
AWARD NUMBER:    W81XWH-14-1-0152 

TITLE:   Scaffold Attachment Factor B1: A Novel Chromatin Regulator of Prostate 
Cancer Metabolism 

PRINCIPAL INVESTIGATOR:   SUNGYONG YOU PhD 

CONTRACTING ORGANIZATION: Cedars-Sinai Medical Center 

Los Angeles, CA 90048

REPORT DATE: October 2016 

TYPE OF REPORT:   Final 

PREPARED FOR:   U.S. Army Medical Research and Materiel Command 
 Fort Detrick, Maryland  21702-5012 

DISTRIBUTION STATEMENT: Approved for Public Release; 
Distribution Unlimited 

The views, opinions and/or findings contained in this report are those of the author(s) and 
should not be construed as an official Department of the Army position, policy or decision 
unless so designated by other documentation. 



REPORT DOCUMENTATION PAGE 
Form Approved 

OMB No. 0704-0188 
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the 
data needed, and completing and reviewing this collection of information.  Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing 
this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA  22202-
4302.  Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently 
valid OMB control number.  PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE
October 2016 

2. REPORT TYPE
Final 

3. DATES COVERED
1 Aug 2014 – 31 Jul 2016 

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER 
W81XWH-14-1-0152 

Scaffold Attachment Factor B1: A Novel Chromatin Regulator of Prostate Cancer 
Metabolism 

5b. GRANT NUMBER 
GRANT11482230 

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 5d. PROJECT NUMBER 

Sungyong You, Jayoung Kim, Michael R Freeman. 5e. TASK NUMBER 

E-Mail:Sungyong.You@cshs.org 

 

5f. WORK UNIT NUMBER

 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

CEDARS-SINAI MEDICAL CENTER 
8700 BEVERLY BLVD 
LOS ANGELES CA 90048-1804 

 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

U.S. Army Medical Research and Materiel Command 
 Fort Detrick, Maryland  21702-5012 11. SPONSOR/MONITOR’S REPORT

NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for Public Release; Distribution Unlimited 

 13. SUPPLEMENTARY NOTES

14. ABSTRACT
This study provides novel links between the SAFB1, AR, EZH2, and ONECUT2 and genes that regulate sterol metabolism in 
castration resistant prostate cancer (CRPC). Our findings to date have led to the working hypothesis that SAFB1 down-
regulation promotes a phenotype in CRPC that results in conservation of residual androgen in the tumor, thereby promoting an 
“intracrine” mechanism of AR activation. Interestingly, our data suggest that SAFB1 may cooperate with other proteins that act 
to deplete androgen from the tumor. This hypothesis is consistent with our bioinformatics analysis of thousands of RNA 
expression profiles from human prostate cancers that we have incorporated into this study. We found that about 1/3 of human 
prostate cancers, including primary tumors, exhibit an “AR activation suppressed” phenotype. We thus tested the hypothesis 
that SAFB1 is a critical mediator of this phenotype. Genes involved in androgen signaling were significantly altered by SAFB1 
perturbation in PC cells. In addition, metabolite profiling of androgen using mass spectrometry suggests that androgen 
signaling can be hyper-activated even with little amount of intracrine androgen. Along with this, we characterized the functions 
of SAFB1/ONECUT2/AR network that can directly regulate UGT2B15 and UGT2B17 expression, which is relevant to CRPC 
progression. Collectively these results suggest that SAFB1/ONECUT2/AR network is a therapeutic target in CRPC. 

15. SUBJECT TERMS
Systems Biology, SAFB1, Prostate Cancer, Transcriptome 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION
OF ABSTRACT 

18. NUMBER
OF PAGES 

19a. NAME OF RESPONSIBLE PERSON
USAMRMC 

a. REPORT
      U 

b. ABSTRACT
      U 

c. THIS PAGE
      U 

      UU 31 19b. TELEPHONE NUMBER (include area 
code)

Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std. Z39.18



 
 
 

Table of Contents 
 

 
                                                                                                                                Page 
 
 

1.  Introduction…………………………………………………………………… 4 
 

2.  Keywords……………………………………………………………………… 4 
 

3.  Accomplishments….………………………………………………………… 4 
 

4.  Impact ………………………………………………………………………… 18 
 

5. Changes/Problems………………………………………………………… 18 
 

6.  Products…………………………………………….……………………… 18 
 

7.  Participants & Other Collaborating Organizations…………………… 19 
 

8.  Special Reporting Requirements………………………………………… 20 
 

9.  Appendices………………………………………………………………… 20 



1. INTRODUCTION  
Prostate cancer (PC) is a leading cause of death from cancer and no treatment for castration-

resistant metastatic disease (CRPC) substantially prolongs life. Recent studies on humans and 
laboratory models have provided evidence that high circulating cholesterol is a risk factor for 

aggressive PC1-5. We recently discovered that a protein, scaffold attachment factor B1 (SAFB1), is a 

novel regulator of the androgen receptor and other proteins associated with prostate cancer 

progression to end-stage disease6. The purpose of my research in this project is to identify and 

functionally characterize the gene regulatory networks controlled by SAFB1 in human PC cells.  
 
This project is testing the hypotheses that (1) SAFB1 regulates a transcriptional program 

that leads to PC progression when perturbed by SAFB1 loss; and that (2) down-regulation of 
SAFB1 promotes CRPC in part through upregulation of cholesterol-dependent intracrine 
androgen signaling. To this end, we performed chromatin immunoprecipitation-next generation DNA 
sequencing (ChIP-seq) and integrative network modeling to identify the SAFB1 cistrome and the extent 
of transcriptional collaboration of SAFB1, AR, and EZH2 in PC cells. These studies have been aided 
by our assembly and study of a large integrated transcriptome database of PC gene expression 
profiles of human tumors, which we refer to as the prostate cancer transcriptome atlas (PCTA). During 
the second year of the funding period, we tested whether cholesterol alters intracrine androgen 
mechanisms in a SAFB1-dependent manner. To this end, we applied a set of experimental tools, 
including metabolite profiling using mass spectrometry, qRT-PCR, and ChIP-PCR coupled with 
bioinformatics strategies to understand the function of the SAFB1/ONECUT2/AR network in PC, and to 
develop approaches directed toward targeting it. 
 
Specific Aim 1. To characterize the SAFB1 cistrome in prostate cancer cells and to determine the 
metabolic and biologic effects of SAFB1 loss. 
Specific Aim 2. To test whether cholesterol alters intracrine androgen mechanisms in a SAFB1-
dependent manner. 
 
 
2. KEYWORDS 

Systems Biology, SAFB1, Prostate Cancer, Transcriptome  
 
 
3. ACCOMPLISHMENTS 
 
What were the major goals of the project?  
 
Training Goal 1: Training and educational development in prostate cancer research 

Milestone: Presentation of project data at a national meeting 
Target months: 24 
Percentage of completion: 100% 
 

Research Goal 1: To characterize the SAFB1 cistrome in prostate cancer cells and to determine the 
metabolic and biologic effects of SAFB1 loss. 

Milestones:  
1) Characterization of the SAFB1 cistrome in the presence- or absence of dihydrotestosterone 
(DHT). 
2) Determination of the overlapping target genes or sub-network between SAFB1 and AR or EZH2 
and the genes or pathways involved in sterol metabolism and chromatin regulation. 
3) Determination of the genes or pathways strongly associated with SAFB1 regulation and PC 
progression. 
Target months: 12 
Percentage of completion: 100% 
 

Research Goal 2: To test whether cholesterol alters intracrine androgen mechanisms in a SAFB1-
dependent manner. 

Milestones:  



1) Identification of critical regulatory nodes in the androgen metabolism network. 
2) Characterization of the involvement of SAFB1 regulation of the UGT2B gene family, androgen 
metabolism, and downstream effects relevant to disease progression. 
Target months: 24 
Percentage of completion: 100% 
 

 
What was accomplished under these goals? 
 

These studies have identified novel links between the SAFB1, AR, EZH2, and ONECUT2 
genes in the regulation of sterol metabolism in CRPC. Our findings to date have led to the working 
hypothesis that SAFB1 down-regulation promotes a phenotype in CRPC that results in conservation of 
residual androgen in the tumor, thereby promoting an “intracrine” mechanism of AR activation. In 
contrast, SAFB1 appears to cooperate with EZH2 in silencing genes in a manner that results in a 
manner that opposes the AR activation signature that reflects the conventionally understood pattern 
AR transcriptional activity. Interestingly, our data suggest that SAFB1 may cooperate with other 
proteins that act to deplete androgen from the tumor. This hypothesis is consistent with our 
bioinformatics analysis of thousands of RNA expression profiles from human PCs that we have 
incorporated into this study. We found that about 1/3 of human PCs, including primary tumors, exhibit 
an “AR activation suppressed” phenotype. We thus tested the hypothesis that SAFB1 is a critical 
mediator of this phenotype. Genes involved in androgen signaling were significantly altered by SAFB1 
perturbation in PC cells. In addition, metabolite profiling of androgen using mass spectrometry 
suggests that androgen signaling can be hyper-activated even with very low amounts of intracrine 
androgen. Along with this, we characterized the functions of the SAFB1/ONECUT2/AR network that we 
have shown can directly regulate UGT2B15 and UGT2B17 expression, demonstrating relevance to 
CRPC progression. Collectively these results suggest that the SAFB1/ONECUT2/AR network is a 
therapeutic target in CRPC. 
 
Major accomplishments include: 

 
1) We identified the chromatin binding sites by SAFB1 by global analysis. 
 
Identifying chromatin sites bound by SAFB1 in prostate cancer cells using chromatin 
immunoprecipitation and next generation DNA sequencing (ChIP-seq): Due to the limited binding 
affinity of SAFB1 antibody (Sigma-Aldrich), endogenous SAFB1 binding DNA fragments could not be 
enriched for ChIP-seq analysis. Thus, in order to increase precipitation efficacy on SAFB1, a SAFB1 
expressing vector construct with an HA tag was transfected into LNCaP cells and precipitated with HA 
tag antibody for construction of a ChIP-seq library. To characterize the SAFB1 cistrome, chromatin 
sites bound by SAFB1-HA were identified using ChIP-seq. LNCaP cells were treated with 1 nM DHT or 
vehicle and chromatin immunoprecipitation was performed with HA tag antibody at 4 hour time points 
using an optimized ChIP protocol. ChIP DNA was converted into libraries and was sequenced using 
the Illumina HiSeq2000.  
 
