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Abstract

Interest in the field of quantum optics has largely been motivated by demonstrating the
unique features of the quantum world in the context of light. Taking advantage of these
quantum properties of light to make advances in the context of metrology and
measurement science has been the practical goal of our lab, and of the work supported
under this grant. In particular, while many groups have worked toward demonstrating
quantum features of light and how they can be used to advantage in fundamental
scientific as well as some practical experiments, it has often been in the restricted context
of a single spatial mode. In imaging terms this means a single “pixel” in an optical
system. Our goal has been to attempt to expand the quantum advantages into multi-pixel
imaging applications as well as to improve and simplify some of the single-spatial-mode
applications of squeezed light through the use of four-wave mixing (4WM) in atomic
vapors. We have worked to study the propagation of quantum correlations, improve low-
frequency squeezing, demonstrate phase-sensitive optical amplification and its
applications, and demonstrate a method for calibration of the absolute quantum efficiency
of photodiodes. We have demonstrated intensity-difference (two-mode) squeezing to
frequencies below 50 Hz, which will be used for photodetector calibration and imaging
experiments. We have studied the propagation of quantum information through a phase-
sensitive optical amplifier and used this amplifier to implement a "perfect detector" for a
single-quadrature signal. We have also used the phase-sensitive amplifier to characterize
phase and amplitude modulation in an optical signal.
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Introduction

Nonlinear optical processes have been shown to be able to lead to optical states
with interesting quantum mechanical properties. These states have noise and correlation
properties that can improve upon the best measurements physically possible with
"classical" states of light. In particular "squeezed states" of light can have sub-shot-noise
fluctuations that can lead to better measurements and "two-mode" squeezed states can
produce correlations between two beams such that, even though the beams themselves
have noise properties that are not very special, the noise in the two beams is so highly
correlated that again, sub-shot-noise measurements can be made using these states.

Our laboratory pioneered a technique for generating squeezed states of light near
a Rb atomic resonance that has proven to be fairly easy to implement and robust to
operate, and has been adopted by a number of groups around the world. Using small
(~1cm long) vapor cells warmed to about 120C and light from diode or Ti:sapphire lasers
we are able to make measurements with up to a factor of 10 improvement over
conventional "classical" optical techniques. In addition, since our technique does not
require the use of an optical cavity to enhance the field strength, it is easy to apply this to
many spatial modes in parallel. Hence we can perform imaging experiments with
squeezed light. We continue to explore the applications of this technique and summarize
here our accomplishments during this grant period.

Our recent progress was somewhat limited by the fact that we packed up our labs
and moved them from the NIST campus to the campus of the University of Maryland,
where new facilities at the Joint Quantum Institute were made available. This, inevitably,
disrupted our experiments for a good part of a year. We also spent a good deal of time
engineering better low-frequency performance into our squeezed-light source. While this
will be very useful going forward, it was not felt that this was, by itself, publishable work
at this time.

Our work has concentrated on “fast light” and communications, phase-sensitive
amplification, sensitive imaging and detector calibration techniques, and optical storage
and memory. In addition, we have studied squeezed light in interferometric applications.
During the grant period one graduate student, Jeremy Clark, finished with a PhD [1] in
November 2013.

Fast Light and Information Propagation

Our work on fast light looks at the propagation of quantum information through
media with both normal and anomalous dispersion. The motivation was to be able to
investigate the propagation of signals in “fast light” conditions more precisely by using
the better-than-shot-noise correlations that we obtain with quantum-correlated twin
beams of light generated by 4-wave mixing. It turns out that we can do a good job of
looking at the physics of fast light, as well as investigate the transport of quantum
information in our experiments. We have examined the advance of classical signals
under anomalous dispersion conditions [2], but we have also looked at the advance and
accompanying degradation of quantum correlations, or information, in such fast light
media. We could see that the dispersion required for fast light necessarily comes with
added noise, either from gain or loss, and this works to limit the fidelity and advance of
quantum correlations [3]. After that an important step was to start looking at the quantum
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mutual information in the system, and the temporal advance of that particular measure
[4]. This is also related to our previous work on “quantum discord,” [2], in that the
quantum mutual information can be used to quantify both classical and quantum
information in such a system.

