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1 SUMMARY 
Systems of systems (SoS) — systems for which the supporting components are regarded as 
individual systems — exhibit significant complexity. This complexity, which arises from the 
richness of behavioral interactions and from the inherent complexity of the components, poses a 
significant challenge to traditional verification, validation and certification approaches. 

Traditionally, verification and validation of systems of systems has been attempted through 
testing. Unfortunately, testing cannot provide complete coverage, even at the unit level. The 
complexity of behavioral interactions that arise in a system of systems makes them essentially 
untestable. 

Formal methods, which use mathematical proofs to establish critical properties, have been 
successfully applied at the unit level. At the system level, however, these techniques often suffer 
from a state-space explosion problem similar to that of testing. 

Compositional reasoning addresses these limitation by enabling reasoning about system of 
systems behaviors at the architectural level using abstractions of component behaviors. 
Compositional reasoning depends on two critical assumptions: 

1. the components provide the guarantees they claim, under the assumptions they state; and 
2. the assumptions stated are comprehensive of all of the required context under which the 

guarantees are provided. 

Stated assumptions are often insufficiently complete to support compositional analysis. 
Additional support is required to strengthen compositional reasoning. Specifically, support is 
needed to: 

1. enable more complete reasoning about components by more fully identifying the context 
under which guarantees can be established; and 

2. enable more complete compositional reasoning by accounting for the complete context. 

This Phase II effort builds upon our successful Phase I effort to develop system interface 
abstraction technology: a novel theory and a framework that: 

1. supports formal analysis and argument-based reasoning of component context, assumptions 
and guarantees; and 

2. supports formal analysis and argument-based reasoning of compositional properties based on 
components. 

System interface abstraction technology has four critical components: 

1. a novel theory of system-of-systems engineering including a reference model, a reference 
development process, and reference mechanics; 

2. novel assurance-case technology for systems of systems supporting argument composition; 
3. a novel theory of enhanced formal contracts for systems of systems; and 
4. a novel compositional analysis framework for systems of systems. 

The technology is demonstrated by application to two examples: 

1. an application to a hypothetical small unmanned aicract system (UAS) based on the Ultra 
Stick platform; and  

2. a novel, argument-based response to hypothetical request for proposals for development of a 
hypothetical system based on the cooling-tanks problem.  
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2 INTRODUCTION 

2.1  Problem Description 
As processing power continues to increase, the amount of software deployed for modern systems 
increases. Whereas space, weight and power considerations limit the scope and complexity of 
features realized in hardware for new systems, the space, weight and power requirements of 
software change relatively little based on software size and complexity. As such, software of 
virtually any size and complexity can be included on virtually any system. 

While the scope and complexity of software — including safety-critical software — has 
increased substantially, there has not been a concomitant increase in the efficacy and capability 
of tools and methods for the verification and validation of this software. This lack is particularly 
striking for safety-critical software applications for modern aerospace systems, especially as 
these systems incorporate more and more significant autonomy. Moreover, the composition of 
these systems into systems of systems presents further challenges, as behaviors emerge from the 
unexpected ways in which autonomous systems interact to produce new and unanticipated failure 
modes. 

2.1.1  System of Systems Complexity 
A system of systems is a system for which its supporting components are regarded as individual 
systems that may operate and be managed independently from each other  [1] [2]. Each 
component system may be similarly composed of subcomponents that can be further decomposed 
recursively, forming a hierarchical decomposition. 

The focus of this effort is on systems of systems for which there is a centralized managing 
authority that has coercive power on component systems, and regulates, manages and certifies the 
system of systems. The two applicable categories of systems of systems are therefore those in 
which either (1) component systems are developed specifically for use in a given system of 
systems (a directed system of systems) or (2) component systems retain independent ownership, 
objectives, funding and development, etc. (an acknowledged system of systems) [1].  

The behavioral complexity of systems of systems, coupled with the variability and dynamic 
nature of system-of-systems components, increases the difficultly and costs for the managing 
authority. The behavioral complexity of systems of systems arises from the complex behaviors of 
the component systems. Frequently, component behaviors are the result of complex software that 
operates in the context of the component-system hardware and the component-system 
environment. The system-of-systems problem is thus heavily dependent on understanding how 
physical and software-defined behaviors will compose within the novel environment of the 
system of systems. 

2.1.2  Limitations in Testing, Formal Methods and System Modeling 
Testing, commonly used to provide assurance for cyber-physical systems, cannot provide 
complete coverage — even at the unit level [3]. This lack of coverage is even more pronounced 
in system integration and system of systems integration. The state-space explosion inherent to the 
composition of complex systems into systems of systems is essentially untestable, leading to 
concerns of apparent nondeterminism, emergence, and interoperability. 

The application of formal methods to software systems has enabled many of the limitations 
inherent to software testing to be redressed. Rather than sampling the input space of a piece of 
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software to provide some assurance of correct operation, formal methods allow formal proofs of 
correctness over all inputs, providing complete assurance of correct operation under the 
assumptions of the formal analysis.  

Formal methods have been most successfully applied at the unit level, where software function is 
relatively constrained, inputs are clearly identified, and desired outputs are well understood. This 
success, combined with the success of standards like DO–178B/C, has led some researchers to 
conclude that, in essence, the problem has been solved at the unit level [4] [5]. While these 
claims are incomplete and optimistic — and largely inapplicable outside the domain of 
commercial avionics software — they do correctly point to the more pressing issues: 
requirements engineering and system specification, architecture design and modeling, especially 
with respect to the composition of systems within a system of systems. 

In an effort to cope with the complexity of modern systems and systems of systems, systems 
engineers have developed and adopted system and architectural modeling languages. These 
languages provide a more rigorous framework for developing and presenting requirements, use 
cases, behaviors, and architectures. Some of the developed modeling languages even provide 
formal semantics, upon which certain analytic capabilities have been developed.  

System and architectural modeling languages facilitate decomposition of complex systems and 
systems of systems into simpler components, by providing explicit representations of the 
modularity employed. Using these languages, component interfaces are clearly described and 
component contracts are illustrated through the connections between components. Tools such as 
AGREE [6] enable partial analysis of these contracts using assume-guarantee reasoning. 

Compositional reasoning of this form depends on two critical assumptions: 

1. the components provide the guarantees they claim, under the assumptions they state; and 
2. the assumptions stated are comprehensive of all of the required context under which the 

guarantees are provided. 

Commonly, explicitly stated assumptions are not comprehensive, but include many additional, 
implicit assumptions about the system context — especially the environment in which the system 
will operate. Dependence on these implicit assumptions threatens the validity of any analysis that 
does not explicitly include them, reducing justifiable assurance in correct operation of the 
component and thus in the correctness of the composition. 

Additional support is, therefore, required to strengthen compositional reasoning. Specifically, 
support is needed to: 

1. enable more complete reasoning about components by more fully identifying the context 
under which guarantees can be established; and 

2. enable more complete compositional reasoning by accounting for the complete context. 

2.2  Solution Approach 
In this Phase II effort, we built upon our successful Phase I effort, furthering the development of 
the system-interface abstraction technology (SIAT). System-interface abstraction technology 
provides a theory and a framework that: 

1. supports formal analysis and argument-based reasoning of component context, assumptions 
and guarantees; and 
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2. supports formal analysis and argument-based reasoning of compositional properties based on 
components. 

System-interface abstraction technology is a system-of-systems enabling technology that 
provides a comprehensive infrastructure to support compositional reasoning and assessment of 
complex systems of systems.  

The system-of-systems enabling technology rests on four pillars (Figure 1): 

1. a novel theory of system-of-systems engineering including a reference model, a reference 
development process, and reference mechanics; 

2. novel assurance-case technology for systems of systems supporting argument composition; 
3. a novel theory of enhanced formal contracts for systems of systems; and 
4. a novel compositional analysis framework for systems of systems. 

Underlying the pillars are two demonstrations:  

1. an application to a hypothetical small UAS based on the Ultra Stick platform; and  
2. a novel, argument-based response to hypothetical request for proposals for development of a 

hypothetical system based on the cooling-tanks problem. 

 

 
Figure 1: System of Systems Enabling Technology 
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3 METHODS, ASSUMPTIONS AND PROCEDURES 
This section presents the development of system-interface abstraction technology, a system-of-
systems enabling technology that provides a comprehensive infrastructure to support 
compositional reasoning and assessment of complex systems of systems. System-interface 
abstraction technology is comprised of a reference model, reference processes, and reference 
mechanics. 

3.1  System Interface Abstraction Technology 
Certification of complex systems and systems of systems is a significant challenge. Their scope 
and complexity makes reasoning about critical properties challenging and makes assessing the 
system for regulatory acceptance challenging. The only viable approach to such systems is to 
reason about them and certify them compositionally. 

Compositional reasoning for complex systems and systems of systems requires two critical steps: 

1. Showing that the demands of the architecture on its components satisfy system requirements; 
and 

2. Showing that selected components satisfy the demands of the architecture. 

These two reasoning steps provide compositional assurance that the system successfully satisfies 
its design goals. 

Compositional certification for complex systems and systems of systems similarly requires two 
critical steps: 

1. Arguing successful development by showing that architectural demands satisfy success goals; 
and 

2. Arguing the compatibility of selected components with architectural demands and the 
compatibility of component context with system context. 

These two argument steps, which naturally align with the reasoning steps, provide compositional 
certification. 

These four steps require careful attention to several critical artifacts of systems engineering: 

• requirements, 
• context, 
• architecture (or specification), and 
• interfaces. 

System interface abstraction technology provides support for compositional reasoning for 
certification of complex systems and systems of systems. The technology is composed of three 
parts: 

1. The SIAT reference model: describes the essential systems-engineering artifacts that are 
associated with successful development and the general relationships between these artifacts. 

2. The SIAT reference development process: describes general engineering activities that are 
undertaken to produce the reference model artifacts. 

3. The SIAT reference mechanics: describes example instantiations of the engineering artifacts 
and development activities. 
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The rationale of this division is to separate the SIAT theory from SIAT application. Generally, a 
reference model is a framework codifying goals/concepts and their interrelationships. A reference 
model does not specify a particular instantiation of these concepts but instead provides general 
organization and structure. 

The reference development process provides more detail about how reference model concepts are 
used in a development effort; however, the process is still generally described to minimize 
coupling with specific engineering paradigms or tools.  

The reference mechanics add further detail to the reference development process, describing 
specific development tools and techniques. Some of the mechanics are based on technologies 
developed as part of this Phase II effort, specifically, mechanics are based on an assurance case 
technology, theory of component contracts, and composition analysis tools, as shown in Figure 2. 

 

 
Figure 2: System Interface Abstraction Technology Overview 

 

The fundamental goal of the three components of SIAT is to provide system developers with a 
practical framework for establishing justifiable assurance that the development effort is 
successful. 
To aid the presentation of the technology, we start by considering a motivating example. 

3.1.1  Motivating Example 
System-interface abstraction technology provides the developer with clear identification of 
requirements, context, architectural demands, and interfaces. These are essential artifacts that 
support compositional reasoning and compositional certification of complex systems and systems 
of systems. 
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To illustrate system interface abstraction technology, we present and discuss a motivating 
example of a simple pitch-attitude monitoring capability for an unmanned aircraft.  

3.1.1.1  Understanding the Problem 
The customer has been flying a remotely piloted aircraft for a while and is concerned because 
sometimes the pitch attitude becomes excessive without warning. The customer might say to the 
developer, simply, “my pitch attitude becomes excessive without my realizing it,” but, more 
likely, the customer will have already decided that he or she would like to have a monitoring 
system. The customer might therefore state his or her need like this: 

A system is needed to provide pitch-attitude monitoring for a small, remotely piloted aircraft. The 
system should continuously monitor pitch attitude and alert the pilot when pitch attitude exceeds 
± 45°.  

We call this need a problem, and cast the development effort in terms of solving the customer’s 
problem. A successful development effort solves the customer’s problem completely — or 
sufficiently completely that the customer will be satisfied. Integral to solving the customer’s 
problem are business-related concerns — such as managing the effort so as to complete the 
solution on budget and on time — and regulatory concerns — such as adhering to any regulations 
that might inhibit the customer’s use of the solution. 

Often contrary to initial statements, which focus entirely on functionality, assurance is integral to 
the problem. The first step in solving a problem is therefore understanding the problem as 
completely as possible. This means that the statement of functionality must be refined, the overall 
system context must be defined, and assurance must be defined. The developer, upon receiving 
the problem statement, might ask questions like: 

• Is there additional functionality desired that has not been expressed? 

Or: 

• Is the aircraft fitted with a pitch sensor? 
• Does the aircraft system have an alerting capability? 
• Does the aircraft have a computer system that can be used to conducting monitoring and 

activate the alert? 

Or: 

• What level of assurance is required? 
• Does the assurance arise as a result of regulations? 

Upon receiving answers to these questions, the refined problem statement might be written: 

A system is needed to provide pitch-attitude monitoring for a small, remotely piloted aircraft. The 
system should continuously monitor pitch attitude and alert the pilot when pitch attitude exceeds 
± 45°. The system is comprised of a pitch sensor, a computer, and an alarm. The pitch sensor 
provides input to the computer through memory-mapped input/output (I/O). The alarm is 
activated by the computer through memory-mapped I/O. The system must provide at least five 
nines of availability (99.999% availability).  
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3.1.1.2  Defining the Solution 
The problem statement is equivalent to a set of very high-level requirements: it captures the 
essence of what the customer wants. But requirements are best thought of as being about the 
solution, describing what functionality/behavior the system must provide, in terms of changes to 
the environment, to solve the problem. We therefore separate the problem statements from the 
requirements. Additionally, there is typically more than one set of requirements for a given 
problem statement, just as there is more than one possible implementation that satisfy a given set 
of requirements. 

The second step in solving a problem is identification of the context in which the problem exists 
and the solution must operate. This identification actually takes place concurrently with 
understanding the problem, extends into the identification of solution requirements and continues 
through design and implementation. The context consists of the physical environment and 
potentially other factors, such as regulatory constraints. 

The third step in solving a problem is to work with the customer to identify the requirements that 
will constrain the solution to the problem. This task is among the most difficult in system and 
software engineering, as it is fundamentally informal and fraught with opportunities for 
misunderstanding and miscommunication. This task is also among the most important in system 
and software engineering, as errors introduced in requirements are exponentially more expensive 
to fix than errors introduced later in the development cycle. Working from a clear understanding 
of the problem helps to ensure that requirements are accurately and completely identified, but 
does not guarantee it. 

The requirements for the pitch-attitude monitoring system might include the following: 

The system shall raise the alarm when pitch attitude is greater than 45° or less than –45°.  

The concurrency of solution requirements and solution context identification is essential because 
the requirements are phrased in terms of context. This is clear from the example above:  

• raise the alarm refers to the alarm — a part of the identified context, as stipulated in the 
refined problem statement 

• pitch attitude refers to a state of the aircraft — a part of the environment from the point of 
view of the monitoring system, because it is beyond the system boundary 

• the thresholds also refer to the state of the aircraft 

Requirements describe how the environment should change to solve the problem. Additionally, 
elements of the solution context may contribute requirements that are not explicit in the problem 
statement. The regulatory environment, in particular, is a frequent source of additional 
requirements. 

3.1.1.3  Developing the Solution 
The fourth step in solving a problem is, broadly speaking, building the solution. This step 
includes specification, design and implementation.  

The specification is a high-level description of how the system will satisfy its requirements. 
Ideally, the specification should be sufficiently abstract to support multiple paths of 
implementation. In this respect the specification can be thought of as “what” the system must do 
to satisfy its requirements, and further design specifies “how” the specification is satisfied. The 
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distinction between “how” and “what” is often unclear and dependent on point of view  [4]. The 
specification for the pitch-attitude monitoring system might include the following: 

The system shall issue the alarm command to the transmitter when the pitch input provided by 
the pitch sensor is greater than 45° or less than 45°.  

3.1.1.4  Identifying Solution and Problem Discrepancies 
Careful examination of the example from the specification and the example from the 
requirements reveals a problem. The requirements are stated in terms of the environment, but the 
specification is stated in terms of the system. There is an implicit assumption encoded in the 
specification that “the pitch input provided by the pitch sensor” is the same as the “pitch attitude” 
described in the requirements. 

This assumption is fundamentally flawed. While it is desirable for the pitch input from the sensor 
to be the same as pitch attitude, they are in reality distinct phenomena. The input received from a 
properly designed, properly installed, and properly functioning sensor should closely correspond 
to the phenomenon it observes, but it cannot be relied upon to perfectly represent that 
phenomenon at all times. Instead, the input from the sensor approximates the phenomenon, but is 
subject to latency, inaccuracy, imprecision, range limits, etc. 

Without identifying the flaw in this assumption, the validation effort might conclude that the 
specification satisfies the requirements simply because it includes the same thresholds. The result 
would be a system that, once fielded, sometimes satisfies the requirements but sometimes does 
not. If the customer considers ±45° pitch to be a hard limit, the system will not satisfy the 
customer and development will be unsuccessful. 

3.1.1.5  Validating the Solution 
Validating that the specification satisfies the requirements therefore requires identifying the 
correspondence between elements of the specification and elements of the environment. In this 
example, the pitch input from the pitch sensor corresponds to the pitch attitude of the aircraft. 
The identification of the correspondence includes identifying what is lost in the approximation of 
the pitch attitude by the pitch sensor, to include accuracy, precision and latency. 

If the pitch sensor promises ±1° accuracy, then the system may not warn the pilot until the pitch 
attitude has exceeded ±46°. If the pitch sensor furthermore promises ±2° precision, the warning 
may not take place until the pitch attitude has exceeded ±48°. Moreover, if the pitch sensor 
promises 0.5 seconds latency, the response may be delayed even further. Exactly when the 
warning will be issued will depend on the dynamics of the aircraft and how quickly pitch attitude 
can change in 0.5 seconds. 

Having identified the approximation of pitch attitude by the pitch sensor in the correspondence, it 
is now clear that validation cannot succeed. In identifying the requirements, we have unwittingly 
stipulated a requirement that cannot possibly be satisfied. We cannot show that the specification 
will satisfy the requirement because, most of the time, it will not. 

There are two solutions to this problem:  

1. We modify the requirement so that it is satisfiable; 
2. We change our understanding of validation to include the necessary approximation made by 

the sensor. 
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The first approach is much better than the second approach. While the second approach has the 
advantage of being simpler and more expedient, it prevents the issue from being clearly 
documented and explained. If instead we modify the requirement, we will clearly document the 
problem of approximation of pitch attitude by the sensor. Doing this will force us to consider 
other requirements related to pitch attitude — we are thus likely to identify and correct all of the 
related requirements issues at once. A risk in modifying the requirement, however, is that the new 
requirement is overly tailored to the details of the solution. We must be careful to express the 
revised requirement so that the new requirement admits the necessity of approximation but does 
not depend upon or assume a specific approximation. 

3.1.1.6  Refining the Problem and Solution 
There are a number of ways in which the revised requirement might be stated. The exact phrasing 
will depend upon the needs of the customer — in particular, how precise the customer requires 
the pitch-attitude monitoring to be. Simple, straightforward phrasing of the requirement is no 
longer possible: acknowledgement of the approximation requires consideration of false positive 
as well as false negatives for the alarm — even when all parts of the system are operating 
correctly. 

While we might be tempted to say that the rate of false positives and false negatives is a design 
detail, the discussion above shows that it is not. The customer may not be used to thinking of 
these kinds of details, but they are fundamentally part of the requirements that define the 
solution.  

In this example, the customer may not be overly concerned with precision, and may accept 
requirements that say: 

The system shall raise the alarm when pitch attitude is greater than 45° or less than –45°. The 
system shall not raise the alarm when pitch attitude is less than 40° or greater than –40°.  

These requirements state the limit of acceptability for false positives and false negatives without 
resorting to probabilities — probabilities that, mostly likely, the customer does not know. 
Between these stated limits, the behavior of the system is not constrained. The alarm may be 
raised or not and the requirements will still be satisfied. 

With a sufficiently accurate and precise sensor, with sufficiently low latency given the dynamics 
of the aircraft, we can ensure that an alarm is never raised when it should not be and is always 
raised when it should be — provided that the system is working correctly.  

3.1.1.7  Summary and Conclusions 
The steps described above correspond to typical systems engineering activities. The artifacts and 
processes described map to those identified by system interface abstraction technology. With this 
example in mind, we present the system interface abstraction technology rigorously, in the 
following sections. 

3.1.2  Reference Model 
The prior motivating example speaks to the underlying difficulties in development as largely an 
issue of understanding the problem and its environment, and assessing the solution with respect 
to the identified problem and environment. The SIAT reference model is largely based upon 
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these observations and upon prior related work on problem-oriented development 
approaches [7] [8] [9]. 

Generally, a problem oriented reference model consists of four abstract components: 

1. the Problem; 
2. the Environment; 
3. the Solution; and 
4. the Argument. 

The Argument tells us that the Solution in its intended Environment solves the Problem.  

The SIAT reference model extends the basic problem-oriented concepts to include the following 
artifacts: 

1. the Problem; 
2. the Requirements; 
3. the Context; 
4. the Correspondence; 
5. the Specification; 
6. the Implementation; and 
7. the Argument. 

The extensions of the SIAT reference model are as follows: 

• Separation of the requirements from the problem: Traditionally, requirements define a 
problem to solve; however, elicited requirements might not define the right problem. Often 
development begins with an abstract problem description that is further refined into 
requirements. The SIAT model separates the abstract problem from the requirements to better 
align with how systems are developed and to explicitly address the risks associated with 
abstract problem identification and requirements elicitation separately. 

• Replacement of the environment with context: SIAT defines a more general notion of 
context that subsumes the physical environment, providing additional and important 
information for development beyond what is defined in terms of physical phenomena. 
Regulation, for example, is part of a system’s context but not necessarily its physical 
environment.  

• Addition of correspondence: Correspondence is an explicit relationship between phenomena 
of the real-world and phenomena specific to the solution. Correspondence is helpful in 
justifying that an implemented solution actually solves the problem by showing how 
phenomena are related.  

• Refinement of the solution into the specification and implementation: The “solution” is 
essentially the implemented system; however, solutions are not engineered directly from the 
problem in practice. Refining the concept of “solution” into the specification and 
implementation is more aligned with how systems are developed. A specification is developed 
to satisfy requirements, and an implementation is developed to satisfy the specification. Risks 
associated with development of the specification and the implementation are therefore crucial 
in justifying the solution system solves the problem.  

The result of this separation is the ability to make a more compelling and comprehensive 
argument. Specifically, the argument tells us that: 

1. the Problem, Context and Requirements are adequately defined and 
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2. the Implementation of the Specification in Correspondence with its intended Context satisfies 
the Requirements of the solution to the Problem. 

We refer to the assurance goal implied by this kind of argument as successful development.  
The remainder of this section further discusses the details of each SIAT reference model artifact. 
Questions concerning the production of these artifacts during development are further addressed 
in Section 3.1.3.  

3.1.2.1  Terminology 
Before describing each of these components of the reference model in detail, we first introduce 
some definitions for recurring concepts. 

Phenomenon A phenomenon is an observable entity. Examples of phenomena include events, 
values and relationships. 

Variable A variable describes a phenomenon that has values. 
Type A type describes the set of possible values for variable. 
Instance An instance is a particular value of a given type. 
Domain (or Knowledge Domain) A community of like-mindedness and shared mental space. A 

domain refers to the knowledge ecology of an expertise or field. Although a domain can be 
partially captured in artifacts documenting regulations, protocols, operational definitions, 
relevant phenomena, etc., domains are abstract concepts, defined by a collective of mental 
models and social convention/agreement of experts. 

Optative Optative expresses realizable intention or desire. 
Indicative Indicative expresses a statement of fact. 
Successful Development System development is considered successful if (1) the problem is 

adequately defined and (2) the problem is solved. More specifically, the problem is solved if 
the system implementation of the system specification in correspondence with its intended 
context satisfy the requirements of the solution to the problem. 

3.1.2.2  The Context 
The context is a comprehensive and indicative description of constraining aspects of the world 
that the system under development will operate in. Context typically cannot be fully documented 
due to scope. Instead, context is defined largely based on domain specific reckoning of context. 
Context is therefore defined operationally; however common entities of the context include the 
physical environment, the system domain, staff/support infrastructure, maintenance 
infrastructure, regulations, etc.  

The concept of context is an extension of environment or world (the physical environment) 
within a problem-oriented approach. Since all systems operate within the a physical setting, the 
physical environment is a mandatory component of the SIAT context. The rationale for extending 
the physical environment into the notion of context is the observation that often other indicative 
factors that are not easily expressed as physical phenomena constrain development. For example, 
the domain in which the system is developed and regulations.  

The environment is a highlighted component of the context within the SIAT reference model, not 
only because the environment is a mandatory component, but the environment the perhaps the 
most pervasive element of context throughout the system development. Regulatory context, for 
example, influences requirements and constraint design and implementation, but environment 
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influences all phases of system development. Further, a system is typically alters some 
phenomena of the physical environment in some manner to solve the problem, whereas other 
components of the context are not altered by the system. We therefore provide a more rigorous 
definition of the environment as follows: 

The Environment includes a set of related Indicative Phenomena that are usually treated as a 
unit in problem analysis. The Types associated with the Phenomena of the Environment exist in 
the world outside of the System. These Environment Types are sometimes also called Real-World 
Types.  

3.1.2.3  The Problem 
In SIAT, the problem captures the essence of the customer’s need as simply and succinctly as 
possible with respect to the context. Hence, the problem in SIAT is an abstract problem 
description and/or a set of abstract requirements, not a completed requirements document. The 
rationale is to first focus the abstract problem and then refine the problem into requirements in 
subsequent development activities.  

We think of the problem as being the first component of the SIAT reference model as it drives 
development, but it cannot be defined without reference to its context, and, in particular, its 
physical environment. This is natural, as the problem emerges from the context and is typically 
defined to alter some set of phenomena of the environment. Rigorously, 

A Problem describes an alternate optative Environment in which some Phenomena differ from 
those in the actual, indicative Environment as defined in the Context.  

3.1.2.4  The Requirements 
The requirements refine the identified problem, constraining the solution space of the problem 
further by identifying elements of the solution that are of particular importance to the customer. 
Rigorously, 

Requirements express the solution to the Problem in terms of Variables or Values of the 
Phenomena shared between the Problem and the Environment. Because Requirements, 
through Problem they solve, express a possible, future Environment, they are an Optative 
description.  

While the problem speaks about the future environment in simple, succinct terms, the 
requirements speak about the future environment in detail. Because the requirements are 
restricted to environmental phenomena, engineers are limited to describing what the solution will 
accomplish. Without reference to the phenomena of the system, engineers are precluded from 
saying how the system will solve the problem. 

3.1.2.5  The Specification 
The specification is the beginning of the realization of the solution requirements. Rigorously, 

The Specification describes an Optative set of Phenomena that is the System. The Types 
associated with the Phenomena of the Specification exist in the System. These System Types are 
sometimes also called Machine-World Types.  
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While the requirements speak about the future environment in detail, the specification speaks 
about the future system in detail. The specification is restricted to system phenomena, limiting 
engineers to describing the system that will solve the problem.  

3.1.2.6  The Correspondence 
The requirements express the solution in terms of environmental phenomena. The specification 
expresses the solution in terms of system phenomena. In order to show that the specification 
indeed satisfies the requirements, and thus solves the problem, the relationship between system 
phenomena referenced in the specification and environmental phenomena referenced in the 
requirements must be described. The correspondence expresses this relationship. Rigorously, 

The Correspondence between System Types and Environment Types is made through an 
Indicative description of the Environment. This description provides a Correspondence Model 
of critical relationships amongst Phenomena that are shared between the Environment and the 
Specification.  

3.1.2.7  The Implementation 
The implementation is the realization of the specification and by extension the solution 
requirements. Rigorously, 

The Implementation expresses the realization of the Specification in terms of the System Types 
introduced in the Specification. Additionally, the Implementation may rely on hidden 
Phenomena of the System — that is, System Phenomena that were not shared between the 
Specification and the Environment and are not described in the Correspondence.  

The specification can be conceptualized as a high-level system design. During implementation, 
the specification is further decomposed into a detailed design until the level of granularity is 
sufficient to build the actual system.  

3.1.2.8  The Argument 
In SIAT, the reference model artifacts are tied together by the last reference model artifact, the 
argument. The argument provides the rationale for belief that the problem has been identified and 
the implemented system successfully solves the identified problem. Rigorously, 

The Argument is an explicit and comprehensive logical structure, supported by a body of 
evidence, justifying that the developed/implemented system is Successful. Successful 
development requires not only a justification that the developed system solves the identified 
Problem within the given Context (e.g., Environment and regulatory considerations), but also 
requires justification that the Problem and Context are correctly, completely and appropriately 
identified.  

Where possible, the argument can be based on deductive/formal logic; however, requirements are 
fundamentally informal and doubts exist about the fidelity of formal models. Consequently, the 
argument is primarily informal based on inductive logic. 

3.1.3  Reference Process 
To better situate the reference model within a development process, this section describes the 
SIAT reference process. The reference process defines a set of high-level SIAT development 
activities. The purpose and rationale of the reference processes is to organize general engineering 
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activities associated with the application of SIAT and to relate these activities to the reference 
model artifacts defined in the previous section. The reference process grounds the reference 
model in abstract development activities, providing more structure/guidance for the application 
and further discussion of the SIAT concepts. The reference process also introduces basic 
concepts for the composition of components in system development, to be the focus of later 
sections. The reference process does not provide detailed descriptions of development activities, 
but rather describes the general activities that surround the reference model artifacts. In general, 
reference processes produce reference model artifacts as outputs.  

SIAT, as a problem-oriented approach, can be conceptualized in terms of three primary 
development activities (shown in Figure 3):  

1. understanding the problem, 
2. developing the solution, and 
3. assessing the solution. 
 

 
Figure 3: High-Level Reference Process 

While these activities speak to the rationale underpinning a general problem-oriented approach, 
they are too abstract and do not provide sufficient granularity to align with all of the SIAT 
reference model artifacts. The SIAT reference process is therefore refined into five development 
activities to expose the relationship between reference model artifacts, and further, to expose the 
mechanics of composition (shown in Figure 4): 

1. Problem Definition; 
2. Solution Definition; 
3. Solution Specification; 
4. Solution Development; 
5. Solution Assessment. 
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Figure 4: Detailed Reference Process 

 

The remainder of this section further describes the detailed processes and relationships shown in 
Figure 4. To simplify the discussion, and to separate out the mechanics of the adoption of these 
processes, the model is described as a linear progression of activities (a waterfall model). 
Feedback loops between any set of processes, either for development or to accomodate future 
system change and maintenance, are neither precluded nor mandated by the reference process.  

3.1.3.1  Problem Definition 
The problem, as described in the reference model, is the fundamental driver of system 
development in SIAT. The first process component of the reference process is therefore the 
activity of defining the problem. The inputs to this activity are any initial customer ideas about 
the problem and knowledge about the problem’s context. In some cases, the context and/or 
problem may be previously or partially defined. The output artifacts are the problem (the abstract 
problem description) and an an initial description of the context, which are conceptually 
developed in two subprocesses:  

1. problem elicitation and 
2. initial context elicitation. 

A specific order in which the outputs are produced is not assumed. The problem and context will 
likely be elicited concurrently. The produced context should be complete with respect to the 
identified problem, but, as is discussed in more detail below, the context is considered “initial” 
since further refinement of the problem in subsequent development activities often reveals 
deficiencies in the originally developed context.  
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3.1.3.2  Solution Definition 
The second process component is the definition of the solution. The primary purpose of solution 
definition is to engineer system requirements by refining the previously identified problem; 
however, in the process of developing system requirements, engineers often reveal more 
information about the problem necessitating refinements to the context. For example, a new 
requirement may reference an environmental phenomenon that was never defined, or reference 
functionality necessitating further explication of relevant regulations. Solution definition 
therefore consists of two subprocesses: 

1. continued context elicitation and 
2. requirements engineering. 

The problem and the initial context are inputs from the problem definition activity. The solution 
requirements and the context are outputs.  

The formality by which requirements are documented is not specified in SIAT. Requirements can 
sometimes be refined into formal descriptions, but not all requirements are amenable to 
formalization (e.g., usability requirements). Whenever possible, formalizing requirements is 
advisable to avoid issues associated with the ambiguity of natural language. 

3.1.3.3  Solution Specification 
The third process component of the reference process is the specification of the solution 
behavior. For this process component, the requirements and the context are inputs from the 
solution definition activity. The specification and the correspondence are outputs, produced by 
means of two subprocesses: 

1. correspondence analysis and 
2. specification. 

The specification development activity produces the specification artifact that stipulates the how 
the solution system will be developed to satisfy the system requirements. Correspondence 
analysis examines those phenomena in the environment that must be accessed by the system 
under development and relates those environmental phenomena to system phenomena for use by 
the specification. Correspondence analysis can be performed after the specification is produced, 
but could also be performed iteratively or concurrently with the specification activity as system 
phenomena are identified within the specification artifact.  

3.1.3.4  Solution Development 
The fourth process component is the development of the solution. In this process component, the 
specification is refined through a detailed system design activity, resulting in detailed design 
demands. Design demands are traditionally specified to a level of granularity sufficient to allow 
system engineers to directly implement a solution to satisfy the demands. Conceptually, solution 
development consists of two subprocesses: 

1. solution design and 
2. implementation. 

SIAT, however, also supports satisfying design demands by integrating other modular 
components. During design, developers assess the possible benefits in integrating other modular 
components into the implemented system rather than implementing the system in house. For 
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example, developers may find cost and organizational benefits by using existing and reusable 
components, or by further decomposing the solution into subproblems to be compartmentalized 
and developed in parallel development efforts.  

The use of components to satisfy design demands implies a third solution development 
subprocess, component integration, see Figure 5. The implemented system is produced by some 
combination of local (in house) implementation and component integration. The exact 
distribution of local implementation and component integration is based on system-specific 
design decisions. Design demands earmarked to be satisfied by components are said to be 
delegated or allocated to components.  

The component integration activity requires the selection or development of components. 
Components may or may not be previously developed, developed by third parties or developed 
under the concepts of SIAT. Regardless of the origin and development methodology of 
components, justification is required to demonstrate that the composed components are 
compatible and that the design demands delegated to components are satisfied by the provided 
behavior of referenced components.  

If components are developed under SIAT, the relationship between development processes is 
shown in Figure 5. General compatibility is assessed through assessment and comparison of 
contexts. Delegated demands are satisfied by contractural agreement between the delegated 
demand and component requirements. This approach keeps to the SIAT problem-oriented 
approach, hiding component detailed design from high-level components, promoting flexibility in 
component development. Justification of general compatibility and contractual satisfaction 
becomes part of the assurance argument developed in the solution assessment process. 
Component systems may themselves be implemented using components recursively.  