Conducting computational analysis of ChIP-seq data for SAFB1 cistrome: For identification of 
chromatin binding sites of SAFB1, sequencing data was processed using the Illumina analysis pipeline, 
aligned to the UCSC hg19/NCBI 37 version of the human genome using Bowtie7, reads with the exact 
same mapping location were considered to be PCR duplicates and collapsed into a single record using 
samtools8, and SAFB1-enriched binding sites were identified using the R csaw package9. 17,884 
genome-wide SAFB1 binding sites on promoter regions (upstream 2,000 bp and downstream 500 bp 
from transcription start sites (TSS)) were identified by comparing with binding sites in input control 
sample. Overlap and feature annotation of ChIP-seq enriched regions were performed using R 
detailRanges function from csaw package9. Intersecting with 922 differentially expressed genes 
(DEGs)  by SAFB1 knockdown, I found that 259 DEGs contain SAFB1 binding sites in their promoter 
regions. This result suggests that about 28% of DEGs can be regulated by SAFB1 binding in their 
proximal promoters. Notably, steroid and androgen metabolism related genes (ASMTL, CYP21A2, 
UGT2B15, UGT2B17, and HSD17B8) were identified. This result is highly consistent with our 
preliminary data showing massive down-regulation of sterol metabolism genes with SAFB1 silencing.  



 
2) We determined the effects of SAFB1 knockdown on the AR and EZH2 cistromes. 
 
Performing ChIP-seq using anti-specific antibodies against AR or EZH2: ChIP-seq analysis was 
performed to identify AR and EZH2 target genes dependent on SAFB1 loss in LNCaP cells in the 
presence or absence of DHT. LNCaP SAFB1 knockdown and control cells were treated with 1 nM DHT 
and chromatin immunoprecipitation was performed with AR and EZH2 antibody at 4 hour time points. 
ChIP DNA was converted into libraries and was sequenced using the Illumina HiSeq2000.  
 
Conducting computational analysis of ChIP-seq data for the AR and EZH2 cistromes: ChIP-seq reads 
were mapped to the UCSC hg19/NCBI 37 version of the human genome using Bowtie7. Differential AR 
binding sites between the SAFB1 knockdown LNCaP cells and the control cells were found by using R 
csaw package9. As an additional filter, low-abundance windows contain no binding sites were filtered 
out. This improves power by 1) removing irrelevant tests prior to the multiple testing correction; 2) 
avoiding problems with discreteness in downstream statistical methods; and 3) reducing computational 
work for further analyses10. Filtering is performed using the average abundance of each window. 
Binding sites are only retained if they have abundances 10-fold higher than the background. This 
removes a large number of binding sites that are weakly or not marked and are likely to be irrelevant. 
 

In order to compare the list of genes associated with AR and EZH2 binding peaks to the list of 
genes differentially expressed on SAFB1 knockdown, the list of gene symbols for promoters 
associated with AR or EZH2 binding sites were intersected with the list of gene symbols for DEGs. As 

a result, the AR and EZH2 ChIP-seq data in 
SAFB1 knockdown LNCaP cells produced 7,193 
and 8,038 sites compared to control cells, 
respectively. The 922 DEGs in SAFB1 knockdown 
were intersected with those genes identified as 
having a proximal or nearby AR and/or EZH2 
binding sites in the either knockdown cells or 
control cells. PSMB8, HLA-B, UGT2B10, UGT2B15, 
KLK3 (PSA), IRS1, ABCF1, FDPS, ONECUT2, and 
SAFB1 were identified with significant increased or 
decreased binding (>1.5 fold) of AR in their 
promoter regions (Figure 1). This data suggests 
that there is a close relationship between SAFB1, 
AR, and EZH2 binding, and gene expression; on 
SAFB1 knockdown, genes associated with an AR 
binding peak are significantly more likely to be 
differentially expressed than other genes. 

 
Figure 1. AR peaks on proximal promoter of KLK3 gene also known as prostate specific antigen 
(PSA) in both control and SAFB1 knockdown cells. 
 
Validation of genes with AR and/or EZH2 binding sites identified in SAFB1 knockdown cells: LNCaP 

cells with the stable knockdown of SAFB1 
using shRNA from Sigma Aldrich. The cells 
were analyzed for SAFB1 loss and amplified 
for AR protein expression and AR 
transcriptional activity6.  
 
 
 
 
Figure 2. Decrease of UGT2B15 and 17 
gene expression by SAFB KD in LNCaP 
(left) and 22Rv1 (right). 
 



 These SAFB1 knockdown cells showed downregulation of several members of the UGT2B 
family of genes, including UGT2B15 and UGT2B17 (Figure 2), the most well studied UGT2B genes 
within the prostate. These results were validated by qPCR using primers generated by Ohno et al.11 
and shown to be specific for the different family members. Applied Biosystems ABI Prism 7900HT 
qPCR machine was used to perform the analysis. 
 

UGT2B15 and 17 gene expression changes by SAFB1 overexpression (OE) were analyzed in 
LNCaP cells. qPCR analysis of UGT2B15 and 17 in LNCaP cells was done after transient OE of 
SAFB1-HA tag (pBABE vector backbone) for 48 hours using Lipofectamine LTX (Invitrogen). 
Overexpression of SAFB1 was confirmed by qPCR (Figure 3A). Then, qPCR analysis was performed 
to measure UGT2B15 and 17 gene expression changes by SAFB1 OE. The qPCR primers and the 
qPCR equipment are the same as above. Significant increase of UGT2B15 and UGT2B17 gene 
expression were confirmed (Figure 3B). To validate whether this expression changes are directed by 
SAFB1 binding in promoter regions of UGT2B15 and UGT2B17 genes, we performed luciferase 
analysis of UGT2B15 and UGT2B17 activity in 22Rv1 PC cells (Figure 3C). For this analysis, the 
UGT2B15 and 17 luciferase promoter constructs (PGL4.10 vector backbone from promega) were co-
transfected with control or SAFB1-HA overexpression vector into 22RV1. Baseline activity was 
generated from empty luciferase PGL4.10, data was normalized to this negative control (set at 100% 
activity). The result shows that significant increase of promoter activity of UGT2B15 and UGT2B17 
genes by SAFB OE. This result demostrates that UGT2B15 and UGT2B17 genes are regulated by 
binding of SAFB1 in the promoter region. 

 
Figure 3. UGT2B15 and 17 gene expression changes and promoter activities perturbed by 
SAFB1 overexpression (OE) in LNCaP and 22Rv1. (A) Overexpression of SAFB1 in LNCaP. (B) 
qPCR analysis of UGT2B15 and 17 genes perturbed by SAFB1 overexpression in LNCaP. (C) 
Luciferase activity of UGT2B15 and 17 gene promoter by SAFB1 in 22Rv1. 
 
Identifying consensus binding motifs of SAFB1 and AR: To identify a consensus binding motif for 
SAFB1 and AR, motif analysis was done for SAFB1 and AR ChIP-seq data sets. I found the AR/PR 
motif (Figure 4A) in ~60% of peaks and the AR half-site motif (Figure 4B) in ~75% of peaks. Figure 4 
shows motif logos of SAFB1 and AR bining motifs from MEME analysis12. This result obtained from 
1,069 common sitess between the SAFB1 and AR data sets. 
 

Figure 4. Consensus binding motifs of SAFB1 and AR. (A) AR/PR bidning motif. (B) AR half-site 
motif. 
 



3) We found a clinical correlation of SAFB1 loss and PC progression and patient outcomes. 
 
Transcriptome analysis revealed SAFB1 loss-dependent genes and pathways in clinical specimens: In 
order to identify genes in human PC tumors that correlate with alterations in SAFB1 gene expression, I 
compared 726 prostate tumor samples with low (<25 percentile) vs. high (>75 percentile) expression of 
SAFB1. Over 3,000 differentially expressed genes (DEGs) between prostate tumors with low (or no) 
and high expression of SAFB1 were selected with false dicovery rate (FDR)<0.05, and applied to 
functional enrichment analysis using DAVID software (Figure 5A and B). Enriched cellular processes 
indicate that SAFB1-dependent differential expression results in a more aggressive phenotype, 
including increases in steroid hormone reponses, regulation of blood vessel formation (angiogenesis), 
and regulation of RNA processing (Figure 5B). By integrating SAFB1 and AR ChIP-seq data sets and 
differential expression of SAFB1 knockdown cells with differential expression of prostate cancer 
patients, 387 genes were identified. These genes are differentially expressed in both SAFB1 
knockdown cells and prostate cancer patients with low SAFB1 expression, as well as have SAFB1 
and/or AR binding in their promoters. Among these genes, PSMB8, HLA-B, UGT2B10, UGT2B15, 
KLK3 (PSA), IRS1, ABCF1, FDPS, ONECUT2, and SAFB1 were also identified. 
 

 

Figure 5. Differentially expressed gene by SAFB1 loss in clinical samples and their enriched 
cellular processes. (A) Heatmap depicts  differential expression pattern of SAFB1 dependent gene 
signnature in prostate cancer. (B) Enriched cellular processes by up- or down-regulated genes 
between patients with SAFB1-high (>75 percentile) and SAFB1-low (<25 percentile). 
 
4) SAFB1 knockdown results in activation of an intracrine AR network arising from increased 
levels of intracellular androgen. 
 

The effects of SAFB1 silencing suggest 
stimulation of an intracrine androgen pathway: we 
performed a global analysis to look at the 
pathways that are disrupted when SAFB1 was lost 
in cell line model and patient tissues. We saw that 
androgen metabolism was a major pathway 
affected by SAFB1 loss. We found that many of 
the genes that are significantly altered lie on the 
boundaries of the androgen synthesis pathways. 
They mainly were on the pathways that inactivate 
androgen. When we measure the expression of 
these targets that indicated in the microarray, we 
confirm that there is a downregulation in LNCaP-

Figure 6. SAFB1 silencing in LNCaP cells 
downregulates genes involved in androgen 
catabolism 



SAFB1 KD cells (Figure 6).  
 
