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ABSTRACT 

This work investigates the use of modern simulation techniques for 

evaluating artillery movement doctrine. A simulation called the Artillery 

Survivability Model was created as a proof of principle. The simulation 

incorporates the most salient features relating to artillery survivability according 

to our small-scale survey of expert opinion on this subject. It consists of a 3D 

agent-based simulation that incorporates AI technology that is novel to this 

domain, including terrain analysis, advanced movement planning, and GPU-

based particle filters to represent enemy anticipation of friendly artillery behavior.  

The simulation has been created with the popular game engine Unity 3D, 

and has two different modes. The first is the experiment mode, which is executed 

from command line without rendering any image, and runs up to 50 times faster 

than the real-time simulation. Therefore, it is a suitable platform to perform 

multiple runs for experimenting. The experiment mode also enables users to set 

their own design of experiment by manipulating an editable CSV file. The second 

one is a real-time mode that renders a 3D virtual environment of a restricted 

battlefield where the survivability movements of an artillery company are 

visualized. This mode provides detailed visualization of the simulation and 

enables future experimental uses of the simulation as a training tool.  
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DISCLAIMER 

The reader is cautioned that the computer program developed in this 

thesis may not have been exercised for all cases of interest. While every effort 

has been made, within the time available, to ensure that the programs are free of 

computational and logical errors, they cannot be considered validated. Any 

application of these programs without additional verification is at the risk of the 

user. 
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I. INTRODUCTION 

A. PROBLEM STATEMENT 

War is a complex phenomenon that happens unexpectedly and in a 

multidisciplinary environment. Since the ancient times, various plans and detailed 

preparations have been implemented by commanders to change the flow of the 

war and become the ultimate winner. In this fight, artillery has always been an 

irreplaceable element after its invention. Its importance dates back to 12th 

century China, where the first cannon was shot. Throughout history, several 

cannons and mortars have been designed to take advantage of the indirect fire. 

The evolution of artillery triggered the development of position tracking 

systems, which are built to locate the precise indirect shooters. Today’s 

equivalent of these devices, counter-battery radars are capable of detecting firing 

positions in minutes, which significantly decreases the survival time spent in a 

firing position. Therefore, artillery units have limited time to conduct their fire 

missions in the planned firing positions, because their locations are probably 

going to be detected in a short span of time. To be able to provide continuous fire 

support, which is one of the main purposes of the artillery, units should move to 

the next planned or available firing position for further shootings. 

On today’s fluid, crowded battlefield, the movement and positioning of field 

artillery units is a very complicated process that includes position selection, 

terrain management, movement planning and control, and the coordination of 

survey support for firing and target acquisition operations (Department of the 

Army, 2001). As the war goes on, the challenge of finding new positions will get 

even harder with time, since many firing spots would have already been occupied 

before, the attack of our own troops would not always advance, and artillery units 

could have been stuck on the same area. Detailed conduction of air, ground, and 

map reconnaissance may increase the number of planned movement and 

positioning maneuvers; but unexpected circumstances, and failed or delayed 
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offensive tasks would force the artillery units to occupy new, unchecked 

positions. This decision-making process under enemy fire would be stressful 

enough to lead to unsuccessful maneuvering and positioning.  

In addition to survival, artillery units have to coordinate their movement for 

efficient fire support. Rather than changing whole battalion positions, it is wiser to 

have one or two batteries shooting while other units change positions. In this 

way, the continuous fire support need of maneuver units can be satisfied. 

Movement planning will become more complicated if the assigned physical area 

is smaller, or if the terrain restricts movement and canalizes troops to certain 

trails. Moreover, logistics considerations will affect the movement planning in 

order to have efficient resupply tasks. 

There are numerous parameters and considerations to move and position 

artillery units properly. Even detailed and sensible mission planning before battle 

provides decision aid to a certain degree. During intense battles, the 

concentration on the firing missions, and communication and coordination with 

maneuver units are the real burdens that require a lot of effort. To enhance a 

mission’s success, units should focus on positioning and movement coordination. 

Ultimately, there is a need for a new algorithm, method, and tool, which 

can facilitate this decision-making process and help choose optimal destinations 

for future firing missions. Currently, there is no software tool in use that optimizes 

position selection and unit displacement for artillery. To fill this gap, the purpose 

of this thesis is to create a software tool that takes real terrain information, 

friendly artillery units capabilities, fire missions, enemy artillery shootings, enemy 

radar target acquisition capability, resupply tasks (partially), and other aspects 

into account. The following chapters will focus on the creation of this new 

software tool. 
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B. SCOPE OF THE THESIS AND RESEARCH QUESTIONS 

This thesis focuses on creating a 3D agent-based simulation that 

computes the recommended survivability movements of an artillery unit to new 

firing positions in a given position area. 

The thesis will focus on the survivability movements of self-propelled 

howitzer artillery unit that supports attacking maneuver units. The modern 

howitzers are able to compute their own technical firing data, such as T-155 

FIRTINA (Turkish Army), and M109A6 Paladin (U.S. Military). The simulation will 

analyze the terrain for optimal firing positions, assign howitzer batteries, 

platoons, and sections to these positions, and will look for new proper positions 

when the previous ones are detected or are no longer available for accurate 

shooting.  

Following are some assumptions: 

 Forestlands and small areas with a high-level density of trees will 
be regarded as obstacles, and will provide concealment. Trees will 
be not included in the angle-of-site to crest calculations. 

 A company-level artillery unit will be simulated with six self-
howitzers in the 3D environment. It will be assumed that positioning 
battery support elements are properly done. 

 Logistics with infinite supply will be assumed to be running 
perfectly.  When the howitzer ammunition and fuel are depleted, 
one battalion rearm, refuel, resupply, and survey point (R3SP) will 
be simulated on a fixed position for howitzer platoons and sections 
to rearm. Damaged howitzers will fight until they are destroyed, 
rather than being sent to Field Trains or repaired. 

 The batteries will consist of two platoons, formed by three self-
propelled howitzers and one platoon operations center (POC). 

 As it is assumed that enough survey control points have been 
installed and marked on the terrain, survey operations will not be 
represented in the simulation. The goal of this thesis is to determine 
the optimal movement pattern of an artillery unit in combat, by 
modeling limited battlefield environment. Although there are 
numerous threats for friendly artillery units on the battlefield, this 
thesis will focus on the enemy artillery fire as the main threat. The 
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simulation terrain will be imported from real terrain satellite maps, 
using a Bing (Microsoft) database. 

 A Unity 3D Game Engine will be used to create the simulation. 

 The Agent (howitzer) behavior will be modeled. Tactical path 
finding algorithms will be developed to specify the survivability 
movement. 

Following are research questions:  

1. Can an adequate algorithm for artillery be built for optimal 
survivability moves by modeling the terrain, weather, enemy 
howitzers and radars, and enemy target acquisition assets on a 3D 
environment? 

2. How can an indirect fire threat map for artillery be built for further 
analysis and incorporation into the algorithm? 

3. Can the simulation constructed to develop and validate the 
algorithm provide insight into the factors affecting the survival of the 
artillery? 

4. By comparing their work and simulation results, can this simulation 
tool train artillery officers who would be asked to inspect the terrain, 
evaluate the tactical situation, and determine the positioning 
change path of artillery unit beforehand? 

C. BACKGROUND 

This thesis will cover movement considerations for survivability in 

conventional offensive missions. Defensive operations, urban warfare tactics, 

and other similar operations will be excluded from this study. 

1. Main Considerations 

One of the main positioning considerations is to avoid positioning artillery 

units close to major avenues of approach (Department of the Army, 2014). The 

continuous fire support should not be interrupted by any possible enemy 

breakthrough. According to the manual, commanders assign artillery units to a 

position area, where individual units can maneuver to survive. This area is not a 

specific location for the artillery to occupy. Instead, artillery commanders should 

choose appropriate firing positions in the position area coordinating with 
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maneuver headquarters, artillery headquarters, and fire cells. Prior to battle, 

picking up suitable positions, inspecting the whole position area, and putting 

them in a reasonable order for occupation in the following phases of war are 

crucial for proper reconnaissance. 

In addition to checking suitability of the positions, possible routes among 

these positions have to be inspected for safety, cover protection, and ease of 

movement. Having an efficient plan depends upon a detailed planning process, 

which requires a dedicated amount of time. Although commanders usually have 

enough time to plan operations before any contact, time will become a more 

restricted resource in oncoming phases of war. Moreover, as the maneuver 

develops, the planning factors become more complicated, and a better 

coordination between the headquarters is required. To facilitate movement 

planning, aerial reconnaissance provided by helicopters or unmanned aircraft 

systems can be used. 

During the positioning plan process, the range of friendly weapons must 

be taken into account, and the effective range should be maximized to provide 

more efficient fire support. Additionally, ―positioning considerations include 

communications requirements, security risks, and logistical support‖ (Department 

of the Army, 2014, p. 1–52). 

The vulnerability to detection due to firing signature can be weakened by 

being able to disperse, hide, fire, and then displace quickly. These actions will 

increase the chance of survivability and the survival time. With the advance of 

the technology of target acquisition assets, time that can be spent on a firing 

position is decreasing. This time duration must be defined elaborately by 

considering the trade-off between continuous fire support and survival. The 

trigger for displacement may depend upon the ―number of rounds fired in current 

location, duration of firing, and time in position‖ (Department of the Army, 2014, 

p. 1–52). To summarize, some of the main things to consider during the 

coordination of the position area include: 
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 The capability to achieve essential fire support tasks (EFSTs) and 
essential field artillery tasks (EFATs) assigned to a battalion 

 ―Maximum range requirements and available ammunition to support 
the tasks‖ (Department of the Army, 2000, p. 3-2) 

 Terrain suitability for offensive and defensive considerations 

 Communications with higher- and lower-echelon units, as well as 
adjacent units 

 Survivability 

 Future operations (Department of the Army, 2000) 

2. Tactics and Technical Details 

Since this thesis will focus on the operation of modern and self-propelled 

howitzers, we will focus on procedures for the M109A6 Paladin howitzer, which 

makes the Department of the Army (2000) our main reference manual. 

A position area for artillery is an area assigned to an artillery unit 
where individual artillery systems can maneuver in order to 
increase their survivability. A position area for artillery is not an area 
of operations for the artillery unit occupying it. The maneuver 
commander assigns position areas for artillery as a terrain 
management technique. A position area for artillery potentially 
attracts enemy counter fire, so other units should stay away from 
that area to avoid enemy artillery attacks. The exact size of a 
position area for artillery depends on the mission variables of 
mission, enemy, terrain and weather, troops and support available, 
time available, civil considerations (METT-TC). (Department of the 
Army, 2014, p. 4–14) 

―Under normal conditions, the smallest unit for tactical displacement is the 

platoon‖ (Department of the Army, 2000, p. 3-2), which is considered an 

individual march element that facilitates command, control, and logistical 

operations. ―A Paladin platoon may require a position area on the order of 1,500 

by 3,000 meters‖ (Department of the Army, 2000, p. 3-3). The higher the threat of 

counter fire, the more survivability moves are required by Paladin within a given 

position area. Controlled by one Platoon Operation Center; another option would 
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include a battery (six howitzers) operating on a single position area of 3,000 x 

3,000 meters. 

As an advantage over conventional howitzers, Paladins can occupy 

unsuitable firing positions that usually limit the movement and the fire capacity of 

older models. If there is enough space to establish an azimuth of fire, and the 

ground is firm enough to move around, the position can be considered as 

appropriate for Paladin operations.  

In a mid- to high-intensity threat environment, the Chief of Section 
must assume that the Target Acquisition assets of enemy are able 
to detect the first round fired from any position and that the enemy 
would respond in as little as 5 to 12 minutes. Paladin survives with 
the combination of movement and dispersion. A survivability move 
of 300 to 500 meters removes the howitzers from target footprint of 
most threat artillery systems. Managing survivability moves requires 
teamwork between the howitzers and the Platoon Operations 
Center. (Department of the Army, 2000, p. 3–11) 

The tactical situation affects the employment method of howitzers. For 

example, if the enemy air threat is considered high, units should operate more 

decentralized, and howitzer units should operate as single howitzers in pairs, or 

at least as platoons. Using howitzers in little groups rather than operating as a 

whole battery (six howitzers), increases survivability, and enables the battery 

executing more than one mission type at the same time. 

The battery Commander should also assess enemy counter-fire threat 

when deciding on the deployment method. In case of high enemy counter-fire 

threat and low ground attack threat, it may be wise to use howitzers in pairs. On 

the other hand, keeping howitzers together and letting them operate as platoon 

(three howitzers) or battery (six howitzers) will provide units with mutual air and 

ground defense. Additionally, as the level of the employment method decreases, 

the operations become harder to command and control, which requires a higher 

crew training level. 