Component integration is both a development and maintenance activity. Component integration 
is performed post system deployment in response to changes to components.  
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Figure 5: Recursive Component Development and Integration 

3.1.3.5  Solution Assessment 
The final process component is assessment of the solution. The goal of this process component is 
to verify and validate that the implemented system is a solution to the problem. The inputs to this 
process are all of the reference process outputs: problem, context, requirements, correspondence, 
specification, and implementation. Solution assessment also uses fine-grained details about each 
development process and development artifact as necessary. For example, if components are 
integrated into the solution, solution assessment also uses details of the compatibility assessment 
and contract satisfaction. The outputs of solution assessment are an assurance argument and 
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documented approval of the implemented solution based on a careful review of the argument. 
Solution assessment therefore consists of two subprocesses: 

1. argument development and 
2. argument review. 

The argument is a comprehensive justification that the development process was successful: the 
solution system (the implementation) solves the problem, and the problem (the problem 
description, context, and requirements) has been adequately identified. The argument can be 
iteratively and incrementally developed in parallel with all other reference model processes [10] 

Because of the scope and purpose of the argument, argument development can serve as an initial 
and incremental assessment of the implemented system: assessments are required at each level of 
argument development to justify claims. The argument, however, is an artifact documenting 
belief that the development is successful. Final approval of the solution system is still necessary 
prior to system deployment.  

A domain-specific authority is designated to review and confirm the solution system is indeed 
successful. Since the argument captures the comprehensive belief that the system is successful, 
review of the system is primarily a review of the argument (argument claims and supporting 
evidence). The reviewing authority can be the customer, domain-specific experts and/or other 
3rd-party stakeholders (e.g., certification authorities). At the end of the review activity, the 
solution is either approved for use, or deficiencies are identified necessitating refinements in 
earlier reference processes. 

3.1.4  Reference Mechanics 
The reference mechanics gives specific instantiations of process components and specific forms 
to model components. This section describes several possible reference mechanics. Some of the 
presented mechanics are further investigated as part of this Phase II effort, and discussed in 
further detail in subsequent sections.  

3.1.4.1  Problem Frames 
The basis underlying SIAT’s “problem-oriented” theory and philosophy originates from the 
concept of Problem Frames  [8]. Problem frames are a theory and set of mechanics for structring 
and analyzing problems, based on the clear separation of problem, environment and solution.  

While the problem frame concept specifies particular mechanics and notation for analyzing 
problems, SIAT borrows more from the underlying motivation and theory than from these 
mechanics. In particular, SIAT is motivated by the observation that system failures often occur as 
a result of invalid requirements that originate from an improper understanding of the problem and 
its environment.  

As Jackson notes, practically all engineers and practitioners agree that focusing on the problem 
and what the system must do, not how, is of the utmost importance in early system 
development [8]. He also notes that this is not a useful moto. There are difficulties in 
distinguishing between the problem and its solution. The problem is located in the real world, and 
it is often difficult to focus on the problem. Engineers instead focus on where the solution to the 
problem is located: the system to be developed. The substance of Jackson’s problem frame 
approach centers around clearly identifying and separating the problem, the environment and the 
system. 
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Problem frames describe a problem and its solution using a set of canonical frames, which 
represent patterns commonly seen in developing software. The most basic form of the problem 
frame is shown in Figure 6. 

 

 
Figure 6: The Basic Problem Frame 

 

A key concept adopted for SIAT from problem frames is the frame concern. Jackson defines the 
frame concern as “the central concern for problems of a class defined by a problem frame” [8]. 
More generally, the frame concern summarizes the argument that is associated with a specific 
problem frame. At the highest level, the frame concern can be read as: “the system and its 
environment satisfy the requirements”. To address or satisfy the frame concern is to justify that 
the problem is adequately defined and solved by the developed system.  

The frame concern makes explicit the distinction amongst three fundamentally different 
descriptions: 

1. the specification – the optative description of what the machine (the system under 
development, further defined in subsequent sections) does to solve the problem;  

2. the domain description — the indicative description of the causal relationships in the domain 
upon which the machine relies to solve the problem; and 

3. the requirement(s) — the optative description of what is required to solve the problem. 

The argument implied by the frame concern is that: 

1. the specified system behavior (M) 
2. combined with the given environment/context (W) produces 
3. the required behavior (R). 

More formally, the argument stipulates that the system, as developed within its operating context, 
entails the requirements (M∧W⊢R). This argument concept, combined with similar extensions of 
problem frames in a related reference model  [9] provides the basis by which arguments are 
structured in SIAT.  

SIAT separates Jackson’s theory from the mechanics of problem frames. SIAT primarily makes 
use of the theory underlying problem frames for problem analyses, and uses these concepts to 
govern the form of an assurance argument and the mechanics for developing and assessing the 
argument. The mechanics associated with problem frames and context diagrams (the specific 
diagram structures) can be used when analyzing problems and context, but it is not a requirement 
of our approach. 

3.1.4.2  Assurance Cases 
Arguments in SIAT are documented using assurance cases noted using Goal Structuring 
Notation (GSN). An assurance case is a reasoned and compelling argument, supported by a body 
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of evidence, that a system, service or organization will operate as intended for a defined 
application in a defined environment  [22]. A further discussion and background on assurance 
cases and GSN is described in Appendix A. 

3.1.4.3  The Toulmin Model 
Assurance cases documented in GSN are based on the Toulmin model of argumentation  [11].  

 

 
Figure 7: The Toulmin Model 

 

The Toulmin model, illustrated in Figure 7, is comprised of the following components: 

• Claim (C): The position, claim or conclusion “whose merits we seek to establish”. Claims are 
represented as goals in GSN notation.  

• Qualification (Q): Modal qualifiers (e.g., ‘most’, ‘usually’, ‘presumably’, or ‘always’) that 
constrain the scope of the claim.  

• Data (D): The data or grounds used as evidence in support of a claim. Data is represented by 
solution elements within GSN notation.  

• Warrant (W): Practical standards or cannon of argument providing the rationale by which the 
data provides support of a claim. Warrants are typically represented as strategy elements in 
GSN notation between two goals; however, in traditional GSN notation, warrants are not 
expressed between a goal and solution element.  

• Backing (B): The support, justification or authority that supports the validity of the warrant. 
Often backing is not explicitly expressed within an argument, and is instead resident in the 
implicit knowledge endogenous to the domain in which the argument exists.  

• Rebuttal (R): Scenarios and exceptions that undermine the validity of the claim and authority 
of the warrant. There is no standard by which rebuttals are documented with GSN arguments; 
however, the concept of a confidence argument  [12], provides a mechanisms for separating 
out arguments justifying the mitigation of rebuttal scenarios.  

The Toulmin model concepts provide foundation for comprehensive inductive reasoning, and 
further provide a foundation for novel modularity support (e.g., composition schemes, further 
discussed in Section 3.3).  

3.1.4.4  Modular Design 
Modularity is often proposed as a mechanism to combat the growing complexity of system and 
software design. A large, complex problem is recursively broken up into smaller, simpler 
problems, until either the level of complexity has reached manageable levels or the problem can 
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no longer be easily decomposed. Additionally, modularity can facilitate reuse: when components 
are suitably decoupled from one other, they often can be used to construct new, different systems. 

Critical principals of modularity include  [13] [14]: 

• low coupling, 
• high cohesion, and 
• information hiding. 

Modularity is a key mechanism in SIAT. SIAT proposes that components be developed with 
carefully identified and described interfaces that are based on assume-guarantee reasoning (see 
Assume-Guarantee Contracts, below). Additionally, SIAT proposes that the arguments that the 
frame concern has been satisfied be structured to facilitate later use (see Section 3.3). When 
composition is used in system development SIAT provides reference processes to support 
compositional reasoning and to support compositional argumentation that component 
composition is correct. 

3.1.4.5  Assume-Guarantee Contracts 
Assume-guarantee reasoning is a common approach for compositional reasoning. Typical uses of 
assume-guarantee reasoning occur in component-based software engineering and design by 
contract engineering paradigms. In these paradigms, software modules (such as an application, 
object, or function) stipulate pre-conditions and post-conditions. Software modules provide 
properties/behaviors as specified by explicit post-conditions (i.e., guarantees). Modules may also 
stipulate pre-conditions (i.e., assumptions) associated with each guarantee. These assumptions 
must be valid in order to provide the corresponding guarantees. Thus, traditionally, valid 
assumptions imply the provided guarantees (A⇒G).  

Assume-guarantee pairs for a module are often referred to as assume-guarantee contracts, 
resulting in some confusion in terminology. With respect to a more natural and common use of 
the term, contracts are better thought of as an agreement involving at least two modules (or in the 
legal sense, parties). Typical uses of the term “contract” within assume-guarantee reasoning only 
consider one side of an agreement.  

In SIAT, the term “contract” refers to a mapping between the demands of one module to the 
provisions (guarantees) of another. The individual demands and provisions of a module together 
with their associated provided and assumed contextualization are referred to as interfaces. All 
interfaces specify some concept of an assumption and a guarantee (discussed in more detail 
below). A contract is therefore defined as an agreement between module interfaces.  

A contract is considered valid if all involved module interfaces are satisfied. Satisfaction of an 
interface is achieved by meeting the assumptions of the interface with the guarantees of another 
interface; hence, the contractual relationship is bidirectional (see Figure 8). 

Ideally, the interfaces in an assume-guarantee contract will specify all assumptions and all 
guarantees, thus completely describing the context in which the component exists. In practice, 
this is difficult to do completely and even more difficult to do formally. Argumentation provides 
a compelling mechanism to address this challenge, and is discussed in Section 3.3. 
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Figure 8: Bidirectional Interface Support 

 

In a hierarchical decomposition of modules, contracts are formed between two modules at 
different levels in the hierarchy (one higher than the other — See Figure 8). This hierarchical 
relationship imposes certain roles on module interfaces depending on which side of the contract a 
module is found: 

• The module that is higher in the hierarchy serves a demanding, promisee, or consuming role, 
specifying a “required interface”: certain demands are assumed to be met by other 
components where the context of the demand is guaranteed. 

• The module that is lower in the hierarchy serves a providing or promiser role, specifying a 
“provided interface”: the module specifies provisions or guarantees if certain contextualizing 
assumptions are valid. 

Both interfaces have a concept of an assumption and a guarantee. The key difference between the 
required and provided interfaces is the syllogism between each interface’s assumptions and 
guarantees. In the required interface, guarantees (the system contextualization) imply 
assumptions (assumed satisfaction of demands) (G⇒A). Conversely, in the provided interface, 
assumptions (the assumed context) imply guaranteed behavior or properties (A⇒G). Guarantees 
of one interface serve to validate the assumptions of the other, see Figure 8.  

Interfaces document formally the syntax and the semantics of what the component assumes or 
requires of the system and its environment and what the component guarantees or provides to the 
system and its environment. 

Syntax is concerned with machine-world representations and is easily written down and checked. 
For example, a 12-element vector of 64-bit floating-point numbers is a statement of syntax. It is 
very easy for a traditional type checker to ensure syntactic compatibility of components. 

Semantics are real-world concerns and are harder to write down and harder to check. Semantics 
are described in terms of real-world phenomena. For example, pitch attitude or airspeed are real-
world phenomena. Usually, semantics are tied to syntax by implicit convention, such as the use 
of a name or non-rigorous documentation associated with system development.  
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SIAT proposes an explicit, rigorous model of the correspondence between syntax (machine-
world representations) and semantics (real-world phenomena). Additionally, real-world 
phenomena can be formalized using real-world types, allowing formal analysis of much of the 
semantic content of interfaces. This analysis provides greater assurance of correct composition. 

Real-world types, correspondence models, and their analysis are discussed further in Section 3.4. 

3.1.4.6  CLASS: Comprehensive Lifecycle Assurance for System Safety 
CLASS, or the Comprehensive Lifecycle for Assured System Safety, is a combined methodology 
and toolset for developing and maintaining safety critical software systems, illustrated in 
Figure 9 [15]. CLASS represents an example mechanic for managing the development lifecycle 
and capturing domain knowledge. CLASS can support SIAT in three ways: 

1. CLASS provides tools and processes that ensure that the system and its assurance case are 
synchronized. This synchronization is important in all phases of the system lifecycle, from 
development through retirement. CLASS mechanisms can interact with SIAT to support 
argument and system modularity by interfacing CLASS processes with SIAT argument 
processes. 

2. CLASS provides a repository of artifacts that support system development. SIAT-specific 
artifacts, such as the success argument patterns, the requirements satisfaction patterns, and the 
argument contract patterns can be included in CLASS repositories to facilitate applying SIAT 
to new development efforts. 

3. CLASS provides tools and processes that faciliate the capture, structuring, and maintenance 
of domain knowledge. Domain knowledge is critical to SIAT, as it represents a significant 
component of context that must be considered for correct argument composition, validation 
and assessment.  

The foundation of CLASS is system safety assurance–arguing why a system is safe. Assurance 
requires teams to think comprehensively about safety and be able to demonstrate this thinking in 
a rigorous argument. Argument as a basis for safety assurance is an increasingly common 
regulatory practice in Europe and the United States. 
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Figure 9: High-Level CLASS Infrastructure 

 

Using CLASS, teams can build, maintain, and retire safety critical software systems with 
comprehensive and rigorous safety arguments. Unlike other assurance methodologies, CLASS 
focuses on directly extracting, applying, and testing the assurance rationales of a system’s 
experts. CLASS methodology is based on several principles: 

• Domain Arguments: System experts have expert arguments for why their practices and 
designs are sufficient. These are called domain arguments [16]. CLASS encourages writing 
system safety arguments directly from domain arguments, which in turn encourages living, 
continuously improving, and representative safety assurance. 

• Community of Practice: CLASS replaces the role of the dedicated safety case author with the 
system’s community of experts. CLASS tools focus on team collaboration to build, review, 
improve, and maintain arguments [15]. 

• Procedural Support: Assurance of complex systems means having the right people do the right 
things at the right times. CLASS supports modeling and executing workflow through BPMN2 
(Business Process and Modeling Notation) in order to enforce best practices and team 
norms [15] [17]. 

• Knowledge Sharing: CLASS provides resource packages modeled on the open source 
software paradigm. Packages contain guidance documents, argument patterns, and BPMN2 
processes representing best practices. Beginners can get started by downloading these 
packages and applying them to their CLASS-managed systems. Intermediate users can tailor 
them. Experts can publish their resources as new packages to share with a wider 
community [18]. 
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• Assured System Modules: In CLASS, a system and its assurance arguments are a resource 
package. When building a system of systems in CLASS, one downloads component systems 
as CLASS packages. Therefore, the system of systems receives both the component systems 
and their assurance artifacts in support of compositional safety. Importantly, CLASS design 
includes support for notifying dependent systems of changes to component assurance [15]. 

• Rationale Certification: CLASS promotes the rationalization of the certification process 
through argument-driven assurance. When standards contain a clear rationale, certification 
becomes an assurance activity amenable to the CLASS management [19] [20]. 

• Active Monitoring: CLASS provides tools to actively monitor the continued assurance of a 
system. This includes monitoring the active run-time state of the system software as well as 
the activity of executed workflow surrounding the system. This monitoring collects run-time 
evidence required for assurance, as well as supporting detection of argument assumption 
violations [17] [21]. 

Together, these properties support a methodology and toolset in which assurance is integrated 
into all stages of the system lifecycle. The integration is active, with ownership of the process by 
the system’s experts being the key driver of assurance quality. 

CLASS tools are built from open source applications familiar to IT and software development 
teams [17]. Components include software project management (Maven), resource repositories 
(Nexus), version control (Git), workflow automation (Camunda), and a programmable wiki 
environment (XWiki). 

3.2  Arguing Successful Development 
A fundamental concept of the SIAT theory is the explicit justification that the development effort 
is successful (see Section 3.1). Successful development of a complex system or system of 
systems includes successful communication of the rationale for justifiable assurance of success. 
System interface abstraction technology therefore incorporates the assurance case to document 
and communicate this rationale. 

An assurance case is a reasoned and compelling argument, supported by a body of evidence, that 
a system, service or organization will operate as intended for a defined application in a defined 
environment  [22]. In SIAT, the argument is used to justify successful system development. 
System interface abstraction technology documents arguments using the Goal Structuring 
Notation (GSN)  [23]. Detailed background on assurance cases and GSN is provided in Appendix 
A.  

In principle, the organization of arguments supporting successful development is subject to 
interpretation and therefore may differ depending on the argument engineers and stakeholders. 
The reference success argument facilitates development of arguments that follow the principals 
of SIAT. Furthermore, the success argument pattern enables engineers to iteratively refine, alter, 
and record concepts of successful development so that they can be subjected to further scrutiny.  

This section presents reference argument patterns for arguing successful development using 
GSN. For further background on the notation of arguments and the use and instantiation of 
argument patterns, readers are referred to Appendix A and the GSN community standard  [23].  
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3.2.1  Practical Argument Patterns: Pattern Flexibility 
Argument patterns as suggested in SIAT are intentionally less rigid and prescriptive than is often 
suggested by more traditional argument patterns. Patterns in SIAT are used more to guide 
discussion and provide a basis for argument development. SIAT argument patterns should be 
considered maleable and not strictly prescriptive.  

The rationale for this choice is that fine-grained argument structures and phrasing within the 
arguments can often be adequately expressed in more than one way. Furthermore, each domain 
will likely require subtle variations and refinement to argument structure and phrasing to meet the 
expectations of relevant stakeholders and argument reviewers. Defining patterns to express all 
possible domain arguments (see Section 4.3 and Section 3.1.4) is not practical.  

Rather than attempt to provide one definitive argument structure that will likely be the subject of 
controversy by domain experts, argument patterns presented here take a more practical approach. 
Specifically, patterns are used to convey a conceptual organization and flow of the argument that 
can be further refined as necessary. 

We therefore take a position that the argument concepts described within the presented patterns 
are of primary importance, more so than the fine-grained pattern structures, organization, or 
phrasing itself. Patterns should not be used to force a manner of communicating the argument 
that is considered unacceptable or undesirable within a given domain. Variations to the patterns 
as the argument is instantiated are allowed to better meet domain-specific needs, but variations 
are anticipated to convey the same general principles.  

3.2.2  High-Level Argument Structure: The Success Argument 
The success argument is the top-level argument structure in SIAT, and is used as the top-level 
argument for every modular component of development (further discussed in Section 3.3). The 
success argument argues that the development of the system component was successful by 
justifying that the application of the reference model was successful: succesful problem 
definition, context definition, solution definition, and solution assessment (discussed in 
Section 3.1.2). The highest level of the success argument pattern is illustrated in Figure 10. 
Branches of the argument are explicated in subsequent sections.  
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Figure 10: Success Argument Pattern 

3.2.2.1  Defining Success, Adequacy, Mitigation, Etc. 
The form and content of the success argument pattern is based upon concepts from the reference 
model (Section 3.1.2) and common practice. The argument is used to demonstrate that the 
development of the given system is “successful”, where the term “success” indicates an 
assessment of a larger class of concepts within SIAT. “Success” is used instead of any specific 
metrics because concepts of success are largely stakeholder-defined, domain-specific, and highly 
detailed and complex, as is defined by the complex argument structure underneath a success 
claim. The term “success” is used instead of terms like “adequate” since success seems to imply 
more strongly a threshold by which termination of development is acceptable.  

In SIAT, successful development is justified by components of success. These components can 
be classified in two general categories: 

1. successful definition of key SIAT development artifacts, i.e., the problem, context, and 
solution, i.e., requirements (Goals 3.1, 3.3 and 3.5 in Figure 10), and 

2. successful assessment of the implemented system with respect to the defined problem, 
context, and solution (Goal 3.7 in Figure 10). 

If these goals are justified, then under SIAT, the argument justifies successful development.  

Other non-specific terms, such as “adequate” and “mitigation” are also used throughout presented 
arguments and argument patterns in this report. The precise definition of these concepts cannot 
be made until a system is developed and stakeholders approve the definition. When patterns are 
instantiated, it is up to the argument engineers and system stakeholders to decide if it is more 
appropriate to concretize these concepts and reference explicit definitions in GSN context 
elements, or to rely on the argument structure itself to provide reviewers with the definition as 
implied by an argument trace.  
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3.2.2.2  Success Argument Organization 
The success argument builds upon problem frames proposed by Jackson  [8] and the enhanced 
reference model proposed by Strunk  [9] (see Section 3.1.4). Specifically, the success argument 
builds upon the problem frame notion where the argument is used to stipulate that the system, as 
developed within its operating context, entails the requirements. The SIAT success argument 
justifies successful development by demonstrating that: 

1. the problem, context and solution (i.e., requirements) are adequately defined and 
2. the implementation of the specification in correspondence with its intended context satisfies 

the requirements of the solution to the problem. 

As described in the previous section, the structure of the argument is conceptually divided into 
successful definition of the problem, context and solution (requirements) and then successful 
assessment of the implemented system. The argument structures for successful problem, context, 
and solution definition (to be defined under Goals 3.1, 3.3 and 3.5 in Figure 10) are shown in 
Figure 11, Figure 12, and Figure 13 respectively. The argument structure for successful solution 
assessment (to be defined under Goal 3.7 in Figure 10) is shown in Figure 14.  

 
Figure 11: Successful Problem Definition 
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Figure 12: Successful Context Definition 
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Figure 13: Successful Solution Definition 



33 
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited. 

 
Figure 14: Successful Solution Assessment 
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The leaves each of the primary branches of the success argument typically terminate with 
argument modules. These modules are not used to express modular system development, but 
rather are used to simplify the complexity of of the argument structure. It is possible to remove 
these modules and continue the argument as a monolithic entity; however, we found this 
modularity provided a structure that was more accessible for discussion and review. 

3.2.2.3  Addressing Development Risk 
Successful development may include alternative notions of development that include more than 
just the system design. For example, arguments may be considered necessary to justify that the 
development process will be completed within in budget and on schedule. Such arguments have 
been suggested in prior work on process synthesis using assurance-based development 
(ABD)  [24] [10] [25]. In this prior work, two arguments are developed for a subject system: one 
argument justifying that the system is fit for purpose, and another argument justifying that the 
development effort under way will yield an adequate system on time and within budget. The 
latter argument is continuously developed, managed, and updated during the development 
process to track that development is inline with development goals/restrictions. The argument of 
“development process success” is not completed until the development process is complete. Once 
the development process success argument is completed, it is typically rendered moot 
(development risk is typically no longer a concern once the system has been completely 
implemented). 

Similarly, a deployed system might have to fit into a larger business vision that may evolve over 
time. Arguments might be necessary to demonstrate that the system allows the business to meet 
certain financial expectations and goals. These arguments might be updated much as ABD 
arguments are updated over a period of time (e.g., the fiscal year) and become moot once the 
specified time has past, in which case a new argument might need to be developed. 

The use of process arguments to track management/development/business concerns, if desired, 
can be adopted within the success argument structure, and is currently represented in the 
argument structure. Under Goals 5.7 and 5.9 in Figure 13 it is possible to define alternative 
requirements other than design requirements. Likewise, under Goals 7.4 and 7.7 in Figure 14, the 
satisfaction of these requirements are justified. It is envisioned that the development and use of 
the satisfaction arguments for these requirements would be consistent with the processes and uses 
as described under ABD. Within the given effort, further investigation into the use of ABD is out 
of scope.  

3.2.3  Problem, Context, and Solution Definition 
Arguments supporting successful definition of the problem, context and solution (requirements) 
are based largely on the expectations of the system stakeholders. In some cases, a simple review 
and approval by experts or compliance with a given regulation might be considered sufficient. In 
other situations, adequate identification is defined by a careful examination of chosen elicitation 
processes and artifacts produced from elicitation processes.  

The concerns of problem, context and requirements definition can be generalized into an 
“identification/elicitation” concern, where the specific entity being identified does not matter. 
The leaves of all three successful definition branches (Figure 11, Figure 12, and Figure 13) 
reference a separate argument module where these identification concerns are addressed. We 
observe that to have “adequate identification” generally, the argument must at least justify 
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complete, appropriate and correct (accurate) identification of entity being identified. We further 
generalize these concerns as confidence characteristics that affect the legitimacy of inferences 
and artifacts throughout the argument. An identification argument is therefore a specific type of 
confidence argument in SIAT; however, because confidence in these entities is critical under the 
SIAT reference model, these confidence arguments are not separated from the main argument 
structure as would typically be the case for confidence arguments (see Appendix A). Other more 
traditional uses of confidence arguments throughout the argument would be separated to simplify 
the argument structure. The structure of separate confidence arguments would also consider 
completeness, appropriateness and accuracy. Other confidence concerns are added as is deemed 
appropriate/necessary. The top-level identification argument is shown in Figure 15. 

  

 
Figure 15: General Entity Identification Pattern 

 

From these basic identification properties (correctness, appropriateness, and accuracy), we 
informally elicited a more detailed subset of properties that could be used to justify each of the 
basic identification properties. Elicitation of these more detailed properties was not intended to 
provide a definitive or well-accepted set, but rather the set was derived to provide a discussion of 
the kinds of arguments necessary to justify adequate identification. The set was supplemented 
with additional properties as the pattern was applied for specific purposes, e.g., requirements 
elicitation literature such as IEEE 830–1998  [26] and IEEE 29148–2011  [27] suggested 
additional properties.  

Generally, correctness, appropriateness, and accuracy can be justified directly by assessing the 
produced artifact (e.g., the requirements document) or indirectly by assessing the processes used 
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for identification/elicitation. Direct assessment is typically preferred but often either direct 
assessment is not well established or residual doubts remain that can only be addressed by 
examining the processes used to develop the artifact.  

Properties to support correct, appropriate and accurate identification could be argued in GSN; 
however, the pattern must document potentially complex structure to account for domain-specific 
variations in identification confidence. While we did develop some GSN patterns initially for this 
purpose, the utility of the argument structure was questionable. For simplicity, we instead list 
potential properties for correct, appropriate and accurate identification below and leave definition 
of the associated argument structure to domain experts. Characteristics such as these and 
relationships between these characteristics can be used to define a common characteristic 
map  [28] as a more general mechanism for describing confidence patterns in terms of key 
properties without necessarily prescribing a GSN argument structure.  

Potential properties of complete identification: 

• complete identification of accepted sub-classes of the identification problem (for example 
classes of requirements, such as functional and non-functional) 

• use of well-established elicitation processes (i.e., prior vetting of elicitation processes) 
• correct application of elicitation processes (e.g., using prescribed methods with trained 

elicitors) 
• use of reliable documentation and storage procedures (e.g., justification that documentation 

procedures do not accidentally omit or delete contents) 
• assessment and approval by stakeholders of elicitation activities and/or the produced artifact 
• assessment of completeness with respect the needs of other artifacts or activities (e.g., the 

context - environment and regulation - may be considered complete or partially compelete if 
all requirements and the problem description only refer to contents described within the 
context description). 

Potential properties of appropriate identification: 

• consistent artifact contents with respect to other internal contents and other relevant artifacts 
(e.g., the requirements are consistent with the problem description) 

• unambiguous artifact contents 
• lack of redundancy in artifact contents 
• credible artifact contents 
• realistic artifact contents 
• necessary and/or relevant artifact contents 
• atomic artifact contents, i.e., of simplest expected form (e.g., atomic requirements) 
• verifiable artifact contents 
• traceability of artifact contents to other relevant artifacts 
• comprehensible artifact contents 
• prioritized artifact contents 
• well-structured artifact contents (e.g., categorized or organized in a standardized form) 
• correct and up-to-date artifact 

Potential properties of accurate identification: 

• correct application of elicitation processes (e.g., using prescribed methods with trained 
elicitors) 
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• use of reliable and/or well-established elicitation processes (i.e., prior vetting of elicitation 
processes) 

• verification/validation of the artifact’s contents (i.e., the form and semantics of the contents 
are correct) 

• use of reliable documentation and storage procedures (e.g., documentation is not 
unintentionally or maliciously modified to reflect incorrect information) 

3.2.4  Solution Assessment 
In principle, if the system requirements are completely identified, then justifying that all 
requirements are satisfied should provide a sufficient assessment of the implemented system. 
This notion is more aligned with the original Jacksonian problem frames argument. In practice, 
however, reviewers, such as certifiers, often prefer different “views” of system assessment. For 
example a dedicated safety assessment (justification of hazard mitigation), regulation assessment 
(justification of compliance to regulations/standards), and security assessment (justification of 
mitigation of threats to system assets). The successful solution assessment branch (Figure 14) 
provides several example assessments that could be further instantiated as desired by system 
reviewers and certifiers. At a minimum, this branch should include a requirement satisfaction 
argument. 

This section discusses an argument pattern for requirement satisfaction, safety assessment, 
security assessment and regulatory compliance.  

3.2.4.1  Requirements Satisfaction 
As commented on above, the success pattern supports the identification and satisfaction of 
various types of requirements; however, for simplicity of this effort, we focus on typical system 
requirements, to be justified as adequately satisfied within Module 8.1 of Figure 14.  

The requirement satisfaction argument approach is illustrated in Figure 16. Requirements are 
assumed to be adequately identified by the solution definition argument branch (Figure 13) and 
the focus of requirement satisfaction is placed on demonstrating that the provided requirements 
are satisfied. Requirements are satisfied by a recursive refinement of each requirement into sub-
requirements, specifications, high-level architecture, lower-level design specs, and ultimately by 
evidence about the implemented system itself.  

  



38 
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited. 

  
Figure 16: Requirements Satisfaction Overview 

 

The requirements satisfaction pattern (Figure 17) enumerates each requirement, and justifies that 
the detailed spec/design for each requirement: 

1. actually entails the requirement and 
2. is satisfied by the implemented system. 
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Figure 17: Requirements Satisfaction Pattern 
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In arguing the specification entails the requirements, the assessment may need to consider 
retrenchment and correspondence with machine-world types to real-world types. The assessment 
is likely to be based on some combination of expert judgement and formal proof. The argument 
for requirement satisfaction validation could be decomposed into sub-properties of validation 
(retrenchment, expert approval, etc.). The presented argument is simplified to assume one item of 
evidence that encapsulates a complete assessment of entailment (requirement satisfaction 
validation assessment).  

Satisfaction of each element of the specification is achieved by further decomposition into more 
detailed design elements or by evidence about the system itself. The pattern also illustrates that it 
is possible to support satisfaction of the specification by use of a modular component, i.e., 
another system component to be implemented elsewhere or to be specifically developed in order 
to support modularity. In this instance, further detail of the design and implementation of the 
component is not available at this level of development. A demand is specified but the details of 
how the demand is satisfied are explicated by a contractual argument with another component 
and a separate development process for the component. Modular development is further 
discussed in Section 3.3. 

Both requirements and the detailed specification/design of the system can be developed 
hierarchically. The argument could similarly capture the hierarchical decomposition or the 
hierarchy could be flattened as appropriate or desired. The presented requirement satisfaction 
pattern illustrates a flattened hierarchy approach. If the pattern were extended to a hierarchical 
decomposition approach, each level of refinement in the requirements and specification would 
justify satisfaction of a higher-level requirement or specification. There is therefore some doubt 
that the refinement is itself adequate (complete, correct, appropriate, etc.). For requirements, 
these doubts should be addressed in the solution definition argument. For the specification and 
further system design, however, these concerns must be explicitly addressed either once at the 
beginning of the hierarchical decomposition (as is illustrated in the above pattern) or at each level 
of refinement.  

The requirements satisfaction pattern is presented in GSN, but given the repetitive nature of the 
argument, the argument could also be expressed in a tabular structure. We leave the choice to 
simplify argument structures into tabular forms to the discretion of those applying these patterns.  

3.2.4.2  Safety Assessment 
The top-level safety assessment pattern used within Module 6.8 of Figure 14 is illustrated in 
Figure 18. This pattern admits the possibility of multiple safety assessments, but focuses 
primarily on a hazard mitigation assessment.  
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Figure 18: Safety Assessment Pattern: Top-Level Structure 

 

The hazard mitigation argument is an adaptation/extension of Hawkins tiered 
arguments  [29] [30], where each “tier” within SIAT refers to composable modules within a 
system of systems (Section 3.3). At each tier, the hazard mitigation argument justifies “in scope” 
hazards are adequately mitigated. In scope hazards in SIAT consists of three categories of 
hazards:  

• Current Tier Hazards: Hazards that are applicable only to the given system (the hazard is not 
part of the set of hazards that are part of the higher-level system). 

• Lower Tier Hazards: In-scope hazards of composed components (at the next level down in the 
composition of components). 

• Induced Hazards: Hazards applicable to higher-level systems that can be induced by failure 
modes of the given system. 

To argue these hazards are mitigated, these hazards must be justified as adequately identified. 
The argument structure therefore decomposes into identification and mitigation, shown in 
Figure 19. Arguing adequate identification can in principle be achieved by the same argument 
structure used for problem, context, and solution definition over each category of in scope 
hazards. One primary difference is that adequate identification may rely upon the identification of 
hazards by modular sub-components, if sub-components are used. Specifically, the identification 
of lower tier hazards is justified only by identification arguments found in composed 
components. In such instances, there is therefore a delegated hazard identification demand for 
lower tier hazards, illustrated in Figure 20. 
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Figure 19: Safety Assessment Pattern: Hazard ID and Mitigation 
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Figure 20: Lower Tier Hazard Identification Delegation 

 
With exception to lower tier hazards, all hazards are justified as adequately mitigated by some 
combination of the following (illustrated in Figure 21) : 
1. evidence in direct support of mitigation, 
2. further argument decomposition, or 
3. delegation of hazard mitigation to another component (i.e., the given system mitigates the 

hazard by relying on mitigators in a separate sub-component). 

Lower tier hazards are mitigated entirely by composed components themselves, if sub-
components are used in the design; hence, each modular sub-component is delegated the 
responsibility of mitigating its own in scope hazards.  
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As with requirements satisfaction, hazard mitigation could also be justified using a tabular 
notation if desired.   

  
Figure 21: Hazard Mitigation Pattern 

 

3.2.4.3  Security Assessment 
The majority of this effort focused on requirement satisfaction and partially on safety assessment. 
We note, however, that a security assessment argument (Module 6.9 in Figure 14) would in 
principle be similar to that of the safety assessment argument described above. The key 
differences would be in the terminology. In security, threats are mitigated, not hazards. 
Mitigation of threats is design to protect assets from malicious third parties. For further 
discussion of the use and application of security arguments and patterns, readers are referred to 
prior work by Rodes  [31] [32] [33] [34]. 
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3.2.4.4  Regulatory Compliance 
Regulator compliance/approval (Goal 5.14 in Figure 14) is not specified with a supporting 
module due to the potential simplistic nature of compliance. Specifically, once regulations have 
been identified, demonstration of the compliance could involve a check list of regulations with 
associated evidence. This could in principle be argued within a separate module using the pattern 
shown in Figure 22; however, unless there is a more complex justification of compliance, the use 
of an explicit argument is likely neither necessary nor desirable. GSN argument is best served 
when the rationale for compliance is not as apparent as a direct mapping of evidence to 
regulations. If compliance with a regulation, for example, is justified by a reference to a complex 
hazard mitigation claim, an argument may be useful to point to relevant mitigation claims (using 
GSN away goals). The exact argument structure to capture a more nuanced compliance argument 
is not expressible within a pattern as the argument will vary drastically on a case-by-case basis.  

