flexibility in
component development. Justification of general compatibility and contractual satisfaction
becomes part of the assurance argument developed in the solution assessment process.
Component systems may themselves be implemented using components recursively.

Component integration is both a development and maintenance activity. Component integration
is performed post system deployment in response to changes to components.

19
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

Figure 5: Recursive Component Development and Integration

3.1.3.5 Solution Assessment
The final process component is assessment of the solution. The goal of this process component is
to verify and validate that the implemented system is a solution to the problem. The inputs to this
process are all of the reference process outputs: problem, context, requirements, correspondence,
specification, and implementation. Solution assessment also uses fine-grained details about each
development process and development artifact as necessary. For example, if components are
integrated into the solution, solution assessment also uses details of the compatibility assessment
and contract satisfaction. The outputs of solution assessment are an assurance argument and

20
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

documented approval of the implemented solution based on a careful review of the argument.
Solution assessment therefore consists of two subprocesses:

1. argument development and
2. argument review.

The argument is a comprehensive justification that the development process was successful: the
solution system (the implementation) solves the problem, and the problem (the problem
description, context, and requirements) has been adequately identified. The argument can be
iteratively and incrementally developed in parallel with all other reference model processes [10]

Because of the scope and purpose of the argument, argument development can serve as an initial
and incremental assessment of the implemented system: assessments are required at each level of
argument development to justify claims. The argument, however, is an artifact documenting
belief that the development is successful. Final approval of the solution system is still necessary
prior to system deployment.

A domain-specific authority is designated to review and confirm the solution system is indeed
successful. Since the argument captures the comprehensive belief that the system is successful,
review of the system is primarily a review of the argument (argument claims and supporting
evidence). The reviewing authority can be the customer, domain-specific experts and/or other
3rd-party stakeholders (e.g., certification authorities). At the end of the review activity, the
solution is either approved for use, or deficiencies are identified necessitating refinements in
earlier reference processes.

3.1.4 Reference Mechanics
The reference mechanics gives specific instantiations of process components and specific forms
to model components. This section describes several possible reference mechanics. Some of the
presented mechanics are further investigated as part of this Phase II effort, and discussed in
further detail in subsequent sections.

3.1.4.1 Problem Frames
The basis underlying SIAT’s “problem-oriented” theory and philosophy originates from the
concept of Problem Frames [8]. Problem frames are a theory and set of mechanics for structring
and analyzing problems, based on the clear separation of problem, environment and solution.

While the problem frame concept specifies particular mechanics and notation for analyzing
problems, SIAT borrows more from the underlying motivation and theory than from these
mechanics. In particular, SIAT is motivated by the observation that system failures often occur as
a result of invalid requirements that originate from an improper understanding of the problem and
its environment.

As Jackson notes, practically all engineers and practitioners agree that focusing on the problem
and what the system must do, not how, is of the utmost importance in early system
development [8]. He also notes that this is not a useful moto. There are difficulties in
distinguishing between the problem and its solution. The problem is located in the real world, and
it is often difficult to focus on the problem. Engineers instead focus on where the solution to the
problem is located: the system to be developed. The substance of Jackson’s problem frame
approach centers around clearly identifying and separating the problem, the environment and the
system.

21
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

Problem frames describe a problem and its solution using a set of canonical frames, which
represent patterns commonly seen in developing software. The most basic form of the problem
frame is shown in Figure 6.

Figure 6: The Basic Problem Frame

A key concept adopted for SIAT from problem frames is the frame concern. Jackson defines the
frame concern as “the central concern for problems of a class defined by a problem frame” [8].
More generally, the frame concern summarizes the argument that is associated with a specific
problem frame. At the highest level, the frame concern can be read as: “the system and its
environment satisfy the requirements”. To address or satisfy the frame concern is to justify that
the problem is adequately defined and solved by the developed system.

The frame concern makes explicit the distinction amongst three fundamentally different
descriptions:

1. the specification – the optative description of what the machine (the system under
development, further defined in subsequent sections) does to solve the problem;

2. the domain description — the indicative description of the causal relationships in the domain
upon which the machine relies to solve the problem; and

3. the requirement(s) — the optative description of what is required to solve the problem.

The argument implied by the frame concern is that:

1. the specified system behavior (M)
2. combined with the given environment/context (W) produces
3. the required behavior (R).

More formally, the argument stipulates that the system, as developed within its operating context,
entails the requirements (M∧W⊢R). This argument concept, combined with similar extensions of
problem frames in a related reference model [9] provides the basis by which arguments are
structured in SIAT.

SIAT separates Jackson’s theory from the mechanics of problem frames. SIAT primarily makes
use of the theory underlying problem frames for problem analyses, and uses these concepts to
govern the form of an assurance argument and the mechanics for developing and assessing the
argument. The mechanics associated with problem frames and context diagrams (the specific
diagram structures) can be used when analyzing problems and context, but it is not a requirement
of our approach.

3.1.4.2 Assurance Cases
Arguments in SIAT are documented using assurance cases noted using Goal Structuring
Notation (GSN). An assurance case is a reasoned and compelling argument, supported by a body

22
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

of evidence, that a system, service or organization will operate as intended for a defined
application in a defined environment [22]. A further discussion and background on assurance
cases and GSN is described in Appendix A.

3.1.4.3 The Toulmin Model
Assurance cases documented in GSN are based on the Toulmin model of argumentation [11].

Figure 7: The Toulmin Model

The Toulmin model, illustrated in Figure 7, is comprised of the following components:

• Claim (C): The position, claim or conclusion “whose merits we seek to establish”. Claims are
represented as goals in GSN notation.

• Qualification (Q): Modal qualifiers (e.g., ‘most’, ‘usually’, ‘presumably’, or ‘always’) that
constrain the scope of the claim.

• Data (D): The data or grounds used as evidence in support of a claim. Data is represented by
solution elements within GSN notation.

• Warrant (W): Practical standards or cannon of argument providing the rationale by which the
data provides support of a claim. Warrants are typically represented as strategy elements in
GSN notation between two goals; however, in traditional GSN notation, warrants are not
expressed between a goal and solution element.

• Backing (B): The support, justification or authority that supports the validity of the warrant.
Often backing is not explicitly expressed within an argument, and is instead resident in the
implicit knowledge endogenous to the domain in which the argument exists.

• Rebuttal (R): Scenarios and exceptions that undermine the validity of the claim and authority
of the warrant. There is no standard by which rebuttals are documented with GSN arguments;
however, the concept of a confidence argument [12], provides a mechanisms for separating
out arguments justifying the mitigation of rebuttal scenarios.

The Toulmin model concepts provide foundation for comprehensive inductive reasoning, and
further provide a foundation for novel modularity support (e.g., composition schemes, further
discussed in Section 3.3).

3.1.4.4 Modular Design
Modularity is often proposed as a mechanism to combat the growing complexity of system and
software design. A large, complex problem is recursively broken up into smaller, simpler
problems, until either the level of complexity has reached manageable levels or the problem can

23
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

no longer be easily decomposed. Additionally, modularity can facilitate reuse: when components
are suitably decoupled from one other, they often can be used to construct new, different systems.

Critical principals of modularity include [13] [14]:

• low coupling,
• high cohesion, and
• information hiding.

Modularity is a key mechanism in SIAT. SIAT proposes that components be developed with
carefully identified and described interfaces that are based on assume-guarantee reasoning (see
Assume-Guarantee Contracts, below). Additionally, SIAT proposes that the arguments that the
frame concern has been satisfied be structured to facilitate later use (see Section 3.3). When
composition is used in system development SIAT provides reference processes to support
compositional reasoning and to support compositional argumentation that component
composition is correct.

3.1.4.5 Assume-Guarantee Contracts
Assume-guarantee reasoning is a common approach for compositional reasoning. Typical uses of
assume-guarantee reasoning occur in component-based software engineering and design by
contract engineering paradigms. In these paradigms, software modules (such as an application,
object, or function) stipulate pre-conditions and post-conditions. Software modules provide
properties/behaviors as specified by explicit post-conditions (i.e., guarantees). Modules may also
stipulate pre-conditions (i.e., assumptions) associated with each guarantee. These assumptions
must be valid in order to provide the corresponding guarantees. Thus, traditionally, valid
assumptions imply the provided guarantees (A⇒G).

Assume-guarantee pairs for a module are often referred to as assume-guarantee contracts,
resulting in some confusion in terminology. With respect to a more natural and common use of
the term, contracts are better thought of as an agreement involving at least two modules (or in the
legal sense, parties). Typical uses of the term “contract” within assume-guarantee reasoning only
consider one side of an agreement.

In SIAT, the term “contract” refers to a mapping between the demands of one module to the
provisions (guarantees) of another. The individual demands and provisions of a module together
with their associated provided and assumed contextualization are referred to as interfaces. All
interfaces specify some concept of an assumption and a guarantee (discussed in more detail
below). A contract is therefore defined as an agreement between module interfaces.

A contract is considered valid if all involved module interfaces are satisfied. Satisfaction of an
interface is achieved by meeting the assumptions of the interface with the guarantees of another
interface; hence, the contractual relationship is bidirectional (see Figure 8).

Ideally, the interfaces in an assume-guarantee contract will specify all assumptions and all
guarantees, thus completely describing the context in which the component exists. In practice,
this is difficult to do completely and even more difficult to do formally. Argumentation provides
a compelling mechanism to address this challenge, and is discussed in Section 3.3.

24
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

Figure 8: Bidirectional Interface Support

In a hierarchical decomposition of modules, contracts are formed between two modules at
different levels in the hierarchy (one higher than the other — See Figure 8). This hierarchical
relationship imposes certain roles on module interfaces depending on which side of the contract a
module is found:

• The module that is higher in the hierarchy serves a demanding, promisee, or consuming role,
specifying a “required interface”: certain demands are assumed to be met by other
components where the context of the demand is guaranteed.

• The module that is lower in the hierarchy serves a providing or promiser role, specifying a
“provided interface”: the module specifies provisions or guarantees if certain contextualizing
assumptions are valid.

Both interfaces have a concept of an assumption and a guarantee. The key difference between the
required and provided interfaces is the syllogism between each interface’s assumptions and
guarantees. In the required interface, guarantees (the system contextualization) imply
assumptions (assumed satisfaction of demands) (G⇒A). Conversely, in the provided interface,
assumptions (the assumed context) imply guaranteed behavior or properties (A⇒G). Guarantees
of one interface serve to validate the assumptions of the other, see Figure 8.

Interfaces document formally the syntax and the semantics of what the component assumes or
requires of the system and its environment and what the component guarantees or provides to the
system and its environment.

Syntax is concerned with machine-world representations and is easily written down and checked.
For example, a 12-element vector of 64-bit floating-point numbers is a statement of syntax. It is
very easy for a traditional type checker to ensure syntactic compatibility of components.

Semantics are real-world concerns and are harder to write down and harder to check. Semantics
are described in terms of real-world phenomena. For example, pitch attitude or airspeed are real-
world phenomena. Usually, semantics are tied to syntax by implicit convention, such as the use
of a name or non-rigorous documentation associated with system development.

25
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

SIAT proposes an explicit, rigorous model of the correspondence between syntax (machine-
world representations) and semantics (real-world phenomena). Additionally, real-world
phenomena can be formalized using real-world types, allowing formal analysis of much of the
semantic content of interfaces. This analysis provides greater assurance of correct composition.

Real-world types, correspondence models, and their analysis are discussed further in Section 3.4.

3.1.4.6 CLASS: Comprehensive Lifecycle Assurance for System Safety
CLASS, or the Comprehensive Lifecycle for Assured System Safety, is a combined methodology
and toolset for developing and maintaining safety critical software systems, illustrated in
Figure 9 [15]. CLASS represents an example mechanic for managing the development lifecycle
and capturing domain knowledge. CLASS can support SIAT in three ways:

1. CLASS provides tools and processes that ensure that the system and its assurance case are
synchronized. This synchronization is important in all phases of the system lifecycle, from
development through retirement. CLASS mechanisms can interact with SIAT to support
argument and system modularity by interfacing CLASS processes with SIAT argument
processes.

2. CLASS provides a repository of artifacts that support system development. SIAT-specific
artifacts, such as the success argument patterns, the requirements satisfaction patterns, and the
argument contract patterns can be included in CLASS repositories to facilitate applying SIAT
to new development efforts.

3. CLASS provides tools and processes that faciliate the capture, structuring, and maintenance
of domain knowledge. Domain knowledge is critical to SIAT, as it represents a significant
component of context that must be considered for correct argument composition, validation
and assessment.

The foundation of CLASS is system safety assurance–arguing why a system is safe. Assurance
requires teams to think comprehensively about safety and be able to demonstrate this thinking in
a rigorous argument. Argument as a basis for safety assurance is an increasingly common
regulatory practice in Europe and the United States.

26
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

Figure 9: High-Level CLASS Infrastructure

Using CLASS, teams can build, maintain, and retire safety critical software systems with
comprehensive and rigorous safety arguments. Unlike other assurance methodologies, CLASS
focuses on directly extracting, applying, and testing the assurance rationales of a system’s
experts. CLASS methodology is based on several principles:

• Domain Arguments: System experts have expert arguments for why their practices and
designs are sufficient. These are called domain arguments [16]. CLASS encourages writing
system safety arguments directly from domain arguments, which in turn encourages living,
continuously improving, and representative safety assurance.

• Community of Practice: CLASS replaces the role of the dedicated safety case author with the
system’s community of experts. CLASS tools focus on team collaboration to build, review,
improve, and maintain arguments [15].

• Procedural Support: Assurance of complex systems means having the right people do the right
things at the right times. CLASS supports modeling and executing workflow through BPMN2
(Business Process and Modeling Notation) in order to enforce best practices and team
norms [15] [17].

• Knowledge Sharing: CLASS provides resource packages modeled on the open source
software paradigm. Packages contain guidance documents, argument patterns, and BPMN2
processes representing best practices. Beginners can get started by downloading these
packages and applying them to their CLASS-managed systems. Intermediate users can tailor
them. Experts can publish their resources as new packages to share with a wider
community [18].

27
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

• Assured System Modules: In CLASS, a system and its assurance arguments are a resource
package. When building a system of systems in CLASS, one downloads component systems
as CLASS packages. Therefore, the system of systems receives both the component systems
and their assurance artifacts in support of compositional safety. Importantly, CLASS design
includes support for notifying dependent systems of changes to component assurance [15].

• Rationale Certification: CLASS promotes the rationalization of the certification process
through argument-driven assurance. When standards contain a clear rationale, certification
becomes an assurance activity amenable to the CLASS management [19] [20].

• Active Monitoring: CLASS provides tools to actively monitor the continued assurance of a
system. This includes monitoring the active run-time state of the system software as well as
the activity of executed workflow surrounding the system. This monitoring collects run-time
evidence required for assurance, as well as supporting detection of argument assumption
violations [17] [21].

Together, these properties support a methodology and toolset in which assurance is integrated
into all stages of the system lifecycle. The integration is active, with ownership of the process by
the system’s experts being the key driver of assurance quality.

CLASS tools are built from open source applications familiar to IT and software development
teams [17]. Components include software project management (Maven), resource repositories
(Nexus), version control (Git), workflow automation (Camunda), and a programmable wiki
environment (XWiki).

3.2 Arguing Successful Development
A fundamental concept of the SIAT theory is the explicit justification that the development effort
is successful (see Section 3.1). Successful development of a complex system or system of
systems includes successful communication of the rationale for justifiable assurance of success.
System interface abstraction technology therefore incorporates the assurance case to document
and communicate this rationale.

An assurance case is a reasoned and compelling argument, supported by a body of evidence, that
a system, service or organization will operate as intended for a defined application in a defined
environment [22]. In SIAT, the argument is used to justify successful system development.
System interface abstraction technology documents arguments using the Goal Structuring
Notation (GSN) [23]. Detailed background on assurance cases and GSN is provided in Appendix
A.

In principle, the organization of arguments supporting successful development is subject to
interpretation and therefore may differ depending on the argument engineers and stakeholders.
The reference success argument facilitates development of arguments that follow the principals
of SIAT. Furthermore, the success argument pattern enables engineers to iteratively refine, alter,
and record concepts of successful development so that they can be subjected to further scrutiny.

This section presents reference argument patterns for arguing successful development using
GSN. For further background on the notation of arguments and the use and instantiation of
argument patterns, readers are referred to Appendix A and the GSN community standard [23].

28
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

3.2.1 Practical Argument Patterns: Pattern Flexibility
Argument patterns as suggested in SIAT are intentionally less rigid and prescriptive than is often
suggested by more traditional argument patterns. Patterns in SIAT are used more to guide
discussion and provide a basis for argument development. SIAT argument patterns should be
considered maleable and not strictly prescriptive.

The rationale for this choice is that fine-grained argument structures and phrasing within the
arguments can often be adequately expressed in more than one way. Furthermore, each domain
will likely require subtle variations and refinement to argument structure and phrasing to meet the
expectations of relevant stakeholders and argument reviewers. Defining patterns to express all
possible domain arguments (see Section 4.3 and Section 3.1.4) is not practical.

Rather than attempt to provide one definitive argument structure that will likely be the subject of
controversy by domain experts, argument patterns presented here take a more practical approach.
Specifically, patterns are used to convey a conceptual organization and flow of the argument that
can be further refined as necessary.

We therefore take a position that the argument concepts described within the presented patterns
are of primary importance, more so than the fine-grained pattern structures, organization, or
phrasing itself. Patterns should not be used to force a manner of communicating the argument
that is considered unacceptable or undesirable within a given domain. Variations to the patterns
as the argument is instantiated are allowed to better meet domain-specific needs, but variations
are anticipated to convey the same general principles.

3.2.2 High-Level Argument Structure: The Success Argument
The success argument is the top-level argument structure in SIAT, and is used as the top-level
argument for every modular component of development (further discussed in Section 3.3). The
success argument argues that the development of the system component was successful by
justifying that the application of the reference model was successful: succesful problem
definition, context definition, solution definition, and solution assessment (discussed in
Section 3.1.2). The highest level of the success argument pattern is illustrated in Figure 10.
Branches of the argument are explicated in subsequent sections.

29
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

Figure 10: Success Argument Pattern

3.2.2.1 Defining Success, Adequacy, Mitigation, Etc.
The form and content of the success argument pattern is based upon concepts from the reference
model (Section 3.1.2) and common practice. The argument is used to demonstrate that the
development of the given system is “successful”, where the term “success” indicates an
assessment of a larger class of concepts within SIAT. “Success” is used instead of any specific
metrics because concepts of success are largely stakeholder-defined, domain-specific, and highly
detailed and complex, as is defined by the complex argument structure underneath a success
claim. The term “success” is used instead of terms like “adequate” since success seems to imply
more strongly a threshold by which termination of development is acceptable.

In SIAT, successful development is justified by components of success. These components can
be classified in two general categories:

1. successful definition of key SIAT development artifacts, i.e., the problem, context, and
solution, i.e., requirements (Goals 3.1, 3.3 and 3.5 in Figure 10), and

2. successful assessment of the implemented system with respect to the defined problem,
context, and solution (Goal 3.7 in Figure 10).

If these goals are justified, then under SIAT, the argument justifies successful development.

Other non-specific terms, such as “adequate” and “mitigation” are also used throughout presented
arguments and argument patterns in this report. The precise definition of these concepts cannot
be made until a system is developed and stakeholders approve the definition. When patterns are
instantiated, it is up to the argument engineers and system stakeholders to decide if it is more
appropriate to concretize these concepts and reference explicit definitions in GSN context
elements, or to rely on the argument structure itself to provide reviewers with the definition as
implied by an argument trace.

30
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

3.2.2.2 Success Argument Organization
The success argument builds upon problem frames proposed by Jackson [8] and the enhanced
reference model proposed by Strunk [9] (see Section 3.1.4). Specifically, the success argument
builds upon the problem frame notion where the argument is used to stipulate that the system, as
developed within its operating context, entails the requirements. The SIAT success argument
justifies successful development by demonstrating that:

1. the problem, context and solution (i.e., requirements) are adequately defined and
2. the implementation of the specification in correspondence with its intended context satisfies

the requirements of the solution to the problem.

As described in the previous section, the structure of the argument is conceptually divided into
successful definition of the problem, context and solution (requirements) and then successful
assessment of the implemented system. The argument structures for successful problem, context,
and solution definition (to be defined under Goals 3.1, 3.3 and 3.5 in Figure 10) are shown in
Figure 11, Figure 12, and Figure 13 respectively. The argument structure for successful solution
assessment (to be defined under Goal 3.7 in Figure 10) is shown in Figure 14.

Figure 11: Successful Problem Definition

31
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

Figure 12: Successful Context Definition

32
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

Figure 13: Successful Solution Definition

33
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

Figure 14: Successful Solution Assessment

34
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

The leaves each of the primary branches of the success argument typically terminate with
argument modules. These modules are not used to express modular system development, but
rather are used to simplify the complexity of of the argument structure. It is possible to remove
these modules and continue the argument as a monolithic entity; however, we found this
modularity provided a structure that was more accessible for discussion and review.

3.2.2.3 Addressing Development Risk
Successful development may include alternative notions of development that include more than
just the system design. For example, arguments may be considered necessary to justify that the
development process will be completed within in budget and on schedule. Such arguments have
been suggested in prior work on process synthesis using assurance-based development
(ABD) [24] [10] [25]. In this prior work, two arguments are developed for a subject system: one
argument justifying that the system is fit for purpose, and another argument justifying that the
development effort under way will yield an adequate system on time and within budget. The
latter argument is continuously developed, managed, and updated during the development
process to track that development is inline with development goals/restrictions. The argument of
“development process success” is not completed until the development process is complete. Once
the development process success argument is completed, it is typically rendered moot
(development risk is typically no longer a concern once the system has been completely
implemented).

Similarly, a deployed system might have to fit into a larger business vision that may evolve over
time. Arguments might be necessary to demonstrate that the system allows the business to meet
certain financial expectations and goals. These arguments might be updated much as ABD
arguments are updated over a period of time (e.g., the fiscal year) and become moot once the
specified time has past, in which case a new argument might need to be developed.

The use of process arguments to track management/development/business concerns, if desired,
can be adopted within the success argument structure, and is currently represented in the
argument structure. Under Goals 5.7 and 5.9 in Figure 13 it is possible to define alternative
requirements other than design requirements. Likewise, under Goals 7.4 and 7.7 in Figure 14, the
satisfaction of these requirements are justified. It is envisioned that the development and use of
the satisfaction arguments for these requirements would be consistent with the processes and uses
as described under ABD. Within the given effort, further investigation into the use of ABD is out
of scope.

3.2.3 Problem, Context, and Solution Definition
Arguments supporting successful definition of the problem, context and solution (requirements)
are based largely on the expectations of the system stakeholders. In some cases, a simple review
and approval by experts or compliance with a given regulation might be considered sufficient. In
other situations, adequate identification is defined by a careful examination of chosen elicitation
processes and artifacts produced from elicitation processes.

The concerns of problem, context and requirements definition can be generalized into an
“identification/elicitation” concern, where the specific entity being identified does not matter.
The leaves of all three successful definition branches (Figure 11, Figure 12, and Figure 13)
reference a separate argument module where these identification concerns are addressed. We
observe that to have “adequate identification” generally, the argument must at least justify

35
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

complete, appropriate and correct (accurate) identification of entity being identified. We further
generalize these concerns as confidence characteristics that affect the legitimacy of inferences
and artifacts throughout the argument. An identification argument is therefore a specific type of
confidence argument in SIAT; however, because confidence in these entities is critical under the
SIAT reference model, these confidence arguments are not separated from the main argument
structure as would typically be the case for confidence arguments (see Appendix A). Other more
traditional uses of confidence arguments throughout the argument would be separated to simplify
the argument structure. The structure of separate confidence arguments would also consider
completeness, appropriateness and accuracy. Other confidence concerns are added as is deemed
appropriate/necessary. The top-level identification argument is shown in Figure 15.

Figure 15: General Entity Identification Pattern

From these basic identification properties (correctness, appropriateness, and accuracy), we
informally elicited a more detailed subset of properties that could be used to justify each of the
basic identification properties. Elicitation of these more detailed properties was not intended to
provide a definitive or well-accepted set, but rather the set was derived to provide a discussion of
the kinds of arguments necessary to justify adequate identification. The set was supplemented
with additional properties as the pattern was applied for specific purposes, e.g., requirements
elicitation literature such as IEEE 830–1998 [26] and IEEE 29148–2011 [27] suggested
additional properties.

Generally, correctness, appropriateness, and accuracy can be justified directly by assessing the
produced artifact (e.g., the requirements document) or indirectly by assessing the processes used

36
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

for identification/elicitation. Direct assessment is typically preferred but often either direct
assessment is not well established or residual doubts remain that can only be addressed by
examining the processes used to develop the artifact.

Properties to support correct, appropriate and accurate identification could be argued in GSN;
however, the pattern must document potentially complex structure to account for domain-specific
variations in identification confidence. While we did develop some GSN patterns initially for this
purpose, the utility of the argument structure was questionable. For simplicity, we instead list
potential properties for correct, appropriate and accurate identification below and leave definition
of the associated argument structure to domain experts. Characteristics such as these and
relationships between these characteristics can be used to define a common characteristic
map [28] as a more general mechanism for describing confidence patterns in terms of key
properties without necessarily prescribing a GSN argument structure.

Potential properties of complete identification:

• complete identification of accepted sub-classes of the identification problem (for example
classes of requirements, such as functional and non-functional)

• use of well-established elicitation processes (i.e., prior vetting of elicitation processes)
• correct application of elicitation processes (e.g., using prescribed methods with trained

elicitors)
• use of reliable documentation and storage procedures (e.g., justification that documentation

procedures do not accidentally omit or delete contents)
• assessment and approval by stakeholders of elicitation activities and/or the produced artifact
• assessment of completeness with respect the needs of other artifacts or activities (e.g., the

context - environment and regulation - may be considered complete or partially compelete if
all requirements and the problem description only refer to contents described within the
context description).

Potential properties of appropriate identification:

• consistent artifact contents with respect to other internal contents and other relevant artifacts
(e.g., the requirements are consistent with the problem description)

• unambiguous artifact contents
• lack of redundancy in artifact contents
• credible artifact contents
• realistic artifact contents
• necessary and/or relevant artifact contents
• atomic artifact contents, i.e., of simplest expected form (e.g., atomic requirements)
• verifiable artifact contents
• traceability of artifact contents to other relevant artifacts
• comprehensible artifact contents
• prioritized artifact contents
• well-structured artifact contents (e.g., categorized or organized in a standardized form)
• correct and up-to-date artifact

Potential properties of accurate identification:

• correct application of elicitation processes (e.g., using prescribed methods with trained
elicitors)

37
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

• use of reliable and/or well-established elicitation processes (i.e., prior vetting of elicitation
processes)

• verification/validation of the artifact’s contents (i.e., the form and semantics of the contents
are correct)

• use of reliable documentation and storage procedures (e.g., documentation is not
unintentionally or maliciously modified to reflect incorrect information)

3.2.4 Solution Assessment
In principle, if the system requirements are completely identified, then justifying that all
requirements are satisfied should provide a sufficient assessment of the implemented system.
This notion is more aligned with the original Jacksonian problem frames argument. In practice,
however, reviewers, such as certifiers, often prefer different “views” of system assessment. For
example a dedicated safety assessment (justification of hazard mitigation), regulation assessment
(justification of compliance to regulations/standards), and security assessment (justification of
mitigation of threats to system assets). The successful solution assessment branch (Figure 14)
provides several example assessments that could be further instantiated as desired by system
reviewers and certifiers. At a minimum, this branch should include a requirement satisfaction
argument.

This section discusses an argument pattern for requirement satisfaction, safety assessment,
security assessment and regulatory compliance.

3.2.4.1 Requirements Satisfaction
As commented on above, the success pattern supports the identification and satisfaction of
various types of requirements; however, for simplicity of this effort, we focus on typical system
requirements, to be justified as adequately satisfied within Module 8.1 of Figure 14.

The requirement satisfaction argument approach is illustrated in Figure 16. Requirements are
assumed to be adequately identified by the solution definition argument branch (Figure 13) and
the focus of requirement satisfaction is placed on demonstrating that the provided requirements
are satisfied. Requirements are satisfied by a recursive refinement of each requirement into sub-
requirements, specifications, high-level architecture, lower-level design specs, and ultimately by
evidence about the implemented system itself.

38
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

Figure 16: Requirements Satisfaction Overview

The requirements satisfaction pattern (Figure 17) enumerates each requirement, and justifies that
the detailed spec/design for each requirement:

1. actually entails the requirement and
2. is satisfied by the implemented system.

39
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

Figure 17: Requirements Satisfaction Pattern

40
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

In arguing the specification entails the requirements, the assessment may need to consider
retrenchment and correspondence with machine-world types to real-world types. The assessment
is likely to be based on some combination of expert judgement and formal proof. The argument
for requirement satisfaction validation could be decomposed into sub-properties of validation
(retrenchment, expert approval, etc.). The presented argument is simplified to assume one item of
evidence that encapsulates a complete assessment of entailment (requirement satisfaction
validation assessment).

Satisfaction of each element of the specification is achieved by further decomposition into more
detailed design elements or by evidence about the system itself. The pattern also illustrates that it
is possible to support satisfaction of the specification by use of a modular component, i.e.,
another system component to be implemented elsewhere or to be specifically developed in order
to support modularity. In this instance, further detail of the design and implementation of the
component is not available at this level of development. A demand is specified but the details of
how the demand is satisfied are explicated by a contractual argument with another component
and a separate development process for the component. Modular development is further
discussed in Section 3.3.

Both requirements and the detailed specification/design of the system can be developed
hierarchically. The argument could similarly capture the hierarchical decomposition or the
hierarchy could be flattened as appropriate or desired. The presented requirement satisfaction
pattern illustrates a flattened hierarchy approach. If the pattern were extended to a hierarchical
decomposition approach, each level of refinement in the requirements and specification would
justify satisfaction of a higher-level requirement or specification. There is therefore some doubt
that the refinement is itself adequate (complete, correct, appropriate, etc.). For requirements,
these doubts should be addressed in the solution definition argument. For the specification and
further system design, however, these concerns must be explicitly addressed either once at the
beginning of the hierarchical decomposition (as is illustrated in the above pattern) or at each level
of refinement.

The requirements satisfaction pattern is presented in GSN, but given the repetitive nature of the
argument, the argument could also be expressed in a tabular structure. We leave the choice to
simplify argument structures into tabular forms to the discretion of those applying these patterns.

3.2.4.2 Safety Assessment
The top-level safety assessment pattern used within Module 6.8 of Figure 14 is illustrated in
Figure 18. This pattern admits the possibility of multiple safety assessments, but focuses
primarily on a hazard mitigation assessment.

41
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

Figure 18: Safety Assessment Pattern: Top-Level Structure

The hazard mitigation argument is an adaptation/extension of Hawkins tiered
arguments [29] [30], where each “tier” within SIAT refers to composable modules within a
system of systems (Section 3.3). At each tier, the hazard mitigation argument justifies “in scope”
hazards are adequately mitigated. In scope hazards in SIAT consists of three categories of
hazards:

• Current Tier Hazards: Hazards that are applicable only to the given system (the hazard is not
part of the set of hazards that are part of the higher-level system).

• Lower Tier Hazards: In-scope hazards of composed components (at the next level down in the
composition of components).

• Induced Hazards: Hazards applicable to higher-level systems that can be induced by failure
modes of the given system.

To argue these hazards are mitigated, these hazards must be justified as adequately identified.
The argument structure therefore decomposes into identification and mitigation, shown in
Figure 19. Arguing adequate identification can in principle be achieved by the same argument
structure used for problem, context, and solution definition over each category of in scope
hazards. One primary difference is that adequate identification may rely upon the identification of
hazards by modular sub-components, if sub-components are used. Specifically, the identification
of lower tier hazards is justified only by identification arguments found in composed
components. In such instances, there is therefore a delegated hazard identification demand for
lower tier hazards, illustrated in Figure 20.