The platoon operations center usually does not change positions with 

howitzers on the position area. Instead, it relies upon cover and concealment to 
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survive and establish communication with upper units and howitzers. To avoid 

counter fire, it must stay outside the firing area. During occupation, POC follows 

the following procedures: 

 Is there a suitable position? If yes, 

 Does the position provide good communication? 

 Does the position provide concealment? 

 Are there any high-speed avenues of approach nearby? 

 Does the position provide available escape routes (Department of 
the Army, 2000)? 

The ability to disperse, hide, fire, and then displace quickly helps 
negate the vulnerability of firing units to detection based on their 
firing signature. We should also keep in mind that this firing 
signature may also endanger any nearby units. The battery 
commander will issue movement criteria to the platoon leader for 
displacement and survivability moves. Some triggers for movement 
may include the number of rounds fired in current location, duration 
of firing, and time in position. (Department of the Army, 2014, p. 1–
52) 

Executing the fire plan during war and finding the next suitable firing 

position in the designated position area are complicated duties for artillery 

personnel, and often require additional considerations. As fighting intensifies, 

firing, moving, and occupying new positions are likely to get more intricate due to 

the lack of reasonable algorithms that provide adequate firing positions as an 

output. Making this decision without any computational aid would probably 

decrease the survivability rate and lead to unreasonable displacement 

movements. 

To develop an efficient survivability movement algorithm that will increase 

the survivability time of friendly units, an unpredictable decision about the next 

firing position should be made after each firing. If our movement follows a 

predictable pattern, our units are more likely to be shot earlier, and have a 

shorter survivability time.  
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Creating an algorithm that chooses successive firing positions will provide 

our units with flexibility, agility, and time to respond to unexpected situations 

during battle. Almost every decision in war depends upon several factors such as 

weather, enemy, terrain, and duty. Comprehending these factors in a limited 

time, and reacting simultaneously to other problems, are heavy burdens for 

commanders. Using computational power will definitely improve reaction time to 

enemy fire and increase efficiency on the battlefield by choosing better firing 

positions, and by choosing them faster. 

D. METHODOLOGY 

Since the enemy will probably be able to predict our algorithm by using 

counter battery radars to analyze our position data, using an unpredictable 

pattern while moving between firing positions will require a more stochastic 

approach to define the algorithm. Since the human brain becomes more 

predictable with time, becoming unpredictable and making random choices is 

another reason to use a computational model. 

The main purpose of this thesis is to create a simulation to overcome this 

decision dilemma by choosing the next firing position and generating a 

reasonable path to this position. Following are some specifications of the 

simulation: 

 Real time 

 3D virtual environment 

 Real terrain will be imported from satellite maps 

 Agent based simulation 

Depending upon numerous features that affect survivability time when our 

units decide to occupy this position, the simulation will generate suitable firing 

positions and score them. As mentioned previously, there are many 

considerations related to choosing a good firing position.  
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Rules and suggestions in manuals are often vague and do not follow math 

formulas. Moreover, they lack additional information that could easily be defined 

by an expert. To create an efficient position-choosing algorithm, interviews will be 

conducted with subject matter experts (SME). Thus, the lacking knowledge will 

be elicited from experts, and features of positions will be quantified and 

prioritized. 

After interviewing SMEs, a cognitive task analysis will be made to design 

the conceptual model. According to the answers, factors that affect specific 

functions will be weighted and quantified. Factors considered as not so important 

will be excluded from the model. Interview results will aid in creating the 

conceptual model by benefiting from the ideas and the experience of experts. 

Another reason to consult experts is to make the simulation more objective, 

rather than promoting a biased simulation. 

Because the simulation is agent-based, it will benefit from several Artificial 

Intelligence (AI) modeling techniques. Entities will have their Finite State 

Machines, will provide their own reasoning, and will act on their own. Random 

variables will be used on some parts of their decision-making algorithms to test 

different options, find relationships between these factors, and survivability time. 

The behavior of friendly units and enemy artillery will be modeled. To do this, 

several methods will be studied and examined to find the perfect match for the 

simulation’s purposes.  

After designing the simulation model, it will be coded in the Unity 3D game 

engine platform, which is a popular and free game engine coded in C# and 

TypeScript (a typed superset of JavaScript that compiles to a plain JavaScript 

language).  

The Unity 3D community provides a lot of support for developers. There 

are a number of online forums where developers can find answers to their 

questions. It also has an online store where many 3D models and pre-written 
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scripts (i.e., ―assets‖) are sold or are free to users. Our simulation will benefit 

from these assets to save time and focus on the main problem. 

At the end of the software building process, an experiment will be 

conducted to run this simulation multiple times. The experiment will be designed 

to determine a regression model about artillery survivability time. The factors that 

are assumed to affect artillery survivability time will be inspected by executing a 

two-level fractional factorial design experiment. To achieve this, a different 

approach will be used to make the simulation run faster, as multiple runs should 

be executed for each design point to get more stable results. Fast-forwarding the 

simulation will be problematic since the movement logic of agents will be 

waypoint-based. The larger the time step (delta time), the higher the danger will 

be to overshoot waypoints, which can cause oscillation around the waypoints. A 

detailed discussion about waypoints and the analysis tool JMP Pro 11 can be 

found in Section III.F. 

E. LITERATURE REVIEW 

There are several military simulations in use, both constructive such as 

Combat XXI and virtual such as VBS 3, which model environment, physics, 

fighting and firing (direct or indirect) etc. in different ways. These simulations 

make it possible for commanders to try new tactics without any physical loss or 

expenditure, and also for soldiers to train different aspects without extra effort. 

The focus of these simulations is on maneuver units and direct fire physics. 

Although the artillery is one of the major factors on the battlefield, either the 

specifications of contemporary computers do not allow simulations to contain 

elaborate AI  for indirect fire units, or developers do not add details to the fire 

supporter’s model. There is no simulation that calculates the optimal paths to the 

next firing position. This study intends to fill this gap. 

In this section, related researches will be reviewed. Because of the lack of 

studies similar to this, research that does not directly address the questions of 

this thesis will also be discussed. There is a lot of research directly related to this 



 12 

thesis made by the Chinese Artillery Academy; however, because of their 

confidential level, it was not possible to access these from foreign servers. 

The tool that is based on a very similar idea to the focus of this thesis, 

namely ―finding the optimal positions,‖ is the Firefinder Positioning Analysis 

System (FFPAS), ―a software tool that predicts the site-specific weapon location 

performance for Firefinder radars for a wide range of potential weapon 

placements and characteristics‖ (Fish & Murray, 2008, p. 30). FFPAS analyzes 

the terrain to find optimal positions for counter-battery radars that are used to 

inspect the trajectory of enemy artillery rounds to calculate the position of the 

enemy artillery. The simulation looks for suitable spots that could provide a wide 

range to detect enemy rounds by calculating Line of Sight (LOS). It is not a 

simulation based on artillery unit agents with AI. 

―Optimization of a Marine Corps Artillery Battalion Supply Distribution 

Network‖ by Ryan R. Heisinger (2007) is about a model that simulates ―a supply 

distribution network of roads between the battalion supply area, the firing 

batteries, and the headquarters battery‖ (Heisinger, 2007, p. 7). The model uses 

―Dijkstra’s algorithm to calculate the associated shortest travel distance between 

each pair of logistics nodes and then enumerate all possible tours through the 

logistics nodes‖ (Heisinger, 2007, p. 7), which does not seem to be efficient 

compared to an A* search. This thesis takes into account only the distances; its 

associated model finds the shortest path between nodes using Microsoft Excel 

interface without any 3D simulations. 

Another thesis, ―A Markov Model for Measuring Artillery Fire Support 

Effectiveness‖ by Dennis M. Guzik (1988), presents a Markov model measuring 

effectiveness of the indirect fire support weapon in providing fire support to a 

maneuver element. It also includes a basic movement decision strategy that is 

calculated with a constant probability of detection. Determining the time to 

change the recently occupied fire position is a part of this thesis. However, rather 

than setting detection probability to a constant, it would be more reasonable if it 

were set to a dynamic variable that is dependent on the number of the rounds 
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shot from that position, the time spent on the position, and the firing angle of the 

shot round.  

Another NPS thesis, ―A Command and Control Wargame to Train Officers 

in the Integration of Tactics and Logistics in a Field Artillery Battalion‖ by Michael 

W. Schneider and Anthony R. Ferrara (1989), presents a computer-assisted war 

game that provides ―battalion staff officers some experience in dealing with 

shortcoming‖ (Schneider & Ferrara, 1989, p. 9). The simulation is created in 

Pascal programming language, and has a 2D interface. The main idea is to force 

the decision makers, namely the artillery officers, to consider numerous tactics 

and decide upon a series of command and control orders. In the end, the game 

provides feedback about the game process and performance evaluation. Since 

the software is older and lacks 3D virtual environment, this system no longer 

serves as an active simulation. Common features of this system included in this 

thesis are that they are both battalion level simulations, and both aim to train 

artillery officers. Nevertheless, the old project has no AI agents, and it functions 

only as long as the user provides input.  

―A Cost and Operational Effectiveness Analysis for Future Artillery System 

in Korea,‖ by Chunsoo Kang, studies Cost and Operational Effectiveness 

Analysis procedures of the future artillery systems in South Korea. The study 

focuses on measuring ―the operational effectiveness of the field artillery system 

by using a computer simulation‖ (Kang, 1995, p. 7). This simulation runs different 

scenarios, and by quantifying performance characteristics, it compares and 

evaluates each of the all scenarios’ outcomes. While analyzing the performance, 

this system takes into account the rate of fire and response time. Different rates 

of fire were applied on a dispersed and moving enemy, and the effect of 10 

minutes of response time was inspected, which is the required time for an 

artillery unit to change its state from moving to shooting on a fire position. The 

author assumed that the enemy’s artillery has the same features as those of his 

country. This study examines the fire effectiveness of the artillery system of its 

time against North Korea using a simulation that is neither a training tool or a 3D 
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simulation. However, it functions as an optimization tool, which computes the fire 

effectiveness of possible guns of the future. Different than this project, this thesis 

seeks to optimize the survival time of the artillery units and to find optimal firing 

positions, rather than to study fire effects. Nevertheless, enemy artillery fire 

effectiveness would affect units of friendly tactics, movement, and survival time. 

Another NPS thesis, ―Development of an Artillery Accuracy Model‖ by 

Chee Meng Fann, ―explains the methodologies that predict the trajectory and 

accuracy of unguided, indirect-fire launched projectile in predicted fire‖ (Fann, 

2006, p. 7). In addition, it describes, ―the methodology for including various 

factors such as drag and drift in the trajectory calculation‖ (Fann, 2006, p. 7). 

This study inspects the ballistics of howitzer shots and studies an accurate, 

indirect fire shot via a simulation. Again, this model is focusing on firing 

capabilities, rather than defensive factors.  

Although there are many studies about artillery, none of them investigates 

survival and defensive factors by running a complete visual 3D simulation. The 

goals of this thesis are to implement an enhanced and altered A* algorithm to 

find optimal firing positions, and calculate efficient paths between these positions. 

Additionally, this software will serve as a training tool by letting the user estimate 

the suitable, correct firing positions and comparing the results with the results of 

the AI agent. 
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II. COGNITIVE TASK ANALYSIS 

Modeling survivability movements of artillery units in a 3D environment is 

a challenging task. To create a reasonable and valid simulation, important 

considerations should be included in the modeling part. Since there are 

numerous factors and the computational power of recent computers is limited, 

not everything can be added to the simulation. Initially, complicated and bigger 

models may be considered as better, more accurate products; however, 

complexity will cause other problems during the following phases of production, 

which would be much harder to solve. Due to limited time and resources, this 

thesis will scope down factors and environment to an admissible level by 

conducting cognitive task analysis. 

Cognitive task analysis is comprised of two main parts. First, interviewing 

SMEs to elicit knowledge from them via Critical Decision Method. Due to the 

complicated nature of the task, it has not been entirely documented in manuals. 

There are several rules dispersed in different field manuals of different command 

levels. The primary concepts were discussed previously in Section I.C.1; 

however, there is a lack of method to follow while making survival movements. 

By consulting SMEs and asking them case-based questions, we will focus on 

deducing hidden experience and knowledge from interview outputs. 

Next, is the concept map of the task. Decomposing the main task into 

subtasks will facilitate analyzing this complicated mission. During the design 

phase of the simulation, this visual model will be an important reference. Some 

parts of the map will be broken down to be inspected in more detail. 

A. CRITICAL DECISION METHODS THROUGH SME INTERVIEWS 

Because of the artillary survivability movement process, a critical decision 

method will be used to elicit knowledge from SMEs via interviews. Difficulty in 

decomposing the survival task into physical and cognitive subtasks, and the lack 

of insufficient instructions on how to manuever and change position during battle, 
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are the main reasons for the need for the additional cognitive task analysis by 

consulting experts. 