We are now attempting to repeat this sort of measurement with a phase sensitive
amplifier (PSA). In the above-mentioned experiments we used a phase insensitive
amplifier (PIA) based on 4-wave mixing (4WM) gain to generate the anomalous
dispersion region for fast light. The noise associated with the gain can be calculated, and
it seems to be just enough to prevent the advance of any signal. This brought up the
question of just what happens if we use a PSA based on the same 4WM interaction to
generate phase shifts, instead of a PIA. A phase-sensitive amplifier can perform
noiseless amplification. Even though this is true for just one phase-quadrature of the
signal, it would seem disturbing if we had the same dispersion as in the PIA case, but no
noise, and if we were thus able to advance a signal in this situation. Since we know that
we can have noiseless amplification with a PSA, it would seem to imply that in this case
we cannot have anomalous dispersion - or any dispersion, by symmetry arguments.

Unfortunately the PSA is much more complicated than the PIA in its operation.
Aside from being limited to low gain to prevent parasitic phase-insensitive 4WM
processes from dominating, it is capable of, for instance, converting phase modulation
into amplitude modulation, and consequently it requires very careful calibration of the
input signals in an experiment.

Phase Insensitive Amplifier (PIA)

We have studied the effect of fast and slow light media (anomalous and normal
dispersion) on the transmission of information, in particular, quantum information.
While a number of authors have carried out similar experiments in the past, looking at the
movement of classical information, we took an information-theoretic definition of the
mutual information between two quantum-correlated beams and examined the effects of
dispersion on this particular measure. One beam acts as a reference and the second is
passed through either a fast or slow light medium before measurement.

While the anomalous dispersion could advance the peak of the normalized
intensity correlations, we found that the mutual information, properly defined in an
information-theoretic way, was degraded by added noise to the extent that there was
never any additional or “extra” information that arrived before the corresponding
information in the reference trace. That is, while the peak of information arrival can be
advanced, it will be degraded to such an extent that it cannot rise above the value of the
reference trace, as shown in Fig. 1, below. When the dispersive medium was tuned to
produce slow light with a similar amount of added noise it was found that there was a
substantial delay of both the peak as well as the entire trailing edge of the mutual
information curve.

The addition of noise seems to be the mechanism by which nature prevents the
early (“faster-than-light”) arrival of information. Fundamentally, however, there is still
something to understand in the difference between fast light and slow light. The change
of sign in the slope of the dispersion seems to affect more things than simply altering the
group velocity. Although it is comforting (and not unexpected) that causality is not
violated in this situation, we would still like to be able to point to the mathematical/
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physical difference that keeps information from advancing but not from being delayed, in
order that we understand it, and perhaps be able to take advantage of it. Thus, there
remains more to investigate here.
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Figure 1 - Plot of the mutual information as a function of delay for a continuous-wave signal. Black is the
reference mutual information curve without dispersive media, red shows the advance of the mutual
information under fast light conditions, and green shows the delay of the mutual information under slow
light conditions when the degradation of the information is similar to that found under the fast light
conditions.

In the above measurements we used a phase-insensitive amplifier, where with
moderate gain we could obtain either “fast light” or “slow light” dispersive conditions.
We then used the same 4WM process to create the dispersive medium. An anomalously-
dispersive medium and a normally-dispersive one can be derived from the same 4WM
gain process at different detunings. Knowing that we could create a phase-sensitive
amplifier (PSA) from the same 4WM process brought up a question as to how such a
PSA would behave, both in information advance and dispersive properties.

Phase-Sensitive Amplification

If all four of the “waves” in the 4WM process are injected there is no longer the
freedom for an “idler” or conjugate beam to adapt in order to achieve the maximum gain
condition. Thus, with the same geometry as the twin-beam, phase-insensitive case, if one
pumps on what would have been the probe and conjugate frequencies and injects a signal
at the center frequency, along what would have been the pump direction (see Fig. 2), one
can construct a phase-sensitive amplifier. This amplifier will amplify one quadrature
(say, a cosine wave) while de-amplifying the orthogonal quadrature of the input (the sine
wave). An interesting feature of this amplifier is that at the maximum amplification or
de-amplification phases the amplifier will be noise-free. That is, one can obtain noiseless
amplification of the cosine quadrature and noiseless de-amplification of the sine
quadrature of the input. We have spent some effort investigating this phase-sensitive
configuration in a number of experiments.
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Figure 2. PSA/PIA level diagrams and geometry. (a) In the case of the phase-insensitive amplifier the
pump and only one of the sideband frequencies are injected. The vacuum input on the remaining mode
allows for the phase insensitivity. (b) In the phase-sensitive case all of the required fields are injected and
the relative phases of these fields are important. The detunings of the beams from the atomic resonance
also need to be different to obtain the best PSA operation.