 This confirms the downregulation of the androgen catabolism pathways, so from this we 
hypothesize that the effect of SAFB1 loss in relationship to the intracrine androgen hypothesis is 
therefore that there is a possible increase in DHT stability. The SULT2B1 sulfotransferase is known to 
utilize 3-phospho-5-adenylyl sulfate as sulfonate donor to catalyze the sulfate conjugation of many 
hormones, neurotransmitters, drugs and xenobiotic compounds. Sulfonation increases the water 
solubility of most compounds, and therefore their renal excretion, but it can result in activation to form 
active metabolites. Sulfates hydroxysteroids like DHEA. Isoform 1 preferentially sulfonates cholesterol, 
and isoform 2 avidly sulfonates pregnenolone but not cholesterol. SULT2B1 and CYP3A5 oxidize the 
testosterone to form inactive 6β-hydroxyl testosterone, which cannot be used for conversion to DHT. 
DHRS8 converts 5-alpha-androstane-3alpha-17alpha diol to androstenedione, which is well known that 
5-alpha-androstane-3alpha-17alpha diol is a precursor for DHT.  
 
Figure 7. Stable SAFB1 knockdown and significant downregulation of UGT2B15 and UGT2B17 
in LNCaP and 22Rv cells. 
 
 When looking at these gene sets we decided to focus on UGT2B15 and UGT2B17, which are 
expressed at high levels in the prostate and in the LNCaP and 22Rv1 cell line models. UGT2B15 and 
UGT2B17 are the principal enzymes that mediate inactivation and removal of DHT from the prostate. 
This process is irreversible; consequently, modulation of these genes can have potentially very 
significant functional consequences in prostate cancer cells. In order to study the effects of SAFB1 loss 
we regenerated SAFB1 KD cell lines in LNCaP and this time in another AR positive cell line 22Rv1. 
Here we see that the downregulation of SAFB1 using two independent hairpins can downregulate 
UGT2B15 and UGT2B17 expression (Figure 7). These results were confirmed by western blot. When 
we analyze the effect of SAFB1 KD in 22Rv1, we see the same results as in LNCaP. We have 
therefore seen in two independent cell lines using two different hairpins for SAFB1 KD that there is 
amplification of AR as well as the downregulation of UGT2B15 and UGT2B17. AR is upregulated and 
we could show with a published antibody for UGT2B15 that the expression of the protein is 

downregulated as well. 
 
Metabolic profiling of free DHT using mass spectrometry: To understand the consequence of 

downregulation of UGT2B15/17 on DHT levels, we 
measured free DHT levels in the media of LNCaP cells 
after supplementation of the media for 2, 4, 6, 8 hours 
with radiolabeled DHT (Figure 8). We found that 
SAFB1 KD cells maintain their levels of free DHT over 
time, while the control cells decrease in the levels of 
DHT over time. The stability of free DHT available for 
the cell to use was much higher in SAFB1 KD cells 
compared to control cells. These results indicate that 
downregulation of UGT2B15/17 alters androgen 
availability in a manner that is consistent with our 
hypothesis.  
 
Development of a new classification scheme for 
prostate cancer: To better understand the molecular 

Figure 8. SAFB1 knockdown alter levels 
of Free DHT. 



heterogeneity of PC, I have assembled a “prostate cancer transcriptome atlas” (PCTA) software tool 
and database that contains more than 4,000 human prostate cancer transcriptomes assembled from 
public databases and the literature (including GEO, Array Express and TCGA). Using the PCTA, I 
examined transcriptome-based patterns of diverse oncogenic pathways and other important features in 
PC using a collection of 22 previously published gene expression signatures13-29, resulting in a 
summary of activity score data of 14 pathways of the tumors. When applied an unsupervised clustering 
algorithm based on non-negative matrix factorization (NMF)30 to pathway activity score data consisting 
of 1,321 prostate tumors, I identified three distinct sub-groups, shown below as Group 1-331 (Figure 9).  
 

The heatmap in Figure 9 shows the surprising result that identifiable molecular features are 
evident across all disease categories through Gleason Score (GS) <7 to metastatic or castration-
resistant PC (CRPC/Met), suggesting that prostate tumors retain identifiable epigenomic properties as 
tumor evolution proceeds. Although there are exceptions to the broad patterns, we found a remarkable 
consistency within groups. ERG fusion-inducible gene expression is predominant in Group 1, which is 
also characterized by high AR activation activity scores. AR-variant inducible gene expression is 
clustered in Group 2, which also shows high proliferation and neuroendocrine activity. In contrast to the 
features seen in Group 1 and Group 2, Group 3 is uncharacterized as a distinct entity in prostate 
cancer. Group 3 exhibits pro-neural and mesenchymal activation signatures. Notably, the AR activation 
signature and AR variant-inducible signatures are relatively low in Group 3.  

Figure 9. Patterns of signature pathway activities of 1321 prostate cancer patients in 
transcriptome atlas. (A) Patterns of activity scores were determined for each sample using Z score 
method. Consensus NMF clustering of 1321 prostate tumors using 14 pathway activity scores revealed 
three intrinsic molecular subtypes of prostate cancer (Group 1-3). The pathway activity scores (y-axis) 
were clustered by complete linkage hierarchical clustering method. 
 
Validation of the three subtypes using independent cohorts: I have validated this classification system 
in 10 independent patient series, consisting of over 1,200 RNA expression profiles (Figure 10). This 
result suggests that it might be possible to cluster essentially all prostate cancers into one of only three 
subtypes defined by gene signatures that have been functionally implicated in the disease. 
 

 
Figure 10. Validation of the subtypes. The 3 groups (Red=Group1, Green=Group2, and 
Blue=Group3) were recognized in 10 independent cohorts. Comparable fractions of patients with 



primary prostate tumors (left) and CRPC/Met (right) are assigned to each subtype within the different 
cohorts. DISC=discovery cohort; SWD=Swedish watchful waiting cohort; TCGA=TCGA cohort; 
EMORY=Emory cohort; HSPT= Health Study Prostate Tumor cohort; MAYO1=Mayo clinic cohort 1; 
MAYO2=Mayo clinic cohort 2; CCF=Cleveland clinic cohort; TJU=Thomas Jefferson University cohort; 
SU2C= SU2C/PCF Dream Team cohort. 
 
Discovering a novel driver of aggressive prostate cancer variants: To computationally identify 
transcription factors (TFs) that are highly active in this disease space, I used the large number of 
CRPC/Met tumors (n=260) in the PCTA. We integrated RNA expression data with TF-target gene 
interaction data collected from a number of chromatin immunoprecipitation (ChIP) and curated 
databases that contain genes that share TF binding sites. We then conducted a master regulator 
analysis (MRA) based on a combination of gene set enrichment analysis (GSEA) and rank correlation 
of TF expression level and RNA expression level of known targets for each TF. This analysis identified 
a set of TFs known to be functionally significant in CRPC/Met PC, including AR, EZH2, FOXM1, and 
E2F3, thereby validating our approach. Surprisingly, this analysis also identified a TF that has not been 
studied in PC, ONECUT2, an atypical homeobox TF that has been implicated in liver, pancreas and 
neural development. Notably, ONECUT2 is one of the SAFB1 target genes in PC cells. We found that 
ONECUT2 gene expression is significantly down-regulated by SAFB1 KD in LNCaP (Figure 11). 
ONECUT2 expression gradually increases across the disease categories in the PCTA data set, and 
bionformatics modeling predicts that it functionally interacts with AR, EZH2, and FOXA1. Enforced and 
silenced ONECUT2 in LNCaP and 22Rv1 cells were done by transfecting shONECUT2 and 
ONECUT2-overexpressing vector construct, and conducted oligonucleotide expression array and 
functional experiments. Significantly, ONECUT2 can potently inhibit AR, PSA, EZH2, and FOXA1 
expression (Figure 11), consistent with our computational modeling predictions. 
 

 
Figure 11. Gene expression of ONECUT2, AR, PSA, FOXA1 and EZH2. (A) Differential gene 
expression of ONECUT2 gene by SAFB1 knockdown in LNCaP (FDR<0.05). (B) ONECUT2 (OC2) 
suppresses AR, PSA, FOXA1, and EZH2 in prostate cancer cell lines. Total RNA was isolated from 
22Rv1 and LNCaP cells overexpressing OC2 and real-time qPCR was performed using TaqMan 
probes for the indicated genes. Each value represents the mean±SEM of 3 independent experiments 
performed in triplicate. Significant differences are denoted by asterisks (*p≤0.05. **p≤0.01).  
 
ONECUT2 plays a role in stimulating growth of 22Rv1 cells (Figure 12A) and therefore might be 
targeted in vivo to limit progression of CRPC. The PSA/KLK3 enhancer is a prostate regulatory 
element, strongly supporting the role of ONECUT2 in PC. From this result, I hypothesized that 
ONECUT2 is a driver of PSA-negative clones that may expand after therapy and ONECUT2 
expression level may be an indicator of progression to metastasis (Figure 12B). 



 

Figure 12. Biological and clinical implication of ONECUT2. (A) Proliferation assay demonstrated 
significant inhibition of cell proliferation by ONECUT2 knockdown (kd). (B) Kaplan-Meier analysis 
showing top vs. bottom tertiles of OC2 expression level in relation to metastasis-free survival (CCF 
cohort). 
 
We employed the PC classification scheme that we developed in order to ask whether ONECUT2 
activity segregates between Groups 1-3. We used the gene expression perturbation data generated 
using enforced and silencing methods to nominate ONECUT2 activation and repression signatures. 
We then applied these signatures to the three subtypes developed from the PCTA data. We found that 
the ONECUT2 activation signature is most active in Group 3 in all disease categories, but that the 
ONECUT2 repression signature increases progressively in Group 2, with highest activity in CRPC/Met 
tumors (Figure 13). These findings demonstrate that we can map master regulator activity onto human 
PC by integrating our classification scheme with laboratory data. 

Figure 13. ONECUT2-inducible and -repressive activity is significantly enriched in group 3 in 
comparison to the other 2 groups. (A) Heatmaps show differential expression patterns of genes 
perturbed by ONECUT2 overexpression and knockdown in 22Rv1 and LNCaP cells (FDR<0.05 and 
fold change ≥2). Results from the PCTA cohort are shown in the panels A and B. Group 1 = green, 
group 2 = red, group 3 = blue. 
 