42
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

Figure 19: Safety Assessment Pattern: Hazard ID and Mitigation

43
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

Figure 20: Lower Tier Hazard Identification Delegation

With exception to lower tier hazards, all hazards are justified as adequately mitigated by some
combination of the following (illustrated in Figure 21) :
1. evidence in direct support of mitigation,
2. further argument decomposition, or
3. delegation of hazard mitigation to another component (i.e., the given system mitigates the

hazard by relying on mitigators in a separate sub-component).

Lower tier hazards are mitigated entirely by composed components themselves, if sub-
components are used in the design; hence, each modular sub-component is delegated the
responsibility of mitigating its own in scope hazards.

44
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

As with requirements satisfaction, hazard mitigation could also be justified using a tabular
notation if desired.

Figure 21: Hazard Mitigation Pattern

3.2.4.3 Security Assessment
The majority of this effort focused on requirement satisfaction and partially on safety assessment.
We note, however, that a security assessment argument (Module 6.9 in Figure 14) would in
principle be similar to that of the safety assessment argument described above. The key
differences would be in the terminology. In security, threats are mitigated, not hazards.
Mitigation of threats is design to protect assets from malicious third parties. For further
discussion of the use and application of security arguments and patterns, readers are referred to
prior work by Rodes [31] [32] [33] [34].

45
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

3.2.4.4 Regulatory Compliance
Regulator compliance/approval (Goal 5.14 in Figure 14) is not specified with a supporting
module due to the potential simplistic nature of compliance. Specifically, once regulations have
been identified, demonstration of the compliance could involve a check list of regulations with
associated evidence. This could in principle be argued within a separate module using the pattern
shown in Figure 22; however, unless there is a more complex justification of compliance, the use
of an explicit argument is likely neither necessary nor desirable. GSN argument is best served
when the rationale for compliance is not as apparent as a direct mapping of evidence to
regulations. If compliance with a regulation, for example, is justified by a reference to a complex
hazard mitigation claim, an argument may be useful to point to relevant mitigation claims (using
GSN away goals). The exact argument structure to capture a more nuanced compliance argument
is not expressible within a pattern as the argument will vary drastically on a case-by-case basis.

Figure 22: Regulatory Compliance Pattern

46
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

3.3 Practical Argument Modularity
Assurance-case arguments naturally reflect the complexity of the systems or systems of systems
for which they provide rationale of justifiable assurance of success. As system complexity
increases, there is a concomitant increase in argument complexity. For complex systems and
systems of systems, an assurance case based upon a single, monolithic argument is difficult to
produce, difficult to review, and difficult to maintain.

GSN addresses this challenge through the provision of standardized notation for modular
arguments that has been widely applied [23] (see Appendix A). Modular arguments are built
upon modules with the following characteristics [35] [36]:
• High cohesion: the module supports a well-focused and logically cohesive assurance goal.
• Low coupling: the module has minimal interconnection with other modules.
• Well-defined interfaces: the module has explicitly defined “allowed collaboration” with other

modules.
• Information hiding: the number of defined interfaces should be minimized to expose

minimal information.

In common modular arguments, argument modules encapsulate and organize logical structures.
For example, an argument module might be developed to describe requirements identification,
requirement satisfaction, hazard mitigation, or confidence. This style of argument modularity
provides useful organization, but insufficiently addresses the fundamental concerns identified
above: arguments relying on these kinds of modules remain difficult to produce, difficult to
review, and difficult to maintain when engineering arguments about complex system of systems.

The complexity of the systems and systems of systems developed using system-interface
abstraction technology requires a practical argument modularity. The complex systems and, in
particular, systems of systems that are developed using system-interface abstraction technology
are not built monolithically. Instead, these systems are naturally built from integrated system
components, where each system component encapsulates a solution to an identified problem.
Moreover, the problem that a system component solves is considered likely to repeat or is
considered of sufficient scope that modularizing the problem facilitates ease in managing the
development and maintenance complexity and costs. The selection and integration of system
components during system development and, later, the change, replacement or removal of system
components post-deployment provides a compelling example of practical modularity for system
design.

A similar practical argument modularity is possible. If argument modules align with system
components, we can more easily develop and maintain the assurance arguments for systems that
are built compositionally. Argument modules are developed that encapsulate the argument for
successful development of each system component. As system components are integrated into the
larger design of the system, their corresponding argument modules are integrated into the larger
argument for the system. The assurance case architecture, therefore, mirrors the problem-oriented
design of the system or system of systems itself (see Figure 23).

47
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

Figure 23: Argument Design Tracking

Following this practical modularity for arguments, the composition of interest is not with respect
to modularizing and integrating argument structures that encapsulate logical concepts such as
requirement satisfaction, hazard mitigation, or problem identification. Instead, the composition of
interest is with respect to modularizing and integrating arguments for successful development of
each system component (Section 3.2). By matching argument modularity with system component
modularity, the argument naturally fits into the development and maintenance of a system or
system of systems. As a result, the argument is organized to facilitate practical development and
maintenance and ease of review.

The key motivating question in development, review and maintenance of a practical modular
argument is:

Are design demands satisfied by integrated system component behaviors?

This question is natural and appears easy to answer:

System components are selected and integrated into the system design because the behaviors they
provide satisfy specified demands.

Careful consideration of how the rationale for justifiable assurance of successful development
should be established reveals that this question cannot be asked in isolation. In particular, the
behavior of a system component cannot be assumed if its argument is not of sufficient quality or
if the component is used outside of the context for which it was designed, so consideration of
context, both in design and use, is critical. Additionally, there is potential for new hazards that
arise from the integration of components, so consideration of hazards is also critical.

In all, there are three fundamental questions that must be asked of practical modular arguments:

1. Are design demands satisfied by integrated system component behaviors?

48
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

2. Are all system component contexts (both in development and use) compatible?
3. Are there new, unaddressed hazards arising from system component integration?

We answer these questions by advancing a novel architecture for practical argument modularity
that is based on a collection of specific argument views. Additionally, we support the architecture
with component integration mechanics that describe the crucial detail necessary to effectively and
successfully integrate argument modules associated with system components.

3.3.1 Integration Concepts
Practical argument modularity using system-interface abstraction technology relies on a set of
related concepts that work together to answer the fundamental questions identified above. These
concepts, discussed in detail below, are:

1. Argument views, which provide special-purpose projections of the argument to enable
reasoning about integration challenges;

2. Assume-guarantee reasoning for modular arguments; and
3. Contextual compatibility.

3.3.1.1 Argument Views
Argument views are special-purpose projections of the assurance argument. Each argument view
provides clarity to reviewers and maintainers of the argument by encapsulating related argument
concepts that may not have been closely grouped in the original argument organization. This use
of views to highlight and encapsulate related concepts is similar to the grouping of related
software aspects in aspect-oriented programming [37]. Views can also be used to organize
different levels of design abstraction, including views that encapsulate other views.

Argument views are abstract concepts that do not have direct support in GSN. We denote views
using typical GSN notation for modular arguments, according to the purpose of the view. The
views used in the SIAT system-of-systems argument architecture are further discussed in
Section 3.3.2.

3.3.1.2 Assume-Guarantee Reasoning for Modular Arguments
Assume-guarantee reasoning (Section 3.1.4) provides the foundation for reasoning about the
composition of modular arguments. Arguments are composed by mutual satisfaction of required
and provided interfaces. A demand within a required interfaces and a guarantee within a provided
interface are expressed within the argument as assurance goals (Figure 24). A demand goal is
necessarily a leaf goal within a component module (i.e., no further argument is developed
underneath this goal within the component’s encapsulated argument structure). Demand goals are
not otherwise explicitly documented within the argument structure. A guarantee goal can exist
anywhere within the providing component’s argument structure and are traditionally documented
using GSN public goals. We observe, however, that often prescribed portions of the argument are
understood to be public by convention. SIAT, therefore, does not specify a particular use of
public goals.

49
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

Figure 24: Argument Module Composition

The context associated with a demand goal is not explicitly specified at the required interface
within SIAT. The rationale is that integrated components may express arbitrary assumptions,
making it difficult to fully specify a required interface context. Instead, context is generated as
needed to assess the assumptions specified within a provided interface. GSN context elements are
propagated down to required interfaces when interface compatibility is assessed, illustrated in
Figure 25.

50
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

Figure 25: Context/Assumption Propagation

Assumptions for provided interfaces are specified within GSN assumption elements.
Assumptions at a provided interface should express all inherited assumptions and any
assumptions nested below the guarantee goal, illustrated in Figure 25. Assumptions can be
explicitly referenced at the interface assurance goal, or, similarly to context propagation for
required interfaces, assumptions can be propagated dynamically to interface goals when
performing an interface compatibility assessment. Dynamically propagating assumptions requires
an agreed upon argument structure between a consumer and producer (discussed in
Section 3.3.8). To allow for flexibility in applying SIAT, we do not impose a particular method
for expressing assumptions at provided interfaces.

3.3.1.3 Contextual Compatibility
The development of assurance cases from component arguments is based on a fundamental
principle (or “fundamental theorem” if we shall permit a loose notion of theorem) of
compositional assurance:

A component that is acceptable in one system is acceptable in another so long as both systems
have identical contexts.

When we say that the component is acceptable, we include its functional and non-functional
behavior, its ability to satisfy system demands, and its ability to satisfy stakeholders, including
regulatory authorities. Since the ability of a component to satisfy system demands is addressed
through assume-guarantee reasoning, we restrict our consideration of context to other concerns,
including restrictions, constraints, characteristics, phenomena, acceptability criteria, operating
procedures, domain, design, configuration, and dimensions.

The scope and complexity of context is sufficiently broad as to suggest that practically all
systems, regardless of how similar they appear, will have different contexts. Practical argument
modularity thus requires a practical approach to contextual compatibility: we must be able to say

51
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

that context is practically identical. An argument must be made that differences between contexts
are either inconsequential or are adequately mitigated.

A further complication suggested by the scope and complexity of context is that components, as
they are integrated, may expand or restrict the larger system context in subtle and intricate ways.
Consequently, fully encapsulating change through a modular argument architecture is not always
possible. The impact of composing arguments might propagate beyond component boundaries,
and what’s more, the propagation might not be linear or hierarchical, thus violating key principles
of modular design, i.e., there is an implied violation to information hiding, low coupling, high
cohesion and/or well-defined interfaces. Instead of trying to avoid all possible violations to
encapsulation when establishing contextual compatibility, we posit the following:

A practical argument modularity must endeavor to maintain encapsulation as much as is possible
but recognize when and how encapsulation violation should occur.

Addressing the limitations of both modular encapsulation and assume-guarantee in terms of
contextual compatibility motivates the use of argument views and drives many of the argument
integration mechanics, both are further described below.

3.3.2 Architecture
The SIAT modular argument architecture is concerned with the interaction between system
components and their corresponding arguments, and not the internal structure of individual
component arguments. Internal component argument architecture is discussed in Section 3.2.

The SIAT practical argument modularity relies on four key types of argument views:

1. component module views,
2. component contract views,
3. sibling contract views, and
4. system-wide dependency views.

Together, these views (further described below) provide a framework for integrating component
arguments and organize a high-level system-of-systems assurance case architecture. Although the
views presented below were developed progressively to address integration challenges as
described in Section 3.3.1, they share the motivation and argument forms similar to the modular
argument structures presented by the Modular Software Safety Case (MSSC) project developed
by the Industrial Avionics Working Group (IAWG) [38] [36]. This related work provides some
inspiration for our work, and some validation of the concepts we had independently derived,
although the principle organization of the SIAT argument architecture differs as it is based on a
hierarchical problem-oriented approach to modularity and component integration.

3.3.2.1 Component Module Views
Component module views encapsulate the argument structure associated with individual system
components. The boundary of the argument encapsulated in the component module view is
aligned with the boundary of the system component described. Each system component
encapsulates a solution to a problem. Likewise, each component module view encapsulates the
related argument for successful development of the system component (see Section 3.2). The
concept represented by a component module view is similar to the notion of a “block” as
proposed in related work [38].

52
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

Aligning the component module view to the system component boundary ideally provides two
key benefits:

1. Information Hiding: Changes made to the system component, which necessitate a revision to
the argument for the component, will propagate into the broader argument through well-
defined interfaces.

2. Practical Argument Modularity: Integration of argument modules based on component
module views affords practical modularity (i.e., the argument modularity maps to the
modularity of the system).

As previously discussed above, perfect information hiding is impossible to achieve in practice.
We address limitations in information hiding through arguments associated with additional views
(presented below).

We represent a component module view graphically as shown in Figure 26: a component module
is conceptualized as a GSN module element encapsulating a successful development argument.

Figure 26: Encapsulated Success Argument

The hierarchical relationship between component modules presents its own “view” in terms of
the system design/architecture. The hierarchical relationship between component modules
describes a “design authority” architecture (an example design authority construction is shown in
Figure 27).

When a component delegates responsibilities to other components, there is an implied authority
assumed to make design decisions. Design authority is therefore the organization of
responsibility for specifying a design.

53
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

Figure 27: Design Authority — Example

The notion of design authority naturally supports argumentation. As requirements are
decomposed into a specification and detailed design, an intuitive argument is developed that
justifies the decomposition will satisfy elements higher in the decomposition. When demands are
delegated onto components, there is therefore an argument that the components will satisfy these
demands. The argument naturally continues hierarchically down into component module
arguments to justify demand satisfaction.

In this manner, the composition of component modules reflects a design authority view; however,
as illustrated in Figure 27, not all components with a system design authority architecture need be
selected for modularization. Stakeholders may consider modularization unnecessary or
unwarranted in some instances. These components are considered part of the local implemented
of the parent. For example, in Figure 27, the airframe was not chosen for modularity. The
airframe then becomes part of the local implementation for the air vehicle (the parent
component). The corresponding argument structure does not have a component module for the
airframe. Any arguments associated with the airframe would be argued in the air vehicle
component module.

There is no prescribed manner for deriving a design authority hierarchy. In some cases, the
decision may be natural and obvious, while in other cases, multiple interpretations exist.
Stakeholders must assess the alternatives and determine a design authority that is appropriate for
their use. When a component is dependent upon a design but does not have authority over the
design, these dependencies are assumptions about sibling component behavior. These
dependencies are explicitly expressed as assumptions and context in the argument structure.

3.3.2.2 Component Contract Views
Component contract views describe hierarchical relationships amongst two system components: a
consumer and provider. In a hierarchical relationship, a system component delegates some design

54
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

goal to another system component. The delegating component can be thought of as a consumer;
the consumed component can be thought of as a provider.

A component contract is an argument structure that maps the demands of the consumer to the
behavior of the provider, arguing that consumer demands are satisfied by the provider. At the
same time, the component contract argues that all assumptions of the provider are met by the
consumer. Conceptually, the assumptions of the provider represent demands on the consumer,
thus the general notion of demand satisfaction naturally flows in both directions within a
component contract. Component contracts justify the satisfaction of consumer assurance goals
through assume-guarantee reasoning, as discussed in Section 3.1.4. References to component
contract arguments are depicted in the argument structure using GSN contract module reference
elements1, shown in Figure 282. Contract module references encapsulate contractual arguments
that themselves further reference argument structures of the provider component.

Figure 28: Contract Module Reference

Between any two system component arguments (as represented by component module views),
there may be numerous component contracts. The component contract view encapsulates all of
the component contracts that link any two consumer and provider system components. This
encapsulation facilitates quick review of the relationship between a consumer and provider
component. Consequently, the component contract view clearly identifies the impact to the
argument should details of either the consumer or provider change.

The component contract view thus directly answers the first question raised by practical
argument modularity (“Are design demands satisfied by integrated system component

1 We refer to our specific use of GSN contract module references as “component contracts”
because the contract serves to link system components together within the modular system
design hierarchy.

2 We further expand upon the use of contracts beyond what is depicted in this figure using
contract schemes, discussed in Section 3.3.8.

55
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

behaviors?”) by explicitly arguing the satisfaction of design demands by integrated components.
We represent the component contract view graphically as shown in Figure 29.

Figure 29: Component Contract View

The component contract view also provides an anchor for addressing concerns that arise from the
integration of system components. In particular, residual doubt surrounding the context
compatibility between any pair of consumer and provider components must be addressed: the
behavior of a component cannot be assumed if it is used or developed outside of its original
operational and developmental context.

The component contract view thus also provides support in order to answer the second question
raised by practical argument modularity (“Are all system component contexts compatible?”) by
linking arguments justifying contextual compatibility of integrated component context into the
case. We represent the consideration of contextual compatibility graphically as shown in
Figure 30. In this representation, context models are depicted as GSN context elements linked to
component module views. Contextual compatibility is addressed by comparing context models
and arguing compatibility in a confidence argument [12] that is attached to the component
contract view as a confidence argument. We further discuss the mechanics of component
contracts and contextual compatibility in Section 3.3.7 and Section 3.3.8.

56
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

Figure 30: Organizing Contextual Compatibility

3.3.2.3 Sibling Contract Views
In terms of a hierarchical decomposition of components, we refer to any set of components
consumed by the same consumer as sibling components. Whereas component contract views
encapsulate all contracts between a consumer and a singler provider, a sibling contract view
encapsulates all contracts between a consumer and all providers, i.e., all sibling components (the
concept is shown in Figure 31).

57
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

Figure 31: Sibling Contract View

The purpose of a sibling contract view is twofold:

1. It provides a succinct way of representing all contracts that a component relies upon, and can
therefore be used to abstractly represent the argument, especially for design authority
representations.

2. It provides a convenient anchor for addressing concerns of lateral compatibility (i.e.,
noninterference) between sibling components that are not directly addressed by the views so
far described.

By establishing context compatibility between each pair of consumer and provider components
(as is referenced as confidence on component contract views) we have effectively justified that
any individual provider component does not adversely interfere with the consumer. While it may
be possible to infer that all sibling components will be compatibile by virtue of each individual
consumer-provider compatibility argument that has been established, such an inference is indirect
and otherwise undocumented. Furthermore, because the issue of sibling compatibility is not
directly addressed, it is unclear if such reasoning is sufficient.

Because of the issue of sibling component compatibility is a common and serious concern of
compositional reasoning, we provide support for an explicit compatibility justification. As with
component contract views, we anchor arguments justifying sibling noninterference using
confidence arguments on the sibling contract view (see Figure 32). In this manner, sibling
contract views, in combination with component contract views, help provide an answer to the
second question raised by practical argument modularity (“Are all system component contexts
compatible?”).

58
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

Figure 32: Sibling Compatibility/NonInterference

When the consumer or any one of the sibling arguments change, the sibling compatibility
argument must be reassessed. We further discuss the mechanics of sibling compatibility in
Section 3.3.3.

The lateral relationships addressed by sibling contract views are only with respect to lateral
contextual compatibility. Lateral component design compatibility in order to meet higher-level
design goals is addressed as part of the development of design demands. Relationships between
siblings are specified as part of the design, i.e., design demands are allocated to components
based on a chosen design architecture. For example, the dependency of one component on
another sibling component to provide a certain kind of input can be specified as an assumption on
a design demand (i.e., specify a design demand under the assumption that the appropriate inputs
are provided). While these issues are separate from sibling context noninterference, they are still
somewhat related. We further discuss these dependencies as part of the component integration
mechanics in Section 3.3.9.

3.3.2.4 System Dependency Views
Ideally, the alignment of argument modules to system components allows all necessary assurance
to be gathered compositionally. Unfortunately, the complexity of argumentation allows for
arbitrary interdependencies within the argument that have so far not been addressed.

Consider, for example, assurance goals and evidence relating to efficiency, such as run-time or
memory efficiency, thermal efficiency, fuel efficiency, etc. Assurance goals about efficiency
would typically be argued within higher-level component modules within the design authority
hierarchy as these claims are often based on emergent properties of the system as whole. Altering
or replacing a component clearly could affect efficiency, thereby necessitating a reassessment of
efficiency claims and evidence. The problem is that the impact on efficiency claims might not be
noticeable and therefore might not be up to date, especially if there is no hierarchical relationship

59
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

between altered system components and the efficiency claims and if altered components are deep
within the modular argument hierarchy.

Generalizing this concern beyond efficiency, it is possible that arbitrary system-wide3
dependencies upon the configuration of components exist throughout the argument that do not
follow a hierarchical dependency structure. The system dependency view encapsulates systemic
cross-cutting concerns. This encapsulation identifies elements of the argument that are likely to
be impacted should any system component change. We represent the system dependency view
graphically as shown in Figure 33.

Figure 33: System Dependency View

As arguments are developed, elements within the argument known to rely on a consistent system
configuration are flagged. Later, during the system-wide compatibility integration sub-process,
the flagged argument elements are compiled into a single view to focus assessment of system-
wide compatibility. All those elements within the system-wide dependency view must be
reassessed during the integration of any component.

The system dependency view helps to answer the third question raised by practical argument
modularity (“Are there new, unaddressed hazards arising from system component integration?”).
The view isolates system-wide cross-cutting concerns and dependencies that arise as components
are integrated. However, the view is dependent upon correctly and completely identifying all
non-structural dependency argument elements, which carries its own risks. Doubts about
identification could be addressed using a confidence argument on the view; however, unlike other
instances where we have suggested the use of confidence arguments, this instance is confidence

3 The term “system-wide” is used to refer to the entire system as a whole, where the
abstraction of the system is variable, but generally refers to the system as represented by the
entire argument structure as is currently available.

60
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

not about the integration of components but about the integration process itself. We further
discuss doubts about the integration process itself in Section 3.3.11.

The system-wide compatibility is purposefully unoptimized to promote simplicity. Specifically,
the view contains all elements that should be reassessed, without regard to the component being
integrated, i.e., the view is verbose in order to be conservative. It may be possible to prune the
view based on the characteristics of the component being integrated; however, we leave these
optimizations for future work as such optimizations would require detailed dependency tracking
and analyses that introduce further doubt that the view is completely and correctly generated.

The use of the system-wide compatibility view within the SIAT integration mechanics is further
discussed in Section 3.3.10.

3.3.3 Mechanics Overview
The concepts and argument structures presented so far provide a foundation for supporting the
development of arguments from composed system component arguments; however, more
detailed integration mechanics are necessary to facilitate their practical application both for the
development and maintenance of complex assurance cases. We identify four primary integration
activities focused on establishing the following properties:

1. Demand Satisfaction: Justification, through the use of assume-guarantee reasoning, that the
demands of the consumer component are satisfied with the guarantees of an integrated (i.e.,
consumed or provider) component.

2. Contextual Compatibility: Justification that the consumer and any given provider component
do not have any conflicting constraints, behaviors, etc.

3. Sibling Compatibility: Justification that the integrated component is compatible with all other
sibling components, i.e., the integrated component does not counteract, degrade, or otherwise
conflict with the behavior or properties of other sibling components.

4. System-wide Compatibility: Re-evaluation of the validity of any argument structures within
the entire assurance case that are dependent upon a specific system configuration or design,
and if deemed necessary, updating the associated evidence and argument structures.

The rationale for this division of activities is based on answering the questions posed in the
introduction of this section.

We began from a perspective of applying assume-guarantee reasoning to establish demand
satisfaction. Further development and investigation of this process yielded cascading limitations
with respect to contextual compatibility and integration hazards that we address through the other
integration activities.

The ordering of the above activities illustrates a progressive expansion of integration activities in
terms of the scope of the involved argument artifacts; however, there is no prescribed order in
which these activities are to be carried out. Often, there is an overlap between these activities
necessitating context switching between integration processes when practically applied.

To provide a framework in which the integration mechanics are performed and a process model
that can be practically executed and expanded, we have documented the above activities in
Business Process and Model Notation 2 (BPMN2) [39], shown in Figure 34. This process
situates the primary integration activities above within a generic integration process that begins
with selecting a component to add or modify, and ends with assessment of the composed
argument post-integration. The purpose of these mechanics is to describe key activities when

61
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

integrating system component arguments rather than to exhaustively address all possible
concerns. As such, the process should be viewed as a generic template of integration mechanics
to be refined and altered as necessary, to better address any domain- or application-specific
concerns. A detailed description of the sub-processes of the integration process is presented
below.

Figure 34: Component Module Integration Process

3.3.4 Integration Scope: Perspective of Component Selection
The SIAT integration process (Figure 34) is designed to address argument development both
during initial system development as well as in response to change and general maintenance post-
deployment. In both instances, the process is applied from the perspective of the consumer of a
system component at any level in a system-of-systems design hierarchy. When the process is
performed in response to change, the process is applied from the perspective of the direct
consumer of a changed system component . The component module view (Section 3.3.2)
provides a container for reasoning about the scope of what is being integrated into a larger
argument structure. The SIAT integration process is an activity performed on the argument
structure, i.e., the integration of arguments as encapsulated in component module views. The
process is assumed to be concomitant with the physical integration of components.

The SIAT integration process is performed at all component module boundaries at some point in
the development of a complete assurance case. There are no constraints about the order of system
component integration. Integration may proceed hierarchically (top down or bottom up) or occur
independently of the development of a larger system, e.g., integration of system components out

62
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

of context of any particular system or system of systems. During initial development, the process
is performed during solution development (see Section 3.1.3). Post-deployment, the process is
performed as needed in response to system change.

How a system component is initially developed or changed is not within the scope of the
integration mechanics. The integration mechanics assume that a given system component has
already been developed or changed, and instead addresses the impact of integrating the system
component’s argument within a larger assurance case. The first activity of the integration process
is therefore to select or identify the component (potentially from a set of components) in question
that will be added or altered4. The process repeats for each component identified for integration
iteratively.

3.3.5 Integration Failure
Before further describing the integration process, we note that at any point within the integration
process, engineers may determine that the process should be paused or terminated. Generally, the
integration process allows arbitrary reasons for termination. Obvious reasons include the inability
to satisfy demands, justify contextual compatibility, or address other integration hazards as
described further in subsequent subsections. To address integration failure, the high-level
integration process (Figure 34) defines a generic “exception handling” mechanism that catches
any raised integration failure, halts all integration activities, and reverts the argument to a prior or
“alternative state”.

Repairing the argument to an alternative state admits the possibility that integration failure does
not necessarily imply that a new system component must be selected and the prior failing
component must be discarded. If a system component cannot be integrated, it still may be viable
if other system components change. For example, integration may fail because of interference
with a sibling system component. Rather than discarding the new system component, the
previously established sibling could be altered or removed.

Argument reversion is therefore a generic concept that accommodates arbitrary causes for
termination and provides different failure responses. Furthermore, the activities following
integration failure are domain- and failure-specific and consequently left undefined.

3.3.6 Integration for Change: Impact Assessment and Reversion
The integration process is largely the same for initial development and for post-deployment
change. The process does, however, differ for post-deployment change when integrating
replacements or altered versions of existing system components5. Prior to integrating the changed
component, the existing component must be excised from the system and consequently excised
from the assurance case.

4 The removal of system components without replacement is a degenerate case but applicable
to the integration process. A removed component is considered a “changed” component;
however, subsequent integration may or may not be applicable.

5 Changes where a new component is added to an existing system are addressed with the same
mechanics as initial argument development.

63
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

The goal of impact assessment and argument reversion is to eliminate information and structures
from the case that might no longer be applicable given that a system component has changed.
Impact assessment determines the extent to which reversion must be applied by identifying
elements of the argument and related documents that will require alteration in response to the
change. Generally, argument reversion then reverts the prior integration of the system component
in question by removing inapplicable information and repairing documentation and argument
structures. However, depending on the extent of the change, optimizations may be possible to
minimize reversion. For simplicity of discussion, we assume reversion completely restores the
argument to a state prior to integration of the component in question.

The specific mechanics of impact assessment and argument repair are considered out of scope for
this project effort; however, these concepts have been explored in related work. Argument repair
mechanisms have been suggested in Assurance-Based Development [10] [25] and in similar
modular argument technologies [38]. Further, impact assessment and argument reversion can be
aided by tool support. For example, tools can be developed using a mechanism similar to taint
tracking: propagated changes as a result of integrating a component are tracked and recorded
during development to assist later impact assessment and reversion. Similarly, version control
software, such as Git or SVN, could be used during the integration process. Reversion of the
argument could then be effected by reverting prior commits to the repository.

3.3.7 Justifying Demand Satisfaction
During the demand satisfaction sub-process, one or more argument contracts, based on assume-
guarantee reasoning (see Section 3.3.1), are developed in order to mutually satisfy provided and
required argument interfaces. Each argument contract justifies how a single required interface is
supported by one or more provided interfaces of an individual component being integrated.

This process is performed under the explicit caveat that assume-guarantee reasoning alone is not
sufficient to compose arguments. In principle, the provided and required interfaces of assume-
guarantee reasoning should capture all relevant contextualizing factors, in which case this
subprocess would obviate the need for the other primary integration activities. In practice, there
are always risks of under specifying interfaces. This risk is primarily an issue of provided
interfaces and the failure to list all relevant assumptions (see Section 3.3.1). Failure to specify an
assumption could surreptitiously invalidate interface satisfaction, i.e., the interfaces will appear
satisfied given available information but are actually incompatible, leaving the demand
unsatisfied. Further limitations of assume-guarantee reasoning are discussed in Section 3.3.8.

The role of assume-guarantee within the integration mechanics is to provide the initial foundation
for component module integration. The rationale is that if explicit constraints on interfaces have
been previously specified, then they provide a foundation for reasoning about interface
satisfaction. Within the demand satisfaction subprocess, the provided and required interfaces of
assume-guarantee reasoning are fist examined as given, ignoring issues of completeness and
correctness. Conceptually, the demand satisfaction process approaches assume-guarantee
reasoning deductively6. Concerns regarding the quality of the interface and other integration

6 The separation of deductive and inductive concerns within an argument is similar in concept
to related work [40].

64
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

hazards that are inherent to inductive reasoning are addressed in other integration processes. In
this manner, integration concerns are compartmentalized by integration activity.

A detailed demand satisfaction sub-process diagram is shown in Figure 35, and discussed further
in the following subsections.

Figure 35: Justifying Demand Satisfaction Sub-Process

3.3.7.1 Identifying Interfaces and Prepping Contracts
The first three activities shown in Figure 35 involve the preparation for argument contract
development. Specifically, the identification of relevant interfaces (both provided and required
interfaces) and the placement of placeholder contract module references within the argument. In
some cases, required interfaces might be previously identified, such as during initial
development. Integration in response to change; however, will likely involve an explicit
accounting of affected interfaces. In these scenarios, the component contract view for the altered
component (the set of all contracts between the system and the altered component – see
Section 3.3.2) provides support for quickly isolating relevant required interfaces.

Identified required interfaces are then supported within the argument structure with placeholder
references to argument contracts, i.e., references to an empty contract argument. Prior contract
references are either removed or updated as desired by the argument developers. In addition to
placing reference contracts, placeholder composition schemes are also specified. Composition
schemes provide reviewers with explication as to the nature of the composition to aid in assessing
contextual compatibility. Composition schemes are defined based on the characteristics of the
integrated component, further discussed in Section 3.3.8.

65
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

Once required interfaces are identified, the provided interfaces of the component being integrated
are identified that will serve to support each identified required interface.

3.3.7.2 Contract Development
To effectively justify that a required argument interface is satisfied by one or more provided
argument interfaces, a component contract argument is developed between each identified
required interface and relevant provided interfaces. In SIAT, a component contract argument
provides an assume-guarantee-based argument structure that justifies that:

1. the integration of the provided assurance guarantees imply satisfaction of the assurance
demand,

2. the assurance guarantees are provided under the specified guarantee’s assumptions, and
3. the guarantee’s assumptions are valid.