Critical decision method is described for modeling tasks in 
naturalistic environments characterized by high time pressure, high 
information content, and changing conditions. The method is a 
variant of Flanagan’s critical incident technique extended to include 
probes that elicit aspects of expertise such as the basis for making 
perceptual discriminations, conceptual discriminations, typicality 
judgments, and critical cues. The method has been used to elicit 
domain knowledge from experienced personnel such as urban and 
wildland fireground commanders, tank platoon leaders, structural 
engineers, design engineers, paramedics, and computer 
programmers. (Klein, Calderwood, & Macgregor, 1989, p. 462) 

Conducting interviews with SMEs is considered a human subject 

experiment. The whole interview process has been reviewed by the Institutional 

Review Board (IRB). 

1. Interview Questions 

a. Descriptive Questions 

 What are the main reasons that affect the survivability of an 
artillery unit on a firing position? 

 What criteria should be considered while assigning a position 
area to an artillery platoon? 

 How critical is the coordination between FSCOOR, S3, and 
the Battery Commander? 

 How effective can the POC be in choosing the next firing 
position in the position area? 

 What are the cues in the battlefield for your own artillery unit to 
be detected by the enemy? 

 What are the best terrain characteristics for proper shooting 
and maneuver? 

 What is the time limit for staying in the same firing position? 
What are the triggers for displacement? 

 Should we avoid shooting with higher elevations since the time 
for the round to reach the target will increase? 
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 What should the features be for a proper firing position?  

 In an intense battle, which type of command and control 
serves for a longer survival— Centralized or Decentralized?  

 What are the main threats for artillery units? 

 What are the defensive measures to reduce the probability of 
success of the enemy aircraft’s target detection ability? 

 What level of howitzer employing is more efficient to survive? 
(Platoon, Paired, Single) 

 Should the whole battery change its position simultaneously? 
If so, under which conditions? 

 If it was hit by enemy artillery, can we tag a firing position as 
detected? Is it wise to occupy this attacked position again? 
Why? 

 While changing positions, which formations are suitable? 
(Column, Box, Line, Wedge) 

b. Case-Based Questions 

You are the platoon commander of three Paladin howitzers in an attack 

mission. Answer the following questions: 

 You are conducting a fire mission. Three enemy rounds fall 100 m 
east of your platoon and your mission requires one more shot. 
What would you do? 

 The attack of our maneuver units is not progressing. The positions 
that you occupied are mostly attacked by the enemy, and there are 
few planned positions left that are not occupied yet. What would 
your strategy be for the next displacements? Which considerations 
would affect your decision making? 

 You are changing position. While you move towards your new 
position through an already attacked area, you receive an 
immediate fire mission. What would you do?  

 While you are changing position, one of your howitzers breaks and 
loses the ability to move. What would you do? 
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2. Analysis of the Interviews 

Three subject matter experts have been interviewed for the research. The 

questions about artillery survivability have been asked in one session. The 

sessions were recorded in audio files, which were then transcribed to be kept 

safe in a locked environment to protect records from any PII breach. 

Rather than inspecting the whole interview sessions, we will focus on key 

parts of the conversations where SMEs stated their experience and pointed out 

remarkable points that are not well defined in the manuals. 

After units entered the firing position, SMEs agreed that the time after 

units shot their first round is more important than the time spent on the position 

since the first entrance, because enemy counter-battery radar will locate the 

position units shot from. Still, we should consider that our units are being 

observed via different target acquisition assets all the time and they will be more 

vulnerable to artillery fire when they occupy a firing position and change their 

state from moving to stationary. 

After the first round has been shot, it is only a matter of time expecting 

counter fire from the enemy depending upon their radar quality and preparation 

time to respond. Subsequent rounds would let friendly units spend more time on 

the firing position and staying at the same location will become more dangerous. 

One SME stated that the number of rounds shot from a position is highly 

dependent on the firing rate. They can shoot five rounds in five minutes or only 

one if they are really slow. 

The training level of friendly units was defined as an important survivability 

factor by all SMEs. Trained crews required shorter preparation time to occupy a 

firing position, to fire from the firing position, and to leave the firing position. 

Additionally, one SME indicated that the trained crew would shoot with higher 

accuracy, causing the enemy to lose more efficiency and indirectly affect the 

survivability of friendly units. Additionally, trained crews can defend themselves 

better when they encounter ground attacks. 
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Whereas the impact radius of incoming rounds is defined as an important 

factor by two SMEs, one SME mentioned that the gun they were shot by provides 

more clues about subsequent shots. If we are taking mortar fire, falling rounds 

are supposed to be less accurate than artillery fire. Enemy artillery fire will be 

more effective on our units than mortar fire, which will affect our survivability rate. 

Enemy radar quality is a huge factor on the survivability of units. SMEs 

expressed that depending upon the intelligence provided and the reaction time of 

the enemy shooting counter fire, we could adapt our total time spent on a firing 

position. For example, if the enemy reaction is poor and our maneuver units need 

consistent and immediate fire support, we can decide to remain on the firing 

position and shoot more rounds from there. And depending upon the quality level 

of the radar; detection accuracy, detection time, and covered angle fan of the 

radar, the enemy would shoot with higher accuracy that will definitely affect the 

survivability of our units. 

In addition to the factors discussed, SMEs named survivability factors as 

dispersion width, armor quality of our howitzers, weather conditions, terrain 

conditions, the pattern they follow when changing position, and defensive 

measures taken on the firing position. 

One common answer was that the position of the supply points would not 

make a difference for selecting the next firing position, since a Paladin has high 

maneuverability capabilities and reaching supply points within a small area is not 

difficult to achieve. 

When units were not in need of immediate fire support, or there was no 

scheduled firing mission, SMEs preferred using a safe path to the next firing 

position. One SME mentioned that using a path that goes through an already 

fired region was unwise because it is easier for the enemy to shoot old targets in 

a shorter time since they already have the required calculations for that area. 

Another SME stated that it is more crucial to choose a random path to the next 

firing position because if the enemy realizes that our units are following a unique 
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pattern, by choosing paths, they can guess and fire at our path. On the other 

hand, another SME argued that using a covered path would decrease our 

chance to be detected by an enemy’s air assets, especially as our units become 

more vulnerable to detection when moving and leaving traces on land. 

All of the SMEs had the same idea about avoiding predictability on the 

battlefield. They suggested randomizing decisions when choosing the next firing 

position or the path to the next position. One SME mentioned that humans are 

actually not that good at making random decisions, and they tend to follow the 

same patterns that ultimately become easier for an enemy to solve. The SME 

provided the example of the enemy guessing the convoy movement of a friendly 

unit, and implanting IEDs on their path. Following the same and usual pattern, 

enables the enemy to guess possible locations that our units will have on their 

path. 

The SMEs were not eager to visit the same firing position again, as they 

were aware that the enemy saves calculations, and often fires against previous 

targets. One SME argued that it is advantageous to shoot from a previous firing 

position. Other one expressed that if returned to, a previously shot area with 

craters and holes on terrain may affect soldiers’ psychology bad and reduce their 

ability to fight ambitiously.  

Even if they were moving through a previously attacked area, all SMEs 

chose to execute an immediate fire order by occupying the closest firing position 

once they receive the order. One SME stated that he would react and shoot 

immediately, unless he received intelligence that the area he was passing was 

too dangerous to stay and shoot from. 

B. CONCEPT MAP 

This study focuses on choosing proper firing positions and determining 

paths between these firing positions on a given position area. Factors that 

increase or decrease survival time will be studied. To serve to this purpose, after 

relationships between main concepts are determined, their subparts will be 
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analyzed and suitable factors will be modeled for the simulation. In addition, 

outputs of interviews with SMEs will contribute to this concept map by depicting 

sub-relationships of detailed concepts.  

The concept map is a diagram that depicts the relationships between 

concepts. It is a tool that helps to understand the relationships between sub-

concepts by visualizing them; hence, data and information visualization provides 

a more comprehensive and better understanding. Figure 1 provides a broad 

picture of the artillery survival system. 

While working on the development of the simulation, the idea was to follow 

the map that defines the main concepts and sub-concepts. Using the information 

we received from the SMEs and having our concept map as a broad picture in 

front of us, we started to develop the software by creating small size applications 

that focused on different parts of the concept map. Additionally, the discussions 

we had with SMEs shaped the logic and the rules of the software. During the 

long hours spent on the development process of the simulation, our main 

concern was to find the answers to our research questions by modeling the right 

thing. 
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Figure 1.  Concept Map 
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III. MODEL DESIGN 

The interviews made with SMEs and the concept map substantially drew 

the borders of our model design. Having field manual instructions only would not 

suffice to solve our problems of finding a fair algorithm for survivability 

movements. Insights gained from the cognitive task analysis filled the gap of 

information needed on reactions against certain situations. Additionally, we 

wanted agents in the model to react rationally like an experienced artillery officer 

would do on the battlefield. Therefore, we referred to Chapter II while working on 

the design of the Artillery Survivability Model. 

The Artillery Survivability Model (ASM) is an agent-based simulation 

created with the Unity game engine. Its main purpose is to visualize survivability 

movements of a platoon-level howitzer unit, and create useful decision-making 

algorithms for survivability movements to make them unpredictable and efficient. 

Terrain features, which are real terrain data imported from satellite maps, are 

processed to determine proper firing positions within the designated position 

area. Scores are then assigned to these firing positions depending upon several 

variables. According to these scores and the distance between them and the 

firing positions, agents pick up next firing positions from which to shoot.  

Additionally, the ASM contains a position tracker algorithm that is particle 

filter-based and is executed on GPU. It is a similar version of the simulacra, 

which is explained in Darken’s paper (Darken & Anderegg, 2008). This position 

tracker algorithm guesses possible locations of blue agents, when their position 

is revealed on enemy radar after they shoot. 

For several reasons, the Unity game engine is preferred to create this 

ASM simulation. First, the author’s familiarity with the software and C# 

programming language made it a strong candidate. Additionally, its popularity 

among game developers provides a vast public support for online forums and 

blogs that facilitate learning, adapting, and finding solutions. Unity also allows 
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building applications on almost every platform without needing additional code 

tuning. One of the other advantages is that Unity has an online asset store, 

where developers can sell or publish their 3D models, scripts, and solutions. 

Many of them are easily integrated and some provide fast solutions for complex 

problems. We used both free and purchased assets from the online store for 

terrain, pathfinding, and explosion effects. 

The 3D howitzer models are from the Delta 3D open-source game engine 

library, which can be found at SourceForge (a web-based service that offers a 

source code repository). 

In this chapter, the main components of the simulation and the structure of 

the model design are described. Information about how they are created and 

which logic steps have been used in their development are explained with 

minimal detail. Additional information about some crucial points and algorithms 

can be found in Chapter IV. 

A. BASICS OF THE TERRAIN 

ASM uses the popular unity assets ―Terrain Composer‖ and ―World 

Composer‖ written by Nathaniel Doldersum. The Terrain Composer is a plugin to 

generate terrain with various heightmaps, splatmaps, trees, grass, and additional 

objects such as rocks, which can be considered as obstacles. The World 

Composer is a great tool to import real-world heightmap data from the ―Bing‖ 

Microsoft database, and has additional features such as determining tree 

positions by processing satellite pictures. 

Our model uses real-world terrain information by importing the usual 

training field of artillery units to the 3D environment using the ―Terrain 

Composer.‖ The positions of the trees will be defined by processing satellite 

image data. A detailed explanation of the Terrain Composer can be found in the 

Chapter IV. Other features of land will be edited manually via the Unity 3D editor 

by assigning areas for different terrain types. Mainly, there are six types of terrain 
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defined: solid ground, rocky ground, sand, mud, soft ground, and non-walkable 

terrain. 

Areas with distinct features are defined in the Unity 3D Editor by adding a 

―Graph Update Scene‖ object to the scene (see Figure 2), which is a part of the 

library ―A* Pathfinding Project Pro.‖ Borders are assigned by selecting Shift-Click 

on the terrain. Nodes that fall within this designated area are assigned tags with 

many defined terrain types. Depending upon these manually assigned areas, 

specific splatmaps will be applied as texture, and nodes within these areas will 

be given corresponding penalties. Therefore, agents will prefer to move on 

appropriate terrain when their paths are calculated by the A* algorithm.  

Figure 2.  Graph Update Scene Object 

 

 

Locations of artificial obstacles such as buildings are marked as non-

walkable terrain, as well as dense trees that do not allow howitzer movement. 

Trees play important roles in the simulation. After their positions are 

determined and forest areas are excluded as non-walkable areas, trees are 

regarded as one of the main survival elements of artillery because they cover 
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ground troops from the enemy’s aerial surveillance assets. Every node has an 

attribute of ―number of close enough trees,‖ which is calculated by counting the 

trees in a specified radius from the node’s location. This value is the main factor 

that determines the path of agents, because they are searching for a covered 

and fast path to the target. Details of A* pathfinding are described in the following 

sections. 