5) An intracrine AR network responds to decreases and increases in cholesterol levels 
 
Revealing the novel regulatory relationship between OENCUT2 and UGT2B15: We next asked, 
whether ONECUT2 regulates UGT2B15 and SAFB1 is required for its regulation. We thus tested the 
impact of enforced expression of ONECUT2 in the regulation of UGT2B15 gene expression using the 



LNCaP and 22Rv1 cell line models by differentially regulating SAFB1 expression using shRNAs 
(Figure 14). As a result, enforced expression of ONECUT2 significantly increased the expression of 
UGT2B15 gene in 10 nM DHT condition compared to 0 nM DHT as shown in left panel of Figure 14. 
However, ONECUT2 expression was not significantly altered by knockdown of SAFB1 as shown in the 
middle of Figure 14. We also found that ONECUT2 overexpression in the context of knockdown of 
SAFB1 do not maintain UGT2B15 gene expression under 10nM DHT treatment as shown in right panel 
of Figure 14. This suggests that expression of UGT2B15 gene is regulated by ONECUT2 and is 
mediated by SAFB1 in the context of high DHT concentration.     
 

 
 
Figure 14. ONECUT2 is a positive regulator of UGT2B15. 
 
Correlation of SAFB1/ONECUT2/AR with UGT2B15 and UGT2B17 in CRPC: We have shown that 
SAFB1 and ONECUT2 co-regulate UGT2B15 expression. We thus predicted that there would be a 
correlation with the expression of these genes in CRPC patients (Figure 15). Using 260 samples of 
CRPC/Met samples from the PCTA, statistically significant positive correlation between ONECUT2, 
SAFB1, and UGT2B15 and UGT2B17 were observed. We then test whether AR activity correlates with 
these gene exoression in CRPC/Met tumors. Interestingly, AR activity shows inverse correaltion of 
those gene expressions. AR activity was measured based on a previously published method32. This 
lead us to test whether inverse relatioship of AR activity have something to do with cell cycle and 
proliferation activity (CCP). To this end. we computed CCP scores of the CRPC/Met tumors and found 

that CCP scores exhibits significant positive correaltion with ONECUT2 expression. This result was 
promising for us to show that SAFB1/ONECUT2 and UGT2B15 and UGT2B17 expression is correlated 
in patient samples.  
 
 In addition to the PCTA cases, we attepted to survey any alteration of the genes including 
SAFB1, ONECUT2, UGT2B15, and UGT2B17 in the patients with neuroendocrine (NE) tumors33. Of 

Figure 15. Positive correlation between SAFB1, 
ONECUT2, and UGT2B15 and UGT2B17 expression in 
CRPC/Metastatic prostate cancers (n=260). Co-
occurrence between SAFB1, ONECUT2, and UGT2B15 
and UGT2B17 alteration. 



note, we found significant DNA amplification and/or overexpression of the genes in NE tumors as 
shown in the right panel of Figure 15. Significant co-occurance of the gene alterations were evident by 
the co-occurance statistics in Figure 15. Given the series of data for SAFB1 network, we could 
modeled SAFB1 network regulation in the CRPC, which can be represented by the two regulatory 
directions: 1) Loss of SAFB1 can exert increase AR activity through the enhanced stability of intracrine 
androgen caused by the low expression of UGT2B15 and UGT2B17, which is major component of 
intracrine androgen catabolism, resulting in reinforced AR signaling and 2) Intact SAFB1 can drive AR 
independent CRPC in interaction with ONECUT2 through a downregulation of intracrine androgen by 
the upregulation of UGT2B15 and UGT2B17. 
 
Characterization of the SAFB1/AR/ONECUT2/UGT2B15/UGT2B17 network: Given the SAFB1 network 
model, we attempted to investigate if SAFB1/ONECUT2/AR assemble the complex and positively 
regulates UGT2B15 (Figure 16). We thus performed a co-IP of AR and SAFB1 using the 
corresponding antibodies. We predicted from the model above that SAFB1, ONECUT2, and AR bind in 
a complex and bind to UGT2B15 promoter to regulate its expression. We already know that AR binds 
to the UGT2B15 and UGT2B17 promoter in a region proximal to the TSS. We used the same ChIP-
qPCR primer sets to examine the SAFB1, ONECUT2 and AR binding to the UGT2B15 and UGT2B17 
promoters and we saw the interactions for all three proteins from the co-IP data. Collectively, the result 
provides evidence that SAFB1, ONECUT2 and AR form a complex to regulate UGT2B15 and 
UGT2B17 gene expression.  

 
Figure 16. SAFB1, ONECUT2 and AR are interact with each other and bind to and regulates the 
UG2B15/17 promoters. 
 
Therapeutic implication of SAFB1/ONECUT2/AR network: From the model validation above, we found 
that SAFB1 loss promotes i) hyperactive AR; ii) stable levels of active DHT; and iii) positive regulation 

of UGT2B15 and UGT2B17. These 3 
findings probably lend to its ability to 
resist potent CRPC treatments used 
currently. We therefore measured the 
cell proliferation of SAFB1 KD cells and 
control cells in the presence of different 
concentrations of Enzalutamide (Figure 
17). We could see that proliferation rate 
of the knockdown cells is higher than one 
of the control cells in the presence of the 
drug. This suggests that SAFB1 loss 
confers a resistance to Enzalutamide 
treatment. This result lead us to 
investigate if SAFB1 expression in the 

CRPC/Met patients exhibit any association with anti-androgen therapys. Using the previously 
published gene expression data34, we found that patients who progressed to metastatic PC even after 
abiraterone (Abi) or Enzalutamide (Enz) treatment had lower levels of SAFB1 expression compared to 
the patients without treatment. This suggests that SAFB1 loss confers resistance to in our case at least 
Enzalutamide. 

Figure 17. SAFB1 knockdown confers enzalutamide 
resistance. 



 
 
6) Key research accomplishments 

• Generation of the first ChIP-seq analysis of SAFB1 and the first identification of the SAFB1 
cistrome in PC cells. 

• Discovery that UGT2B15 and UGT2B17 are regulated by SAFB1, indicating that these androgen-
inactivating genes are a component of the SAFB1 transcriptional network.  

• Development of a novel classification system for PC that has utility in providing novel and 
actionable clinical information. 

• Identification of ONECUT2 as a novel driver of aggressive PC variants. 

• UGT2B15 and UGT2B17 genes demonstrated to reside within this AR-metabolic network 

• Charactering novel interactions between SAFB1, AR, and ONECUT2 in PC 

• UGT2B15 and UGT2B17 direct target of SAFB1 network in PC 
 
7) Conclusion 
ChIP-seq analysis followed by computational analysis permitted the determination of the extent to 
which chromatin occupancy of SAFB1 cistrome components reflects gene expression patterns 
characteristic of AR and EZH2 activity. Integration of our own ChIP-seq data and patient gene 
expression profiles allowed us to identify the extent of transcriptional collaboration of SAFB1, AR, and 
ONECUT2 in PC cells and human prostate tumors. UGT2B15 and UGT2B17 expression were 
coordinately regulated in many aggressive CRPC/Met patient samples through the interactions of 
SAFB1, AR, and ONECUT2 in a context of distinct cholesterol levels. Collectively, these data define a 
novel type of CRPC that does not function by AR hyperactivation, and which may be independent of 
intracellular androgen and AR activity. 
 
8) Other achievement 
We found that UGT2B15 and UGT2B17 gene expression is significantly increased in androgen 
independent LNCaP clones (C-81). Using this system, we have developed a platform to measure 
metabolic changes (such as DHT) by modulation of metabolic genes regulated by SAFB1. (Figure 18) 

Figure 18. Development of measure of metabolite changes. (Left) LNCaP derived C33 and C81 
cells generated by the lab of Min Fong Lin are a cell line that were passaged in 5% fetal bovine serum 
for 33 passage (C33) and 81 passages (C81). The C81 cell line is hormone insensitive while C33 cells 
are hormone sensitive. Upon comparing these cells, there is a large increase ~10-15 fold) in UGT2B15 
& 17 in the hormone insensitive cell line C81 in comparison to hormone sensitive C33. (n=3). (Right) 
LNCaP derived C33 and C81 cells were analyzed by HPLC in the lab of Nima Shariffi. C81 has a 
(slightly) stronger activity as free DHT signal decreased faster at 2 hours. The method employed was 
to treat 1 million cells with 100nM cold plus some hot DHT, and examine hydrophobic radioactive 
signals (majorly DHT) in culture media by HPLC. (n=3) 
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What opportunities for training and professional development has the project provided?  
 

I was promoted to the rank of Instructor, and recently Assistant Professor at Cedars-Sinai, a 
position from which I can submit independent grant proposals. I have published a first author study in 
Cancer Research describing the new prostate cancer classification scheme we have developed and 
its possible clinical significance, which was DIRECTLY derived from this proposed study. This work 
has been highlighted in the Research Highlights Section of Nature Reviews Urology, under the 
heading “Prostate cancer: Novel subtyping could aid stratification and therapy” 2016 July 5. 
doi:10.1038/nrurol.2016.130 (see PRODUCTS). I also gave a poster presentation at the 2014 Annual 
Conference of the American Urological Association (AUA), the 2014 Prostate Cancer Foundation 
(PCF) meeting, the 2015 American Association for Cancer Research (AACR) Special Conference and 
the 2015 The Prostate Cancer Foundation (PCF) 22nd Annual Scientific Retreat (see PRODUCTS). To 
support education and teaching of bioinformatics and computational methods within the Cedars-Sinai 
prostate cancer research community, I gave presentations in lab meetings, journal club, and workgroup 
meetings. I have substantive one-to-one discussions with the mentors several times per week and is in 
near-constant contact. I have (and will continue) close communication with other senior investigators 
through many other routes, including (1) weekly joint lab meetings, (2) bi-weekly Cancer Biology 
Journal Club (organized by Dr. Kim), and (3) bi-weekly Cancer Genomics Journal Club (organized by 
Dr. Kim). This is a very interactive community with open lines of communication across eight nationally 
prominent prostate cancer research laboratories, where opinions, regents and data are continuously 
shared. 

 
 
How were the results disseminated to communities of interest?  
 