The component contract argument pattern to justify the above assurance goals is shown in
Figure 36. The pattern is instantiated for each component contract. Items 1 and 3 above are
justified within the contract argument itself. Item 2 is justified indirectly within the contract
argument by referencing relevant argument structures of the integrated component’s provided
interfaces.

66
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

Figure 36: Component Contract Argument Pattern

67
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

3.3.7.3 Recursive Interface Refinement
Assumptions that are explicitly invalidated result in integration failure; however, it is possible
that assumptions are neither valid nor invalid. In these instances, the consumer’s context is
insufficient to compare the assumptions of the provided interface, requiring an expansion to the
consuming component’s context to complete the comparison. The consumer’s argument must
first be updated with the additional context to complete the comparison. The additional context
may be generated from comparable notions already within the consumer’s context, but not
properly explicated. It is also possible that no comparable contextualization exists, in which case,
the assumption of the providing component becomes part of the assumptions of the consuming
component.

The addition of a new assumption to the consumer’s argument requires re-examination of
affected contracts at higher-levels of the argument hierarchy that reference updated portions of
the consumer’s argument. This in turn might require further updates to the context of components
higher in the argument hierarchy. The assumption effectively propagates up the argument
hierarchy to any provided interfaces of the consuming component, illustrated in Figure 37.
Consequently, any existing contracts based on these updated interfaces must be re-evaluated to
verify the assumptions are valid.

Figure 37: Assumption Propagation

The process of assumption validation and propagation continues recursively up the argument
hierarchy until either:

1. all assumptions are validated,
2. the assumption is explicitly invalidated (resulting in integration failure), or
3. the assumption can no longer be propagated (there are consumers of the affected argument).

68
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

The benefit of assumption propagation is that integrating a component does not require assessing
any children components nested within the design hierarchy. Integration for demand satisfaction
can instead focus at interface boundaries. Each consumer throughout the argument hierarchy
subsumes the assumptions of its children. Each provided interface therefore includes all relevant
assumptions, including relevant assumptions of children components. Propagated assumptions
also become part of the context of consuming components to which they propagate (context is
further discussed in Section 3.3.8) providing similar benefits to reasoning at interface boundaries.

A potential negative consequence of assumption propagation is that propagation increases
coupling between modules in order to preserve reasoning at interface boundaries. Increased
coupling increases the difficulty of reverting an integrated component in response to component
changes in the future (Section 3.3.6). Reasoning at interface boundaries at low coupling are both
desirable properties of modularity; however, in this instance we must violate one modularity
property to perserve the other. This tradeoff between necessary violations to modularity
principles to preserve other desirable aspects of modularity is an example of practical modularity
(see Section 3.3.1). We sought to maintain encapsulation, but found that in order to address the
issue of expanding assumptions, a modularity violation is required. As previously discussed, tool
support, such as version control software, may alleviate much of the burden of reverting
propagated assumptions by managing how assumptions are coupled.

The result of successful contract development and interface requirement is that all interfaces are
satisfied and up to date. There are, however, no guarantees that the interfaces are somehow
incomplete in other respects. Further assessment of the integration is necessary, discussed below.

3.3.8 Justifying Contextual Compatibility
Contracts formed on assume-guarantee reasoning are based on the underlying assumption that
satisfaction of identified interfaces is sufficient to establish a contractual agreement. While
practically all current techniques for modular arguments, including SIAT, rely on some notion of
assume-guarantee reasoning and contract arguments (see for example the SafeCer [41] and
MSSC [42]), there is a wide consensus that such reasoning is, by itself, insufficient to provide
assurance that the argument composition is valid. A summary of the challenges/inadequacies
associated with assumption-guarantee reasoning for arguments is as follows:

• Assume-guarantee reasoning typically captures functional properties not qualitative/non-
function properties (e.g., safety or security).

• Assume-guarantee reasoning is typically used for verification (i.e., demonstrating the system
will work correctly) and not certification (i.e., demonstrating the system cannot “go badly
wrong even when other things are going wrong” [43]).

• The assumptions used for assume-guarantee reasoning are themselves based on assumptions,
i.e., the assumptions that are explicitly provided were selected based on the intuition of
developers as to what assumptions will be relevant. Missing assumptions might undermine the
given guarantee or other goals throughout a larger assurance case. Further, proving that an
assumption-guarantee formalism is not over simplified is typically impossible [44].

• Some properties, like safety and security, are system-level concepts e.g., hazards and threats.
Consequently, it is unrealistic to expect a module to provide the necessary detail within the
defined assumptions to obviate an additional top-down system analysis.

We observe that many of the inadequacies of assume-guarantee reasoning for arguments can be
summarized residual doubts about contextual compatibility between argument modules. Defining

69
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

the characteristics that must be compared and assessed to validate contextual compatibility is an
open problem [45] [42] [44]. A further complication is that the context in which the system and
its corresponding argument are developed are just as important as the context in which the
deployed system operates. Consider, for example, the composition of a spurious argument
developed with known logical fallacies. While the operational contexts may be compatibile, the
composed argument will provide a false sense of assurance as it is based on faulty logic. We
therefore must consider both operational and developmental context compatibility.

The challenge in reaching a consensus on contextual compatibility is that comparison
characteristics and assessment criteria are (1) domain-specific and (2) based on the characteristics
and use of the argument; however, we observe that there is an additional contributor to
variability: (3) the characteristics of the composition itself: e.g., composition for argument reuse
or composition of a bespoke component. The composition characteristics motivate comparison of
specific characteristics of the composed argument modules.

We combine the above three observations within a flexible framework allowing for
customization and instantiation in any domain. The framework separates contextual compatibility
concerns based on two questions:

1. Is the integrated argument and any prior assessment of the argument independently
“trustworthy”: i.e., is the argument in isolation (ignoring composition into a larger system) of
sufficient quality to believe it is complete, sound and valid7.

2. Is the integrated argument sound and valid once composed into the larger system: i.e., are
there contextual incompatibilities between the consumer and provider that undermine
assurance goals of the provider.

The first question addresses the concern of contextual compatibility in terms of the component’s
development (developmental context compatibility). That is, if a component was not developed
with a comparable assurance rigor and with common notions of assurance (including common
notions of safety hazards, security threats, etc.) as is expected within the larger system, the
component’s argument may fail to provide the necessary level of support. The goal in supporting
compositional arguments is to reuse existing arguments and assessments of those arguments with
little or no alteration/reassessment. Simply put, the first question asks to what degree are we able
to meet this goal. The second question then addresses compatibly of the system and its
component in operation (operational context compatibility) by asking if contextual
inconsistencies exist in the composed system that undermine the integrated component’s
argument.

The SIAT integration subprocess for justifying context compatibility is shown in Figure 38.
Developmental context compatibility is resolved through domain comparison and assimilation.

7 The terms “sound” and “valid” are often referred to within deductive reasoning, and
therefore may be arguably considered inappropriate when referring to real-world/inductive
systems. Comparable terms for inductive reasoning have been suggested such as “consistent”
and “cogent”; however, for simplicity, we adopt the soundness and validity concepts with the
understanding that the systems we are describing are inductive.

70
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

Operational context compatibility is resolved through context model instantiation and
comparison. These processes are further discussed below.

Figure 38: Context Compatibility Justification Subprocess

3.3.8.1 Domain Comparison
In order for a component’s argument to be appropriate within a larger system argument, there
must be a comparable notion of developmental context, i.e., an agreement must be established
about what adequate assurance means. Without some agreement, it is possible that the argument
justifies assurance goals with illogical, insufficient, or inappropriate argument and evidence.

We define developmental context as the quality, standards, practices, etc. that go into the
development of a component and the development of its assurance case. We include in this
definition system-level concerns, such as safety hazards and security threats, to address common
concerns that components might fail to consider important system-level properties [44]. As
system-level properties, hazards and threats might not be directly applicable to a component
nested within the system’s design hierarchy; however, we observe that components are developed
under some preconceived notion of a larger system that includes common hazards and threats so
as to mitigate possible contributing failures.

The developmental context in which an assurance argument is generated is more
comprehensively captured in terms of the domain in which the component and its argument are
developed. Consider, for example, the domain for commercial aircraft. Any component, such the
engines or flight control software, developed within this domain will have known standards and
regulation governing the rigor by which components are developed and maintained, and
consequently, how assurance is defined and justified. Further, there are known system-level
concerns, such as the hazard of NMAC, that are understood by all engineers and stakeholders

71
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

within the domain. Components that have been approved for one aircraft might not be
appropriately applied on another within the same domain (i.e., operational context compatibility
remains to be established), but the question of whether these components have met established
criteria of acceptability in and of themselves has been resolved.

We observe that in order to provide complete developmental context compatibility, the domain of
the consumer and provider components must either be the same or considered compatible. The
first process of contextual compatibility is therefore to determine if the component originates
from the same or compatible domain.

Domains, however, are not easily comparable as there is no universally accepted method for
domain comparison. While some domain knowledge can be captured and stored in repositories,
and used a source for comparison, such as that provided by CLASS (Section 3.1.4), domain
knowledge largely exists in the minds of domain experts. Ultimately domain experts must
determine the compatibility between domains.

The primary benefit in establishing domain compatibility is that prior assessment and approval of
the argument can be reused. If prior assessment does not exist, assessment of the argument is
necessary. The benefit of domain compatibility in this scenario is that a common understanding
of the existing component and argument is established providing a foundation for assessment,
either by the original component developers or by the consumers of the component. The
argument must be approved for use in its original context before continuing with integration.

3.3.8.2 Domain Assimilation
If the domains of a consumer and provider are considered incompatible by domain experts, the
argument and prior approval of the argument cannot be trusted. Consumers of the component
may either (1) choose to discard the component and find a new one, raising an integration failure,
or (2) bring the component within their domain. We refer to this later activity as domain
assimilation. Domain assimilation is largely undefined as it is definitionally a domain-specific
activity. Generally, assimilation will likely require the following:

• A complete assessment of the component and argument.
• Modifications to the component and/or argument to make the component and argument

compliant with the new domain.
• Communication and support from the original developers.
• Approval of the argument within the new domain as providing acceptable assurance within its

original/assumed operational context.

Once domain compatibility of a component is established, by assimilation or otherwise, the prior
approval of the argument can be reused as support that the argument is sound, valid and complete
in and of itself and can be reused without further developmental context assessment of soundness
and validity for other systems developed within the same domain. Further risks of using the
component within a new operational context (for example, reusing an engine for a new aircraft)
must be addressed separately. These risks differ from system to system even within the same
domain, and therefore prior operational context compatibility cannot be reused in the same
manner as developmental context compatibility. Addressing operational context compatibility is
discussed below.

72
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

3.3.8.3 Context Models Instantiation and Comparison
To provide the basis to address operational context compatibility, we establish the concept of a
context model. A context model specifies a set of domain-specified contextualizing properties to
compare to establish operational context compatibility and is similar in concept to a common
characteristic map [28]. The types of properties captured in a context model are selected by
experts within a given domain. For example, domain experts could stipulate that a component
problem description specified as a problem frame [8] is a necessary property in a context model.
Because there is no universally accepted definition of context, selected properties and their
corresponding forms will be based on domain-specific definitions; however, some properties
have been suggested in the literature, which could serve as an initial bases for defining a context
model:

• GSN context elements (contexts, assumptions and justifications)
• Standards and practices followed
• Environment descriptions
• Problem descriptions
• Safety and security analyses
• Dependency diagrams (e.g., an interface control document)

To the above list, we stipulate that domain compatibility as established by domain experts should
also be part of the context model, although its purpose is to address developmental context
compatibility specifically. While individual notions of context models and how they are
compared will vary, there will likely be some common properties consistent with many if not all
domains8. For example, GSN context elements should likely be part of a context model
regardless of the domain.

There is similarly no established techniques for comparing context. Comparison strategies
ultimately depend on the types of artifacts being compared and the degree of risk accepted by the
stakeholders.

8 There may exist a notion of an assurance argument domain that is subsumed by all domains
adopting argumentation. In which case, common notions of context might be absorbed into
multiple distinct domains that share the general assurance argument philosophy. We refer to
this notion as an assurance domain, but leave further investigation of this topic for future
work.

73
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

Figure 39: Instantiating and Comparing Context Models

Generally, instantiating and comparing context models involves the following steps (shown in
Figure 39):

1. Context Model Definition: Domain experts choose the properties that will define the context
model or models (discussed further below) for their system of systems. Choosing appropriate
context model properties is performed once for the system of systems and the same properties
are used for all instantiated context models for the system. Depending on the domain, it may
be possible to specify one definition of a context model to be used for all systems within the
domain.

2. Comparison Strategy Definition: Domain experts define a strategies for comparing models
and evaluating the comparison. The strategy might influence the context model definition as
specific structures/forms of context properties are chosen. Comparison strategies should
include comparison metrics and methods as well as acceptance criteria. As with context model
definition, comparison strategy definition is performed once for the system of systems (or
once for the domain if applicable).

3. Context Model Instantiation: A context model is instantiated for each component module,
i.e., the specific engineering artifacts associated with each context property are isolated to
form an instance of the context model. Context models are instantiated for every component
module as they are integrated. In principle, context models may be dynamically generated
based on a given context model definition; however, they may also be predefined. Existing
instantiations of context models may be used if (1) the model is still valid within the given

74
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

system of systems and (2) the model is representative of the current system (the model is not
stale).

4. Context Model Comparison: When a component module is integrated by a consuming
component module, the two context models are compared. Comparison is performed once
between two component modules, regardless of how many component contracts are made
between the two modules. Comparison is performed based on the previously defined
comparison strategy.

Steps 1 and 2 are prerequisites for context model instantiation and comparison and should be
performed in advance of integration; however, when exactly the model and comparison strategy
are defined is not specified within the SIAT integration mechanics. Instantiation of the context
model is largely the responsibility of the component consumer, although, provider components
may specify a context model in advance. Use of existing context models is based on the validity
of the definition for the given system of systems.

The degree of scrutiny involved in defining and comparing context models will likely vary
depending on the characteristics of the component and the characteristics the composition itself.
For example, components developed entirely within the same organization and for the same
system of systems may not require the same analyses for contextual compatibility as those
components originating from other domains and developed by third parties. To support varying
degrees of context compatibility assessment, we do not restrict the number of context model and
comparison strategy definitions. The next section provides a discussion on the use of composition
schemes to organize and explicate the use of alternative context models and comparison
strategies. Because of the potential for variability in context model definitions, consumer context
models are likely best instantiated as needed (i.e., dynamically) based on component’s context
model being compared; however, the precise mechanics of context model instantiation are not
specified to allow for alternative approaches.

Context model instantiation requires that any relevant development artifacts associated with
defined context properties are assembled, often by the consumer. An obvious challenge would be
if the required artifacts do not exist or are not well organized so as to be easily found. By virtue
of requiring that the component domain be compatible with the consumer, we expect a certain
quality to the form and structure of component arguments. As such, the required artifacts should
be referenced within the argument structure in a manner than is understood and/or required
within the domain; however, we anticipate that additional effort will be required to translate
existing artifacts into a standardized form for comparison.

Context comparison may reveal portions of context that are neither valid nor invalid, suggesting
an expansion to the consumer’s concept of context. The alteration to context must propagate up
the design hierarchy to relevant documentation, triggering a recursive update and partial re-
evaluation of context compatibility hierarchically. The rationale and methods for supporting
context propagation are similar to those previously discussed for assumption propagation, see
Section 3.3.7.

As a result of the comparison, the consumer and provider are either:

1. considered contextually compatible with respect to the definition of context compatibility
established within the domain and all context models have been updated recursively as
required or

2. considered incompatibile triggering integration failure and integration reversion.

75
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

The results of successful comparison between models can be documented within an argument as
confidence in the relationship between the consumer and the provider. The confidence argument
should also include a reference to the results of domain comparison described in the prior section.
The component contract view (Section 3.3.2) provides a summary of the complete relationship
between the consumer and provider components, and therefore serves as an appropriate anchor
for linking within the case a confidence argument on contextual compatibility (see Section 3.3.2
for an illustration). Figure 40 presents a confidence pattern for contextual compatibility that can
be instantiated based on any context model and comparison strategies.

Figure 40: Component Contract Confidence Argument Pattern

3.3.8.4 Composition Schemes
While mechanics for both domain comparison and assimilation and context model instantiation
and comparison provide the basis for establishing developmental and operational compatibility,
there are two unresolved challenges faced by argument reviewers (e.g., certifiers):

76
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

1. The underlying rationale and principles (referred to as the warrant) by which arguments are
composed is not cited within the case. Because a warrant expresses how the composition of
argument modules should be interpreted and the validity of the composition assessed, lack of
explicit warrants promotes inconsistent argument development and inconsistent assessment.

2. Assessing the validity of argument composition is currently not well established and subject to
change over time and across different domains. Consequently, as composed argument modules
are reused and systems and domains evolve, the prior criteria used to support the authority of
the warrant may be considered invalid in the future, even within the same domain.

These challenges are emphasized by the SIAT mechanics for contextual compatibility. Multiple
context models and comparison strategies may be defined and applied based on the
characteristics of integrated components. Without explicit documentation of what context models
and comparison strategies were used, the rationale for compatibility is likely unclear to
reviewers. Furthermore, we acknowledge that how developmental and operational context
compatibility are established will undoubtedly change over time. When these changes occur,
affected argument module compositions should be flagged and contextual compatibility
reassessed. Without some organization and management of the impact of changes to contextual
compatibility criteria, locating what portions of the argument that need to be reassessed and
updated is obscured, thus reducing the practicality of modular arguments.

We address these challenges in part through the application of composition schemes, an extension
of a recently proposed concept for providing warrants for evidence, called evidence schemes [46].
Rather than immediately support a required interface goal with a contract reference element, as is
traditionally the case, a composition scheme, notated as a GSN strategy element, is placed
between the goal and the contract, shown in Figure 41. The strategy element explicitly identifies
the “scheme” by which doubts about the composition are assessed. For example, the following
properties may be used to identify a composition scheme:

• The provenance of the provider component domain, i.e., endogenous or exogenous.
• The provenance of the prover component system, i.e., endogenous or exogenous, or system

“type”.
• The cardinality of the composition, i.e., one-to-one between required and provided interfaces

or one-to-many.
• Prior approval/certification.

77
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

Figure 41: Composition Schemes

Schemes are selected from a prescribed set of schemes established within a domain to ensure
consistent use. The scheme communicates to reviewers the compositional concerns that must be
addressed, and links to the domain-specific practices for addressing these concerns.

If consistently applied, changes within the domain to the practices for composing modular
arguments can be easily propagated to relevant portions of existing arguments and contextual
compatibility can be reassessed as necessary.

For example, composition schemes may be defined in terms of an instantiation of the following
form:

Appeal to a component from an (endogenous | exogenous) system within an (endogenous |
exogenous) domain with (no | prior) approval providing (direction, i.e., one-to-one | indirect, i.e.,
one-to-many) support

An instantiation includes the following:

Appeal to a component from an exogenous system within an endogenous domain with prior
approval providing indirect, i.e., one-to_many support

This scheme conveys useful information for the development and review of the argument:

• An exogenous system highlights operational context compatibility as a concern. Reviewers
will expect a rigorous context model comparison.

78
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

• An endogenous domain means developmental context compatibility is less of a concern.
Reviewers might not expect any documentation about domain assimilation, but will question
how domain comparison was performed9.

• Prior approval within the an endogenous domain means the need for further assessment of
developmental context compatibility might not be necessary. Reviewers might require a
reference to the prior approval, but will likely not need to scrutinize the approval given the
approval was derived within the same domain.

• Indirect support, i.e., a one-to-many mapping between a demand and provider guarantees is an
indication that the specific contract must be developed to show how the sum of all guarantees
implies satisfaction of the demand. Reviewers should expect to find an implication
justification within the contract.

If, for example, the context model for comparing exogenous system components changes in the
future, schemes like the one above referencing exogenous systems can be easily identified and
flagged to focus further review of the case. In this manner, composition schemes provide a novel
kind of modularity and support within the argument:

Composition schemes modularize and organize the use of domain knowledge within the case.

The detail of the composition scheme hints at the scale of the contextual compatibility assessment
that is performed. Highly abstract composition schemes requires that contextual compatibility
assessments cast a wider net in terms of the context properties are assessed and to what degree.
More detailed schemes indicate highly refined, focused and perhaps more established/accepted
compatibility assessments. As the detail increases down to the very specific characteristics of
components, composition schemes aid in defining a product line of argument/system
composition.

While composition schemes provide benefits to reviewers to explicate composition and to
manage the connection to evolving domain knowledge, they negatively impact modularity by
increasing the coupling between modules: consumer components using composition schemes will
reference properties of the specific component being consumed. It may be possible to decrease
coupling by encapsulating the composition scheme within the contract argument; however, we
leave notation refinements for future work. Because the coupling is localized to required
interfaces, our current model of composition schemes can be easily updated and is amenable to
automated tool support to minimize the effort in altering schemes as components are changed in
the future.

3.3.9 Justifying Sibling Compatibility
Contextual compatibility as so far described addresses compatibility only between a consumer
component module and an individual consumed (provider) component module. The rationale for
this approach was to compartmentalize and focus integration concerns incrementally. A
consumer may, however, consume more than one component module. The collection of
consumed component modules are referred to as sibling components.

9 A composition scheme could further reflect how the provenance of a component is derived.

79
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

In principle, if new assumptions and context of a consumed component are propagated as
suggested in the above mechanics, sibling component compatibility should be inferred by
transitivity. That is, for a consumer X and sibling components A and B, if the context and
assumptions of A are compatible with X, and the context and assumptions of B are compatible
with X, then the context and assumptions of A and B should be compatibile. As each component
is integrated, the consumer component (X) is updated as necessary with new context/assumption
of its components (A and B). A consumer component subsumes the context/assumptions of all
currently consumed components. As a result, the order of composition should not matter
(argument composition is commutative) and sibling compatibility is maintained progressively.

In practice, sibling compatibility is a property of specific concern for compositional arguments,
both in argument development and review. Lack of an explicit argument may be considered
unacceptable, especially as components are altered and added over time, obscuring implicit
inferences of noninterference. If an explicit justification of sibling component noninterference is
desirable, a noninterference (i.e., sibling compatibility) argument can be expressed as a
confidence argument on the sibling contract view (Section 3.3.2).

Since noninterference may be achieved by previously described integration mechanics, the exact
form on a noninterference argument is left open to address any domain-specific doubts; however
possible options include:

• a composite of all consumer-provider contextual compatibility assessments,
• a matrix of compatibility between every subset of siblings
• an argument expressing confidence in the integration mechanics described above as not

requiring other arguments of sibling noninterference.

3.3.9.1 Related Sibling Concerns: Design Siblings
Sibling component compatibility as described is largely an issue of contextual compatibility
between consumed components. There is also a concern about the compatibility of
behaviors/demands on components, especially as components change over time.

Assurance demands placed on components should be specified as generally as possible to
promote flexibility; however, it is often the case that a demand is based on limitations of a known
component or a set of components. Furthermore, a demand may be carefully balanced amongst
the constraints of other sibling assurance goals (Figure 42) in the argument structure. The issue is
that there may be inherent coupling of assurance demands to the component. As components
change, the design and relevant design demands may need to change. As a result, other sibling
assurance goals may be affected. Whats more, the extent of the change may propagate up the
argument hierarchy, affecting goals related detailed design, system specification, and potentially
even requirements.

Consider the example illustrated in Figure 43. In order to satisfy the reliability goal (probability
A per operational hour), reliability specs are developed for relevant subsystems. In this example,
reliability probability X and Y are balanced between two subsystems, but how are these
probabilities chosen? It is possible they are arbitrarily defined (e.g., an even division), but more
likely, they are chosen based on known or expected constraints of each subsystem, which may be
implemented by other modular components. In this example, it is possible that component1 may
provide better or worse reliability than is demanded:

80
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

• If the reliability is better, it is possible to relax probability Y, and perhaps alter the
implementation of subsystem2 to take advantage.

• If the reliability is worse, the component could be discarded as an integration failure; however,
if there was some flexibility in subsystem2, the reliability constraints could be rebalanced in a
way to make the component’s reliability acceptable.

We refer to this kind of compatibility as design sibling compatibility. During component
integration, the design can be reconsidered and rebalanced as necessary; however, for simplicity
of the current effort, we instead focus on the satisfaction of demands as given, and leave the
precise mechanics for rebalancing the design and assurance demand for future work.

Figure 42: Sibling Assurance Goals

81
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

Figure 43: Sibling Assurance Constraint Balancing

82
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

3.3.10 Justifying System-wide Compatibility
The mechanics as so far described address the concerns of integration systematically but under
implicit assumptions about the hierarchical structure of the argument and the locality of
dependencies. In a simplistic argument hierarchy, there are likely no “system-wide” cross-cutting
constraints. Each branch of the argument could then be considered to be independent of other
branches. Further, any dependencies between components would exist only at the interface
boundary. The complexity of argumentation, however, allows for arbitrary interdependencies
within the argument that have so far not been addressed (the complete problem description is
given in Section 3.3.2).

To address arbitrary system-wide dependencies, i.e., to provide assurance of system-wide
compatibility between components, we proposed the system-wide dependency view
(Section 3.3.2). The system-wide dependency view is based upon identifying elements of
argument that are at risk should any component change within the design hierarchy. Goals
supported by testing data have already been suggested as an example; however, Figure 43
provides another example. A goal supporting independence of the two subsystems is potentially
affected by any changes whatsoever to either subsystem.

The identification process is not specified within the integration mechanics explicitly, and is
assumed to occur during argument development or during domain assimilation (Section 3.3.8).
This approach is clearly dependent upon complete identification of argument entities based on
system-wide dependencies. Doubts about identification could be addressed within a confidence
argument anchored on the system-wide dependency view, however, these doubts are an instance
of many possible doubts in applying the SIAT integration mechanics, and not doubts about the
system the argument represents. Further discussion about doubts about the integration process
itself is given in Section 3.3.11.

If sufficient confidence exists that the system-wide view is complete, then justifying system-wide
compatibility is relatively straightforward. Each argument fragment within the system-wide
dependency view is either reengineered (new evidence is developed and/or the argument
fragments are replaced), or evaluated on a case-by-case basis and updated as necessary.

3.3.11 Argument Assessment
An assurance case is assessed to determine if there is sufficient belief in the top-level assurance
claim. While the assurance case documents the rationale for belief in a top-level claim, it is up to
system stakeholders to pass final judgment as to whether the top-level claim is adequately
supported. The assurance case is therefore a tool to aid decision makers as to whether a system
should be deployed, but the final decision is always made by the system stakeholders, not the
assurance case itself. Argument assessment is therefore a stakeholder-driven process of reviewing
and approving the argument. The precise use of the argument in the approval process may vary
by domain.

Using the problem-oriented argument structures as previously described (Section 3.2), we can
select a component at any level of abstraction within a system-of-systems design, including the
entire system of systems itself, and the top-level goal is always the same: the component in
question was successfully developed. A benefit of this approach is that the argument assessment
activity can be similarly modularized and recursively applied (either top down or bottom up), and
consequently serves to potentially decrease assessment effort and cost.

83
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

Modular argument assessment involves answering the following questions:

1. Does the argument module for each system component, viewed in isolation, adequately justify
successful development of the associated system component?

2. Where a system component is itself composed of integrated system components, are those
system components adequately integrated?

Modular argument assessment is recursive: these two questions are asked for every component in
the argument structure, conceptually starting at the highest level of the currently available
argument structure. Furthermore, the assessment is modularized to take advantage of prior
assessment and approval of system component arguments. If, for a given system component, both
of the questions asked by modular argument assessment have been previously answered
affirmatively within the same domain, assessment does not need to continue recursively down the
argument structure for the system component in question.

The first question addresses the fundamental concern of any traditional argument assessment, i.e.,
is the top-level assurance claim is adequately supported. Component modules are assessed in
isolation by assuming that the context of the component is valid and that any consumed
components will adequately support associated claims. By modularizing the assessment in this
manner, prior assessments can be reused. Other than these assumptions, this assessment activity
follows a traditional argument assessment. We therefore focus on answering the second
assessment question.

The second question is answered by evaluating the artifacts and activities of the integration
mechanics so far described. The premise of the integration mechanics is that to successfully
integrate arguments about system components we must address three fundamental concerns:

1. Are design demands satisfied by integrated system component behaviors?
2. Are all system component contexts (both in development and use) compatible?
3. Are there new, unaddressed hazards arising from system component integration?

These questions serve as the driving motivation for all integration activities and argument
structures. The first question is addressed by assume-guarantee reasoning, and the development
of component contracts discussed in Section 3.3.7. The first question is also partially addressed
by reassessment of design siblings and rebalancing constraints as necessary discussed in
Section 3.3.9. The second and third question overlap, in that failure to maintain contextual
compatibility is a hazard of system component integration. We highlight the contextual
compatibility hazard in particular because of its importance given the known limitations of
assume-guarantee reasoning. We partially address the limitations of contextual compatibility for
assume-guarantee reasoning in Section 3.3.8. We further address the limitations with respect to
contextual compatibility between sibling components (i.e., sibling noninterference) in
Section 3.3.9. The third question addresses miscellaneous integration hazards. We identify that
there are system-wide compatibility concerns that must be addressed when integrating
components in Section 3.3.1010. Assessment of the adequacy of integration is therefore a

10 This hazard of integration may also be viewed as a contextual compatibility hazard.

84
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

stakeholder evaluation of each of these integration activities by evaluating any associated altered
or developed argument artifacts.

There are, however, additional integration hazards not addressed in the mechanics discussed so
far that are a consideration during argument assessment:

the integration mechanics themselves might be incomplete or incorrectly applied.

Example doubts include:

• Have all argument structures that have system-wide dependencies been appropriately tagged
so as to facilitate system-wide assessment mentioned in Section 3.3.10?

• Have assumptions been properly propagated and interfaces properly updated during when
developing contracts (Section 3.3.7)?

• If interfaces are dynamically generated (see (Section 3.3.7), how do we know the generation
process didn’t miss anything?

• Are the set of composition schemes (Section 3.3.8) up to date, i.e., have changes to contextual
compatibility assessments been propagated sufficiently to consistently inform reviewers and
argument developers?

• Are there other integration hazards not addressed by the integration mechanics?

The rationale for the completeness of the integration mechanics is justified through the
progressive evolution and discovery of limitations as presented in the above sections. In
principle, this implicit argument could be documented using GSN; however, the underlying
concern is the authority of our proposed approach to integration (the “backing” in the parlance of
the Toulmin model of argumentation [11]). A GSN argument for the approach does not give the
approach authority (i.e., acceptance of the approach), only stakeholders can grant authority. In
principle, the authority of the approach would be given within an assurance domain: a domain
prescribing common/accepted practices for the development and maintenance of assurance
artifacts, including assurance arguments. The development of the integration mechanics has
revealed the need for assurance domains, but this topic extends beyond the current project effort.
Further research into the concept of assurance domains is therefore left for future work. For
simplicity of this effort, we assume the authority of the integration mechanics.

If the integration mechanics are accepted as complete, the correct application of the integration
mechanics is a special case of a more general concern common to assurance arguments:
epistemic doubt [46] [40]. These doubts can be addressed through the development and
assessment of confidence arguments [12]. Since these doubts are universal to any argument,
regardless of modularity, we simplify this effort by focusing more on assumed correct application
and leave organizing residual epistemic doubts within a modular argument architecture for future
work.

3.4 Compositional Analysis Framework for Systems of Systems
The compositional analysis framework provides an environment in which formal validation and
the verification of composition can be performed. Evidence provided by formal validation and
verification supports critical claims in the assurance case:

• Evidence from validation supports claims that component requirements are satisfied by
component implementations.

85
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

• Evidence from verification of composition supports claims that component interfaces are
compatible with system interfaces, forming a contract between the system and its component.