 

 
Figure 22: Regulatory Compliance Pattern 
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3.3  Practical Argument Modularity 
Assurance-case arguments naturally reflect the complexity of the systems or systems of systems 
for which they provide rationale of justifiable assurance of success. As system complexity 
increases, there is a concomitant increase in argument complexity. For complex systems and 
systems of systems, an assurance case based upon a single, monolithic argument is difficult to 
produce, difficult to review, and difficult to maintain. 

GSN addresses this challenge through the provision of standardized notation for modular 
arguments that has been widely applied [23] (see Appendix A). Modular arguments are built 
upon modules with the following characteristics  [35] [36]: 
• High cohesion: the module supports a well-focused and logically cohesive assurance goal. 
• Low coupling: the module has minimal interconnection with other modules. 
• Well-defined interfaces: the module has explicitly defined “allowed collaboration” with other 

modules. 
• Information hiding: the number of defined interfaces should be minimized to expose 

minimal information. 

In common modular arguments, argument modules encapsulate and organize logical structures. 
For example, an argument module might be developed to describe requirements identification, 
requirement satisfaction, hazard mitigation, or confidence. This style of argument modularity 
provides useful organization, but insufficiently addresses the fundamental concerns identified 
above: arguments relying on these kinds of modules remain difficult to produce, difficult to 
review, and difficult to maintain when engineering arguments about complex system of systems. 

The complexity of the systems and systems of systems developed using system-interface 
abstraction technology requires a practical argument modularity. The complex systems and, in 
particular, systems of systems that are developed using system-interface abstraction technology 
are not built monolithically. Instead, these systems are naturally built from integrated system 
components, where each system component encapsulates a solution to an identified problem. 
Moreover, the problem that a system component solves is considered likely to repeat or is 
considered of sufficient scope that modularizing the problem facilitates ease in managing the 
development and maintenance complexity and costs. The selection and integration of system 
components during system development and, later, the change, replacement or removal of system 
components post-deployment provides a compelling example of practical modularity for system 
design. 

A similar practical argument modularity is possible. If argument modules align with system 
components, we can more easily develop and maintain the assurance arguments for systems that 
are built compositionally. Argument modules are developed that encapsulate the argument for 
successful development of each system component. As system components are integrated into the 
larger design of the system, their corresponding argument modules are integrated into the larger 
argument for the system. The assurance case architecture, therefore, mirrors the problem-oriented 
design of the system or system of systems itself (see Figure 23). 
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Figure 23: Argument Design Tracking 

 

Following this practical modularity for arguments, the composition of interest is not with respect 
to modularizing and integrating argument structures that encapsulate logical concepts such as 
requirement satisfaction, hazard mitigation, or problem identification. Instead, the composition of 
interest is with respect to modularizing and integrating arguments for successful development of 
each system component (Section 3.2). By matching argument modularity with system component 
modularity, the argument naturally fits into the development and maintenance of a system or 
system of systems. As a result, the argument is organized to facilitate practical development and 
maintenance and ease of review. 

The key motivating question in development, review and maintenance of a practical modular 
argument is:  

Are design demands satisfied by integrated system component behaviors?  

This question is natural and appears easy to answer:  

System components are selected and integrated into the system design because the behaviors they 
provide satisfy specified demands.  

Careful consideration of how the rationale for justifiable assurance of successful development 
should be established reveals that this question cannot be asked in isolation. In particular, the 
behavior of a system component cannot be assumed if its argument is not of sufficient quality or 
if the component is used outside of the context for which it was designed, so consideration of 
context, both in design and use, is critical. Additionally, there is potential for new hazards that 
arise from the integration of components, so consideration of hazards is also critical. 

In all, there are three fundamental questions that must be asked of practical modular arguments: 

1. Are design demands satisfied by integrated system component behaviors? 
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2. Are all system component contexts (both in development and use) compatible? 
3. Are there new, unaddressed hazards arising from system component integration? 

We answer these questions by advancing a novel architecture for practical argument modularity 
that is based on a collection of specific argument views. Additionally, we support the architecture 
with component integration mechanics that describe the crucial detail necessary to effectively and 
successfully integrate argument modules associated with system components.  

3.3.1  Integration Concepts 
Practical argument modularity using system-interface abstraction technology relies on a set of 
related concepts that work together to answer the fundamental questions identified above. These 
concepts, discussed in detail below, are: 

1. Argument views, which provide special-purpose projections of the argument to enable 
reasoning about integration challenges; 

2. Assume-guarantee reasoning for modular arguments; and 
3. Contextual compatibility. 

3.3.1.1  Argument Views 
Argument views are special-purpose projections of the assurance argument. Each argument view 
provides clarity to reviewers and maintainers of the argument by encapsulating related argument 
concepts that may not have been closely grouped in the original argument organization. This use 
of views to highlight and encapsulate related concepts is similar to the grouping of related 
software aspects in aspect-oriented programming  [37]. Views can also be used to organize 
different levels of design abstraction, including views that encapsulate other views.  

Argument views are abstract concepts that do not have direct support in GSN. We denote views 
using typical GSN notation for modular arguments, according to the purpose of the view. The 
views used in the SIAT system-of-systems argument architecture are further discussed in 
Section 3.3.2.  

3.3.1.2  Assume-Guarantee Reasoning for Modular Arguments 
Assume-guarantee reasoning (Section 3.1.4) provides the foundation for reasoning about the 
composition of modular arguments. Arguments are composed by mutual satisfaction of required 
and provided interfaces. A demand within a required interfaces and a guarantee within a provided 
interface are expressed within the argument as assurance goals (Figure 24). A demand goal is 
necessarily a leaf goal within a component module (i.e., no further argument is developed 
underneath this goal within the component’s encapsulated argument structure). Demand goals are 
not otherwise explicitly documented within the argument structure. A guarantee goal can exist 
anywhere within the providing component’s argument structure and are traditionally documented 
using GSN public goals. We observe, however, that often prescribed portions of the argument are 
understood to be public by convention. SIAT, therefore, does not specify a particular use of 
public goals.  
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Figure 24: Argument Module Composition 

 

The context associated with a demand goal is not explicitly specified at the required interface 
within SIAT. The rationale is that integrated components may express arbitrary assumptions, 
making it difficult to fully specify a required interface context. Instead, context is generated as 
needed to assess the assumptions specified within a provided interface. GSN context elements are 
propagated down to required interfaces when interface compatibility is assessed, illustrated in 
Figure 25.  
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Figure 25: Context/Assumption Propagation 

 

Assumptions for provided interfaces are specified within GSN assumption elements. 
Assumptions at a provided interface should express all inherited assumptions and any 
assumptions nested below the guarantee goal, illustrated in Figure 25. Assumptions can be 
explicitly referenced at the interface assurance goal, or, similarly to context propagation for 
required interfaces, assumptions can be propagated dynamically to interface goals when 
performing an interface compatibility assessment. Dynamically propagating assumptions requires 
an agreed upon argument structure between a consumer and producer (discussed in 
Section 3.3.8). To allow for flexibility in applying SIAT, we do not impose a particular method 
for expressing assumptions at provided interfaces. 

3.3.1.3  Contextual Compatibility 
The development of assurance cases from component arguments is based on a fundamental 
principle (or “fundamental theorem” if we shall permit a loose notion of theorem) of 
compositional assurance: 

A component that is acceptable in one system is acceptable in another so long as both systems 
have identical contexts.  

When we say that the component is acceptable, we include its functional and non-functional 
behavior, its ability to satisfy system demands, and its ability to satisfy stakeholders, including 
regulatory authorities. Since the ability of a component to satisfy system demands is addressed 
through assume-guarantee reasoning, we restrict our consideration of context to other concerns, 
including restrictions, constraints, characteristics, phenomena, acceptability criteria, operating 
procedures, domain, design, configuration, and dimensions. 

The scope and complexity of context is sufficiently broad as to suggest that practically all 
systems, regardless of how similar they appear, will have different contexts. Practical argument 
modularity thus requires a practical approach to contextual compatibility: we must be able to say 
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that context is practically identical. An argument must be made that differences between contexts 
are either inconsequential or are adequately mitigated. 

A further complication suggested by the scope and complexity of context is that components, as 
they are integrated, may expand or restrict the larger system context in subtle and intricate ways. 
Consequently, fully encapsulating change through a modular argument architecture is not always 
possible. The impact of composing arguments might propagate beyond component boundaries, 
and what’s more, the propagation might not be linear or hierarchical, thus violating key principles 
of modular design, i.e., there is an implied violation to information hiding, low coupling, high 
cohesion and/or well-defined interfaces. Instead of trying to avoid all possible violations to 
encapsulation when establishing contextual compatibility, we posit the following: 

A practical argument modularity must endeavor to maintain encapsulation as much as is possible 
but recognize when and how encapsulation violation should occur.  

Addressing the limitations of both modular encapsulation and assume-guarantee in terms of 
contextual compatibility motivates the use of argument views and drives many of the argument 
integration mechanics, both are further described below. 

3.3.2  Architecture 
The SIAT modular argument architecture is concerned with the interaction between system 
components and their corresponding arguments, and not the internal structure of individual 
component arguments. Internal component argument architecture is discussed in Section 3.2. 

The SIAT practical argument modularity relies on four key types of argument views: 

1. component module views, 
2. component contract views, 
3. sibling contract views, and 
4. system-wide dependency views. 

Together, these views (further described below) provide a framework for integrating component 
arguments and organize a high-level system-of-systems assurance case architecture. Although the 
views presented below were developed progressively to address integration challenges as 
described in Section 3.3.1, they share the motivation and argument forms similar to the modular 
argument structures presented by the Modular Software Safety Case (MSSC) project developed 
by the Industrial Avionics Working Group (IAWG)  [38] [36]. This related work provides some 
inspiration for our work, and some validation of the concepts we had independently derived, 
although the principle organization of the SIAT argument architecture differs as it is based on a 
hierarchical problem-oriented approach to modularity and component integration.  

3.3.2.1  Component Module Views 
Component module views encapsulate the argument structure associated with individual system 
components. The boundary of the argument encapsulated in the component module view is 
aligned with the boundary of the system component described. Each system component 
encapsulates a solution to a problem. Likewise, each component module view encapsulates the 
related argument for successful development of the system component (see Section 3.2). The 
concept represented by a component module view is similar to the notion of a “block” as 
proposed in related work [38]. 



52 
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited. 

Aligning the component module view to the system component boundary ideally provides two 
key benefits: 

1. Information Hiding: Changes made to the system component, which necessitate a revision to 
the argument for the component, will propagate into the broader argument through well-
defined interfaces. 

2. Practical Argument Modularity: Integration of argument modules based on component 
module views affords practical modularity (i.e., the argument modularity maps to the 
modularity of the system). 

As previously discussed above, perfect information hiding is impossible to achieve in practice. 
We address limitations in information hiding through arguments associated with additional views 
(presented below). 

We represent a component module view graphically as shown in Figure 26: a component module 
is conceptualized as a GSN module element encapsulating a successful development argument.  

 

 
Figure 26: Encapsulated Success Argument 

 

The hierarchical relationship between component modules presents its own “view” in terms of 
the system design/architecture. The hierarchical relationship between component modules 
describes a “design authority” architecture (an example design authority construction is shown in 
Figure 27).  

When a component delegates responsibilities to other components, there is an implied authority 
assumed to make design decisions. Design authority is therefore the organization of 
responsibility for specifying a design.  
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Figure 27: Design Authority — Example 

 

The notion of design authority naturally supports argumentation. As requirements are 
decomposed into a specification and detailed design, an intuitive argument is developed that 
justifies the decomposition will satisfy elements higher in the decomposition. When demands are 
delegated onto components, there is therefore an argument that the components will satisfy these 
demands. The argument naturally continues hierarchically down into component module 
arguments to justify demand satisfaction.  

In this manner, the composition of component modules reflects a design authority view; however, 
as illustrated in Figure 27, not all components with a system design authority architecture need be 
selected for modularization. Stakeholders may consider modularization unnecessary or 
unwarranted in some instances. These components are considered part of the local implemented 
of the parent. For example, in Figure 27, the airframe was not chosen for modularity. The 
airframe then becomes part of the local implementation for the air vehicle (the parent 
component). The corresponding argument structure does not have a component module for the 
airframe. Any arguments associated with the airframe would be argued in the air vehicle 
component module. 

There is no prescribed manner for deriving a design authority hierarchy. In some cases, the 
decision may be natural and obvious, while in other cases, multiple interpretations exist. 
Stakeholders must assess the alternatives and determine a design authority that is appropriate for 
their use. When a component is dependent upon a design but does not have authority over the 
design, these dependencies are assumptions about sibling component behavior. These 
dependencies are explicitly expressed as assumptions and context in the argument structure.  

3.3.2.2  Component Contract Views 
Component contract views describe hierarchical relationships amongst two system components: a 
consumer and provider. In a hierarchical relationship, a system component delegates some design 
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goal to another system component. The delegating component can be thought of as a consumer; 
the consumed component can be thought of as a provider. 

A component contract is an argument structure that maps the demands of the consumer to the 
behavior of the provider, arguing that consumer demands are satisfied by the provider. At the 
same time, the component contract argues that all assumptions of the provider are met by the 
consumer. Conceptually, the assumptions of the provider represent demands on the consumer, 
thus the general notion of demand satisfaction naturally flows in both directions within a 
component contract. Component contracts justify the satisfaction of consumer assurance goals 
through assume-guarantee reasoning, as discussed in Section 3.1.4. References to component 
contract arguments are depicted in the argument structure using GSN contract module reference 
elements1, shown in Figure 282. Contract module references encapsulate contractual arguments 
that themselves further reference argument structures of the provider component. 

 

 
Figure 28: Contract Module Reference 

 

Between any two system component arguments (as represented by component module views), 
there may be numerous component contracts. The component contract view encapsulates all of 
the component contracts that link any two consumer and provider system components. This 
encapsulation facilitates quick review of the relationship between a consumer and provider 
component. Consequently, the component contract view clearly identifies the impact to the 
argument should details of either the consumer or provider change. 

The component contract view thus directly answers the first question raised by practical 
argument modularity (“Are design demands satisfied by integrated system component 

                                                 

 

1 We refer to our specific use of GSN contract module references as “component contracts” 
because the contract serves to link system components together within the modular system 
design hierarchy.  

2 We further expand upon the use of contracts beyond what is depicted in this figure using 
contract schemes, discussed in Section 3.3.8.  
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behaviors?”) by explicitly arguing the satisfaction of design demands by integrated components. 
We represent the component contract view graphically as shown in Figure 29. 

 

  
Figure 29: Component Contract View 

 

The component contract view also provides an anchor for addressing concerns that arise from the 
integration of system components. In particular, residual doubt surrounding the context 
compatibility between any pair of consumer and provider components must be addressed: the 
behavior of a component cannot be assumed if it is used or developed outside of its original 
operational and developmental context. 

The component contract view thus also provides support in order to answer the second question 
raised by practical argument modularity (“Are all system component contexts compatible?”) by 
linking arguments justifying contextual compatibility of integrated component context into the 
case. We represent the consideration of contextual compatibility graphically as shown in 
Figure 30. In this representation, context models are depicted as GSN context elements linked to 
component module views. Contextual compatibility is addressed by comparing context models 
and arguing compatibility in a confidence argument [12] that is attached to the component 
contract view as a confidence argument. We further discuss the mechanics of component 
contracts and contextual compatibility in Section 3.3.7 and Section 3.3.8.  
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Figure 30: Organizing Contextual Compatibility 

 

3.3.2.3  Sibling Contract Views 
In terms of a hierarchical decomposition of components, we refer to any set of components 
consumed by the same consumer as sibling components. Whereas component contract views 
encapsulate all contracts between a consumer and a singler provider, a sibling contract view 
encapsulates all contracts between a consumer and all providers, i.e., all sibling components (the 
concept is shown in Figure 31).  
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Figure 31: Sibling Contract View 

 

The purpose of a sibling contract view is twofold: 

1. It provides a succinct way of representing all contracts that a component relies upon, and can 
therefore be used to abstractly represent the argument, especially for design authority 
representations. 

2. It provides a convenient anchor for addressing concerns of lateral compatibility (i.e., 
noninterference) between sibling components that are not directly addressed by the views so 
far described. 

By establishing context compatibility between each pair of consumer and provider components 
(as is referenced as confidence on component contract views) we have effectively justified that 
any individual provider component does not adversely interfere with the consumer. While it may 
be possible to infer that all sibling components will be compatibile by virtue of each individual 
consumer-provider compatibility argument that has been established, such an inference is indirect 
and otherwise undocumented. Furthermore, because the issue of sibling compatibility is not 
directly addressed, it is unclear if such reasoning is sufficient. 

Because of the issue of sibling component compatibility is a common and serious concern of 
compositional reasoning, we provide support for an explicit compatibility justification. As with 
component contract views, we anchor arguments justifying sibling noninterference using 
confidence arguments on the sibling contract view (see Figure 32). In this manner, sibling 
contract views, in combination with component contract views, help provide an answer to the 
second question raised by practical argument modularity (“Are all system component contexts 
compatible?”).  
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Figure 32: Sibling Compatibility/NonInterference 

 

When the consumer or any one of the sibling arguments change, the sibling compatibility 
argument must be reassessed. We further discuss the mechanics of sibling compatibility in 
Section 3.3.3.  

The lateral relationships addressed by sibling contract views are only with respect to lateral 
contextual compatibility. Lateral component design compatibility in order to meet higher-level 
design goals is addressed as part of the development of design demands. Relationships between 
siblings are specified as part of the design, i.e., design demands are allocated to components 
based on a chosen design architecture. For example, the dependency of one component on 
another sibling component to provide a certain kind of input can be specified as an assumption on 
a design demand (i.e., specify a design demand under the assumption that the appropriate inputs 
are provided). While these issues are separate from sibling context noninterference, they are still 
somewhat related. We further discuss these dependencies as part of the component integration 
mechanics in Section 3.3.9.  

3.3.2.4  System Dependency Views 
Ideally, the alignment of argument modules to system components allows all necessary assurance 
to be gathered compositionally. Unfortunately, the complexity of argumentation allows for 
arbitrary interdependencies within the argument that have so far not been addressed. 

Consider, for example, assurance goals and evidence relating to efficiency, such as run-time or 
memory efficiency, thermal efficiency, fuel efficiency, etc. Assurance goals about efficiency 
would typically be argued within higher-level component modules within the design authority 
hierarchy as these claims are often based on emergent properties of the system as whole. Altering 
or replacing a component clearly could affect efficiency, thereby necessitating a reassessment of 
efficiency claims and evidence. The problem is that the impact on efficiency claims might not be 
noticeable and therefore might not be up to date, especially if there is no hierarchical relationship 
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between altered system components and the efficiency claims and if altered components are deep 
within the modular argument hierarchy.  

Generalizing this concern beyond efficiency, it is possible that arbitrary system-wide3 
dependencies upon the configuration of components exist throughout the argument that do not 
follow a hierarchical dependency structure. The system dependency view encapsulates systemic 
cross-cutting concerns. This encapsulation identifies elements of the argument that are likely to 
be impacted should any system component change. We represent the system dependency view 
graphically as shown in Figure 33. 

 

  
Figure 33: System Dependency View 

 

As arguments are developed, elements within the argument known to rely on a consistent system 
configuration are flagged. Later, during the system-wide compatibility integration sub-process, 
the flagged argument elements are compiled into a single view to focus assessment of system-
wide compatibility. All those elements within the system-wide dependency view must be 
reassessed during the integration of any component.  

The system dependency view helps to answer the third question raised by practical argument 
modularity (“Are there new, unaddressed hazards arising from system component integration?”). 
The view isolates system-wide cross-cutting concerns and dependencies that arise as components 
are integrated. However, the view is dependent upon correctly and completely identifying all 
non-structural dependency argument elements, which carries its own risks. Doubts about 
identification could be addressed using a confidence argument on the view; however, unlike other 
instances where we have suggested the use of confidence arguments, this instance is confidence 

                                                 

 
3 The term “system-wide” is used to refer to the entire system as a whole, where the 
abstraction of the system is variable, but generally refers to the system as represented by the 
entire argument structure as is currently available.  
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not about the integration of components but about the integration process itself. We further 
discuss doubts about the integration process itself in Section 3.3.11. 

The system-wide compatibility is purposefully unoptimized to promote simplicity. Specifically, 
the view contains all elements that should be reassessed, without regard to the component being 
integrated, i.e., the view is verbose in order to be conservative. It may be possible to prune the 
view based on the characteristics of the component being integrated; however, we leave these 
optimizations for future work as such optimizations would require detailed dependency tracking 
and analyses that introduce further doubt that the view is completely and correctly generated. 

The use of the system-wide compatibility view within the SIAT integration mechanics is further 
discussed in Section 3.3.10.  

3.3.3  Mechanics Overview 
The concepts and argument structures presented so far provide a foundation for supporting the 
development of arguments from composed system component arguments; however, more 
detailed integration mechanics are necessary to facilitate their practical application both for the 
development and maintenance of complex assurance cases. We identify four primary integration 
activities focused on establishing the following properties: 

1. Demand Satisfaction: Justification, through the use of assume-guarantee reasoning, that the 
demands of the consumer component are satisfied with the guarantees of an integrated (i.e., 
consumed or provider) component. 

2. Contextual Compatibility: Justification that the consumer and any given provider component 
do not have any conflicting constraints, behaviors, etc. 

3. Sibling Compatibility: Justification that the integrated component is compatible with all other 
sibling components, i.e., the integrated component does not counteract, degrade, or otherwise 
conflict with the behavior or properties of other sibling components. 

4. System-wide Compatibility: Re-evaluation of the validity of any argument structures within 
the entire assurance case that are dependent upon a specific system configuration or design, 
and if deemed necessary, updating the associated evidence and argument structures. 

The rationale for this division of activities is based on answering the questions posed in the 
introduction of this section. 

We began from a perspective of applying assume-guarantee reasoning to establish demand 
satisfaction. Further development and investigation of this process yielded cascading limitations 
with respect to contextual compatibility and integration hazards that we address through the other 
integration activities.  

The ordering of the above activities illustrates a progressive expansion of integration activities in 
terms of the scope of the involved argument artifacts; however, there is no prescribed order in 
which these activities are to be carried out. Often, there is an overlap between these activities 
necessitating context switching between integration processes when practically applied. 

To provide a framework in which the integration mechanics are performed and a process model 
that can be practically executed and expanded, we have documented the above activities in 
Business Process and Model Notation 2 (BPMN2)  [39], shown in Figure 34. This process 
situates the primary integration activities above within a generic integration process that begins 
with selecting a component to add or modify, and ends with assessment of the composed 
argument post-integration. The purpose of these mechanics is to describe key activities when 
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integrating system component arguments rather than to exhaustively address all possible 
concerns. As such, the process should be viewed as a generic template of integration mechanics 
to be refined and altered as necessary, to better address any domain- or application-specific 
concerns. A detailed description of the sub-processes of the integration process is presented 
below.  

  
Figure 34: Component Module Integration Process 

 

3.3.4  Integration Scope: Perspective of Component Selection 
The SIAT integration process (Figure 34) is designed to address argument development both 
during initial system development as well as in response to change and general maintenance post-
deployment. In both instances, the process is applied from the perspective of the consumer of a 
system component at any level in a system-of-systems design hierarchy. When the process is 
performed in response to change, the process is applied from the perspective of the direct 
consumer of a changed system component  . The component module view (Section 3.3.2) 
provides a container for reasoning about the scope of what is being integrated into a larger 
argument structure. The SIAT integration process is an activity performed on the argument 
structure, i.e., the integration of arguments as encapsulated in component module views. The 
process is assumed to be concomitant with the physical integration of components. 

The SIAT integration process is performed at all component module boundaries at some point in 
the development of a complete assurance case. There are no constraints about the order of system 
component integration. Integration may proceed hierarchically (top down or bottom up) or occur 
independently of the development of a larger system, e.g., integration of system components out 
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of context of any particular system or system of systems. During initial development, the process 
is performed during solution development (see Section 3.1.3). Post-deployment, the process is 
performed as needed in response to system change.  

How a system component is initially developed or changed is not within the scope of the 
integration mechanics. The integration mechanics assume that a given system component has 
already been developed or changed, and instead addresses the impact of integrating the system 
component’s argument within a larger assurance case. The first activity of the integration process 
is therefore to select or identify the component (potentially from a set of components) in question 
that will be added or altered4. The process repeats for each component identified for integration 
iteratively.  

3.3.5  Integration Failure 
Before further describing the integration process, we note that at any point within the integration 
process, engineers may determine that the process should be paused or terminated. Generally, the 
integration process allows arbitrary reasons for termination. Obvious reasons include the inability 
to satisfy demands, justify contextual compatibility, or address other integration hazards as 
described further in subsequent subsections. To address integration failure, the high-level 
integration process (Figure 34) defines a generic “exception handling” mechanism that catches 
any raised integration failure, halts all integration activities, and reverts the argument to a prior or 
“alternative state”.  

Repairing the argument to an alternative state admits the possibility that integration failure does 
not necessarily imply that a new system component must be selected and the prior failing 
component must be discarded. If a system component cannot be integrated, it still may be viable 
if other system components change. For example, integration may fail because of interference 
with a sibling system component. Rather than discarding the new system component, the 
previously established sibling could be altered or removed.  

Argument reversion is therefore a generic concept that accommodates arbitrary causes for 
termination and provides different failure responses. Furthermore, the activities following 
integration failure are domain- and failure-specific and consequently left undefined.  

3.3.6  Integration for Change: Impact Assessment and Reversion 
The integration process is largely the same for initial development and for post-deployment 
change. The process does, however, differ for post-deployment change when integrating 
replacements or altered versions of existing system components5. Prior to integrating the changed 
component, the existing component must be excised from the system and consequently excised 
from the assurance case.  

                                                 

 
4 The removal of system components without replacement is a degenerate case but applicable 
to the integration process. A removed component is considered a “changed” component; 
however, subsequent integration may or may not be applicable.  

5 Changes where a new component is added to an existing system are addressed with the same 
mechanics as initial argument development.  
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The goal of impact assessment and argument reversion is to eliminate information and structures 
from the case that might no longer be applicable given that a system component has changed. 
Impact assessment determines the extent to which reversion must be applied by identifying 
elements of the argument and related documents that will require alteration in response to the 
change. Generally, argument reversion then reverts the prior integration of the system component 
in question by removing inapplicable information and repairing documentation and argument 
structures. However, depending on the extent of the change, optimizations may be possible to 
minimize reversion. For simplicity of discussion, we assume reversion completely restores the 
argument to a state prior to integration of the component in question.  

The specific mechanics of impact assessment and argument repair are considered out of scope for 
this project effort; however, these concepts have been explored in related work. Argument repair 
mechanisms have been suggested in Assurance-Based Development  [10] [25] and in similar 
modular argument technologies  [38]. Further, impact assessment and argument reversion can be 
aided by tool support. For example, tools can be developed using a mechanism similar to taint 
tracking: propagated changes as a result of integrating a component are tracked and recorded 
during development to assist later impact assessment and reversion. Similarly, version control 
software, such as Git or SVN, could be used during the integration process. Reversion of the 
argument could then be effected by reverting prior commits to the repository.  

3.3.7  Justifying Demand Satisfaction 
During the demand satisfaction sub-process, one or more argument contracts, based on assume-
guarantee reasoning (see Section 3.3.1), are developed in order to mutually satisfy provided and 
required argument interfaces. Each argument contract justifies how a single required interface is 
supported by one or more provided interfaces of an individual component being integrated.  

This process is performed under the explicit caveat that assume-guarantee reasoning alone is not 
sufficient to compose arguments. In principle, the provided and required interfaces of assume-
guarantee reasoning should capture all relevant contextualizing factors, in which case this 
subprocess would obviate the need for the other primary integration activities. In practice, there 
are always risks of under specifying interfaces. This risk is primarily an issue of provided 
interfaces and the failure to list all relevant assumptions (see Section 3.3.1). Failure to specify an 
assumption could surreptitiously invalidate interface satisfaction, i.e., the interfaces will appear 
satisfied given available information but are actually incompatible, leaving the demand 
unsatisfied. Further limitations of assume-guarantee reasoning are discussed in Section 3.3.8. 

The role of assume-guarantee within the integration mechanics is to provide the initial foundation 
for component module integration. The rationale is that if explicit constraints on interfaces have 
been previously specified, then they provide a foundation for reasoning about interface 
satisfaction. Within the demand satisfaction subprocess, the provided and required interfaces of 
assume-guarantee reasoning are fist examined as given, ignoring issues of completeness and 
correctness. Conceptually, the demand satisfaction process approaches assume-guarantee 
reasoning deductively6. Concerns regarding the quality of the interface and other integration 

                                                 

 
6 The separation of deductive and inductive concerns within an argument is similar in concept 
to related work [40].  
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hazards that are inherent to inductive reasoning are addressed in other integration processes. In 
this manner, integration concerns are compartmentalized by integration activity.  

A detailed demand satisfaction sub-process diagram is shown in Figure 35, and discussed further 
in the following subsections. 

 

  
Figure 35: Justifying Demand Satisfaction Sub-Process 

 

3.3.7.1  Identifying Interfaces and Prepping Contracts 
The first three activities shown in Figure 35 involve the preparation for argument contract 
development. Specifically, the identification of relevant interfaces (both provided and required 
interfaces) and the placement of placeholder contract module references within the argument. In 
some cases, required interfaces might be previously identified, such as during initial 
development. Integration in response to change; however, will likely involve an explicit 
accounting of affected interfaces. In these scenarios, the component contract view for the altered 
component (the set of all contracts between the system and the altered component – see 
Section 3.3.2) provides support for quickly isolating relevant required interfaces.  

Identified required interfaces are then supported within the argument structure with placeholder 
references to argument contracts, i.e., references to an empty contract argument. Prior contract 
references are either removed or updated as desired by the argument developers. In addition to 
placing reference contracts, placeholder composition schemes are also specified. Composition 
schemes provide reviewers with explication as to the nature of the composition to aid in assessing 
contextual compatibility. Composition schemes are defined based on the characteristics of the 
integrated component, further discussed in Section 3.3.8. 
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Once required interfaces are identified, the provided interfaces of the component being integrated 
are identified that will serve to support each identified required interface.  

3.3.7.2  Contract Development 
To effectively justify that a required argument interface is satisfied by one or more provided 
argument interfaces, a component contract argument is developed between each identified 
required interface and relevant provided interfaces. In SIAT, a component contract argument 
provides an assume-guarantee-based argument structure that justifies that: 

1. the integration of the provided assurance guarantees imply satisfaction of the assurance 
demand, 

2. the assurance guarantees are provided under the specified guarantee’s assumptions, and 
3. the guarantee’s assumptions are valid. 

The component contract argument pattern to justify the above assurance goals is shown in 
Figure 36. The pattern is instantiated for each component contract. Items 1 and 3 above are 
justified within the contract argument itself. Item 2 is justified indirectly within the contract 
argument by referencing relevant argument structures of the integrated component’s provided 
interfaces. 
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Figure 36: Component Contract Argument Pattern 
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3.3.7.3  Recursive Interface Refinement 
Assumptions that are explicitly invalidated result in integration failure; however, it is possible 
that assumptions are neither valid nor invalid. In these instances, the consumer’s context is 
insufficient to compare the assumptions of the provided interface, requiring an expansion to the 
consuming component’s context to complete the comparison. The consumer’s argument must 
first be updated with the additional context to complete the comparison. The additional context 
may be generated from comparable notions already within the consumer’s context, but not 
properly explicated. It is also possible that no comparable contextualization exists, in which case, 
the assumption of the providing component becomes part of the assumptions of the consuming 
component.  

The addition of a new assumption to the consumer’s argument requires re-examination of 
affected contracts at higher-levels of the argument hierarchy that reference updated portions of 
the consumer’s argument. This in turn might require further updates to the context of components 
higher in the argument hierarchy. The assumption effectively propagates up the argument 
hierarchy to any provided interfaces of the consuming component, illustrated in Figure 37. 
Consequently, any existing contracts based on these updated interfaces must be re-evaluated to 
verify the assumptions are valid. 

 
Figure 37: Assumption Propagation 

 

The process of assumption validation and propagation continues recursively up the argument 
hierarchy until either: 

1. all assumptions are validated, 
2. the assumption is explicitly invalidated (resulting in integration failure), or 
3. the assumption can no longer be propagated (there are consumers of the affected argument). 
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The benefit of assumption propagation is that integrating a component does not require assessing 
any children components nested within the design hierarchy. Integration for demand satisfaction 
can instead focus at interface boundaries. Each consumer throughout the argument hierarchy 
subsumes the assumptions of its children. Each provided interface therefore includes all relevant 
assumptions, including relevant assumptions of children components. Propagated assumptions 
also become part of the context of consuming components to which they propagate (context is 
further discussed in Section 3.3.8) providing similar benefits to reasoning at interface boundaries.  

A potential negative consequence of assumption propagation is that propagation increases 
coupling between modules in order to preserve reasoning at interface boundaries. Increased 
coupling increases the difficulty of reverting an integrated component in response to component 
changes in the future (Section 3.3.6). Reasoning at interface boundaries at low coupling are both 
desirable properties of modularity; however, in this instance we must violate one modularity 
property to perserve the other. This tradeoff between necessary violations to modularity 
principles to preserve other desirable aspects of modularity is an example of practical modularity 
(see Section 3.3.1). We sought to maintain encapsulation, but found that in order to address the 
issue of expanding assumptions, a modularity violation is required. As previously discussed, tool 
support, such as version control software, may alleviate much of the burden of reverting 
propagated assumptions by managing how assumptions are coupled.  

The result of successful contract development and interface requirement is that all interfaces are 
satisfied and up to date. There are, however, no guarantees that the interfaces are somehow 
incomplete in other respects. Further assessment of the integration is necessary, discussed below.  

3.3.8  Justifying Contextual Compatibility 
Contracts formed on assume-guarantee reasoning are based on the underlying assumption that 
satisfaction of identified interfaces is sufficient to establish a contractual agreement. While 
practically all current techniques for modular arguments, including SIAT, rely on some notion of 
assume-guarantee reasoning and contract arguments (see for example the SafeCer  [41] and 
MSSC  [42]), there is a wide consensus that such reasoning is, by itself, insufficient to provide 
assurance that the argument composition is valid. A summary of the challenges/inadequacies 
associated with assumption-guarantee reasoning for arguments is as follows: 

• Assume-guarantee reasoning typically captures functional properties not qualitative/non-
function properties (e.g., safety or security). 

• Assume-guarantee reasoning is typically used for verification (i.e., demonstrating the system 
will work correctly) and not certification (i.e., demonstrating the system cannot “go badly 
wrong even when other things are going wrong”  [43]). 

• The assumptions used for assume-guarantee reasoning are themselves based on assumptions, 
i.e., the assumptions that are explicitly provided were selected based on the intuition of 
developers as to what assumptions will be relevant. Missing assumptions might undermine the 
given guarantee or other goals throughout a larger assurance case. Further, proving that an 
assumption-guarantee formalism is not over simplified is typically impossible [44]. 