I created a large (>4,000 specimens) RNA expression data set from prostate cancer and 
benign prostate tissue. From this large data set, he has demonstrated for the first time that prostate 
cancers, possibly all prostate cancers, can be subtyped to only three distinct groups. This is a major 
discovery in the field, which has allowed collaborations with other nationally prominent prostate cancer 
research teams, including at the University of Michigan and UCLA. Early versions of this work have 
also been presented at AUA, AACR, and PCF national conferences. These findings were reported in 
Cancer Research, which can be accessed by PMC version of full text manuscript in order to facilitate 
share the results from this study in public domain. I also gave an oral presentation at the 2015 The 
Western Section American Urological Association (AUA) Meeting and the 2016 American Urological 
Association (AUA) Summer Research Conference. 
 
 
What do you plan to do during the next reporting period to accomplish the goals? 
 
Nothing to Report. 



 
 
4. IMPACT 
 
What was the impact on the development of the principal discipline(s) of the project?  

I have made an important conceptual and clinically relevant advance by developing a novel 
method of characterizing prostate cancer using transcriptomic profiles. Consequently, this project is 
high impact and high reward, with potentially immediate opportunities to alter clinical practice if the 
classification scheme can be shown to have clinical utility. The new prostate cancer classification 
scheme I developed might improve prognostication of prostate cancer and enable the development of 
subtype-specific therapies and companion diagnostics. Using computational modeling, I have also 
identified a transcription factor, ONECUT2, which appears to be highly active in CRPC/Met tumors, but 
which has not been studied in PC, and therefore represents a first-in-field discovery. The 
comprehensive computational analyses and experimental interrogations of SAFB1 network in PC 
revealed the novel interactions of SAFB1, AR, and ONECUT2. In addition to this we could validate 
SAFB1 network can directly regulate UGT2B15 and UGT2B17 gene expression. Their expression 
seems to be coordinately regulated in many aggressive CRPC/Met patient samples. Collectively, these 
data suggest that SAFB1/AR/ONECUT2 network is a potential therapeutic target in CRPC. 

 
What was the impact on other disciplines?  
Nothing to Report. 
 
What was the impact on technology transfer?  
Nothing to Report. 
 
What was the impact on society beyond science and technology?  
Nothing to Report. 
 
5. CHANGES/PROBLEMS 
 
Changes in approach and reasons for change  
Nothing to Report. 
 
Actual or anticipated problems or delays and actions or plans to resolve them  
Nothing to Report. 
 
 
Changes that had a significant impact on expenditures  
Nothing to Report. 
 
Significant changes in use or care of human subjects, vertebrate animals, biohazards, and/or 
select agents  
Nothing to Report. 
 
6. PRODUCTS:  
 
Publications, conference papers, and presentations  
 

Journal publications. 
1. You S, Knudsen BS, Erho N, Alshalalfa M, Takhar M, Ashab HA, Davicioni E, Karnes RJ, Klein 
EA, Den RB, Ross AE, Schaeffer EM, Garraway IP, Kim J, Freeman MR, Integrated classification 
of prostate cancer reveals a novel luminal subtype with poor outcome. Cancer Research, 2016; 
Jun 14. pii: canres.0902.2016. PMID: 27302169. Acknowledgement of federal support (Yes)  
 
Books or other non-periodical, one-time publications.  
Nothing to Report. 
 



Other publications, conference papers, and presentations. 
Poster presentation: 
1. You S, Kim J, Freeman MR, An epigenomic pathway from cholesterol to intracrine androgen. 
The 2014 American Urological Association (AUA) Annual Meeting, held in Orlando, Florida, from 
May 16 to 21, 2014. 
2. You S, Kim J, Freeman MR, Prostate Cancer Classification Using a Transcriptome Atlas. The 
Prostate Cancer Foundation (PCF) 21st Annual Scientific Retreat, held in Carlsbad, California, 
October from 23 to 25, 2014. 
3. You S, Kim J, Freeman MR, Prostate cancer classification using a transcriptome atlas. American 
Association for Cancer Research (AACR) Special Conference. 2015. 
4. You S, Erho N, Alshalalfa M, Takhar M, Ashab HA, Davicioni E, Karnes J, Klein EA, Den RB, 
Garraway IP, Knudsen BS, Kim J, Freeman MR, Three intrinsic subtypes of prostate cancer with 
distinct pathway activation profiles differ in prognosis and treatment response. The Prostate Cancer 
Foundation (PCF) 22nd Annual Scientific Retreat. 2015. 
5. You S, Knudsen BS, Erho N, Alshalalfa M, Takhar M, Ashab HA, Davicioni E, Karnes J, Klein 
EA, Den RB, Garraway IP, Kim J, Freeman MR, Three intrinsic subtypes of prostate cancer with 
distinct pathway activation profiles differ in prognosis and treatment response. The 2016 American 
Urological Association (AUA) Annual Meeting, held in San Diego, California, May, 2016. 
 
Lecture: 
1. You S, Kim J, Introduction to Bioinformatics. The Urologic Oncology Program, held in Cedars-
Sinai Medical Center, Los Angeles, California, March 10, 2015. 
 
Oral Presentation: 
1. You S, An epigenomic pathway from cholesterol to intracrine androgen. The 2015 Western 
Section American Urological Association (AUA) Meeting, held in Palm Springs, California, October 
25, 2015. 
2. You S, Integrated classification of prostate cancer reveals a novel luminal subtype with poor 
outcome. The 2016 American Urological Association (AUA) Summer Research Conference, held in 
Linthicum, Maryland, July 16, 2016. 

 
Website(s) or other Internet site(s) 
Nothing to Report. 
 
Technologies or techniques 
Nothing to Report. 
 
Inventions, patent applications, and/or licenses 
 

Patent applications: 
1. You S, Freeman MR, Kim J, Knudsen B, Method of Diagnosing and Treating Prostate Cancer, 
Reference Number: 065472-000582PR00, 2015. 
2. Rotinen M, You S, Murali R, Freeman MR, Agent for Treating Castration Resistant Prostate 
Cancer, Reference Number: 065472-000593PR00, 2015. 

 
Other Products  
Nothing to Report. 
 
7. PARTICIPANTS & OTHER COLLABORATING ORGANIZATIONS  
 
What individuals have worked on the project?  
 

Name: Sungyong You 

Project Role: Principal Investigator 

Researcher Identifier: yousung1 

Nearest person month 
worked: 

5 



Contribution to Project: Dr. You has performed all the works in computational 
analysis and experiments 

Funding Support: The Urology Care Foundation Research Scholar 
Program 

 
 
Has there been a change in the active other support of the PD/PI(s) or senior/key personnel 
since the last reporting period?  
Nothing to Report. 
 
What other organizations were involved as partners?  
Nothing to Report. 
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Integrated Classification of Prostate Cancer
Reveals a Novel Luminal Subtype with Poor
Outcome
Sungyong You1, Beatrice S. Knudsen1, Nicholas Erho2, Mohammed Alshalalfa2,
Mandeep Takhar2, Hussam Al-deen Ashab2, Elai Davicioni2, R. Jeffrey Karnes3,
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Isla P. Garraway7, Jayoung Kim1, and Michael R. Freeman1

Abstract

Prostate cancer is a biologically heterogeneous disease with
variable molecular alterations underlying cancer initiation and
progression. Despite recent advances in understanding prostate
cancer heterogeneity, better methods for classification of prostate
cancer are still needed to improve prognostic accuracy and ther-
apeutic outcomes. In this study, we computationally assembled a
large virtual cohort (n ¼ 1,321) of human prostate cancer tran-
scriptome profiles from 38 distinct cohorts and, using pathway
activation signatures of known relevance to prostate cancer,
developed a novel classification system consisting of three distinct
subtypes (named PCS1–3). We validated this subtyping scheme
in 10 independent patient cohorts and 19 laboratory models of
prostate cancer, including cell lines and genetically engineered
mouse models. Analysis of subtype-specific gene expression pat-

terns in independent datasets derived from luminal and basal cell
models provides evidence that PCS1 and PCS2 tumors reflect
luminal subtypes, while PCS3 represents a basal subtype. We
show that PCS1 tumors progress more rapidly to metastatic
disease in comparison with PCS2 or PCS3, including PSC1
tumors of low Gleason grade. To apply this finding clinically,
we developed a 37-gene panel that accurately assigns individual
tumors to one of the three PCS subtypes. This panel was
also applied to circulating tumor cells (CTC) and provided
evidence that PCS1 CTCs may reflect enzalutamide resistance.
In summary, PCS subtyping may improve accuracy in predict-
ing the likelihood of clinical progression and permit treatment
stratification at early and late disease stages. Cancer Res; 76(17);
1–11. �2016 AACR.

Introduction
Prostate cancer is a heterogeneous disease. Currently defined

molecular subtypes are based on gene translocations (1, 2),
gene expression (3, 4), mutations (5–8), and oncogenic sig-
natures (9, 10). In other cancer types, such as breast cancer,
molecular classifications predict survival and are routinely
used to guide treatment decisions (11, 12). However, the

heterogeneous nature of prostate cancer, and the relative
paucity of redundant genomic alterations that drive progres-
sion, or that can be used to assess likely response to therapy,
have hindered attempts to develop a classification system with
clinical relevance (13).

Recently, molecular lesions in aggressive prostate cancer have
been identified. For example, overexpression of the androgen
receptor (AR) due to gene amplification has been observed in
castration-resistant prostate cancer (CRPC) (14). Presence of AR
variants (AR-V) that do not require ligand for activation have been
reported in a large percentage of CRPCs and have been correlated
with resistance to AR-targeted therapy (15). The oncogenic func-
tion of enhancer of zeste homolog 2 (EZH2) was found in cells of
CRPC, and recurrent mutations in the speckle-type POZ protein
(SPOP) gene occur in approximately 15% of prostate cancers
(16, 17). Expression signatures related to these molecular lesions
have also been developed to predict patient outcomes. While, in
principle, signature-based approaches could be used indepen-
dently in small cohorts (4, 10), there is a potential for an increase
in diagnostic or prognostic accuracy if signatures reflecting gene
expression perturbations relevant to prostate cancer could be
applied to large cohorts containing thousands of clinical
specimens.