This evidence, when coupled with supported claims of contextual compatibility, yields a high
degree of confidence that composition is valid and will enable the system to satisfy its
requirements.

A critical component of SIAT is the identification of the system context — including the
environment in which the system must operate. Complete, accurate and early consideration of
context is essential to system development, to system composition and to the corresponding
argument.

Assume-guarantee reasoning provides a powerful framework for reasoning formally about the
composition of system components and, moreover, underlies argument composition. As
discussed in Section 4.1.4.5, system components are described in terms of formal interfaces that
document both the syntax and semantics of what the component assumes about and guarantees to
its environment.

Semantics are real-world concerns that typically have no representation in formal systems. In the
development of SIAT, we developed frameworld for including real-world type information,
manipulating real-world types, and documenting and reasoning about the correspondence
between real-world types and their machine-world representations.

3.4.1 Primitive Real-World Types
Primitive real-world types are drawn from base measures identified by the International System
of Units, and include:

• Length
• Mass
• Time
• Electric Current
• Thermodynamic Temperature
• Amount of Substance
• Luminous Intensity
• Angle

One way to set up syntax supporting these base measures is:

 measurement: NONEMPTY_TYPE =
 [#
 value: real,
 scaling: posreal,
 length_dim: real,
 mass_dim: real,
 time_dim: real,
 current_dim: real,
 temp_dim: real,
 intens_dim: real,
 angle_dim: real
 #];

Along with support for mathematical operations, this allows us to write PVS statements such as:

86
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

 distance: measurement = 3 * m;
 N: measurement = kg * m / s^2;
 piston_pressure = 3 * N / cm^2;
 c_dist: measurement = sqrt(a_dist^2 + b_dist^2);

An important consideration is that we want to prevent certain types of operations, such as adding
meters to centimeters implicitly and combining units from different systems implicitly. There are
times when it makes sense to perform either of these actions, but making such operations require
explicit steps allows us to detect errors in models (e.g., Simulink models) where adding 1 meter
to 25 centimeters will yield 26 with ambiguous units.

Support for these primitive real-world types has been added to PVS in the form of measurement
libraries. Handling systems of units to prevent the implicit combination of units from differing
systems requires tradeoffs between simplicity and rigorousness. To explore these tradeoffs, we
have created two different libraries for defining how units can be combined, a system-field
library and a system-templated library.

3.4.1.1 System-Field Library
In the system-field library a measurement type is defined as previously discussed, except that a
field is added to track the system:

 measurement: NONEMPTY_TYPE =
 [#
 value: real,
 system: system_enum,
 scaling: posreal,
 <same as before>
 #];

In this library, the possible values of system_enum are NOT_APPLICABLE (for
dimensionless measurements), ANY (for units that are system agnostic, such as seconds),
METRIC, and IMPERIAL. Lengths are defined in their own theory, and are defined by the
following predicate:

 length?(m: measurement): bool =
 valid_measurement?(m) AND
 dimension_match?(m, zero_measurement WITH [`length_dim := 1]);

The lengths theory also pre-defines several units:

 zero_length: length = zero_measurement WITH [`system := ANY, `length_dim :=
1];
 unit_length: length = zero_length WITH [`value := 1];
 m: poslength = unit_length WITH [`system := METRIC];
 cm: poslength = m WITH [`scaling := 1/100];
 mm: poslength = m WITH [`scaling := 1/1000]
 ft: poslength = unit_length WITH [`system := IMPERIAL];

87
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

The times theory is similar, but the definition of second is system-agnostic:

 zero_time: time = zero_measurement WITH [`system := ANY, `time_dim := 1];
 unit_time: time = zero_time WITH [`value := 1];
 s: postime = unit_time;

The proper rules for mathematically combining measurements must also be defined. For
example, the addition operation for two measurements is specified as:

 +(x: valid_measurement, y: {m: valid_measurement | unit_match?(x, m)}):
 {m: valid_measurement | unit_match?(x, m)} =
 IF preferred_system?(x, y) THEN
 x WITH [`value := x`value + y`value]
 ELSE
 y WITH [`value := x`value + y`value]
 ENDIF

This operation requires (via the unit_match? predicate), that the second operand (y) has the
same dimensions, system, and scaling as the first operand (x), and the result likewise has the
same dimensions, system, and scaling as x, with only the value field modified. Specifically, the
unit_match? predicate is defined as:

 unit_match?(x: measurement, y: measurement): bool =
 dimension_match?(x, y) AND
 system_match?(x, y) AND
 (x`scaling = y`scaling);

The dimension_match? predicate is defined as:

 dimension_match?(x: measurement, y: measurement): bool =
 (x`length_dim = y`length_dim) AND
 (x`time_dim = y`time_dim) AND
 (x`mass_dim = y`mass_dim) AND
 (x`current_dim = y`current_dim) AND
 (x`temp_dim = y`temp_dim) AND
 (x`intens_dim = y`intens_dim) AND
 (x`angle_dim = y`angle_dim);

The system_match? predicate is defined as:

 system_match?(x: measurement, y: measurement): bool =
 valid_measurement?(x) AND valid_measurement?(y) AND
 ((x`system = y`system) OR (NOT explicit_system?(x))
 OR (NOT explicit_system?(y)));

The valid_measurement? and explicit_system? predicates are defined as:

 valid_measurement?(m: measurement): bool =

88
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

 (m`system /= NOT_APPLICABLE) OR
 (dimension_match?(zero_measurement, m))

 explicit_system?(m: measurement): bool =
 (m`system /= NOT_APPLICABLE) AND (m`system /= ANY)

The preferred_system? predicate in the specification of the addition operation is required
to ensure that addition is commutative (i.e., that a+b=b+a):

 preferred_system?(x: measurement, y: measurement): bool =
 IF explicit_system?(x) THEN
 TRUE
 ELSIF explicit_system?(y) THEN
 FALSE
 ELSIF (x`system = ANY) OR (y`system = NOT_APPLICABLE) THEN
 % either they're both all, both n/a, or x is all and y is n/a
 TRUE
 ELSE
 % x is n/a and y is all
 FALSE
 ENDIF

The specification of the multiplication operation multiplies the values of the measurements and
sums their dimensions:.

 *(x: valid_measurement, y: {m: valid_measurement | system_match?(x, m)}):
 {m: valid_measurement | system_match?(x, m)} =
 (#
 value := x`value * y`value,
 system := IF preferred_system?(x, y) THEN
 x`system
 ELSE
 y`system
 ENDIF,
 scaling := x`scaling * y`scaling,
 length_dim := x`length_dim + y`length_dim,
 time_dim := x`time_dim + y`time_dim,
 mass_dim := x`mass_dim + y`mass_dim,
 current_dim := x`current_dim + y`current_dim,
 temp_dim := x`temp_dim + y`temp_dim,
 intens_dim := x`intens_dim + y`intens_dim,
 angle_dim := x`angle_dim + y`angle_dim
 #);

Whether measurements have compatible systems for multiplication/division is defined by the
previously discussed system_match? predicate. Accidental mixtures of systems of units are
prevented by disallowing multiplication or division between different systems. As with addition,
the preferred_system? predicate is required to ensure that multiplication is commutative.
The multiplication rule allows any two measurements to be multiplied (e.g., force and distance),
and defines the resultant measurement as having the combined dimensionality of the
multiplicands. Similarly, a division rule is defined allowing two measurements to be divided

89
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

(e.g., length and time) with the result having the appropriate dimensionality (e.g., speed), and an
exponentiation rule allows a measurement to be raised to a power (e.g., length squared to become
area).

Conversions require their own theory and must be explicitly defined as transmutations:

transmutation: NONEMPTY_TYPE =
 [#
 to_factor: {n: nzmeasurement | explicit_system?(n)},
 from_factor: {n: nzmeasurement | explicit_system?(n) AND
to_factor`system /= n`system}
 #] CONTAINING
 (#
 to_factor := unit_measurement WITH [`system := METRIC],
 from_factor := unit_measurement WITH [`system := IMPERIAL]
 #);

3.4.1.2 System-Templated Library
The system-templated library is similar to the system-field library, except that instead of
system being a component of the measurement, measurement_systems parameterize the
theory, where measurement_systems is an enumeration of {METRIC, IMPERIAL}:

 measurements[(IMPORTING measurement_systems) S: system_enum]: THEORY

Units are defined in this library by instantiated versions of templated theories, where different
systems use different scaling factors. For example the imperial_lengths theory is defined
as:

 imperial_lengths: THEORY
 BEGIN

 IMPORTING measurement_systems;
 IMPORTING lengths[IMPERIAL];

 ft_to_m: real = 0.3048;

 ft: poslength = unit_length WITH [`scaling := ft_to_m];
 inch: poslength = ft WITH [`scaling := ft_to_m * 1/12];
 yard: poslength = ft WITH [`scaling := ft_to_m * 3];
 mi: poslength = ft WITH [`scaling := ft_to_m * 5280];

 END imperial_lengths

Within this library, the specification of the addition operation is a little simpler:

 +(x: measurement, y: {m: measurement | unit_match?(x, m)}):
 {m: measurement | unit_match?(x, m)} =
 x WITH [`value := x`value + y`value]

90
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

Note that addition is automatically commutative without a need to check for a preferred system,
and the specification of the predicate unit_match? is also simpler:

 unit_match?(x: measurement, y: measurement): bool =
 dimension_match?(x, y) AND
 (x`scaling = y`scaling);

The dimension_match? predicate is identical to that in the system-field library.

The multiplication operation is also simpler:

 *(x: measurement, y: measurement): measurement =
 (#
 value := x`value * y`value,
 scaling := x`scaling * y`scaling,
 length_dim := x`length_dim + y`length_dim,
 time_dim := x`time_dim + y`time_dim,
 mass_dim := x`mass_dim + y`mass_dim,
 current_dim := x`current_dim + y`current_dim
 temp_dim := x`temp_dim + y`temp_dim,
 intens_dim := x`intens_dim + y`intens_dim,
 angle_dim := x`angle_dim + y`angle_dim
 #);

Unfortunately, with the system-templated library, it becomes possible to inadvertently combine
units from different systems so that m * ft is valid. One can define a predicate to check for
whether a unit is consistently scaled as a power of ten:

 % i can be < 0
 power_of_ten_measurement?(m: measurement): bool =
 EXISTS(i: int): (10^i = m`scaling);

Because imperial units are always defined with a scaling factor that is not a power of ten (with
the exception of units that are system-agnostic such as seconds), the
power_of_ten_measurement? predicate can be used to identify measurements that are
metric. However, this predicate will miss certain situations where custom metric units have
scaling factors that are not powers of ten. The decision to use METRIC as a baseline (so that m
has a scaling factor of 1, for example) instead of IMPERIAL was made primarily for our
preference of the metric system, but is also supported by the potential utility of the
power_of_ten_measurement? predicate.

3.4.1.3 Library Comparison
In the system-templated library, all measurements are valid and compatible with respect to
multiplication. This results in fewer TCCs and often simpler proofs. It also fails to automatically
detect cases where units from different systems are multiplied or even added; however, units are
defined in this library so that conversions would happen automatically, per their scaling field.
So, while the system-field library supports rigorous analysis of units and eliminates the
possibility of multiplying m * ft, its use often results in complex type-correctness conditions

91
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

(TCCs) and increases the difficulty of proving theorems, compared to the system-templated
library. Either library can provide the foundation of the compositional analysis framework.

3.4.1.4 Discussion
While initially we considered the possibility of having domain-specific primitive types (such as
longitude/latitude), experimentation has suggested that domain-specific types can better be
represented using compositional combination as discussed in Section 3.4.2. Additionally, the
measurement libraries can be extended with the addition of domain-specific constants, unit
names (which are really just a type of constant), or even new systems of units.

3.4.2 Real-World Type Manipulation
The primitive real-world types described in Section 3.4.1 can be combined to describe any kind
of measurement. The rules by which the types combine form the basis of a type theory for real-
world types. As an example, a speed measurement should have the dimensions of LT−1, where L
refers to the length dimension and T to the time dimension. This type of manipulation relies on
basic arithmetical operations, as discussed in Section 3.4.1.

In addition to measurements being combined through basic arithmetical operations,
measurements can be composed into more complex objects, such as vectors, matrices, and other
structures.

Vectors of measurements can either be all of the same unit (e.g., a vector describing a location in
3-space) or can contain a combination of units. An example of a vector of measurements with
homogeneous units is a velocity vector:

 mv: Measurement_Vector =
 (: 3, 4, 5 :) * (m / s);

With this homogeneous vector, one can determine its magnitude (13 m /s), and intuitively
combines the properties of measurements discussed so far with the properties of vectors.
However, consider an example of a measurement with heterogenous units:

 mv: Measurement_Vector =
 (: 3 * m / s, 4 * Hz, 5 * N :);

With this heterogenous vector, there is no meaningful definition of its magnitude, but yet this
vector could legitimately describe a state vector.

Rules for mathematical operations on vectors of measurements follow from the rules of
operations on their components, and a theory of measurement vectors has been established to
describe these rules. For addition of two vectors, the rule is simple: the vectors must be of the
same size, and each element in one vector must match the units of the corresponding element in
the second vector. For example, if you have a two element vector whose first element is
measured in meters and whose second element is measured in centimeters, than it can only be
added to another vector whose first element is measured in meters and whose second element is
measured in centimeters. For dot products, the rule is a little more interesting: while the vectors
elements do not need to correspond, all pair-wise products must have the same units. For
example, if you have a three element vector whose elements are measured in m, m/s, and mm,

92
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

then it cannot be multiplied by another vector with the same units, but it can be multiplied by a
vector whose elements are measured in m, s, and km:

 mv1: Measurement_Vector =
 (: 10 * m, 0.25 * m^2 / s, 2 * mm :);
 mv2: Measurement_Vector =
 (: 0.1 * m, 4 * s, 0.5 * km :);
 % Cannot add m^2 + m^2/s^2 + mm^2
 invalid_meas: Measurement =
 mv1 * mv1;
 % Can add m^2 + m^2 + m^2
 valid_area: Measurement =
 mv1 * mv2;

A motivating example for vectors and matrices composed of differing units is a model of a
Kalman filter. Kalman filters take a state estimate vector (̂x), an actuator vector (u), a state
transition matrix (A), a matrix describing the effect of the actuators on the state (B), an estimate
of error covariance (P), and a process noise matrix (Q) to generate a new state estimate vector.
Each of these vectors and matrices will typically be composed of elements with a mixture of
units. To check unit consistency in a model using Kalman filters means understanding how
vectors and matrices of varying units interact. In addition to the simple addition and
multiplication rules covering vectors and matrices, the Kalman filters introduce additional
operations to consider: transition matrices, transformation matrices, and matrix inversion.

As with vectors, the rule for addition is straight-forward: the matrices must be of the same size in
both dimensions, and each element in one matrix must match the units of the corresponding
element in the second matrix. For multiplication, the rules are definitely more complicated. For
matrix A to be multipliable by matrix B, the following properties of the two matrices must hold.

1. The number of columns in A must equal the number of rows in B (as with regular matrices).
2. The matrices must have elements such that, when multiplied, terms being added to form the

resultant matrix have the same units. This means that:

(a) For matrix A to be multipliable by any matrix, units(Aij)=
units(Ai1)units(A1j)

units(A11)
.

(b) For matrix B, it must be the case that units(Bij)=
units(Ai1)units(B1j)

units(A11)
.

With unitless square matrices, if matrix A can be multiplied by matrix B, then matrix B can be
multiplied by matrix A. This is not necessarily true when considering units. When proving

properties with unitless matrices, one can use the fact that ∑
j=1

n
 ∑

k=1

m
 AijBjk is identical to

∑
j=1

n
 Aij ∑

k=1

m
 Bjk, but this equivalence is not valid when Bjk≠Bjm for some k and m. One important

property of matrix multiplication that does still hold is that of associativity: if matrix A can
multiply by the product of matrix B and matrix C, then the product of matrix A and matrix B can
multiply by matrix C, and the results will be identical.

93
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

Transition matrices are matrices that when multiplied by a vector will yield a vector with the
same units. Note that this is not true in general when multiplying a matrix by a vector as is the
case when with Bu, which transforms a vector describing actuators into a vector describing
states. Transition matrices must have the following properties:

1. Transition matrices must be square matrices.
2. For transition matrix A and state vector x, the units of element Aij must equal the ratio of the

units of xi to the units of xj, thus the units of the vector upon which a transition matrix operates
uniquely defines the units of the transition matrix itself.

3. From (2), it follows that element Aij must have inverse units of element Aji.
4. From (3), it follows that diagonal elements (Aii) must be dimensionless.
5. From (2), it also follows that the units of Aij×Ajk=Aik.
6. From (5), it follows that the units of elements Ai,i+1 , for i<numcols(A) uniquely define the

remaining elements of A. Without reference to x, the units of these elements cannot be further
inferred. Thus the number of elements in the matrix that define the units for the remaining
elements in the matrix is numcols(A)−1.

7. From (2), it also follows that if a transition matrix can operate on vector x, then the transition
matrix can also operate on x⊙h, where ⊙ denotes component-wise multiplication, and h is a
vector with homogenous units.

Transformation matrices must have the following properties:

1. A transformation matrix transposing from a vector with length a to a vector with length b must
be of size b×a (i.e,. have b rows and a columns).

2. For transformation matrix B, vector u to be transformed and vector x to be transformed into,
the units of element Bij must equal the ratio of the units of xi to the units of uj.

3. From (2), it follows that the ratio of units of element Bij to Bik must equal the ratio of the units
of uk to the ratio of the units of uj, allowing us to determine whether a transformation matrix B
can operate on vector u.

4. Also from (2), it follows that the ratio of units of element Bij to Bki must equal the ratio of the
units of xi to the ratio of the units of xk, allowing us to determine whether a transformation
matrix B can transform a vector into a type with units matching vector x.

5. Without reference to u or x, it also follows that a transformation matrix must have the property
that BabBcd=BadBcb.

Using the rules for transition matrices and transformation matrices, we can write the
predictState step of the Kalman filter as:

 StateSizeSquareM: NONEMPTY_TYPE = SquareMM(StateSize)
 CONTAINING I(StateSize);
 StateVector: NONEMPTY_TYPE = Measurement_Mat(StateSize, 1)
 CONTAINING (# rows := StateSize, cols := 1,
 matrix := LAMBDA(i: below(StateSize), j: below(1)):
 zero_measurement #);
 BSizeMatrix: NONEMPTY_TYPE = Measurement_Mat(StateSize, ActuatorSize)
 CONTAINING (# rows := StateSize, cols := ActuatorSize,
 matrix := LAMBDA(i: below(StateSize), j: below(ActuatorSize)):

94
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

 zero_measurement#);
 A: VAR (a: StateSizeSquareM | transition_matrix?(a));
 B: VAR BSizeMatrix;
 predictState(A, (priorState: (transitions?(A))), B, (u: (transforms?(B,
priorState)))):
 (unit_match?(priorState)) =
 (A * priorState) + (B * u);

In the above example, StateSize and ActuatorSize are parameters to the
measurement_kalman PVS theory. These values are used to define StateSizeSquareM,
StateVector, and BSizeMatrix types. The A transition matrix and B transformation matrix
are defined relative to these parameters. The priorState argument to predictState is
defined as a vector upon which the transition matrix A can operate, and the u argument is defined
as a vector upon which the transformation matrix B can operate such as to generate a vector with
the same positional units as priorState.

Solving matrix inversion for matrices using units is an ongoing area of research.

3.4.2.1 Proof Automation Support

Throughout the development and application of the PVS libraries for the measurement type,
attention has been given to supporting proof automation.

While PVS is a very powerful theorem prover, it has a reputation for requiring significant input
from a human to complete proofs. Proof automation can be used to reduce or, in many cases,
eliminate the need for human guidance during proofs. Several approaches are provided by PVS to
enable proof automation.

1. Judgements. Judgements are pre-proven type equivalencies that can be leveraged by the type
checker. When a judgment is available, it often allows the type checker to avoid issuing a
proof obligation for type correctness (a Type Correctness Condition, or TCC).

2. Rewrite rules. Rewrite rules are used by PVS to automatically rewrite an expression in a
different, often simpler form. When a rewrite rule is available, it often allows PVS to
automatically simplify an expression, eliminating the need for human guidance.

3. Lemmas. Lemmas are pre-proven expressions that can be used in proofs to simplify an
expression. While lemmas are often not automatically applied by PVS, they can be applied
through proof-lite scripts, increasing the power such scripts and reducing the need for human
guidance.

4. Proof-lite scripts. Proof-lite scripts are a sequence of proof commands that are applied
automatically when the command-line tool proveit is called. These scripts can be included
in PVS files as structured comments, and can use wildcard matching so that they are
automatically applied to many proof obligations. Proof-lite scripts are particularly useful for
helping to discharge TCCs.

All four of these approaches have been taken with the measurement libraries, and significantly
reduce the level of human guidance required to complete proofs involving real-world types.

3.4.3 Correspondence Analysis with Retrenchment
Retrenchment provides a rigorous framework for reasoning about the transition from real-world
types to machine-world types.

95
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

3.4.3.1 Background
Retrenchment is a variation of program refinement. Program refinement is an iterative method
which involves adding detail to abstract specifications until they become concrete enough to be
implementations. Importantly, refinement requires that the refining specification can be proven
to:

1. maintain the invariants of the refined specification;
2. maintain any assertions of the refined specification;
3. maintain the correctness of the initialization;
4. not require narrowing (strengthening) of pre-conditions;
5. not require weakening of post-conditions and
6. not change the signature of any operation.

Retrenchment acknowledges that real-world constraints can cause some of these proofs to fail. In
general, retrenchment is a narrowing of the pre-condition and a constrained weakening of the
post-condition [47], although it can weaken any of the above requirements of refinement.
Consider the following specification of an adder:

 adder: THEORY
 BEGIN
 plus(a: nat, b: nat): nat = a + b;
 END adder

A simple specification, except that in PVS the naturals are unbounded, while in practice there
will be a maximum value that can be represented. For example, one might posit the following as
a refinement:

 adder2: THEORY
 BEGIN
 max_nnint32 : int = 4294967295;
 nnint32?(n: real): bool = integer?(n) AND (0 <= n) AND (n <= max_nnint32);
 nnint32 : NONEMPTY_TYPE = (nnint32?) CONTAINING 0;

 plus(a: nnint32, b: nnint32): nnint32 =
 IF (a + b > max_nnint32) THEN
 max_nnint32
 ELSE
 a + b
 ENDIF;
 END adder2

This clearly violates the requirements of a refinement:

1. The signature of the operation was changed.
2. The revised signature narrows the pre-conditions.
3. The post-condition is weakened for the case where a + b > max_nnint32.

Thus, the proposed refinement is not a refinement, but a retrenchment.

In many cases, constrained equivalence between models [48] can be considered a form of
retrenchment, if one considers the models to be formal specifications. For example, if one model

96
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

is the abstract OEM model and the second model is the model as implemented by the supplier,
then likely the supplier’s model will be a retrenched version of the OEM model, and constrained
equivalence will provide a formal means of defining the rules of that retrenchment.

3.4.3.2 Application to Correspondence
As discussed in Section 3.1.2, SIAT calls for an explicit correspondence between environment
phenomena that are modeled as real-world types and their representation in the system as
machine-world types.

Most real-world phenomena are continuous in nature and are described using real numbers.
Additionally, bounds are not always identified for real-world phenomena. For example, while
there is a practical limit to displacement for a vehicle, arising from time or fuel constraints, a
maximum displacement is unlikely to be identified in the problem or the requirements.

For digital computer systems, the representations of real-world phenomena are not real numbers
and are never unbounded. Instead, fixed- or floating-point numbers are used and bounds are
either explicitly identified or implicitly defined by the representation used. This essential
discretization introduces unavoidable loss of precision, which represents a retrenchment from the
real-world phenomenon. Moreover, the essential bounding introduces unavoidable inaccuracy
whenever the real-world value exceed the bounds of the machine-world representation, which
represents another retrenchment from the real-world phenomenon.

Additionally, system representations of real-world phenomena are driven either directly by sensor
measurements or indirectly by models based on sensor measurements. Sensors introduce
additional loss of precision and inaccuracy by virtue of the physical processes through which they
make their measurements and by their own internal system representations, when they include
digital computers or digital outputs. Sensors and digital computers also introduce latency.

Correspondence models describes the inaccuracy, loss of precision, latency, and other
discrepancies between the true value of an environmental phenomenon and its system
representation. These discrepancies represent a retrenchment between the requirements and the
specification of the system: we cannot say that the specification is a refinement of the
requirements, because the data types have changed and the data values have become imprecise.
Retrenchment therefore provides a framework in which the impact of these changes can be
assessed, increasing our confidence that the specification is correct.

3.4.3.3 The Role of Correspondence
Correspondence supports claims of requirement satisfaction. Using correspondence models, the
retrenchment from the requirement to the design is argued to be acceptable. Then the design can
be shown to be correct which, under the retrenchment, satisfies the requirement. Using the Ultra
Stick example (see Section 4.2), as example argument is shown in Figure 44.

97
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

Figure 44: An Example Argument using Correspondence

3.4.3.4 Representing Correspondence
Correspondence models include four elements:

1. explication,
2. real-world semantics,
3. machine-world representations, and
4. approximation.

A correspondence model is attached to each element of an interface, to document unambiguously
and formally the relationship between the machine-world element of the interface and its
syntactic components and the real-world phenomenon being represented.

98
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

As an example, a simple correspondence model for the pitch estimate that is provided by the
measurement subsystem in the Ultra Stick example (see Section 4.2) is shown below11.

 pitch: machine world correspondence {
 explication:
 Body-axis pitch angle, measured in degrees.

 real-world semantics:
 quantity : angle
 units : degrees
 range : -90 .. 90

 machine-world semantics:
 representation : 16-bit integer
 scale : 1/100
 offset : 0
 range : -9000 .. 9000

 approximation:
 noise : 0.43
 bias : 1.20
 }

The representation shown above is intended to be easy to read and easy to write, while also being
easily machine-translatable to an appropriate formalism. We have developed a prototype
translation tool that parses this format and builds an internal, intermediate representation. From
this intermediate representation, we can generate a variety of formal representations. For
example, the prototype tool is currently configured to output PVS, as shown below.

 % Body-axis pitch angle, measured in degrees.
 pitch: machine_world_correspondence =
 (#
 real_world_semantics :=
 (#
 quantity :=
 ANGLE,
 units :=
 DEGREES,
 range :=
 (#
 min := -90,
 max := 90
 #)
 #),

11 The machine-world semantics section of this example specifies a fixed-point representation
of a real number. The scale parameter indicates how the integer value stored in computer
memory should be scaled and the offset parameter indicates how the resulting value should
be offset to yield the interpreted value of the parameter.

99
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

 machine_world_semantics :=
 (#
 representation :=
 A16_BIT_INTEGER,
 scale :=
 1/100,
 offset :=
 0,
 range :=
 (#
 min := -9000,
 max := 9000
 #)
 #),
 machine_world_semantics :=
 (#
 noise :=
 0.43,
 bias :=
 1.20
 #)
 #)

As a second example, also drawn from the Ultra Stick example, consider the correspondence
model for pitch rate, shown below.

 pitch rate: machine world correspondence {
 explication:
 Body-axis pitch rate, measured in degrees per second.

 real-world semantics:
 quantity : angle rate
 units : degrees/s
 range : -245 .. 245

 machine-world semantics:
 representation : 16-bit integer
 scale : 1/100
 offset : 0
 range : -24500 .. 24500

 approximation:
 noise : 0.24
 bias : 1.80
 }

The prototype translation tool generates the following PVS, for this correspondence model.

 % Body-axis pitch rate, measured in degrees per second.
 pitch_rate: machine_world_correspondence =
 (#
 real_world_semantics :=
 (#
 quantity :=

100
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

 (#
 value := angle,
 unit := RATE
 #),
 units :=
 DEGREES_PER_S,
 range :=
 (#
 min := -245,
 max := 245
 #)
 #),
 machine_world_semantics :=
 (#
 representation :=
 A16_BIT_INTEGER,
 scale :=
 1/100,
 offset :=
 0,
 range :=
 (#
 min := -24500,
 max := 24500
 #)
 #),
 machine_world_semantics :=
 (#
 noise :=
 0.24,
 bias :=
 1.80
 #)
 #)

3.4.4 Contract Analysis
The use of real-world types and correspondence models to document the relationship between
elements of a component’s interface and real-world phenomena enables more in-depth analysis of
contracts than would be possible using only machine-world types.

A traditional interface for a component includes the machine-world type for each element of the
interface and, typically, a meaningful identifier for the element. For example, an interface might
include “velocity” and “float”, indicating that there is an element that reports on velocity and that
it is represented in the machine as a floating-point number.

Often, additional information about the element of the interface is available in documentation.
The documentation might specify, for instance, that the velocity is to be interpreted as meters per
second and is, moreover, constrained to fall between zero and 100 meters per second.
Unfortunately, this kind of documentation is typically informal and is not available to automated
analysis tools.

By incorporating real-world types into the interface, we can formalize aspects of the entity being
represented. By incorporating correspondence models, additional critical information can be

101
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

included. Together, these richer formalized semantics allow stronger checking of contractual
compatibility, increasing confidence in composition.

102
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

4 RESULTS AND DISCUSSION
This section presents the result of applying system-interface abstraction technology, our system-
of-systems enabling technology. Section 4.1 describes the use of system-interface abstraction
technology and, in particular, the patterns for arguing successful development as a novel
approach to responding to a request for proposals. Section 4.2 describes the application of
system-interface abstraction technology to a hypothetical small UAS based on the Ultra Stick
platform. Section 4.3 describes the application of domain-argument recovery, a reference
mechanic for system-interface abstraction technology, to relevant standards.

4.1 Cooling Tanks Example Problem
This section presents the development of an illustrative example of SIAT by application to the
cooling tank challenge problem. Specifically, we use the cooling tank challenge problem
provided by RQQA as a hypothetical Request For Proposals (RFP).

The goal of this effort is to demonstrate an experimental response to the RFP in the form of an
initial assurance case for a cooling tank system. The assurance case provides RFP response
reviewers with the direction that will be taken to develop the cooling tank system and to provide
adequate assurance that the developed system provides appropriate properties and behaviors. The
case is presented to illustrate how iterative and modular development and assurance will proceed
if the RFP response were accepted.

The intent is to develop an argument-based rationale for a development approach with a clear
focus on assurance and “successful development”. The emphasis of the RFP response is the
application of SIAT concepts, specifically identification, separation, and documentation the
problem, its solution, and its context, including both regulatory and environmental context. The
RFP response therefore serves two primary purposes:

1. the assurance case illustrates a potential new acquisition approach that would require or prefer
responses delivered with initial assurance arguments, and

2. the documentation within the response provides a detailed explanation of the application of
SIAT concepts and mechanics that have been previously described.

4.1.1 Experiment Overview
The substance of this effort is an experimental RFP response that is developed and documented
entirely within an initial assurance case. Typical RFP response sections and documentation is
provided along with initial arguments in an evolving assurance case structure. The mockup
organization and case structure will be used to explain the application of the technologies
developed in this effort. The argument does not justify why the proposal should be accepted
directly, but rather provides a high-level outline of how successful development would be
justified if the proposal were accepted. The arguments presented will therefore provide a general
direction/structure but will require further development which is assumed to take place after the
hypothetical response is accepted. The mockup argument demonstrates how the proposed system
solution will be justified as successfully developed and will illustrate/describe the general
mechanics by which the SIAT technologies are applied to complete the argument.

The combination of the RFP response documentation and argument provides response reviewers
with novel view of how the development of the proposed system will be shown to be “adequate”.
The combination of argument with documentation itself forms a “meta-argument”: an argument

103
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

that the SIAT approach (which itself includes development of an argument) will be successful. In
principle, the meta-argument could be expressed as an assurance case; however, for simplicity of
the example, we do not explore this approach.