• Some properties, like safety and security, are system-level concepts e.g., hazards and threats. 
Consequently, it is unrealistic to expect a module to provide the necessary detail within the 
defined assumptions to obviate an additional top-down system analysis. 

We observe that many of the inadequacies of assume-guarantee reasoning for arguments can be 
summarized residual doubts about contextual compatibility between argument modules. Defining 
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the characteristics that must be compared and assessed to validate contextual compatibility is an 
open problem  [45] [42] [44]. A further complication is that the context in which the system and 
its corresponding argument are developed are just as important as the context in which the 
deployed system operates. Consider, for example, the composition of a spurious argument 
developed with known logical fallacies. While the operational contexts may be compatibile, the 
composed argument will provide a false sense of assurance as it is based on faulty logic. We 
therefore must consider both operational and developmental context compatibility. 

The challenge in reaching a consensus on contextual compatibility is that comparison 
characteristics and assessment criteria are (1) domain-specific and (2) based on the characteristics 
and use of the argument; however, we observe that there is an additional contributor to 
variability: (3) the characteristics of the composition itself: e.g., composition for argument reuse 
or composition of a bespoke component. The composition characteristics motivate comparison of 
specific characteristics of the composed argument modules.  

We combine the above three observations within a flexible framework allowing for 
customization and instantiation in any domain. The framework separates contextual compatibility 
concerns based on two questions:  

1. Is the integrated argument and any prior assessment of the argument independently 
“trustworthy”: i.e., is the argument in isolation (ignoring composition into a larger system) of 
sufficient quality to believe it is complete, sound and valid7.  

2. Is the integrated argument sound and valid once composed into the larger system: i.e., are 
there contextual incompatibilities between the consumer and provider that undermine 
assurance goals of the provider.  

The first question addresses the concern of contextual compatibility in terms of the component’s 
development (developmental context compatibility). That is, if a component was not developed 
with a comparable assurance rigor and with common notions of assurance (including common 
notions of safety hazards, security threats, etc.) as is expected within the larger system, the 
component’s argument may fail to provide the necessary level of support. The goal in supporting 
compositional arguments is to reuse existing arguments and assessments of those arguments with 
little or no alteration/reassessment. Simply put, the first question asks to what degree are we able 
to meet this goal. The second question then addresses compatibly of the system and its 
component in operation (operational context compatibility) by asking if contextual 
inconsistencies exist in the composed system that undermine the integrated component’s 
argument.  

The SIAT integration subprocess for justifying context compatibility is shown in Figure 38. 
Developmental context compatibility is resolved through domain comparison and assimilation. 

                                                 

 
7 The terms “sound” and “valid” are often referred to within deductive reasoning, and 
therefore may be arguably considered inappropriate when referring to real-world/inductive 
systems. Comparable terms for inductive reasoning have been suggested such as “consistent” 
and “cogent”; however, for simplicity, we adopt the soundness and validity concepts with the 
understanding that the systems we are describing are inductive.  
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Operational context compatibility is resolved through context model instantiation and 
comparison. These processes are further discussed below.  

 

 
Figure 38: Context Compatibility Justification Subprocess 

 

3.3.8.1  Domain Comparison 
In order for a component’s argument to be appropriate within a larger system argument, there 
must be a comparable notion of developmental context, i.e., an agreement must be established 
about what adequate assurance means. Without some agreement, it is possible that the argument 
justifies assurance goals with illogical, insufficient, or inappropriate argument and evidence.  

We define developmental context as the quality, standards, practices, etc. that go into the 
development of a component and the development of its assurance case. We include in this 
definition system-level concerns, such as safety hazards and security threats, to address common 
concerns that components might fail to consider important system-level properties [44]. As 
system-level properties, hazards and threats might not be directly applicable to a component 
nested within the system’s design hierarchy; however, we observe that components are developed 
under some preconceived notion of a larger system that includes common hazards and threats so 
as to mitigate possible contributing failures. 

The developmental context in which an assurance argument is generated is more 
comprehensively captured in terms of the domain in which the component and its argument are 
developed. Consider, for example, the domain for commercial aircraft. Any component, such the 
engines or flight control software, developed within this domain will have known standards and 
regulation governing the rigor by which components are developed and maintained, and 
consequently, how assurance is defined and justified. Further, there are known system-level 
concerns, such as the hazard of NMAC, that are understood by all engineers and stakeholders 
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within the domain. Components that have been approved for one aircraft might not be 
appropriately applied on another within the same domain (i.e., operational context compatibility 
remains to be established), but the question of whether these components have met established 
criteria of acceptability in and of themselves has been resolved.  

We observe that in order to provide complete developmental context compatibility, the domain of 
the consumer and provider components must either be the same or considered compatible. The 
first process of contextual compatibility is therefore to determine if the component originates 
from the same or compatible domain.  

Domains, however, are not easily comparable as there is no universally accepted method for 
domain comparison. While some domain knowledge can be captured and stored in repositories, 
and used a source for comparison, such as that provided by CLASS (Section 3.1.4), domain 
knowledge largely exists in the minds of domain experts. Ultimately domain experts must 
determine the compatibility between domains.  

The primary benefit in establishing domain compatibility is that prior assessment and approval of 
the argument can be reused. If prior assessment does not exist, assessment of the argument is 
necessary. The benefit of domain compatibility in this scenario is that a common understanding 
of the existing component and argument is established providing a foundation for assessment, 
either by the original component developers or by the consumers of the component. The 
argument must be approved for use in its original context before continuing with integration.  

3.3.8.2  Domain Assimilation 
If the domains of a consumer and provider are considered incompatible by domain experts, the 
argument and prior approval of the argument cannot be trusted. Consumers of the component 
may either (1) choose to discard the component and find a new one, raising an integration failure, 
or (2) bring the component within their domain. We refer to this later activity as domain 
assimilation. Domain assimilation is largely undefined as it is definitionally a domain-specific 
activity. Generally, assimilation will likely require the following: 

• A complete assessment of the component and argument. 
• Modifications to the component and/or argument to make the component and argument 

compliant with the new domain. 
• Communication and support from the original developers. 
• Approval of the argument within the new domain as providing acceptable assurance within its 

original/assumed operational context. 

Once domain compatibility of a component is established, by assimilation or otherwise, the prior 
approval of the argument can be reused as support that the argument is sound, valid and complete 
in and of itself and can be reused without further developmental context assessment of soundness 
and validity for other systems developed within the same domain. Further risks of using the 
component within a new operational context (for example, reusing an engine for a new aircraft) 
must be addressed separately. These risks differ from system to system even within the same 
domain, and therefore prior operational context compatibility cannot be reused in the same 
manner as developmental context compatibility. Addressing operational context compatibility is 
discussed below.  
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3.3.8.3  Context Models Instantiation and Comparison 
To provide the basis to address operational context compatibility, we establish the concept of a 
context model. A context model specifies a set of domain-specified contextualizing properties to 
compare to establish operational context compatibility and is similar in concept to a common 
characteristic map  [28]. The types of properties captured in a context model are selected by 
experts within a given domain. For example, domain experts could stipulate that a component 
problem description specified as a problem frame [8] is a necessary property in a context model. 
Because there is no universally accepted definition of context, selected properties and their 
corresponding forms will be based on domain-specific definitions; however, some properties 
have been suggested in the literature, which could serve as an initial bases for defining a context 
model: 

• GSN context elements (contexts, assumptions and justifications) 
• Standards and practices followed 
• Environment descriptions 
• Problem descriptions 
• Safety and security analyses 
• Dependency diagrams (e.g., an interface control document) 

To the above list, we stipulate that domain compatibility as established by domain experts should 
also be part of the context model, although its purpose is to address developmental context 
compatibility specifically. While individual notions of context models and how they are 
compared will vary, there will likely be some common properties consistent with many if not all 
domains8. For example, GSN context elements should likely be part of a context model 
regardless of the domain.  

There is similarly no established techniques for comparing context. Comparison strategies 
ultimately depend on the types of artifacts being compared and the degree of risk accepted by the 
stakeholders.  

 

                                                 

 
8 There may exist a notion of an assurance argument domain that is subsumed by all domains 
adopting argumentation. In which case, common notions of context might be absorbed into 
multiple distinct domains that share the general assurance argument philosophy. We refer to 
this notion as an assurance domain, but leave further investigation of this topic for future 
work.  
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Figure 39: Instantiating and Comparing Context Models 

 

Generally, instantiating and comparing context models involves the following steps (shown in 
Figure 39): 

1. Context Model Definition: Domain experts choose the properties that will define the context 
model or models (discussed further below) for their system of systems. Choosing appropriate 
context model properties is performed once for the system of systems and the same properties 
are used for all instantiated context models for the system. Depending on the domain, it may 
be possible to specify one definition of a context model to be used for all systems within the 
domain.  

2. Comparison Strategy Definition: Domain experts define a strategies for comparing models 
and evaluating the comparison. The strategy might influence the context model definition as 
specific structures/forms of context properties are chosen. Comparison strategies should 
include comparison metrics and methods as well as acceptance criteria. As with context model 
definition, comparison strategy definition is performed once for the system of systems (or 
once for the domain if applicable).  

3. Context Model Instantiation: A context model is instantiated for each component module, 
i.e., the specific engineering artifacts associated with each context property are isolated to 
form an instance of the context model. Context models are instantiated for every component 
module as they are integrated. In principle, context models may be dynamically generated 
based on a given context model definition; however, they may also be predefined. Existing 
instantiations of context models may be used if (1) the model is still valid within the given 
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system of systems and (2) the model is representative of the current system (the model is not 
stale).  

4. Context Model Comparison: When a component module is integrated by a consuming 
component module, the two context models are compared. Comparison is performed once 
between two component modules, regardless of how many component contracts are made 
between the two modules. Comparison is performed based on the previously defined 
comparison strategy.  

Steps 1 and 2 are prerequisites for context model instantiation and comparison and should be 
performed in advance of integration; however, when exactly the model and comparison strategy 
are defined is not specified within the SIAT integration mechanics. Instantiation of the context 
model is largely the responsibility of the component consumer, although, provider components 
may specify a context model in advance. Use of existing context models is based on the validity 
of the definition for the given system of systems.  

The degree of scrutiny involved in defining and comparing context models will likely vary 
depending on the characteristics of the component and the characteristics the composition itself. 
For example, components developed entirely within the same organization and for the same 
system of systems may not require the same analyses for contextual compatibility as those 
components originating from other domains and developed by third parties. To support varying 
degrees of context compatibility assessment, we do not restrict the number of context model and 
comparison strategy definitions. The next section provides a discussion on the use of composition 
schemes to organize and explicate the use of alternative context models and comparison 
strategies. Because of the potential for variability in context model definitions, consumer context 
models are likely best instantiated as needed (i.e., dynamically) based on component’s context 
model being compared; however, the precise mechanics of context model instantiation are not 
specified to allow for alternative approaches.  

Context model instantiation requires that any relevant development artifacts associated with 
defined context properties are assembled, often by the consumer. An obvious challenge would be 
if the required artifacts do not exist or are not well organized so as to be easily found. By virtue 
of requiring that the component domain be compatible with the consumer, we expect a certain 
quality to the form and structure of component arguments. As such, the required artifacts should 
be referenced within the argument structure in a manner than is understood and/or required 
within the domain; however, we anticipate that additional effort will be required to translate 
existing artifacts into a standardized form for comparison.  

Context comparison may reveal portions of context that are neither valid nor invalid, suggesting 
an expansion to the consumer’s concept of context. The alteration to context must propagate up 
the design hierarchy to relevant documentation, triggering a recursive update and partial re-
evaluation of context compatibility hierarchically. The rationale and methods for supporting 
context propagation are similar to those previously discussed for assumption propagation, see 
Section 3.3.7.  

As a result of the comparison, the consumer and provider are either: 

1. considered contextually compatible with respect to the definition of context compatibility 
established within the domain and all context models have been updated recursively as 
required or 

2. considered incompatibile triggering integration failure and integration reversion. 
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The results of successful comparison between models can be documented within an argument as 
confidence in the relationship between the consumer and the provider. The confidence argument 
should also include a reference to the results of domain comparison described in the prior section. 
The component contract view (Section 3.3.2) provides a summary of the complete relationship 
between the consumer and provider components, and therefore serves as an appropriate anchor 
for linking within the case a confidence argument on contextual compatibility (see Section 3.3.2 
for an illustration). Figure 40 presents a confidence pattern for contextual compatibility that can 
be instantiated based on any context model and comparison strategies. 

 

 
Figure 40: Component Contract Confidence Argument Pattern 

 

3.3.8.4  Composition Schemes 
While mechanics for both domain comparison and assimilation and context model instantiation 
and comparison provide the basis for establishing developmental and operational compatibility, 
there are two unresolved challenges faced by argument reviewers (e.g., certifiers): 
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1. The underlying rationale and principles (referred to as the warrant) by which arguments are 
composed is not cited within the case. Because a warrant expresses how the composition of 
argument modules should be interpreted and the validity of the composition assessed, lack of 
explicit warrants promotes inconsistent argument development and inconsistent assessment.  

2. Assessing the validity of argument composition is currently not well established and subject to 
change over time and across different domains. Consequently, as composed argument modules 
are reused and systems and domains evolve, the prior criteria used to support the authority of 
the warrant may be considered invalid in the future, even within the same domain. 

These challenges are emphasized by the SIAT mechanics for contextual compatibility. Multiple 
context models and comparison strategies may be defined and applied based on the 
characteristics of integrated components. Without explicit documentation of what context models 
and comparison strategies were used, the rationale for compatibility is likely unclear to 
reviewers. Furthermore, we acknowledge that how developmental and operational context 
compatibility are established will undoubtedly change over time. When these changes occur, 
affected argument module compositions should be flagged and contextual compatibility 
reassessed. Without some organization and management of the impact of changes to contextual 
compatibility criteria, locating what portions of the argument that need to be reassessed and 
updated is obscured, thus reducing the practicality of modular arguments.  

We address these challenges in part through the application of composition schemes, an extension 
of a recently proposed concept for providing warrants for evidence, called evidence schemes [46]. 
Rather than immediately support a required interface goal with a contract reference element, as is 
traditionally the case, a composition scheme, notated as a GSN strategy element, is placed 
between the goal and the contract, shown in Figure 41. The strategy element explicitly identifies 
the “scheme” by which doubts about the composition are assessed. For example, the following 
properties may be used to identify a composition scheme: 

• The provenance of the provider component domain, i.e., endogenous or exogenous.  
• The provenance of the prover component system, i.e., endogenous or exogenous, or system 

“type”.  
• The cardinality of the composition, i.e., one-to-one between required and provided interfaces 

or one-to-many. 
• Prior approval/certification. 
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Figure 41: Composition Schemes 

 

Schemes are selected from a prescribed set of schemes established within a domain to ensure 
consistent use. The scheme communicates to reviewers the compositional concerns that must be 
addressed, and links to the domain-specific practices for addressing these concerns. 

If consistently applied, changes within the domain to the practices for composing modular 
arguments can be easily propagated to relevant portions of existing arguments and contextual 
compatibility can be reassessed as necessary.  

For example, composition schemes may be defined in terms of an instantiation of the following 
form: 

Appeal to a component from an (endogenous | exogenous) system within an (endogenous | 
exogenous) domain with (no | prior) approval providing (direction, i.e., one-to-one | indirect, i.e., 
one-to-many) support  

An instantiation includes the following: 

Appeal to a component from an exogenous system within an endogenous domain with prior 
approval providing indirect, i.e., one-to_many support  

This scheme conveys useful information for the development and review of the argument: 

• An exogenous system highlights operational context compatibility as a concern. Reviewers 
will expect a rigorous context model comparison. 



78 
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited. 

• An endogenous domain means developmental context compatibility is less of a concern. 
Reviewers might not expect any documentation about domain assimilation, but will question 
how domain comparison was performed9. 

• Prior approval within the an endogenous domain means the need for further assessment of 
developmental context compatibility might not be necessary. Reviewers might require a 
reference to the prior approval, but will likely not need to scrutinize the approval given the 
approval was derived within the same domain. 

• Indirect support, i.e., a one-to-many mapping between a demand and provider guarantees is an 
indication that the specific contract must be developed to show how the sum of all guarantees 
implies satisfaction of the demand. Reviewers should expect to find an implication 
justification within the contract. 

If, for example, the context model for comparing exogenous system components changes in the 
future, schemes like the one above referencing exogenous systems can be easily identified and 
flagged to focus further review of the case. In this manner, composition schemes provide a novel 
kind of modularity and support within the argument: 

Composition schemes modularize and organize the use of domain knowledge within the case.  

The detail of the composition scheme hints at the scale of the contextual compatibility assessment 
that is performed. Highly abstract composition schemes requires that contextual compatibility 
assessments cast a wider net in terms of the context properties are assessed and to what degree. 
More detailed schemes indicate highly refined, focused and perhaps more established/accepted 
compatibility assessments. As the detail increases down to the very specific characteristics of 
components, composition schemes aid in defining a product line of argument/system 
composition.  

While composition schemes provide benefits to reviewers to explicate composition and to 
manage the connection to evolving domain knowledge, they negatively impact modularity by 
increasing the coupling between modules: consumer components using composition schemes will 
reference properties of the specific component being consumed. It may be possible to decrease 
coupling by encapsulating the composition scheme within the contract argument; however, we 
leave notation refinements for future work. Because the coupling is localized to required 
interfaces, our current model of composition schemes can be easily updated and is amenable to 
automated tool support to minimize the effort in altering schemes as components are changed in 
the future.  

3.3.9  Justifying Sibling Compatibility 
Contextual compatibility as so far described addresses compatibility only between a consumer 
component module and an individual consumed (provider) component module. The rationale for 
this approach was to compartmentalize and focus integration concerns incrementally. A 
consumer may, however, consume more than one component module. The collection of 
consumed component modules are referred to as sibling components. 

                                                 

 
9 A composition scheme could further reflect how the provenance of a component is derived.  
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In principle, if new assumptions and context of a consumed component are propagated as 
suggested in the above mechanics, sibling component compatibility should be inferred by 
transitivity. That is, for a consumer X and sibling components A and B, if the context and 
assumptions of A are compatible with X, and the context and assumptions of B are compatible 
with X, then the context and assumptions of A and B should be compatibile. As each component 
is integrated, the consumer component (X) is updated as necessary with new context/assumption 
of its components (A and B). A consumer component subsumes the context/assumptions of all 
currently consumed components. As a result, the order of composition should not matter 
(argument composition is commutative) and sibling compatibility is maintained progressively.  

In practice, sibling compatibility is a property of specific concern for compositional arguments, 
both in argument development and review. Lack of an explicit argument may be considered 
unacceptable, especially as components are altered and added over time, obscuring implicit 
inferences of noninterference. If an explicit justification of sibling component noninterference is 
desirable, a noninterference (i.e., sibling compatibility) argument can be expressed as a 
confidence argument on the sibling contract view (Section 3.3.2). 

Since noninterference may be achieved by previously described integration mechanics, the exact 
form on a noninterference argument is left open to address any domain-specific doubts; however 
possible options include: 

• a composite of all consumer-provider contextual compatibility assessments, 
• a matrix of compatibility between every subset of siblings 
• an argument expressing confidence in the integration mechanics described above as not 

requiring other arguments of sibling noninterference. 

3.3.9.1  Related Sibling Concerns: Design Siblings 
Sibling component compatibility as described is largely an issue of contextual compatibility 
between consumed components. There is also a concern about the compatibility of 
behaviors/demands on components, especially as components change over time.  

Assurance demands placed on components should be specified as generally as possible to 
promote flexibility; however, it is often the case that a demand is based on limitations of a known 
component or a set of components. Furthermore, a demand may be carefully balanced amongst 
the constraints of other sibling assurance goals (Figure 42) in the argument structure. The issue is 
that there may be inherent coupling of assurance demands to the component. As components 
change, the design and relevant design demands may need to change. As a result, other sibling 
assurance goals may be affected. Whats more, the extent of the change may propagate up the 
argument hierarchy, affecting goals related detailed design, system specification, and potentially 
even requirements.  

Consider the example illustrated in Figure 43. In order to satisfy the reliability goal (probability 
A per operational hour), reliability specs are developed for relevant subsystems. In this example, 
reliability probability X and Y are balanced between two subsystems, but how are these 
probabilities chosen? It is possible they are arbitrarily defined (e.g., an even division), but more 
likely, they are chosen based on known or expected constraints of each subsystem, which may be 
implemented by other modular components. In this example, it is possible that component1 may 
provide better or worse reliability than is demanded: 
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• If the reliability is better, it is possible to relax probability Y, and perhaps alter the 
implementation of subsystem2 to take advantage.  

• If the reliability is worse, the component could be discarded as an integration failure; however, 
if there was some flexibility in subsystem2, the reliability constraints could be rebalanced in a 
way to make the component’s reliability acceptable. 

We refer to this kind of compatibility as design sibling compatibility. During component 
integration, the design can be reconsidered and rebalanced as necessary; however, for simplicity 
of the current effort, we instead focus on the satisfaction of demands as given, and leave the 
precise mechanics for rebalancing the design and assurance demand for future work.  

  

 
Figure 42: Sibling Assurance Goals 
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Figure 43: Sibling Assurance Constraint Balancing 
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3.3.10  Justifying System-wide Compatibility 
The mechanics as so far described address the concerns of integration systematically but under 
implicit assumptions about the hierarchical structure of the argument and the locality of 
dependencies. In a simplistic argument hierarchy, there are likely no “system-wide” cross-cutting 
constraints. Each branch of the argument could then be considered to be independent of other 
branches. Further, any dependencies between components would exist only at the interface 
boundary. The complexity of argumentation, however, allows for arbitrary interdependencies 
within the argument that have so far not been addressed (the complete problem description is 
given in Section 3.3.2). 

To address arbitrary system-wide dependencies, i.e., to provide assurance of system-wide 
compatibility between components, we proposed the system-wide dependency view 
(Section 3.3.2). The system-wide dependency view is based upon identifying elements of 
argument that are at risk should any component change within the design hierarchy. Goals 
supported by testing data have already been suggested as an example; however, Figure 43 
provides another example. A goal supporting independence of the two subsystems is potentially 
affected by any changes whatsoever to either subsystem.  

The identification process is not specified within the integration mechanics explicitly, and is 
assumed to occur during argument development or during domain assimilation (Section 3.3.8). 
This approach is clearly dependent upon complete identification of argument entities based on 
system-wide dependencies. Doubts about identification could be addressed within a confidence 
argument anchored on the system-wide dependency view, however, these doubts are an instance 
of many possible doubts in applying the SIAT integration mechanics, and not doubts about the 
system the argument represents. Further discussion about doubts about the integration process 
itself is given in Section 3.3.11. 

If sufficient confidence exists that the system-wide view is complete, then justifying system-wide 
compatibility is relatively straightforward. Each argument fragment within the system-wide 
dependency view is either reengineered (new evidence is developed and/or the argument 
fragments are replaced), or evaluated on a case-by-case basis and updated as necessary.  

3.3.11  Argument Assessment 
An assurance case is assessed to determine if there is sufficient belief in the top-level assurance 
claim. While the assurance case documents the rationale for belief in a top-level claim, it is up to 
system stakeholders to pass final judgment as to whether the top-level claim is adequately 
supported. The assurance case is therefore a tool to aid decision makers as to whether a system 
should be deployed, but the final decision is always made by the system stakeholders, not the 
assurance case itself. Argument assessment is therefore a stakeholder-driven process of reviewing 
and approving the argument. The precise use of the argument in the approval process may vary 
by domain.  

Using the problem-oriented argument structures as previously described (Section 3.2), we can 
select a component at any level of abstraction within a system-of-systems design, including the 
entire system of systems itself, and the top-level goal is always the same: the component in 
question was successfully developed. A benefit of this approach is that the argument assessment 
activity can be similarly modularized and recursively applied (either top down or bottom up), and 
consequently serves to potentially decrease assessment effort and cost. 
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Modular argument assessment involves answering the following questions: 

1. Does the argument module for each system component, viewed in isolation, adequately justify 
successful development of the associated system component? 

2. Where a system component is itself composed of integrated system components, are those 
system components adequately integrated? 

Modular argument assessment is recursive: these two questions are asked for every component in 
the argument structure, conceptually starting at the highest level of the currently available 
argument structure. Furthermore, the assessment is modularized to take advantage of prior 
assessment and approval of system component arguments. If, for a given system component, both 
of the questions asked by modular argument assessment have been previously answered 
affirmatively within the same domain, assessment does not need to continue recursively down the 
argument structure for the system component in question.  

The first question addresses the fundamental concern of any traditional argument assessment, i.e., 
is the top-level assurance claim is adequately supported. Component modules are assessed in 
isolation by assuming that the context of the component is valid and that any consumed 
components will adequately support associated claims. By modularizing the assessment in this 
manner, prior assessments can be reused. Other than these assumptions, this assessment activity 
follows a traditional argument assessment. We therefore focus on answering the second 
assessment question.  

The second question is answered by evaluating the artifacts and activities of the integration 
mechanics so far described. The premise of the integration mechanics is that to successfully 
integrate arguments about system components we must address three fundamental concerns:  

1. Are design demands satisfied by integrated system component behaviors? 
2. Are all system component contexts (both in development and use) compatible? 
3. Are there new, unaddressed hazards arising from system component integration? 

These questions serve as the driving motivation for all integration activities and argument 
structures. The first question is addressed by assume-guarantee reasoning, and the development 
of component contracts discussed in Section 3.3.7. The first question is also partially addressed 
by reassessment of design siblings and rebalancing constraints as necessary discussed in 
Section 3.3.9. The second and third question overlap, in that failure to maintain contextual 
compatibility is a hazard of system component integration. We highlight the contextual 
compatibility hazard in particular because of its importance given the known limitations of 
assume-guarantee reasoning. We partially address the limitations of contextual compatibility for 
assume-guarantee reasoning in Section 3.3.8. We further address the limitations with respect to 
contextual compatibility between sibling components (i.e., sibling noninterference) in 
Section 3.3.9. The third question addresses miscellaneous integration hazards. We identify that 
there are system-wide compatibility concerns that must be addressed when integrating 
components in Section 3.3.1010. Assessment of the adequacy of integration is therefore a 

                                                 

 
10 This hazard of integration may also be viewed as a contextual compatibility hazard.  
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stakeholder evaluation of each of these integration activities by evaluating any associated altered 
or developed argument artifacts. 

There are, however, additional integration hazards not addressed in the mechanics discussed so 
far that are a consideration during argument assessment:  

the integration mechanics themselves might be incomplete or incorrectly applied.  

Example doubts include: 

• Have all argument structures that have system-wide dependencies been appropriately tagged 
so as to facilitate system-wide assessment mentioned in Section 3.3.10? 

• Have assumptions been properly propagated and interfaces properly updated during when 
developing contracts (Section 3.3.7)? 

• If interfaces are dynamically generated (see (Section 3.3.7), how do we know the generation 
process didn’t miss anything?  

• Are the set of composition schemes (Section 3.3.8) up to date, i.e., have changes to contextual 
compatibility assessments been propagated sufficiently to consistently inform reviewers and 
argument developers?  

• Are there other integration hazards not addressed by the integration mechanics?  

The rationale for the completeness of the integration mechanics is justified through the 
progressive evolution and discovery of limitations as presented in the above sections. In 
principle, this implicit argument could be documented using GSN; however, the underlying 
concern is the authority of our proposed approach to integration (the “backing” in the parlance of 
the Toulmin model of argumentation  [11]). A GSN argument for the approach does not give the 
approach authority (i.e., acceptance of the approach), only stakeholders can grant authority. In 
principle, the authority of the approach would be given within an assurance domain: a domain 
prescribing common/accepted practices for the development and maintenance of assurance 
artifacts, including assurance arguments. The development of the integration mechanics has 
revealed the need for assurance domains, but this topic extends beyond the current project effort. 
Further research into the concept of assurance domains is therefore left for future work. For 
simplicity of this effort, we assume the authority of the integration mechanics.  

If the integration mechanics are accepted as complete, the correct application of the integration 
mechanics is a special case of a more general concern common to assurance arguments: 
epistemic doubt [46] [40]. These doubts can be addressed through the development and 
assessment of confidence arguments  [12]. Since these doubts are universal to any argument, 
regardless of modularity, we simplify this effort by focusing more on assumed correct application 
and leave organizing residual epistemic doubts within a modular argument architecture for future 
work.  

3.4  Compositional Analysis Framework for Systems of Systems 
The compositional analysis framework provides an environment in which formal validation and 
the verification of composition can be performed. Evidence provided by formal validation and 
verification supports critical claims in the assurance case: 

• Evidence from validation supports claims that component requirements are satisfied by 
component implementations. 
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• Evidence from verification of composition supports claims that component interfaces are 
compatible with system interfaces, forming a contract between the system and its component. 

This evidence, when coupled with supported claims of contextual compatibility, yields a high 
degree of confidence that composition is valid and will enable the system to satisfy its 
requirements. 

A critical component of SIAT is the identification of the system context — including the 
environment in which the system must operate. Complete, accurate and early consideration of 
context is essential to system development, to system composition and to the corresponding 
argument. 

Assume-guarantee reasoning provides a powerful framework for reasoning formally about the 
composition of system components and, moreover, underlies argument composition. As 
discussed in Section 4.1.4.5, system components are described in terms of formal interfaces that 
document both the syntax and semantics of what the component assumes about and guarantees to 
its environment.  

Semantics are real-world concerns that typically have no representation in formal systems. In the 
development of SIAT, we developed frameworld for including real-world type information, 
manipulating real-world types, and documenting and reasoning about the correspondence 
between real-world types and their machine-world representations.  

3.4.1  Primitive Real-World Types 
Primitive real-world types are drawn from base measures identified by the International System 
of Units, and include: 

• Length 
• Mass 
• Time 
• Electric Current 
• Thermodynamic Temperature 
• Amount of Substance 
• Luminous Intensity 
• Angle 

One way to set up syntax supporting these base measures is: 
 
  measurement: NONEMPTY_TYPE = 
    [# 
      value:       real, 
      scaling:     posreal, 
      length_dim:  real, 
      mass_dim:    real, 
      time_dim:    real, 
      current_dim: real, 
      temp_dim:    real, 
      intens_dim:  real, 
      angle_dim:   real 
     #]; 
 

Along with support for mathematical operations, this allows us to write PVS statements such as: 
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  distance: measurement = 3 * m; 
  N: measurement = kg * m / s^2; 
  piston_pressure = 3 * N / cm^2; 
  c_dist: measurement = sqrt(a_dist^2 + b_dist^2); 
 

An important consideration is that we want to prevent certain types of operations, such as adding 
meters to centimeters implicitly and combining units from different systems implicitly. There are 
times when it makes sense to perform either of these actions, but making such operations require 
explicit steps allows us to detect errors in models (e.g., Simulink models) where adding 1 meter 
to 25 centimeters will yield 26 with ambiguous units. 

Support for these primitive real-world types has been added to PVS in the form of measurement 
libraries. Handling systems of units to prevent the implicit combination of units from differing 
systems requires tradeoffs between simplicity and rigorousness. To explore these tradeoffs, we 
have created two different libraries for defining how units can be combined, a system-field 
library and a system-templated library. 

3.4.1.1  System-Field Library 
In the system-field library a measurement type is defined as previously discussed, except that a 
field is added to track the system: 
 
  measurement: NONEMPTY_TYPE = 
    [# 
      value:       real, 
      system:      system_enum, 
      scaling:     posreal, 
      <same as before> 
     #]; 
 

In this library, the possible values of system_enum are NOT_APPLICABLE (for 
dimensionless measurements), ANY (for units that are system agnostic, such as seconds), 
METRIC, and IMPERIAL. Lengths are defined in their own theory, and are defined by the 
following predicate: 
 
  length?(m: measurement): bool =                                  
    valid_measurement?(m) AND                                      
    dimension_match?(m, zero_measurement WITH [`length_dim := 1]); 
 

The lengths theory also pre-defines several units: 
 
  zero_length: length = zero_measurement WITH [`system := ANY, `length_dim := 
1]; 
  unit_length: length = zero_length WITH [`value := 1]; 
  m: poslength = unit_length WITH [`system := METRIC]; 
  cm: poslength = m WITH [`scaling := 1/100]; 
  mm: poslength = m WITH [`scaling := 1/1000] 
  ft: poslength = unit_length WITH [`system := IMPERIAL]; 
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The times theory is similar, but the definition of second is system-agnostic: 
 
  zero_time: time = zero_measurement WITH [`system := ANY, `time_dim := 1]; 
  unit_time: time = zero_time WITH [`value := 1]; 
  s: postime = unit_time; 
 

The proper rules for mathematically combining measurements must also be defined. For 
example, the addition operation for two measurements is specified as: 
 
  +(x: valid_measurement, y: {m: valid_measurement | unit_match?(x, m)}): 
    {m: valid_measurement | unit_match?(x, m)} = 
      IF preferred_system?(x, y) THEN 
        x WITH [`value := x`value + y`value] 
      ELSE 
        y WITH [`value := x`value + y`value] 
      ENDIF 
 

This operation requires (via the unit_match? predicate), that the second operand (y) has the 
same dimensions, system, and scaling as the first operand (x), and the result likewise has the 
same dimensions, system, and scaling as x, with only the value field modified. Specifically, the 
unit_match? predicate is defined as: 
 
  unit_match?(x: measurement, y: measurement): bool = 
    dimension_match?(x, y) AND                        
    system_match?(x, y) AND 
    (x`scaling = y`scaling);                          
 

The dimension_match? predicate is defined as: 
 
  dimension_match?(x: measurement, y: measurement): bool = 
    (x`length_dim = y`length_dim) AND                      
    (x`time_dim = y`time_dim) AND                          
    (x`mass_dim = y`mass_dim) AND                          
    (x`current_dim = y`current_dim) AND                    
    (x`temp_dim = y`temp_dim) AND                          
    (x`intens_dim = y`intens_dim) AND                      
    (x`angle_dim = y`angle_dim); 
 

The system_match? predicate is defined as: 
 
  system_match?(x: measurement, y: measurement): bool = 
    valid_measurement?(x) AND valid_measurement?(y) AND 
     ((x`system = y`system) OR (NOT explicit_system?(x)) 
      OR (NOT explicit_system?(y))); 
 

The valid_measurement? and explicit_system? predicates are defined as: 
 
  valid_measurement?(m: measurement): bool = 
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    (m`system /= NOT_APPLICABLE) OR 
    (dimension_match?(zero_measurement, m))     
 
  explicit_system?(m: measurement): bool = 
    (m`system /= NOT_APPLICABLE) AND (m`system /= ANY) 
 

The preferred_system? predicate in the specification of the addition operation is required 
to ensure that addition is commutative (i.e., that a+b=b+a): 
 
  preferred_system?(x: measurement, y: measurement): bool = 
    IF explicit_system?(x) THEN 
      TRUE 
    ELSIF explicit_system?(y) THEN 
      FALSE 
    ELSIF (x`system = ANY) OR (y`system = NOT_APPLICABLE) THEN 
      % either they're both all, both n/a, or x is all and y is n/a                                                                                                                                                               
      TRUE 
    ELSE 
      % x is n/a and y is all                                                                                                                                                                                                     
      FALSE 
    ENDIF 
 

The specification of the multiplication operation multiplies the values of the measurements and 
sums their dimensions:. 
 