B. GRID NODES 

ASM uses a popular Unity asset for pathfinding, named ―A* Pathfinding 

Project Pro,‖ written by Aron Granberg. This asset serves as an additional plugin 

and provides fast and good structured A* pathfinding solutions. It has the ability 

to create different kind of graphs such as grid, navmesh, point, and recast 

graphs. These are the main data ground for agents to search paths to targets. 

We used grid nodes, since it is easier to store required data on each node, to 

process and manipulate data. The nodes are spread uniformly on the terrain. 

Another advantage of the grid graph is that runtime changing of graph needs 

lower computational power than other graphs. 

Grid graphs (see Figure 3) are built by simply ray tracing from some 

distance above the terrain at pre-determined intervals. Our grid nodes have eight 

neighbors, to the cardinal and inter-cardinal directions. Walkable directions are 

visualized by straight lines between nodes. Additionally, nodes that are on a spot 

with a slope higher than a limit are tagged as non-walkable.  
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Figure 3.  Grid Graph 

 

 

A different grid graph is assigned to each agent group, namely a platoon-

level artillery unit consisting of three howitzers. The leader agent searches for 

reasonable paths only on its assigned grid graph, which can be considered as 

the position area of the platoons (usually 1.5X3 km for a Paladin platoon). While 

the platoon leader is searching for a path to the assigned target, flank members 

of the platoon are searching paths to the offset locations of their leaders 

depending upon their type.  

ASM has four grid graphs. Two of them are the position areas for each 

platoon, while the other two serve for calculating and caching paths between 

firing positions to be used on GPU side calculations. The first two main grid 

graphs are more detailed and store additional data on each note, while the final 

two have lesser resolution.  

A* Pathfinding Project Pro assigns unique integers to each node that is 

connected and described as an ―area.‖ Within a grid graph, it is possible to have 

different areas that are not connected via walkable nodes. We determine the 

area with the maximum number of nodes as a possible location for firing 



 28 

positions and maneuver area for howitzers. Other areas will be not inspected 

since agents are not able to move and maneuver on them. 

Calculations about the grid graphs are made offline, because they require 

a significant time. This data will then be loaded at the beginning of the simulation 

from stored files.  

C. FIRING POSITIONS 

Processing terrain data and determining firing position after the grid graph 

is created and nodes are tagged, their corresponding terrain type, and groups of 

connected nodes (that are able to provide enough space for howitzer platoons), 

will specify firing positions with different sizes. 

Two different sizes are specified: ―big‖ and ―small‖ firing positions. Big 

firing position areas allow units more space to disperse and increase their 

survivability. The maximum area size on the grid graph is then filled with these 

two sizes of firing positions with an algorithm like flood-fill. 

The main maneuver area is the maximum area size that has the most 

connected nodes, and is marked with the firing positions. To fill the area with 

rectangle firing positions efficiently, we searched through efficient rectangle filling 

algorithms. However, none of them did work perfectly, because our position area 

was not a rectangle. So we determined two 3D rectangular prisms with two 

different scales of width and height. These game objects were transformed to 

every walkable node that was not already tagged as a member node of a firing 

position and had higher walkable neighbors than four. Therefore, the center of 

the 3D object stands exactly on the position of the grid node, and the nodes 

whose positions were within the borders of the 3D objects were counted. If the 

number was greater than a threshold, the center node was checked as the firing 

position, and the other included nodes were marked as members of the firing 

position. In Figure 4, every firing position is marked with a different color. 
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Figure 4.  Colored Firing Positions 

 

 

The main criteria of choosing the next firing position in the simulation 

depends upon the quality of the position and the distance between the current 

position of the agent and the firing position. The score (see Figure 5) of the firing 

position is defined via a linear equation whose factors are: 

 Number of trees on that firing position 

 Mean of the slope 

 Minimum quadrant elevation from the center node 

 Number of visits 

 Mean of the terrain type 

The number of trees increases the total score linearly to a limit because 

they are regarded as main helpers to disguise friendly units from the enemy’s 

eyes. If this number passes a threshold, it is set to zero having no positive or 

negative affect on the equation. The factor will be zeroed after a point when the 

number of trees no longer helps; on the contrary, they will slow down the 

movement speed and limit firing abilities of howitzers. Areas with a high number 
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of trees (i.e., forests), are already marked as obstacles and non-walkable 

regions. 

The mean of the slope of the firing position’s ground is another multiplier 

of our score equation. The mean of the slope of every firing position is calculated 

by checking y-values of the normals on the node positions for each member, and 

then taking their mean. They are scaled between 0 and 1, mainly because 

normals are normalized vectors. If the y-value is 1, the spot the surface is flat, 

which is better and more consistent for the artillery to shoot, and decreases the 

preparation time for shooting. Therefore, the optimal mean of the slope should be 

close to 1.  

The minimum quadrant elevation affects shooting abilities of artillery. 

Often obstacles like hills between the howitzer and the enemy prevent them from 

being seen.  However, if the obstacle is close and too high, the howitzers will 

need to elevate their barrels to higher levels to shoot. This will cause the shot 

round to follow a longer route to meet the target with a lower speed, thus making 

it easier for the shot round to be detected by enemy radar, as it remains longer in 

the air. This is an unwanted situation for artillery units, because they try to lower 

the chances of being detected at every opportunity. Therefore, an intermediate 

value is preferred, which is not too small and higher than a limit. 

The number of visits to firing positions has a negative effect on the total 

score. The score was not zeroed when the position was occupied, because if the 

position was in a location with a high score for shooting units, we might want to 

save it for later. If each position has been visited at least once, units would need 

to compare firing positions by maintaining available scores. 

The mean of the terrain type on the firing position is determined after 

checking the terrain type tag for each node and taking the mean, to verify solid 

ground for consistent shooting. The terrain type order of preference (from best to 

worst) would be: solid ground, rocky ground, sand, muddy, and soft soil with 

correspondence scores of 5, 4, 3, 2, and 1. The score of a firing position would 
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be higher if the firing position consisted of more nodes tagged with preferred 

terrain types. The mean score is then multiplied by 200 and added to the total 

score of the firing position. The terrain types also have an effect on the A* 

penalty calculations, which will be discussed in the following chapters. 

Figure 5.  Scores for Firing Positions 

 

 

Apart from the firing positions of friendly units, the enemy evaluates the 

terrain and determines possible firing positions. However, different from the 

methods of friendly units, the enemy does not take terrain types into account, 

because it has limited access to the terrain on which friendly units are 

maneuvering. The enemy has recon assets such as satellite maps, aerial photos, 

and 2D military maps. However, without touching the real terrain, it is hard to 

determine the suitability of the ground quality for artillery fire, and to detect non-

walkable terrain or obstacles that do not appear on maps or via air recon. As a 

result, their firing positions will not match with the firing positions of the blue 

forces, which cause errors in guessing the next possible firing position of friendly 

units, (an acceptable situation in real conditions). 
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For every grid graph, the firing positions are calculated and saved to a file 

in binary format to be loaded when the simulation is executed.  

D. FINITE STATE MACHINE 

The main AI of the agents is written in Finite State Machine structure. A 

popular asset, ―Playmaker‖ by Hutong Games LLC, is used. This asset provides 

an easy editor interface, where the user can click, drag, and type the states to 

define the relationships, actions, and transitions between states. Additional 

complex actions are written in C# scripts. 

Agent actions are driven by fire orders. A list of fire orders in CSV file 

format is provided to the application beforehand. It consists of numerous orders 

that musts be fulfilled at specific times. A typical fire order in the simulation has 

five variables: company name, distance to target, ammunition type, shot number 

by round, and scheduled time. If the fire order is not scheduled, its scheduled 

time is set to ―-1.‖ These fire orders are processed at the company level, and 

assigned to the platoons to be executed at the specified time. 

The company-level agent evaluates fire orders, puts them in priority, and 

assigns the most urgent fire order to an available platoon. It checks scheduled 

times and assigns an order if the platoon is in ―idle‖ state. If both platoons are in 

a state other than ―idle,‖ it looks to the total number of already assigned orders 

and assigns the order to the platoon with the least orders. If the scheduled time 

for an order is already passed, it removes this order from the order list and marks 

the order as ―failed.‖ 

The core AI of the simulation is the platoon-level Finite State Machine 

(FSM), where decisions are typically made. See the FSM structure in Figure 6. At 

the beginning of the simulation, the platoon reacts as soon as it receives fire 

orders from the company leader. It looks for a firing position to execute the most 

urgent fire order by sorting them in decreasing priority order. If there is a 

scheduled fire order, which has to be executed after a short time and is not at the 

top of the list, it is evaluated and scored, then placed in high priority to be 
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executed immediately. The top order in the fire order list becomes the goal order, 

and a suitable firing position is selected to carry out the mission. Every firing 

position’s score is calculated again, and the list of firing positions is sorted in 

decreasing score order. The firing position with the highest score—located 

further than a lower-bound distance and closer than an upper-bound distance—is 

assigned as the goal for the platoon leader agent. The leader agent starts 

searching for A* paths to the target at each specified second interval, while the 

platoon’s state changes to ―ChangePosition.‖  

The platoon moves to the assigned firing position until the leader agent 

moves closer to the center of the firing position. This event triggers the state 

changing to ―Fire‖ state. First, flank members get to their positions by dispersing 

on the firing position and rotating the howitzers towards the firing direction. When 

they are ready to fire, (determined by preparation time of the unit and their 

training level), the desired type of rounds are shot from the designated number of 

howitzers. The time to prepare for shooting the second round will be shorter, 

since the units will just be reloading their guns. If two rounds are necessary, two 

howitzers with a higher amount of the specified rounds are fired. After rounds 

have been shot, the total number of their type stored in the howitzers is 

decreased by one. If the total number of round types falls below a number, a 

global event ―NeedSupply‖ is called. Regardless of the platoon’s state, it is 

automatically updated as ―GoSupply.‖ 
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Figure 6.  Finite State Machine of One Platoon 

 

 

The location of the supply point is determined when the environment is 

edited in Unity Editor. It is located on the far side of the terrain from the enemy. In 

―GoSupply‖ state, the leader travels to the supply point, and when it reaches the 

goal, the platoon’s state changes to ―Supply,‖ during which new rounds are 

loaded into the howitzers. One of our assumptions is that the howitzers do not 

deplete their fuel before their ammunition. Therefore, fuel is not modeled in the 

simulation, and we assume that the howitzers resupply their fuel while their 

ammunition is being loaded. At some point, the supply process ends and the 

state again changes to ―Idle.‖ 

If the platoon is not already on a firing position and has fire orders to 

execute, it looks for a nearby suitable firing position and moves to the location to 

perform the top fire order. After firing the first rounds from the currently occupied 

firing position, the platoon leader evaluates some factors to decide on the next 

step. The more frequently the platoon changes firing positions and fires, the 

higher are its survivability chances because being mobile makes it harder to be 

shot by the enemy. At the same time, the platoon leader considers executing fire 



 35 

orders at their scheduled time. After the rounds are shot, the state changes to 

―Idle.‖ 

Triggers to change position are the number of rounds shot from the firing 

position includes time spent on the same firing position, and the danger level of 

enemy fires. If the maximum number of rounds that can be shot from the same 

firing position has not been met, and the time spent on the firing position has not 

passed the maximum limit, one more group of rounds are shot from the same 

firing position, changing the state to ―Fire.‖ 

After shooting another group of rounds, FSM will fall into ―Idle‖ state again. 

Checking the variables, the platoon leader ends up choosing either to fire 

another group or changing its position. The howitzer platoon carries out the same 

logic pattern until all of its members get shot and lose their ability to move, or are 

completely destroyed. When the efficiency of a howitzer unit falls below a value, 

it loses moving ability and starts to emit white smoke to symbolize that it has lost 

the ability to move. In this state, the howitzer cannot move, but can continue to 

fire. If the howitzer is the leader agent, another alive and mobile member takes 

over the duty of being the leader agent. The non-moving agent rotates the 

howitzer to the firing direction and follows fire orders by shooting from its position 

until it is completely destroyed, which is represented with red smoke in the 

simulation. When all three members of the platoon lose moving ability or are 

destroyed, the application records the time and restarts. 

E. ENEMY AI 

The AI of the enemy plays an important role in the simulation. Its main 

components are guessing the friendly unit’s position and shooting counter fires to 

these positions. After the friendly units shoot, their position is revealed on the 

enemy radar at a random time determined by the quality of the radar. 

In the simulation, particles are used to model the movement of the blue 

forces. Since the required quantity of particles is high and the CPU is already 

busy with other calculations, we preferred to use a GPGPU (General Purpose 
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Graphics Processing Unit) programming to ease the burden of the CPU. Detailed 

information about GPGPU algorithms is provided in Chapter IV. 