The primary input to this effort is the cooling tank CONOPS (Appendix Appendix B). Other
inputs include previous requirements and design documentation that has been collaboratively
refined and reviewed with DCi and RQQA. These inputs are modified as necessary to better
develop a RFP response and to better apply the SIAT technology. Previous requirements and
design will serve as an initial prototype for discussion in the hypothetical RFP and provide a
direction for further development/refinement if the hypothetical RFP response were accepted.

A typical RFP response must address concerns that the proposed effort will be completed within
appropriate time and cost, and if the response will meet the proposing company’s business goals.
These concerns can also be argued in the case. We will point to where these arguments could be
made within the existing argument infrastructure and provide a discussion, but we will largely
consider these arguments out of scope for the example.

Since the complete RFP response is an assurance case, it is provided in a separate document
artifact. To provide a high-level view of the RFP response, the executive summary is copied
below. Note that the response, as an experiment, speaks to hypothetical organizations and
facilitates. Hypothetical entities are not important for this experiment, but necessary for
documentation. These entities are documented within curly braces as placeholders.

4.1.2 Executive Summary
{Dependable Computing} proposes to develop a cooling tank system to be incorporated into the
{industrial facility} {system requiring cooling} system. The developed cooling tank system will
consist of a modular design to facilitate redesign, upgrades, replacements, etc. of components in
the future. The design goal is to not only meet the stakeholder needs as outlined in the RFP
cooling tank CONOPS (Appendix Appendix B), but also to provide useful modularity in support
of practical and cost effective design/development, lifetime maintenance and system evolution.
Modular designs promote these goals by managing complexity, enabling parallel work, and
accommodating future uncertainty (changes to the system of its lifetime). More specifically,
modularity promotes:

1. simplifying complex and large designs by providing high-level abstractions,
2. minimizing the impact of changes through information hiding and low coupling,
3. independent and coordinated design and development through well-defined interfaces, and
4. reuse (both design for reuse and design with reuse) through low coupling and high cohesion

which in turn decreases engineering and certification costs.

This proposal provides a prototype cooling tank system design based on the initial CONOPS
(Appendix Appendix B) and high-level requirements specified in the RFP. The proposed design
is used to illustrate the organization and development processes to be used by {Dependable
Computing} and a basis for further system development. While the architecture of the cooling
tank system will be designed by {Dependable Computing}, the selection and final delineation of
component boundaries (modules) is subject to approval and review by {industrial facility} to best
identify components likely to be changed within the context of {industrial facility} and {system
requiring cooling}. The proposed delineation of components/modules presented in here is based
on {expert knowledge or standard} to illustrate the design approach and can be easily altered to
best meet the needs of {industrial facility}.

104
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

A key aspect of the proposed cooling tank system development is the co-development of a
rigorous assurance case. The assurance case consists of a structured argument, supported by a
body of evidence, that provides a compelling, comprehensible and valid case that a system is
acceptable for a given application in a given environment. In particular, we adopt an argument
structure where the top-level assurance goal is that the system development is “successful”. The
success argument’s structure and content as well as the general development of cooling tanks
system is based upon the System Interface Abstraction Technology (SIAT) developed by
Dependable Computing. Successful system development is defined in by:

1. adequate identification of the problem, the context in which the problem exists, and the
problem solution (requirements) within the defined context, and

2. adequate assessment of the solution (the designed and developed system) to satisfy
requirements, provide necessary levels of safety and security, comply with relevant
regulations and standards, etc.

The terms “success” and “adequacy” are used generally throughout the argument to indicate that
the associated activity or product justifiably meets all expectations of the stakeholders.
Stakeholders provide precise definitions of adequacy for individual expectations.

The proposed cooling tank system assurance case is modularized to directly reflect modularized
system components: i.e., the delineation of the argument modules mirrors the delineation of
system component modules. Assurance arguments are developed for each system component,
and composed to derive a comprehensive cooling tank system assurance case. The close tracking
of assurance case development and structure to the design/development of associated system
components facilitates early and often assessment of the developed system through the iterative
deepening of the system structure throughout the development process. During each iteration, the
assurance case is used to incrementally assess the success of the component and the composed
system as a whole. A key benefit of the coupled modular system and assurance case design is
therefore the “early and often” assurance-driven development of the system through progressive
development and composition of the modularized components and their associated modularized
assurance cases.

In addition to providing benefits during system development, the modular system and assurance
case design are intended to facilitate incremental updates and certification to the cooling system,
thereby reducing maintenance costs over the lifetime of the deployed system. Incremental
certification is an open and fundamental challenge requiring further study. This proposal will
discuss SIAT mechanics by which incremental certification may be achieved under the proposed
assurance case design. In the proposed effort, {Dependable Computing} will be responsible for
the development of cases for modules with the intent of increasing the acceptance and technology
of composable arguments to eventually allow for independent composition of components (both
bespoke and reused) and associated assurance arguments in the future. {Dependable Computing}
can optionally provide support for incremental certification for the cooling system as the need
arises once the system is deployed and as the general discipline of incremental certification
matures.

Development of the cooling tank system will be largely self contained, based itself on the
principles of modularity: conceptually the cooling tank system is a component within a larger
system of systems. {Dependable Computing} will work with {industrial facility} to incorporate
the cooling system and the associated case into a larger system of systems including
incorporation into any certification/approval constructs used by {industrial facility}.

105
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

4.1.3 Response Prototype Conclusions
The scope of the RFP response example provided a direction for a novel approach to developing
RFP responses. Specifically, the example illustrates alignment of the principles of successful
development described by SIAT as sections and tasks of the response. The illustration is limited
in scope to simplify the example, e.g., the example focuses on application of SIAT at the highest
level of development of the cooling tank system. Despite this simplification, the general approach
taken for this first tier of modular decomposition provides a direction that can be repeated
recursively.

Additionally, the illustration is necessarily limited since prior to RFP acceptance, key details of
the system are not concretized. Because of the lack of development information during the
response, RFP offerers are limited to hypothesizing directions for the argument by hypothesizing
requirements, specification and detailed design. This approach is therefore more amenable to
prototype-oriented development approaches. The use of the argument illustrates to the RFP
program manager that the offerer is taking assurance into account early and often, but, because of
the lack of development information, the substance of the argument should not be the primary
focus for RFP acceptance. The RFP response can only illustrate the activities that would be
performed and artifacts that would be produced if the response is accepted. RFP program
managers must therefore accept and have a detailed understanding of the SIAT approach in order
to assess the response. If both RFP program manages and RFP offerers agree upon the principles
of SIAT, responses can be somewhat standardized to include details about key SIAT artifacts and
how the argument could be developed, potentially reducing the effort on the part of program
managers. Furthermore, by accepting a general assurance/development methodology like SIAT,
respones do not need to include detailed descriptions of these methods, thereby reducing the size
of the response.

A difficulty encountered in this activity and throughout general use of the cooling tanks challenge
problem was that detailed stakeholder/domain expert knowledge was often necessary but
unavailable due to the example being academic in nature. As a consequence, we as non-domain
experts for this system often struggled with developing and refining meaningful problem
descriptions, context, requirements, architectures, etc. The degree of detail necessary to fully
explore the uses of SIAT, whether for this RFP response or in general, will require a heavily
refined example (if not a real-world example) with domain experts providing development
artifacts and frequent feedback. In this manner, we can focus on the application of SIAT without
having to solve engineering challenges outside the domain of assurance.

A related challenge to the lack of expert knowledge and a highly-refined example is deciding
when to terminate the decomposition of components. For simplicity of the example, the tasks of
the RFP response note that further decomposition and refinement with stakeholders will be
performed, but the elaborated system was limited to the first tier of decomposition. Within an
actual RFP response, offerers could continue a decomposition either until the granularity of
decomposition is prevented or not appropriate because of the lack of development information
during RFP response, or the offerer has identified interfaces where components the offerer
intends to rely upon third party or previously developed components.

Separate from the application of SIAT, arguments could serve as a fundamental role in RFP
responses in the future. As previously suggested, an RFP response could be structured as an
argument with a top level claim that the response should be accepted. By proposing a SIAT
approach in our illustration, a meta-argument is implied and assessed by program managers

106
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

through the evaluation of how SIAT is applied. Without an agreed upon standard development
approach, the meta-argument needs to be more explicit, and could potentially be structured as a
GSN argument. This approach is related to the concept of success arguments from Assurance-
Based Development (ABD) [25] [10] [24] and is an interesting direction for future research in
argument-based acquisition approaches.

4.2 Ultra Stick UAS Example Problem
The applicability and utility of system-interface abstraction technology rests on critical
assumptions:

1. complex systems and systems of systems of interest are built from components whose
behaviors can be described by simple abstractions; and

2. abstractions of component behaviors compose to describe relevant properties about the
complete, closed-loop system or system of systems.

Computer software is typically built with an eye towards this kind of modularity. Components
expose behaviors through narrowly defined and rigorously documented interfaces. Compositions
of components can be analyzed to establish useful properties about the software as a whole.

Mechanical systems share similar modularity. Mechanical components necessarily interact
through well-defined physical interfaces. Behaviors of mechanical components can be analyzed
to establish useful properties about the mechanical system as a whole.

Sometimes, however, modularity is not employed in the design of complex systems. The benefits
provided by modularity — reuse, analysis, incremental or compositional reasoning — come at a
certain price. It is often not possible to both design a system with good modularity and also
provide an optimal or nearly optimal solution to the problem.

Many cyber-physical systems demand a degree of optimality that threatens modularity. This is
particularly true of high-performance control systems. In all but the most trivial of applications, a
high-performance inner-loop control system must have many details about the dynamics of the
plant, the state estimate, and the effectors to achieve adequate performance. An analysis-
appropriate abstraction of any of these system components limits the degree to which the
controller can be tuned, reducing its performance. Similarly, a mission planner seeking to
optimize criteria such as time, energy, distance, or exposure must have many details about
trajectory planning and vehicle dynamics. Abstraction of these details may result in an apparently
optimal ordering of objectives that, when actual trajectories and dynamics are considered, is far
from optimal.

Additionally, design for modularity has an impact on the design process. For relatively simple
systems that can be readily understood by a small team of engineers, design for modularity
imposes an extra burden during design. These engineers must identify components, establish
abstraction-based interfaces, and design with these interfaces in mind. Since they do not need to
do this, it increases development cost. More complex systems are less readily understood by a
small team of engineers. In this case, design for modularity assists the development process by
enabling engineers to break the problem into manageable pieces.

The prevalence of control in cyber-physical systems raises the following research question:

Can system-interface abstraction technology be successfully applied to control
systems?

107
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

This question is broad. Rather than trivially answer it by pointing at a very simple control system,
we sought an interesting and potentially challenging example from control with which to
demonstrate the applicability and usability of the technology as well as some limitations of its
use.

Ultimately, we settled on the measurement subsystem for an inner-loop flight control system for
a fixed-wing UAS as the core of our example problem. The measurement subsystem incorporates
physical sensors and a state estimator that provides a best estimate of relevant control states
based on both a model of vehicle dynamics as well as up-to-date sensor measurements. Using this
example, we were able to begin to answer the question in the affirmative: system-interface
abstraction technology is applicable to control systems.

That answer is not without its caveats, however. As noted above, the desire for optimality in
control means that controls engineers are not often prepared to think about control systems with
reusable components in mind. Moreover, even when modularity and component reuse is sought,
there remains a dismaying degree of tight coupling amongst components.

Additionally, many aspects of system-interface abstraction technology rely heavily on domain-
specific knowledge and domain-specific argumentation. The development of context
compatibility and detailed evidence for requirements satisfaction by proposed system designs, for
example, depend upon domain knowledge. While the example begins to answer the question of
the applicability of system-interface abstraction technology to control systems, it cannot fully
answer that question.

With these caveats in mind, we support our affirmative answer by:

1. Identifying interfaces based on simplifying abstractions for components of the architecture
that make up the selected flight-control system — meeting assumption 1.

Starting with the problem statement for the UAS, we identify partial requirements and high-level
elements of the architecture for the UAS, the air vehicle, the flight control system and finally the
measurement subsystem.

2. Demonstrating compositional reasoning for useful properties of the flight control system based
upon the simplifying abstractions — meeting assumption 2.

Using the interfaces identified for the measurement subsystem, we prototype selection and
replacement of measurement subsystems — joint replacement of sensors and estimator. The
interfaces ensure that both measurement subsystems are appropriate and enable reasoning about
the effects of replacement.

Additionally, we validate the compositional reasoning at the level of the closed-loop system.
With each measurement system, we first consider whether or not the interfaces are satisfied and
what impact satisfaction or failure to satisfy the interface should have on composition. Then, we
analyze the complete system to determine if the compositional reasoning yielded acceptably
correct conclusions about the rate of successful mission completion.

4.2.1 Scope
UAS represent complex systems of systems. Design and development of artifacts for a complete
UAS was therefore out of scope for this effort. We considered subsystems and components
typical of a UAS to identify one component that would be a good target of study for the example.

108
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

The measurement subsystem of the flight-control system is a good target for the application of
compositional reasoning. Sensors represent naturally replaceable components for which
requirements are readily identified. Additionally, the inclusion of an estimator in the
measurement subsystem allows issues of sibling compatibility to be explored.

We restrict the example to a vertical slice of the UAS that enables us to quickly and efficiently
identify the requirements on the measurement subsystem. At each level of system decomposition,
we focus on those requirements and design decisions that will ultimately impact the requirements
on the measurement subsystem. The result is a deep but narrow set of artifacts related to each
level of UAS development.

The identification of requirements for the measurement subsystem is the result of analyzing the
impact of noise and bias on all of the measurements and observations upon which the control
loops depend. Ideally, the tradeoff space associated with these signals would be fully explored,
allowing robust and complete understanding of the impact on the system of changing the noise or
bias on any subset of signals by any amount.

For this effort, the development of such a complete understanding of the tradeoff space was
impractical. As such, only the impact of changing the noise and bias of individual signals and
then changing the noise and bias of all of the signals was explored. This means that there is some
loss of precision in the contracts and serves to illustrate the kind of tradeoffs that may be required
to apply compositional reasoning.

4.2.2 Design Philosophy
A challenge in applying system-interface abstraction technology to control systems is the degree
of dependency amongst the components of the control system. The components are so
interrelated that there are a variety of ways to think about breaking up the control system. For
example, consider the following breakdown:

• Measurement;
• Control;
• Actuation.

Within these three broad categories, there are both hardware an software components. For
example, there are:

• sensors — hardware/software components that take measurements of the state of the vehicle;
• estimator - software component that converts measurements to state estimates;
• control law - software component that computes control outputs based on state estimates and

commands to track;
• computing platform - hardware component that executes that control law and the estimator

software;
• servos - hardware/software components that manipulate surfaces on the vehicle.

These components are not comprehensive, but are broadly representative of the elements of the
control system.

The flight-control system does not exist as an isolated system: it is a component of a larger
system. In the challenge problem, the flight-control system is a component of the Ultra Stick air
vehicle. The air vehicle is, in turn, a component of the Ultra Stick UAS. For simplicity, we
assume that the other elements of these systems have already been developed.

109
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

The interdependence amongst components of the control system allow for significant flexibility
in defining the architecture. Moreover, there are a variety of ways in which each component can
be categorized and grouped in the architecture. Surfaces, for instance, are part of the airframe, so
they could be viewed as components of the airframe. Their role, however, suggests that they are
components of the control system.

From the perspective of system-interface abstraction technology and compositional reasoning and
assessment, the most productive architectural view is one in which design authority is captured.
In this view, components are grouped and organized hierarchically to reflect the degree to which
their design is dependent on the design of another component. The design-authority view shows
the flow of design decisions from component to component and captures a partial order in which
design decisions are made.

In the design of a flight-control system, there is flexibility in the order in which design decisions
can be made, resulting in many different design-authority views. Commonly, sensors, servos and
surfaces are already chosen for a particular vehicle. In this scenario, the design problem is the
design of a suitable controller. According to the needs of the controller, a suitable estimator is
designed. The corresponding design-authority view is shown in Figure 45.

Figure 45: Possible Design Authority View for a UAS

Alternatively, only the servos and surfaces may have been chosen. In this scenario, the design
problem is the design of a suitable controller, where suitable sensors and a suitable estimator may
be selected according to the needs of the controller. The corresponding design-authority view is
shown in Figure 46.

110
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

Figure 46: Another Design Authority View for a UAS

In the most extreme case, for example when a brand-new high-performance aircraft is designed,
complete flexibility may be possible, allowing a true codesign of the aircraft, surfaces, actuators,
sensors, and controller. The order in which design decisions are made is not fixed, in this case,
allowing engineers complete flexibility in exploring the design space. Nevertheless, design
decisions will be made in some order, as experiments suggest optimal designs to solve elements
of the aircraft’s problem description. Typically, due to the mutability of software and its lack of
manufacturing cost, design decisions related to the hardware will be made first, starting with the
airframe and working towards surfaces, servos and sensors.

For the challenge problem, we assume that the airframe, surfaces and servos have been chosen.
We furthermore assume that the dynamics of the servos are sufficiently fast as to be ignored in
the design of the controller. As a result of these assumptions, the full vehicle dynamics are
available as context during the design of the controller. This corresponds to the design-authority
view shown in Figure 46.

In this architecture, we have chosen to view the control loops as integral to the flight-control
system. While they are separate entities that are likely to be developed one-at-a-time, they are
unlikely to share abstraction-based interfaces that allow them to be developed in parallel and
without access to the full details of inner loops. For example, the outer-loop controller is likely to
require full knowledge of the dynamics of the plant and the inner-loop controller. Viewing the
control loops as integral to the flight-control system is consistent with the observations made
when considering the multi-level control substitution challenge problem, discussed above.

The measurement subsystem, in both the design authority view shown in Figure 45 and the
design authority view shown in Figure 46, acts like a façade for the composition of the sensor
and the estimator. It is not a true component in the sense that it does not have local or internal
functionality. Instead, it abstracts the decision to include an estimator and hides details of the

111
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

sensors and the estimator from the rest of the system. A measurement subsystem could be created
that was only a sensor suite, provided that full state feedback was available and sensors of
sufficiently high quality were available. More likely, however, an estimator would be required to
both estimate state elements not provided by direct measurement as well as filter sensor
measurements for the control system.

In this example, we use the latter approach, and explore two measurement subsystems, both of
which include an estimator.

4.2.3 Process

4.2.3.1 Ultra Stick UAS
Development of the Ultra Stick UAS starts at the UAS level with consideration of the problem
identified by the customer.

A system is needed to image an operational area.

Image quality is of particular concern for this system. To ensure adequate image quality, images
taken when the camera pitch angle is greater than 10° or roll angle is greater than 10° must be
rejected. To ensure adequate resolution, pictures must not be taken above an altitude of 160
meters.

The problem statement is incomplete, but, following the discussion in Section 4.2.1, provides
sufficient detail to allow development to proceed through identification of requirements on the
measurement subsystem.

From this problem statement, a set of partial, high-level requirements can be identified. These
requirements include:

1. The system shall overfly the operational area.
2. The system shall take images of the operational area.
3. The system shall assemble images into a mosaic of the operational area.
4. The system shall ensure that there are no gaps larger than 1 m2 of the operational area in the

mosaic.
5. The system shall discard images captured when the roll angle of the camera exceeds 10°.
6. The system shall discard images captured when the pitch angle of the camera exceeds 10°.
7. The system shall discard images captured when the distance between camera and ground is

greater than 160 m.

These requirements focus on considerations of the UAS as a whole and say as little as is
practicable about the design of the system. As such, the focus in these requirements is on the
positioning of the camera, rather than a forward reference to the use of an aircraft.

The decision to use an aircraft is part of the design, and is introduced during the development of
the architecture. The major architectural components of the UAS are:

• The air vehicle,
• The ground station, and
• The communications system.

112
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

4.2.3.2 Air Vehicle
The air vehicle carries the camera and is responsible for satisfying all of the requirements
described above. While the ground station and communications system are critical components of
the UAS, they do not play a role in establishing the requirements for the measurement system,
and are therefore out of scope.

To satisfy the design demands that are imposed on it, a partial set of air vehicle requirements
have been identified. These requirements include:

1. The air vehicle shall overfly the operational area.
2. The air vehicle shall take images of the operational area.
3. The air vehicle shall ensure that at least 90% of the operational area is covered by the images.
4. The air vehicle shall capture images with a maximum camera roll angle of 10° relative to the

ground.
5. The air vehicle shall capture images with a maximum camera pitch angle of 10° relative to the

ground.
6. The air vehicle shall capture images with a maximum distance between camera and ground of

160 m.

These requirements translate system demands in terms of the behaviors of the air vehicle. The
design of the air vehicle satisfies these requirements by delegating them to components through
architectural demands. The components of the air vehicle include:

• The autopilot/flight control system,
• The airframe,
• The servos,
• Propulsion, and
• The mission sensor.

The design makes critical decisions that influence demands on components. For example, for the
mission sensor:

• Camera is fixed at the air vehicle’s center of gravity and does not gimbal,
• 90° field of view,
• Image capture rate of 0.2 Hz.

Based on these decisions, several design decisions for the flight control system are made,
including:

• Ladder-search flight pattern,
• 10 meter overlap,
• Groundspeed limit of 25 m/s,
• Height-above-ground-level limit of 160 m,
• Roll limit of 10°, and
• Pitch limit of 10°.

4.2.3.3 Flight Control System
To satisfy the design demands that are imposed on it, a partial set of requirements for the flight
control system have been identified.

113
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

Based on the top level mission requirements, upper bounds on allowable flight control system
performance can be established directly. These are intended as bounds on performance under
worst-case conditions. Because of the potential for interactions among multiple error sources,
tighter bounds may ultimately be required to achieve desired mission success rates.

Requirements include:

1. The FCS shall provide a maximum cross-track error of 10 m in straight and level flight.
2. The FCS shall provide a maximum altitude error of 10 m in straight and level flight.
3. The FCS shall provide a maximum airspeed tracking error of 5 m/s in straight and level flight.
4. The FCS shall provide a maximum roll-command tracking error of 10 deg in straight and level

flight.
5. The FCS shall provide a maximum pitch-command tracking error of 10 deg in straight and

level flight.

Other requirements for the flight control system can readily be imagined, but do not directly
impact the identification of requirements for the measurement subsystem.

The design of the flight control system could decompose each of the control loops into a separate
component. However, the integrated nature of the control loops makes compositional reasoning
difficult. Instead, we leave the control loops as an integral part of the flight control system, and
identify the measurement subsystem as a component.

4.2.3.4 Measurement Subsystem
The requirements on the measurement system include detailed requirements about the maximum
allowable error in terms of both standard deviation on noise and bias.

Table 1: Measurement Subsystem Requirements — Individual Signal Limits

These values are chosen because each maximum noise and bias value has approximately the
same impact on overall system performance. The values thus reflect, to a certain degree, the
sensitivity of the system to errors on each signal.

Each value in the table is acceptable to the system when it occurs in isolation. For example, the
system can achieve mission success when the standard deviation of noise for the roll input is

114
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

12.8, or if the bias on pitch is ±10 degrees. The system cannot, however, tolerate all of these
maximum errors occurring at the same time.

Rather than attempting to explore the tradeoff space fully, the maximum values are uniformly
scaled in noise and bias. A mission success rate of 90% is possible with a bias scale factor of
±0.12 and a simultaneous noise scale factor of 0.12.

This results in the following interface:

Table 2: Measurement Subsystem Requirements

The design of the measurement subsystem satisfies these requirements with two components: the
sensors and the estimator. The sensors sample environmental phenomena and generate a
measurement. The estimator combines measurements with a model of vehicle and control
dynamics to filter measurements and generate estimates for phenomena not directly measured.

For this example, two measurement subsystems were developed, allowing us to explore
modularity and component replacement. The first measurement subsystem, discussed under
Kalman Filter with Full State Feedback, below, assumed sensor measurements providing full
state feedback coupled with a traditional, linear Kalman filter. The second measurement
subsystem, discussed under Unscented Kalman Filter with Partial State Feedback, below,
assumed sensor measurements not providing full state feedback coupled with an unscented
Kalman filter.

4.2.3.5 Kalman Filter with Full State Feedback
Initial development of the measurement subsystem focused on a prototype based on a Kalman
filter with sensor measurements providing full state feedback. The Kalman filter is an excellent
candidate for an initial prototype, as it is easy to implement. The Kalman filter assumes that it is
estimating the state of a linear stochastic process with independent, white, normally distributed
process and measurement noise having known covariances. When this assumption is met, the
filter returns a zero-bias estimate of state with minimum a posteriori covariance.

The air vehicle, however, is not a linear system. Since the assumptions of the estimator are
violated by the system, we expect that its guarantees will not hold.

115
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

Simulation of the air vehicle with a simple inner-loop controller, simple sensor models, and the
estimator revealed a significant bias in several elements of state — including pitch attitude. The
bias was significant enough to indicate that the nonlinearity was not a minor consideration for the
measurement system.

The bias was indicative of a contextual mismatch between the Kalman filter — and hence the
measurement system — and the air vehicle, which is recursively a part of the context for the
measurement system by way of the flight control system (see Figure 46). Compositional
reasoning would lead us to conclude that attempting to use this measurement system would lead
to system failures, as a result of the contextual mismatch.

To validate this conclusion of compositional reasoning, the team ran several simulations of the
UAV flying a simple racetrack pattern using a waypoint-guidance algorithm based on Dubins
curves and an outer-loop controller providing altitude, heading angle, and airspeed tracking.
Input to the Kalman filter was provided from the simulation’s truth model, without additional
noise or bias. This setup enabled the team to characterize the impact of bias introduced by the
Kalman filter as a result of the violated assumption of process linearity.

The team elected to validate the integration failure of the Kalman filter through the outer-loop
controller because of the possibility that, as a UAV, the performance of the Ultra Stick at the
outer loop is more important than the performance of the Ultra Stick at the inner loop. Given the
mission described in the problem statement for the Ultra Stick UAS, it is very unlikely that the
Ultra Stick would be flown by directly commanding pitch attitude. Instead, the Ultra Stick will be
flown through a loop providing waypoint guidance that, in turn, will feed altitude commands to
the outer loop.

The outer loop tracks a reference altitude by commanding changes to pitch attitude in response to
differences between the altitude estimate and the reference command. The control loop includes
an integrator, which, in the presence of a bias on pitch estimate, quickly winds up. The outer loop
then commands the inner loop to track a pitch attitude that matches the biased pitch estimate. As
a result, the outer loop effectively rejects the bias. For longitudinal control, the biased pitch
estimate would therefore not cause an integration failure. Thus, while compositional reasoning
would lead us to conclude that the measurement system is incompatible with the Ultra Stick
UAS, we did not observe mission failure when we validated the conclusion.

This result seems surprising, but must be understood in the context of two additional
observations:

1. Contextual incompatibility need not guarantee a failure. The impact of contextual
incompatibility is impossible to predict, using compositional reasoning. Because context
represents a global consideration, the impact of contextual incompatibility can only be
assessed globally. When contextual incompatibility is found to be acceptable, a goal must be
introduced in the argument at the highest level of system decomposition claiming the
acceptability and supporting it with evidence from, for example, testing. Effectively,
acceptance of contextual incompatibility becomes a question of system-wide compatibility
(see Section 3.3.10). This means that should any other element of the system change at any
level of the design decomposition, any previously acceptable contextual incompatibility would
have to be reviewed. This essential brittleness of “acceptable” contextual incompatibility
should be enough for it to be deemed unacceptable by systems engineers.

116
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

2. Validation was partial, not complete. While the team is confident in the validation results
discussed above, not all flight conditions were explored during validation. It is possible,
therefore, that there are flight conditions where the contextual incompatibility would still
cause the system to fail to complete its mission.

Ultimately, while the estimator was found to be acceptable for the Ultra Stick UAS in spite of the
contextual incompatibility, the assumption of full state feedback was found to be unacceptable.
The kinds of sensors typically available for a small UAS like the Ultra Stick do not provide full
state feedback.

4.2.3.6 Unscented Kalman Filter with Partial State Feedback
To address the incorrect assumption that sensors providing full state feedback would be available,
a second measurement subsystem was developed. This measurement subsystem is based upon the
sensors that are provided by the Pixhawk autopilot. These sensors represent partial state
feedback, and are presented in Table 3, below.

Table 3: Pixhawk Sensor Characteristics

To estimate the states not directly provided by the sensor suite, an unscented Kalman filter was
developed and integrated into the revised measurement subsystem, as described in Appendix
Appendix C,

117
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

Once completed, the measurement subsystem was analyzed to determine whether or not it
satisfied its requirements, which were derived from the flight control system interface. The result
of the analysis is shown in Table 4, below.

Table 4: Estimator Output with Nominal Sensors

As is clear from the table, several of the signals do not satisfy the requirements. Two signals, in
particular, deviate significantly from their noise limit: pitch and GPS position. The noise limit for
pitch is 0.43, but the estimate provided by the measurement subsystem is 1.78 — more than four
times the limit. The noise limit for GPS position is 0.96, but the estimate provided by the
measurement subsystem is 2.88 — exactly three times the limit.

Compositional reasoning would therefore lead us to conclude that this measurement subsystem is
also unacceptable for our system. While there is no contextual compatibility mismatch, since the
unscented Kalman filter is appropriate for systems with nonlinear dynamics, the measurement
subsystem does not satisfy the design demands imposed upon it by the flight control system. In
the argument, this failure would be identified in the contract between the measurement subsystem
and the flight control system. The argument is shown in Figure 47 and the claim with failing
support is highlighted in red.

118
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

Figure 47: FCS-Measurement Subsystem Contract Failure

To validate this conclusion, the team simulated missions using the developed measurement
subsystem. As expected, the mission was only successful about 62% of the time. The conclusion
reached by composition reasoning was therefore correct: this measurement subsystem is not
acceptable.

To better understand the mission impact resulting from the failure of the measurement subsystem
to satisfy its design demands, the team explored measurement subsystems with varying levels of

119
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

GPS position error12. Position is a very important measurement, as errors in position can cause
captured images to not line up, resulting in insufficient coverage of the mission area.

The tables below show output of the estimator using nominal output from all sensors except GPS.
GPS noise is scaled from 0.0 to 1.0 and the resulting output from the estimator is shown, along
with the probability of mission success.

Table 5: Estimator Output with Scaled GPS Noise — Noise

Table 6: Estimator Output with Scaled GPS Noise — Bias

These results point to the importance of having a GPS that meets mission requirements,
confirming that the design demand from the control system to the measurement subsystem was
necessary.

For the purpose of the example, this is an excellent result. There are many approaches that could
be taken to address the failure of this measurement system to meet its requirement. For example:

• A better GPS sensor could be sought. In practice, this is difficult due to fundamental
limitations of GPS. However, it may be possible to identify a sensor or set of sensors that
could yield a better position measurement.

• A better state estimator could be developed. The kalman filter currently used for state
estimation has not been aggressively tuned. A more aggressively tuned estimator may be able
to better filter GPS position errors.

• Flight-path characteristics could be changed. The sensitivity to GPS position errors arises from
the amount of image overlap that results from the selected flight path. At the air-vehicle, a

12 The team focused on GPS position noise rather than pitch noise because the investigation of
the previous measurement subsystem had revealed that the system is not very sensitive to
errors in pitch.

120
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

design decision was made to target a 10-meter overlap in the area to be imaged on each leg of
the flight path. With the selected roll and pitch limits, a 10-meter overlap does not offer very
much margin to account for position errors. Increasing the overlap from 10 to 15 meters would
likely permit a relaxation in the requirements on the measurement system. This would change
the context for the flight control system, making it easier for the flight control system — and
hence the measurement subsystem — to satisfy mission requirements.