  *(x: valid_measurement, y: {m: valid_measurement | system_match?(x, m)}): 
    {m: valid_measurement | system_match?(x, m)} = 
      (# 
        value       := x`value * y`value, 
        system      := IF preferred_system?(x, y) THEN 
                         x`system 
                       ELSE 
                         y`system 
                       ENDIF, 
        scaling     := x`scaling * y`scaling, 
          length_dim  := x`length_dim  + y`length_dim, 
        time_dim    := x`time_dim    + y`time_dim, 
        mass_dim    := x`mass_dim    + y`mass_dim, 
        current_dim := x`current_dim + y`current_dim, 
        temp_dim    := x`temp_dim    + y`temp_dim, 
        intens_dim  := x`intens_dim  + y`intens_dim, 
        angle_dim   := x`angle_dim   + y`angle_dim 
       #); 
 

Whether measurements have compatible systems for multiplication/division is defined by the 
previously discussed system_match? predicate. Accidental mixtures of systems of units are 
prevented by disallowing multiplication or division between different systems. As with addition, 
the preferred_system? predicate is required to ensure that multiplication is commutative. 
The multiplication rule allows any two measurements to be multiplied (e.g., force and distance), 
and defines the resultant measurement as having the combined dimensionality of the 
multiplicands. Similarly, a division rule is defined allowing two measurements to be divided 
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(e.g., length and time) with the result having the appropriate dimensionality (e.g., speed), and an 
exponentiation rule allows a measurement to be raised to a power (e.g., length squared to become 
area). 

Conversions require their own theory and must be explicitly defined as transmutations: 
 
transmutation: NONEMPTY_TYPE = 
    [# 
      to_factor:   {n: nzmeasurement | explicit_system?(n)}, 
      from_factor: {n: nzmeasurement | explicit_system?(n) AND 
to_factor`system /= n`system} 
     #] CONTAINING 
    (# 
      to_factor   := unit_measurement WITH [`system := METRIC], 
      from_factor := unit_measurement WITH [`system := IMPERIAL] 
     #); 
 

3.4.1.2  System-Templated Library 
The system-templated library is similar to the system-field library, except that instead of 
system being a component of the measurement, measurement_systems parameterize the 
theory, where measurement_systems is an enumeration of {METRIC, IMPERIAL}: 
 
  measurements[(IMPORTING measurement_systems) S: system_enum]: THEORY 
 

Units are defined in this library by instantiated versions of templated theories, where different 
systems use different scaling factors. For example the imperial_lengths theory is defined 
as: 
 
  imperial_lengths: THEORY 
  BEGIN 
 
    IMPORTING measurement_systems; 
    IMPORTING lengths[IMPERIAL]; 
 
    ft_to_m: real = 0.3048; 
 
    ft: poslength = unit_length WITH [`scaling := ft_to_m]; 
    inch: poslength = ft WITH [`scaling := ft_to_m * 1/12]; 
    yard: poslength = ft WITH [`scaling := ft_to_m * 3]; 
    mi: poslength = ft WITH [`scaling := ft_to_m * 5280]; 
 
  END imperial_lengths 
 

Within this library, the specification of the addition operation is a little simpler: 
 
  +(x: measurement, y: {m: measurement | unit_match?(x, m)}): 
    {m: measurement | unit_match?(x, m)} =                    
      x WITH [`value := x`value + y`value]                    
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Note that addition is automatically commutative without a need to check for a preferred system, 
and the specification of the predicate unit_match? is also simpler: 
 
  unit_match?(x: measurement, y: measurement): bool = 
    dimension_match?(x, y) AND                        
    (x`scaling = y`scaling);                          
 

The dimension_match? predicate is identical to that in the system-field library. 

The multiplication operation is also simpler: 
 
  *(x: measurement, y: measurement): measurement = 
    (#                                             
      value       := x`value * y`value,            
      scaling     := x`scaling * y`scaling,        
      length_dim  := x`length_dim  + y`length_dim, 
      time_dim    := x`time_dim    + y`time_dim,   
      mass_dim    := x`mass_dim    + y`mass_dim,   
      current_dim := x`current_dim + y`current_dim 
      temp_dim    := x`temp_dim    + y`temp_dim,   
      intens_dim  := x`intens_dim  + y`intens_dim, 
      angle_dim   := x`angle_dim   + y`angle_dim   
     #);                                           
 

Unfortunately, with the system-templated library, it becomes possible to inadvertently combine 
units from different systems so that m * ft is valid. One can define a predicate to check for 
whether a unit is consistently scaled as a power of ten: 
 
  % i can be < 0 
  power_of_ten_measurement?(m: measurement): bool = 
    EXISTS(i: int): (10^i = m`scaling); 
 

Because imperial units are always defined with a scaling factor that is not a power of ten (with 
the exception of units that are system-agnostic such as seconds), the 
power_of_ten_measurement? predicate can be used to identify measurements that are 
metric. However, this predicate will miss certain situations where custom metric units have 
scaling factors that are not powers of ten. The decision to use METRIC as a baseline (so that m 
has a scaling factor of 1, for example) instead of IMPERIAL was made primarily for our 
preference of the metric system, but is also supported by the potential utility of the 
power_of_ten_measurement? predicate. 

3.4.1.3  Library Comparison 
In the system-templated library, all measurements are valid and compatible with respect to 
multiplication. This results in fewer TCCs and often simpler proofs. It also fails to automatically 
detect cases where units from different systems are multiplied or even added; however, units are 
defined in this library so that conversions would happen automatically, per their scaling field. 
So, while the system-field library supports rigorous analysis of units and eliminates the 
possibility of multiplying m * ft, its use often results in complex type-correctness conditions 
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(TCCs) and increases the difficulty of proving theorems, compared to the system-templated 
library. Either library can provide the foundation of the compositional analysis framework. 

3.4.1.4  Discussion 
While initially we considered the possibility of having domain-specific primitive types (such as 
longitude/latitude), experimentation has suggested that domain-specific types can better be 
represented using compositional combination as discussed in Section 3.4.2. Additionally, the 
measurement libraries can be extended with the addition of domain-specific constants, unit 
names (which are really just a type of constant), or even new systems of units. 

3.4.2  Real-World Type Manipulation 
The primitive real-world types described in Section 3.4.1 can be combined to describe any kind 
of measurement. The rules by which the types combine form the basis of a type theory for real-
world types. As an example, a speed measurement should have the dimensions of LT−1, where L 
refers to the length dimension and T to the time dimension. This type of manipulation relies on 
basic arithmetical operations, as discussed in Section 3.4.1. 

In addition to measurements being combined through basic arithmetical operations, 
measurements can be composed into more complex objects, such as vectors, matrices, and other 
structures. 

Vectors of measurements can either be all of the same unit (e.g., a vector describing a location in 
3-space) or can contain a combination of units. An example of a vector of measurements with 
homogeneous units is a velocity vector: 
 
  mv: Measurement_Vector = 
    (: 3, 4, 5 :) * (m / s); 
 

With this homogeneous vector, one can determine its magnitude (13 m /s), and intuitively 
combines the properties of measurements discussed so far with the properties of vectors. 
However, consider an example of a measurement with heterogenous units: 
 
  mv: Measurement_Vector = 
    (: 3 * m / s, 4 * Hz, 5 * N :); 
 

With this heterogenous vector, there is no meaningful definition of its magnitude, but yet this 
vector could legitimately describe a state vector. 

Rules for mathematical operations on vectors of measurements follow from the rules of 
operations on their components, and a theory of measurement vectors has been established to 
describe these rules. For addition of two vectors, the rule is simple: the vectors must be of the 
same size, and each element in one vector must match the units of the corresponding element in 
the second vector. For example, if you have a two element vector whose first element is 
measured in meters and whose second element is measured in centimeters, than it can only be 
added to another vector whose first element is measured in meters and whose second element is 
measured in centimeters. For dot products, the rule is a little more interesting: while the vectors 
elements do not need to correspond, all pair-wise products must have the same units. For 
example, if you have a three element vector whose elements are measured in m, m/s, and mm, 
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then it cannot be multiplied by another vector with the same units, but it can be multiplied by a 
vector whose elements are measured in m, s, and km: 
 
  mv1: Measurement_Vector = 
    (: 10 * m, 0.25 * m^2 / s, 2 * mm :); 
  mv2: Measurement_Vector = 
    (: 0.1 * m, 4 * s, 0.5 * km :); 
  % Cannot add m^2 + m^2/s^2 + mm^2 
  invalid_meas: Measurement = 
    mv1 * mv1; 
  % Can add m^2 + m^2 + m^2 
  valid_area: Measurement = 
    mv1 * mv2; 
 

A motivating example for vectors and matrices composed of differing units is a model of a 
Kalman filter. Kalman filters take a state estimate vector ( ̂x), an actuator vector (u), a state 
transition matrix (A), a matrix describing the effect of the actuators on the state (B), an estimate 
of error covariance (P), and a process noise matrix (Q) to generate a new state estimate vector. 
Each of these vectors and matrices will typically be composed of elements with a mixture of 
units. To check unit consistency in a model using Kalman filters means understanding how 
vectors and matrices of varying units interact. In addition to the simple addition and 
multiplication rules covering vectors and matrices, the Kalman filters introduce additional 
operations to consider: transition matrices, transformation matrices, and matrix inversion. 

As with vectors, the rule for addition is straight-forward: the matrices must be of the same size in 
both dimensions, and each element in one matrix must match the units of the corresponding 
element in the second matrix. For multiplication, the rules are definitely more complicated. For 
matrix A to be multipliable by matrix B, the following properties of the two matrices must hold. 

1. The number of columns in A must equal the number of rows in B (as with regular matrices). 
2. The matrices must have elements such that, when multiplied, terms being added to form the 

resultant matrix have the same units. This means that: 

(a) For matrix A to be multipliable by any matrix, units(Aij)= 
units(Ai1)units(A1j)

units(A11)
. 

(b) For matrix B, it must be the case that units(Bij)= 
units(Ai1)units(B1j)

units(A11)
. 

With unitless square matrices, if matrix A can be multiplied by matrix B, then matrix B can be 
multiplied by matrix A. This is not necessarily true when considering units. When proving 

properties with unitless matrices, one can use the fact that ∑
j=1

n
  ∑

k=1

m
 AijBjk is identical to 

∑
j=1

n
 Aij ∑

k=1

m
 Bjk, but this equivalence is not valid when Bjk≠Bjm for some k and m. One important 

property of matrix multiplication that does still hold is that of associativity: if matrix A can 
multiply by the product of matrix B and matrix C, then the product of matrix A and matrix B can 
multiply by matrix C, and the results will be identical. 
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Transition matrices are matrices that when multiplied by a vector will yield a vector with the 
same units. Note that this is not true in general when multiplying a matrix by a vector as is the 
case when with Bu, which transforms a vector describing actuators into a vector describing 
states. Transition matrices must have the following properties: 

1. Transition matrices must be square matrices. 
2. For transition matrix A and state vector x, the units of element Aij must equal the ratio of the 

units of xi to the units of xj, thus the units of the vector upon which a transition matrix operates 
uniquely defines the units of the transition matrix itself. 

3. From (2), it follows that element Aij must have inverse units of element Aji. 
4. From (3), it follows that diagonal elements (Aii) must be dimensionless. 
5. From (2), it also follows that the units of Aij×Ajk=Aik. 
6. From (5), it follows that the units of elements Ai,i+1 , for i<numcols(A) uniquely define the 

remaining elements of A. Without reference to x, the units of these elements cannot be further 
inferred. Thus the number of elements in the matrix that define the units for the remaining 
elements in the matrix is numcols(A)−1. 

7. From (2), it also follows that if a transition matrix can operate on vector x, then the transition 
matrix can also operate on x⊙h, where ⊙ denotes component-wise multiplication, and h is a 
vector with homogenous units. 

Transformation matrices must have the following properties: 

1. A transformation matrix transposing from a vector with length a to a vector with length b must 
be of size b×a (i.e,. have b rows and a columns). 

2. For transformation matrix B, vector u to be transformed and vector x to be transformed into, 
the units of element Bij must equal the ratio of the units of xi to the units of uj. 

3. From (2), it follows that the ratio of units of element Bij to Bik must equal the ratio of the units 
of uk to the ratio of the units of uj, allowing us to determine whether a transformation matrix B 
can operate on vector u. 

4. Also from (2), it follows that the ratio of units of element Bij to Bki must equal the ratio of the 
units of xi to the ratio of the units of xk, allowing us to determine whether a transformation 
matrix B can transform a vector into a type with units matching vector x. 

5. Without reference to u or x, it also follows that a transformation matrix must have the property 
that BabBcd=BadBcb. 

Using the rules for transition matrices and transformation matrices, we can write the 
predictState step of the Kalman filter as: 
 
  StateSizeSquareM: NONEMPTY_TYPE = SquareMM(StateSize) 
    CONTAINING I(StateSize); 
  StateVector: NONEMPTY_TYPE = Measurement_Mat(StateSize, 1) 
    CONTAINING (# rows := StateSize, cols := 1, 
      matrix := LAMBDA(i: below(StateSize), j: below(1)): 
          zero_measurement #); 
  BSizeMatrix: NONEMPTY_TYPE = Measurement_Mat(StateSize, ActuatorSize) 
    CONTAINING (# rows := StateSize, cols := ActuatorSize, 
      matrix := LAMBDA(i: below(StateSize), j: below(ActuatorSize)): 
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          zero_measurement#); 
  A: VAR (a: StateSizeSquareM | transition_matrix?(a)); 
  B: VAR BSizeMatrix; 
  predictState(A, (priorState: (transitions?(A))), B, (u: (transforms?(B, 
priorState)))): 
    (unit_match?(priorState)) = 
      (A * priorState) + (B * u); 
 

In the above example, StateSize and ActuatorSize are parameters to the 
measurement_kalman PVS theory. These values are used to define StateSizeSquareM, 
StateVector, and BSizeMatrix types. The A transition matrix and B transformation matrix 
are defined relative to these parameters. The priorState argument to predictState is 
defined as a vector upon which the transition matrix A can operate, and the u argument is defined 
as a vector upon which the transformation matrix B can operate such as to generate a vector with 
the same positional units as priorState. 

Solving matrix inversion for matrices using units is an ongoing area of research. 

3.4.2.1  Proof Automation Support 

Throughout the development and application of the PVS libraries for the measurement type, 
attention has been given to supporting proof automation. 

While PVS is a very powerful theorem prover, it has a reputation for requiring significant input 
from a human to complete proofs. Proof automation can be used to reduce or, in many cases, 
eliminate the need for human guidance during proofs. Several approaches are provided by PVS to 
enable proof automation. 

1. Judgements. Judgements are pre-proven type equivalencies that can be leveraged by the type 
checker. When a judgment is available, it often allows the type checker to avoid issuing a 
proof obligation for type correctness (a Type Correctness Condition, or TCC). 

2. Rewrite rules. Rewrite rules are used by PVS to automatically rewrite an expression in a 
different, often simpler form. When a rewrite rule is available, it often allows PVS to 
automatically simplify an expression, eliminating the need for human guidance. 

3. Lemmas. Lemmas are pre-proven expressions that can be used in proofs to simplify an 
expression. While lemmas are often not automatically applied by PVS, they can be applied 
through proof-lite scripts, increasing the power such scripts and reducing the need for human 
guidance. 

4. Proof-lite scripts. Proof-lite scripts are a sequence of proof commands that are applied 
automatically when the command-line tool proveit is called. These scripts can be included 
in PVS files as structured comments, and can use wildcard matching so that they are 
automatically applied to many proof obligations. Proof-lite scripts are particularly useful for 
helping to discharge TCCs. 

All four of these approaches have been taken with the measurement libraries, and significantly 
reduce the level of human guidance required to complete proofs involving real-world types. 

3.4.3  Correspondence Analysis with Retrenchment 
Retrenchment provides a rigorous framework for reasoning about the transition from real-world 
types to machine-world types. 
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3.4.3.1  Background 
Retrenchment is a variation of program refinement. Program refinement is an iterative method 
which involves adding detail to abstract specifications until they become concrete enough to be 
implementations. Importantly, refinement requires that the refining specification can be proven 
to: 

1. maintain the invariants of the refined specification; 
2. maintain any assertions of the refined specification; 
3. maintain the correctness of the initialization; 
4. not require narrowing (strengthening) of pre-conditions; 
5. not require weakening of post-conditions and 
6. not change the signature of any operation. 

Retrenchment acknowledges that real-world constraints can cause some of these proofs to fail. In 
general, retrenchment is a narrowing of the pre-condition and a constrained weakening of the 
post-condition [47], although it can weaken any of the above requirements of refinement. 
Consider the following specification of an adder: 
 
  adder: THEORY 
  BEGIN 
    plus(a: nat, b: nat): nat = a + b; 
  END adder 
 

A simple specification, except that in PVS the naturals are unbounded, while in practice there 
will be a maximum value that can be represented. For example, one might posit the following as 
a refinement: 
 
  adder2: THEORY 
  BEGIN 
    max_nnint32 : int = 4294967295; 
    nnint32?(n: real): bool = integer?(n) AND (0 <= n) AND (n <= max_nnint32); 
    nnint32 : NONEMPTY_TYPE = (nnint32?) CONTAINING 0; 
 
    plus(a: nnint32, b: nnint32): nnint32 = 
      IF (a + b > max_nnint32) THEN 
        max_nnint32 
      ELSE 
        a + b 
      ENDIF; 
  END adder2 
 

This clearly violates the requirements of a refinement: 

1. The signature of the operation was changed. 
2. The revised signature narrows the pre-conditions. 
3. The post-condition is weakened for the case where a + b > max_nnint32. 

Thus, the proposed refinement is not a refinement, but a retrenchment. 

In many cases, constrained equivalence between models [48] can be considered a form of 
retrenchment, if one considers the models to be formal specifications. For example, if one model 
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is the abstract OEM model and the second model is the model as implemented by the supplier, 
then likely the supplier’s model will be a retrenched version of the OEM model, and constrained 
equivalence will provide a formal means of defining the rules of that retrenchment. 

3.4.3.2  Application to Correspondence 
As discussed in Section 3.1.2, SIAT calls for an explicit correspondence between environment 
phenomena that are modeled as real-world types and their representation in the system as 
machine-world types. 

Most real-world phenomena are continuous in nature and are described using real numbers. 
Additionally, bounds are not always identified for real-world phenomena. For example, while 
there is a practical limit to displacement for a vehicle, arising from time or fuel constraints, a 
maximum displacement is unlikely to be identified in the problem or the requirements. 

For digital computer systems, the representations of real-world phenomena are not real numbers 
and are never unbounded. Instead, fixed- or floating-point numbers are used and bounds are 
either explicitly identified or implicitly defined by the representation used. This essential 
discretization introduces unavoidable loss of precision, which represents a retrenchment from the 
real-world phenomenon. Moreover, the essential bounding introduces unavoidable inaccuracy 
whenever the real-world value exceed the bounds of the machine-world representation, which 
represents another retrenchment from the real-world phenomenon. 

Additionally, system representations of real-world phenomena are driven either directly by sensor 
measurements or indirectly by models based on sensor measurements. Sensors introduce 
additional loss of precision and inaccuracy by virtue of the physical processes through which they 
make their measurements and by their own internal system representations, when they include 
digital computers or digital outputs. Sensors and digital computers also introduce latency. 

Correspondence models describes the inaccuracy, loss of precision, latency, and other 
discrepancies between the true value of an environmental phenomenon and its system 
representation. These discrepancies represent a retrenchment between the requirements and the 
specification of the system: we cannot say that the specification is a refinement of the 
requirements, because the data types have changed and the data values have become imprecise. 
Retrenchment therefore provides a framework in which the impact of these changes can be 
assessed, increasing our confidence that the specification is correct. 

3.4.3.3  The Role of Correspondence 
Correspondence supports claims of requirement satisfaction. Using correspondence models, the 
retrenchment from the requirement to the design is argued to be acceptable. Then the design can 
be shown to be correct which, under the retrenchment, satisfies the requirement. Using the Ultra 
Stick example (see Section 4.2), as example argument is shown in Figure 44. 
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Figure 44: An Example Argument using Correspondence 

 

3.4.3.4  Representing Correspondence 
Correspondence models include four elements: 

1. explication, 
2. real-world semantics, 
3. machine-world representations, and 
4. approximation. 

A correspondence model is attached to each element of an interface, to document unambiguously 
and formally the relationship between the machine-world element of the interface and its 
syntactic components and the real-world phenomenon being represented. 
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As an example, a simple correspondence model for the pitch estimate that is provided by the 
measurement subsystem in the Ultra Stick example (see Section 4.2) is shown below11.  
 
  pitch: machine world correspondence { 
    explication: 
      Body-axis pitch angle, measured in degrees. 
       
    real-world semantics: 
      quantity        : angle 
      units           : degrees 
      range           : -90 .. 90 
       
    machine-world semantics: 
      representation  : 16-bit integer 
      scale           : 1/100 
      offset          : 0 
      range           : -9000 .. 9000 
       
    approximation: 
      noise           : 0.43 
      bias            : 1.20 
  }   
 

The representation shown above is intended to be easy to read and easy to write, while also being 
easily machine-translatable to an appropriate formalism. We have developed a prototype 
translation tool that parses this format and builds an internal, intermediate representation. From 
this intermediate representation, we can generate a variety of formal representations. For 
example, the prototype tool is currently configured to output PVS, as shown below. 
 
  % Body-axis pitch angle, measured in degrees. 
  pitch: machine_world_correspondence = 
    (# 
      real_world_semantics := 
        (# 
          quantity :=  
            ANGLE, 
          units :=  
            DEGREES, 
          range :=  
            (# 
              min := -90, 
              max := 90 
             #) 
         #), 

                                                 

 
11 The machine-world semantics section of this example specifies a fixed-point representation 
of a real number. The scale parameter indicates how the integer value stored in computer 
memory should be scaled and the offset parameter indicates how the resulting value should 
be offset to yield the interpreted value of the parameter.  
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      machine_world_semantics := 
        (# 
          representation :=  
            A16_BIT_INTEGER, 
          scale :=  
            1/100, 
          offset :=  
            0, 
          range :=  
            (# 
              min := -9000, 
              max := 9000 
             #) 
         #), 
      machine_world_semantics := 
        (# 
          noise :=  
            0.43, 
          bias :=  
            1.20 
         #) 
     #) 
 

As a second example, also drawn from the Ultra Stick example, consider the correspondence 
model for pitch rate, shown below. 
 
  pitch rate: machine world correspondence { 
    explication: 
      Body-axis pitch rate, measured in degrees per second. 
       
    real-world semantics: 
      quantity        : angle rate 
      units           : degrees/s 
      range           : -245 .. 245 
       
    machine-world semantics: 
      representation  : 16-bit integer 
      scale           : 1/100 
      offset          : 0 
      range           : -24500 .. 24500 
       
    approximation: 
      noise           : 0.24 
      bias            : 1.80  
  } 
 

The prototype translation tool generates the following PVS, for this correspondence model. 
 
  % Body-axis pitch rate, measured in degrees per second. 
  pitch_rate: machine_world_correspondence = 
    (# 
      real_world_semantics := 
        (# 
          quantity :=  
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            (# 
              value := angle, 
              unit  := RATE 
             #), 
          units :=  
            DEGREES_PER_S, 
          range :=  
            (# 
              min := -245, 
              max := 245 
             #) 
         #), 
      machine_world_semantics := 
        (# 
          representation :=  
            A16_BIT_INTEGER, 
          scale :=  
            1/100, 
          offset :=  
            0, 
          range :=  
            (# 
              min := -24500, 
              max := 24500 
             #) 
         #), 
      machine_world_semantics := 
        (# 
          noise :=  
            0.24, 
          bias :=  
            1.80 
         #) 
     #) 
 

3.4.4  Contract Analysis 
The use of real-world types and correspondence models to document the relationship between 
elements of a component’s interface and real-world phenomena enables more in-depth analysis of 
contracts than would be possible using only machine-world types. 

A traditional interface for a component includes the machine-world type for each element of the 
interface and, typically, a meaningful identifier for the element. For example, an interface might 
include “velocity” and “float”, indicating that there is an element that reports on velocity and that 
it is represented in the machine as a floating-point number. 

Often, additional information about the element of the interface is available in documentation. 
The documentation might specify, for instance, that the velocity is to be interpreted as meters per 
second and is, moreover, constrained to fall between zero and 100 meters per second. 
Unfortunately, this kind of documentation is typically informal and is not available to automated 
analysis tools. 

By incorporating real-world types into the interface, we can formalize aspects of the entity being 
represented. By incorporating correspondence models, additional critical information can be 
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included. Together, these richer formalized semantics allow stronger checking of contractual 
compatibility, increasing confidence in composition. 
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4 RESULTS AND DISCUSSION 
This section presents the result of applying system-interface abstraction technology, our system-
of-systems enabling technology. Section 4.1 describes the use of system-interface abstraction 
technology and, in particular, the patterns for arguing successful development as a novel 
approach to responding to a request for proposals. Section 4.2 describes the application of 
system-interface abstraction technology to a hypothetical small UAS based on the Ultra Stick 
platform. Section 4.3 describes the application of domain-argument recovery, a reference 
mechanic for system-interface abstraction technology, to relevant standards. 

4.1  Cooling Tanks Example Problem 
This section presents the development of an illustrative example of SIAT by application to the 
cooling tank challenge problem. Specifically, we use the cooling tank challenge problem 
provided by RQQA as a hypothetical Request For Proposals (RFP).  

The goal of this effort is to demonstrate an experimental response to the RFP in the form of an 
initial assurance case for a cooling tank system. The assurance case provides RFP response 
reviewers with the direction that will be taken to develop the cooling tank system and to provide 
adequate assurance that the developed system provides appropriate properties and behaviors. The 
case is presented to illustrate how iterative and modular development and assurance will proceed 
if the RFP response were accepted.  

The intent is to develop an argument-based rationale for a development approach with a clear 
focus on assurance and “successful development”. The emphasis of the RFP response is the 
application of SIAT concepts, specifically identification, separation, and documentation the 
problem, its solution, and its context, including both regulatory and environmental context. The 
RFP response therefore serves two primary purposes: 

1. the assurance case illustrates a potential new acquisition approach that would require or prefer 
responses delivered with initial assurance arguments, and 

2. the documentation within the response provides a detailed explanation of the application of 
SIAT concepts and mechanics that have been previously described.  

4.1.1  Experiment Overview 
The substance of this effort is an experimental RFP response that is developed and documented 
entirely within an initial assurance case. Typical RFP response sections and documentation is 
provided along with initial arguments in an evolving assurance case structure. The mockup 
organization and case structure will be used to explain the application of the technologies 
developed in this effort. The argument does not justify why the proposal should be accepted 
directly, but rather provides a high-level outline of how successful development would be 
justified if the proposal were accepted. The arguments presented will therefore provide a general 
direction/structure but will require further development which is assumed to take place after the 
hypothetical response is accepted. The mockup argument demonstrates how the proposed system 
solution will be justified as successfully developed and will illustrate/describe the general 
mechanics by which the SIAT technologies are applied to complete the argument.  

The combination of the RFP response documentation and argument provides response reviewers 
with novel view of how the development of the proposed system will be shown to be “adequate”. 
The combination of argument with documentation itself forms a “meta-argument”: an argument 
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that the SIAT approach (which itself includes development of an argument) will be successful. In 
principle, the meta-argument could be expressed as an assurance case; however, for simplicity of 
the example, we do not explore this approach.  

The primary input to this effort is the cooling tank CONOPS (Appendix Appendix B). Other 
inputs include previous requirements and design documentation that has been collaboratively 
refined and reviewed with DCi and RQQA. These inputs are modified as necessary to better 
develop a RFP response and to better apply the SIAT technology. Previous requirements and 
design will serve as an initial prototype for discussion in the hypothetical RFP and provide a 
direction for further development/refinement if the hypothetical RFP response were accepted.  

A typical RFP response must address concerns that the proposed effort will be completed within 
appropriate time and cost, and if the response will meet the proposing company’s business goals. 
These concerns can also be argued in the case. We will point to where these arguments could be 
made within the existing argument infrastructure and provide a discussion, but we will largely 
consider these arguments out of scope for the example.  

Since the complete RFP response is an assurance case, it is provided in a separate document 
artifact. To provide a high-level view of the RFP response, the executive summary is copied 
below. Note that the response, as an experiment, speaks to hypothetical organizations and 
facilitates. Hypothetical entities are not important for this experiment, but necessary for 
documentation. These entities are documented within curly braces as placeholders.  

4.1.2  Executive Summary 
{Dependable Computing} proposes to develop a cooling tank system to be incorporated into the 
{industrial facility} {system requiring cooling} system. The developed cooling tank system will 
consist of a modular design to facilitate redesign, upgrades, replacements, etc. of components in 
the future. The design goal is to not only meet the stakeholder needs as outlined in the RFP 
cooling tank CONOPS (Appendix Appendix B), but also to provide useful modularity in support 
of practical and cost effective design/development, lifetime maintenance and system evolution. 
Modular designs promote these goals by managing complexity, enabling parallel work, and 
accommodating future uncertainty (changes to the system of its lifetime). More specifically, 
modularity promotes:  

1. simplifying complex and large designs by providing high-level abstractions, 
2. minimizing the impact of changes through information hiding and low coupling, 
3. independent and coordinated design and development through well-defined interfaces, and 
4. reuse (both design for reuse and design with reuse) through low coupling and high cohesion 

which in turn decreases engineering and certification costs. 

This proposal provides a prototype cooling tank system design based on the initial CONOPS 
(Appendix Appendix B) and high-level requirements specified in the RFP. The proposed design 
is used to illustrate the organization and development processes to be used by {Dependable 
Computing} and a basis for further system development. While the architecture of the cooling 
tank system will be designed by {Dependable Computing}, the selection and final delineation of 
component boundaries (modules) is subject to approval and review by {industrial facility} to best 
identify components likely to be changed within the context of {industrial facility} and {system 
requiring cooling}. The proposed delineation of components/modules presented in here is based 
on {expert knowledge or standard} to illustrate the design approach and can be easily altered to 
best meet the needs of {industrial facility}.  
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A key aspect of the proposed cooling tank system development is the co-development of a 
rigorous assurance case. The assurance case consists of a structured argument, supported by a 
body of evidence, that provides a compelling, comprehensible and valid case that a system is 
acceptable for a given application in a given environment. In particular, we adopt an argument 
structure where the top-level assurance goal is that the system development is “successful”. The 
success argument’s structure and content as well as the general development of cooling tanks 
system is based upon the System Interface Abstraction Technology (SIAT) developed by 
Dependable Computing. Successful system development is defined in by: 

1. adequate identification of the problem, the context in which the problem exists, and the 
problem solution (requirements) within the defined context, and 

2. adequate assessment of the solution (the designed and developed system) to satisfy 
requirements, provide necessary levels of safety and security, comply with relevant 
regulations and standards, etc. 

The terms “success” and “adequacy” are used generally throughout the argument to indicate that 
the associated activity or product justifiably meets all expectations of the stakeholders. 
Stakeholders provide precise definitions of adequacy for individual expectations.  

The proposed cooling tank system assurance case is modularized to directly reflect modularized 
system components: i.e., the delineation of the argument modules mirrors the delineation of 
system component modules. Assurance arguments are developed for each system component, 
and composed to derive a comprehensive cooling tank system assurance case. The close tracking 
of assurance case development and structure to the design/development of associated system 
components facilitates early and often assessment of the developed system through the iterative 
deepening of the system structure throughout the development process. During each iteration, the 
assurance case is used to incrementally assess the success of the component and the composed 
system as a whole. A key benefit of the coupled modular system and assurance case design is 
therefore the “early and often” assurance-driven development of the system through progressive 
development and composition of the modularized components and their associated modularized 
assurance cases. 

In addition to providing benefits during system development, the modular system and assurance 
case design are intended to facilitate incremental updates and certification to the cooling system, 
thereby reducing maintenance costs over the lifetime of the deployed system. Incremental 
certification is an open and fundamental challenge requiring further study. This proposal will 
discuss SIAT mechanics by which incremental certification may be achieved under the proposed 
assurance case design. In the proposed effort, {Dependable Computing} will be responsible for 
the development of cases for modules with the intent of increasing the acceptance and technology 
of composable arguments to eventually allow for independent composition of components (both 
bespoke and reused) and associated assurance arguments in the future. {Dependable Computing} 
can optionally provide support for incremental certification for the cooling system as the need 
arises once the system is deployed and as the general discipline of incremental certification 
matures. 

Development of the cooling tank system will be largely self contained, based itself on the 
principles of modularity: conceptually the cooling tank system is a component within a larger 
system of systems. {Dependable Computing} will work with {industrial facility} to incorporate 
the cooling system and the associated case into a larger system of systems including 
incorporation into any certification/approval constructs used by {industrial facility}. 



105 
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited. 

4.1.3  Response Prototype Conclusions 
The scope of the RFP response example provided a direction for a novel approach to developing 
RFP responses. Specifically, the example illustrates alignment of the principles of successful 
development described by SIAT as sections and tasks of the response. The illustration is limited 
in scope to simplify the example, e.g., the example focuses on application of SIAT at the highest 
level of development of the cooling tank system. Despite this simplification, the general approach 
taken for this first tier of modular decomposition provides a direction that can be repeated 
recursively.  

Additionally, the illustration is necessarily limited since prior to RFP acceptance, key details of 
the system are not concretized. Because of the lack of development information during the 
response, RFP offerers are limited to hypothesizing directions for the argument by hypothesizing 
requirements, specification and detailed design. This approach is therefore more amenable to 
prototype-oriented development approaches. The use of the argument illustrates to the RFP 
program manager that the offerer is taking assurance into account early and often, but, because of 
the lack of development information, the substance of the argument should not be the primary 
focus for RFP acceptance. The RFP response can only illustrate the activities that would be 
performed and artifacts that would be produced if the response is accepted. RFP program 
managers must therefore accept and have a detailed understanding of the SIAT approach in order 
to assess the response. If both RFP program manages and RFP offerers agree upon the principles 
of SIAT, responses can be somewhat standardized to include details about key SIAT artifacts and 
how the argument could be developed, potentially reducing the effort on the part of program 
managers. Furthermore, by accepting a general assurance/development methodology like SIAT, 
respones do not need to include detailed descriptions of these methods, thereby reducing the size 
of the response.  