Guessing possible locations of the agents after their positions have been 

revealed on radar is achieved using particle filters. At the start of the simulation, 

100,000 particles are created. Every particle has a variable of a float value that 

corresponds to the probability of friendly agents being at that particle’s location. 

Additionally, they have attributes such as velocity, speed, color, offset, path 

number, and path number counter (See Figure 7). 

Figure 7.  Moving Particles 

 

 

When particles are created for the first time, they are assigned random 

values of speed between minimum and maximum speed values of a howitzer, to 

represent every possible speed on the terrain. They are also assigned an offset 

value that is the distance between the center point and a random point in a unit 

sphere. This offset will always be used through all the movement calculations to 

visualize an area. The default probability is 5 per each particle, which totals a 

500,000.  
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We first tried to assign a normalized mean value to the particles such 

1/100.000; however, the constraint of writing to the shared memory at the same 

time, while iterating through all particles in parallel processing, pushed us to use 

integer values rather than using normalized float values for the probabilities of 

the particles. The built-in function we used to synchronize parallel treads, and 

which allows writing on the shared memory, ―void InterlockedAdd (in R dest, in T 

value, out T original_value)‖ (Microsoft Shader Model 5), is able to write only to 

integers and unsigned integers. Therefore, the total probability of particles is 

500,000 rather than 1. 

To move particles on the GPU side without causing any collision, we 

cached every possible path in three-dimensional vector arrays: Assume that 

there are 50 firing positions and that for every firing position, 49 A* paths to other 

firing positions are calculated and stored offline. These A* paths are calculated 

on lower resolution grid graph (grid size: 20), not on the main high resolution grid 

graph (grid size: 5). Again for every firing position, one long vector array is 

created by adding paths to other positions together in a specified order. 

Therefore, on the GPU side, they can be read easily from this long array by using 

indexing technique.  

Particles are visualized via post processing and are drawn after the entire 

scene is drawn. They first appear in simulation when the enemy detects the 

position of the blue forces for the first time. Then at every frame, particles are 

updated on the GPU side.  

Particles are reset every time the position of the blue force is revealed on 

the enemy radar. This reset function is running on GPU as well. We first tried to 

reset particles on CPU side; however, manipulating all the data (100,000 

particles) on the CPU and then trying to load them to the GPU caused a one to 

two second delay, thus slowing down the simulation. The main struggle was to 

create the logic of choosing the next reasonable firing positions for the blue force. 

So the enemy AI calculates the next positions by assigning weighted probabilities 

to the nearby positions on the CPU side, and by creating an array of the length 
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100, which consists of possible next position IDs that are repeated depending 

upon their possibility rate. If the position number 15 is likely to be visited 50% by 

the blue force, number 15 appears 50 times in that array. On the GPU side, a 

basic uniform random picker algorithm chooses from among the members of this 

array. Assuming that one three-dimensional vector holds three floating numbers 

that are each 4 bytes, 1200 bytes of data will be handed to the GPU rather than 

sending an entire particle dataset that is almost 6 megabytes (each particle 

possesses data of 60 bytes). 

After particles are assigned path numbers, their next waypoint is 

determined by checking cached path array by index number, and when they are 

close enough to their target, their path number counter is incremented by one. 

Next, they choose the vector from cached path array again until they reach the 

end of their path.  

When the enemy is ready to shoot, it looks for the highest probability 

holder within the ―checkpoints,‖ which are positions stored in arrays. They consist 

of every firing position and every waypoint on the cached path array, which 

stores every possible path combination between firing positions. They are 

checked by summing up the probabilities of the particles within a specific radius. 

The highest total probability holder checkpoint and other highest two 

checkpoints—father than a determined distance—are chosen as three possible 

places on which the blue forces are likely to be present. Then, from these three 

places, one position is picked as the random firing position. While parallel looping 

through 100,000 particles on the GPU, particles who determine themselves to be 

close enough to a checkpoint attempt to increment the total value of the 

checkpoint on the shared memory by its probability value. However, because this 

process is occurring simultaneously, some particles would attempt to write on the 

same shared memory at the same time. To fix this problem, a built-in function of 

the Microsoft Shader library is used to coordinate and synchronize threads 

without causing any important delays. One limitation of this function is that it 

allows adding values only to integers or unsigned integers. 
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Once the enemy decides on the position and shoots toward that location, 

the blue forces in the effective range of the rounds are damaged depending upon 

the distance between them and the center point of the fallen rounds. The closer 

they are to the impact point, the more they are damaged. 

Another process running on the GPU side is the culling function. The 

enemy has the ability to recon the terrain occupied by friendly forces via satellite 

maps and aerial photos. Whenever the enemy manages to take a photo of an 

area, if no blue force can be detected there, the probability of the particles 

wandering on that area is decreased. Determining that there is no counter-force 

on the scanned portion increases the probability of the presence of the blue 

forces in other regions. Therefore, the probability values of excluded particles are 

increased by the same amount, so that the total probability stays the same. This 

ability to scan the terrain of the blue forces and acquire intelligence is an 

indicator of the quality of enemy’s target acquisition assets. During the 

experiment, this variable will differ by the quantity of reconnaissance attempts 

depending upon recon assets quality. 

F. FAST FORWARDING FOR THE EXPERIMENT 

ASM is an agent-based real time simulation. Movement of objects heavily 

depends on the time passed between two completely rendered frames, which is 

called delta time. Because the delta time is a multiplier of our movement distance 

logic, no matter what the frame rate is, two different simulations running on 

different hardware will have agents moved in the same distance in one second. A 

computer with a low-frame rate will have bigger delta time values and end up 

having the same values as a fast processor that has a higher frame rate. Using 

delta time ensures consistent visual outputs on different frame rates. 

An agent’s movement is waypoint dependent. After their A* path to the 

goal is calculated, they are assigned a list of waypoints to follow. They start 

moving by setting the first waypoint as the target. Basically, when they get close 

enough to that waypoint, they change their target by choosing the next waypoint 



 40 

in the list. If the frame rate is too low, it will cause a higher delta time value, which 

will lead to big jumps on the movement at every frame. Having big distance 

jumps is dangerous for several reasons. First, the agent can move through a wall 

or obstacle without colliding. That visual artifact will appear as a teleportation 

effect. Additionally, the agent will oscillate around a waypoint, while trying to 

come closer than a specific distance to assign the next waypoint as the target. 

Having low frame rates and high delta times, will contribute to inconsistent 

movements and unwanted outputs. 

To design an experiment and analyze variables that are affecting the 

survival time of the artillery, the ASM should be run several times. More runs will 

provide consistent means and lowering errors. Assuming that we run ASM in 

real-time mode and every run takes above 10 minutes, we would need weeks to 

finish every multiple simulation run on every design point. Therefore, we decided 

to fast forward simulation to be able to speed up the experiment process. Unity 

3D has a built-in Time class, which has an attribute named ―timeScale‖ that 

allows the user to speed up their applications by multiplying the ―Time.deltaTime‖ 

value with that scale. This option is limited by a scale of 100; however, in our 

simulation, after incrementing the time scale above a critical value, agents start 

behaving inconsistently for the reasons described in the previous paragraph. 

―V-sync is short for vertical synchronization. The computer screen 

refreshes a certain number of times a second. V-sync is an option that ensures 

that the frame buffer is filled as only as fast as the screen can read it. This 

prevents artifacts like tearing, where the frame buffer changes as the data being 

written to the screen causing a visual tearing effect‖ (Schuller, 2011, p. 158). By 

default, V-sync option is enabled in Unity 3D. Closing V-sync option boosts up 

frame rates from 60-80s to 140-200s when rendered in decent resolution with 

high quality textures. Again, having a higher frame rate does not speed up the 

simulation but provides a smooth video quality and animation flow. 

Standalone Windows, Linux, or Mac OS applications built with Unity 3D 

can be called in batch mode via the command line. Running the application with 
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―-batchmode‖ tag, lets it run in the background without rendering any 3D image. 

In other words, the simulation actually runs, but the graphic card does not render. 

Another feature of Unity is that the user can see profile data in Unity Editor while 

the application runs in standalone player, via using ports sending messages 

between applications. Using this feature, we measured that our simulation 

reaches up to 10,000 frame rates in batch mode, meaning that every second the 

application manages to compute 10000 update cycles. To benefit from this frame 

rate boost, we developed a new mode for the simulation named ―experiment 

mode.‖ In this mode, we fixed the delta time value at each update, rather than 

using the time passed until the last frame has been drawn. Using a secure fixed 

time value, which doesn’t cause any overshooting of waypoints or passing 

through solid objects, allows us to speed up the simulation up to 50 times in 

batch mode. 

In the simulation, several functions are called after some time delay in 

seconds. In the experiment mode, we created additional time logic to deal with 

the waiting process. (Unity 3D uses coroutines principle to delay function calls.) 

The detailed scripts can be found in Section IV.C. 
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IV. TECHNICAL DETAILS 

While describing the main parts and modules of the simulation in Chapter 

III, we kept it simple in terms of providing a more understandable description of 

the model. The objective of creating a reasonable survival movement algorithm 

has been achieved, and its logic has been well described. In this chapter, we will 

provide detailed information about the methods and the compiled code. Mainly, 

three important components of the simulation will be examined here: A* path-

finding calculations, parallel processing on the GPU, and speeding up the 

process of the simulation.  

A. A* 

A* is an efficient, widely-known and fast path-finding algorithm. Instead of 

implementing our own methods, we used an A* library, which can be purchased 

from the Unity Asset Store. Its name is ―A* Pathfinding Project Pro,‖ and is 

written by Aron Granberg. It also has a free version that comes with limited 

features. At this point, we will not describe this feature in detail, but instead, we 

will inspect how we used this library to serve our purposes and where we used 

the A* methods. 

Throughout the simulation, A* calculations are performed for two 

purposes. First, the movement of the agents and howitzers are bound to A* 

paths. They are being frequently calculated starting from the beginning of the 

simulation. Every second, two A* star paths are calculated per each agent. 

Moving in formation guided positions, as the leader agent computes A* paths to 

the target location, other members of the platoon that take position on the flanks 

compute paths to the offset positions.  

The A* project uses Euclidean distances for heuristic cost. For a typical 

heuristic cost, it takes distances between grid nodes into consideration, if no 

additional costs have been assigned to nodes. In the simulation, we assign 

different weighted penalties dependent upon the terrain type and the number of 
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trees around that node. To make locations appealing and least cost driven, every 

node has to be assigned a default penalty score and those nodes in the desired 

area should have assigned lesser scores or ―0‖ score.  

We defined six different main terrain types for the simulation: solid ground, 

rocky ground, sand, muddy ground, soft ground, and non-walkable terrain. 

Assuming that trees cannot grow on sand and rocky ground, we specified three 

categories to define tree density on a location: low, medium, and high. 

Combining features of terrain type and density of trees on the location, we 

defined 15 different types (see Table 1). 

Table 1.   Terrain Types 

Nr. Type Number of Trees 

1 Solid Soil <3 

2 Rocky Ground - 

3 Sand - 

4 Muddy Ground <3 

5 Soft Soil <3 

6 Non-Walkable <3 

7 High Covered Solid Ground >15 

8 Med Covered Solid Ground >7 

9 Low Covered Solid Ground >2 

10 High Covered Muddy Ground >15 

11 Med Covered Muddy Ground >7 

12 Low Covered Muddy Ground >2 

13 High Covered Soft Ground >15 

14 Med Covered Soft Ground >7 

15 Low Covered Soft Ground >2 

 

After specific locations are tagged with terrain type tags, offline 

calculations are made to determine how many trees are closer than a specific 

distance to the each node. Tags of the nodes that are already tagged as solid, 

muddy, or soft ground, are changed by adding ―highly covered,‖ ―med covered,‖ 
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or ―low covered‖ words in front of their tag name, if they meet the requirement for 

the minimum number of trees around (see Table 1).  

The main reason for tagging the nodes by offline computation is to assign 

penalties to each of them depending upon their tag name. Each agent in the 

simulation is attached with the C# script ―Seeker,‖ which is a part of A* 

Pathfinding Project that calls A* path calculations. We assigned the same set of 

penalty scores to each agent (as seen in Figure 8), which are actually 

experimental numbers. We simply put terrain types in order of decreasing 

desirability and start to assign penalties as multiples of thousands in increasing 

order. The default cost of one unit node distance is 1,000 in the A* project. Non-

walkable tags are not assigned any penalty, since they are not included in path 

calculations. By this means, agents tend to follow paths on better grounds, which 

allow them to move faster and through covered regions to avoid being detected 

by enemy surveillance. If they are covered by trees, the probability of the enemy 

detecting them via satellite images and aerial photos decreases. Once agents 

lose their moving ability by getting damaged below a threshold, they stop 

searching for paths to targets. 