If the phase-sensitive amplifier (PSA) is operated in its noise-free maximum
amplification or de-amplification conditions, how is causality preserved? Without noise,
can there be any dispersion? We are exploring this now, and it does seem to be true that,
even though the gain line is identical for the cases of the PSA and PIA, the dispersion
relationship is very different, and indeed it is phase-dependent for the PSA.

The behavior of the PSA is sufficiently unfamiliar that it required a study of its
input-output characteristics in the case of a modulated signal before we could really
understand how to study the mutual information transmission for this device. We found
that intentionally intensity-modulating the input using an acousto-optical modulator
(AOM) often led to spurious signals at the output due to the unintentional phase
modulation that also came from the AOM. This led to a study of the phase modulation
that is also imposed when using a simple optical chopper.

In an attempt to understand the input-output relation of the PSA we tried to inject
a simple amplitude-modulated signal into it. Unfortunately, the PSA can interconvert
phase and amplitude modulation, leading to unexpected signals if the input is not
sufficiently well-characterized. Our first reaction to the residual phase modulation on the
AOM was to switch to using a mechanical chopper to intensity-modulate the beam.
Unfortunately, a mechanical chopper also imposes a large phase modulation onto a beam.
While at first glance this may seem surprising, if one thinks of pushing a card into a
beam, the changing diffraction around the edge of the card clearly implies phase
variations. If one thinks of pushing a card into, say a TEM 01 mode, which has positive-
and negative-phased lobes, first cutting off one lobe, and then the other, one will clearly
impose dramatic phase shifts into the transmitted portion of the beam. We found that the
PSA itself can be used to detect such phase modulations.
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While the phase modulation on a beam is often detected using homodyne
detection, this sort of phase modulation induced by diffraction is difficult to measure via
homodyne unless the local oscillator beam is similarly re-shaped and a transient signal is
studied. Our PSA, however, will react to whatever sort of beam shape is input, and the
phase and amplitude modulation at the output can be used as a diagnostic for the
modulation on the input beam. The principle is to look at the dc and the ac gain for the
amplifier. A constant input with no modulation will result in a fixed-gain, dc output; in
the PSA the relative phase of the input matters as well, so that as the phase is varied the
dc gain varies too. If there is only amplitude modulation present then the ac gain at the
modulation frequency will track the dc gain. If there is phase modulation present then the
interconversion changes this. By injecting a sine-wave oscillation on top of a dc signal
we can measure both the ac and dc gains directly, as a function of phase, and the results
can be seen in Fig. 3.
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Figure 3. AC gain versus DC gain for an optical signal modulated with an acousto-optic modulator and
amplified in an optical phase-sensitive amplifier. The different plots are for different mixtures of AM and
PM due to the AOM alignment. Each plot is parametric with respect to the phase of the PSA. The solid
curves are theoretical fits. (a) P/4A = 0.02, (b) P/A =0.13, (c) P/A =0.42, (d) P/A = 1.59, where P/A
represents the ratio of the amplitudes of the phase and amplitude modulations of the input.

We have compared the measured ratio of phase-to-amplitude modulation
measured by the PSA to measurements made by homodyne detection and found a good
correlation between them. The PSA can thus be used as a diagnostic tool to measure the
amount of phase modulation on a beam. It can also be used in situations where the
homodyne technique is problematic, such as in the case of an optical chopper. Here one
must define what is meant by ac gain, and we take the transient part of the gain as the
chopper moves from fully blocking the beam to fully passing the beam as the ac part of
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the signal. As seen in Fig. 4, if there is a large phase modulation present the transient
overshoot of the output intensity from the PSA signifies its presence [5].
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Figure 4. Phase modulation measurements for two different chopper alignments using the PSA scheme. (a)
and (c) show raw data from a tilted chopper alignment and optimal chopper alignment, respectively. Inset
theory curves are shown as examples to demonstrate curve shapes for the fit parameters and do not
necessarily match the PSA phases of the individual data curves shown. (b) and (d) show AC gain vs. DC
gain for the tilted chopper alignment, and optimal chopper alignment, respectively. The dashed curves in
(a) and (c) are the error functions when the PSA is off. The solid curves in (b) and (d) are theoretical fits
where P=0.7 and P = 0.15, respectively.

Now that we understand and can control the PSA somewhat better for classical
signals we are able to move on to our intended experiments measuring the signal advance
or delay for quantum correlations through the PSA.