4.2.4 Discussion
Throughout the construction of the Ultra Stick UAS example problem, we applied system-
interface abstraction technology at each level of decomposition. Application of the reference
model and processes during development facilitated avoiding the introduction of design decision
while requirements were being developed.

For example, in stating requirements at the UAS level, it is tempting to phrase the requirements
in terms of roll and pitch angle limitations on the air vehicle — but the use of an air vehicle is a
design decision, albeit a design decision strongly implied by the term “UAS”. Thinking strictly in
terms of problem elements and environmental phenomena led us instead to phrase the
requirements in terms of the camera and its relationship to the ground.

An even better approach would be to state the requirements in terms of characteristics of the
image. For example, resolution might be stated in terms of pixels per square meter and distortions
might be stated in terms of parallel line pairs. Unfortunately, the team does not have sufficient
experience with the general problem of surveillance to confidently state such requirements and
then reduce them to flight-path characteristics. As such, we stated the requirements more directly
in terms of camera angles and height above ground level.

System-interface abstraction technology similarly informed the design architecture of the air
vehicle and the flight control system. As is discussed above, there are a variety of architectures
that can be envisioned for an air vehicle and a flight control system. The critical driver in
determining the architecture is the order in which design decisions will be made. Because the air
vehicle and the flight control system exist in a closed loop, design decisions on any component of
these two systems influence every other component to some degree.

For the purpose of this example, the team elected to fix design decisions of the air vehicle first,
including performance characteristics, control surfaces, and servos. This ordering of design
decisions seems particularly well suited for an unmanned aircraft system. Since there are a
variety of commercial-off-the-shelf airframes available with integral control surfaces and
sometimes servos, these components are likely to be selected first.

The flight control system could be decomposed so that each control loop is a separate component.
However, the difficulty of identifying a sufficiently strong interface to allow effective separation
of the control loops led the team to treat the control loops as integral to the flight control system.

Instead, we decompose the flight control system so that the measurement subsystem is identified
as a component. This decision is perhaps atypical of control system for a small unmanned aircraft
system, but is nevertheless informative. The measurement subsystem allows us to demonstrate
both the utility of system interface abstraction technology, but also highlights a significant
challenge associated with the application of the technology: the identification and exploration of
the tradeoff space associated with the controller inputs.

121
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

There are nine inputs from the measurement subsystem to the flight control system, counting
GPS latitude and longitude as a single input. As discussed above, the team first identified the
maximum noise and bias allowable for each input separately. Then, the team scaled the vector of
maximum noise and bias for all signals simultaneously until the mission succeeded. The resulting
vector was used as the input interface for the flight control system and drove the design demands
levied on the measurement subsystem.

This approach, however, assumes that the sensitivity of the flight control system to noise and bias
on each signal is equal. For the selected mission, this is unlikely to be true. A more robust
interface would consider the sensitivity of overall mission success to noise and bias on each
signal.

The advantage of a more robust interface is that mission success may be assured under a broader
selection of measurement subsystems — and, ultimately, sensors. This flexibility comes at a cost:
a much more in-depth analysis is required to identify the more robust interface. Once the design
of the flight control system is fixed, this analysis only needs to be performed once, however. If
the system is envisioned to be long-running or if a variety of sensors must be supported, the cost
of the more in-depth analysis may be merited.

For this example, the team elected not to pursue the more robust interface and instead focused on
the development of the measurement subsystem including sensor and estimator selection.

4.2.5 Artifacts
At each level of decomposition, sample artifacts were developed to illustrate the reference model
objects. Many of these artifacts are summarized above; additional artifacts are shown here, for
illustration.

The repetitive appearance of the artifacts is intentional and is a positive outcome of the
application of system-interface abstraction technology. At each level of system decomposition,
artifacts are instantiated from patterns. These patterns not only reduce development cost, but
promote quality during system development: the patterns ensure that important elements of
development are addressed. Additionally, the patterns facilitate review of the system.

4.2.5.1 UAS Successful Development
The top-level argument for the Ultra Stick UAS is an argument for successful development. The
argument, shown in Figure 48, contains all of the elements that are identified by the reference
model:

• Identification of the problem;
• Identification of the requirements;
• Identification of the context; and
• Satisfaction of requirements.

Assessment of safety is shown in the argument, but is left undeveloped as no safety requirements
or specific hazards were identified during the development of the example. Instead, for this
example, the focus is on the satisfaction of requirements.

122
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

Figure 48: Ultra Stick UAS — Successful Development

123
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

4.2.5.2 UAS Requirements Satisfaction
The argument for satisfaction of Ultra Stick UAS requirements takes each requirement and
argues that the requirement is satisfied by the design. The argument is shown in Figure 49 Where
the design delegates satisfaction of a requirement to a component, the argument additionally
argues that the design demand is satisfies by the associated component.

124
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

Figure 49: Ultra Stick UAS — Requirements Satisfaction

125
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

4.2.5.3 Ultra Stick UAS – Air Vehicle Contract
The contract between the UAS and the air vehicle states that the UAS design demand is met by
the guarantee provided by the air vehicle when the UAS meets air-vehicle assumptions. The
associated argument is shown in Figure 50. In this example, no explicit air-vehicle assumptions
were identified that must be met by the UAS.

Figure 50: Ultra Stick UAS — Air Vehicle Contract

4.2.5.4 Air Vehicle Successful Development
The top-level argument for the air vehicle is an argument for successful development. The
argument, shown in Figure 51, contains all of the elements that are identified by the reference
model except for problem identification:

• Identification of the requirements;
• Identification of the context; and
• Satisfaction of requirements.

The air vehicle is viewed as purpose-built for this example, and as such does not have a separate
problem that it seeks to solve. As above, for this example, the focus is on the satisfaction of
requirements.

126
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

Figure 51: Air Vehicle — Successful Development

127
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

Figure 52: Air Vehicle — Requirements Satisfaction

128
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

4.2.5.5 Air Vehicle Requirements Satisfaction
The argument for satisfaction of the air vehicle requirements takes each requirement and argues
that the requirement is satisfied by the design. The argument is shown in Figure 52. Where the
design delegates satisfaction of a requirement to a component, the argument additionally argues
that the design demand is satisfies by the associated component.

4.2.5.6 Air Vehicle – Flight Control System Contract
The contract between the air vehicle and the flight control system states that the air vehicle
design demand is met by the guarantee provided by the flight control system when the air vehicle
meets flight-control-system assumptions. The associated argument is shown in Figure 53. In this
example, no explicit flight-control-system assumptions were identified that must be met by the
air vehicle.

Figure 53: Air Vehicle — FCS Contract

129
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

4.2.5.7 Flight Control System Successful Development
The top-level argument for the flight control system is an argument for successful development.
The argument, shown in Figure 54, contains all of the elements that are identified by the
reference model except for problem identification:

• Identification of the requirements;
• Identification of the context; and
• Satisfaction of requirements.

Like the air vehicle, the flight control system is viewed as purpose-built for this example, and as
such does not have a separate problem that it seeks to solve.

As above, for this example, the focus is on the satisfaction of requirements.

4.2.5.8 Flight Control System Requirements Satisfaction
The argument for satisfaction of the flight control system requirements takes each requirement
and argues that the requirement is satisfied by the design. The argument is shown in Figure 55.
Where the design delegates satisfaction of a requirement to a component, the argument
additionally argues that the design demand is satisfies by the associated component.

4.2.5.9 Flight Control System – Measurement Subsystem Contract
The contract between the flight control system and the measurement subsystem states that the
flight control system design demand is met by the guarantee provided by the measurement
subsystem when the flight control system meets measurement-subsystem assumptions. The
associated argument is shown in Figure 56. In this example, no explicit measurement-subsystem
assumptions were identified that must be met by the flight control system.

130
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

Figure 54: FCS — Successful Development

131
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

Figure 55: FCS — Requirements Satisfaction

132
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

Figure 56: FCS — Measurement Subsystem Contract

4.2.5.10 Measurement Subsystem Successful Development
The top-level argument for the measurement subsystem is an argument for successful
development. The argument, shown in Figure 57, contains all of the elements that are identified
by the reference model except for problem identification:

• Identification of the requirements;
• Identification of the context; and
• Satisfaction of requirements.

Like the flight control system, the measurement subsystem is viewed as purpose-built for this
example, and as such does not have a separate problem that it seeks to solve.

As above, for this example, the focus is on the satisfaction of requirements.

133
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

Figure 57: Measurement Subsystem — Successful Development

134
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

4.2.5.11 Measurement Subsystem Requirements Satisfaction
The argument for satisfaction of the measurement subsystem requirements takes each
requirement and argues that the requirement is satisfied by the design. The argument is shown in
Figure 58. The argument terminates a the design demands for the two sibling components of the
measurement subsystem: the estimator and the sensor suite. Detailed consideration of these
demands and the their satisfaction is out of scope for the example, so the argument is left
undeveloped at these claims.

Figure 58: Measurement Subsystem — Requirements Satisfaction

135
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

4.2.6 Conclusion
Through the application system-interface abstraction technology, the team developed an example
based upon a hypothetical small UAS based on the Ultra Stick platform. Using the example, we
explored the design and replacement of a measurement subsystem, and used compositional
reasoning to conclude that neither the original nor its replacement were satisfactory. The first
measurement subsystem made an unreasonable assumption about what sensors were available
and made unsupported assumptions about the system context. The second measurement
subsystem addressed both these issues, but failed to satisfy its requirements, leading to a broken
contract between the flight control system and the measurement subsystem. For both of the
measurement subsystems, we validated the conclusions reached through compositional reasoning
by conducting simulations at the system level.

System-interface abstraction technology worked well where it was exercised through the
development of the example. The explicit and careful seperation of requirements, context, and
design that is called for by the reference model and reference processes led to a set of
development artifacts that are easily defended: there is little question that design decisions are
appropriately delayed to design or that the context has been clearly identified.

The technology also led to the development of a decomposition that is easily defended. The
design authority view, shown in Figure 46, clearly separates the major components of the UAS.
The modularity provided by this design facilitates argumentation and supports component
upgrade/replacement throughout the life of the UAS.

While the example illustrates many aspects of system-interface abstraction technology well, it is
not without limitations. Although modularity was clearly identified, full compositional reasoning
and argumentation was not demonstrated for the complete system. Such reasoning and
argumentation depends highly on domain knowledge, as the properties of interest and the way in
which abstractions may be established and may be argued to satisfy through properties are deeply
rooted in the domain. While the team had significant domain expertise, the team was not used to
applying this expertise towards modular design or compositional reasoning — instead, the team
typically designs small, bespoke, monolithic systems for research purposes, often with an eye
towards optimality. As a result, development of the arguments and associated artifacts for the
example was largely limited to pattern instantiation.

The observation that both domain expertise and experience in modular design and compositional
reasoning is required for successful application of system-interface abstraction technology points
to parameters for future studies that will demonstrate the efficacy of the approach. A team must
be assembled that has both domain expertise and experience in modular design and
compositional reasoning, so that the new system developed with system-interface abstraction
technology can fully exercise all of the elements of the theory. Alternatively, system-interface
abstraction technology could be applied post hoc to an existing system that is already
modularized and that already leverages compositional reasoning.

Finally, the ultra stick example problem was developed to enable us to refine the theory through
its application. Throughout the development of the example, the theory continued to evolve to
address identified limitations of the theory. Although we were unable to fully evaluate the
technology using this example, the example was nevertheless instrumental in the development of
system-interface abstraction technology.

136
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

4.3 Examples of Argument Recovery
This section reports on the examination of MIL-HDBK–516C (516C) and a Joint Service
Specification Guide (JSSG) for the presence of domain arguments–rationale arguing from the
perspective of technical expertise. The remainder of this section discusses the motivation for this
activity, the results of analysis, and conclusions about how domain arguments impact the utility
of requirements guidance.

Argument recovery enables SIAT to incorporate domain arguments as opposed to imposing strict
argument structures. For example recovered arguments might support the success argument goals
of regulatory compliance and requirements satisfaction.

4.3.1 Motivation
MIL-HDBK–516C (516C) and the Joint Service Specification Guides (JSSGs) instruct system
developers in the kinds of requirements that should be specified for a succesful project. Both
documents attempt to communicate expert knowledge about requirements development, in part,
because failure to capture the kinds of requirements they describe can lead to project overruns
and failures due to poor system specification.

516C focuses on airworthiness requirements. Specifically, page 49 of MIL-HDBK–516C states
“The following criteria, standards and methods of compliance apply to all air systems and
represent the minimum requirements necessary to establish, verify, and maintain an airworthy
design.” The structure of criteria, standards, and methods of verification is repeated throughout
the document in an attempt to create clarity and insight for the reader.

Joint Service Specification Guides present a “framework to be used by Government-Industry
Program Teams in the Aviation Sector for developing program unique requirements documents
for Air Systems, Air Vehicles, and major Subsystems.” They provide guidance for specification
of air force systems surrounding the kinds of functions and capabilities that are expected of an air
force system while considering functionality of the system to be specified.

In both both 516C and JSSGs, guidance involves a structured document format. 516C categories
criteria, and for each states standards, and methods sections . JSSGs requirements often include a
‘Rationale’ section. In both cases, the authors are attempting to convey guidance and why the
guidance has value. It is this latter element in which recent research conducted for NASA may be
of benefit.

Research with NASA under contract NNL13AA08C demonstrated that technical experts have
detailed rationale to explain why what they do and build will work. This rationale can be
captured and made explicit. From there it can be critiqued, improved, and shared more readily
with a community of practice. Research work with NASA demonstrated a technique whereby
existing writing could be parsed and processed for any rationale contained therein. Therefore it
was hypothesized that rationale could be identified, extracted, and organized should it exist
within the writing of 516C and JSSG documents. For example, 516C might describe why
assurance methods demonstrate requirements satisfaction. Likewise, the explicit ‘Rationale’
sections of JSSGs might be parsed and analyzed to help explain the value of their requirement
categories.

137
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

4.3.2 Domain Arguments
Rationale exist first and foremost in the minds of experts. The ‘mind space’ of experts is called a
domain of expertise. Domains can be shared between people in communities of practice. Shared
domains of knowledge include both common knowledge as well as common misperceptions and
variances in belief and focus. In other words, a domain represents the conceptual space of
knowledge in a discipline as it exists in the minds of its members.

Codified knowledge is domain knowledge that has been extracted from the abstract space and
presented specifically. For example, text books, research studies, and tutorials represent codified
knowledge from a domain.

Arguments are part of domain knowledge. Often, these arguments will be about why techniques
work or principles hold. Such domain arguments have value to the communities that hold them.
In some fields like mathematics, many arguments are proofs in deductive logic. The strength of
proof forms the backbone of domain knowledge, and therefore they are explicit, codified and
shared as artifacts between domain members. In other domains, where arguments apply inductive
logic, argument is secondary knowledge to the accepted facts, techniques, principles, and ‘laws’
of the domain. Often techniques and principles are written down, but argument is only
occasionally communicated [16].

In specialized fields, domain arguments are often implicit. For example, a software company
might have engineering principles and rules that employees must read and follow, but argument
for the merit of the rules is often discussed verbally within the organization. When domain
arguments are written down they are frequently embedded within status reports that explain what
and how things were done. Contrastingly, the arguments explain why such products and activities
have value.

Recent work demonstrated that domain arguments can be recovered from the minds of experts as
well as from the documents that experts write to one another. Example arguments were recovered
from the reports of control engineers, the mental model of an FAA DER, and the submission
forms for flight test ranges [16]. The following section describes the technique of extracting
domain argument.

4.3.3 Overview of Technique
Previous work explored three mechanisms for recovery of domain arguments. These were:

1. Argument Synthesis: discussions with experts to retrieve argument,
2. Argument Recording: writing of argument in Goal Structuring Notation by experts, and
3. Argument Recovery: analysis of writing and reports to annotate and extract arguments from

written narratives.

The later two techniques are detailed in the flow chart of Figure 59. Given that 516C and JSSG
are already written documents, argument recovery is applied.

138
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

Figure 59: Argument Retrieval and Recovery Processes

There are two key roles in argument recovery. Domain experts write a document in the regular
course of their work. Argument experts then work to identify and extract domain argument
contained within the document.

139
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

There are several steps in the recovery process as shown in the figure. First, domain experts read
the produced document. The domain experts provide feedback on its content in response to
questions from the readers and follow-on discussions.

After comprehension is sufficient, the document is parsed for elements of argument as defined in
Goal Structuring Notation (GSN). (Applying the conventions of GSN structure artificially
reduces the narrative representation of the argument [16], but is judged by the researchers to be a
reasonable step in this preliminary research.) As a consequence, text from the document is now a
textually annotated form of GSN argument. Many argument fragments might be found in the text
and might be dependent or independent of one another.

The resulting annotated text is rendered in GSN’s graphical notation. The resulting graphical
argument form is the initial result of argument extraction. However, it typically contains
interpretation errors and must be reviewed by document authors or experts. Only after review by
the original document authors is the argument considered to have representative validity.

Given that we do not have access to the authors of 516C or JSSGs, the results of the analysis in
this report should be viewed as highly preliminary and likely to be in significant disagreement
with the authors’ intent. Therefore, the only conclusions that can be drawn from an analysis will
be whether argumentative reasoning or rationale is present and the relative complexity of its
presentation to the reader. The specific arguments recovered are speculative and represent a
layman’s interpretation of the text.

4.3.4 Analysis
This work examined specific samples of 516C and a JSSG document. The documents were not
examined in the whole, as the purpose of the work was to assess feasibility of argument recovery
and explore the initial hypothesis of domain argument presence in air force guidance documents.
Given that the documents both had highly regularized and repeating structure, it was believed
that a small sample analysis was sufficient to determine the general extent of argument presence.

4.3.4.1 JSSG
The purpose of examining a JSSG document was to determine if “Rationale” sections contained
domain argument(s). In particular, because a rationale is often a justification for a position,
statement, request, or standard, it was felt that such justification might take the form of argument.

For this work, “JSSG–2009: Air Subsystems”, was analyzed due to its public availability and
relevance to aviation systems safety. The main finding of the analysis was:

“Rationale” sections vary in what they describe. Some present argument, many present context.
These represent information about ‘why’, and ‘what’, respectively.

Context is supporting information. For example, in Goal Structuring Notation, context can be
attached to a goal to clarify its terms or conditions, to a strategy to elucidate information applied
to creating sub-goals, or to evidence to help explain in detail what the evidence must include.

For example, Section “B.3.4.2 Hydraulic power subsystem”, on page B–4 of JSSG–2009, states a
“Requirement Rationale” section as follows:

The function of the hydraulic power subsystem is to deliver fluid at sufficient flow rates and
pressure to the actuating devices in all modes of flight or ground operation. The speed of
actuation is a function of fluid flow-rate whereas the actuating force is a function of pressure.

140
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

Hydraulic fluid power has been found to be the lightest and most efficient method to transmit
high horsepower in air vehicles.

The above text provides context for the purpose of hydraulic fluid power systems. But it also
presents a short argument about why hydraulic power is important (it is the lightest and most
efficient power transmission method).

Section “G.3.4.7.30 Control systems integrity assurance provisions”, on page G–75, states the
rationale for control systems integrity assurance provisions as:

This requirement defines the features of the systems intended to be used by the crew during
preflight checks to determine the operational condition of the circuits and components of the
control systems.

This provides context about what the requirements represent in terms of providing safety through
crew preflight checks. It does not present argument. While one might infer reasons for the
importance of this type of requirement from the required context, that reason is not explicitly
stated nor directly implied. This is an example of how argument can be implied by with
insufficient information to be recovered.

A final example of JSSG “Rationale” containing argument can be found on page A–109,
“A.4.4.1.11.1.1 Air vehicle tire performance”. This section deals with the functional requirements
of tire performance. The rationale provided is:

The use of a laboratory dynamometer to evaluate the tire performance characteristics permits
evaluation to the limits of the tire capability with risk. The design conditions are carefully
controlled and are repeatable. The Industry has always utilized this method of evaluation prior to
installation on an air vehicle to determine performance limits and to establish safety of flight. It is
significantly more economic than any other verification method. The tire will also be observed
and evaluated during the routine flight test program.

The above rationale seems to be a statement about why the given analysis technique should be
applied in the analysis of air vehicle tires. The argument for why the analysis technique
(dynamometer in the lab) should be used is presented in Figure 60.

141
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

Figure 60: JSSG_2009 Rationale in GSN Form

The argument consists of properties of the “dynamometer” laboratory approach that make it
valuable in testing of tire performance requirements.

In conclusion, it appears that the “Rationale” defined in JSSG–2009 consists of a mixture of
context and argument. In some cases, the text is entirely context from which the reader is left to
infer the reasoning of the rationale. In other cases, context is mixed with cursory attributes stated
as matter-of-fact, without explication. In the final example, the rationale is an explicit domain
argument regarding the value of a particular tire testing technique.

4.3.4.2 516C
Two specific criteria from MIL-HDBK–516C where chosen for analysis:

1. 8.3.2 Qualification Tests: Verify that all components, either individually or as part of a
subsystem, have passed all safety-related qualification tests as required for airworthy
performance.

2. 8.3.8 Fuel Transfer Rates: Verify that fuel transfer flow rates meet the operational ground and
flight envelope requirements.

Argument analysis markup was applied to the text of 516C section 8.3.2 in Figure 61. The top
goal of the argument is verification of passing of all qualification testing for fuel system
components and subsystems. Context is provided to the scope of qualification testing. It is
constrained to tests “as required for airworthy performance.” The strategy applied is to
demonstrate this is true of all fuel system components. Thus fuel system components are

142
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

enumerated under this strategy. For each component X, the goal must be that component X has
been “subjected to qualification testing commendurate with [its] intended operational usage.”
Additional context is provided about the airworthiness “standards” to which components must be
subject. This list could make up additional layers of the argument with appropriate standards
applied for testing of each component.

Figure 61: Argument Markup Example — Qualification Tests

Forms of evidence are presented under “Method of Compliance”. Evidential approaches include
“analyses, simulator tests, component tests, and ground/flight tests.” These evidential approaches
are applied under the strategy that components are “verified for all specified operating and
environmental conditions”. Under this strategy, either an enumerated space of condition
combinations or some more complex data structure would represent the space of conditions.
Evidential approaches would be applied as appropriate to each component/subsystem. There is an
additional contextual note about flight testing that permits use of hardware that is not fully
qualified.

The above interpretation of the text as argument is shown with GSN in Figure 62. This argument
forms a pattern with multiple levels of decomposition. The decomposition is in the order of
component/subsystems, standards of airworthiness, and environmental and operation conditions.
Five types of testing results are given as potential evidence of having passed the qualification
tests.

143
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

Figure 62: GSN for Qualification Tests

Argument analysis markup was applied to the text of 516C section 8.3.8 in Figure 63. The top
goal of the argument is verification of fuel transfer rates. This must be asserted for ground and

144
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

flight envelope requirements. The strategy applied is to show that the system meets transfer
requirements for “all functions”. This is enumerated into a list of functions including, but not
exclusive to “center of gravity management,” “thermal management,” and “engine feed”. Our
interpretation of the next two sentences were that they decomposed fuel transfer requirements
into two sub-requirements: a constraint on the rate of fuel transfer, and “provisions are provided”
to notify the operator of low two conditions: low fuel quantity or loss of fuel transfer.

Figure 63: Argument Markup Example — Fuel Transfer Rates

The “Methods of Compliance” describe evidence that can be applied to the above argument
structure. “Analyses, ground tests and flight demonstrations” are enumerated. These verify fuel
transfer rates. Both ground and flight tests verify the system’s performance. In addition, it must
be shown that “the fuel transfer subsystem is not affected by operation of the fuel jettison
system.” Evidential approaches to this goal are enumerated in the text.

The above interpretation of the text as argument is shown with GSN in Figure 64. Note that the
argument forms a pattern where additional functions (not specified but noted by section 8.3.8)
must be analyzed.

145
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

Figure 64: GSN for Fuel Transfer Rates

146
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

In conclusion, the sections of MIL-HDBK–516C that were analyzed contain substantial argument
for sufficient verification of fuel systems. It is likely that this same pattern of inductive
verification computation, from the minds of experts, is encoded throughout the document.
However, we cannot determine the accuracy of the specific recovered arguments without access
to the original document authors.

Due to the number of embedded arguments, 516C could be adapted to an argument-driven
verification handbook, in which explicit arguments take the place of the existing “text buckets” in
the document. An argument form, either as text or GSN, would replace the existing
categorization of “criterion”, “standard”, and “methods of compliance” with their equivalent
argument structure. The benefits of this approach would include:

1. more rigorous recording of expert rationale,
2. more homogeneous interpretation of the text, and
3. potential for incremental improvement of 516C arguments as lessons are learned.

4.3.5 Conclusions
JSSG–2009 and MIL-HDBK–516C were analyzed for the presence of domain arguments. In
particular it was hypothesized that the “Rationale”s present in JSSG documents would be or
contain strong arguments. It was hypothesized that the “Criterion”, “Standards”, and “Methods of
Compliance” of the 516C handbook would argue for the value of requirements criteria.

The JSSG–2009 rationales sometimes contain explicit argument. However, this is not universally
the case and many arguments are either implied without structure or propeties are asserted
without supported reasoning. This is despite the structured documents use of the term
“Rationale”. By in large, the term rationale in JSSG documents appears to refer to context.
Argument and inductive reasoning occurs in brief statements if at all. Much of the logic behind
the context is left for the reader to infer. Where argument is present, its main purpose appears to
be adjunctive.

In contrast, the 516C guidebook contains many domain arguments in which the veracity of a
criterion is decomposed through sub-goals and means of evidence collection. Because of the
“bucketed” nature of 516C, it is not always clear how the lower-level, “methods of compliance”
directly relate to the criterion or supporting standards. It is possible that an argument-oriented
approach to 516C handbook could elucidate these connections for the reader.

The use of strong argument patterns could further strengthen the claims of experts. For example,
Section 8.3.2 of 516C suggests testing under environmental and operating conditions, but does
not explicitly ask how one knows that the proper environmental and operating conditions have
been identified. While other documents might cover this material, its relation to the arguments
presented is critical knowledge that could be codified to the reader’s benefit.

There is considerable potential to extract and clarify the domain arguments present in 516C.
However, the task of properly extracting domain argument from 516C would require direct
access to experts responsible for writing and/or interpreting the 516C document.

In conclusion, both JSSG–2009 and MIL-HDB–516C could improve their presentation of “why”.
Rigorous argument, either in text or graphical notation, could lead to a more comprehensive
capture of rationale as codified knowledge. This form might lead to better support for the
community in capturing a more complete set of what, how, and why various criteria and
requirements are required and should be present in a system specification.

147
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

Rigorous, codified arguments allow:

1. more rigorous recording of expert rationale to explain “why” to the reader,
2. more homogenous interpretation of text as “why” helps elucidate “how” and “what”, and
3. incremental improvement of documents with improved knowledge over time, as explicit

representation of “why” allows “how” and “what” to be updated as circumstances change.

All of the above characteristics would benefit the guidance potential of 516C and JSSGs.

148
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

5 CONCLUSIONS
We developed a reference model and reference processes for systems engineering, based on well-
regarded prior work from the community, that promotes careful identification of problem,
requirements, context and design — yielding a set of artifacts that supports modularity by clearly
identifying assumptions, guarantees, and critical context that might otherwise be overlooked.
Based on this foundation, we developed a set of argument patterns that enable practitioners to
quickly and authoritatively argue success of their development efforts — the most fundamental,
highest goal in any development effort. Expanding on these patterns and building on prior work
from the community, we advanced a practical approach to argument modularity that brings
assume-guarantee reasoning into the argument and provides guidance for considering and
addressing contextual compatibility at all levels of argument composition. Finally, we developed
a set of theories and tools to enable precise formal analysis of component interfaces and contracts
between components, moving beyond syntax-only considerations and including well-formed
semantics encoded as real-world types.

Throughout the development of system-interface abstraction technology, we developed two
examples that enabled us to both demonstrate and refine the technology.

The first example is based on the premise that system-interface abstraction technology, including
the argument patterns described above, could be used not only to guide the development of the
system but also to provide a defensible response to a request for proposals from a customer, such
as the USAF. While necessarily incomplete, the example highlights the explicative power of
applying argumentation at the very beginning of a development effort — even before a contract
is in place.

The second example is based upon the development of a hypothetical small UAS, and is used to
illustrate the identification of interfaces for components during development as well as to
demonstrate the efficacy of compositional reasoning, once solid interfaces have been identified.
The example additionally answers a critical question: can system-interface abstraction technology
be successfully applied to control systems? In spite of the apparent tight coupling of control-
system design, we nevertheless answered this question in the affirmative.

In addition to these two examples, we also applied domain-argument recovery, a technique first
developed in our prior work on CLASS, to regulatory standards common in USAF acquisition
efforts. Our experience underscored the importance of having domain experts available whenever
regulations are in force, to ensure that the intent of the regulation is well understood by all
parties.

The development of the examples used to demonstrate system-interface abstraction technology
highlighted two important points:

1. the difficulty of building good challenge or example problems; and
2. the importance of having good challenge or example problems.

A well-motivated challenge problem will be rooted in an interesting and important domain, such
as controls engineering or, in the case of a system of systems, in many domains, such as the
collection of domains that must come together to build a UAS. For small research teams, finding
the required depth and breadth of experience is very difficult. Moreover building the challenge
problem is time-consuming, as there are many detailed aspects of the problem that must be
demonstrated.

149
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

Having good challenge or example problems is very important, to motivate conclusions about
new theoretical approaches to systems engineering. If the challenge problems do not represent
sufficiently realistic systems, the conclusions reached are unlikely to be compelling. Worse, if the
challenge problems are too simple, they may not demonstrate the kind of engineering challenges
that the new approaches are designed to address.

System-interface abstraction technology, since it addresses challenges arising in modular system
development, requires complex and realistic challenge problems. As noted above, while
significant elements of the technology were successfully demonstrated using the example
problems we developed, there was insufficient detail and domain experience and experience in
key areas. As a result, we were unable to demonstrate some of the features of compositional
reasoning in modular argumentation that are particularly important in system-interface
abstraction technology. Nevertheless, the development of these example problems enabled us to
identify limitations in the technology and address those limitations through further theoretical
development. The resulting technology presented in this report therefore represents a culmination
of a rational compositional reasoning infrastructure based our observations about the limitations
of compositional reasoning discovered both during initial development of the approach and as
discovered during assessment. Ideally, rational infrastructure, including both theory and
mechanics, would be developed a priori and applied as prescribed. In practice, however, complex
development infrastructures and methodologies provide guidance but are expected to evolve as
needed when applied or in light of new discoveries [49]. Later additions to underlying theory and
mechanics were not the subject of experimentation and remain to be assessed in future work.
Additional research and development is therefore required, to more fully demonstrate system-
interface abstraction technology.

Ideally, we would join a large-scale development effort with system and domain engineers
familiar with modularity and compositional reasoning, and apply system-interface abstraction
technology from problem identification through system design. Such a development effort would
illustrate the approach that was presented in Section 4.1 and represent the most comprehensive
demonstration possible. Our role would be to support the systems and domain engineers in the
application of system-interface abstraction technology and to mediate integration of development
artifacts and evidence into the arguments. As part of the activity, data would be collected so that
a report on the efficacy of the approach could be produced, citing the development effort as a
comprehensive case study.

As an alternative, system-interface abstraction technology could be applied post hoc to an
existing system or an existing challenge problem that demonstrates sufficient modularity,
complexity, and compositional reasoning. While such an application would be necessarily limited
in the extent to which the reference model and reference processes could be applied, it would
nevertheless allow a significant demonstration of the argument patterns and the development and
assessment of argument modularity.