A difficulty encountered in this activity and throughout general use of the cooling tanks challenge 
problem was that detailed stakeholder/domain expert knowledge was often necessary but 
unavailable due to the example being academic in nature. As a consequence, we as non-domain 
experts for this system often struggled with developing and refining meaningful problem 
descriptions, context, requirements, architectures, etc. The degree of detail necessary to fully 
explore the uses of SIAT, whether for this RFP response or in general, will require a heavily 
refined example (if not a real-world example) with domain experts providing development 
artifacts and frequent feedback. In this manner, we can focus on the application of SIAT without 
having to solve engineering challenges outside the domain of assurance.  

A related challenge to the lack of expert knowledge and a highly-refined example is deciding 
when to terminate the decomposition of components. For simplicity of the example, the tasks of 
the RFP response note that further decomposition and refinement with stakeholders will be 
performed, but the elaborated system was limited to the first tier of decomposition. Within an 
actual RFP response, offerers could continue a decomposition either until the granularity of 
decomposition is prevented or not appropriate because of the lack of development information 
during RFP response, or the offerer has identified interfaces where components the offerer 
intends to rely upon third party or previously developed components.  

Separate from the application of SIAT, arguments could serve as a fundamental role in RFP 
responses in the future. As previously suggested, an RFP response could be structured as an 
argument with a top level claim that the response should be accepted. By proposing a SIAT 
approach in our illustration, a meta-argument is implied and assessed by program managers 
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through the evaluation of how SIAT is applied. Without an agreed upon standard development 
approach, the meta-argument needs to be more explicit, and could potentially be structured as a 
GSN argument. This approach is related to the concept of success arguments from Assurance-
Based Development (ABD)  [25] [10] [24] and is an interesting direction for future research in 
argument-based acquisition approaches.  

4.2  Ultra Stick UAS Example Problem 
The applicability and utility of system-interface abstraction technology rests on critical 
assumptions: 

1. complex systems and systems of systems of interest are built from components whose 
behaviors can be described by simple abstractions; and 

2. abstractions of component behaviors compose to describe relevant properties about the 
complete, closed-loop system or system of systems. 

Computer software is typically built with an eye towards this kind of modularity. Components 
expose behaviors through narrowly defined and rigorously documented interfaces. Compositions 
of components can be analyzed to establish useful properties about the software as a whole. 

Mechanical systems share similar modularity. Mechanical components necessarily interact 
through well-defined physical interfaces. Behaviors of mechanical components can be analyzed 
to establish useful properties about the mechanical system as a whole. 

Sometimes, however, modularity is not employed in the design of complex systems. The benefits 
provided by modularity — reuse, analysis, incremental or compositional reasoning — come at a 
certain price. It is often not possible to both design a system with good modularity and also 
provide an optimal or nearly optimal solution to the problem. 

Many cyber-physical systems demand a degree of optimality that threatens modularity. This is 
particularly true of high-performance control systems. In all but the most trivial of applications, a 
high-performance inner-loop control system must have many details about the dynamics of the 
plant, the state estimate, and the effectors to achieve adequate performance. An analysis-
appropriate abstraction of any of these system components limits the degree to which the 
controller can be tuned, reducing its performance. Similarly, a mission planner seeking to 
optimize criteria such as time, energy, distance, or exposure must have many details about 
trajectory planning and vehicle dynamics. Abstraction of these details may result in an apparently 
optimal ordering of objectives that, when actual trajectories and dynamics are considered, is far 
from optimal. 

Additionally, design for modularity has an impact on the design process. For relatively simple 
systems that can be readily understood by a small team of engineers, design for modularity 
imposes an extra burden during design. These engineers must identify components, establish 
abstraction-based interfaces, and design with these interfaces in mind. Since they do not need to 
do this, it increases development cost. More complex systems are less readily understood by a 
small team of engineers. In this case, design for modularity assists the development process by 
enabling engineers to break the problem into manageable pieces. 

The prevalence of control in cyber-physical systems raises the following research question: 

Can system-interface abstraction technology be successfully applied to control 
systems?  
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This question is broad. Rather than trivially answer it by pointing at a very simple control system, 
we sought an interesting and potentially challenging example from control with which to 
demonstrate the applicability and usability of the technology as well as some limitations of its 
use. 

Ultimately, we settled on the measurement subsystem for an inner-loop flight control system for 
a fixed-wing UAS as the core of our example problem. The measurement subsystem incorporates 
physical sensors and a state estimator that provides a best estimate of relevant control states 
based on both a model of vehicle dynamics as well as up-to-date sensor measurements. Using this 
example, we were able to begin to answer the question in the affirmative: system-interface 
abstraction technology is applicable to control systems. 

That answer is not without its caveats, however. As noted above, the desire for optimality in 
control means that controls engineers are not often prepared to think about control systems with 
reusable components in mind. Moreover, even when modularity and component reuse is sought, 
there remains a dismaying degree of tight coupling amongst components. 

Additionally, many aspects of system-interface abstraction technology rely heavily on domain-
specific knowledge and domain-specific argumentation. The development of context 
compatibility and detailed evidence for requirements satisfaction by proposed system designs, for 
example, depend upon domain knowledge. While the example begins to answer the question of 
the applicability of system-interface abstraction technology to control systems, it cannot fully 
answer that question. 

With these caveats in mind, we support our affirmative answer by: 

1. Identifying interfaces based on simplifying abstractions for components of the architecture 
that make up the selected flight-control system — meeting assumption 1. 

Starting with the problem statement for the UAS, we identify partial requirements and high-level 
elements of the architecture for the UAS, the air vehicle, the flight control system and finally the 
measurement subsystem. 

2. Demonstrating compositional reasoning for useful properties of the flight control system based 
upon the simplifying abstractions — meeting assumption 2. 

Using the interfaces identified for the measurement subsystem, we prototype selection and 
replacement of measurement subsystems — joint replacement of sensors and estimator. The 
interfaces ensure that both measurement subsystems are appropriate and enable reasoning about 
the effects of replacement. 

Additionally, we validate the compositional reasoning at the level of the closed-loop system. 
With each measurement system, we first consider whether or not the interfaces are satisfied and 
what impact satisfaction or failure to satisfy the interface should have on composition. Then, we 
analyze the complete system to determine if the compositional reasoning yielded acceptably 
correct conclusions about the rate of successful mission completion. 

4.2.1  Scope 
UAS represent complex systems of systems. Design and development of artifacts for a complete 
UAS was therefore out of scope for this effort. We considered subsystems and components 
typical of a UAS to identify one component that would be a good target of study for the example. 
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The measurement subsystem of the flight-control system is a good target for the application of 
compositional reasoning. Sensors represent naturally replaceable components for which 
requirements are readily identified. Additionally, the inclusion of an estimator in the 
measurement subsystem allows issues of sibling compatibility to be explored. 

We restrict the example to a vertical slice of the UAS that enables us to quickly and efficiently 
identify the requirements on the measurement subsystem. At each level of system decomposition, 
we focus on those requirements and design decisions that will ultimately impact the requirements 
on the measurement subsystem. The result is a deep but narrow set of artifacts related to each 
level of UAS development. 

The identification of requirements for the measurement subsystem is the result of analyzing the 
impact of noise and bias on all of the measurements and observations upon which the control 
loops depend. Ideally, the tradeoff space associated with these signals would be fully explored, 
allowing robust and complete understanding of the impact on the system of changing the noise or 
bias on any subset of signals by any amount. 

For this effort, the development of such a complete understanding of the tradeoff space was 
impractical. As such, only the impact of changing the noise and bias of individual signals and 
then changing the noise and bias of all of the signals was explored. This means that there is some 
loss of precision in the contracts and serves to illustrate the kind of tradeoffs that may be required 
to apply compositional reasoning. 

4.2.2  Design Philosophy 
A challenge in applying system-interface abstraction technology to control systems is the degree 
of dependency amongst the components of the control system. The components are so 
interrelated that there are a variety of ways to think about breaking up the control system. For 
example, consider the following breakdown: 

• Measurement; 
• Control; 
• Actuation. 

Within these three broad categories, there are both hardware an software components. For 
example, there are: 

• sensors — hardware/software components that take measurements of the state of the vehicle; 
• estimator - software component that converts measurements to state estimates; 
• control law - software component that computes control outputs based on state estimates and 

commands to track; 
• computing platform - hardware component that executes that control law and the estimator 

software; 
• servos - hardware/software components that manipulate surfaces on the vehicle. 

These components are not comprehensive, but are broadly representative of the elements of the 
control system. 

The flight-control system does not exist as an isolated system: it is a component of a larger 
system. In the challenge problem, the flight-control system is a component of the Ultra Stick air 
vehicle. The air vehicle is, in turn, a component of the Ultra Stick UAS. For simplicity, we 
assume that the other elements of these systems have already been developed. 
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The interdependence amongst components of the control system allow for significant flexibility 
in defining the architecture. Moreover, there are a variety of ways in which each component can 
be categorized and grouped in the architecture. Surfaces, for instance, are part of the airframe, so 
they could be viewed as components of the airframe. Their role, however, suggests that they are 
components of the control system.  

From the perspective of system-interface abstraction technology and compositional reasoning and 
assessment, the most productive architectural view is one in which design authority is captured. 
In this view, components are grouped and organized hierarchically to reflect the degree to which 
their design is dependent on the design of another component. The design-authority view shows 
the flow of design decisions from component to component and captures a partial order in which 
design decisions are made. 

In the design of a flight-control system, there is flexibility in the order in which design decisions 
can be made, resulting in many different design-authority views. Commonly, sensors, servos and 
surfaces are already chosen for a particular vehicle. In this scenario, the design problem is the 
design of a suitable controller. According to the needs of the controller, a suitable estimator is 
designed. The corresponding design-authority view is shown in Figure 45. 

 

 
Figure 45: Possible Design Authority View for a UAS 

 

Alternatively, only the servos and surfaces may have been chosen. In this scenario, the design 
problem is the design of a suitable controller, where suitable sensors and a suitable estimator may 
be selected according to the needs of the controller. The corresponding design-authority view is 
shown in Figure 46. 
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Figure 46: Another Design Authority View for a UAS 

 

In the most extreme case, for example when a brand-new high-performance aircraft is designed, 
complete flexibility may be possible, allowing a true codesign of the aircraft, surfaces, actuators, 
sensors, and controller. The order in which design decisions are made is not fixed, in this case, 
allowing engineers complete flexibility in exploring the design space. Nevertheless, design 
decisions will be made in some order, as experiments suggest optimal designs to solve elements 
of the aircraft’s problem description. Typically, due to the mutability of software and its lack of 
manufacturing cost, design decisions related to the hardware will be made first, starting with the 
airframe and working towards surfaces, servos and sensors. 

For the challenge problem, we assume that the airframe, surfaces and servos have been chosen. 
We furthermore assume that the dynamics of the servos are sufficiently fast as to be ignored in 
the design of the controller. As a result of these assumptions, the full vehicle dynamics are 
available as context during the design of the controller. This corresponds to the design-authority 
view shown in Figure 46. 

In this architecture, we have chosen to view the control loops as integral to the flight-control 
system. While they are separate entities that are likely to be developed one-at-a-time, they are 
unlikely to share abstraction-based interfaces that allow them to be developed in parallel and 
without access to the full details of inner loops. For example, the outer-loop controller is likely to 
require full knowledge of the dynamics of the plant and the inner-loop controller. Viewing the 
control loops as integral to the flight-control system is consistent with the observations made 
when considering the multi-level control substitution challenge problem, discussed above. 

The measurement subsystem, in both the design authority view shown in Figure 45 and the 
design authority view shown in Figure 46, acts like a façade for the composition of the sensor 
and the estimator. It is not a true component in the sense that it does not have local or internal 
functionality. Instead, it abstracts the decision to include an estimator and hides details of the 
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sensors and the estimator from the rest of the system. A measurement subsystem could be created 
that was only a sensor suite, provided that full state feedback was available and sensors of 
sufficiently high quality were available. More likely, however, an estimator would be required to 
both estimate state elements not provided by direct measurement as well as filter sensor 
measurements for the control system.  

In this example, we use the latter approach, and explore two measurement subsystems, both of 
which include an estimator. 

4.2.3  Process 

4.2.3.1  Ultra Stick UAS 
Development of the Ultra Stick UAS starts at the UAS level with consideration of the problem 
identified by the customer. 

A system is needed to image an operational area. 

Image quality is of particular concern for this system. To ensure adequate image quality, images 
taken when the camera pitch angle is greater than 10° or roll angle is greater than 10° must be 
rejected. To ensure adequate resolution, pictures must not be taken above an altitude of 160 
meters.  

The problem statement is incomplete, but, following the discussion in Section 4.2.1, provides 
sufficient detail to allow development to proceed through identification of requirements on the 
measurement subsystem. 

From this problem statement, a set of partial, high-level requirements can be identified. These 
requirements include: 

1. The system shall overfly the operational area. 
2. The system shall take images of the operational area. 
3. The system shall assemble images into a mosaic of the operational area. 
4. The system shall ensure that there are no gaps larger than 1 m2 of the operational area in the 

mosaic. 
5. The system shall discard images captured when the roll angle of the camera exceeds 10°. 
6. The system shall discard images captured when the pitch angle of the camera exceeds 10°. 
7. The system shall discard images captured when the distance between camera and ground is 

greater than 160 m. 

These requirements focus on considerations of the UAS as a whole and say as little as is 
practicable about the design of the system. As such, the focus in these requirements is on the 
positioning of the camera, rather than a forward reference to the use of an aircraft. 

The decision to use an aircraft is part of the design, and is introduced during the development of 
the architecture. The major architectural components of the UAS are: 

• The air vehicle, 
• The ground station, and 
• The communications system. 



112 
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited. 

4.2.3.2  Air Vehicle 
The air vehicle carries the camera and is responsible for satisfying all of the requirements 
described above. While the ground station and communications system are critical components of 
the UAS, they do not play a role in establishing the requirements for the measurement system, 
and are therefore out of scope. 

To satisfy the design demands that are imposed on it, a partial set of air vehicle requirements 
have been identified. These requirements include: 

1. The air vehicle shall overfly the operational area. 
2. The air vehicle shall take images of the operational area. 
3. The air vehicle shall ensure that at least 90% of the operational area is covered by the images. 
4. The air vehicle shall capture images with a maximum camera roll angle of 10° relative to the 

ground. 
5. The air vehicle shall capture images with a maximum camera pitch angle of 10° relative to the 

ground. 
6. The air vehicle shall capture images with a maximum distance between camera and ground of 

160 m. 

These requirements translate system demands in terms of the behaviors of the air vehicle. The 
design of the air vehicle satisfies these requirements by delegating them to components through 
architectural demands. The components of the air vehicle include: 

• The autopilot/flight control system, 
• The airframe, 
• The servos, 
• Propulsion, and 
• The mission sensor. 

The design makes critical decisions that influence demands on components. For example, for the 
mission sensor: 

• Camera is fixed at the air vehicle’s center of gravity and does not gimbal, 
• 90° field of view, 
• Image capture rate of 0.2 Hz. 

Based on these decisions, several design decisions for the flight control system are made, 
including: 

• Ladder-search flight pattern, 
• 10 meter overlap, 
• Groundspeed limit of 25 m/s, 
• Height-above-ground-level limit of 160 m, 
• Roll limit of 10°, and 
• Pitch limit of 10°. 

4.2.3.3  Flight Control System 
To satisfy the design demands that are imposed on it, a partial set of requirements for the flight 
control system have been identified.  
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Based on the top level mission requirements, upper bounds on allowable flight control system 
performance can be established directly. These are intended as bounds on performance under 
worst-case conditions. Because of the potential for interactions among multiple error sources, 
tighter bounds may ultimately be required to achieve desired mission success rates. 

Requirements include: 

1. The FCS shall provide a maximum cross-track error of 10 m in straight and level flight. 
2. The FCS shall provide a maximum altitude error of 10 m in straight and level flight. 
3. The FCS shall provide a maximum airspeed tracking error of 5 m/s in straight and level flight. 
4. The FCS shall provide a maximum roll-command tracking error of 10 deg in straight and level 

flight. 
5. The FCS shall provide a maximum pitch-command tracking error of 10 deg in straight and 

level flight. 

Other requirements for the flight control system can readily be imagined, but do not directly 
impact the identification of requirements for the measurement subsystem.  

The design of the flight control system could decompose each of the control loops into a separate 
component. However, the integrated nature of the control loops makes compositional reasoning 
difficult. Instead, we leave the control loops as an integral part of the flight control system, and 
identify the measurement subsystem as a component. 

4.2.3.4  Measurement Subsystem 
The requirements on the measurement system include detailed requirements about the maximum 
allowable error in terms of both standard deviation on noise and bias. 

 
Table 1: Measurement Subsystem Requirements — Individual Signal Limits 

   
 

These values are chosen because each maximum noise and bias value has approximately the 
same impact on overall system performance. The values thus reflect, to a certain degree, the 
sensitivity of the system to errors on each signal. 

Each value in the table is acceptable to the system when it occurs in isolation. For example, the 
system can achieve mission success when the standard deviation of noise for the roll input is 
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12.8, or if the bias on pitch is ±10 degrees. The system cannot, however, tolerate all of these 
maximum errors occurring at the same time. 

Rather than attempting to explore the tradeoff space fully, the maximum values are uniformly 
scaled in noise and bias. A mission success rate of 90% is possible with a bias scale factor of 
±0.12 and a simultaneous noise scale factor of 0.12. 

This results in the following interface: 

 

Table 2: Measurement Subsystem Requirements 

   
 

The design of the measurement subsystem satisfies these requirements with two components: the 
sensors and the estimator. The sensors sample environmental phenomena and generate a 
measurement. The estimator combines measurements with a model of vehicle and control 
dynamics to filter measurements and generate estimates for phenomena not directly measured. 

For this example, two measurement subsystems were developed, allowing us to explore 
modularity and component replacement. The first measurement subsystem, discussed under 
Kalman Filter with Full State Feedback, below, assumed sensor measurements providing full 
state feedback coupled with a traditional, linear Kalman filter. The second measurement 
subsystem, discussed under Unscented Kalman Filter with Partial State Feedback, below, 
assumed sensor measurements not providing full state feedback coupled with an unscented 
Kalman filter. 

4.2.3.5  Kalman Filter with Full State Feedback 
Initial development of the measurement subsystem focused on a prototype based on a Kalman 
filter with sensor measurements providing full state feedback. The Kalman filter is an excellent 
candidate for an initial prototype, as it is easy to implement. The Kalman filter assumes that it is 
estimating the state of a linear stochastic process with independent, white, normally distributed 
process and measurement noise having known covariances. When this assumption is met, the 
filter returns a zero-bias estimate of state with minimum a posteriori covariance. 

The air vehicle, however, is not a linear system. Since the assumptions of the estimator are 
violated by the system, we expect that its guarantees will not hold. 
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Simulation of the air vehicle with a simple inner-loop controller, simple sensor models, and the 
estimator revealed a significant bias in several elements of state — including pitch attitude. The 
bias was significant enough to indicate that the nonlinearity was not a minor consideration for the 
measurement system. 

The bias was indicative of a contextual mismatch between the Kalman filter — and hence the 
measurement system — and the air vehicle, which is recursively a part of the context for the 
measurement system by way of the flight control system (see Figure 46). Compositional 
reasoning would lead us to conclude that attempting to use this measurement system would lead 
to system failures, as a result of the contextual mismatch. 

To validate this conclusion of compositional reasoning, the team ran several simulations of the 
UAV flying a simple racetrack pattern using a waypoint-guidance algorithm based on Dubins 
curves and an outer-loop controller providing altitude, heading angle, and airspeed tracking. 
Input to the Kalman filter was provided from the simulation’s truth model, without additional 
noise or bias. This setup enabled the team to characterize the impact of bias introduced by the 
Kalman filter as a result of the violated assumption of process linearity. 

The team elected to validate the integration failure of the Kalman filter through the outer-loop 
controller because of the possibility that, as a UAV, the performance of the Ultra Stick at the 
outer loop is more important than the performance of the Ultra Stick at the inner loop. Given the 
mission described in the problem statement for the Ultra Stick UAS, it is very unlikely that the 
Ultra Stick would be flown by directly commanding pitch attitude. Instead, the Ultra Stick will be 
flown through a loop providing waypoint guidance that, in turn, will feed altitude commands to 
the outer loop. 

The outer loop tracks a reference altitude by commanding changes to pitch attitude in response to 
differences between the altitude estimate and the reference command. The control loop includes 
an integrator, which, in the presence of a bias on pitch estimate, quickly winds up. The outer loop 
then commands the inner loop to track a pitch attitude that matches the biased pitch estimate. As 
a result, the outer loop effectively rejects the bias. For longitudinal control, the biased pitch 
estimate would therefore not cause an integration failure. Thus, while compositional reasoning 
would lead us to conclude that the measurement system is incompatible with the Ultra Stick 
UAS, we did not observe mission failure when we validated the conclusion. 

This result seems surprising, but must be understood in the context of two additional 
observations: 

1. Contextual incompatibility need not guarantee a failure. The impact of contextual 
incompatibility is impossible to predict, using compositional reasoning. Because context 
represents a global consideration, the impact of contextual incompatibility can only be 
assessed globally. When contextual incompatibility is found to be acceptable, a goal must be 
introduced in the argument at the highest level of system decomposition claiming the 
acceptability and supporting it with evidence from, for example, testing. Effectively, 
acceptance of contextual incompatibility becomes a question of system-wide compatibility 
(see Section 3.3.10). This means that should any other element of the system change at any 
level of the design decomposition, any previously acceptable contextual incompatibility would 
have to be reviewed. This essential brittleness of “acceptable” contextual incompatibility 
should be enough for it to be deemed unacceptable by systems engineers. 
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2. Validation was partial, not complete. While the team is confident in the validation results 
discussed above, not all flight conditions were explored during validation. It is possible, 
therefore, that there are flight conditions where the contextual incompatibility would still 
cause the system to fail to complete its mission. 

Ultimately, while the estimator was found to be acceptable for the Ultra Stick UAS in spite of the 
contextual incompatibility, the assumption of full state feedback was found to be unacceptable. 
The kinds of sensors typically available for a small UAS like the Ultra Stick do not provide full 
state feedback. 

4.2.3.6  Unscented Kalman Filter with Partial State Feedback 
To address the incorrect assumption that sensors providing full state feedback would be available, 
a second measurement subsystem was developed. This measurement subsystem is based upon the 
sensors that are provided by the Pixhawk autopilot. These sensors represent partial state 
feedback, and are presented in Table 3, below.   

 
Table 3: Pixhawk Sensor Characteristics 

 
 

To estimate the states not directly provided by the sensor suite, an unscented Kalman filter was 
developed and integrated into the revised measurement subsystem, as described in Appendix 
Appendix C, 
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Once completed, the measurement subsystem was analyzed to determine whether or not it 
satisfied its requirements, which were derived from the flight control system interface. The result 
of the analysis is shown in Table 4, below. 

 

Table 4: Estimator Output with Nominal Sensors 

 
 

As is clear from the table, several of the signals do not satisfy the requirements. Two signals, in 
particular, deviate significantly from their noise limit: pitch and GPS position. The noise limit for 
pitch is 0.43, but the estimate provided by the measurement subsystem is 1.78 — more than four 
times the limit. The noise limit for GPS position is 0.96, but the estimate provided by the 
measurement subsystem is 2.88 — exactly three times the limit. 

Compositional reasoning would therefore lead us to conclude that this measurement subsystem is 
also unacceptable for our system. While there is no contextual compatibility mismatch, since the 
unscented Kalman filter is appropriate for systems with nonlinear dynamics, the measurement 
subsystem does not satisfy the design demands imposed upon it by the flight control system. In 
the argument, this failure would be identified in the contract between the measurement subsystem 
and the flight control system. The argument is shown in Figure 47 and the claim with failing 
support is highlighted in red. 
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Figure 47: FCS-Measurement Subsystem Contract Failure 

 

To validate this conclusion, the team simulated missions using the developed measurement 
subsystem. As expected, the mission was only successful about 62% of the time. The conclusion 
reached by composition reasoning was therefore correct: this measurement subsystem is not 
acceptable. 

To better understand the mission impact resulting from the failure of the measurement subsystem 
to satisfy its design demands, the team explored measurement subsystems with varying levels of 
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GPS position error12. Position is a very important measurement, as errors in position can cause 
captured images to not line up, resulting in insufficient coverage of the mission area. 

The tables below show output of the estimator using nominal output from all sensors except GPS. 
GPS noise is scaled from 0.0 to 1.0 and the resulting output from the estimator is shown, along 
with the probability of mission success. 

 

Table 5: Estimator Output with Scaled GPS Noise — Noise 

 
 

Table 6: Estimator Output with Scaled GPS Noise — Bias 

 
 

These results point to the importance of having a GPS that meets mission requirements, 
confirming that the design demand from the control system to the measurement subsystem was 
necessary. 

For the purpose of the example, this is an excellent result. There are many approaches that could 
be taken to address the failure of this measurement system to meet its requirement. For example: 

• A better GPS sensor could be sought. In practice, this is difficult due to fundamental 
limitations of GPS. However, it may be possible to identify a sensor or set of sensors that 
could yield a better position measurement. 

• A better state estimator could be developed. The kalman filter currently used for state 
estimation has not been aggressively tuned. A more aggressively tuned estimator may be able 
to better filter GPS position errors. 

• Flight-path characteristics could be changed. The sensitivity to GPS position errors arises from 
the amount of image overlap that results from the selected flight path. At the air-vehicle, a 

                                                 

 
12 The team focused on GPS position noise rather than pitch noise because the investigation of 
the previous measurement subsystem had revealed that the system is not very sensitive to 
errors in pitch.  
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design decision was made to target a 10-meter overlap in the area to be imaged on each leg of 
the flight path. With the selected roll and pitch limits, a 10-meter overlap does not offer very 
much margin to account for position errors. Increasing the overlap from 10 to 15 meters would 
likely permit a relaxation in the requirements on the measurement system. This would change 
the context for the flight control system, making it easier for the flight control system — and 
hence the measurement subsystem — to satisfy mission requirements. 

4.2.4  Discussion 
Throughout the construction of the Ultra Stick UAS example problem, we applied system-
interface abstraction technology at each level of decomposition. Application of the reference 
model and processes during development facilitated avoiding the introduction of design decision 
while requirements were being developed. 

For example, in stating requirements at the UAS level, it is tempting to phrase the requirements 
in terms of roll and pitch angle limitations on the air vehicle — but the use of an air vehicle is a 
design decision, albeit a design decision strongly implied by the term “UAS”. Thinking strictly in 
terms of problem elements and environmental phenomena led us instead to phrase the 
requirements in terms of the camera and its relationship to the ground. 

An even better approach would be to state the requirements in terms of characteristics of the 
image. For example, resolution might be stated in terms of pixels per square meter and distortions 
might be stated in terms of parallel line pairs. Unfortunately, the team does not have sufficient 
experience with the general problem of surveillance to confidently state such requirements and 
then reduce them to flight-path characteristics. As such, we stated the requirements more directly 
in terms of camera angles and height above ground level. 

System-interface abstraction technology similarly informed the design architecture of the air 
vehicle and the flight control system. As is discussed above, there are a variety of architectures 
that can be envisioned for an air vehicle and a flight control system. The critical driver in 
determining the architecture is the order in which design decisions will be made. Because the air 
vehicle and the flight control system exist in a closed loop, design decisions on any component of 
these two systems influence every other component to some degree. 

For the purpose of this example, the team elected to fix design decisions of the air vehicle first, 
including performance characteristics, control surfaces, and servos. This ordering of design 
decisions seems particularly well suited for an unmanned aircraft system. Since there are a 
variety of commercial-off-the-shelf airframes available with integral control surfaces and 
sometimes servos, these components are likely to be selected first. 

The flight control system could be decomposed so that each control loop is a separate component. 
However, the difficulty of identifying a sufficiently strong interface to allow effective separation 
of the control loops led the team to treat the control loops as integral to the flight control system. 

Instead, we decompose the flight control system so that the measurement subsystem is identified 
as a component. This decision is perhaps atypical of control system for a small unmanned aircraft 
system, but is nevertheless informative. The measurement subsystem allows us to demonstrate 
both the utility of system interface abstraction technology, but also highlights a significant 
challenge associated with the application of the technology: the identification and exploration of 
the tradeoff space associated with the controller inputs. 
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There are nine inputs from the measurement subsystem to the flight control system, counting 
GPS latitude and longitude as a single input. As discussed above, the team first identified the 
maximum noise and bias allowable for each input separately. Then, the team scaled the vector of 
maximum noise and bias for all signals simultaneously until the mission succeeded. The resulting 
vector was used as the input interface for the flight control system and drove the design demands 
levied on the measurement subsystem.  

This approach, however, assumes that the sensitivity of the flight control system to noise and bias 
on each signal is equal. For the selected mission, this is unlikely to be true. A more robust 
interface would consider the sensitivity of overall mission success to noise and bias on each 
signal. 

The advantage of a more robust interface is that mission success may be assured under a broader 
selection of measurement subsystems — and, ultimately, sensors. This flexibility comes at a cost: 
a much more in-depth analysis is required to identify the more robust interface. Once the design 
of the flight control system is fixed, this analysis only needs to be performed once, however. If 
the system is envisioned to be long-running or if a variety of sensors must be supported, the cost 
of the more in-depth analysis may be merited. 

For this example, the team elected not to pursue the more robust interface and instead focused on 
the development of the measurement subsystem including sensor and estimator selection. 

4.2.5  Artifacts 
At each level of decomposition, sample artifacts were developed to illustrate the reference model 
objects. Many of these artifacts are summarized above; additional artifacts are shown here, for 
illustration. 

The repetitive appearance of the artifacts is intentional and is a positive outcome of the 
application of system-interface abstraction technology. At each level of system decomposition, 
artifacts are instantiated from patterns. These patterns not only reduce development cost, but 
promote quality during system development: the patterns ensure that important elements of 
development are addressed. Additionally, the patterns facilitate review of the system. 

4.2.5.1  UAS Successful Development 
The top-level argument for the Ultra Stick UAS is an argument for successful development. The 
argument, shown in Figure 48, contains all of the elements that are identified by the reference 
model: 

• Identification of the problem; 
• Identification of the requirements; 
• Identification of the context; and 
• Satisfaction of requirements. 

Assessment of safety is shown in the argument, but is left undeveloped as no safety requirements 
or specific hazards were identified during the development of the example. Instead, for this 
example, the focus is on the satisfaction of requirements. 

 



122 
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited. 

  
Figure 48: Ultra Stick UAS — Successful Development 
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4.2.5.2  UAS Requirements Satisfaction 
The argument for satisfaction of Ultra Stick UAS requirements takes each requirement and 
argues that the requirement is satisfied by the design. The argument is shown in Figure 49 Where 
the design delegates satisfaction of a requirement to a component, the argument additionally 
argues that the design demand is satisfies by the associated component. 

 



124 
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited. 

  
Figure 49: Ultra Stick UAS — Requirements Satisfaction 
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4.2.5.3  Ultra Stick UAS – Air Vehicle Contract 
The contract between the UAS and the air vehicle states that the UAS design demand is met by 
the guarantee provided by the air vehicle when the UAS meets air-vehicle assumptions. The 
associated argument is shown in Figure 50. In this example, no explicit air-vehicle assumptions 
were identified that must be met by the UAS. 

 

  
Figure 50: Ultra Stick UAS — Air Vehicle Contract 

4.2.5.4  Air Vehicle Successful Development 
The top-level argument for the air vehicle is an argument for successful development. The 
argument, shown in Figure 51, contains all of the elements that are identified by the reference 
model except for problem identification: 

• Identification of the requirements; 
• Identification of the context; and 
• Satisfaction of requirements. 

The air vehicle is viewed as purpose-built for this example, and as such does not have a separate 
problem that it seeks to solve. As above, for this example, the focus is on the satisfaction of 
requirements. 
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Figure 51: Air Vehicle — Successful Development 
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Figure 52: Air Vehicle — Requirements Satisfaction 
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4.2.5.5  Air Vehicle Requirements Satisfaction 
The argument for satisfaction of the air vehicle requirements takes each requirement and argues 
that the requirement is satisfied by the design. The argument is shown in Figure 52. Where the 
design delegates satisfaction of a requirement to a component, the argument additionally argues 
that the design demand is satisfies by the associated component. 

4.2.5.6  Air Vehicle – Flight Control System Contract 
The contract between the air vehicle and the flight control system states that the air vehicle 
design demand is met by the guarantee provided by the flight control system when the air vehicle 
meets flight-control-system assumptions. The associated argument is shown in Figure 53. In this 
example, no explicit flight-control-system assumptions were identified that must be met by the 
air vehicle. 

 

  
Figure 53: Air Vehicle — FCS Contract 
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4.2.5.7  Flight Control System Successful Development 
The top-level argument for the flight control system is an argument for successful development. 
The argument, shown in Figure 54, contains all of the elements that are identified by the 
reference model except for problem identification: 

• Identification of the requirements; 
• Identification of the context; and 
• Satisfaction of requirements. 

Like the air vehicle, the flight control system is viewed as purpose-built for this example, and as 
such does not have a separate problem that it seeks to solve. 

As above, for this example, the focus is on the satisfaction of requirements. 

4.2.5.8  Flight Control System Requirements Satisfaction 
The argument for satisfaction of the flight control system requirements takes each requirement 
and argues that the requirement is satisfied by the design. The argument is shown in Figure 55. 
Where the design delegates satisfaction of a requirement to a component, the argument 
additionally argues that the design demand is satisfies by the associated component. 

4.2.5.9  Flight Control System – Measurement Subsystem Contract 
The contract between the flight control system and the measurement subsystem states that the 
flight control system design demand is met by the guarantee provided by the measurement 
subsystem when the flight control system meets measurement-subsystem assumptions. The 
associated argument is shown in Figure 56. In this example, no explicit measurement-subsystem 
assumptions were identified that must be met by the flight control system. 
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Figure 54: FCS — Successful Development 
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Figure 55: FCS — Requirements Satisfaction 
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Figure 56: FCS — Measurement Subsystem Contract 

4.2.5.10  Measurement Subsystem Successful Development 
The top-level argument for the measurement subsystem is an argument for successful 
development. The argument, shown in Figure 57, contains all of the elements that are identified 
by the reference model except for problem identification: 

• Identification of the requirements; 
• Identification of the context; and 
• Satisfaction of requirements. 

Like the flight control system, the measurement subsystem is viewed as purpose-built for this 
example, and as such does not have a separate problem that it seeks to solve. 

As above, for this example, the focus is on the satisfaction of requirements. 
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Figure 57: Measurement Subsystem — Successful Development 
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4.2.5.11  Measurement Subsystem Requirements Satisfaction 
The argument for satisfaction of the measurement subsystem requirements takes each 
requirement and argues that the requirement is satisfied by the design. The argument is shown in 
Figure 58. The argument terminates a the design demands for the two sibling components of the 
measurement subsystem: the estimator and the sensor suite. Detailed consideration of these 
demands and the their satisfaction is out of scope for the example, so the argument is left 
undeveloped at these claims. 