Given that the added noise seems critical to maintaining causality, an amplifier
without noise would seem to be able to threaten this feature. Our phase-sensitive
amplifier (PSA) performs noiseless amplification for a single signal quadrature, while
utilizing the same gain feature as the phase-insensitive amplifier that we used to create
the dispersion in the experiments above. In our preliminary experiments it would seem to
be that the dispersive properties of the PSA vary with the phase, and for noiseless
amplification or de-amplification the dispersion goes to zero. At phases between these
conditions, noise is added to the signal and either phase advance or delay (anomalous or
normal dispersion effects) can be obtained. We can also explore the fundamental noise
limits and performance of the PSA in this way.

One can also look at the PSA “dispersion” from a different point of view. The
PSA will (noiselessly) amplify a particular quadrature, and deamplify the orthogonal
quadrature. If one decomposes an arbitrary signal into these two quadratures, then there
is never any noise added to these quadrature components of the signal, but if the signal is
not confined to one of the “natural” quadratures defined by the PSA then the signal will
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be distorted by the differential amplification and deamplification of these components. In
this sense there is no “dispersion” in the PSA, as such, but rather an apparent phase
advance or delay that depends on the gain of the PSA and the original mixture of the
“natural quadratures” of the PSA that make up the signal. If a signal is introduced that is
completely into one of the natural amplification or deamplification quadratures it remains
there, and exits with no phase advance or delay. If it enters in a superposition of these
quadratures, it exits rotated toward the gain quadrature and the amount of the phase
advance or delay depends on both the input superposition and the gain (see Fig. 5). This
behavior indicates a phase shift that varies with the input phase of the signal, and is
unlike what we would normally call “dispersion”, where the phase shift is frequency-
dependent, but independent of phase. Both are present in a PSA.

A Gain A
quadrature

=" deamplification
//" ) quadrature >
input signal PSA output

Figure 5. Phase rotation with gain in a PSA. If the signal into a PSA is not along either the natural
amplification (gain) or deamplification quadrature directions initially the differential amplification/
deamplification of these quadratures will produce an apparent phase advance or delay for the signal at the
output. In the right panel the input components (green) are transformed at the output (blue) to produce an
apparent phase shift in the signal from 0 to 0'".

While the procedure for extracting the mutual information between two Gaussian
beams, such as we have, is well established, this gives the information carried by both
quadratures of both beams, not just one. Since the PSA will treat the two quadratures
differently, we are investigating the measurement of single-quadrature mutual
information. Classically this is straightforward, but we are trying to make sure that we
are treating the quantum problem properly. Similarly, we wish to measure the quantum
discord (difference between classical and quantum information) under these conditions.
We are just at the point where we can begin these measurements.

The logical result seems to be that there is no “dispersion” for a PSA when it is
operated at the noiseless amplification or de-amplification phases. If one looks at the
apparent phase advance or delay in propagating through a PSA (see Fig. 5) we see that
the amplification and de-amplification of the orthogonal quadratures produces an effect
that creates an apparent phase rotation. The phase of the beam is, however, not so much
advanced or delayed, but rather has its components amplified and attenuated
differentially.
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Perfect Detector

Using the same experimental configuration as we will use to investigate the
transport of mutual information we are also able to construct and test “perfect” homodyne
detectors. For the detection of a particular quadrature we can, in principle, noiselessly
amplify a signal before attenuating it. One can consider an optical detector with less than
100% quantum efficiency as equivalent to a perfect detector with a lossy beamsplitter
element in front of it. One can then recover a perfect detector by noiselessly amplifying
the detected quadrature, overwhelming the subsequent loss, before the signal reaches the
imperfect detector. We are in the process of measuring this “approach to perfection” in
the lab now, although we have a relatively limited range over which to do this (we can
obtain noiseless amplification only for gains less than about 5).

The experimental set-up for investigating “perfect detectors” or mutual
information in a PSA is shown in Fig. 6. While one cannot, unconditionally, noiselessly
amplify an arbitrary quantum state (both quadratures), we have seen that it is possible to
build a noiseless amplifier for a signal in a single quadrature using a PSA. A homodyne
detector looks at a single quadrature signal that is determined by the phase of the local
oscillator. Such detectors are often used in the detection of squeezed light or other non-
classical states of light, or in quantum key distribution (QKD) systems. If the final
detector is not 100% efficient, due to the photodetector itself, or imperfect mode-
matching with the local oscillator, then this will reduce the amount of squeezing that is
measured, or the fidelity of either QKD transfer or the measurement of an arbitrary
quantum state. The homodyne detector can be made effectively 100% efficient, however,
by including a PSA that noiselessly amplifies the quadrature that is to be measured.