Figure 8.  Penalties Assigned to Each Terrain Type 
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A* Pathfinding Project provides fast and asynchronous calculations. The 

main update loop for rendering a 3D environment does not stop and wait for 

function returns. The newest calculated paths are returned and assigned to 

agents as waypoint lists after they have been calculated via callback functions. 

Granberg’s A* library also provides to make CPU intensive pathfinding 

calculations run in parallel on separate threads when supported by the hardware. 

Another use of the A* algorithm is offline calculating paths between firing 

positions to store paths in arrays of three-dimensional vectors in a sequential 

order from start to the finish. These calculations are made on a grid graph (see 

Figure 9) that is less detailed than the usual agent pathfinding. Reducing the 

detail level of nodes causes a mismatch between the agent’s path and particles 

path. The paths are not overlapping, which does not affect the results since a 

bunch of particles are traveling in groups meant to represent areas rather than 

precise locations. Additionally, storing fewer amounts of waypoints is 

advantageous, since they would be used on the GPU side as paths on which 

particles will wander. We optimized the number of waypoints on a laptop with an 

integrated graphic card Intel HD4400. A dedicated graphic card would be better 

and faster. 
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Figure 9.  Main Grid Graph (above) versus. Less Detailed Grid 
Graph (below) 

 

 

B. GPGPU 

As discussed in Section Error! Reference source not found., we used 

the aid of a GPU to calculate and update behaviors of 100,000 particles, which 

represents the possible positions of the blue forces on the battlefield. The game 

engine Unity 3D has a special component that provides access to ―Compute 

Shaders‖ to make parallel processing computations easier. The game engine’s 

ease of use enables users to write their own scripts and attach them on game 

objects in the scene without bothering with update cycles during the game’s 

runtime. While creating the logic of our Compute Shader, we were inspired by the 

example of Michael Duncan’s blog (Duncan, 2014). The example is about a 

10,000 stars galaxy simulation that runs 100,000,000 gravity calculations in every 

frame at 60 frames per second rate on the GPU. 

The basic idea behind the Compute Shader is running update functions 

and other specific functions on the GPU side. When the simulation starts, 
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100,000 particles are generated as C# ―structs‖ (see Figure 10). Every particle 

has eight fields totaling 64 bytes of data per particle. The array in which all the 

data particles are stored has a size of 6,400,000 bytes, which equals 6.4 

megabytes. This is important information since transferring data between CPU 

and GPU causes delays depending upon the size of the data. In this case, it is 

not recommended that whole data be transferred back and forth. 

Figure 10.  Structure of a Particle 

 public struct Particle 
 { 
 public Vector3 position; 
 public Vector3 velocity; 
 public Vector3 color; 
       public Vector3 offset; 
       public float accelMagnitude; 
       public float weight; 
       public int pathNumber; 
       public int pathNodeCount; 
 };  

 
 

Unity 3D style Compute Shader algorithms are similar to DirectX 11 

DirectCompute technology, and are written in DirectX 11 style HLSL language. 

Next, we will inspect the Compute Shader we developed for the particle filter 

system that determines the highest probability placeholder on which the enemy is 

determined to be present. As seen in the first four lines in Figure 11, kernel 

names are defined with ―#pragma‖ keywords. Afterwards, they will be defined as 

functions. ―Particle.cginc‖ (line number 6) is the file that encloses particle data 

structure for the GPU side. ―RWStructuredBuffer‖ type (line number 10-11) 

defines the buffer type that is both readable and writeable. On the other hand, 

―StructuredBuffer‖ type (line numbers 13 and 24) determines the read-only buffer 

type. Other variables (line numbers 8–32) are defined in the Compute Shader to 

be used later in the functions. Two functions (line numbers 34–49) return a 

random unsigned integer to be used again later in the process. 
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The UpdateParticles kernel, which is dispatched in every frame on every 

update of the whole cycle, can be seen in Figure 12. In line number 51, the 

number of threads is defined in three dimensions. For our Compute Shader, we 

have defined (128,1,1) number of threads, which we optimized by manipulating x, 

y, and z values of the three-dimensional thread vector on a laptop that runs an 

Intel HD4400 on-board graphic card. In this function, the velocity of the particles 

is calculated, and positions are updated. To avoid any collision between the 

particles and any other obstacles, every possible path combination is calculated 

and handed to the GPU side via the StructuredBuffer ―path‖ (line number 13). 

Every particle has a variable of ―pathNodeCount,‖ which is increased by one 

when the particle is close enough to the next waypoint in the list. Actually, rather 

than keeping an array of waypoint lists for every particle, particles read the next 

waypoint from the long array ―path‖ via an indexing technique.  

We will assume that the path with number 5 is assigned to a particle. The 

particle will look up the 250th number (five times the number of the longest path, 

which is determined by offline calculation and set 50 for this case), float3 (three-

dimensional float, which represents the position in the scene), from the ―path‖ 

array for the initial waypoint. When it gets close enough to that waypoint, it will 

increase pathNodeCount and will head to number 251, float3. Every particle has 

an offset distance to the center of the circle, within which 100,000 particles are 

uniformly spread. This circle defines an area of detection error. The positions of 

the particles are updated depending upon delta time, which is delivered to the 

Compute Shader from the CPU side on every update. When this kernel is 

dispatched from the CPU side, it is called for every particle in parallel threads in a 

much faster speed, compared to when it runs on the CPU. 



 50 

Figure 11.  Compute Shader Part-1 (Define Fields) 

001 #pragma kernel UpdateParticles 

002 #pragma kernel TotalWeight 

003 #pragma kernel CullParticles 

004 #pragma kernel ResetParticles 

005  

006 #include "Particle.cginc" 

007  

008 #define BLOCKSIZE   128 

009  

010 RWStructuredBuffer<Star> stars; 

011 RWStructuredBuffer<Check> positionWeights; 

012  

013 StructuredBuffer<float3> path; 

014  

015 // time ellapsed since last frame 

016 float deltaTime; 

017  

018 float cullRadius; 

019  

020 //position of culling 

021 float3 cullPosition; 

022  

023 //for reset function 

024 StructuredBuffer<int> possiblePaths; 

025 float3 detectedPosition; 

026  

027 //max path length 

028 static float max = 50; 

029  

030 //for random number generation 

031 uint rng_state; 

032  

033 //faster 

034 uint rand_lcg() 

035 { 

036     // LCG values from Numerical Recipes 

037     rng_state = 1664525 * rng_state + 1013904223; 

038     return rng_state; 

039 } 

040  

041 // better results but slower  

042 uint rand_xorshift() 

043 { 

044     // Xorshift algorithm from George Marsaglia's paper 

045     rng_state ^= (rng_state << 13); 

046     rng_state ^= (rng_state >> 17); 

047     rng_state ^= (rng_state << 5); 

048     return rng_state; 

049 } 
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Figure 12.  Compute Shader Part-2 (Update Particles) 

051 [numthreads(BLOCKSIZE,1,1)] 
052 void UpdateParticles(uint3 id : SV_DispatchThreadID) 
053 { 
054     uint i = id.x; 
055     uint numStars, stride; 
056     stars.GetDimensions(numStars, stride);  
057  
058     float3 position = stars[i].position; 
059     float3 velocity = stars[i].velocity; 
060      
061     float3 A = path[stars[i].pathNumber*max+stars[i].pathNodeCount]; 
062     float3 B = path[stars[i].pathNumber*max+stars[i].pathNodeCount+1]; 
063  
064     if (distance (position,A+stars[i].offset)<3 && length(B)!=0 ){ 
065         stars[i].pathNodeCount++; 
066     } 
067  
068     velocity = A + stars[i].offset - position; 
069     velocity = normalize(velocity) * stars[i].accelMagnitude; 
070  
071     position += velocity * deltaTime; 
072  
073     if (i < numStars) 
074     { 
075         stars[i].velocity = velocity;    
076         stars[i].position = position; 
077         stars[i].accelMagnitude = length(velocity); 
078     } 
079      
080 } 

 

 
 

Every particle is updated in every frame. The UpdateParticles function is 

dispatched once from the update function of the game cycle (see Figure 13). 

Before launching threads on the GPU, the number of groups has to be 

determined. In this case, our block size is 128, and we determine our group 

number by dividing the particle number by the block size: 

100.000 / 128 781numberOfGroups     

When assigning a value to the block size, ―occupancy‖ is the first 

consideration, which is active warps and maximum active warps ratio. We tried 

different values between 32 and 512 for the first dimension of block size, and 218 

was the fastest one for our application. There are also occupancy calculators on 
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the web to find an optimum value for block size. Further information on this 

subject can be found on the web. 

Figure 13.  Dispatching and Launching Threads on the GPU 

// bind resources to compute shader 

particleCompute.SetBuffer(updateParticlesKernel, "stars", particleBuffer); 

particleCompute.SetFloat("deltaTime", MyClock.DeltaTime * fastOrNormalPlay); 

particleCompute.SetBuffer(updateParticlesKernel, "path", pathBuffer); 

particleCompute.SetBuffer(updateParticlesKernel, "positionWeights", positionWeights); 

// dispatch, launch threads on GPU 

var numberOfGroups = Mathf.CeilToInt((float)startNumberAfterDetection / GroupSize); 

particleCompute.Dispatch(updateParticlesKernel, numberOfGroups, 1, 1); 

 
 

The second kernel in the Compute Shader is the ―TotalWeight‖ function, 

which is dispatched when the enemy decides to shoot. This function updates the 

total probability on the checkpoints, which are pre calculated A* path waypoints, 

and the center positions of the firing points. It iterates through all the particles 

and increases the total probability of checkpoints that are closer than a specified 

distance by the particle’s probability. The challenge to increase a value on the 

shared memory begins when particles are trying to increment the value at the 

same time when they are being processed on parallel threads. To make it 

happen, thread operations should be synchronized. We used an ―atomic‖ 

function InterLockedAdd function (see Figure 14, line number 102), which is 

provided as a DirectX 11 feature that handles adding a value to an integer or 

unsigned integer on the shared memory. The restriction of being able only to 

write on an integer or unsigned integer data forced us to use integer values for 

probabilities rather than a fractional number as floats. The third kernel decreases 

the probabilities of particles on a region where the enemy is supposed to take 

satellite images or aerial photos. Particles are initiated with a probability value of 

5, which totals a probability of 500,000 of 100,000 particles. Particles at the 

center of the culled area are modified by decreasing their probability by 4. 

Depending upon the distance to the center point, the probabilities of other 

particles are lowered as well, until a minimum threshold of 0.1 is reached.  
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Figure 14.  Compute Shader Part-3 (Total Weight) 

082 [numthreads(BLOCKSIZE,1,1)] 
083 void TotalWeight(uint3 id : SV_DispatchThreadID) 
084 { 
085   uint i = id.x; 
086   uint numPos, stride; 
087   positionWeights.GetDimensions(numPos, stride); 
088  
089   uint numStars, strides; 
090   stars.GetDimensions(numStars, strides); 
091  
092   float radius = 20; //equals to grid node size 
093   float3 position = stars[i].position; 
094  
095   if(i<numStars){ 
096   
097      [loop] 
098      for (uint j = 1; j < numPos; j++) 
099      {    
100         if (distance(position, positionWeights[j].position)<radius) 
101         { 
102            InterlockedAdd(positionWeights[j].weight, stars[i].weight);  
103         } 
104      }    
105   } 
106 } 

 

 

Figure 15.  Compute Shader Part-4 (Cull Particles) 

108 [numthreads(BLOCKSIZE, 1, 1)] 

109 void CullParticles(uint3 id : SV_DispatchThreadID) 

110 { 

111     uint i = id.x; 

112     uint numStars, stride; 

113     stars.GetDimensions(numStars, stride); 

114  

115     float3 position = stars[i].position; 

116     float weight = stars[i].weight; 

117     float dist = distance(cullPosition, position); 

118     if (dist <cullRadius) { 

119  

120         float decrease = clamp(round(cullRadius /dist),1,4); 

121         weight -= decrease; 

122         if (weight<0) weight = 0.1; 

123     } 

124     if (i < numStars) { 

125         stars[i].weight = weight; 

126     } 

127 } 

 

 

The last kernel (see Figure 16) in the Compute Shader is responsible for 

resetting the particles as soon as the howitzer platoons are detected. Usually, 

particles are transferred to the detected position within an error circle. On the 



 54 

CPU side, enemy AI reasons and attaches possibilities to the nearby firing 

position where enemy thinks blue forces will move next. To transfer this data to 

the GPU side, we created an array of length 100 that consists of firing positions 

IDs, and which has repeated numbers of these IDs depending upon the 

possibility assigned to them. On the GPU side, particles are assigned paths that 

lead to specified firing positions by simply choosing one member randomly from 

the array of length 100. Since randomizing on Shaders is not as easy as it is on a 

typical script, we used Nathan Reed’s method (see Figure 11, lines 30–49) that 

was discussed in his blog (Reed, 2012).  