 

  
Figure 58: Measurement Subsystem — Requirements Satisfaction 
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4.2.6  Conclusion 
Through the application system-interface abstraction technology, the team developed an example 
based upon a hypothetical small UAS based on the Ultra Stick platform. Using the example, we 
explored the design and replacement of a measurement subsystem, and used compositional 
reasoning to conclude that neither the original nor its replacement were satisfactory. The first 
measurement subsystem made an unreasonable assumption about what sensors were available 
and made unsupported assumptions about the system context. The second measurement 
subsystem addressed both these issues, but failed to satisfy its requirements, leading to a broken 
contract between the flight control system and the measurement subsystem. For both of the 
measurement subsystems, we validated the conclusions reached through compositional reasoning 
by conducting simulations at the system level. 

System-interface abstraction technology worked well where it was exercised through the 
development of the example. The explicit and careful seperation of requirements, context, and 
design that is called for by the reference model and reference processes led to a set of 
development artifacts that are easily defended: there is little question that design decisions are 
appropriately delayed to design or that the context has been clearly identified. 

The technology also led to the development of a decomposition that is easily defended. The 
design authority view, shown in Figure 46, clearly separates the major components of the UAS. 
The modularity provided by this design facilitates argumentation and supports component 
upgrade/replacement throughout the life of the UAS. 

While the example illustrates many aspects of system-interface abstraction technology well, it is 
not without limitations. Although modularity was clearly identified, full compositional reasoning 
and argumentation was not demonstrated for the complete system. Such reasoning and 
argumentation depends highly on domain knowledge, as the properties of interest and the way in 
which abstractions may be established and may be argued to satisfy through properties are deeply 
rooted in the domain. While the team had significant domain expertise, the team was not used to 
applying this expertise towards modular design or compositional reasoning — instead, the team 
typically designs small, bespoke, monolithic systems for research purposes, often with an eye 
towards optimality. As a result, development of the arguments and associated artifacts for the 
example was largely limited to pattern instantiation. 

The observation that both domain expertise and experience in modular design and compositional 
reasoning is required for successful application of system-interface abstraction technology points 
to parameters for future studies that will demonstrate the efficacy of the approach. A team must 
be assembled that has both domain expertise and experience in modular design and 
compositional reasoning, so that the new system developed with system-interface abstraction 
technology can fully exercise all of the elements of the theory. Alternatively, system-interface 
abstraction technology could be applied post hoc to an existing system that is already 
modularized and that already leverages compositional reasoning. 

Finally, the ultra stick example problem was developed to enable us to refine the theory through 
its application. Throughout the development of the example, the theory continued to evolve to 
address identified limitations of the theory. Although we were unable to fully evaluate the 
technology using this example, the example was nevertheless instrumental in the development of 
system-interface abstraction technology. 
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4.3  Examples of Argument Recovery 
This section reports on the examination of MIL-HDBK–516C (516C) and a Joint Service 
Specification Guide (JSSG) for the presence of domain arguments–rationale arguing from the 
perspective of technical expertise. The remainder of this section discusses the motivation for this 
activity, the results of analysis, and conclusions about how domain arguments impact the utility 
of requirements guidance. 

Argument recovery enables SIAT to incorporate domain arguments as opposed to imposing strict 
argument structures. For example recovered arguments might support the success argument goals 
of regulatory compliance and requirements satisfaction. 

4.3.1  Motivation 
MIL-HDBK–516C (516C) and the Joint Service Specification Guides (JSSGs) instruct system 
developers in the kinds of requirements that should be specified for a succesful project. Both 
documents attempt to communicate expert knowledge about requirements development, in part, 
because failure to capture the kinds of requirements they describe can lead to project overruns 
and failures due to poor system specification. 

516C focuses on airworthiness requirements. Specifically, page 49 of MIL-HDBK–516C states 
“The following criteria, standards and methods of compliance apply to all air systems and 
represent the minimum requirements necessary to establish, verify, and maintain an airworthy 
design.” The structure of criteria, standards, and methods of verification is repeated throughout 
the document in an attempt to create clarity and insight for the reader. 

Joint Service Specification Guides present a “framework to be used by Government-Industry 
Program Teams in the Aviation Sector for developing program unique requirements documents 
for Air Systems, Air Vehicles, and major Subsystems.” They provide guidance for specification 
of air force systems surrounding the kinds of functions and capabilities that are expected of an air 
force system while considering functionality of the system to be specified. 

In both both 516C and JSSGs, guidance involves a structured document format. 516C categories 
criteria, and for each states standards, and methods sections . JSSGs requirements often include a 
‘Rationale’ section. In both cases, the authors are attempting to convey guidance and why the 
guidance has value. It is this latter element in which recent research conducted for NASA may be 
of benefit. 

Research with NASA under contract NNL13AA08C demonstrated that technical experts have 
detailed rationale to explain why what they do and build will work. This rationale can be 
captured and made explicit. From there it can be critiqued, improved, and shared more readily 
with a community of practice. Research work with NASA demonstrated a technique whereby 
existing writing could be parsed and processed for any rationale contained therein. Therefore it 
was hypothesized that rationale could be identified, extracted, and organized should it exist 
within the writing of 516C and JSSG documents. For example, 516C might describe why 
assurance methods demonstrate requirements satisfaction. Likewise, the explicit ‘Rationale’ 
sections of JSSGs might be parsed and analyzed to help explain the value of their requirement 
categories. 
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4.3.2  Domain Arguments 
Rationale exist first and foremost in the minds of experts. The ‘mind space’ of experts is called a 
domain of expertise. Domains can be shared between people in communities of practice. Shared 
domains of knowledge include both common knowledge as well as common misperceptions and 
variances in belief and focus. In other words, a domain represents the conceptual space of 
knowledge in a discipline as it exists in the minds of its members. 

Codified knowledge is domain knowledge that has been extracted from the abstract space and 
presented specifically. For example, text books, research studies, and tutorials represent codified 
knowledge from a domain. 

Arguments are part of domain knowledge. Often, these arguments will be about why techniques 
work or principles hold. Such domain arguments have value to the communities that hold them. 
In some fields like mathematics, many arguments are proofs in deductive logic. The strength of 
proof forms the backbone of domain knowledge, and therefore they are explicit, codified and 
shared as artifacts between domain members. In other domains, where arguments apply inductive 
logic, argument is secondary knowledge to the accepted facts, techniques, principles, and ‘laws’ 
of the domain. Often techniques and principles are written down, but argument is only 
occasionally communicated [16]. 

In specialized fields, domain arguments are often implicit. For example, a software company 
might have engineering principles and rules that employees must read and follow, but argument 
for the merit of the rules is often discussed verbally within the organization. When domain 
arguments are written down they are frequently embedded within status reports that explain what 
and how things were done. Contrastingly, the arguments explain why such products and activities 
have value. 

Recent work demonstrated that domain arguments can be recovered from the minds of experts as 
well as from the documents that experts write to one another. Example arguments were recovered 
from the reports of control engineers, the mental model of an FAA DER, and the submission 
forms for flight test ranges [16]. The following section describes the technique of extracting 
domain argument. 

4.3.3  Overview of Technique 
Previous work explored three mechanisms for recovery of domain arguments. These were: 

1. Argument Synthesis: discussions with experts to retrieve argument, 
2. Argument Recording: writing of argument in Goal Structuring Notation by experts, and 
3. Argument Recovery: analysis of writing and reports to annotate and extract arguments from 

written narratives. 

The later two techniques are detailed in the flow chart of Figure 59. Given that 516C and JSSG 
are already written documents, argument recovery is applied. 
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Figure 59: Argument Retrieval and Recovery Processes 

 

There are two key roles in argument recovery. Domain experts write a document in the regular 
course of their work. Argument experts then work to identify and extract domain argument 
contained within the document. 
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There are several steps in the recovery process as shown in the figure. First, domain experts read 
the produced document. The domain experts provide feedback on its content in response to 
questions from the readers and follow-on discussions. 

After comprehension is sufficient, the document is parsed for elements of argument as defined in 
Goal Structuring Notation (GSN). (Applying the conventions of GSN structure artificially 
reduces the narrative representation of the argument [16], but is judged by the researchers to be a 
reasonable step in this preliminary research.) As a consequence, text from the document is now a 
textually annotated form of GSN argument. Many argument fragments might be found in the text 
and might be dependent or independent of one another. 

The resulting annotated text is rendered in GSN’s graphical notation. The resulting graphical 
argument form is the initial result of argument extraction. However, it typically contains 
interpretation errors and must be reviewed by document authors or experts. Only after review by 
the original document authors is the argument considered to have representative validity. 

Given that we do not have access to the authors of 516C or JSSGs, the results of the analysis in 
this report should be viewed as highly preliminary and likely to be in significant disagreement 
with the authors’ intent. Therefore, the only conclusions that can be drawn from an analysis will 
be whether argumentative reasoning or rationale is present and the relative complexity of its 
presentation to the reader. The specific arguments recovered are speculative and represent a 
layman’s interpretation of the text. 

4.3.4  Analysis 
This work examined specific samples of 516C and a JSSG document. The documents were not 
examined in the whole, as the purpose of the work was to assess feasibility of argument recovery 
and explore the initial hypothesis of domain argument presence in air force guidance documents. 
Given that the documents both had highly regularized and repeating structure, it was believed 
that a small sample analysis was sufficient to determine the general extent of argument presence. 

4.3.4.1  JSSG 
The purpose of examining a JSSG document was to determine if “Rationale” sections contained 
domain argument(s). In particular, because a rationale is often a justification for a position, 
statement, request, or standard, it was felt that such justification might take the form of argument.  

For this work, “JSSG–2009: Air Subsystems”, was analyzed due to its public availability and 
relevance to aviation systems safety. The main finding of the analysis was: 

“Rationale” sections vary in what they describe. Some present argument, many present context. 
These represent information about ‘why’, and ‘what’, respectively.  

Context is supporting information. For example, in Goal Structuring Notation, context can be 
attached to a goal to clarify its terms or conditions, to a strategy to elucidate information applied 
to creating sub-goals, or to evidence to help explain in detail what the evidence must include. 

For example, Section “B.3.4.2 Hydraulic power subsystem”, on page B–4 of JSSG–2009, states a 
“Requirement Rationale” section as follows: 

The function of the hydraulic power subsystem is to deliver fluid at sufficient flow rates and 
pressure to the actuating devices in all modes of flight or ground operation. The speed of 
actuation is a function of fluid flow-rate whereas the actuating force is a function of pressure. 
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Hydraulic fluid power has been found to be the lightest and most efficient method to transmit 
high horsepower in air vehicles.  

The above text provides context for the purpose of hydraulic fluid power systems. But it also 
presents a short argument about why hydraulic power is important (it is the lightest and most 
efficient power transmission method). 

Section “G.3.4.7.30 Control systems integrity assurance provisions”, on page G–75, states the 
rationale for control systems integrity assurance provisions as: 

This requirement defines the features of the systems intended to be used by the crew during 
preflight checks to determine the operational condition of the circuits and components of the 
control systems.  

This provides context about what the requirements represent in terms of providing safety through 
crew preflight checks. It does not present argument. While one might infer reasons for the 
importance of this type of requirement from the required context, that reason is not explicitly 
stated nor directly implied. This is an example of how argument can be implied by with 
insufficient information to be recovered. 

A final example of JSSG “Rationale” containing argument can be found on page A–109, 
“A.4.4.1.11.1.1 Air vehicle tire performance”. This section deals with the functional requirements 
of tire performance. The rationale provided is: 

The use of a laboratory dynamometer to evaluate the tire performance characteristics permits 
evaluation to the limits of the tire capability with risk. The design conditions are carefully 
controlled and are repeatable. The Industry has always utilized this method of evaluation prior to 
installation on an air vehicle to determine performance limits and to establish safety of flight. It is 
significantly more economic than any other verification method. The tire will also be observed 
and evaluated during the routine flight test program.  

The above rationale seems to be a statement about why the given analysis technique should be 
applied in the analysis of air vehicle tires. The argument for why the analysis technique 
(dynamometer in the lab) should be used is presented in Figure 60. 
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Figure 60: JSSG_2009 Rationale in GSN Form 

 

The argument consists of properties of the “dynamometer” laboratory approach that make it 
valuable in testing of tire performance requirements. 

In conclusion, it appears that the “Rationale” defined in JSSG–2009 consists of a mixture of 
context and argument. In some cases, the text is entirely context from which the reader is left to 
infer the reasoning of the rationale. In other cases, context is mixed with cursory attributes stated 
as matter-of-fact, without explication. In the final example, the rationale is an explicit domain 
argument regarding the value of a particular tire testing technique. 

4.3.4.2  516C 
Two specific criteria from MIL-HDBK–516C where chosen for analysis: 

1. 8.3.2 Qualification Tests: Verify that all components, either individually or as part of a 
subsystem, have passed all safety-related qualification tests as required for airworthy 
performance. 

2. 8.3.8 Fuel Transfer Rates: Verify that fuel transfer flow rates meet the operational ground and 
flight envelope requirements. 

Argument analysis markup was applied to the text of 516C section 8.3.2 in Figure 61. The top 
goal of the argument is verification of passing of all qualification testing for fuel system 
components and subsystems. Context is provided to the scope of qualification testing. It is 
constrained to tests “as required for airworthy performance.” The strategy applied is to 
demonstrate this is true of all fuel system components. Thus fuel system components are 
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enumerated under this strategy. For each component X, the goal must be that component X has 
been “subjected to qualification testing commendurate with [its] intended operational usage.” 
Additional context is provided about the airworthiness “standards” to which components must be 
subject. This list could make up additional layers of the argument with appropriate standards 
applied for testing of each component. 

 

  
Figure 61: Argument Markup Example — Qualification Tests 

 

Forms of evidence are presented under “Method of Compliance”. Evidential approaches include 
“analyses, simulator tests, component tests, and ground/flight tests.” These evidential approaches 
are applied under the strategy that components are “verified for all specified operating and 
environmental conditions”. Under this strategy, either an enumerated space of condition 
combinations or some more complex data structure would represent the space of conditions. 
Evidential approaches would be applied as appropriate to each component/subsystem. There is an 
additional contextual note about flight testing that permits use of hardware that is not fully 
qualified. 

The above interpretation of the text as argument is shown with GSN in Figure 62. This argument 
forms a pattern with multiple levels of decomposition. The decomposition is in the order of 
component/subsystems, standards of airworthiness, and environmental and operation conditions. 
Five types of testing results are given as potential evidence of having passed the qualification 
tests. 
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Figure 62: GSN for Qualification Tests 

 

Argument analysis markup was applied to the text of 516C section 8.3.8 in Figure 63. The top 
goal of the argument is verification of fuel transfer rates. This must be asserted for ground and 
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flight envelope requirements. The strategy applied is to show that the system meets transfer 
requirements for “all functions”. This is enumerated into a list of functions including, but not 
exclusive to “center of gravity management,” “thermal management,” and “engine feed”. Our 
interpretation of the next two sentences were that they decomposed fuel transfer requirements 
into two sub-requirements: a constraint on the rate of fuel transfer, and “provisions are provided” 
to notify the operator of low two conditions: low fuel quantity or loss of fuel transfer. 

 

  
Figure 63: Argument Markup Example — Fuel Transfer Rates 

 

The “Methods of Compliance” describe evidence that can be applied to the above argument 
structure. “Analyses, ground tests and flight demonstrations” are enumerated. These verify fuel 
transfer rates. Both ground and flight tests verify the system’s performance. In addition, it must 
be shown that “the fuel transfer subsystem is not affected by operation of the fuel jettison 
system.” Evidential approaches to this goal are enumerated in the text.  

The above interpretation of the text as argument is shown with GSN in Figure 64. Note that the 
argument forms a pattern where additional functions (not specified but noted by section 8.3.8) 
must be analyzed. 
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Figure 64: GSN for Fuel Transfer Rates 
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In conclusion, the sections of MIL-HDBK–516C that were analyzed contain substantial argument 
for sufficient verification of fuel systems. It is likely that this same pattern of inductive 
verification computation, from the minds of experts, is encoded throughout the document. 
However, we cannot determine the accuracy of the specific recovered arguments without access 
to the original document authors. 

Due to the number of embedded arguments, 516C could be adapted to an argument-driven 
verification handbook, in which explicit arguments take the place of the existing “text buckets” in 
the document. An argument form, either as text or GSN, would replace the existing 
categorization of “criterion”, “standard”, and “methods of compliance” with their equivalent 
argument structure. The benefits of this approach would include: 

1. more rigorous recording of expert rationale, 
2. more homogeneous interpretation of the text, and 
3. potential for incremental improvement of 516C arguments as lessons are learned. 

4.3.5  Conclusions 
JSSG–2009 and MIL-HDBK–516C were analyzed for the presence of domain arguments. In 
particular it was hypothesized that the “Rationale”s present in JSSG documents would be or 
contain strong arguments. It was hypothesized that the “Criterion”, “Standards”, and “Methods of 
Compliance” of the 516C handbook would argue for the value of requirements criteria. 

The JSSG–2009 rationales sometimes contain explicit argument. However, this is not universally 
the case and many arguments are either implied without structure or propeties are asserted 
without supported reasoning. This is despite the structured documents use of the term 
“Rationale”. By in large, the term rationale in JSSG documents appears to refer to context. 
Argument and inductive reasoning occurs in brief statements if at all. Much of the logic behind 
the context is left for the reader to infer. Where argument is present, its main purpose appears to 
be adjunctive. 

In contrast, the 516C guidebook contains many domain arguments in which the veracity of a 
criterion is decomposed through sub-goals and means of evidence collection. Because of the 
“bucketed” nature of 516C, it is not always clear how the lower-level, “methods of compliance” 
directly relate to the criterion or supporting standards. It is possible that an argument-oriented 
approach to 516C handbook could elucidate these connections for the reader. 

The use of strong argument patterns could further strengthen the claims of experts. For example, 
Section 8.3.2 of 516C suggests testing under environmental and operating conditions, but does 
not explicitly ask how one knows that the proper environmental and operating conditions have 
been identified. While other documents might cover this material, its relation to the arguments 
presented is critical knowledge that could be codified to the reader’s benefit. 

There is considerable potential to extract and clarify the domain arguments present in 516C. 
However, the task of properly extracting domain argument from 516C would require direct 
access to experts responsible for writing and/or interpreting the 516C document. 

In conclusion, both JSSG–2009 and MIL-HDB–516C could improve their presentation of “why”. 
Rigorous argument, either in text or graphical notation, could lead to a more comprehensive 
capture of rationale as codified knowledge. This form might lead to better support for the 
community in capturing a more complete set of what, how, and why various criteria and 
requirements are required and should be present in a system specification.  
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Rigorous, codified arguments allow: 

1. more rigorous recording of expert rationale to explain “why” to the reader, 
2. more homogenous interpretation of text as “why” helps elucidate “how” and “what”, and 
3. incremental improvement of documents with improved knowledge over time, as explicit 

representation of “why” allows “how” and “what” to be updated as circumstances change. 

All of the above characteristics would benefit the guidance potential of 516C and JSSGs. 
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5 CONCLUSIONS 
We developed a reference model and reference processes for systems engineering, based on well-
regarded prior work from the community, that promotes careful identification of problem, 
requirements, context and design — yielding a set of artifacts that supports modularity by clearly 
identifying assumptions, guarantees, and critical context that might otherwise be overlooked. 
Based on this foundation, we developed a set of argument patterns that enable practitioners to 
quickly and authoritatively argue success of their development efforts — the most fundamental, 
highest goal in any development effort. Expanding on these patterns and building on prior work 
from the community, we advanced a practical approach to argument modularity that brings 
assume-guarantee reasoning into the argument and provides guidance for considering and 
addressing contextual compatibility at all levels of argument composition. Finally, we developed 
a set of theories and tools to enable precise formal analysis of component interfaces and contracts 
between components, moving beyond syntax-only considerations and including well-formed 
semantics encoded as real-world types. 

Throughout the development of system-interface abstraction technology, we developed two 
examples that enabled us to both demonstrate and refine the technology. 

The first example is based on the premise that system-interface abstraction technology, including 
the argument patterns described above, could be used not only to guide the development of the 
system but also to provide a defensible response to a request for proposals from a customer, such 
as the USAF. While necessarily incomplete, the example highlights the explicative power of 
applying argumentation at the very beginning of a development effort — even before a contract 
is in place. 

The second example is based upon the development of a hypothetical small UAS, and is used to 
illustrate the identification of interfaces for components during development as well as to 
demonstrate the efficacy of compositional reasoning, once solid interfaces have been identified. 
The example additionally answers a critical question: can system-interface abstraction technology 
be successfully applied to control systems? In spite of the apparent tight coupling of control-
system design, we nevertheless answered this question in the affirmative. 

In addition to these two examples, we also applied domain-argument recovery, a technique first 
developed in our prior work on CLASS, to regulatory standards common in USAF acquisition 
efforts. Our experience underscored the importance of having domain experts available whenever 
regulations are in force, to ensure that the intent of the regulation is well understood by all 
parties. 

The development of the examples used to demonstrate system-interface abstraction technology 
highlighted two important points: 

1. the difficulty of building good challenge or example problems; and 
2. the importance of having good challenge or example problems. 

A well-motivated challenge problem will be rooted in an interesting and important domain, such 
as controls engineering or, in the case of a system of systems, in many domains, such as the 
collection of domains that must come together to build a UAS. For small research teams, finding 
the required depth and breadth of experience is very difficult. Moreover building the challenge 
problem is time-consuming, as there are many detailed aspects of the problem that must be 
demonstrated. 
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Having good challenge or example problems is very important, to motivate conclusions about 
new theoretical approaches to systems engineering. If the challenge problems do not represent 
sufficiently realistic systems, the conclusions reached are unlikely to be compelling. Worse, if the 
challenge problems are too simple, they may not demonstrate the kind of engineering challenges 
that the new approaches are designed to address. 

System-interface abstraction technology, since it addresses challenges arising in modular system 
development, requires complex and realistic challenge problems. As noted above, while 
significant elements of the technology were successfully demonstrated using the example 
problems we developed, there was insufficient detail and domain experience and experience in 
key areas. As a result, we were unable to demonstrate some of the features of compositional 
reasoning in modular argumentation that are particularly important in system-interface 
abstraction technology. Nevertheless, the development of these example problems enabled us to 
identify limitations in the technology and address those limitations through further theoretical 
development. The resulting technology presented in this report therefore represents a culmination 
of a rational compositional reasoning infrastructure based our observations about the limitations 
of compositional reasoning discovered both during initial development of the approach and as 
discovered during assessment. Ideally, rational infrastructure, including both theory and 
mechanics, would be developed a priori and applied as prescribed. In practice, however, complex 
development infrastructures and methodologies provide guidance but are expected to evolve as 
needed when applied or in light of new discoveries [49]. Later additions to underlying theory and 
mechanics were not the subject of experimentation and remain to be assessed in future work. 
Additional research and development is therefore required, to more fully demonstrate system-
interface abstraction technology. 

Ideally, we would join a large-scale development effort with system and domain engineers 
familiar with modularity and compositional reasoning, and apply system-interface abstraction 
technology from problem identification through system design. Such a development effort would 
illustrate the approach that was presented in Section 4.1 and represent the most comprehensive 
demonstration possible. Our role would be to support the systems and domain engineers in the 
application of system-interface abstraction technology and to mediate integration of development 
artifacts and evidence into the arguments. As part of the activity, data would be collected so that 
a report on the efficacy of the approach could be produced, citing the development effort as a 
comprehensive case study. 

As an alternative, system-interface abstraction technology could be applied post hoc to an 
existing system or an existing challenge problem that demonstrates sufficient modularity, 
complexity, and compositional reasoning. While such an application would be necessarily limited 
in the extent to which the reference model and reference processes could be applied, it would 
nevertheless allow a significant demonstration of the argument patterns and the development and 
assessment of argument modularity. 
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APPENDIX A  ASSURANCE-CASE TECHNOLOGY 

A.1  Background 
When engineering software systems, developers have the burden of demonstrating assurance that 
the software establishes properties and characteristics desired by the system stakeholders. For 
example, stakeholders might require assurance that the software is adequately safe, secure, 
reliable, etc. for its use (i.e., for its operating context). A software system is said to be acceptable 
for its operating context if adequate assurance is demonstrated that the system has the 
stakeholder-desired property or properties. 

The complexity and size of modern software, however, makes providing definitive, complete, 
and irrefutable proof that any given software system is acceptable impractical for all but the most 
basic and trivial systems. In practice, developers rely on any available evidence to demonstrate 
that the existence of desired properties is “highly probable”, although quantification of such 
probabilities is often impossible. Consequently, interpretation of what constitutes highly probable 
assurance is left to intuition. 

Evidence alone does not provide a justification that a given software system is acceptable for its 
specific operating context. “Argument without supporting evidence is unfounded, and therefore 
unconvincing. Evidence without argument is unexplained – it can be unclear that (or how) safety 
objectives have been satisfied” [50]. Rather, evidence must be explained and interpreted to 
demonstrate assurance. While a prescribed standard can be used to explain evidence, if a standard 
is available, standards are often: 

• inflexible to the specific needs of stakeholders, i.e., standards do not take into consideration 
the characteristics of a specific software system and its operating context, 

• rarely contain explicit rationales explaining why they demonstrate acceptable assurance, and 
therefore prohibit deeper understanding of the assurance any given standard is meant to 
provide, and 

• rely upon the assumption that adherence to a given standard results in an acceptable system in 
all uses of the standard. 

A goal-based approach to explaining evidence allows developers to overcome the limitations of 
prescriptive standards. In a goal-based approach, claims about the properties of a software system 
are made based on the needs specific to the system stakeholders. Evidence is then used to support 
the specified claims. The key benefit of this approach is that assurance is tailored to a specific 
system. Consequently, developers must take a more active role in defining what evidence should 
be collected and rationalizing how that evidence supports claims.  

A safety case organizes a goal structure as an argument, supported by a body of evidence that 
provides a compelling, comprehensible and valid case that a system is safe for a given application 
in a given operating environment [51]. The safety case concept is generalizable and applicable 
for the purposes of generating an explicit rationale for belief in any system characteristic of 
interest (e.g., system functionality, performance, security, or reliability). The generalized concept 
is referred to as an assurance case.  

A.1.1  Elements of an Assurance Case 
The general elements of an assurance case (see Figure A-1) are: 
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• A set of goals in which a top-level goal documents the main assurance claim and other sub-
goals help to structure and elaborate the argument. Goal statements have the form of a 
proposition, e.g., “The system is safe,” in order that they may be evaluated as true or false. 

• A definition of the context within which the top-level goal is expected to hold. Context 
includes everything that might be needed to constrain the applicability of the argument to a 
given set of circumstances, including assumptions. 

• A collection of supporting evidence that includes results from inspections, analyses, testing, 
and simulation estimating fundamental system properties, as well as process-based 
information such as standards compliance and maturity level of the development organization. 
This evidence forms the basis from which assurance can be argued. 

• An explicit argument that shows how the overall claim (goal) can be reasonably inferred 
from the supporting evidence. In practice, multiple different argument strategies are used in 
conjunction to argue assurance in a given case. 

 

 
Figure A-1: Major Elements of an Assurance Case 

 

A.1.2  The Goal Structuring Notation 
While in principle an assurance case can be documented in any form, including natural language 
and tables  [52], an increasingly popular and effective documentation method is to structure the 
argument using a graphical notation. In a graphical notation, components of the argument, such 
as claims and evidence, are represented as nodes in a graph. The connections/relationships 
between these nodes illustrate how evidence supports claims and thereby forms an assurance 
argument. 

The Goal Structuring Notation (GSN)  [23] is a graphical language that provides a rich set of 
syntax and semantics for documenting assurance arguments. It enables representation of the 
logical relationships among the basic elements of assurance cases, as well as the documentation 
of supporting information to contextualize this logic. It is accessible to readers of a wide variety 
of backgrounds and expertise, enabling a common communication mechanism for safety 
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argumentation and audit. It is also supported by editing tools, and is amenable to some automated 
analysis. 

 

  
Figure A-2: GSN Elements 

 

The core GSN elements, shown in Figure A-2, are: 

• Goals: Depicted as a rectangle, a goal documents a claim about a property or a characteristic 
that a software system is said to have. Each assurance argument contains a top-level goal, 
which is the conclusion the argument is meant to support. The top-level goal is subdivided 
hierarchically into sub-goals. Sub-goals are refinements/simplifications of higher-level goals, 
and represent claims about a more specific sub-system or property of the larger software 
system. Goals are also referred to as claims. 

• Contexts: Depicted as an oval, a context provides a reference to contextualizing information 
and documentation. For example, a context can refer to limitations about the scope of a goal. 
A context is linked to the argument element requiring contextualization, and all sub-arguments 
from that element inherit the context. 

• Assumptions: Depicted as an oval with the letter ‘A’ at the bottom-right, an assumption is a 
specialized context element used to present intentionally unsubstantiated statements. 

• Justifications: Depicted as an oval with the letter ‘J’ at the bottom-right, a justification is a 
specialized context element used to provide a rationale for a component of the argument. 

• Strategies: Depicted as a parallelogram, an argument strategy describes the inference between 
a goal and its sub-goals.  

• Solutions: Depicted as a circle, a solution is used to reference evidence in direct support of a 
goal. Solutions are also referred to as evidence. 

• Undeveloped: Entities depicted as a hollow diamond, the undeveloped entity symbol is 
directly placed on any of the above argument elements to indicate that the element is 
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intentionally left undeveloped by argument engineers. Undeveloped argument entities signify 
further review and examination of the undeveloped element is necessary. 

GSN also provides modular extensions to represent interrelated modules of argument, as well as 
support for representing patterns that abstract argument form and content into reusable structures. 
A complete description of GSN can be found in the GSN community standard  [23].  

 

 
Figure A-3: GSN Element Relationships 

 

GSN elements are connected by one of two types of relationships, represented by arrows, shown 
in Figure A-3: 

• SupportedBy: Depicted as a solid (closed) arrow, a SupportedBy relationship indicates 
inferential and evidential support, e.g., relationships between strategies, goals, and evidence. 
The arrow points to the supporting argument element. 

• InContextOf: Depicted as a hollow (open) arrow, an InContextOf relationship indicates a 
contextualizing relationships where the arrow points to the argument element providing the 
contextualization, e.g., a context, a justification, or an assumption. 

In addition to these core entities and relationships, GSN also provides notational support for 
expressing argument modularity (including module and contract entities) and argument patterns. 
For further details of these notational concepts, readers are referred to the GSN community 
standard  [23]. Figure A-4 provides an illustration of the application of the GSN. 
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Figure A-4: Example Argument in GSN 

 



160 
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited. 

A.1.3  Confidence 
In general, belief in the top-level goal (claim) of an argument, whether for safety, security or 
another property is important. The premises upon which an argument is accepted are: 

1. The top-level goal defines the stakeholders’ needs adequately. 
2. The belief in the truth of the top-level goal is justified by the argument. 

Although belief in the top-level goal rests on confidence in the associated argument, often there 
are repeating underlying arguments. Hawkins et al. have introduced the notion of confidence 
arguments to supplement safety and security arguments in order to capture and separate 
confidence assessment within assurance arguments  [12]. A confidence argument supplements a 
traditional argument and supplies the rationale for belief in the quality of each of the argument’s 
items of evidence, context definitions, and inferences. When these elements are added to an 
argument, there is an assertion that the element is valid and correct, i.e., the element serves the 
intended purpose to support a claim. Assertions in the argument are linked via an Assurance 
Claim Point (ACP) to a separate confidence argument where confidence in the assertion is 
argued. Since these concerns repeat any time these entities are added to the argument, separating 
these confidence arguments has the claimed benefit of simplify arguments and providing clarity 
of purpose.  

For this effort, we adopt a custom ACP notation, illustrated in Figure A-5. 

 

 
Figure A-5: Custom Assurance Claim Point Notation 

 

A.1.4  Understanding Argument 
Using GSN, an argument is constructed as a graphical and hierarchical structure, where a top-
level goal is subdivided recursively until a goal can be directly justified by available evidence. 
When a goal is subdivided, justified by evidence, or contextualized, an inference is made about 
the relationship between argument elements. Ideally, all inferences within an argument would be 
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based on deductive reasoning. In deductive logic, if the premises are true, then the conclusion is 
necessarily true. If an argument is completely deductive, the argument could serve as a proof 
supporting the top-level goal. In practice, however, application of deductive logic in support of 
claims about real-world systems is not always possible. Consequently, arguments about software 
system properties rely primarily on inductive reasoning.  

In inductive logic, if the premises are true, the conclusion is “likely” true. The argument does not 
offer irrefutable proof that a top-level goal is valid. The likelihood that the top-level goal is valid 
is based on a careful and systematic examination of all risks and available evidence. Because 
arguments must be constructed carefully and then thoroughly examined, these arguments are 
often referred to as rigorous arguments.  

Since assurance arguments are inductive, they are also provisional and subject to revision as new 
information becomes available. An assurance argument is said to be defeasible: future evidence 
could refute a claim (such evidence is typically referred to as a defeater). The defeasibility of an 
assurance argument stems from two primary sources of doubt  [40]: 

• Inferential doubt: Doubts about the accuracy of the reasoning used in the argument, i.e., 
doubt that each step of logical inference follows to justify a top-level goal. These are doubts 
about the validity of relationships between argument elements. 

• Epistemic doubt: Doubts about the completeness and accuracy of the knowledge about the 
system. This knowledge takes the form of evidence, supporting documentation, and generally 
any information referenced within the argument. 

Although an assurance argument cannot typically be used as proof about a top-level claim about 
a software system, the primary benefit of assurance arguments is the explicit documentation of 
reasoning and rationale for why a system is considered acceptable. All systems determined to be 
acceptable for use rely on some form of argument, even if that argument is implicit. By making 
the argument explicit, assurance arguments facilitate active scrutiny and criticism. The argument 
can be challenged and reviewed exhaustively, supporting a more structured approach for finding 
flaws/weaknesses in the systems. As the system is updated, either in response to a found flaw or 
new functional needs, the argument is also updated, allowing developers and stakeholders to 
understand the impact of alterations and to determine if further changes to the software are 
necessary. The adequacy of the argument is context specific and ultimately determined by the 
needs and opinions of the system stakeholders.  
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APPENDIX B COOLING TANK(S) CHALLENGE PROBLEM 

B.1  CONOPS 
An industrial facility has a need to cool a liquid as one stage in a process. The facility would like 
to have one or more cooling tanks added in the middle of the production line. Prior to the cooling 
tank(s), the liquid is held in a reservoir that is large enough to be considered to always have 
liquid available to be moved into the cooling tanks. The liquid will need to be pumped from the 
reservoir into the cooling tank system and the pump will be considered part of the cooling tank 
system. After the liquid has been cooled to the appropriate temperature range, it must be sent to 
the next stage of the process via a production line. There is an emergency dumping line that 
liquid may be sent to in the case of emergencies. 

  

 
Figure B-1: CONOPS High-Level Cooling Tank System 

 

High-level requirements: 

1. The cooling tank system (CTS) shall contain a pump to transfer liquid from a reservoir to the 
CTS. 

a. It may be assumed that the reservoir has an unlimited supply of liquid. 