T]Za

N\PSA ~
e 18 ET o
0 7\ W2 PBS
.. PIA .-
~~~‘~~ _____________________ BHD J

Figure 6. Experimental set-up for both perfect quadrature detection and for measuring the advance or delay
of mutual information through a PSA. The PSA can compensate for loss that occurs after that point in the
beam path and effectively create a perfect detector. For testing the advance or delay of quantum
information we can measure the quantum mutual information with and without the PSA in one of the beam
paths and for different PSA relative phases. BHD = balanced homodyne detection, PIA = phase insensitive
amplifier, PSA = phase sensitive amplifier, PBS = polarizing beamsplitter.
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The PSA in Fig. 6 above can be considered to be part of the detector,
compensating for any loss that occurs after that point in the system (including the
photodetector quantum efficiency). This compensation is somewhat “stochastic,” but
becomes perfect in the limit of large gain. If we imagine that the upper homodyne
detector in the figure has 50% quantum efficiency, then we can insert a (noiseless) gain
of 2 PSA in front of the homodyne system to partially compensate for this. The reason
that the compensation is only partial is that the loss is stochastic — each signal photon is
not cut in half, but rather, on average half of the photons are lost. If we were to
noiselessly perfectly duplicate each photon, and then randomly lose half of them, we still
would not return to the original signal. In a rough way of thinking, if we started with one
photon, generated a second one, and then put this through a 50/50 beamsplitter, we might
get one, both, or neither of the photons through, but on average the fidelity of the signal
would generally be better (and the signal would be larger) than if we had not done this. In
the limit of large amplification this operation would essentially generate a classical signal
that could be cut in half by the beamsplitter with the addition of a negligible amount of
noise, and that is the principle at work here.

In our implementation we create quantum-correlated beams using the 4WM PIA
source, and can change the effective quantum efficiency of the detector by inserting loss
between the PSA and the homodyne detector as in the set-up in Fig. 6. We can then try
to compensate for this by changing the gain in the PSA and examine how well the
quantum correlations between the twin beams from the source survive. When the gain is
higher than the loss in the testing arm we need to renormalize the size of the signal in
order to look at the correlations properly. In Fig. 7 we show the measured squeezing
levels for the amplified quadrature, with and without the PSA on, for three different
values of the gain (gain = 2, 3, and 4). One can see that, in particular for higher gains, the
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Figure 7. Squeezing level with PSA on or off for three gains G = 2 (top left), 3 (bottom left), 4

(right). Circles are experimental averages of 50 shots from the spectrum analyzer. Curves are simulations
experimentally measured loss parameters. The squeezing maximizes at transmissions of less than 1 because
of the imbalance between the beams; if the detector gains were to be adjusted to optimize squeezing the
improvement would improve monotonically with the transmission.
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squeezing can be reduced due to the fact that the signals arriving at the two detectors
become quite unbalanced. If we had compensated for this difference in the squeezing
measurements by adjusting the relative electronic gain of the detectors much of this
squeezing could be recovered. An improved set of "perfect detector" measurements are
now being made and an article is being prepared for publication on this topic.

Single-Mode Squeezing from a PSA

We have also analyzed and published some measurements of the rotation of the
noise ellipse in the generation of single-mode vacuum quadrature squeezing. The PSA,
operated with a vacuum input, naturally produces "single-mode squeezed vacuum” in
multiple spatial modes. Here "single-mode" refers to the type of squeezing — for instance
intensity squeezing in a single beam — and differentiates it from the twin-beam or "two-
mode" squeezing that we generate in the PIA. This single-mode squeezing is the type of
squeezing that one would use to inject into an interferometer such as LIGO, to improve
its sensitivity.

We have discovered that the squeezing axis or quadrature which is most strongly
squeezed changes with frequency in our system due to the differential gain for the upper
and lower squeezed sidebands in the 4WM process [6]. In principle this behavior would
allow one to tailor the noise frequency spectrum of the squeezed light to match the noise
spectrum of the interferometer, optimizing which quadrature is squeezed as a function of
frequency. This is of particular interest to the gravitational wave interferometer
community, as it would allow them to reduce shot noise (at the expense of radiation
pressure noise) at high frequencies and also alter the squeezing quadrature to reduce
radiation pressure noise in the interferometer at low frequencies. While we were the first
to report such a rotation of the squeezing ellipse as a function of frequency for vacuum
squeezing, the degree of squeezing that we can achieve in the foreseeable future is only
about -4 dB, which limits its usefulness for purposes such as gravitational wave
interferometry.

Phase Sensitive Amplification of Images

We have performed a number of different types of measurements with our phase
sensitive amplifier. Earlier we showed that we could noiselessly amplify images using a
PSA based on 4WM. Those measurements used multi-spatial-mode images that were