Here we present the results of an integrated analysis of an
unprecedentedly large set of transcriptome data, including from
over 4,600 clinical prostate cancer specimens. This study revealed
that RNA expression data can be used to categorize prostate cancer
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tumors into 3 distinct subtypes, based on molecular pathway
representation encompassing molecular lesions and cellular fea-
tures related to prostate cancer biology. Application of this sub-
typing scheme to 10 independent cohorts and a wide range of
preclinical prostate cancer models strongly suggest that the sub-
types we define originate from inherent differences in prostate
cancer origins and/or biological features. We provide evidence
that this novel prostate cancer classification scheme can be useful
for detection of aggressive tumors using tissue as well as blood
from patients with progressing disease. It also provides a starting
point for development of subtype-specific treatment strategies
and companion diagnostics.

Materials and Methods
Merging transcriptome datasets and quality control

To assemble a merged dataset from diverse microarray and
high-throughput sequencing platforms, we applied a median-
centering method followed by quantile scaling (MCQ; ref. 18).
Briefly, each dataset was normalized using the quantile method
(19). Probes or transcripts were assigned to unique genes by
mapping NCBI entrez gene IDs. Redundant replications for each
probe and transcript were removed by selecting the one with the
highest mean expression. Log2 intensities for each gene were
centered by the median of all samples in the dataset. Each of the
matrices was then transformed into a single vector. The vectors for
the matrices were scaled by the quantile method to avoid a bias
toward certain datasets or batches with large variations from the
median values. These scaled vectors were transformed back into
thematrices. Finally, thematriceswere combined bymatching the
gene IDs in the individual matrices, resulting in a merged dataset
of 2,115 samples by 18,390 human genes. To evaluate the MCQ-
based normalization strategy, we applied the XPN (cross platform
normalization; ref. 20) method to the same datasets and com-
pared it with the merged data from MCQ. Multidimensional
scaling (MDS) between samples was performed to assess batch
effects. The sameMCQapproachwith the quantilemethod, or the
single channel array normalization (SCAN) method (21), was
also applied for normalization and batch correction of data from
the independent cohorts.

Computing pathway activation score
We used the Z-score method to quantify pathway activation

(22). Briefly, theZ-scorewas definedby thedifference between the
error-weighted mean of the expression values of the genes in a
gene signature and the error-weighted mean of all genes in a
sample after normalization. Z-scores were computed using each
signature in the signature collection for each of the samples,
resulting in a matrix of pathway activation scores.

Determination of the optimal number of clusters
Non-negative matrix factorization (NMF) clustering with a

consensus approach is useful to elucidate biologicallymeaningful
classes (23). Thus, we applied the consensus NMF clustering
method (24) to identify the optimal number of clusters. NMF
was computed 100 times for each rank k from2 to 6,where kwas a
presumed number of subtypes in the dataset. For each k, 100
matrix factorizations were used to classify each sample 100 times.
The consensus matrix with samples was used to assess how
consistently sample-pairs cluster together. We then computed the
cophenetic coefficients and silhouette scores for each k, to quan-

titatively assess global clustering robustness across the consensus
matrix. The maximum peak of the cophenetic coefficient and
silhouette score plots determined the optimal number of clusters.

Classification using a 14-pathway classifier
We constructed a classifier, where a set of predictors consists of

14 pathways, using a na€�ve Bayesmachine learning algorithm. For
training the classifier, we used the pathway activation scores and
subtype labels of the result of theNMF clustering process.We then
computed the misclassification rate using stratified 10-fold cross
validation. To assess performance, we adopted a 3-class classifi-
cation as a 2-class classification (e.g., PCS1 vs. others) and
computed the average area under the receiver operating charac-
teristic (ROC) curves from all 3 of 2-class classifications. Finally,
we applied the 14-pathway classifier to assign subtypes to the
specimens.

Identifying subtype-enriched genes
Wilcoxon rank-sum test and subsequent false discovery rate

(FDR) correction with Storey's method (25) were employed to
identify differentially expressed genes between the subtypes.
Genes were selected with FDR < 0.001 and fold change � 1.5,
resulting in 428 subtype-enriched genes (SEG).

Development of a 37-gene diagnostic panel
A random forest machine learning algorithm was employed to

develop a diagnostic gene panel. For parameter estimation and
training the model, we used the merged dataset. Initially, the
model comprised of the 428 SEGs as a set of predictors and
subtype label of the merged dataset was used as a response
variable for model training. To verify the optimal leaf size, we
compared the mean squared errors (MSE) obtained by classifi-
cationof leaf sizes of 1 to 50with 100 trees, resulting in anoptimal
leaf size of 1 for model training. We then permuted the values for
each gene across every sample and measured how much worse
MSE became after the permutation. Imposing a cutoff of impor-
tance score at 0.5,we selected the 37 genes for subtyping. From the
computation of MSE growing 100 trees on 37 genes and on the
428 SEGs, the 37 genes we chose gave the sameMSE as the full set
of 428 genes. ROC curve analyses and 10-fold cross-validation
were also conducted to assess the performance of a classification
ensemble.

Statistical analysis
We performed principal component analysis (PCA) and MDS

for visualizing the samples to assess their distribution using
pathway activation profiles. Wilcoxon rank-sum statistics were
used to test for significant differences in pathway activation scores
between the subtypes. Kaplan–Meier analysis, Cox proportional
hazard regression, and the c2 test were performed to examine the
relationship(s) between clinical variables and subtype assign-
ment. The OR test using dichotomized variables was conducted
to investigate relationships between different subtyping schemes.
The MATLAB package (Mathworks) and the R package (v.3.1
http://www.r-project.org/) were used for all statistical tests.

Results
A prostate cancer gene expression atlas

To achieve adequate power for a robustmolecular classification
of prostate cancer, we initially collected 50 prostate cancer
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datasets from three public databases: Gene Expression Omnibus
(GEO; http://www.ncbi.nlm.nih.gov/geo), ArrayExpress (http://
www.ebi.ac.uk/arrayexpress), and the UCSC Cancer Genomics
Browser (https://genome-cancer.ucsc.edu) and selected 38 data-
sets (Supplementary Table S1), in which the numbers of samples
are larger than 10 and where over 10,000 genes were measured
(Fig. 1A). This collection contains datasets consisting of 2,790
expression profiles of benign prostate tissue, primary tumors, and
metastatic or CRPC (CRPC/Met; Fig. 1B). We then removed a
subset of samples with ambiguous clinical information and
generated a single merged dataset by cross study normalization,
based onmedian-centering and the quantile normalizationmeth-
od (MCQ; ref. 18). The merged dataset consists of 1,321 tumor

specimens that we named the Discovery (DISC) cohort. The
merged gene expression profiles showed a significant reduction
of systematic, dataset-specific bias in comparison with the same
dataset corrected by the XPN method, which is also used for
merging data from different platforms (20) (Fig. 1C). Biological
differences between tumors and benign tissues were also main-
tained while minimizing batch effects (Fig. 1D).

As validation datasets, we assembled another collection of 12
independent cohorts consisting of 2,728 tumors from primary
and CRPC/Met samples (Table 1). From this collection, 3
datasets, the Swedish watchful waiting cohort (SWD), the
Emory cohort (EMORY), and the Health Study Prostate Tumor
cohort (HSPT), were obtained from GEO. The gene expression

Figure 1.

Integration of prostate cancer transcriptome and quality control. A, schematic showing the process of collecting and merging prostate cancer transcriptomes.
B, clinical composition of 2,115 prostate cancer cases. C, MDS of merged expression profiles after MCQ or XPN correction in the DISC cohort. Dots with
different colors represent different batches or datasets.D, hierarchical clustering illustrates the sample distribution of uncorrected (top), corrected byMCQ (middle),
and corrected by XPN (bottom). Different colors on "Batches" rows represent different batches or datasets from the individual studies. E, MDS of pathway
activation profiles in the DISC cohort shows distribution of the samples from same batches. Dots with different colors represent different batches or datasets.
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profiles and clinical annotations of The Cancer Gnome Atlas
(TCGA) cohort of 333 prostate cancer and SU2C/PCF Dream
Team cohort (SU2C) of 118 CRPC/Mets were obtained from
cBioPortal (http://www.cbioportal.org/). Seven additional
cohorts were obtained from the Decipher GRID database
(GRID). The expression datasets from the GRID were generated
using a single platform, the Affymetrix Human Exon 1.0 ST
Array, using primary tumors for the purpose of developing
outcomes and treatment response signatures. We used these 7
cohorts to investigate associations of clinical outcomes with
subtype assignment in this study.

Pathway activations describing prostate cancer biology
Recent studies have demonstrated the advantage of pathway-

based analysis in clinical stratification for prostate and other
cancer types (10, 26, 27), However, to date, there has been no
study of prostate cancer using pathway activation profiles in
which thousands of patient specimens were used. In addition,
the utility of recently characterized molecular lesions such as
AR amplification/overexpression, AR-V expression, transcrip-
tional activation of EZH2 and forkhead box A1 (FOXA1), and
SPOP mutation have not been fully exploited for classification.
Therefore, we employed 22 pathway activation gene expression
signatures encompassing prostate cancer–relevant signaling
and genomic alterations (Supplementary Tables S2 and S3) in
the DISC cohort (n ¼ 1,321). These were ultimately collapsed
into 14 pathway signatures that were grouped into 3 categories:
(i) prostate cancer–relevant signaling pathways, including acti-
vation of AR, AR-V, EZH2, FOXA1, and rat sarcoma viral
oncogene homolog (RAS) and inactivation by polycomb
repression complex 2 (PRC); (ii) genetic and genomic altera-
tions, including mutation of SPOP, TMPRSS2–ERG fusion
(ERG), and deletion of PTEN; and (iii) biological features
related to aggressive prostate cancer progression, including
stemness (ES), cell proliferation (PRF), epithelial–mesenchy-
mal transition (MES), proneural (PN), and aggressive prostate
cancer with neuroendocrine differentiation (AV). Pathway acti-
vation scores were computed in each specimen in the DISC
cohort using the Z-score method (22). The conversion of gene
expression to pathway activation showed a further reduction of
batch effects, while preserving biological differences that are
particularly evident in the clustering of metastatic and non-
metastatic samples (Fig. 1E).