150
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

6 REFERENCES
[1] J. S. Dahmann and K. J. Baldwin, “Understanding the current state of us defense systems of

systems and the implications for systems engineering,” in Systems Conference, 2008 2nd
Annual IEEE. IEEE, 2008, pp. 1–7.

[2] M. W. Maier, “Architecting principles for systems-of-systems,” in INCOSE International
Symposium, vol. 6, no. 1. Wiley Online Library, 1996, pp. 565–573.

[3] R. W. Butler and G. B. Finelli, “The infeasibility of experimental quantification of life-
critical software reliability,” SIGSOFT Softw. Eng. Notes, vol. 16, no. 5, pp. 66–76, Sep.
1991. [Online]. Available: http://doi.acm.org/10.1145/123041.123054

[4] M. Whalen, A. Gacek, D. Cofer, A. Murugesan, M. Heimdahl, and S. Rayadurgam, “Your
“what” is my “how”: Iteration and hierarchy in system design,” Software, IEEE, vol. 30,
no. 2, pp. 54–60, March 2013.

[5] J. Rushby, “New challenges in certification for aircraft software,” in Proceedings of the
Ninth ACM International Conference on Embedded Software, ser. EMSOFT ’11. plus
0.5em minus 0.4emNew York, NY, USA: ACM, 2011, pp. 211–218. [Online]. Available:
http://doi.acm.org/10.1145/2038642.2038675

[6] D. Cofer, “Compositional analysis of avionics architectures in AADL,” 2012.

[7] E. A. Strunk and J. C. Knight, “The essential synthesis of problem frames and assurance
cases,” Expert Systems, vol. 25, no. 1, pp. 9–27, 2008.

[8] M. Jackson, Problem Frames: Analyzing and Structuring Software Development Problems.
plus 0.5em minus 0.4emBoston, MA, USA: Addison-Wesley Longman Publishing Co.,
Inc., 2001.

[9] E. Strunk, C. Furia, M. Rossi, J. Knight, and D. Madrioli, “The engineering roles of
requirements and specification,” University of Virginia, Department of Computer Science,
Tech. Rep. CS-2006-21, 2006.

[10] P. J. Graydon, “Assurance based development,” Ph.D. dissertation, Charlottesville, VA,
USA, 2010.

[11] S. E. Toulmin, The uses of argument. Cambridge University Press, 2003.

[12] R. Hawkins, T. Kelly, J. Knight, and P. Graydon, “A new approach to creating clear safety
arguments,” in Advances in Systems Safety, C. Dale and T. Anderson, Eds. Springer, 2011,
pp. 3–23.

[13] C. Y. Baldwin and K. B. Clark, Modularity in the design of complex engineering systems.
Springer, 2006.

[14] D. L. Parnas, “On the criteria to be used in decomposing systems into modules,”
Communications of the ACM, vol. 15, no. 12, pp. 1053–1058, 1972.

[15] J. Knight, J. Rowanhill, M. A. Aiello, and K. Wasson, “A comprehensive safety lifecycle,”
in International Conference on Computer Safety, Reliability, and Security. Springer, 2015,
pp. 38–49.

[16] J. Knight. J. Rowanhill, “Domain arguments in safety critical software development,” in
27th International Symposium on Software Reliability Engineering (ISSRE). IEEE, October

151
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

2016.

[17] J. Rowanhill, “Class server toolset: Design and implementation,” Dependable Computing,
Tech. Rep. TR-2016-01, May 2016.

[18] J. Rowanhill and J. C. Knight, “Class assurance knowledge ecology,” Dependable
Computing, Tech. Rep. TR-2015-1, May 2016.

[19] J. R. John C. Knight, “The indispensable role of rationale in safety standards,” in
International Conference on Computer Safety, Reliability and Security (SAFECOMP),
September 2016.

[20] J. Knight, J. Rowanhill, U. Ferrell, A. Bateman, and N. Gandhi, “Integrating an assurance
case into do-178b compliant software development,” in 2015 IEEE/AIAA 34th Digital
Avionics Systems Conference (DASC). IEEE, 2015, pp. 1–22.

[21] J. Knight, J. Rowanhill, and J. Xiang, “A safety condition monitoring system,” in
International Conference on Computer Safety, Reliability, and Security. Springer, 2015, pp.
83–94.

[22] Ministry of Defence, “Defence standard 00-56 issue 4: Safety management requirements
for defence systems,” 2007.

[23] K. Attwood, P. Chinneck, M. Clarke, G. Cleland, M. Coates, T. Cockram, G. Despotou,
L. Emmet, J. Fenn, B. Gorry et al., “GSN community standard version 1,” Origin
Consulting Limited, York, November 2011.

[24] P. J. Graydon, J. C. Knight, and E. A. Strunk, “Assurance based development of critical
systems,” in 37th Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN’07), June 2007, pp. 347–357.

[25] P. J. Graydon and J. C. Knight, “Software process synthesis in assurance based
development of dependable systems,” in European Dependable Computing Conference
(EDCC). IEEE, 2010, pp. 75–84.

[26] IEEE Computer Society Software Engineering Standards Committee and IEEE-SA
Standards Board, “Ieee recommended practice for software requirements specifications.”
Institute of Electrical and Electronics Engineers, 1998.

[27] IEEE Computer Society Software Engineering Standards Committee and IEEE-SA
Standards Board, “Iso/iec/ieee international standard - systems and software engineering –
life cycle processes –requirements engineering.” Institute of Electrical and Electronics
Engineers, 2011.

[28] A. Ayoub, B. Kim, I. Lee, and O. Sokolsky, “A systematic approach to justifying sufficient
confidence in software safety arguments,” in Computer Safety, Reliability, and Security.
Springer, 2012, pp. 305–316.

[29] R. Hawkins, K. Clegg, R. Alexander, and T. Kelly, “Using a software safety argument
pattern catalogue: Two case studies,” in Proceedings of the 30th International Conference
on Computer Safety, Reliability, and Security, ser. SAFECOMP’11. Berlin, Heidelberg:
Springer-Verlag, 2011, pp. 185–198. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2041619.2041640

[30] R. Hawkins and T. Kelly, “A systematic approach for developing software safety

152
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

arguments,” Hazard prevention, vol. 46, no. 4, p. 25, 2010.

[31] B. D. Rodes, J. C. Knight, and K. S. Wasson, “A security metric based on security
arguments,” in Proceedings of the 5th International Workshop on Emerging Trends in
Software Metrics. ACM, 2014, pp. 66–72.

[32] B. D. Rodes and J. C. Knight, “Speculative software modification and its use in securing
soup,” in Dependable Computing Conference (EDCC), 2014 Tenth European. IEEE, 2014,
pp. 210–221.

[33] B. Rodes and J. Knight, “Reasoning about software security enhancements using security
cases,” in The First International Workshop on Assurance for Argument and Agreement
(AAA), 2013.

[34] B. D. Rodes, “Speculative software modification,” Ph.D. dissertation, University of
Virginia, 2015.

[35] T. P. Kelly, “Concepts and principles of compositional safety case construction,” Contract
Research Report for QinetiQ COMSA/2001/1/1, 2001.

[36] J. Fenn, R. Hawkins, P. Williams, T. Kelly, M. Banner, and Y. Oakshott, “The who, where,
how, why and when of modular and incremental certification,” in System Safety, 2007 2nd
Institution of Engineering and Technology International Conference on, Oct 2007, pp.
135–140.

[37] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M. Loingtier, and J. Irwin,
ECOOP’97 — Object-Oriented Programming: 11th European Conference Jyväskylä,
Finland, June 9–13, 1997 Proceedings. Berlin, Heidelberg: Springer Berlin Heidelberg,
1997, ch. Aspect-oriented programming, pp. 220–242. [Online]. Available:
http://dx.doi.org/10.1007/BFb0053381

[38] Industrial Avionics Working Group (IAWG). (2012) Modular software safety case process
description. [Online]. Available: https://www.amsderisc.com/related-
programmes/?doing\s\do5(w)p\s\do5(c)ron=1459350756.3412559032440185546875

[39] Object Management Group (OMG). (2011) Business process model notation (bpmn)
version 2.0 (2011). [Online]. Available: http://www. omg. org/spec/BPMN/2.0

[40] J. Rushby, “ Logic and epistemology in safety cases,” in Computer Safety, Reliability, and
Security, ser. Lecture Notes in Computer Science, F. Bitsch, J. Guiochet, and M. Kaâniche,
Eds. Springer Berlin Heidelberg, 2013, vol. 8153, pp. 1–7. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-40793-2\s\do5(1) t

[41] Safety certification of software-intensive systems with reusable components. [Online].
Available: http://www.safecer.eu

[42] Modular software safety cases. [Online]. Available: http://capability-agility.co.uk

[43] J. Rushby, Modular certification. National Aeronautics and Space Administration, Langley
Research Center, 2002.

[44] P. Graydon and I. Bate, “The nature and content of safety contracts: Challenges and
suggestions for a way forward,” in Dependable Computing (PRDC), 2014 IEEE 20th
Pacific Rim International Symposium on, Nov 2014, pp. 135–144.

153
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

[45] J. Fenn, R. Hawkins, P. Williams, and T. Kelly, “Safety case composition using contracts-
refinements based on feedback from an industrial case study,” in The Safety of Systems.
Springer, 2007, pp. 133–146.

[46] P. Graydon and C. Holloway, ‘‘‘‘evidence” under a magnifying glass: Thoughts on safety
argument epistemology,” 2015.

[47] R. Banach and M. Poppleton, “Retrenchment: An engineering variation on refinement,” in
B’98: Recent Advances in the Development and Use of the B Method. Springer, 1998, pp.
129–147.

[48] A. B. Hocking, J. Knight, M. Aiello, and S. Shiraishi, “Proving model equivalence in
model based design,” in Software Reliability Engineering Workshops (ISSREW), 2014
IEEE International Symposium on, Nov 2014, pp. 18–21.

[49] D. L. Parnas and P. C. Clements, “A rational design process: How and why to fake it,”
IEEE Transactions on Software Engineering, vol. SE-12, no. 2, pp. 251–257, Feb 1986.

[50] T. P. Kelly, “Arguing safety — a systematic approach to safety case management,” Ph.D.
dissertation, University of York, 1999.

[51] MoD, “Defence standard 00-56 issue 4. safety management requirements for defence
systems: Part 1 requirements,” UK Ministry of Defence, Tech. Rep., 2007.

[52] T. Kelly and R. Weaver, “The goal structuring notation – a safety argument notation,” in
Proc. of Dependable Systems and Networks 2004 Workshop on Assurance Cases, 2004.

[53] D. B. Owens, D. E. Cox, and E. A. Morelli, “Development of a low-cost sub-scale aircraft
for flight research: The faser project,” in 25th AIAA Aerodynamic Measurement
Technology and Ground Testing Conference, no. 2006-3306, 2006.

[54] R. J. Meinhold and N. D. Singpurwalla, “Understanding the Kalman filter,” The American
Statistician, vol. 32, no. 2, pp. 123–127, May 1983.

[55] S. J. Julier and J. K. Uhlmann, “Unscented filtering and nonlinear estimation,” Proceedings
of the IEEE, vol. 92, no. 3, pp. 401–422, Mar. 2004.

154
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

List of Acronyms
ACP Assurance Claim Point
ABD Assurance Based Development
BPMN2 Business Process and Model Notation 2
CLASS Comprehensive Lifecycle Assurance for System Safety
CONOPS Concept of Operations
CTS Cooling Tank System
GSN Goal Structuring Notation
IAWG Industrial Avionics Working Group
I/O Input/Output
IMU Inertial Measurement Unit
JSSG Joint Service Specification Guide
LTI Linear Time Invariant
MSSC Modular Software Safety Case
NED North, East, Down
OAT Outside Air Temperature
RFP Request for Proposals
SIAT System Interface Abstraction Technology
SoS System of Systems
SUAS Small Unmanned Aircraft System
TCC Type Correctness Condition
UAS Unmanned Aircraft System
UKF Unscented Kalman Filter

155
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

APPENDIX A ASSURANCE-CASE TECHNOLOGY

A.1 Background
When engineering software systems, developers have the burden of demonstrating assurance that
the software establishes properties and characteristics desired by the system stakeholders. For
example, stakeholders might require assurance that the software is adequately safe, secure,
reliable, etc. for its use (i.e., for its operating context). A software system is said to be acceptable
for its operating context if adequate assurance is demonstrated that the system has the
stakeholder-desired property or properties.

The complexity and size of modern software, however, makes providing definitive, complete,
and irrefutable proof that any given software system is acceptable impractical for all but the most
basic and trivial systems. In practice, developers rely on any available evidence to demonstrate
that the existence of desired properties is “highly probable”, although quantification of such
probabilities is often impossible. Consequently, interpretation of what constitutes highly probable
assurance is left to intuition.

Evidence alone does not provide a justification that a given software system is acceptable for its
specific operating context. “Argument without supporting evidence is unfounded, and therefore
unconvincing. Evidence without argument is unexplained – it can be unclear that (or how) safety
objectives have been satisfied” [50]. Rather, evidence must be explained and interpreted to
demonstrate assurance. While a prescribed standard can be used to explain evidence, if a standard
is available, standards are often:

• inflexible to the specific needs of stakeholders, i.e., standards do not take into consideration
the characteristics of a specific software system and its operating context,

• rarely contain explicit rationales explaining why they demonstrate acceptable assurance, and
therefore prohibit deeper understanding of the assurance any given standard is meant to
provide, and

• rely upon the assumption that adherence to a given standard results in an acceptable system in
all uses of the standard.

A goal-based approach to explaining evidence allows developers to overcome the limitations of
prescriptive standards. In a goal-based approach, claims about the properties of a software system
are made based on the needs specific to the system stakeholders. Evidence is then used to support
the specified claims. The key benefit of this approach is that assurance is tailored to a specific
system. Consequently, developers must take a more active role in defining what evidence should
be collected and rationalizing how that evidence supports claims.

A safety case organizes a goal structure as an argument, supported by a body of evidence that
provides a compelling, comprehensible and valid case that a system is safe for a given application
in a given operating environment [51]. The safety case concept is generalizable and applicable
for the purposes of generating an explicit rationale for belief in any system characteristic of
interest (e.g., system functionality, performance, security, or reliability). The generalized concept
is referred to as an assurance case.

A.1.1 Elements of an Assurance Case
The general elements of an assurance case (see Figure A-1) are:

156
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

• A set of goals in which a top-level goal documents the main assurance claim and other sub-
goals help to structure and elaborate the argument. Goal statements have the form of a
proposition, e.g., “The system is safe,” in order that they may be evaluated as true or false.

• A definition of the context within which the top-level goal is expected to hold. Context
includes everything that might be needed to constrain the applicability of the argument to a
given set of circumstances, including assumptions.

• A collection of supporting evidence that includes results from inspections, analyses, testing,
and simulation estimating fundamental system properties, as well as process-based
information such as standards compliance and maturity level of the development organization.
This evidence forms the basis from which assurance can be argued.

• An explicit argument that shows how the overall claim (goal) can be reasonably inferred
from the supporting evidence. In practice, multiple different argument strategies are used in
conjunction to argue assurance in a given case.

Figure A-1: Major Elements of an Assurance Case

A.1.2 The Goal Structuring Notation
While in principle an assurance case can be documented in any form, including natural language
and tables [52], an increasingly popular and effective documentation method is to structure the
argument using a graphical notation. In a graphical notation, components of the argument, such
as claims and evidence, are represented as nodes in a graph. The connections/relationships
between these nodes illustrate how evidence supports claims and thereby forms an assurance
argument.

The Goal Structuring Notation (GSN) [23] is a graphical language that provides a rich set of
syntax and semantics for documenting assurance arguments. It enables representation of the
logical relationships among the basic elements of assurance cases, as well as the documentation
of supporting information to contextualize this logic. It is accessible to readers of a wide variety
of backgrounds and expertise, enabling a common communication mechanism for safety

157
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

argumentation and audit. It is also supported by editing tools, and is amenable to some automated
analysis.

Figure A-2: GSN Elements

The core GSN elements, shown in Figure A-2, are:

• Goals: Depicted as a rectangle, a goal documents a claim about a property or a characteristic
that a software system is said to have. Each assurance argument contains a top-level goal,
which is the conclusion the argument is meant to support. The top-level goal is subdivided
hierarchically into sub-goals. Sub-goals are refinements/simplifications of higher-level goals,
and represent claims about a more specific sub-system or property of the larger software
system. Goals are also referred to as claims.

• Contexts: Depicted as an oval, a context provides a reference to contextualizing information
and documentation. For example, a context can refer to limitations about the scope of a goal.
A context is linked to the argument element requiring contextualization, and all sub-arguments
from that element inherit the context.

• Assumptions: Depicted as an oval with the letter ‘A’ at the bottom-right, an assumption is a
specialized context element used to present intentionally unsubstantiated statements.

• Justifications: Depicted as an oval with the letter ‘J’ at the bottom-right, a justification is a
specialized context element used to provide a rationale for a component of the argument.

• Strategies: Depicted as a parallelogram, an argument strategy describes the inference between
a goal and its sub-goals.

• Solutions: Depicted as a circle, a solution is used to reference evidence in direct support of a
goal. Solutions are also referred to as evidence.

• Undeveloped: Entities depicted as a hollow diamond, the undeveloped entity symbol is
directly placed on any of the above argument elements to indicate that the element is

158
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

intentionally left undeveloped by argument engineers. Undeveloped argument entities signify
further review and examination of the undeveloped element is necessary.

GSN also provides modular extensions to represent interrelated modules of argument, as well as
support for representing patterns that abstract argument form and content into reusable structures.
A complete description of GSN can be found in the GSN community standard [23].

Figure A-3: GSN Element Relationships

GSN elements are connected by one of two types of relationships, represented by arrows, shown
in Figure A-3:

• SupportedBy: Depicted as a solid (closed) arrow, a SupportedBy relationship indicates
inferential and evidential support, e.g., relationships between strategies, goals, and evidence.
The arrow points to the supporting argument element.

• InContextOf: Depicted as a hollow (open) arrow, an InContextOf relationship indicates a
contextualizing relationships where the arrow points to the argument element providing the
contextualization, e.g., a context, a justification, or an assumption.

In addition to these core entities and relationships, GSN also provides notational support for
expressing argument modularity (including module and contract entities) and argument patterns.
For further details of these notational concepts, readers are referred to the GSN community
standard [23]. Figure A-4 provides an illustration of the application of the GSN.

159
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

Figure A-4: Example Argument in GSN

160
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

A.1.3 Confidence
In general, belief in the top-level goal (claim) of an argument, whether for safety, security or
another property is important. The premises upon which an argument is accepted are:

1. The top-level goal defines the stakeholders’ needs adequately.
2. The belief in the truth of the top-level goal is justified by the argument.

Although belief in the top-level goal rests on confidence in the associated argument, often there
are repeating underlying arguments. Hawkins et al. have introduced the notion of confidence
arguments to supplement safety and security arguments in order to capture and separate
confidence assessment within assurance arguments [12]. A confidence argument supplements a
traditional argument and supplies the rationale for belief in the quality of each of the argument’s
items of evidence, context definitions, and inferences. When these elements are added to an
argument, there is an assertion that the element is valid and correct, i.e., the element serves the
intended purpose to support a claim. Assertions in the argument are linked via an Assurance
Claim Point (ACP) to a separate confidence argument where confidence in the assertion is
argued. Since these concerns repeat any time these entities are added to the argument, separating
these confidence arguments has the claimed benefit of simplify arguments and providing clarity
of purpose.

For this effort, we adopt a custom ACP notation, illustrated in Figure A-5.

Figure A-5: Custom Assurance Claim Point Notation

A.1.4 Understanding Argument
Using GSN, an argument is constructed as a graphical and hierarchical structure, where a top-
level goal is subdivided recursively until a goal can be directly justified by available evidence.
When a goal is subdivided, justified by evidence, or contextualized, an inference is made about
the relationship between argument elements. Ideally, all inferences within an argument would be

161
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

based on deductive reasoning. In deductive logic, if the premises are true, then the conclusion is
necessarily true. If an argument is completely deductive, the argument could serve as a proof
supporting the top-level goal. In practice, however, application of deductive logic in support of
claims about real-world systems is not always possible. Consequently, arguments about software
system properties rely primarily on inductive reasoning.

In inductive logic, if the premises are true, the conclusion is “likely” true. The argument does not
offer irrefutable proof that a top-level goal is valid. The likelihood that the top-level goal is valid
is based on a careful and systematic examination of all risks and available evidence. Because
arguments must be constructed carefully and then thoroughly examined, these arguments are
often referred to as rigorous arguments.

Since assurance arguments are inductive, they are also provisional and subject to revision as new
information becomes available. An assurance argument is said to be defeasible: future evidence
could refute a claim (such evidence is typically referred to as a defeater). The defeasibility of an
assurance argument stems from two primary sources of doubt [40]:

• Inferential doubt: Doubts about the accuracy of the reasoning used in the argument, i.e.,
doubt that each step of logical inference follows to justify a top-level goal. These are doubts
about the validity of relationships between argument elements.

• Epistemic doubt: Doubts about the completeness and accuracy of the knowledge about the
system. This knowledge takes the form of evidence, supporting documentation, and generally
any information referenced within the argument.

Although an assurance argument cannot typically be used as proof about a top-level claim about
a software system, the primary benefit of assurance arguments is the explicit documentation of
reasoning and rationale for why a system is considered acceptable. All systems determined to be
acceptable for use rely on some form of argument, even if that argument is implicit. By making
the argument explicit, assurance arguments facilitate active scrutiny and criticism. The argument
can be challenged and reviewed exhaustively, supporting a more structured approach for finding
flaws/weaknesses in the systems. As the system is updated, either in response to a found flaw or
new functional needs, the argument is also updated, allowing developers and stakeholders to
understand the impact of alterations and to determine if further changes to the software are
necessary. The adequacy of the argument is context specific and ultimately determined by the
needs and opinions of the system stakeholders.

162
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

APPENDIX B COOLING TANK(S) CHALLENGE PROBLEM

B.1 CONOPS
An industrial facility has a need to cool a liquid as one stage in a process. The facility would like
to have one or more cooling tanks added in the middle of the production line. Prior to the cooling
tank(s), the liquid is held in a reservoir that is large enough to be considered to always have
liquid available to be moved into the cooling tanks. The liquid will need to be pumped from the
reservoir into the cooling tank system and the pump will be considered part of the cooling tank
system. After the liquid has been cooled to the appropriate temperature range, it must be sent to
the next stage of the process via a production line. There is an emergency dumping line that
liquid may be sent to in the case of emergencies.

Figure B-1: CONOPS High-Level Cooling Tank System

High-level requirements:

1. The cooling tank system (CTS) shall contain a pump to transfer liquid from a reservoir to the
CTS.

a. It may be assumed that the reservoir has an unlimited supply of liquid.

2. The CTS shall contain at least one tank where the liquid will be cooled.

a. NOTE: Temperature is being abstracted away in this challenge problem. A large assumption is
being made that the liquid gets “appropriately cooled” by being inside of the cooling tank(s) of
the CTS.

3. The CTS shall use a production liquid line to send cooled liquid to the next stage of the
process.

a. The production line may accept up to 0.2 m3/s of cooled liquid.

b. It may be assumed that the production line never gets backed up (i.e. cooled liquid may always
be passed on to the next stage).

4. The CTS shall dump liquid into an emergency line in the case of a safety or other emergency.

163
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

a. The emergency line may accept up to 0.5 m3/s of liquid.

b. It may be assumed that the emergency line never gets backed up (i.e. liquid may always be
dumped into the emergency line).

5. The CTS shall not cause any unsafe situations for the workers in the facility.

a. No liquid may leave the CTS except through the production or emergency lines.

164
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

APPENDIX C ULTRA STICK

C.1 Introduction
This report describes the development of a simulation environment to support research related to
system of systems interactions. The environment includes a simulation model of a small
unmanned air vehicle, sensor models, a state estimator, and a control system capable of executing
a representative SUAS mission. Section C.2 describes the selected mission scenario and Section
C.3 provides an overview of the demonstration environment. Section C.4 provides a brief
description of the physical vehicle modeled by the simulation, Sections C.5 and C.6 describe the
inner- and outer-loop control system, respectively, and Section C.7 describes the path planner and
guidance components. The sensor package on which sensor models is based is described in
Section C.8, and the filtering and state estimation approaches that were investigated are described
in Section C.9 . Section C.10 presents performance results for the system and results on how
changing sensor performance characteristics impact system performance.

C.2 Mission Scenario
The demonstration environment is built around a common UAS mission of gathering imagery of
a region on the ground. A low-cost UAV configuration with a fixed imaging sensor on a fixed
wing UAV is assumed. The camera is assumed to have a square 90∘ field-of-view, so that when
the aircraft is level over flat ground the imaging sensor captures a square region on the ground
that extends toward the nose, tail and each wingtip a distance equal to the altitude of the aircraft.
The camera captures images every five seconds, and the nominal flight pattern provides 20m of
overlap in the lateral direction between images. At the nominal cruise speed of 25m/s, the
nominal overlap between images in the longitudinal direction is approximately 160 m. Distortion
of the photographs is considered unacceptable if the role or pitch angle exceeds 10∘ when the
image is taken, and such images are discarded. Resolution of photographs taken from more than
15m above the desired altitude is considered unacceptable, and such images are also discarded.
Coverage of the region being imaged is assessed by establishing a 1 m square grid over the field
and testing whether each grid point is captured in at least one image. Figure C-1 shows the
specific mission used in the demonstration environment, which captures a ground region that is a
1km by 2km rectangle. The mission begins from the center of the region being captured, the
vehicle climbs to altitude and then executes four passes over the field to provide the desired
coverage and overlap.

165
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

Figure C-1: Example Mission Ground Track

C.3 Overview of Demonstration Environment
An overview of the demonstration environment is shown in Figure C-2. Main components in the
demonstration environment are

• Ultrastick simulation: air vehicle simulation that includes rigid body dynamics, actuator
models, and sensor models.

• State estimation: estimates vehicle states based on sensor inputs.
• Inner loop control: generates aerodynamic surface commands to achieve commanded Euler

angles.
• Outer loop control: generates inner loop control commands to track desired altitude, heading,

and velocity.
• Path planner: generates altitude, heading, and velocity commands to achieve a path specified

by a set of waypoints.
• Mission planner: in the current implementation, the mission planner is designed only to

generate a set of waypoints to achieve the imaging mission shown in Figure C-1.

166
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

Figure C-2: High-level View of Demonstration Environment

C.4 Air Vehicle
The simulation testbed is built around a simulation model of an Ultrastick fixed wing unmanned
air vehicle. Initial development of the simulation model was performed by NASA Langley [53],
and work has been continued by the UAV laboratory at the University of Minnesota. Both wind
tunnel and flight test experiments have been conducted as part of prior research activities to
support work including validation of a nonlinear simulation model of the vehicle. A picture of the
flight vehicle used by NASA in developing this simulation is shown in Figure C-3. The “stick"
aircraft are a series of low-cost, commercially-available hobbyist aircraft. While the Ultrastick
120 used in the original modeling effort is out of production, very similar aircraft remain on the
market. The selected vehicle thus offers a unique combination of a validated simulation model
that has been made publicly available, and low-cost airframes that can be readily obtained if
flight testing is desired in future phases of the work.

Figure C-3: NASA Flight Vehicle (Image Reproduced from [53])

167
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

C.5 Inner-loop Control
The outer loop Θcom and φcom commands are fed into the inner loop control along with a feed
forward φ command.

Figure C-4: Inner Loop

C.5.1 Pitch Tracker
The pitch tracker generates an elevator command based on the error between the desired and
actual pitch. It accomplishes this via a PID controller with an integrator anti-windup. A system
response to a 15∘ increase in pitch angle can be seen in Figure C-6.

168
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

Figure C-5: Pitch Tracker

169
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

Table C-1: Inputs of the Pitch Tracker

Table C-2: Outputs of the Pitch Tracker

Table C-3: Control Parameters for Pitch Tracker

Figure C-6: Theta Response

170
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

C.5.2 Roll Tracker
The roll tracker modulates the vehicle’s ailerons to track the desired roll angle. The commanded
φ comes from the yaw tracker in the outer loop. A PD controller is used to control the feedback
portion of this control loop. The feed forward φ command is the reference roll angle from the
path planner and is used here in lieu of integral compensation to reduce steady state error and
provide lead. Figure C-8 demonstrates the benefit of the feed forward command. Figures C-8(a)
and C-8(c) do not have a feed forward term, while Figures C-8(b) and C-8(d) do. The blue line
represents the reference value, and the red represents the actual value. As demonstrated, the
vehicle is able to track better with a feed forward term.

Figure C-7: Roll Tracker

Table C-4: Inputs of the Roll Tracker

Table C-5: Outputs of the Roll Tracker

171
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

Table C-6: Control Parameters for Roll Tracker

(a) Ground track without feed forward control (b) Ground track with feed forward control

(c) Heading angle without feed forward control (d) Heading angle with feed forward control

Figure C-8: Cross Track Correction Example

C.5.3 Yaw Damper
The yaw damper employs the first order discreet transfer function in Equation C-1 to dampen the
yaw rate via the rudder.

Y(z)
G(z)=

0.065z−0.065
z−.96079 (C-1)

172
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

Figure C-9: Yaw Damper

Table C-7: Inputs of the Yaw Damper

Table C-8: Outputs of the Yaw Damper

C.6 Outer-loop Control
The outer loop control tracks the velocity, altitude, and yaw angle of the vehicle. Note that for
small angle of attack and angle of sideslip, yaw angle and heading angle are approximately equal.
The altitude and heading tracker generate command inputs for the inner loop, while the velocity
tracker is independent of it.

C.6.1 Velocity Tracker
The velocity tracker modulates throttle to track the user defined airspeed. It implements a PID
control with a discreet low pass filter and integrator anti-wind up. Equation C-2 represents the
discreet low pass filter used for both the velocity tracker and altitude tracker. Figure C-10 is a
block diagram of the tracker implemented in the simulation. Note that all diagrams flow from
right to left. This is to match the pre-existing convention of the Ultrastick simulation. Figure C-
11 shows the system response to a velocity increase of 5m/s.

Y(z)
G(z)=

0.0392
z−.9608 (C-2)

173
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

Figure C-10: Velocity Tracker

174
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

Table C-9: Inputs to the Velocity Tracker

Table C-10: Outputs of the Velocity Tracker

Table C-11: Control Parameters for Velocity Tracker

Figure C-11: Velocity Response

C.6.2 Altitude Tracker
The altitude tracker generates a commanded Θ that is fed into the inner loop. It implements a PI
control loop with a discreet low pass filter and integrator anti-wind up. The altitude tracker uses
the same discreet low pass filter employed by the velocity tracker represented in Equation C-2.
Figure C-13 shows the vehicle response when the target altitude is increased by 25m.

175
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

Figure C-12: Altitude Tracker

176
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

Table C-12: Inputs of the Altitude Tracker

Table C-13: Outputs of the Altitude Tracker

Table C-14: Control Parameters for Altitude Tracker

Figure C-13: Altitude Response

C.6.3 Heading Tracker
The heading tracker generates a φ command that is fed into the inner loop. While the heading
tracker actually tracks ψ, for small angles of attack and sideslip, ψ is approximately χ. The
commanded heading angle and an increment based on cross-track error are added together to
calculate the total command. The vehicle’s heading is controlled by a simple proportional control
loop. The heading tracker also contains logic to resolve angle wrapping issues, which is
especially important when the vehicle is headed in a northernly direction.

