
DISTRIBUTION STATEMENT A. Approved for public release. Distribution unlimited.

1

Architecture-led Requirements and Safety Analysis of an Aircraft Survivability

Situational Awareness System

Dr. Peter Feiler, Software Engineering Institute, Carnegie Mellon Universityphf@sei.cmu.edu

Software cost in mission and safety-critical systems has been escalating exponentially due to high requirement error

leakage into system integration. Furthermore, system tests are designed against a large percentage of ambiguous,

missing, and incomplete requirements. The Architecture Centric Virtual Integration Process (ACVIP) is being

investigated by the US Army to address these challenges. It is an adaptation of the System Architecture Virtual System

Integration (SAVI) approach based on the SAE Architecture Analysis & Design Language (AADL). It is a model-based

approach to detect and remove defects through virtual system integration and analysis. In this paper we describe an

architecture-led approach to specification of verifiable requirements and to system safety analysis to improve the quality

of requriemnts as well as sasfety hazards and their mitigation through derived requirements for a sasfety system. A

primary objective of this approach is to achieve improved coverage of requiremetns and safety hazards.

INTRODUCTION 

The Software Engineering Institute® (SEI) performed an

architecture-led requirement specification and safety

analysis in a shadow project of the United States Army

Aviation Development Directorate (ADD) on the Joint Multi

Role (JMR) Technology Demonstrator effort’s Joint

Common Architecture Demonstration (JCA Demo) Project

(Ref. 1) to investigate and mature the Architecture Centric

Virtual Integration Process (ACVIP). ACVIP is a DoD

process fashioned after System Architecture Virtual

Integration (SAVI) (Ref. 2) performed by a consortium of

aerospace organizations. Like SAVI, the purpose of the

ACVIP is to address the affordability and associated risks of

developing complex software intensive systems through

early virtual integration and analysis before implementation.

Achitecture-led requirement specification (ALRS) addresses

the problem of a high percentage of iambiguous, mssing, and

incomplete requirements found in textual requirement

documents that result in costly rework later in development.

It improves the quality of requirements by assuring better

coverage of requirements along two dimensions. (ALSA)

Architecture-led safety analysis assures improved coverage

of safety hazards through a fault propagation ontology and

This material is based upon work funded and supported by

the Department of Defense under Contract No. FA8721-05-

C-0003 with Carnegie Mellon University for the operation

of the Software Engineering Institute, a federally funded

research and development center.

This material has been approved for public release and

unlimited distribution.

Carnegie Mellon® is registered in the U.S. Patent and

Trademark Office by Carnegie Mellon University.

DM-0002390

allows for automation of currently labor-intensive best safety

analysis practices, e.g., SAE ARP4761.

ARCHITECTURE LED REQUIREMENTS

SPECIFICATION (ALRS)

The Architecture Led Requirements Specification

(ALRS) process utilizes the AADL ALRS adapts the eleven

step process outlined in the Federal Aviation Administration

(FAA) Requirements Engineering Management Handbook

(Ref. 3). ALRS adapts the CPRET (Ref.4) representation of

a system defined by the Association Française d'Ingénierie

Système which is shown graphically in Figure 3.

Figure 3- Elements of a System Specification

In the ALRS process a user models a system in its

operational context as an AADL model of interacting

systems. An explicit model of these interacting systems

guides the user to specifying requirmenets regarding each of

these system interactions in terms of input assumptions,

output guarantees, invariants on system state and behavior,

as well as asusmptions about resoruces being utilized, and

interactions with supervisory capabilities.

When used in the context of an existing requirement

document, users map the requirments to an AADL model.

This mapping helps the user to quickly identify any gaps in

the set of requrirements. It also lets the user see whether a

requirement section cover one or more system components.

DISTRIBUTION STATEMENT A. Approved for public release. Distribution unlimited.

2

ALRS utilizes utility trees from a Quality Attribute

Workshop (QAW) (Ref. 5) or an Architecture Tradeoff

Analysis Method (ATAM) (Ref. 6) to provide a framework

for achieving coverage of non-functional properties, also

known as operational quality attributes. Prioritization of the

utility tree leafs driven by mission goals help the user ensure

that critical requirements are well-specified. Such a utility

tree is shown in Figure 4.

Figure 4: Quality Attribute Utility Tree

Early in the development process the SEI team captured

requirement information from the JCA Demo BAA and

Stakeholder and Systems Requirements documents of the

aircraft survivability situational awareness (ASSA) system

as well as UML models made available to suppliers of a

data correlation and fusion system. This analysis identified

shortcomings in the system-level and component-level

requirements. They included inconsistencies, and missing

requirement information in the original documents, as well

as defects related to safety, latency, and timing / resource

utilization. This was achieved by modeling the system in its

operational context as well as the functional and the system

architecture of the ASSA itself. The resultant architecture

model was generalized into an aircraft survivability

situational awareness (ASSA) system, creating a reusable

reference architecture for the domain of use.