modulated, as a whole, in time. We demonstrated that the signal-to-noise on the
modulation was preserved after amplification [7]. While this does demonstrate a useful
property of the PSA, it is not the usual way in which one would like to implement
imaging with a PSA. We are presently working on taking camera images before and after
amplification with the PSA, and trying to demonstrate the preservation of the pixel-by-
pixel spatial (instead of temporal) signal-to-noise ratio.

In order to make measurements of images in a "normal" fashion — that is, using an
imaging detector such as a CCD camera — we have had to improve our ability to obtain
squeezing at very low detection frequencies. A camera integrates the image during a
window of time, and the squeezing in the resulting image is proportional to the squeezing
in the optical beam, weighted and integrated over the frequencies represented in the time
window. Thus, large excess noise at very low measurement frequencies, which is typical
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in our system, can overwhelm good squeezing at higher frequencies. Getting rid of this
technical noise has been a major goal of our work.

With the ability to limit the technical noise at low frequencies discussed in the
next section we can now optimize the set-up for imaging. We will use a relatively large-
aperture Pockels cell to chop out pulses from the twin beams and direct them to a high-
quantum-efficiency camera (approximately 90% quantum efficiency at 800 nm). Using
this we should be able to perform imaging detection of small absorbing objects. An
obvious candidate target would be a rubidium Bose-Einstein condensate. In other
respects small biological objects are also reasonable targets, although absorption imaging
may not be as effective, as they are mostly transparent at these wavelengths and would
require an interference scheme to detect phase shifts instead.

Low Frequency Squeezing

Low frequency squeezing refers to having reduced noise at low measurement
frequencies, in particular, in twin-beam, intensity-difference squeezing measurements.
This is important because many applications either require low frequencies directly (for
instance photodiode calibrations at low frequencies) or signals integrated over low
frequencies (integrating on a camera). While photodiode calibrations are important and
are particularly relevant to the NIST mission, camera imaging (taking differential images,
one with an absorber in the beam, and a twin-beam image without) is especially
appealing because it would allow us to rather quickly apply sub-shot-noise imaging
techniques to a variety of different targets.

Given that we are working with Rb vapor to generate twin beams, the most
obvious target for sub-shot-noise imaging is atomic Rb - in particular for Rb BEC
absorption imaging. While this is not widely applicable outside of scientific laboratories,
it would probably be one of the places where such a technique might be quickly adopted.
On the other hand, given that 795 nm is generally a good wavelength for biological
imaging, it would also allow us to quickly try to demonstrate some low-resolution but
high-sensitivity imaging in this context, to see how it might be applied.

If one wants to take twin-beam images on a CCD camera, one has to integrate
over the light fluctuations from dc up to the inverse of the shutter time. Unfortunately,
there is always a very large noise spike (technical noise) near dc that frustrates a
straightforward image subtraction (see Fig. 8). The frequency range for the squeezed
sidebands is limited in our case on the high frequency end by the bandwidth of the 4WM
gain. Typically this is about 20 MHz for our usual operating parameters. On the low
frequency end we have generally been limited by laser performance. A commercial
Ti:sapphire laser was able to “easily” get us squeezing down to 100 kHz, and by turning
off the locking electronics and allowing the laser to drift, we obtained squeezing down to
2 kHz (presumably the locking electronics disturbed the low frequency performance of
the laser) [8]. Even this was not low enough to suppress the contribution of the low-
frequency noise peak by a large enough factor for image subtraction. Several years ago,
using a diode laser and semiconductor tapered amplifier we were able to get squeezing
only down to 0.5 MHz, which we attributed to the intrinsic noise of the diode laser. In
the past year, however, we have been able to obtain squeezing down to below 50 Hz with
a similar system. We are systematically investigating what parameters (laser linewidth,
detuning, intensity and alignment parameters) affect the low frequency performance. It is
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now clear that we can do very well with our current system, and it is important that we
are able to do this with diode laser systems for both cost and portability considerations.

One of the first projects where we will apply this low-frequency squeezing will be
analog photodiode calibrations at the mW level. Current photodiode efficiency
measurements are performed at approximately 200 Hz (metrological silicon photodiodes
tend to be high-efficiency, large-area diodes with thick active areas to capture and absorb
all of the incoming light, and consequently have large capacitance and operate at low
frequency), and we will now be able to directly compare our results with current NIST
calibrations.
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Figure 8 - Low frequency spectrum of squeezing showing the electronic noise, scattered pump light noise,
intensity-difference noise from the 4WM-generated twin-beams, and the shot noise levels (bottom to top).
Some amount of low-frequency technical noise contaminates both the 4WM and shot noise traces.