Figure 16.  Compute Shader Part-4 (Reset Particles) 

129 [numthreads(BLOCKSIZE,1,1)] 

130 void ResetParticles(uint3 id : SV_DispatchThreadID) 

131 { 

132     uint i = id.x; 

133     uint numStars, stride; 

134     stars.GetDimensions(numStars, stride); 

135      

136     //size of possiblepaths 

137     uint size = 100; 

138  

139     rng_state = id.x; 

140  

141     int pathNumber; 

142     float3 position = stars[i].position; 

143      

144     position = detectedPosition + stars[i].offset; 

145  

146     // Generate a random float in [0, 1)... 

147     float f0 = float(rand_xorshift()) * (1.0 / 4294967296.0); 

148      

149     f0 = f0 * size; 

150     pathNumber = possiblePaths[round(f0)]; 

151  

152     if (i < numStars) 

153     { 

154         stars[i].position = position; 

155         stars[i].pathNumber = pathNumber; 

156         stars[i].weight = 5; 

157         stars[i].pathNodeCount = 1; 

158     }    

159 } 

  
 

C. SPEEDING UP THE SIMULATION 

We present two modes for the main simulation: real-time mode and 

experiment mode. Real-time mode is the 3D visualization of our survivability 
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model, whereas experiment mode runs without rendering any image, and is 

focused on multiple runs that are optimized to be executed faster. The main 

method has been discussed in Chapter III. In this chapter, provide details about 

the algorithm. 

Unity has the ability to run the application in batch mode, simply by calling 

via a command line. It is not using the GPU for rendering issues, but executes 

the main game cycles under the hood. When the V-sync option is disabled, we 

determined that our application was able to run 4,000–10,000 frames per 

second. This is a significant increase, but it does not make sense when a delta 

time variable is used as a factor for movement. Because delta time values will 

drop to smaller values, agents would cover the same distance as in the real-time 

version due to a dependence upon the time that passes between two update 

cycles. Making our simulation frame dependent, we added another mode to the 

simulation that replaced the delta time with a fixed-time step. Therefore, having 

more frames increased the speed of the simulation. To increase every object’s 

behavior, we added the time factor into every movement algorithm. Another 

struggle was speeding up the physics calculation. Physics calculations are 

calculated outside of the main update cycle. They are updated at every fixed-time 

step, which can be manually set via the Unity Time Manager. Its default value is 

20 milliseconds, meaning that updates are executed 50 times a second 

regardless of the FPS rate. Due to this, we excluded physics from the simulation. 

There are no colliders and agents can walk through obstacles if their path passes 

through them. However, this also seems impossible for our grid node based A* 

calculations. Additionally, agents are aligned with the terrain by casting a ray 

from a distance above them, finding the normal of the ray-intersected surface, 

and adjusting translation and rotation of the agents. 

Other than movement, there are lots of functions dependent upon the 

time. Many events and functions are executed after some delay, such as waiting 

for reload time of the weapons. Unity uses coroutines to execute a block of code 

during updates over a specified time. It is easy to implement a time delay via 
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coroutines. As seen in Figure 17 line number 8, an instance of WaitForSeconds 

class is instantiated to cause a return null for seconds determined as the 

argument. However, these seconds are real-time seconds, so we need an 

algorithm to decrease these seconds proportionately to the  time scale. 

Figure 17.  Simple Co-Routine Example 

001  public void doSupply() 
002  { 
003     StartCoroutine("supplyingProcess"); 
004  } 
005  
006  IEnumerator supplyingProcess() 
007  { 
008      yield return new WaitForSeconds(10); 
009      myFSM.SendEvent("FinishedSupply"); 
010  }  

 

To regulate the time properly, we created our own clock logic (see Figure 

18). We are using MyClock.time value for delta time, which is be the time 

between two frames throughout the whole simulation. Depending upon the type 

of the simulation (experiment mode or real-time mode), this value is set to the 

proper value on every update cycle (see Figure 28, lines number 46–55). If the 

simulation has been started in the real-time mode, our MyClock.time is simply set 

equal to Time.deltatime value, which is calculated in each frame by Unity Engine. 

If the other simulation has been started in the experiment mode, the 

MyClock.time value is fixed on a time step that is set at the beginning of the 

simulation to a specified value. 

As discussed in Section F, the main struggle when speeding up a 

waypoint dependent agent movement is the oscillating around a waypoint during 

the agent movement. This is a big step, and it can never get closer than the 

threshold distance to the target waypoint when it sets its target to the next 

waypoint. We first made experiments and sought for a secure and maximum time 

step, which speeds the movement without having weird behaviors by 

overshooting waypoints. With this secure time step, there is a secure distance 

calculated for agents traveling between frames. For instance, fixing MyClock.time 
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to 0.1 seconds, means that in each frame, 100 ms have been assumed to pass, 

and depending upon this time interval, we can calculate the distance agents 

should have covered during that time. After numerous tests, we are able to fix the 

time steps in the experiment mode to 100ms (0.1 seconds). Taking it into 

account that in our real-time simulation we achieved a frame rate of 60–90 FPS 

—equal to having a delta time value between 16ms and 11ms—we are speeding 

up the simulation by a rate of approximately 6–16 times in just one frame. 

Changing the Unity’s internal stopwatch to increase the time in real-time 

seconds, we created our WaitForSeconds class that keeps waiting relative to our 

new clock (see Figure 19, line numbers 5–11). It is also able to track time as 

Unity’s time values when the simulation is started in real time. Using these 

methods, we were able to switch simulation time logic between real time and 

experiment time by simply setting a Boolean value (see Figure 18, line number 

48). These modifications were enough to speed up the simulation. Particles 

whose movement and probability updates are made on the GPU side, were 

speeding up with proper rate, since in each frame we were handing the 

MyClock.Time value as the delta time to the GPU side. 

As an additional feature, we put a slider setting on the menu, where the 

user can increase the speed of the simulation up to 5 times using the slider bar 

(see Figure 20). On the other hand, when the simulation is started in the 

experiment mode, there is no visual output rendered to be seen by the user. 

Instead, the simulation runs under the hood and writes to a CSV file by outputting 

the survival times after every design point run.  
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Figure 18.  MyClock Lass 

001     public class MyClock : MonoBehaviour 

002     { 

003         #region private fields 

004         private static bool experimentMode; 

005         private static float deltaTime; 

006         private static float time; 

007         #endregion 

008  

009         #region public fields 

010         public static bool experimentModeOn; 

011         /// <summary> 

012         /// set experimental deltaTime in unity editor 

013         /// </summary> 

014         public float myDeltaTime; 

015         #endregion 

016  

017         #region properties 

018         public static bool ExperimentMode 

019         { 

020             get { return experimentMode; } 

021         } 

022         public static float DeltaTime 

023         { 

024             get { return deltaTime; } 

025             //to be able to pause it pausetoggle script 

026             set { deltaTime = value; } 

027         } 

028         public static float MyTime 

029         { 

030             get { return time; } 

031         } 

032         #endregion 

033  

034         void Awake() 

035         { 

036             time = 0f; 

037  

038             experimentModeOn = ExperimentRoot.experimentMode; 

039             experimentMode = experimentModeOn; 

040             deltaTime = myDeltaTime; 

041  

042             if (!experimentMode) 

043                 deltaTime = Time.deltaTime; 

044         } 

045  

046         void Update() 

047         { 

048             if (experimentMode) 

049                 time += deltaTime; 

050             else 

051             { 

052                 deltaTime = Time.deltaTime; 

053                 time = Time.time; 

054             } 

055         } 

056  

057     }  
 



 59 

Figure 19.  Modified WaitForSeconds 

001     public class MyWaitForSeconds: CustomYieldInstruction 

002     { 

003         private float waitTime; 

004  

005         public override bool keepWaiting 

006         { 

007             get 

008             { 

009                 return MyClock.MyTime < waitTime; 

010             } 

011         } 

012  

013         public MyWaitForSeconds(float delayTime) 

014         { 

015             waitTime = MyClock.MyTime + delayTime; 

016         } 

017     } 

  
 

Figure 20.  Time Slider in the Enu 
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V. ANALYSIS OF THE EXPERIMENT 

Adding the ability to run the simulation without rendering via a command 

line in experiment mode, enables us to fast-forward actions and movement. 

Therefore, multiple runs in a shorter amount of time could be successfully 

executed, allowing us to conduct more experiments. Moreover, we also provide 

users with the opportunity of inputting their own designs of experiments via a 

CSV file. This turns the simulation into an experiment tool to test different 

influences and effects on the desired response variable. To highlight this ability of 

the simulation, we conducted an example of an experiment that inspects the 

effects of five factors on the survival time. 

A. DESIGN OF THE EXPERIMENT 

The experiment we have designed for the purpose of our research 

focuses on the factors that affect the survivability of the modern artillery units 

while they are providing fire support in an assault mission. We created the ASM 

to visualize the main survivability movements on the terrain, and created an 

experiment tool that is able to make multiple runs with provided design points. To 

achieve multiple runs with the simulation in a shorter time we developed a 

method to speed up the simulation time (see Section F). 

The response variable for the experiment is the survival time of the first 

platoon (three howitzers). The time when all of three howitzers of the platoon 

lose their moving ability or are destroyed is recorded as the response variable for 

the simulation. Since destroying moving howitzer units by indirect fire is a hard 

task to accomplish, we assumed that all members of the platoon losing their 

moving capability would cause the platoon to stop operations and make them 

vulnerable to artillery fire on open terrain. 

We tested five factors for this experiment. It is also possible to test other 

factors by easily changing variables in scripts. Here we provided five main 

factors; however, anyone familiar with C# language could review the code and 
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manipulate the factor variables. Our intent was to create a user-friendly interface 

that would make it easier to change experiment factors; however, the time 

constraints of the research did not for development time. For this study, our 

factors include: 

 A - Movement Speed of Howitzer 

 B - Training Level of Howitzer Units 

 C - Enemy Radar Quality 

 D - Effect of the Enemy Rounds 

 E - Armor Thickness of Howitzer Units 

The experiment will be executed in the two-level (low and high) fractional 

factorial design. In this case, it will be one-half fraction and resolution V design 

(2V
5-1). The generator for the fifth factor (E) will be ABCD. There will be 16 design 

points, and 30 simulation replicates for each design point. Design points with a 

determined factor list can been in Table 2. 

We provided a CSV file that includes these factors in Table 2 in the 

relative location ―\asm_Data\StreamingAssets\dPFile.csv‖ of the executable 

simulation file. Once the simulation starts, it parses this document and runs 

specified multiple times at every design point with designated factor values. This 

file can be edited before the simulation execution and desired factor values can 

be set for each design point. The ―StreamingAssets‖ folder also has the 

―config.csv‖ file, where the user can set the number of multiple runs. 

The Unity standalone build stores an execution log in the text file 

―\[executable_file_name]\output_log.txt.‖ This file also includes debug logs and 

console outputs. We provided an extra organized output text file that stores data 

regarding each un in the identified folder location ―\[executable_file_name] 

\StreamingAssets\experimentOutputs.csv.‖ The simulation adds every output into 

this file with the execution time info. It is not overwritten on each execution; 

therefore, the user can track old outputs when examining this file. 
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For this experiment, two levels (low and high) are set for each factor (see 

Table 3). Movement speed (5–10) is the distance in scene graph units that 

howitzers take in one second. Training level (10-3) determines the quality of the 

training of the howitzer crews. In the simulation, it is modeled as the preparation 

time to shoot one round in a specified number of seconds. A higher value means 

more time to spend to reload and to prepare before shooting, which causes units 

to stay more static on a firing position and to be more vulnerable to indirect fires. 

Enemy radar quality (3-1) affects the total time between blue units shoot from a 

position and enemy detects that position on its radar. Radar quality value is a 

multiplier of this detection time. The higher the radar quality, the larger is the 

detection time.  

Table 2.   Design Points 

Run A B C D E=ABCD 
Treatment 
Combination 

1. - - - - + e 

2. + - - - - a 

3. - + - - - b 

4. + + - - + abe 

5. - - + - - c 

6. + - + - + ace 

7. - + + - + bce 

8. + + + - - abc 

9. - - - + - d 

10. + - - + + ade 

11. - + - + + bde 

12. + + - + - abd 

13. - - + + + cde 

14. + - + + - acd 

15. - + + + - bcd 

16. + + + + + abcde 
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Table 3.   Experiment Factor Values 

Factor Name  Low Level High Level 

A –Movement Speed 5 10 

B – Training Level 10 3 

C – Enemy Radar Quality  3 1 

D – Effect of Enemy Rounds 30 60 

E – Armor Thickness  100 150 

 

Effect of the enemy round (30–60) is the damage value of one round on 

the impact point. The damage decreases as the distance between the howitzers 

and the impact point grows (area damage). Armor thickness (100–150) is the 

starting health point of the howitzers, which is also the determinant of no-move 

and destroyed states.  This determinant decreases with time depending upon the 

shots taken during the battle. 