This ASSA system incorporates the MIS and the DCFM,

both of which provide several functional services. Figure 5

shows the functional architecture of ASSA with a clear

deliniations of its interface with the operational

environment. In addition it shows three infrastructure

services. Two services are provided in a layer below the

situational awareness system, i.e., the data conversion

service, and the data management service. The third service,

a health monitor, resides in a layer above the situational

awareness system to detect and report any exceptional

conditions in the operation.

Figure 5 – Layered Architecture of ASSA System

The resultant functional architecture also became the

basis for quantitative analysis of the ASSA early in

development, e.g., pre-PDR. As Figure 5 shows, the model

included end- to-end flow specifications of a critical flow to

represent response time requirements. It also captures a

UML sequence diagram from the original documentation as

an analyzable interaction protocol across ARINC653

partitions. The latency analysis capability of OSATE2

informed us of the latency overhead contributed by this

protocol, and its effect on the critical flow, i.e., that in the

best circumstances the requirement can barely be met.

ARCHITECTURE LED SAFETY ANALYSIS

(ALSA)

Figure 6- Identification of Hazard Sources and Impact

The ALSA process builds on the AADL created for the

ASSA during the reuirement specification process. The user

DISTRIBUTION STATEMENT A. Approved for public release. Distribution unlimited.

3

annotates an AADL model with fault information utilizing

an error propagation ontology as illustrated graphically in

Figure 6. The error propagation ontology addresses issues of

service omission, commission, value, timing, rate, sequence,

replication, concurrency, authorization, and authentication

errors. Users can adapt this ontology to commonly used

hazard guide words, such as loss of power. The propagation

paths between system components are derived from the

architecture specification itself.

This process leverages the AADL Error Model Version

2 (EMV2) Annex (Ref. 7) to support SAE ARP-4761 (Ref.

8) best system safety analysis practices, such as an FHA,

FMEA and FTA. The analysis models, such as a fault tree,

are generated from the annotated AADL model, and then

processed by a FTA tool. In the case of FHA and FMEA the

respective reports are generated directly from the annotated

AADL model – as shown in Figure 7. In the SAVI initiative

the SEI recently demonstrated how the SAE ARP-4761

process can be supported by an AADL model annotated with

fault information using the Error Model Annex standard for

AADL on an aircraft wheel braking system. FHA, FMEA,

and FTA reports as well reliability/availability analysis

reports have been generated from safety analysis performed

with such a model.

Figure 7- Safety Analyses from Annotated AADL

Models

An Architecture-Led Safety Analysis (ALSA) was

conducted on the ASSA. In the common safety analysis

practice ASSA was assigned a design assurance level E with

respect to flight worthiness. However, since aircraft does get

lost due to enemy threats, obstacles, and terrain variation, we

considered it a critical component that get the attention of a

safety analysis. In addition to complete failure of providing

the ASSA service, the hazards considered included

providing false information such as false positives in the

form of alerting the pilot of threats and obstacles that do not

exist, false negatives such as not alerting the pilot when

these threats and obstacles exist. In addition the timeliness of

information was taken into account, i.e., how much

information delay is acceptable to the pilot. Subsequent to

citing the hazards, the potential error sources were

systematically identified that can propagate as one of the

identified hazard categories to the pilot. A fault ontology

provided as part of the AADL Standard Error Model annex

was used as a checklist of fault propagation categories to

consider in the process.

The insights from this analysis lead to a set of derived

safety requirements for the health monitoring system that

were lacking in the original System Requirement document.

The primary focus of the health monitoring system was on

detection and reporting, i.e. it is responsible for recognizing

when one of the identified hazard conditions occurs and then

informs the pilot to that effect.

JCA DEMO ACVIP ANALYSIS FINDINGS

AND LESSONS LEARNED

Previous studies have shown that peer review is a very cost-

effective means of defect detection, partly because it was the

only traditional method that could be applied in early

development phases. The ACVIP researcher’s experience is

that many defects were detected during model development

even before analysis tools were applied. This is achieved by

mapping terms in the document into concepts expressed by

AADL. Users quickly realize different terms used in

different sections of the documents for the same concepts,

and conflicting statements about specific attributes of model

elements, e.g., two different numbers for range of operation.

Strong typing in AADL ensures that interactions between

virtually integrated system components are consistent, e.g.,

that measurement units and interchange protocols are used

consistently. In other words, the rigor of the AADL focuses

attention on ambiguous and incomplete elements of a natural

language document and eliminates potential system

integration problems early in the process. This is consistent

with earlier reports that a significant benefit of modeling is

more precise specification; many defects are found during

the model development phase (Ref. 9).