An obvious possibility for what has limited the squeezing at low measurement
frequencies is that the pump laser linewidth affects the ground state decoherence rate, and
thus the squeezing levels. If a ground-state coherence is established by the scattered light
fields, then an interruption of the pump phase will perturb this coherence until the phase
relationship is reestablished. Thus, linewidth-narrowing should help improve low-
frequency squeezing if pump phase interruptions are a major problem. We used
polarization spectroscopy and a fast electronic feedback system to both lock and narrow
the laser frequency, as indicated in Fig. 9. The linewidth is measured using a self-
heterodyne method [9] where the light from the laser that is frequency-shifted and passed
through 10 km of optical fiber is beat against light directly from the laser. This lead to a
measured laser linewidth of approximately 15 kHz, versus the 200 kHz of the un-
narrowed laser. As shown in Fig. 10, this does lead to an improvement in the squeezing
level at frequencies below 20 kHz, however it is not always a significant effect,
especially at the lowest frequencies. Thus, we needed to investigate other causes of
reduced squeezing as well.
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Figure 9. Experimental set-up for generating low-frequency squeezing that includes locking and
narrowing the laser with polarization spectroscopy (shaded area at right) and linewidth measurement with a
self-heterodyne set-up (shaded area at bottom left).
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Figure 10. Squeezing versus frequency with the laser locked and narrowed, and unlocked and un-
narrowed. Some improvements below 100 kHz were seen. Measurements at the lowest frequencies here
were limited by the settings of the spectrum analyzer.

-110

One of the main issues with our 4WM source is that the light (the pump, as well
as the “twin” probe and conjugate beams) is all within a rather narrow frequency range of
about 6 GHz. While Fabry-Perot-type filters can be constructed to separate frequencies
that are only 3 GHz apart, they will typically have high losses (which would hurt any
squeezing measurements), and rather limited in their spatial mode selection as well.
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Since the flexibility of imaging the multiple spatial modes created in the source is one of
its attractions, we would rather not spatially filter the beams in this way. Homodyne
detection allows us to discriminate against the other frequencies, but is a much more
complex detection method than direct detection. (The problem is mainly the depolarized,
scattered, pump light appearing along with the probe and conjugate beams; since these
beams are intrinsically weak and the pump is orders of magnitude stronger, a small
amount of scattered pump light is often a problem, even with good polarization
selection.) Thus, scattered light with the same noise spectrum as the pump can
contaminate the measurements, and this is especially bad at low frequencies where
technical noise on the pump laser is large.

One way to improve the discrimination against scattered pump light is to use a
larger angle between the pump and probe beams, thus better enabling a physical filtering
of the light with an aperture. The cost of this approach is a compromise on the
momentum phase matching and coherence loss of the 4WM process. Increasing the
angle much beyond 0.5 degrees leads to a decrease in the amount of squeezing due to the
increased sensitivity to the Doppler effect (the extent to which the beams are non-co-
propagating determines the ground state coherence dephasing rate, which reduces the
squeezing). Theoretically [10] the gain should continue to increase as the angle is
increased somewhat, and we do see this, however the squeezing is also affected by
changing loss and decoherence rates. While this is always an issue, there is a range of
angles where the trade-off between the reduction in squeezing “efficiency” as the phase-
matching angle is increased is more than offset (at least at low measurement frequencies)
by the decrease in noise due to the scattered light. The improvement is shown in Figs. 11
and 12 below. In these figures one can also see that the seeding beam for the probe in
these experiments was not shot noise limited, creating an effect where a lower seed (and
thus output) power leads to better squeezing as well.
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Figure 11. Squeezing measured with an alignment optimized for good squeezing at high frequencies
(smaller probe-pump angle).
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Figure 12. Squeezing measured with an alignment optimized for good squeezing at low frequencies (larger
probe-pump angle). (The low frequency performance in this figure is limited by the spectrum analyzer
settings.)

Thus, while mostly an engineering accomplishment, the attainment of low-
frequency squeezing will be critical to our being able to apply squeezed light technology
to problems in the real world. In addition, there has been some physical insight that has
been gained in trying to understand the advances we have made. These studies
constituted the preliminary work for the photodiode calibration project discussed in the
next section.

Photodiode Calibrations

We have previously investigated the possibility of demonstrating a “twin-beam”
technique for analog photodiode calibration [11] that is related to the photon-counting
calibration technique based on spontaneous parametric down conversion [12] and other
analog techniques [13]. In the photon-counting technique the production of pairs of
photons in spontaneous parametric downconversion allows one to detect a photon in one
beam and infer the presence of a photon at the other detector. The probability of