2. The CTS shall contain at least one tank where the liquid will be cooled. 

a. NOTE: Temperature is being abstracted away in this challenge problem. A large assumption is 
being made that the liquid gets “appropriately cooled” by being inside of the cooling tank(s) of 
the CTS.  

3. The CTS shall use a production liquid line to send cooled liquid to the next stage of the 
process. 

a. The production line may accept up to 0.2 m3/s of cooled liquid. 

b. It may be assumed that the production line never gets backed up (i.e. cooled liquid may always 
be passed on to the next stage). 

4. The CTS shall dump liquid into an emergency line in the case of a safety or other emergency. 
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a. The emergency line may accept up to 0.5 m3/s of liquid. 

b. It may be assumed that the emergency line never gets backed up (i.e. liquid may always be 
dumped into the emergency line). 

5. The CTS shall not cause any unsafe situations for the workers in the facility. 

a. No liquid may leave the CTS except through the production or emergency lines. 
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APPENDIX C ULTRA STICK 

C.1  Introduction 
This report describes the development of a simulation environment to support research related to 
system of systems interactions. The environment includes a simulation model of a small 
unmanned air vehicle, sensor models, a state estimator, and a control system capable of executing 
a representative SUAS mission. Section C.2 describes the selected mission scenario and Section  
C.3 provides an overview of the demonstration environment. Section C.4 provides a brief 
description of the physical vehicle modeled by the simulation, Sections C.5 and  C.6 describe the 
inner- and outer-loop control system, respectively, and Section C.7 describes the path planner and 
guidance components. The sensor package on which sensor models is based is described in 
Section C.8, and the filtering and state estimation approaches that were investigated are described 
in Section C.9 . Section C.10 presents performance results for the system and results on how 
changing sensor performance characteristics impact system performance. 

C.2  Mission Scenario 
The demonstration environment is built around a common UAS mission of gathering imagery of 
a region on the ground. A low-cost UAV configuration with a fixed imaging sensor on a fixed 
wing UAV is assumed. The camera is assumed to have a square 90∘ field-of-view, so that when 
the aircraft is level over flat ground the imaging sensor captures a square region on the ground 
that extends toward the nose, tail and each wingtip a distance equal to the altitude of the aircraft. 
The camera captures images every five seconds, and the nominal flight pattern provides 20m of 
overlap in the lateral direction between images. At the nominal cruise speed of 25m/s, the 
nominal overlap between images in the longitudinal direction is approximately 160 m. Distortion 
of the photographs is considered unacceptable if the role or pitch angle exceeds 10∘ when the 
image is taken, and such images are discarded. Resolution of photographs taken from more than 
15m above the desired altitude is considered unacceptable, and such images are also discarded. 
Coverage of the region being imaged is assessed by establishing a 1 m square grid over the field 
and testing whether each grid point is captured in at least one image. Figure C-1 shows the 
specific mission used in the demonstration environment, which captures a ground region that is a 
1km by 2km rectangle. The mission begins from the center of the region being captured, the 
vehicle climbs to altitude and then executes four passes over the field to provide the desired 
coverage and overlap. 
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Figure C-1: Example Mission Ground Track 

 

C.3  Overview of Demonstration Environment 
An overview of the demonstration environment is shown in Figure C-2. Main components in the 
demonstration environment are 

• Ultrastick simulation: air vehicle simulation that includes rigid body dynamics, actuator 
models, and sensor models.  

• State estimation: estimates vehicle states based on sensor inputs.  
• Inner loop control: generates aerodynamic surface commands to achieve commanded Euler 

angles.  
• Outer loop control: generates inner loop control commands to track desired altitude, heading, 

and velocity.  
• Path planner: generates altitude, heading, and velocity commands to achieve a path specified 

by a set of waypoints.  
• Mission planner: in the current implementation, the mission planner is designed only to 

generate a set of waypoints to achieve the imaging mission shown in Figure C-1.  
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Figure C-2: High-level View of Demonstration Environment  

 

C.4  Air Vehicle 
The simulation testbed is built around a simulation model of an Ultrastick fixed wing unmanned 
air vehicle. Initial development of the simulation model was performed by NASA Langley [53], 
and work has been continued by the UAV laboratory at the University of Minnesota. Both wind 
tunnel and flight test experiments have been conducted as part of prior research activities to 
support work including validation of a nonlinear simulation model of the vehicle. A picture of the 
flight vehicle used by NASA in developing this simulation is shown in Figure C-3. The “stick" 
aircraft are a series of low-cost, commercially-available hobbyist aircraft. While the Ultrastick 
120 used in the original modeling effort is out of production, very similar aircraft remain on the 
market. The selected vehicle thus offers a unique combination of a validated simulation model 
that has been made publicly available, and low-cost airframes that can be readily obtained if 
flight testing is desired in future phases of the work. 

 

 
Figure C-3: NASA Flight Vehicle (Image Reproduced from [53]) 
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C.5  Inner-loop Control 
The outer loop Θcom and φcom commands are fed into the inner loop control along with a feed 
forward φ command. 

  

 
Figure C-4: Inner Loop 

 

C.5.1  Pitch Tracker 
The pitch tracker generates an elevator command based on the error between the desired and 
actual pitch. It accomplishes this via a PID controller with an integrator anti-windup. A system 
response to a 15∘ increase in pitch angle can be seen in Figure C-6. 
  



168 
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited. 

 
Figure C-5: Pitch Tracker 
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Table C-1: Inputs of the Pitch Tracker 

 
 

Table C-2: Outputs of the Pitch Tracker 

 
 

Table C-3: Control Parameters for Pitch Tracker 

 
  

 
Figure C-6: Theta Response 
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C.5.2  Roll Tracker 
The roll tracker modulates the vehicle’s ailerons to track the desired roll angle. The commanded 
φ comes from the yaw tracker in the outer loop. A PD controller is used to control the feedback 
portion of this control loop. The feed forward φ command is the reference roll angle from the 
path planner and is used here in lieu of integral compensation to reduce steady state error and 
provide lead. Figure C-8 demonstrates the benefit of the feed forward command. Figures C-8(a) 
and C-8(c) do not have a feed forward term, while Figures C-8(b) and C-8(d) do. The blue line 
represents the reference value, and the red represents the actual value. As demonstrated, the 
vehicle is able to track better with a feed forward term.  

 

  
Figure C-7: Roll Tracker 

 

Table C-4: Inputs of the Roll Tracker 

 
 

Table C-5: Outputs of the Roll Tracker 
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Table C-6: Control Parameters for Roll Tracker 

 
  

 
(a) Ground track without feed forward control    (b) Ground track with feed forward control 

 
(c) Heading angle without feed forward control   (d) Heading angle with feed forward control 

Figure C-8: Cross Track Correction Example 
 

C.5.3  Yaw Damper 
The yaw damper employs the first order discreet transfer function in Equation C-1 to dampen the 
yaw rate via the rudder. 

Y(z)
G(z)= 

0.065z−0.065
z−.96079                                                           (C-1) 
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Figure C-9: Yaw Damper 

 

Table C-7: Inputs of the Yaw Damper 

 
 

Table C-8: Outputs of the Yaw Damper 

 
 

C.6  Outer-loop Control 
The outer loop control tracks the velocity, altitude, and yaw angle of the vehicle. Note that for 
small angle of attack and angle of sideslip, yaw angle and heading angle are approximately equal. 
The altitude and heading tracker generate command inputs for the inner loop, while the velocity 
tracker is independent of it. 

C.6.1  Velocity Tracker 
The velocity tracker modulates throttle to track the user defined airspeed. It implements a PID 
control with a discreet low pass filter and integrator anti-wind up. Equation C-2 represents the 
discreet low pass filter used for both the velocity tracker and altitude tracker. Figure C-10 is a 
block diagram of the tracker implemented in the simulation. Note that all diagrams flow from 
right to left. This is to match the pre-existing convention of the Ultrastick simulation. Figure C-
11 shows the system response to a velocity increase of 5m/s. 

Y(z)
G(z)= 

0.0392
z−.9608                                                                (C-2) 
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Figure C-10: Velocity Tracker 
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Table C-9: Inputs to the Velocity Tracker 

 
 

Table C-10: Outputs of the Velocity Tracker 

 
 

Table C-11: Control Parameters for Velocity Tracker 

 

 
Figure C-11: Velocity Response 

 

C.6.2  Altitude Tracker 
The altitude tracker generates a commanded Θ that is fed into the inner loop. It implements a PI 
control loop with a discreet low pass filter and integrator anti-wind up. The altitude tracker uses 
the same discreet low pass filter employed by the velocity tracker represented in Equation C-2. 
Figure C-13 shows the vehicle response when the target altitude is increased by 25m. 
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Figure C-12: Altitude Tracker 
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Table C-12: Inputs of the Altitude Tracker 

 
  

Table C-13: Outputs of the Altitude Tracker 

 
  

Table C-14: Control Parameters for Altitude Tracker 

 

 
Figure C-13: Altitude Response 

C.6.3  Heading Tracker 
The heading tracker generates a φ command that is fed into the inner loop. While the heading 
tracker actually tracks ψ, for small angles of attack and sideslip, ψ is approximately χ. The 
commanded heading angle and an increment based on cross-track error are added together to 
calculate the total command. The vehicle’s heading is controlled by a simple proportional control 
loop. The heading tracker also contains logic to resolve angle wrapping issues, which is 
especially important when the vehicle is headed in a northernly direction.  
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Figure C-14: Yaw Tracker 
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Table C-15: Inputs of the Heading Tracker 

 
  

Table C-16: Outputs of the Heading Tracker 

 
  

Table C-17: Control Parameters for Heading Tracker 

 
 

C.7  Path Planner/Guidance 
The Dubin’s Car algorithm is a simple 2D path planning solution that calculates the shortest 
curve between two points with specified initial and terminal orientations and with constant speed 
and upper limit on path curvature. The optimal solution is a bang-bang type of solution consisting 
of at most three path segments and takes either the form CCC or CSC, where C represents 
circular arcs of maximum curvature, and S represents straight lines. Inputs are defined in Table 
C-18. Equation C-3 is used to calculate the maximum radius (R) based on the airspeed (Vs), 
gravity (g), and the user defined turning bank angle (φ). The optimum path is defined by the 
states in Table C-19. The reference commands fed to guidance are interpolated from the 
optimized path based on the vehicle’s current location. The reference vertical position and 
velocity are user defined, and controlled independently. 

R= 
V2

s

g*tan(φ)                                                               (C-3) 
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Table C-18: Inputs to Dubin’s Car Path Planner 

 
 

Table C-19: Outputs of Dubin’s Car Path Planner 

 
 

The vehicle is controlled in the lateral and longitudinal planes by controlling the vehicle’s roll 
and yaw. These reference commands are interpolated based on the vehicles position along the 
planned path. The Dubin’s Car algorithm assumes the maximum turn rate can be achieved 
instantly. Though the vehicle dynamics are reasonably fast, it of course cannot achieve the turned 
rate instantly. A cross-track error component in the path tracker corrects for errors due to the 
assumption, as well as errors arising from other sources including disturbances. An example of 
how cross-track correction aids the vehicle can be seen in Figure C-15. In Figure C-15(a), the 
planned path of the vehicle can be seen in blue and the actual path of the vehicle in red. While the 
vehicle follows a similar path to that planned,it ultimately does not reach the target location. In 
Figure C-15(b) the vehicle has cross-track correction and can adjust its yaw command to turn the 
vehicle back onto the planned path. In order to have this capability, there must be enough margin 
left between the maximum bank angle and the turning bank angle fed to the path planner. A bank 
angle of 25∘ was selected for the turning bank angle. The maximum bank angle allowed by the 
inner-loop of the vehicle is 45∘. 
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(a) Ground track without cross-track correction    (b) Ground track with cross-track correction 

 
(c) Cross-track error without correction    (d) Cross-track error with correction 

Figure C-15: Cross Track correction example 
 

C.7.1  Guidance 
The guidance system is designed to track the reference commands from the path planner, as well 
as the user defined target velocity and altitude. It does this by implementing a cascade control 
structure. The interfaces of the simulation and the guidance system are shown in in Figure C-2. 
Each system will be further examined in the following sections. The interface for the guidance 
system is defined in Tables C-20, C-21, and C-22. 

  

Table C-20: Reference Commands for Waypoint Tracking 
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Table C-21: Sensor Outputs Relevant to Waypoint Tracking 

 
 

Table C-22: Controller Outputs Relevant to Waypoint Tracking 

 
 

C.8 Pixhawk Autopilot Sensor Package 
The Pixhawk autopilot was identified as representative of autopilot hardware for SUAS and the 
sensors on this autopilot motivated the configuration of the state estimator as well as the sensor 
error characteristics used in testing. The Pixhawk has four sensor chips on board and an attached 
GPS. The onboard sensor chips consist of an Invensense MPU 6000 3-axis accelerometer/gyro, 
ST Micro L3GD20H 16 bit gyroscope, ST Micro LSM303D 14 bit accelerometer/magnetometer, 
and an MEAS MS5611 barometer. The GPS selected for this application is a 3DR u-blox unit 
with a NEO-7 series GPS module. The available sensor characteristics have been outlined in 
Table C-23.  
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Table C-23: Sensor Characteristics  

 
 

The Range and Sample Rate of the MPU 6000 gyroscope and accelerometers are user-selectable. 
Digital low-pass filters can also be specified by the user which could determine the sample rate. 
The values indicated in Table C-23 are reasonable values. To calculate the RMS noise, σ, from 
noise density (ND), the following formula is used:  

σ=ND BWeff                                      (C-4) 

BWeff=κBW 

where BWeff is the effective noise bandwidth of the output filter. This is found by scaling the 
bandwidth of the output filter by a constant, κ . The scaling constant is dependent on the order of 
the filter and is 1.57 for a first-order filter. For an ideal brick wall filter the scaling is 1.0.  

C.9  Filtering/State Estimator 
The sensors on a small unmanned air system (SUAS) typically exhibit sufficient error that direct 
use of the raw sensor values in the control system is not desirable, so some filtering is typically 
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included in the system. Also, the full state vector is typically not measured directly, and state 
estimation is often employed to provide estimates of the full state vector that can be used in a 
control system. A Kalman filter was selected for the current implementation because it provides 
flexibility to interface with a variety of sets of measured quantities. A configuration with full 
state measurement was first investigated using a basic Kalman filter, which employs a linear 
model of the system. Section C.9.3  describes experiments that confirm that nonlinearities in the 
true system lead to significant errors in the state estimates produced by the Kalman filter under 
certain conditions. Section C.9.4 describes that in this case the Kalman filter served as a 
smoothing filters could be used in the current configuration that includes full state feedback, this 
approach would not extend directly to cases in which the desired controller inputs are not a subset 
of the measured quantities. 

C.9.1  Principles of a Kalman Filter 
The Kalman filter (cf. [54]) is one of the most well known recursive state estimation algorithms. 
It computes exact quantities for the conditional mean vector  

 ̂xk|k = E [ |xk  ]yk,yk−1,…,y1;uk−1,uk−2,…,u1  

for linear systems with additive Gaussian noise governed by the dynamic equations 

xk+1 = Akxk+Bkuk+wk 

 yk = Ckxk+vk                                                 (C-5) 

The quantities Ak, Bk, and Ck are matrices that can change over time. The process noise wk is 
assumed to have zero mean and covariance Qk, and the measurement noise is assumed to have 
zero mean and covariance Rk. Because these equations are linear, the conditional mean vector and 
covariance matrix can be computed recursively in closed form. The Kalman filter computations 
are typically described as having prediction and update or prediction and correction stages, as 
described below. 

C.9.1.1  Predict 
The prediction stage produces the a priori estimate of the state: 

 ̂xk|k−1=Ak ̂xk−1|k−1+Bkuk−1                           (C-6) 

based on the system dynamics in Eq. C-5, and the a priori estimate of the covariance:  

 Pk|k−1=AkPk−1|k−1A
T
k+Qk                                   (C-7) 

C.9.1.2  Update 
The update phase produces the Kalman gain Kk, which is a function of both the a priori state 
covariance matrix (Pk|k−1) and the measurement error covariance matrix (Rk): 

 Kk=Pk|k−1C
T
k(CkPk|k−1C

T
k+Rk)

−1                        (C-8) 

the a posteriori state estimate ̂xk|k, which is updated based on the difference between the predicted 
and measured state values:  
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 ̂xk|k=̂xk|k−1+Kk(yk−Ck ̂xk|k−1)                       (C-9) 

and the a posteriori covariance matrix estimate:  

 Pk|k=(I−KkCk)Pk|k−1                                                    (C-10) 

The algorithm above is exact only for linear systems. For nonlinear systems, the matrices Ak, Bk, 
and Ck are often formed by linearizing the system around the mean vector μk and the input vector 
uk. The resulting algorithm is referred to as an extended Kalman filter. The initial implementation 
described below assumes linear time-invariant (LTI) system dynamics, so Ak, Bk, and Ck are 
constant. The air vehicle model used in simulation evaluations is nonlinear, and the simulation 
results shown below reflect estimation errors that are likely due in large part to the simplifying 
assumption of an LTI system made within the estimator. 

C.9.2  Implementation of Kalman Filter 
In order to implement a Kalman Filter with the Ultrastick simulation, a discrete linear model of 
the plant needed to be generated. The model was linearized about the states listed in Table C-24. 
The outputs of the linear model are listed in Table C-25. For this test case, it is assumed that 
measurements of the roll, pitch, and yaw angles are available. These angles are often directly 
measured with gyroscopic instruments on manned aircraft, but for small unmanned systems it is 
more common to estimate these states based on other sensors including rate gyroscopes, linear 
accelerometers, and magnetometers. Measurements of angle of attack and sideslip are often 
available on research aircraft, including small vehicles such as the Ultrastick, but are less 
commonly available on production SUAS. All other measurements are commonly available on 
SUAS. As discussed above, the Kalman filter can readily be used for state estimation, allowing 
future experiments to be easily conducted with different assumptions about the outputs of the 
sensor subsystem. 

  

Table C-24: Kalman Filter States 

 
 



185 
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited. 

Table C-25: Sensor Observations 

 
 

The linear model used in the Kalman filter is generated at a straight and level trim condition13, 
and the Kalman filter estimates states that represent perturbations from this trim condition. Trim 
values of the states, outputs, and inputs are denoted xt0, 𝐲𝐲𝑡𝑡0, and 𝐮𝐮𝑡𝑡0, respectively, and the 
corresponding perturbation quantities are defined as 

 Δx=x−xt0                                      (C-11) 

Δy=y−yt0 

Δu=u−ut0 

The Kalman filter thus operates on the linear model  

        Δxk+1 = AkΔxk+BkΔuk 

        Δyk = CkΔxk 

with appropriate trim increments added and subtracted at the Kalman filter interface in the 
simulation. 

C.9.2.1  Simulink Model 
The Kalman Filter Simulink Model is shown in Figure C-16. The a priori state and error 
covariance estimates are initialized in the memory blocks xHat and P-, respectively. Since the 

                                                 

 
13 The linearization routine in theUltrastick simulation environment produces a continuous 
time model, so a continuous to discrete conversion step is needed to generate the discrete 
model used in the Kalman filter. The is done using the Matlab default zero order hold 
method. 
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linear model operates on the perturbation quantities (Δx, Δy, Δu), the trim measurements must be 
subtracted from the real time measurements. The control inputs are commanded deflections from 
the trim settings, so no modification is needed. Because the current control system is designed to 
accept the measured quantities as inputs, the state estimates are multiplied by the output matrix 
Ck to compute the estimated outputs of the system. Given the current control system, the Kalman 
filter could be replaced with simple filtering of the measured quantities, but using the Kalman 
filter provides greater flexibility to replace both the sensor and control subsystems without 
requiring architectural changes in the filtering/state estimation subsystem. 
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Figure C-16: Kalman Filter 
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The prediction step is captured in Figure C-17. This model corresponds to Eqs. C-6 and C-7. 

 

   
Figure C-17: Kalman Filter: Predict 

 

The update step is broken into multiple subsystems: compute Kalman gain, update states, and 
update error covariance, as shown in Figure C-18.   

 

  
Figure C-18: Kalman Filter: Update 

The Compute Kalman Gain subsystem implements Eq. C-8 to find the Kalman Gain, as shown in 
Figure C-19.  
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Figure C-19: Kalman Filter: Compute Kalman Gain 

 

The State Update subsystem shown in Figure C-20 uses the measurements from the sensors to 
compute the a posteriori state estimate, implementing Eq. C-9.  

 

 
Figure C-20: Kalman Filter: State Update 

 

In the Update Error Covariance subsystem, Eq. C-10 is used to update the estimate of the error 
covariance  
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Figure C-21: Kalman Filter: Error Covariance Update 

 

C.9.2.2  Tuning the Kalman Filter 
The process noise covariance matrix (Qk) and the measurement noise covariance matrix (Rk) are 
Kalman filter parameters that must be chosen carefully to achieve the desired performance of a 
Kalman Filter. The process noise should capture disturbances and errors introduced by the linear 
model assumption. An initial estimate of the process noise focused on modeling error was 
generated by executing the full nonlinear simulation model and the linear system model (Eq. C-5 
with no noise) and computing the difference in the state increments at each step. The 
measurement covariance matrix (Rk) was initially populated with the variance of the sensor noise 
along the diagonals. From this initial point, the parameters can be tuned to obtain the desired 
performance from the filter. An example of tuning impact is shown in Figure C-22. In Figure C-
22(a), the measurement covariance matrix is defined by the sensor noise. As can be seen, it 
retains much of the noise from the sensor. By scaling Rk, we are able to effectively reduce the 
weighting on the measurements and obtain a much smoother estimate of the pitch angle that 
removes the high frequency noise of the sensor. 

  



191 
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited. 

 

   
(a) Pitch Angle without tuned measurement matrix 

 

   
(b) Pitch Angle with tuned measurement matrix 

Figure C-22: Cross Track Correction Example 
C.9.3  Multi-Model Kalman Filter 
Testing with the basic Kalman filter with a single linear model of the system showed that a bias 
existed between the Kalman filter estimated states and the true states of the system in some cases 
when system states deviated significantly from the trim point at which the linear model used by 
the Kalman filter was generated. Figure C-23 shows an example in which pitch angle deviates 
significantly from the trim point and biases in state estimates are present. To test the hypothesis 
that the bias is due to nonlinear system dynamics, a Kalman Filter was created that employed two 
separate linear models. The first was linearized about the initial states, and the second was 
linearized with a pitch angle of 15∘, the commanded step input for pitch in the example in Figure 
C-23. The filter then switches between the two models based on which pitch angle it is closest to. 
As can be seen in Figure C-24, introduction of the second model nearly eliminates the steady 
state biases in the Kalman filter estimates, supporting the hypothesis that the biases are due to 
nonlinearities in the system dynamics. Because the focus of the current effort is on requirements 
and not on development of a high-performance system, the use of a single linear model in the 
Kalman filter has been deemed adequate. The results shown here are intended primarily to 



192 
DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited. 

demonstrate that the observed errors are due to system nonlinearities and not an error in the 
Kalman filter implementation. 

  

   
                          (a)                                                (b)                                             (c)  

    
                          (d)                                                (e)                                             (f)  

    
                          (g)                                                (h)                                              (i)  

    
(j)  

Figure C-23: Kalman Filter Pitch Angle Response — One Linear Model 
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                          (a)                                                (b)                                             (c)  

    
                          (d)                                                (e)                                             (f)  

    
                          (g)                                                (h)                                             (i)  

    
(j)  

Figure C-24: Kalman Filter Pitch Angle Response — Two Linear Models 
 

C.9.4  Unscented Kalman Filter 
The estimator previously developed assumed full state feedback. This is not typical of sensor 
packages used onboard small unmanned aerial systems such as the Ultrastick. As discussed in 
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Section C.8 , the Pixhawk autopilot was identified as representative of SUAS autopilots and an 
state estimator was developed using inputs corresponding to the Pixhawk sensor package. This 
section provides an overview of the structure of the Unscented Kalman Filter (UKF) [55] that 
was developed to provide a state estimator architecture that is consistent with the Pixhawk sensor 
package. Figure C-25 provides a high-level overview of the measurements and desired state 
estimates (outputs) of a typical SUAS estimator. 

 

 
Figure C-25: SUAS State Estimation Overview  

 

In the implementation developed for the present work, winds and aerodynamic angles were not 
included among the estimator outputs. The measurements and estimator outputs in the present 
implementation are thus:  

 Measurements  
• (p, q, r): Body-axis angular rates with respect to an inertial frame provided by angular rate 

gyroscopes from an Inertial Measurement Unit (IMU)  
• (ax, ay, az): Body-axis acceleration measurements with respect to an inertial frame provided 

by the IMU  
• (hbaro, OAT): barometric height measurement and Outside Air Temperature provided by a 

barometer pressure sensor  
• (lat, lon, alt): Geographic position provided by a GPS unit. Alternatively, local geodetic data 

can be provided in terms of North, East, and Down (NED) relative to a flat-earth frame.  
• (Vn, Ve, Vd): Inertial velocity provided by a GPS unit  
• psi: heading with respect to true north, provided by a magnetometer  
• VT: airspeed measurement provided by a pitot probe  
 Estimator Outputs  
• (p, q, r): Body-axis angular rates with respect to an inertial frame compensated for modeled 

sensor errors  
• (phi, theta, psi): Euler attitude angles. An Euler angle formulation was used for compatibility 

with the UltraStick simulation.  
• (ax, ay, az): Body-axis acceleration measurements with respect to an inertial frame 

compensated for modeled sensor errors  
• (N, E, D): local geodetic position estimates  
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• (Vn, Ve, Vd): inertial speed estimates  

The process model used in the estimator contains 15 states, consisting of Euler angles, inertial 
position, inertial velocity, gyro bias estimates, and accelerometer bias estimates. The state vector 
is given by:  

x = [ ]qT,pT,vT,bT
ω,bT

a

T

 

 q = [ ]φ,Θ,ψ
T

                                   (C-12) 

 p = [ ]N,E,Hbar

T

                                   (C-13) 

v = [ ]VN,VE,VD

T

                                                          (C-14) 

 bω = [ ]bωx
,bωy

,bωz

T

                                                          (C-15) 

 ba = [ ]bax
,bay

,baz

T

                                               (C-16) 

Here v is velocity in the inertial frame and q is the attitude representation using Euler angles. 

The vectors ba and bω represent biases of the accelerometer and gyro measurements, respectively. 
Two approaches can be taken to model this error. The first is a random bias, where the dynamics 
for a random element, x, are: ̇x=0, ̇xo∼ ( )xo,Po . Here xo is the initial state estimate and Po the 
initial state covariance. A random bias model can be utilized in systems where there is a constant, 
unknown error source. Alternatively, the error source can be modeled with a time-varying biases, 
or random walk model. A random walk model can be used to model a constant bias combined 
with measurement noise. This formulation has the added benefit of estimating error sources that 
vary with time. The random walk model is: ̇x=w(t), xo=0,w∼ ( )0,Q , where w is a 
Gaussian variable. A random walk model is employed here to formulate the error model, 
accounting for accelerometer and gyro errors. 

Note, that while the angular rates and accelerations are not estimated states, the corrected angular 
rates and accelerations are output from the estimator using the estimated bias states.  

C.10  Requirements/System Performance Analysis 
C.10.1  Control System Input Requirements 
The requirements for input signals to the control system were investigated by assessing the 
capability of the complete system to successfully complete the mission described in Section C.2 
with various bias and noise errors on the input signals. Clearly, a complete requirements analysis 
process would include goals in addition to mission completion. For example, high-frequency 
content in the actuator command signals is generally considered undesirable and would typically 
be limited even if it did not directly impact mission success. Such additional considerations can 
be readily incorporated in future phases of the work, but were not considered critical to the goals 
of the initial demonstration environment. 
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The first analysis involved adding either noise or bias errors to a single input signal and assessing 
the amount of bias or noise that could be tolerated. The goal of this initial analysis was not to 
precisely determine the allowable level of error on each measurement, but rather to establish 
rough estimates of error levels on each measurement that have a comparable impact on overall 
mission performance. In a number of cases, the level of error that could be tolerated from a 
mission performance perspective was very large. This is particularly true in the case of biases, 
which are in some cases very effectively compensated for by integral compensation in the control 
system. Maximum acceptable levels of bias and noise on input signals were thus established 
through a combination of engineering judgment and observed limits based on mission success. 
Table C-26 shows the established limits for bias and noise on each input signal. 

 

Table C-26: Error Limits for Individual Controller Inputs  

 
 

The next experiment addressed the amount of bias and noise errors that could be tolerated on 
input signals when bias and noise existed on all input signals simultaneously. The values in Table 
C-26 establish a vector of noise standard deviation levels for each input and a vector of bias 
levels for each input. Experiments were conducted in which the magnitudes of these bias and 
noise vectors were scaled, but the relative noise levels on the various input remained unchanged 
as did the relative bias levels on the various inputs. As expected, when bias and noise were 
applied to all inputs simultaneously, the level of bias or noise that could be tolerated on any given 
input was lower than it was in the case that other inputs had zero bias and noise. Initial 
experiments also showed positive and negative altitude biases to have significantly different 
performance impacts due to the change in the sensor field of view. In the results shown, altitude 
bias was always set to zero to remove this asymmetric effects. Table C-27 shows the likelihood 
of mission success for various scalings of the bias and noise vectors in Table C-26. These results 
reflect simultaneous injection of bias and noise on all inputs except altitude14. For each test point 
shown in the table, 100 Monte Carlo simulation runs were conducted. The results suggest that the 
allowable noise levels are roughly an order of magnitude smaller when noise is simultaneously 

                                                 

 
14 The exceptions are the leftmost column and top row, in which results reflect zero bias and 
zero noise, respectively, as indicated by the zero scaling  
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applied all sensors than they are when there is a single noisy sensor. Allowable bias levels are 
similarly reduced. 

 

Table C-27: Likelihood of Mission Success with Varying Bias and Noise on All Controller 
Inputs 

 
 

Based on the results in Table C-27 and selecting an acceptable performance threshold of 90% 
mission success, the noise scale factor is limited to 0.12 and the bias scale factor to ±0.12. 

C.10.2  UKF Evaluation with Nominal Sensor Characteristics 
Experiments were conducted to determine whether the combination of the Pixhawk sensors and 
the estimator described in Section C.9.4 could meet the requirements for errors in the control 
system input signals established in Section C.10.1. Table C-28 shows the nominal bias and noise 
values used for the sensors. Table C-29 compares the errors at the output of the UKF to the 
requirements for errors in the control system inputs. In Table C-29, the estimation errors at the 
output of the state estimator are shown in the fourth and seventh columns. The third and sixth 
columns show the level of bias and noise that the system was predicted to be able to tolerate 
based on the analysis in Section C.10.1. The second and fifth columns show the vectors of bias 
and noise levels referenced in Section C.10.1 that were scaled to determine the maximum bias 
and noise that the system is expected to tolerate at the input to the feedback control system. The 
results indicate that the errors in pitch and yaw angle estimates and horizontal position estimates 
produced by the state estimator exceed the error levels to which the system is expected to be 
robust.  

 

Table C-28: Nominal Sensor Error Characteristics for Simulation  
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Table C-29: Estimator Results for Nominal Sensors  

  
 

C.10.3  Closed-loop System Performance 
Initial experiments indicated that the mission performance of the full system comprising the 
Ultrastick vehicle model, sensors error characteristics based on the Pixhawk sensor package, the 
UKF state estimator, and the feedback control system was below the targeted 90% threshold. 
Preliminary experiments also suggested that the mission performance was particularly sensitive 
to the amount of error in the horizontal position estimate at the controller input. The following 
section present results that demonstrate the significant impact on mission performance of changes 
in position measurement errors, and show that improvements in the estimates of other states have 
less impact on mission performance. 

C.10.3.1  Assessment of Impact of Position Measurement Errors 
An analysis was thus conducted to assess the impact of reducing the error in horizontal position 
measurement at the input to the state estimator. Tables C-30 and C-31 show that with an 
improved GPS sensor, the pitch and yaw estimates do not need to be improved to achieve the 
desired mission success rate. These tables show the noise levels and bias levels, respectively, in 
the state estimate errors at the input to the control system as the level of noise in the position 
error at the input to the state estimator is varied. The last column in the tables also shows mission 
success as the noise is varied. The results confirm that mission success is sensitive to noise in the 
position measurement. In these results and subsequent results in this section, all sensor biases 
were reduced by 50% with a goal of bringing the worst case bias at the output of the estimator to 
approximately the level of the predicted limit shown in Table C-29.  

 

Table C-30: Nominal Sensor Noise, 50% Sensor Bias 
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Table C-31: Nominal Sensors, 50% Sensor Bias 

  
 

C.10.3.2  Assessment of Impact of Improved Pitch and Yaw Estimates 
Table C-29 shows that as for the GPS estimates of position, noise in the pitch and yaw estimates 
exceeds the predicted limit that the closed-loop system can tolerate while maintaining acceptable 
performance. Tests were conducted in which the noise and bias of both the pitch and yaw 
estimate were constrained to the maximum amount that Table C-29 predicts the controller could 
tolerate. Tables C-32 and C-33 show the success rate along with the noise and bias of the control 
inputs in this configuration with varying levels of GPS sensor noise. These results confirm the 
preliminary finding that GPS errors have a far greater effect on the success of the mission than 
errors in the pitch and yaw estimates. 

 

Table C-32: Improved Pitch and Yaw Estimates with 50% Sensor Bias 

  
 

Table C-33: Improved Pitch and Yaw Estimates with 50% Sensor Bias 

  
 

C.10.3.3  Assessment of Impact of Improvement in All Sensors 
Further tests were run to simulate an overall improved sensor package using 75% of the nominal 
noise and 50% of the nominal bias levels shown in Tables C-28. The same set of GPS error levels 
evaluated in the previous section were again used. As shown in Tables C-34 and C-35, the GPS 
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sensor still has the largest impact on the success of the mission, and the improvement in mission 
performance produced by reducing noise in all other sensors is small.  

 

Table C-34: 75% of Nominal Sensor Noise, 50% of Nominal Sensor Bias 

  
  

Table C-35: 75% of Nominal Sensor Noise, 50% of Nominal Sensor Bias 

  

C.11  Conclusions 
A test environment based on a simulation of a small unmanned air vehicle was created to support 
research on systems of systems interactions. The test environment included a simulation of the air 
vehicle dynamics, sensor models, a state estimator, and a control system. A mission profile 
representative of common SUAS missions such as crop monitoring was developed, and inner- 
and outer-loop control system capabilities were implemented to execute a specific mission. 
Acceptable performance of the overall system was defined in terms of sensor coverage during 
this mission. The performance of the control system as a function of errors at the control system 
inputs, the performance of the state estimator given sensor models representative of SUAS 
sensing hardware, and the impact of changing sensor performance characteristics on the mission 
success rate were all investigated. 
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