Earlier studies showed that providing reviewers with

structured guidelines (often called reading guidelines or

techniques in the inspection literature) improved the quality

of reviews. In model-based engineering, the model

development task could be viewed as a particularly well-

structured review method (Ref. 10)

The ACVIP related goals for JMR Mission Systems

Architecture Demonstrations (MSAD) such as the JCA

Demo are to identify, validate, mature and transition

methods and tools to support an architecture centric virtual

integration process. This exercise also generated new

modeling guidelines and tool requirements (as well as bug

reports for tool developers and errata for the AADL

standards committee).

DISTRIBUTION STATEMENT A. Approved for public release. Distribution unlimited.

4

The ACVIP researchers provided reports citing around

85 findings, 70 that were attributed to requirements analyses

and 15 to timing analyses that will be rolled up in the JCA

Demonstration Final Report. Some notable areas identified

by the ACVIP team included:

 Relationship of component states and MIS system

state not being fully specified

 Lack of a specification of currency/staleness for the

data

 No identification of end-to-end timing requirement

for hazard data

 Partition schedule not meeting ARINC 653

scheduling rules

 Non-clarity in protocol from MIS to support

multiple or single instantiation of DCFM

 Non-clarity in data storage requirement between the

DCFM and MIS

 Ambiguity on the MIS system Operational State

when a clock timer expires

 Lack of a requirement for the number of source

tracks the aircraft survivability sensor provides

 Possibility of track jitter will be seen in integration

 Multiple sensor stream rates may have implications

on integration.

 Cross partition timing issues in the ARINC 653

schedule

 Inconsistency in the area of threat ranges between

the DCFM and MIS making it unclear how alerts

would be handled

 Potential memory leaks in MIS identified

 Ambiguity in the requirement to correlate 50 source

tracks within 1 second and concern over meeting

the requirement.

Some of these issues with relation to the DCFM were

also cited by the DCFM vendors independently of the

ACVIP researchers. At the time of this paper’s writing the

MIS team were able to confirm several of these and other

findings by ACVIP; however, several are still to be

confirmed in integration testing. A spreadsheet of the

findings by the ACVIP team was sent to the MIS team to

confirm the findings. The findings by the ACVIP team

demonstrated that in a real program that these issues would

have been identified and corrected even prior to solicitation

which could have led to a cost savings and / or development

schedule reduction.

CONCLUSION

ACVIP is an architectural centric model based approach that

will revolutionize the way in which we analyze our systems.

Results of the JCA Demo ACVIP Shadow effort

demonstrated that ACVIP has potential to provide strong

architectural analysis to identify and aid in the early

resolution of issues. AADL is being used in many company

and organization research efforts. ACVIP and its guidance,

tools, and processes are going through maturation and

require further refinements and maturation to be effective for

future DoD acquisition of aviation mission computing

systems. JMR Mission Systems Architecture

Demonstrations will continue to work with the ACVIP

researchers and ensure that the exercise, documentation and

lessons learned mature these processes and tools so that they

can effectively be used by avionics and systems engineers in

the future. Industry and Government need to work together

to improve ACVIP so that future development / integration

efforts can benefit from early virtual integration, validation

and verification.

1 Department of the Army, Army Contracting

Command. “A Joint Multi-Role Technology Demonstrator

(JMR TD) Joint Common Architecture Demonstration (JCA

Demo) Broad Agency Announcement (BAA)”. Location

ACC-RSA-AATD-(SPS), 2014. Solicitation Number

W911W614R000002.

2
 Aerospace Vehicle Systems Institute.

http://savie.avsi.aero. [Online]

3 DOT/FAA/AR-08/32. “Requirements Engineering

Managmeent Handbook”. June 2009.

4 Association Française d'Ingénierie Système. CPRET:

System Process as Constraints, Products, Resources, input

Elements and Transformations. [Online]

http://en.wikipedia.org/wiki/Process_%28engineering%29#

CPRET.

5 CMU-SEI. Quality Attribute Workshop. [Online]

http://www.sei.cmu.edu/architecture/tools/establish/qaw.cfm

6 CMU SEI. Architecture Tradeoff Analysis Method

[Online]

http://www.sei.cmu.edu/architecture/tools/establish/atam.cf

m.

7 SAE International, AS-2C. Architecture Analysis and

Design Language (AADL) Annex Volume 3 Annex E: Error

Model Annex, Draft. Dec 2013. AS 5502/3.

8 SAE International, SAE ARP-4761. Guidelines and

Methods for Conducting the Safety Assessment Process on

Civil Airborne Systems and Equipment. 1996

9 Edmund M. Clark, Jeannette M. Wing, “Formal

Methods: State of the Art and Future Directions”, ACM

Computing Surveys. 1996.

10 Laitenberger, Oliver, “A Survey of Software

Inspection Technologies, Handbook on Software

Engineering and Knowledge Engineering”. 2002.