detecting this photon then tells you the efficiency of the detector (after beam-path losses
and other corrections are made). In the case of analog detectors where photon counting is
no longer possible a similar technique is based on the idea that bright twin beams will be
similarly highly correlated, and an upward fluctuation at one detector will be reflected in
an identical upward fluctuation at the detector in the other beam. Measuring the auto-
and cross-correlations will (again, after beam path loss corrections) allow one to extract
the detector efficiencies. This technique would allow the dissemination of the calibration
method, instead of having to disseminate calibrated artifacts in the form of detectors.

The accuracy of the calibrations is dependent on the degree of correlation of the
“twin beams” used (equivalently, the degree of intensity-difference squeezing).
Accuracies of 0.1% are sought after to be competitive with current techniques. The main
issue preventing the comparison of the twin-beam technique with the current NIST
calibrations (based on using a reference source calibrated with cryogenic radiometers) is
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the fact that current measurements are made at frequencies of 200 Hz and below.
Previous to this we had only demonstrated squeezing down to about 2 kHz. Now that we
have squeezing down to 50 Hz we can proceed with a comparison. In our new labs we
have begun to set up for a calibration of the beam-path losses and will proceed with
calibration measurements when this is complete.

Optical Memory

We have continued to work on the gradient echo memory (GEM) in Rb vapor,
and have made a spatially-addressable memory for “images” that is compatible with our
4WM source of entangled beams. This was reported in a paper in New Journal of
Physics [14]. Unfortunately, we have found that there is optical gain in the memory
itself, due to 4WM in the GEM as we have constructed it. This leads to noise that is
sufficient to make the memory unsuitable for the storage and retrieval of quantum
information. We know that one way to suppress this noise is to use the same polarization
for both the stored signal and for the control beam used in the Raman transition for
storage and retrieval. This frustrates the 4WM process and presumably suppresses it to a
level where quantum information can be stored and retrieved from the memory. There is
some controversy regarding this. Results from the Australian National University, where
the GEM technique was originally developed, project low enough noise for quantum
information storage, however, a group in Calgary, has results that imply that there will be
too much intrinsic noise for this purpose. Unfortunately, using the same polarization for
the signal and control beams, 1 GHz apart, means that they would have to combined and
separated using cavities in our set-up, which will make using multiple spatial modes for
these measurements difficult. We are building cavities that would allow us to perform
these measurements but the apparatus has not yet been rebuilt in our new labs due to a
lack of space and personnel at the present time.

Other

In addition to the projects mentioned above we have worked on a number of other
projects involving non-classical light from 4WM that do not fit nicely into the above
headings. An important concept in quantum information theory is the “quantum discord.”
This is a relatively recently-introduced concept that quantifies the difference between the
classical mutual information and the quantum mutual information in bipartite systems.
We showed how to measure it in a twin-beam system such as we have [2]. This will
become important in our studies of the advance (or lack of it) of quantum information in
a fast-light system.

We have also looked at the generation and distribution of random numbers using
4WM [15]. The random numbers can be generated by homodyning a random field, such
as the vacuum field. Two-mode squeezed vacuum fields then allow us to generate and
distribute correlated streams of random numbers. The random bits generated in the
experiments are tested for randomness, and the correlations could be used for
applications such as quantum cryptographic key distribution.

SU(1,1) interferometer
Under other funding we are building a nonlinear optical interferometer known as
an SU(1,1) interferometer [16]. It is similar in construction to a Mach-Zehnder
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interferometer, with the beamsplitters replaced by 4WM interaction cells. A quantum
state with correlated pairs of photons in each arm is launched into the interferometer and
at the output of the interferometer the correlated photon pairs are recombined to produce
pump photons. The advantage of this interferometer is that it is predicted to be able to
demonstrate 1/N scaling for phase sensitivity for N photons transiting the interferometer,
as opposed to the 1/(root(N)) shot-noise limit of the conventional Mach-Zehnder
interferometer.

While a group in Shanghai has already constructed such an interferometer, they
have only demonstrated the achievement of interference fringes from it and have not
demonstrated any phase measurements or the appropriate scaling, which we hope to do.
We have an operating interferometer and are attempting to do a proper SNR analysis at
this time.

We have done some theoretical investigations in conjunction with this grant to
discover the effect of losses on the performance of the interferometer [17] and recently
we have performed a number of simulations that have led us to propose different
interferometer designs and compare different detection schemes. We are preparing to
write up our simulation results related to this problem now.
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