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Architecture-led Requirements and Safety Analysis of an Aircraft Survivability 

Situational Awareness System 

Dr. Peter Feiler, Software Engineering Institute, Carnegie Mellon Universityphf@sei.cmu.edu 

Software cost in mission and safety-critical systems has been escalating exponentially due to high requirement error 

leakage into system integration. Furthermore, system tests are designed against a large percentage of ambiguous, 

missing, and incomplete requirements. The Architecture Centric Virtual Integration Process (ACVIP) is being 

investigated by the US Army to address these challenges. It is an adaptation of the System Architecture Virtual System 

Integration (SAVI) approach based on the SAE Architecture Analysis & Design Language (AADL). It is a model-based 

approach to detect and remove defects through virtual system integration and analysis. In this paper we describe an 

architecture-led approach to specification of verifiable requirements and to system safety analysis to improve the quality 

of requriemnts as well as sasfety hazards and their mitigation through derived requirements for a sasfety system. A 

primary objective of this approach is to achieve improved coverage of requiremetns and safety hazards. 

 

INTRODUCTION  

The Software Engineering Institute® (SEI) performed an 

architecture-led requirement specification and safety 

analysis in a shadow project of the United States Army 

Aviation Development Directorate (ADD) on the Joint Multi 

Role (JMR) Technology Demonstrator effort’s Joint 

Common Architecture Demonstration (JCA Demo) Project 

(Ref. 1) to investigate and mature the Architecture Centric 

Virtual Integration Process (ACVIP). ACVIP is a DoD 

process fashioned after System Architecture Virtual 

Integration (SAVI) (Ref. 2) performed by a consortium of 

aerospace organizations.  Like SAVI, the purpose of the 

ACVIP is to address the affordability and associated risks of 

developing complex software intensive systems through 

early virtual integration and analysis before implementation.     

Achitecture-led requirement specification (ALRS) addresses 

the problem of a high percentage of iambiguous, mssing, and 

incomplete requirements found in textual requirement 

documents that result in costly rework later in development. 

It improves the quality of requirements by assuring better 

coverage of requirements along two dimensions. (ALSA) 

Architecture-led safety analysis assures improved coverage 

of safety hazards through a fault propagation ontology and 
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allows for automation of currently labor-intensive best safety 

analysis practices, e.g., SAE ARP4761. 

ARCHITECTURE LED REQUIREMENTS 

SPECIFICATION (ALRS) 

The Architecture Led Requirements Specification 

(ALRS) process utilizes the AADL ALRS adapts the eleven 

step process outlined in the Federal Aviation Administration 

(FAA) Requirements Engineering Management Handbook 

(Ref. 3). ALRS adapts the CPRET (Ref.4) representation of 

a system defined by the Association Française d'Ingénierie 

Système which is shown graphically in Figure 3.  

 

Figure 3- Elements of a System Specification 

In the ALRS process a user models a system in its 

operational context as an AADL model of interacting 

systems. An explicit model of these interacting systems 

guides the user to specifying requirmenets regarding each of 

these system interactions in terms of input assumptions, 

output guarantees, invariants on system state and behavior, 

as well as asusmptions about resoruces being utilized, and 

interactions with supervisory capabilities.  

When used in the context of an existing requirement 

document, users map the requirments to an AADL model. 

This mapping helps the user to quickly identify any gaps in 

the set of requrirements. It also lets the user see whether a 

requirement section cover one or more system components. 
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ALRS utilizes utility trees from a Quality Attribute 

Workshop (QAW) (Ref. 5) or an Architecture Tradeoff 

Analysis Method (ATAM) (Ref. 6) to provide a framework 

for achieving coverage of non-functional properties, also 

known as operational quality attributes. Prioritization of the 

utility tree leafs driven by mission goals help the user ensure 

that critical requirements are well-specified. Such a utility 

tree is shown in Figure 4. 

 

Figure 4: Quality Attribute Utility Tree 

Early in the development process the SEI team captured 

requirement information from the JCA Demo BAA and 

Stakeholder and Systems Requirements documents of the 

aircraft survivability situational awareness (ASSA) system 

as well as UML models made available to suppliers of a 

data correlation and fusion system. This analysis identified 

shortcomings in the system-level and component-level 

requirements. They included inconsistencies, and missing 

requirement information in the original documents, as well 

as defects related to safety, latency, and timing / resource 

utilization. This was achieved by modeling the system in its 

operational context as well as the functional and the system 

architecture of the ASSA itself. The resultant architecture 

model was generalized into an aircraft survivability 

situational awareness (ASSA) system, creating a reusable 

reference architecture for the domain of use.  