177
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

Figure C-14: Yaw Tracker

178
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

Table C-15: Inputs of the Heading Tracker

Table C-16: Outputs of the Heading Tracker

Table C-17: Control Parameters for Heading Tracker

C.7 Path Planner/Guidance
The Dubin’s Car algorithm is a simple 2D path planning solution that calculates the shortest
curve between two points with specified initial and terminal orientations and with constant speed
and upper limit on path curvature. The optimal solution is a bang-bang type of solution consisting
of at most three path segments and takes either the form CCC or CSC, where C represents
circular arcs of maximum curvature, and S represents straight lines. Inputs are defined in Table
C-18. Equation C-3 is used to calculate the maximum radius (R) based on the airspeed (Vs),
gravity (g), and the user defined turning bank angle (φ). The optimum path is defined by the
states in Table C-19. The reference commands fed to guidance are interpolated from the
optimized path based on the vehicle’s current location. The reference vertical position and
velocity are user defined, and controlled independently.

R=
V2

s

g*tan(φ) (C-3)

179
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

Table C-18: Inputs to Dubin’s Car Path Planner

Table C-19: Outputs of Dubin’s Car Path Planner

The vehicle is controlled in the lateral and longitudinal planes by controlling the vehicle’s roll
and yaw. These reference commands are interpolated based on the vehicles position along the
planned path. The Dubin’s Car algorithm assumes the maximum turn rate can be achieved
instantly. Though the vehicle dynamics are reasonably fast, it of course cannot achieve the turned
rate instantly. A cross-track error component in the path tracker corrects for errors due to the
assumption, as well as errors arising from other sources including disturbances. An example of
how cross-track correction aids the vehicle can be seen in Figure C-15. In Figure C-15(a), the
planned path of the vehicle can be seen in blue and the actual path of the vehicle in red. While the
vehicle follows a similar path to that planned,it ultimately does not reach the target location. In
Figure C-15(b) the vehicle has cross-track correction and can adjust its yaw command to turn the
vehicle back onto the planned path. In order to have this capability, there must be enough margin
left between the maximum bank angle and the turning bank angle fed to the path planner. A bank
angle of 25∘ was selected for the turning bank angle. The maximum bank angle allowed by the
inner-loop of the vehicle is 45∘.

180
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

(a) Ground track without cross-track correction (b) Ground track with cross-track correction

(c) Cross-track error without correction (d) Cross-track error with correction

Figure C-15: Cross Track correction example

C.7.1 Guidance
The guidance system is designed to track the reference commands from the path planner, as well
as the user defined target velocity and altitude. It does this by implementing a cascade control
structure. The interfaces of the simulation and the guidance system are shown in in Figure C-2.
Each system will be further examined in the following sections. The interface for the guidance
system is defined in Tables C-20, C-21, and C-22.

Table C-20: Reference Commands for Waypoint Tracking

181
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

Table C-21: Sensor Outputs Relevant to Waypoint Tracking

Table C-22: Controller Outputs Relevant to Waypoint Tracking

C.8 Pixhawk Autopilot Sensor Package
The Pixhawk autopilot was identified as representative of autopilot hardware for SUAS and the
sensors on this autopilot motivated the configuration of the state estimator as well as the sensor
error characteristics used in testing. The Pixhawk has four sensor chips on board and an attached
GPS. The onboard sensor chips consist of an Invensense MPU 6000 3-axis accelerometer/gyro,
ST Micro L3GD20H 16 bit gyroscope, ST Micro LSM303D 14 bit accelerometer/magnetometer,
and an MEAS MS5611 barometer. The GPS selected for this application is a 3DR u-blox unit
with a NEO-7 series GPS module. The available sensor characteristics have been outlined in
Table C-23.

182
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

Table C-23: Sensor Characteristics

The Range and Sample Rate of the MPU 6000 gyroscope and accelerometers are user-selectable.
Digital low-pass filters can also be specified by the user which could determine the sample rate.
The values indicated in Table C-23 are reasonable values. To calculate the RMS noise, σ, from
noise density (ND), the following formula is used:

σ=ND BWeff (C-4)

BWeff=κBW

where BWeff is the effective noise bandwidth of the output filter. This is found by scaling the
bandwidth of the output filter by a constant, κ . The scaling constant is dependent on the order of
the filter and is 1.57 for a first-order filter. For an ideal brick wall filter the scaling is 1.0.

C.9 Filtering/State Estimator
The sensors on a small unmanned air system (SUAS) typically exhibit sufficient error that direct
use of the raw sensor values in the control system is not desirable, so some filtering is typically

183
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

included in the system. Also, the full state vector is typically not measured directly, and state
estimation is often employed to provide estimates of the full state vector that can be used in a
control system. A Kalman filter was selected for the current implementation because it provides
flexibility to interface with a variety of sets of measured quantities. A configuration with full
state measurement was first investigated using a basic Kalman filter, which employs a linear
model of the system. Section C.9.3 describes experiments that confirm that nonlinearities in the
true system lead to significant errors in the state estimates produced by the Kalman filter under
certain conditions. Section C.9.4 describes that in this case the Kalman filter served as a
smoothing filters could be used in the current configuration that includes full state feedback, this
approach would not extend directly to cases in which the desired controller inputs are not a subset
of the measured quantities.

C.9.1 Principles of a Kalman Filter
The Kalman filter (cf. [54]) is one of the most well known recursive state estimation algorithms.
It computes exact quantities for the conditional mean vector

 ̂xk|k = E [|xk]yk,yk−1,…,y1;uk−1,uk−2,…,u1

for linear systems with additive Gaussian noise governed by the dynamic equations

xk+1 = Akxk+Bkuk+wk

 yk = Ckxk+vk (C-5)

The quantities Ak, Bk, and Ck are matrices that can change over time. The process noise wk is
assumed to have zero mean and covariance Qk, and the measurement noise is assumed to have
zero mean and covariance Rk. Because these equations are linear, the conditional mean vector and
covariance matrix can be computed recursively in closed form. The Kalman filter computations
are typically described as having prediction and update or prediction and correction stages, as
described below.

C.9.1.1 Predict
The prediction stage produces the a priori estimate of the state:

 ̂xk|k−1=Ak ̂xk−1|k−1+Bkuk−1 (C-6)

based on the system dynamics in Eq. C-5, and the a priori estimate of the covariance:

 Pk|k−1=AkPk−1|k−1A
T
k+Qk (C-7)

C.9.1.2 Update
The update phase produces the Kalman gain Kk, which is a function of both the a priori state
covariance matrix (Pk|k−1) and the measurement error covariance matrix (Rk):

 Kk=Pk|k−1C
T
k(CkPk|k−1C

T
k+Rk)

−1 (C-8)

the a posteriori state estimate ̂xk|k, which is updated based on the difference between the predicted
and measured state values:

184
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

 ̂xk|k=̂xk|k−1+Kk(yk−Ck ̂xk|k−1) (C-9)

and the a posteriori covariance matrix estimate:

 Pk|k=(I−KkCk)Pk|k−1 (C-10)

The algorithm above is exact only for linear systems. For nonlinear systems, the matrices Ak, Bk,
and Ck are often formed by linearizing the system around the mean vector μk and the input vector
uk. The resulting algorithm is referred to as an extended Kalman filter. The initial implementation
described below assumes linear time-invariant (LTI) system dynamics, so Ak, Bk, and Ck are
constant. The air vehicle model used in simulation evaluations is nonlinear, and the simulation
results shown below reflect estimation errors that are likely due in large part to the simplifying
assumption of an LTI system made within the estimator.

C.9.2 Implementation of Kalman Filter
In order to implement a Kalman Filter with the Ultrastick simulation, a discrete linear model of
the plant needed to be generated. The model was linearized about the states listed in Table C-24.
The outputs of the linear model are listed in Table C-25. For this test case, it is assumed that
measurements of the roll, pitch, and yaw angles are available. These angles are often directly
measured with gyroscopic instruments on manned aircraft, but for small unmanned systems it is
more common to estimate these states based on other sensors including rate gyroscopes, linear
accelerometers, and magnetometers. Measurements of angle of attack and sideslip are often
available on research aircraft, including small vehicles such as the Ultrastick, but are less
commonly available on production SUAS. All other measurements are commonly available on
SUAS. As discussed above, the Kalman filter can readily be used for state estimation, allowing
future experiments to be easily conducted with different assumptions about the outputs of the
sensor subsystem.

Table C-24: Kalman Filter States

185
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

Table C-25: Sensor Observations

The linear model used in the Kalman filter is generated at a straight and level trim condition13,
and the Kalman filter estimates states that represent perturbations from this trim condition. Trim
values of the states, outputs, and inputs are denoted xt0, 𝐲𝐲𝑡𝑡0, and 𝐮𝐮𝑡𝑡0, respectively, and the
corresponding perturbation quantities are defined as

 Δx=x−xt0 (C-11)

Δy=y−yt0

Δu=u−ut0

The Kalman filter thus operates on the linear model

 Δxk+1 = AkΔxk+BkΔuk

 Δyk = CkΔxk

with appropriate trim increments added and subtracted at the Kalman filter interface in the
simulation.

C.9.2.1 Simulink Model
The Kalman Filter Simulink Model is shown in Figure C-16. The a priori state and error
covariance estimates are initialized in the memory blocks xHat and P-, respectively. Since the

13 The linearization routine in theUltrastick simulation environment produces a continuous
time model, so a continuous to discrete conversion step is needed to generate the discrete
model used in the Kalman filter. The is done using the Matlab default zero order hold
method.

186
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

linear model operates on the perturbation quantities (Δx, Δy, Δu), the trim measurements must be
subtracted from the real time measurements. The control inputs are commanded deflections from
the trim settings, so no modification is needed. Because the current control system is designed to
accept the measured quantities as inputs, the state estimates are multiplied by the output matrix
Ck to compute the estimated outputs of the system. Given the current control system, the Kalman
filter could be replaced with simple filtering of the measured quantities, but using the Kalman
filter provides greater flexibility to replace both the sensor and control subsystems without
requiring architectural changes in the filtering/state estimation subsystem.

187
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

Figure C-16: Kalman Filter

188
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

The prediction step is captured in Figure C-17. This model corresponds to Eqs. C-6 and C-7.

Figure C-17: Kalman Filter: Predict

The update step is broken into multiple subsystems: compute Kalman gain, update states, and
update error covariance, as shown in Figure C-18.

Figure C-18: Kalman Filter: Update

The Compute Kalman Gain subsystem implements Eq. C-8 to find the Kalman Gain, as shown in
Figure C-19.

189
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

Figure C-19: Kalman Filter: Compute Kalman Gain

The State Update subsystem shown in Figure C-20 uses the measurements from the sensors to
compute the a posteriori state estimate, implementing Eq. C-9.

Figure C-20: Kalman Filter: State Update

In the Update Error Covariance subsystem, Eq. C-10 is used to update the estimate of the error
covariance

190
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

Figure C-21: Kalman Filter: Error Covariance Update

C.9.2.2 Tuning the Kalman Filter
The process noise covariance matrix (Qk) and the measurement noise covariance matrix (Rk) are
Kalman filter parameters that must be chosen carefully to achieve the desired performance of a
Kalman Filter. The process noise should capture disturbances and errors introduced by the linear
model assumption. An initial estimate of the process noise focused on modeling error was
generated by executing the full nonlinear simulation model and the linear system model (Eq. C-5
with no noise) and computing the difference in the state increments at each step. The
measurement covariance matrix (Rk) was initially populated with the variance of the sensor noise
along the diagonals. From this initial point, the parameters can be tuned to obtain the desired
performance from the filter. An example of tuning impact is shown in Figure C-22. In Figure C-
22(a), the measurement covariance matrix is defined by the sensor noise. As can be seen, it
retains much of the noise from the sensor. By scaling Rk, we are able to effectively reduce the
weighting on the measurements and obtain a much smoother estimate of the pitch angle that
removes the high frequency noise of the sensor.

191
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

(a) Pitch Angle without tuned measurement matrix

(b) Pitch Angle with tuned measurement matrix

Figure C-22: Cross Track Correction Example
C.9.3 Multi-Model Kalman Filter
Testing with the basic Kalman filter with a single linear model of the system showed that a bias
existed between the Kalman filter estimated states and the true states of the system in some cases
when system states deviated significantly from the trim point at which the linear model used by
the Kalman filter was generated. Figure C-23 shows an example in which pitch angle deviates
significantly from the trim point and biases in state estimates are present. To test the hypothesis
that the bias is due to nonlinear system dynamics, a Kalman Filter was created that employed two
separate linear models. The first was linearized about the initial states, and the second was
linearized with a pitch angle of 15∘, the commanded step input for pitch in the example in Figure
C-23. The filter then switches between the two models based on which pitch angle it is closest to.
As can be seen in Figure C-24, introduction of the second model nearly eliminates the steady
state biases in the Kalman filter estimates, supporting the hypothesis that the biases are due to
nonlinearities in the system dynamics. Because the focus of the current effort is on requirements
and not on development of a high-performance system, the use of a single linear model in the
Kalman filter has been deemed adequate. The results shown here are intended primarily to

192
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

demonstrate that the observed errors are due to system nonlinearities and not an error in the
Kalman filter implementation.

 (a) (b) (c)

 (d) (e) (f)

 (g) (h) (i)

(j)

Figure C-23: Kalman Filter Pitch Angle Response — One Linear Model

193
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

 (a) (b) (c)

 (d) (e) (f)

 (g) (h) (i)

(j)

Figure C-24: Kalman Filter Pitch Angle Response — Two Linear Models

C.9.4 Unscented Kalman Filter
The estimator previously developed assumed full state feedback. This is not typical of sensor
packages used onboard small unmanned aerial systems such as the Ultrastick. As discussed in

194
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

Section C.8 , the Pixhawk autopilot was identified as representative of SUAS autopilots and an
state estimator was developed using inputs corresponding to the Pixhawk sensor package. This
section provides an overview of the structure of the Unscented Kalman Filter (UKF) [55] that
was developed to provide a state estimator architecture that is consistent with the Pixhawk sensor
package. Figure C-25 provides a high-level overview of the measurements and desired state
estimates (outputs) of a typical SUAS estimator.

Figure C-25: SUAS State Estimation Overview

In the implementation developed for the present work, winds and aerodynamic angles were not
included among the estimator outputs. The measurements and estimator outputs in the present
implementation are thus:

 Measurements
• (p, q, r): Body-axis angular rates with respect to an inertial frame provided by angular rate

gyroscopes from an Inertial Measurement Unit (IMU)
• (ax, ay, az): Body-axis acceleration measurements with respect to an inertial frame provided

by the IMU
• (hbaro, OAT): barometric height measurement and Outside Air Temperature provided by a

barometer pressure sensor
• (lat, lon, alt): Geographic position provided by a GPS unit. Alternatively, local geodetic data

can be provided in terms of North, East, and Down (NED) relative to a flat-earth frame.
• (Vn, Ve, Vd): Inertial velocity provided by a GPS unit
• psi: heading with respect to true north, provided by a magnetometer
• VT: airspeed measurement provided by a pitot probe
 Estimator Outputs
• (p, q, r): Body-axis angular rates with respect to an inertial frame compensated for modeled

sensor errors
• (phi, theta, psi): Euler attitude angles. An Euler angle formulation was used for compatibility

with the UltraStick simulation.
• (ax, ay, az): Body-axis acceleration measurements with respect to an inertial frame

compensated for modeled sensor errors
• (N, E, D): local geodetic position estimates

195
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

• (Vn, Ve, Vd): inertial speed estimates

The process model used in the estimator contains 15 states, consisting of Euler angles, inertial
position, inertial velocity, gyro bias estimates, and accelerometer bias estimates. The state vector
is given by:

x = []qT,pT,vT,bT
ω,bT

a

T

 q = []φ,Θ,ψ
T

 (C-12)

 p = []N,E,Hbar

T

 (C-13)

v = []VN,VE,VD

T

 (C-14)

 bω = []bωx
,bωy

,bωz

T

 (C-15)

 ba = []bax
,bay

,baz

T

 (C-16)

Here v is velocity in the inertial frame and q is the attitude representation using Euler angles.

The vectors ba and bω represent biases of the accelerometer and gyro measurements, respectively.
Two approaches can be taken to model this error. The first is a random bias, where the dynamics
for a random element, x, are: ̇x=0, ̇xo∼ ()xo,Po . Here xo is the initial state estimate and Po the
initial state covariance. A random bias model can be utilized in systems where there is a constant,
unknown error source. Alternatively, the error source can be modeled with a time-varying biases,
or random walk model. A random walk model can be used to model a constant bias combined
with measurement noise. This formulation has the added benefit of estimating error sources that
vary with time. The random walk model is: ̇x=w(t), xo=0,w∼ ()0,Q , where w is a
Gaussian variable. A random walk model is employed here to formulate the error model,
accounting for accelerometer and gyro errors.

Note, that while the angular rates and accelerations are not estimated states, the corrected angular
rates and accelerations are output from the estimator using the estimated bias states.

C.10 Requirements/System Performance Analysis
C.10.1 Control System Input Requirements
The requirements for input signals to the control system were investigated by assessing the
capability of the complete system to successfully complete the mission described in Section C.2
with various bias and noise errors on the input signals. Clearly, a complete requirements analysis
process would include goals in addition to mission completion. For example, high-frequency
content in the actuator command signals is generally considered undesirable and would typically
be limited even if it did not directly impact mission success. Such additional considerations can
be readily incorporated in future phases of the work, but were not considered critical to the goals
of the initial demonstration environment.

196
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

The first analysis involved adding either noise or bias errors to a single input signal and assessing
the amount of bias or noise that could be tolerated. The goal of this initial analysis was not to
precisely determine the allowable level of error on each measurement, but rather to establish
rough estimates of error levels on each measurement that have a comparable impact on overall
mission performance. In a number of cases, the level of error that could be tolerated from a
mission performance perspective was very large. This is particularly true in the case of biases,
which are in some cases very effectively compensated for by integral compensation in the control
system. Maximum acceptable levels of bias and noise on input signals were thus established
through a combination of engineering judgment and observed limits based on mission success.
Table C-26 shows the established limits for bias and noise on each input signal.

Table C-26: Error Limits for Individual Controller Inputs

The next experiment addressed the amount of bias and noise errors that could be tolerated on
input signals when bias and noise existed on all input signals simultaneously. The values in Table
C-26 establish a vector of noise standard deviation levels for each input and a vector of bias
levels for each input. Experiments were conducted in which the magnitudes of these bias and
noise vectors were scaled, but the relative noise levels on the various input remained unchanged
as did the relative bias levels on the various inputs. As expected, when bias and noise were
applied to all inputs simultaneously, the level of bias or noise that could be tolerated on any given
input was lower than it was in the case that other inputs had zero bias and noise. Initial
experiments also showed positive and negative altitude biases to have significantly different
performance impacts due to the change in the sensor field of view. In the results shown, altitude
bias was always set to zero to remove this asymmetric effects. Table C-27 shows the likelihood
of mission success for various scalings of the bias and noise vectors in Table C-26. These results
reflect simultaneous injection of bias and noise on all inputs except altitude14. For each test point
shown in the table, 100 Monte Carlo simulation runs were conducted. The results suggest that the
allowable noise levels are roughly an order of magnitude smaller when noise is simultaneously

14 The exceptions are the leftmost column and top row, in which results reflect zero bias and
zero noise, respectively, as indicated by the zero scaling

197
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

applied all sensors than they are when there is a single noisy sensor. Allowable bias levels are
similarly reduced.

Table C-27: Likelihood of Mission Success with Varying Bias and Noise on All Controller
Inputs

Based on the results in Table C-27 and selecting an acceptable performance threshold of 90%
mission success, the noise scale factor is limited to 0.12 and the bias scale factor to ±0.12.

C.10.2 UKF Evaluation with Nominal Sensor Characteristics
Experiments were conducted to determine whether the combination of the Pixhawk sensors and
the estimator described in Section C.9.4 could meet the requirements for errors in the control
system input signals established in Section C.10.1. Table C-28 shows the nominal bias and noise
values used for the sensors. Table C-29 compares the errors at the output of the UKF to the
requirements for errors in the control system inputs. In Table C-29, the estimation errors at the
output of the state estimator are shown in the fourth and seventh columns. The third and sixth
columns show the level of bias and noise that the system was predicted to be able to tolerate
based on the analysis in Section C.10.1. The second and fifth columns show the vectors of bias
and noise levels referenced in Section C.10.1 that were scaled to determine the maximum bias
and noise that the system is expected to tolerate at the input to the feedback control system. The
results indicate that the errors in pitch and yaw angle estimates and horizontal position estimates
produced by the state estimator exceed the error levels to which the system is expected to be
robust.

Table C-28: Nominal Sensor Error Characteristics for Simulation

198
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

Table C-29: Estimator Results for Nominal Sensors

C.10.3 Closed-loop System Performance
Initial experiments indicated that the mission performance of the full system comprising the
Ultrastick vehicle model, sensors error characteristics based on the Pixhawk sensor package, the
UKF state estimator, and the feedback control system was below the targeted 90% threshold.
Preliminary experiments also suggested that the mission performance was particularly sensitive
to the amount of error in the horizontal position estimate at the controller input. The following
section present results that demonstrate the significant impact on mission performance of changes
in position measurement errors, and show that improvements in the estimates of other states have
less impact on mission performance.

C.10.3.1 Assessment of Impact of Position Measurement Errors
An analysis was thus conducted to assess the impact of reducing the error in horizontal position
measurement at the input to the state estimator. Tables C-30 and C-31 show that with an
improved GPS sensor, the pitch and yaw estimates do not need to be improved to achieve the
desired mission success rate. These tables show the noise levels and bias levels, respectively, in
the state estimate errors at the input to the control system as the level of noise in the position
error at the input to the state estimator is varied. The last column in the tables also shows mission
success as the noise is varied. The results confirm that mission success is sensitive to noise in the
position measurement. In these results and subsequent results in this section, all sensor biases
were reduced by 50% with a goal of bringing the worst case bias at the output of the estimator to
approximately the level of the predicted limit shown in Table C-29.

Table C-30: Nominal Sensor Noise, 50% Sensor Bias

199
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

Table C-31: Nominal Sensors, 50% Sensor Bias

C.10.3.2 Assessment of Impact of Improved Pitch and Yaw Estimates
Table C-29 shows that as for the GPS estimates of position, noise in the pitch and yaw estimates
exceeds the predicted limit that the closed-loop system can tolerate while maintaining acceptable
performance. Tests were conducted in which the noise and bias of both the pitch and yaw
estimate were constrained to the maximum amount that Table C-29 predicts the controller could
tolerate. Tables C-32 and C-33 show the success rate along with the noise and bias of the control
inputs in this configuration with varying levels of GPS sensor noise. These results confirm the
preliminary finding that GPS errors have a far greater effect on the success of the mission than
errors in the pitch and yaw estimates.

Table C-32: Improved Pitch and Yaw Estimates with 50% Sensor Bias

Table C-33: Improved Pitch and Yaw Estimates with 50% Sensor Bias

C.10.3.3 Assessment of Impact of Improvement in All Sensors
Further tests were run to simulate an overall improved sensor package using 75% of the nominal
noise and 50% of the nominal bias levels shown in Tables C-28. The same set of GPS error levels
evaluated in the previous section were again used. As shown in Tables C-34 and C-35, the GPS

200
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

sensor still has the largest impact on the success of the mission, and the improvement in mission
performance produced by reducing noise in all other sensors is small.

Table C-34: 75% of Nominal Sensor Noise, 50% of Nominal Sensor Bias

Table C-35: 75% of Nominal Sensor Noise, 50% of Nominal Sensor Bias

C.11 Conclusions
A test environment based on a simulation of a small unmanned air vehicle was created to support
research on systems of systems interactions. The test environment included a simulation of the air
vehicle dynamics, sensor models, a state estimator, and a control system. A mission profile
representative of common SUAS missions such as crop monitoring was developed, and inner-
and outer-loop control system capabilities were implemented to execute a specific mission.
Acceptable performance of the overall system was defined in terms of sensor coverage during
this mission. The performance of the control system as a function of errors at the control system
inputs, the performance of the state estimator given sensor models representative of SUAS
sensing hardware, and the impact of changing sensor performance characteristics on the mission
success rate were all investigated.

	List of Figures
	List of Tables
	1 Summary
	2 Introduction
	2.1 Problem Description
	2.1.1 System of Systems Complexity
	2.1.2 Limitations in Testing, Formal Methods and System Modeling

	2.2 Solution Approach

	3 Methods, Assumptions and Procedures
	3.1 System Interface Abstraction Technology
	3.1.1 Motivating Example
	3.1.1.1 Understanding the Problem
	3.1.1.2 Defining the Solution
	3.1.1.3 Developing the Solution
	3.1.1.4 Identifying Solution and Problem Discrepancies
	3.1.1.5 Validating the Solution
	3.1.1.6 Refining the Problem and Solution
	3.1.1.7 Summary and Conclusions

	3.1.2 Reference Model
	3.1.2.1 Terminology
	3.1.2.2 The Context
	3.1.2.3 The Problem
	3.1.2.4 The Requirements
	3.1.2.5 The Specification
	3.1.2.6 The Correspondence
	3.1.2.7 The Implementation
	3.1.2.8 The Argument

	3.1.3 Reference Process
	3.1.3.1 Problem Definition
	3.1.3.2 Solution Definition
	3.1.3.3 Solution Specification
	3.1.3.4 Solution Development
	3.1.3.5 Solution Assessment

	3.1.4 Reference Mechanics
	3.1.4.1 Problem Frames
	3.1.4.2 Assurance Cases
	3.1.4.3 The Toulmin Model
	3.1.4.4 Modular Design
	3.1.4.5 Assume-Guarantee Contracts
	3.1.4.6 CLASS: Comprehensive Lifecycle Assurance for System Safety

	3.2 Arguing Successful Development
	3.2.1 Practical Argument Patterns: Pattern Flexibility
	3.2.2 High-Level Argument Structure: The Success Argument
	3.2.2.1 Defining Success, Adequacy, Mitigation, Etc.
	3.2.2.2 Success Argument Organization
	3.2.2.3 Addressing Development Risk

	3.2.3 Problem, Context, and Solution Definition
	3.2.4 Solution Assessment
	3.2.4.1 Requirements Satisfaction
	3.2.4.2 Safety Assessment
	3.2.4.3 Security Assessment
	3.2.4.4 Regulatory Compliance

	3.3 Practical Argument Modularity
	3.3.1 Integration Concepts
	3.3.1.1 Argument Views
	3.3.1.2 Assume-Guarantee Reasoning for Modular Arguments
	3.3.1.3 Contextual Compatibility

	3.3.2 Architecture
	3.3.2.1 Component Module Views
	3.3.2.2 Component Contract Views
	3.3.2.3 Sibling Contract Views
	3.3.2.4 System Dependency Views

	3.3.3 Mechanics Overview
	3.3.4 Integration Scope: Perspective of Component Selection
	3.3.5 Integration Failure
	3.3.6 Integration for Change: Impact Assessment and Reversion
	3.3.7 Justifying Demand Satisfaction
	3.3.7.1 Identifying Interfaces and Prepping Contracts
	3.3.7.2 Contract Development
	3.3.7.3 Recursive Interface Refinement

	3.3.8 Justifying Contextual Compatibility
	3.3.8.1 Domain Comparison
	3.3.8.2 Domain Assimilation
	3.3.8.3 Context Models Instantiation and Comparison
	3.3.8.4 Composition Schemes

	3.3.9 Justifying Sibling Compatibility
	3.3.9.1 Related Sibling Concerns: Design Siblings

	3.3.10 Justifying System-wide Compatibility
	3.3.11 Argument Assessment

	3.4 Compositional Analysis Framework for Systems of Systems
	3.4.1 Primitive Real-World Types
	3.4.1.1 System-Field Library
	3.4.1.2 System-Templated Library
	3.4.1.3 Library Comparison
	3.4.1.4 Discussion

	3.4.2 Real-World Type Manipulation
	3.4.2.1 Proof Automation Support

	3.4.3 Correspondence Analysis with Retrenchment
	3.4.3.1 Background
	3.4.3.2 Application to Correspondence
	3.4.3.3 The Role of Correspondence
	3.4.3.4 Representing Correspondence

	3.4.4 Contract Analysis

	4 Results and Discussion
	4.1 Cooling Tanks Example Problem
	4.1.1 Experiment Overview
	4.1.2 Executive Summary
	4.1.3 Response Prototype Conclusions

	4.2 Ultra Stick UAS Example Problem
	4.2.1 Scope
	4.2.2 Design Philosophy
	4.2.3 Process
	4.2.3.1 Ultra Stick UAS
	4.2.3.2 Air Vehicle
	4.2.3.3 Flight Control System
	4.2.3.4 Measurement Subsystem
	4.2.3.5 Kalman Filter with Full State Feedback
	4.2.3.6 Unscented Kalman Filter with Partial State Feedback

	4.2.4 Discussion
	4.2.5 Artifacts
	4.2.5.1 UAS Successful Development
	4.2.5.2 UAS Requirements Satisfaction
	4.2.5.3 Ultra Stick UAS – Air Vehicle Contract
	4.2.5.4 Air Vehicle Successful Development
	4.2.5.5 Air Vehicle Requirements Satisfaction
	4.2.5.6 Air Vehicle – Flight Control System Contract
	4.2.5.7 Flight Control System Successful Development
	4.2.5.8 Flight Control System Requirements Satisfaction
	4.2.5.9 Flight Control System – Measurement Subsystem Contract
	4.2.5.10 Measurement Subsystem Successful Development
	4.2.5.11 Measurement Subsystem Requirements Satisfaction

	4.2.6 Conclusion

	4.3 Examples of Argument Recovery
	4.3.1 Motivation
	4.3.2 Domain Arguments
	4.3.3 Overview of Technique
	4.3.4 Analysis
	4.3.4.1 JSSG
	4.3.4.2 516C

	4.3.5 Conclusions

	5 Conclusions
	6 References
	List of Acronyms
	Appendix A Assurance-Case Technology
	A.1 Background
	A.1.1 Elements of an Assurance Case
	A.1.2 The Goal Structuring Notation
	A.1.3 Confidence
	A.1.4 Understanding Argument

	Appendix B Cooling Tank(s) Challenge Problem
	B.1 CONOPS

	Appendix C Ultra Stick
	C.1 Introduction
	C.2 Mission Scenario
	C.3 Overview of Demonstration Environment
	C.4 Air Vehicle
	C.5 Inner-loop Control
	C.5.1 Pitch Tracker
	C.5.2 Roll Tracker
	C.5.3 Yaw Damper

	C.6 Outer-loop Control
	C.6.1 Velocity Tracker
	C.6.2 Altitude Tracker
	C.6.3 Heading Tracker

	C.7 Path Planner/Guidance
	C.7.1 Guidance

	C.8 Pixhawk Autopilot Sensor Package
	C.9 Filtering/State Estimator
	C.9.1 Principles of a Kalman Filter
	C.9.1.1 Predict
	C.9.1.2 Update

	C.9.2 Implementation of Kalman Filter
	C.9.2.1 Simulink Model
	C.9.2.2 Tuning the Kalman Filter

	C.9.3 Multi-Model Kalman Filter
	C.9.4 Unscented Kalman Filter

	C.10 Requirements/System Performance Analysis
	C.10.1 Control System Input Requirements
	C.10.2 UKF Evaluation with Nominal Sensor Characteristics
	C.10.3 Closed-loop System Performance
	C.10.3.1 Assessment of Impact of Position Measurement Errors
	C.10.3.2 Assessment of Impact of Improved Pitch and Yaw Estimates
	C.10.3.3 Assessment of Impact of Improvement in All Sensors

	C.11 Conclusions

	2016-0172Cover.pdf
	AFRL-RQ-WP-TR-2016-0172
	THIS IS A SMALL BUSINESS INNOVATION RESEARCH (SBIR) PHASE II REPORT.

	2016-0172SF 298.pdf
	REPORT DOCUMENTATION PAGE