B. ANALYSIS OF THE OUTPUTS 

After running the simulation 480 times (30 multiple-runs x 16 design 

points), and recording response variables and the time at which all of the three 

howitzers lose their moving ability, we used the software JMP Pro 11 to analyze 

the output and conduct a regression analysis. The JMP screening procedure was 

used to list matching design points, and a fit model was created with main factors 

and two factor interactions. 

When we ran our first model with the main factors and two factors 

interactions, we received a fitted model that was able to explain 73% of the 

variability (see Table 4). There were 19 extreme outliers that are displayed in 

Figure 21, circled in red. 
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Table 4.   Summary of Fit of First Run 

RSquare 0.729779 

RSquare Adj 0.721044 

Root Mean Square Error 52.02946 

Mean of Response 150.3309 

Observations (or Sum Wgts) 480 

 

Figure 21.  Actual by Predicted Plot of First Run 

 
 

Next, we used JMP stepwise regression methods to find a best fit for our 

model. From different provided methods in the software, we chose the ―minimum 

Bayesian Information Criterion‖ method to design the model. This method 

excludes the factors and interactions that are insignificant and create the best-fit 

model by simply clicking a button. The best-fit model excluded the following four 

two factor interactions from the model: 

 Movement Speed * Effect of Enemy Rounds 

 Training Level * Effect of Enemy Rounds 

 Enemy Radar Quality * Effect of Enemy Rounds 

 Training Level * Enemy Radar Quality 

Additionally we excluded the 19 extreme values that were far outliers, and 

made the model with 461 run outputs. Running the fit model, we have ―Actual by 
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Predicted Plot‖ as an output where we can see how well our predicted model fits 

the actual data (see Figure 22). Table 4 shows us the summary of fit. We have 

an RSquare of 81%, which indicates that the model explains 81% of variability of 

the survival time around its mean. Our adjusted RSquare differs slightly from the 

RSquare, which shows that almost every independent variable in our model is 

affecting our response variable.  

Table 5.   Summary of Fit 

RSquare 0.813154 

RSquare Adj 0.808576 

Root Mean Square Error 34.44337 

Mean of Response 141.8946 

Observations (or Sum Wgts) 461 

 

Figure 22.  Actual by Predicted Plot 
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JMP’s Analysis of Variance report (see Table 6) compares our fitted model 

with a model where all the predicted values are the same as the mean of the 

response variable. We see that ours is significantly different than this ideal 

model, since we already determined that ours is capable of explaining 81 % of 

the variability. Having a small p-value below the threshold, means also that there 

is at least one significant factor in our model. 

Table 6.   Analysis of Variance 

Source DF 
Sum of 
Squares 

Mean Square F Ratio 

Model 11 2318172.3 210743 177.6404 

Error 449 532669.3 1186 Prob > F 

C. Total 460 2850841.6  <.0001* 

 

The Lack of Fit report explains how well our model fits the data. From the 

p-value (0.2728) in Table 7, we see that there is no significant lack of fit in our 

model. The model’s independent variables (our five factors) managed to fit the 

data well without requiring any additional independent variables. 

Table 7.   Lack of Fit 

Source DF Sum of Squares Mean Square F Ratio 

Lack Of Fit 4 6108.31 1527.08 1.2905 

Pure Error 445 526560.94 1183.28 Prob > F 

Total Error 449 532669.25  0.2728 

    Max RSq 

 

The Residual by Predicted Plot (see Figure 23) seems to meet the 

constant variance assumption by not having a vertical width of the scatter, which 

increases or decreases across the plot. The errors are randomly scattered 

around zero, and the mean is close to zero.  
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Figure 23.  Residual by Predicted Plot 

 

The Residual by Row Plot (See Figure 24) shows the residuals plotted by 

the row number, which indicates our observation number as well. There is no 

specific pattern, and dots seem to be scattered randomly, which ensures that our 

independence assumption has been met. 

Figure 24.  Residual by Row Plot 

 
 

The distribution of the residuals is normal (see Figure 25). The histogram 

is unimodal and symmetric. On the normal quantile plot, we see an S shape 

where residuals contain larger values around zero (left-of-zero and right-of-zero). 

This satisfies the normality assumption. We also see a number of outliers that 

are darkened as seen on the box plot. Outliers are still within the 3 IQR 

(Interquartile Range, which equals the central rectangle range, starts from first 

quartile, and ends at third quartile), above the third quartile, and the 3 IQR below 
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the first quartile. They can be defined as suspected outliers (outside values), 

rather than outliers (far outside values). 

Figure 25.  Residual Survival Time 

 
 

Table 8.   Sorted Parameter Estimates 

 Term Estimate t Ratio Prob>|t| 

1 Armor Thickness 54.198327  <.0001* 

2 Training Level  -38.19359  <.0001* 

3 Movement Speed  -22.71931  <.0001* 

4 Enemy Radar Quality  -15.26849  <.0001* 

5 Movement Speed*Armor Thickness  -14.26765  <.0001* 

6 Training Level*Armor Thickness  -13.48685  <.0001* 

7 Effect of Enemy Rounds  -12.28807  <.0001* 

8 Movement Speed*Training Level 8.9139336  <.0001* 

9 Enemy Radar Quality*Armor Thickness  -7.089428  <.0001* 

10 Effect of Enemy Rounds*Armor Thickness  -4.625371  0.0043* 

11 Movement Speed*Enemy Radar Quality 3.511009  0.0300* 

 



 70 

Our reduced model shows that every factor used in the fit model is 

significantly important (see Table 8). P-values of every term are below the 

significance level 0.05. In Table 8, these terms are listed in the order of 

decreasing significance. At the end of the experiment, we concluded that the 

most significant effect on survival time was the armor thickness. The training 

level of the crew was in the second place, which is respectively followed by the 

movement speed and enemy radar quality with closer significance rates. One 

interesting result was that the effect of the enemy rounds was in the seventh 

order after two two-factor interactions, but was still within a high significance 

ratio. 

The resulting model is: 

Predicted Survival Time = 147.56 + 54.20 X Armor Thickness - 38.19 X Training 

Level -22.72 X Movement Speed - 15.27 X Enemy Radar Quality – 14.27 X Movement Speed X Armor 

Thickness -13.49 X Training Level X Armor Thickness – 12.28 X Effect of Enemy Rounds + 8.91 X 

Movement Speed X Training Level -7.10 X Enemy Radar Quality X Armor Thickness - 4.63 X Effect of Enemy 

Rounds X Armor Thickness + 3.51 X Movement Speed X Enemy Radar Quality  
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VI. CONCLUSION 

The simulation ―Artillery Survivability Model (ASM)‖ is the product of this 

study that seeks answers to four research questions (RQ). ASM succeeded to 

generate an adequate algorithm for artillery survivability movements (RQ1) by 

creating a 3D virtual environment presenting a restricting battlefield. As we did 

get into detail in previous chapters, besides providing a reasonable position 

selection from all the determined firing positions that are generated by terrain 

processing, agents in the simulation use covered paths calculated by A* 

algorithm, when they move to the next firing position. 

As a solution for creating an indirect fire threat map (RQ2) for artillery, we 

used particle filters. These filters consisted of 100,000 particles, all of which 

contained the properties of probability for the positions of the blue forces, 

including speed, velocity, color, and target. When each of the units was detected, 

particles appeared on that location and began to spread to the next potential 

firing positions. They also changed probability and color on locations where the 

enemy was able to take visual reconnaissance. In real-time mode, we visualized 

this occupancy and threat map with particles that were actually begin updated on 

GPU, using a Compute Shader component of Unity. 

The simulation enabling the user to design experiments and to execute 

multiple runs for each design mode, automatically made it possible to test factors 

on survival time (RQ3). In Chapter V, we provided an example experiment 

inspecting the five main factors that affect the survival time of the artillery. Our 

goal was to test the random selection process that agents do at some proportion 

of the time when they do not select firing positions with scoring methods, 

because this randomness would help them to follow random patterns and provide 

unpredictability. To test this, we developed a learning algorithm for the enemy 

that adapts to feedbacks on failure or success at guessing the position of the 

blue forces, and improves its guess function by online learning. Because of the 
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time constraint and the broad scope of the study, we were not able to implement 

this method, but will add this task to our future work. 

As the experiment mode provided insights about factors through 

experimentation, the real-time rendered simulation visualized the survivability 

movements on the real terrain. The user was able to compare the different 

behaviors of two howitzer platoons that were fighting side-by-side. This 

visualization could provide insights into survivability movement and an easy 

understanding of the concept for inexperienced artillery officers. The simulation 

could also be used as a training tool (RQ4) to compare the results of an artillery 

officer who worked on a 2D map and determined appropriate firing positions. 

Nevertheless, the simulation needs an upgrade to provide the user with input of 

chosen firing positions, and to provide a digital comparison between the input 

and agent’s behavior of position selection. This feature will also be included in 

future work. 

As a result, we were able to create a 3D agent-based simulation to 

visualize platoon-level artillery operations with high-end graphics, and also to 

provide multiple-run experiments in experiment mode up to 50 times faster than 

the real-time simulation. The experiment mode enabled users to create their own 

design and to experiment on the factors in which they were interested. In Chapter 

IV, we provided an example for an experiment whose outputs were reasonably 

interpreted. 

Using Compute Shaders to run on the GPU side, it was possible to 

develop particle filter position tracking algorithms, which provided a more 

reasonable and realistic AI for the enemy. During the experiment mode, when we 

called the application via the command line with the argument ―–batchmode,‖ 

Unity was not using the graphic card for both rendering and Compute Shaders. 

Therefore, we were not able to use particle filter algorithms for enemy tracking 

during this mode. We swapped the particle filter algorithm with a simpler 

algorithm that shot to the current position of the blue forces with some random 

error. 
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Developing a unique method for survivability movement will help the 

artillery units to change position more systematically, by considering terrain 

features, and using the closest covered path to the set destination. In addition, to 

fill the gap of missing documentation regarding how to maneuver within the 

position area, this simulation tool will facilitate decision making in an even shorter 

time. Considering that advising the next firing position to the platoon leader is the 

job of one person in the POC, and this person tends to follow similar patterns, 

one of the other advantages of the simulation is that it has an algorithm, which 

provides random outputs for firing positions. 

A. ABOUT THE PLATFORM 

Using a popular game engine to create a simulation, as well as Unity’s 

convenient user interface, and the power of the C# language assisted in the 

development process. Assets, code libraries, and models that users can buy or 

download for free from the Unity’s Asset Store, formed the base architecture of 

the simulation. The quality of their architecture also made it possible to import 

these libraries and use them efficiently to write code for our purposes. Learning 

and mastering the game engine is easy if the developer has a background in the 

basic game development. 

The user network of Unity is very wide and interactive. The interactive use 

of forums and sharing of user information over the web makes research quite 

easy. Also, social networks facilitate communicating with people who are main 

developers of the Unity game engine. For instance, we were having problems 

using Compute Shaders in batch mode (experiment mode). Consulting the Unity 

developer of Compute Shaders via Twitter, provided us with quick assistance. 

One difficulty that we confronted was in finding solutions to our 

experimental mode. Unity is a game engine and focuses on real-time rendering 

solutions. They also support people who are developing serious games and 

simulations for military solutions. Although our attempt to convert the application 

into an experimental mode without rendering any image was successful, it is 
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almost impossible to find any other similar solution on the web. The first intent to 

create batch mode was for server side applications and network solutions, which 

do not require rendering. 

B. FUTURE WORK 

Adding randomness to the decision of the platoon leader when choosing 

next firing position was an idea about preventing and making it difficult for the 

enemy to learn blue forces’ position changing algorithm. We were interested in 

the effect of this randomness on the survival time; however, without making the 

enemy learn, adapt, and improve its guess functions, it is impossible to inspect 

the randomness effect. As a future work, enemy AI may be improved to an 

adaptable function so that it can use online learning algorithms to make better 

guesses about the next position of the blue forces. Furthermore, an experiment 

may be run with the tools we provided to examine the effect of the randomness 

on the survival time. 

A user interface could be developed for experiment mode. With this 

edition of the simulation, users should review code to change the main factors of 

the experiment. The design of experiment CSV file enables users to create their 

own designs for experimenting with five pre-determined factors (Armor thickness, 

speed, enemy radar quality, effect of the enemy round, and training level). 

Another user interface could be developed for the real-time simulation to let 

users input their pattern for survivability movement and then compare their own 

work with the simulation’s output. 

The simulation can be upgraded to a battalion level, which would make it 

possible for battalion level operations to be inspected by running experiments. 

Interactions between batteries can be modeled. Additionally, communication with 

the headquarters and maneuver units can be modeled, which is a significant 

factor for fire support missions. Another option would be to create an interactive 

version of the simulation where the user would be able to assign future firing 

positions for the howitzer platoon and compare results with the agent’s decisions.  
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