This ASSA system incorporates the MIS and the DCFM, 

both of which provide several functional services. Figure 5 

shows the functional architecture of ASSA with a clear 

deliniations of its interface with the operational 

environment. In addition it shows three infrastructure 

services. Two services are provided in a layer below the 

situational awareness system, i.e., the data conversion 

service, and the data management service. The third service, 

a health monitor, resides in a layer above the situational 

awareness system to detect and report any exceptional 

conditions in the operation. 

 

Figure 5 – Layered Architecture of ASSA System 

The resultant functional architecture also became the 

basis for quantitative analysis of the ASSA early in 

development, e.g., pre-PDR. As Figure 5 shows, the model 

included end- to-end flow specifications of a critical flow to 

represent response time requirements.  It also captures a 

UML sequence diagram from the original documentation as 

an analyzable interaction protocol across ARINC653 

partitions. The latency analysis capability of OSATE2 

informed us of the latency overhead contributed by this 

protocol, and its effect on the critical flow, i.e., that in the 

best circumstances the requirement can barely be met. 

ARCHITECTURE LED SAFETY ANALYSIS 

(ALSA) 

 

Figure 6- Identification of Hazard Sources and Impact 

The ALSA process builds on the AADL created for the 

ASSA during the reuirement specification process. The user 



DISTRIBUTION STATEMENT A. Approved for public release. Distribution unlimited. 

3 

annotates an AADL model with fault information utilizing 

an error propagation ontology as illustrated graphically in 

Figure 6. The error propagation ontology addresses issues of 

service omission, commission, value, timing, rate, sequence, 

replication, concurrency, authorization, and authentication 

errors. Users can adapt this ontology to commonly used 

hazard guide words, such as loss of power. The propagation 

paths between system components are derived from the 

architecture specification itself. 

This process leverages the AADL Error Model Version 

2 (EMV2) Annex (Ref. 7) to support SAE ARP-4761 (Ref. 

8) best system safety analysis practices, such as an FHA, 

FMEA and FTA. The analysis models, such as a fault tree, 

are generated from the annotated AADL model, and then 

processed by a FTA tool. In the case of FHA and FMEA the 

respective reports are generated directly from the annotated 

AADL model – as shown in Figure 7. In the SAVI initiative 

the SEI recently demonstrated how the SAE ARP-4761 

process can be supported by an AADL model annotated with 

fault information using the Error Model Annex standard for 

AADL on an aircraft wheel braking system. FHA, FMEA, 

and FTA reports as well reliability/availability analysis 

reports have been generated from safety analysis performed 

with such a model. 

 

Figure 7- Safety Analyses from Annotated AADL 

Models 

An Architecture-Led Safety Analysis (ALSA) was 

conducted on the ASSA. In the common safety analysis 

practice ASSA was assigned a design assurance level E with 

respect to flight worthiness. However, since aircraft does get 

lost due to enemy threats, obstacles, and terrain variation, we 

considered it a critical component that get the attention of a 

safety analysis. In addition to complete failure of providing 

the ASSA service, the hazards considered included 

providing false information such as false positives in the 

form of alerting the pilot of threats and obstacles that do not 

exist, false negatives such as not alerting the pilot when 

these threats and obstacles exist. In addition the timeliness of 

information was taken into account, i.e., how much 

information delay is acceptable to the pilot. Subsequent to 

citing the hazards, the potential error sources were 

systematically identified that can propagate as one of the 

identified hazard categories to the pilot. A fault ontology 

provided as part of the AADL Standard Error Model annex 

was used as a checklist of fault propagation categories to 

consider in the process. 

The insights from this analysis lead to a set of derived 

safety requirements for the health monitoring system that 

were lacking in the original System Requirement document. 

The primary focus of the health monitoring system was on 

detection and reporting, i.e. it is responsible for recognizing 

when one of the identified hazard conditions occurs and then 

informs the pilot to that effect.  