Identification and validation of molecular subgroups
We performed unsupervised clustering based on consensus

NMF clustering (24) using the 14 pathway activation profiles in
the DISC cohort. A consensus map of the NMF clustering results
shows clear separation of the samples into three clusters (Fig. 2A).
To identify the optimal number of clusters and to assess robust-
ness of the clustering result, we computed the cophenetic coef-
ficient and silhouette score using different numbers of clusters (2–
6). These results indicate that 3 clusters is a statistically optimal
representation of the data (Fig. 2B). A heatmap of 3 sample
clusters demonstrates highly consistent pathway activation pat-
terns within each group (Fig. 2C). These analyses suggest that the
clusters correspond to three prostate cancer subtypes. We com-
pared the magnitude of activation of each pathway across the 3
clusters evident in Fig. 2C using the Wilcoxon rank-sum test for
pairwise comparisons (Supplementary Fig. S1). The PCS1 subtype
exhibits high activation scores for EZH2, PTEN, PRF, ES, AV, and
AR-V pathways. In contrast, ERG pathway activation predomi-
nates inPCS2,which is also characterizedbyhigh activationofAR,
FOXA1, and SPOP. PCS3 exhibits high activation of RAS, PN,
MES, while AR and AR-V activation are low.

High enrichment of PRC and low AR within PCS3 raises the
question of whether this subtype is an artifact of contaminating
nontumor tissues. However, PCA demonstrates that samples in
PCS3 are as distinct from benign tissues as samples in the other
subtypes (Fig. 2D). To further confirm the difference from benign
tissue, we made use of a gene signature shown to discriminate
benign prostate tissue from cancer in a previous study (28) and
found a significant difference (P < 0.001) in all the tumors in the
subtypes compared with benign tissues (Supplementary Fig. S2).
These results demonstrate that prostate cancers retain distinct
gene expression profiles between subtypes, which are not related
to the amount of normal tissue contamination.

To validate the PCS classification scheme, a 14-pathway clas-
sifier was developed using a na€�ve Bayes machine learning algo-
rithm (see details in Materials and Methods). This classifier was
applied to 9 independent cohorts of localized tumors (i.e., SWD,
TCGA, EMORY, HSPT, MAYO1/2, CCF, TJU, and JHM) and the
SU2C cohort of CRPC/Met tumors. Out of these 10 independent
cohorts, 5 cohorts (i.e.,MAYO1/2, TJU, CCF, and JHM)were from
the GRID (Fig. 2E; Table 1; ref. 29). The 14-pathway classifier
reliably categorized tumors in the DISC cohort into 3 subtypes,
with an average classificationperformance¼0.89 (P<0.001). The

Table 1. List of independent cohorts for validation of the subtypes

Cohort name
Number of
samples

Disease
status

Available clinical
outcomes

Data from
GRID Abbreviation PubMed ID

Swedish Watchful-Wainting Cohort 281 Localized OS No SWD 20233430
The Cancer Genome Anatomy 333 Localized N.A. No TCGA 26000489
Emory University 106 Localized N.A. No EMORY 24713434
Health Professionals Follow-up Study and
Physicians' Health Study Prostate Tumor Cohort

264 Localized N.A. No HSPT 25371445

Stand Up To Cancer/Prostate Cancer
Foundation Dream Team Cohort

118 CRPC/Met N.A. No SU2C 26000489

Mayo Clinic Cohort 1 545 Localized PMS, TMP, PCSM Yes MAYO1 23826159
Mayo Clinic Cohort 2 235 Localized PMS, TMP, PCSM Yes MAYO2 23770138
Thomas Jefferson University cohort 130 Localized PMS, TMP, PCSM Yes TJU 25035207
Cleveland Clinic Foundation Cohort 182 Localized PMS, TMP, PCSM Yes CCF 25466945
Memorial Sloan Kettering Cancer Center cohort 131 Localized PMS, PCSM Yes MSKCC 20579941
Erasmus Medical Centre Cohort 48 Localized PMS, PCSM Yes EMC 23319146
Johns Hopkins Medicine Cohort 355 Localized PMS, TMP, PCSM Yes JHM 25466945

Abbreviations: N.A., not available; OS, overall survival; PMS, progression to metastatic state; PCSM, PC-specific mortality; TMP, time-to-metastatic progression.
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3 subtypes were identified in all cohorts. Their proportions were
similar across the localized disease cohorts, demonstrating the
consistency of the classification algorithmacrossmultiple practice
settings (Fig. 2E). The 2 cohorts consisting of CRPC/Met tumors
(DISC and SU2C) showed some differences in the frequency of
PCS1andPCS3; themost frequent subtype in theDISCCRPC/Met
cohortwas PCS1 (66%),while themost frequent subtype in SU2C
was PCS3 (45%; Fig. 2F). PCS2 was the minor subtype in both
CRPC/Met cohorts.

To determine whether the PCS classification is relevant to
laboratory models of prostate cancer, we analyzed 8 human
prostate cancer cell lines from The Cancer Cell Line Encyclopedia
(CCLE; GSE36133; ref. 30) and 11 prostate cancer mouse models
(31, 32). There are two datasets for mouse models. The first
dataset (GSE53202) contains transcriptome profiles of 13 genet-
ically engineered mouse models, including normal epithelium
(i.e., wild-type), low-grade PIN (i.e., Nkx3.1 and APT), high-grade
PIN, and adenocarcinoma (i.e., APT-P, APC, Myc, NP, Erg-P, and
NP53), CRPC (i.e., NP-Ai), and metastatic prostate cancer (i.e.,
NPB, NPK, and TRAMP). Because of no available data for samples
without drug treatment, theNkx3.1 andAPCmodels were exclud-
ed from this analysis. The second dataset (GSE34839) contains
transcriptome profiles from mice with PTEN-null/KRAS activa-
tion mutation-driven high-grade, invasive prostate cancer and
mice with only the PTEN-null background. This analysis revealed
that all 3 prostate cancer subtypes were represented in the 8
human prostate cancer cell lines (Fig. 2G), while only 2 subtypes
(PCS1 and PCS2) were represented in the mouse models (Fig.
2H). This result provides evidence that the subtypes are recapit-
ulated in genetically engineered mouse models and persist in
human cancer cells in cell culture.

Evaluation of PCS subtypes in comparison with other subtypes
Several categorization schemes of prostate cancer have been

described, based mostly on tumor-specific genomic alterations
and in some cases with integration of transcriptomic and other
profiling data (10, 29, 33). This prompted us to compare the PCS
classification schemewith the genomic subtypes derived by TCGA
(34), because comprehensive genomic categorization was recent-
ly made available (35). We also compared the PCS classification
with the subtypes recently defined by Tomlins and colleagues
fromRNA expression data (29). The Tomlins subtyping scheme is
defined using the 7 GRID cohorts (i.e., MAYO1/2, TJU, CCF,
MSKCC, EMC, and JHM) that we used for validating the PCS
system. The large number of cases in the 7 GRID cohorts (n ¼
1,626) is comparable with our DISC cohort in terms of hetero-
geneity and complexity. TCGA identified several genomic sub-
types, named ERG, ETV1, ETV4, FLI1, SPOP, FOXA1, IDH1, and
"other." Tomlins and colleagues described 4 subtypes based on
microarray gene expression patterns that are related to several
genomic aberrations [i.e., ERGþ, ETSþ, SPINK1þ, and triple
negative (ERG�/ETS�/SPINK1�)].

A comparison of the PCS categories with the TCGA genomic
subtypes showed that the tumors classified as ERG, ETV1/4, SPOP,

FOXA1, and "other" were present across all the PCS categories in
the TCGA dataset (n¼ 333; Fig. 3A). SPOP cancers were enriched
in PCS1 (OR: 3.53), while PCS2 tumors were overrepresented in
TCGA/ERG cancers (OR: 1.82) and TCGA/"other" cancers were
enriched in PCS3 (OR: 1.79; Fig. 3B). In the GRID cohorts, we
observed all PCS categories in all classification groups as defined
by Tomlins and colleagues (Fig. 3C and D). We found a high
frequency of the Tomlins/ERGþ subtype in PCS2, but not in PCS1.
PCS1 was enriched for Tomlins/ETSþ and Tomlins/SPINK1þ

subtypes, while PCS3was enriched for the triple-negative subtype
but not the ERGþ or ETSþ subgroups. Finally, we compared the
Tomlins classification method with the PCS classification using 5
of 7 GRID cohorts. PCS1 demonstrated significantly shorter
metastasis-free survival compared with PCS2 and PCS3 (P <
0.001; Fig. 3E). In contrast, no difference inmetastatic progression
was seen among the Tomlins categories (Fig. 3F).

PCS1 contained the largest number of prostate cancers with GS
� 8 (Fig. 2C). Given the overall poorer outcomes seen in PCS1
tumors, we testedwhether this result was simply a reflection of the
enrichment of high-grade disease in this group (i.e., GS � 8). For
this analysis, we merged 5 GRID cohorts (i.e., MAYO1/2, TJU,
CCF, and JHM) into a single dataset and separately analyzed low
and high-grade disease. We observed a similarly significant (P <
0.001) association between subtypes and metastasis-free survival
inGS� 7 and inGS� 8 (Fig. 3G). Thus, tumors in the PCS1 group
exhibit the poorest prognosis, including in tumors with low
Gleason sum score. Finally, in the DISC cohort, although
CRPC/Met tumors were present in all PCS categories, PCS1
predominated (66%), followed by PCS3 (27%) and PCS2
(7%) tumors. To confirm whether this clinical correlation is
replicated in individual cohorts, we also assessed association with
time to metastatic progression, prostate cancer–specific mortality
(PCSM), and overall survival (OS) in 5 individual cohorts in the
GRID (i.e., MAYO1/2, CCF, TJU, and JHM) and in the SWD
cohorts. PCS1 was seen to be the most aggressive subtype, con-
sistent with the above results (Supplementary Fig. S3).

PCS categories possess characteristics of basal and luminal
prostate epithelial cells

Prostate cancer may arise from oncogenic transformation of
different cell types in glandular prostate epithelium (36–38).
Breast cancers can be categorized into luminal and basal subtypes,
which are associated with different patient outcomes (39). It is
unknownwhether this concept applies to human prostate cancer.
To examine whether the 3 PCS categories are a reflection of
different cell types, we identified 428 SEGs (SEG1–3; 86 for PCS1,
123 for PCS2, and 219 for PCS3; Supplementary Table S4) in each
subtype. As expected, these genes are involved inpathways that are
enriched in each subtype (Fig. 4A) and that define the perturbed
cellular processes of the subtype. We then identified the cellular
processes that are associated with the SEGs. Proliferation and
lipid/steroid metabolism are characteristic of SEG1 and SEG2,
while extracellular matrix organization, inflammation, and cell
migration are characteristic of SEG3 (Fig. 4B). This result suggests

Figure 2.
Identification and validation of novel prostate cancer subtypes. A, consensus matrix depicts robust separation of tumors into three subtypes. B, changes of
cophenetic coefficient and silhouette score at rank 2 to 6. C, pathway activation profiles of 1,321 tumors defines three prostate cancer subtypes. D, score
plot of PCA for benign and three subtypes. E and F, the three subtypes were recognized in 10 independent cohorts. G and H, correlation of pathway activation
profiles in 8 prostate cancer cell lines from the CCLE and 11 prostate cancer mouse models and probability from the pathway classifier.
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that distinct biological functions are associated with the PCS
categories.

To determine whether the PCS categories reflect luminal or
basal cell types of the prostatic epithelium, we analyzed the mean
expression of genes known to be characteristic of luminal (EZH2,
AR,MKI67, NKX3-1, KLK2/3, and ERG) or basal (ACTA2, GSTP1,
IL6, KRT5, and TP63) prostatic cells (Fig. 4C). We observed a
strong association (FDR < 0.001; fold change > 1.5) between
luminal genes and PCS1 and PCS2, and basal genes and PCS3. To

verify this observation, we used two independent datasets derived
from luminal and basal cells from human (40) and mouse
(GSE39509; ref. 37) prostates. The assignment of a basal
designation to PCS3 is further supported by the highly signif-
icant enrichment in PCS3, in comparison with the other two
subtypes, of a recently described prostate basal cell signature
derived from CD49f-Hi versus CD49f-Lo benign and malignant
prostate epithelial cells (Fig. 4D; ref. 41). In addition, using the
14-pathway classifier, mouse basal tumors and human basal

Figure 3.

Comparison of the PCS subtypes with previously described subtypes. A, distribution of TCGA tumors (n ¼ 333) using the PCS subtypes compared with
TCGA subtypes.B, relationship between PCS subtyping and TCGA subtypes.C, distribution of GRID tumors (n¼ 1,626) using PCS categories comparedwith Tomlins
subtypes. D, relationship between PCS subtyping and Tomlins subtypes. E and F, association of metastasis-free survival using Tomlins subtypes and using
the PCS subtypes in the GRID tumors. G, metastasis-free survival in tumors of GS � 7 (left) and GS � 8 (right).
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cells from benign tissues were classified as PCS3, while mouse
luminal tumors and benign prostate human luminal cells were
classified into PCS2 (Fig. 4E). These results are consistent with
the conclusion that the PCS categories can be divided into
luminal and basal subtypes.

A gene expression classifier for assignment to subtypes
Given the potential advantages of the PCS system to classify

tumor specimens,we constructed a classifier that canbe applied to
an individual patient specimen in a clinical setting (Supplemen-
tary Fig. S4A). First, of 428 SEGs, 93 genes were selected on the
basis of highly consistent expression patterns in 10 cohorts (i.e.,
SWD, TCGA, EMORY, HSPT, SU2C, MAYO1/2, CCF, TJU, and
JHM). Second, using a randomforestmachine learning algorithm,
we selected37 geneswith feature importance scores>0.5, showing
a comparable level of errorwith the fullmodel based on 428 SEGs
(Supplementary Fig. S4B). Performance of the classifier was
assessed in the GRID cohort (AUC ¼ 0.97). The 37-gene panel

displays significantly different expression patterns between the
three subtypes in the DISC cohort (Fig. 5A).

The robust performance of the gene panel led us to determine
whether it could be used to profile circulating tumor cells (CTC)
from patients with CRPC. We analyzed single-cell RNA-seq data
from 77 intact CTCs isolated from 13 patients (42). Prior to the
clustering analysis to investigate the expression patterns of these
CTC data, the normalized read counts as read-per-million (RPM)
mapped reads were transformed on a log2 scale for each gene. The
77 CTCs were largely clustered into two groups using median-
centered expression profiles corresponding to the 37-gene PCS
panel by the hierarchicalmethod (Fig. 5B).One group (GROUP I),
consisting of 67 CTCs displays low expression of PCS1-enriched
genes, while the other group (GROUP II) consisting of 10 CTCs
has high expression of PCS1-enriched genes. In addition, we
observed that PCS3-enriched genes in the panel were not detected
or have very low expression changes across all CTCs as shown in
the heatmap of Fig. 5B. The results suggest that CTCs can be

Figure 4.

Genes enriched in each of the three
subtypes are associated with luminal
and basal cell features. A, relative gene
expression (left) and pathway inclusion
(right) of SEGs are displayed. B, cellular
processes enriched by each of the three
SEGs (P < 0.05). C, expression of the
luminal and basal markers in the three
subtypes. D, enrichment of basal stem
cell signature. E, correlation of pathway
activities between samples fromhuman
and mouse prostate (left) and
probability from the pathway classifier
(right).
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divided into two groups with the 37-gene PCS panel. Given this
result, we hypothesized that the 37-gene classifier might assign
CTCs to PCS1 or PCS2, consistent with the clustering result. The
bar graph below the heatmap illustrates the probability of like-
lihood of PCS assignment, with the result that all the CTCs were
assigned to PCS1 (n¼ 12) or PCS2 (n¼ 65), while no PCS3 CTCs
were assigned on the basis of the largest probability score. By
comparing with the CTC group assignment, 7 (70%) of 10 CTCs
in the GROUP II were assigned to PCS1 by the 37-gene classifier
and 62 (95%) of 65 CTCs in the GROUP I were assigned to PCS2
by the classifier. We then tested whether GROUP I and II exhibit
any difference in terms of therapeutic responses. Of note, 5 of
the 7 CTCs in GROUP II (OR: 1.74; 95% confidence interval:
0.49–6.06) were from patients whose cancer exhibited radio-
graphic and/or PSA progression during enzalutamide therapy,
suggesting that the 37-gene PCS panel can potentially identify
patients with resistance to enzalutamide therapy.

Collectively, the results demonstrate that the 37-gene classifier
has a potential to assign individual prostate cancers to PCS1 using
both prostate tissues andbloodCTCs, suggesting that the classifier
can be applied to subtype individual prostate cancers using
clinically relevant technology platforms (43, 44), including by
noninvasive methods.

Discussion
In this study, we describe a novel classification system for

prostate cancer, based on an analysis of over 4,600 prostate cancer

specimens, which consists of only 3 distinct subtypes, designated
PCS1, PCS2, and PCS3. PCS1 exhibits the highest risk of progres-
sion to advanced disease, even for low Gleason grade tumors.
Although sampling methods across the cohorts we studied were
different, classification into the 3 subtypes was reproducible. For
example, the SWD cohort consists of specimens that were
obtained by transurethral resection of the prostate rather than
radical prostatectomy; however, subtype assignment and prog-
nostic differences between the subtypes were similar to the other
cohorts we examined (Supplementary Fig. S3J). Genes that are
significantly enriched in the PCS1 category were highly expressed
in the subset of CTCs (58%, 7 CTCs out of 12) from patients with
enzalutamide-resistant tumors. This proportion of resistant cases
in PCS1CTCs is very high comparedwith PCS2CTCs (8%, 5CTCs
out of 65). The characteristics of the PCS categories are summa-
rized in Table 2.

Previously published prostate cancer classifications have
defined subtypes largely based on the presence or absence of
genomic alterations (e.g., TMPRSS2-ERG translocations). Tumors
with ERG rearrangement (ERGþ) are overrepresented in PCS2;
however, it is not the presence or absence of an ERG rearrange-
ment that defines the PCS2 subtype, but rather ERG pathway
activation features based on coordinate expression levels of genes
in the pathway. Our findings provide evidence for biologically
distinct forms of prostate cancer that are independent of Gleason
grade, currently the gold standard for clinical decision-making. In
addition, by comparing prognostic profiles between the PCS
categories and the Tomlins and colleagues categories, prognostic

Figure 5.

A 37-gene classifier employed in
patient tissues and CTCs. A, heatmap
displays themean expression pattern of
the 37-gene panel in the three subtypes
from the DISC cohort. B, hierarchical
clustering of 77 CTCs obtained from
CRPC patients by gene expression of
the 37-gene panel. Bar plot in the
bottom displays probability of PCS
assignment from application of the
classifier.
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information was evident only from the PCS classification scheme
in the same cohort. Taken together, this indicates that the PCS
classification is unique.

Although the current report has provided evidence that PCS
classification can assign subtypes within groups of "indolent" as
well as aggressive tumors, and in a wide range of preclinical
models, it remains to be determined whether the PCS categories
might be stable during tumor evolution in an individual patient.
An interesting alternative possibility is that disease progression
results in phenotypic diversificationwith respect to the PCS assign-
ment. We have shown that preclinical model systems, including
genetically engineered mouse models (GEMM), can be assigned
with high statistical confidence to the PCS categories. We believe
the simplest explanation for this finding is that these subtypes
reflect distinct epigenetic features of chromatin that are potentially
stable, even in the setting of genomic instability associated with
advanced disease. This possibility needs to be formally tested. The
human prostate cancer cell lines we evaluated could be assigned to
all 3 subtypes; however, the GEMMs we tested could only be
assigned to PCS1 and PCS2. This finding suggests that approxi-
mately 1 of 3 of human prostate cancers are not beingmodeled in
widely used GEMMs. It should be feasible to generate mouse
models for PCS3 through targeted genetic manipulation of path-
ways that are deregulated in PCS3 and through changing chroma-
tin structure, such as by altering the activity of the PRC2 complex.

A major clinical challenge remains the early recognition of
aggressive disease, in particular, due to the multifocal nature of
prostate cancer (45). The classification scheme we describe pre-
dicts the risk of progression to lethal prostate cancer in patients
with a diagnosis of low-grade localized disease (Fig. 3G). It is
possible that in these cancers, pathway activation profiles are
independent of Gleason grade and that pathways indicating high
risk of progression are manifested early in the disease process and
throughout multiple cancer clones in the prostate. In addition to
predicting the risk of disease progression, PCS subtyping might
also assist with the selection of drug treatment in advanced cancer
by profiling CTCs in patient blood. With the 37-gene classifier we
present here, it will be possible to assign individual tumors to PCS
categories in a clinical setting. This new classificationmethodmay
provide novel opportunities for therapy and clinicalmanagement
of prostate cancer.
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