JCA DEMO ACVIP ANALYSIS FINDINGS 

AND LESSONS LEARNED 

Previous studies have shown that peer review is a very cost-

effective means of defect detection, partly because it was the 

only traditional method that could be applied in early 

development phases.  The ACVIP researcher’s experience is 

that many defects were detected during model development 

even before analysis tools were applied.  This is achieved by 

mapping terms in the document into concepts expressed by 

AADL. Users quickly realize different terms used in 

different sections of the documents for the same concepts, 

and conflicting statements about specific attributes of model 

elements, e.g., two different numbers for range of operation. 

Strong typing in AADL ensures that interactions between 

virtually integrated system components are consistent, e.g., 

that measurement units and interchange protocols are used 

consistently. In other words, the rigor of the AADL focuses 

attention on ambiguous and incomplete elements of a natural 

language document and eliminates potential system 

integration problems early in the process. This is consistent 

with earlier reports that a significant benefit of modeling is 

more precise specification; many defects are found during 

the model development phase (Ref. 9). 

Earlier studies showed that providing reviewers with 

structured guidelines (often called reading guidelines or 

techniques in the inspection literature) improved the quality 

of reviews.  In model-based engineering, the model 

development task could be viewed as a particularly well-

structured review method (Ref. 10) 

The ACVIP related goals for JMR Mission Systems 

Architecture Demonstrations (MSAD) such as the JCA 

Demo are to identify, validate, mature and transition 

methods and tools to support an architecture centric virtual 

integration process.  This exercise also generated new 

modeling guidelines and tool requirements (as well as bug 

reports for tool developers and errata for the AADL 

standards committee).  
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The ACVIP researchers provided reports citing around 

85 findings, 70 that were attributed to requirements analyses 

and 15 to timing analyses that will be rolled up in the JCA 

Demonstration Final Report.  Some notable areas identified 

by the ACVIP team included: 

 Relationship of component states and MIS system 

state not being fully specified 

 Lack of a specification of currency/staleness for the 

data 

 No identification of end-to-end timing requirement 

for hazard data 

 Partition schedule not meeting ARINC 653 

scheduling rules 

 Non-clarity in protocol from MIS to support 

multiple or single instantiation of DCFM 

 Non-clarity in data storage requirement between the 

DCFM and MIS 

 Ambiguity on the MIS system Operational State 

when a clock timer expires   

 Lack of a requirement for the number of source 

tracks the aircraft survivability sensor provides 

 Possibility of track jitter will be seen in integration 

 Multiple sensor stream rates may have implications 

on integration. 

 Cross partition timing issues in the ARINC 653 

schedule 

 Inconsistency in the area of threat ranges  between 

the DCFM and MIS making it unclear how alerts 

would be handled 

 Potential memory leaks in MIS identified 

 Ambiguity in the requirement to correlate 50 source 

tracks within 1 second and concern over meeting 

the requirement. 

Some of these issues with relation to the DCFM were 

also cited by the DCFM vendors independently of the 

ACVIP researchers.  At the time of this paper’s writing the 

MIS team were able to confirm several of these and other 

findings by ACVIP; however, several are still to be 

confirmed in integration testing.  A spreadsheet of the 

findings by the ACVIP team was sent to the MIS team to 

confirm the findings.  The findings by the ACVIP team 

demonstrated that in a real program that these issues would 

have been identified and corrected even prior to solicitation 

which could have led to a cost savings and / or development 

schedule reduction. 

CONCLUSION 

ACVIP is an architectural centric model based approach that 

will revolutionize the way in which we analyze our systems.  

Results of the JCA Demo ACVIP Shadow effort 

demonstrated that ACVIP has potential to provide strong 

architectural analysis to identify and aid in the early 

resolution of issues. AADL is being used in many company 

and organization research efforts. ACVIP and its guidance, 

tools, and processes are going through maturation and 

require further refinements and maturation to be effective for 

future DoD acquisition of aviation mission computing 

systems. JMR Mission Systems Architecture 

Demonstrations will continue to work with the ACVIP 

researchers and ensure that the exercise, documentation and 

lessons learned mature these processes and tools so that they 

can effectively be used by avionics and systems engineers in 

the future.  Industry and Government need to work together 

to improve ACVIP so that future development / integration 

efforts can benefit from early virtual integration, validation 

and verification. 
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