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Abstract: Low-cost fault tolerance requires careful 

combination of fault tolerance techniques across all levels 

of the system stack. We describe a systematic framework, 

applicable to simple and complex cores as well as 

specialized accelerators, to explore this cross-layer design 

space in terms of area, power, and performance costs, and 

present illustrative results. 
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Introduction 
It is clear that at recent technology nodes, and moving 

forward, even commodity systems are increasingly 

susceptible to hardware failures. We show the benefits of 

combining techniques across layers, from circuit-level to 

application-level, which allows the designer to select a 

desired fault tolerance with much lower overhead. We 

present a systematic methodology and a new framework 

that allows for quick exploration and analysis of cross-layer 

resilience. We demonstrate the effectiveness of our 

framework using a wide range of resilience techniques: 

from circuit-, logic-, and architecture-level techniques to 

software-implemented and application-specific resilience. 

Related Work 
There has been significant research into various protection 

schemes across all system layers that help improve overall 

system reliability. The challenge is determining how to 

combine and integrate these techniques. Prior work on fault 

tolerance has typically proposed techniques that target a 

single layer of the system stack. Even prior work showing 

how to combine prior techniques to reduce overhead (e.g., 

[14]) still operates within a single layer of the system stack.   

Unfortunately, very little literature exists on such cross-

layer tradeoffs. Some prior work (e.g., [2, 4]) has suggested 

the need for cross-layer integration of resilience techniques, 

but ours is the first truly cross-layer framework to 

systematically evaluate area, power, and performance 

overheads under various reliability constraints. 

Methodology and Framework 
A fundamental difference of our methodology to past 

practices is that we apply a systematic approach to cross-

layer resilience based on in-depth analysis rather than 

designer intuition to guide cross-layer combinations. 

Furthermore, our new framework (Fig. 1) allows us to 

quickly explore, evaluate, and optimize cross-layer 

resilience. The main components of the framework are a 

very rich resilience library that incorporates resilience 

techniques from across the system stack, a carefully crafted 

cross-layer fault injector that is highly accurate and fast, a 

system-aware design-space exploration that allows for 

quick exploration of the hundreds of possible design points, 

and a layout-aware exploration that accounts for all wire 

and routing considerations, which impact overheads 

significantly, for key designs. Physical design overheads 

are evaluated using a 28nm TSMC library and Synopsys 

design tools (Design Compiler, IC compiler, and 

PrimeTime) to perform synthesis, place-and-route, and 

power and timing analysis. The framework automatically 

and intelligently inserts resilience into baseline designs to 

provide optimized cross-layer solutions and generates 

reports detailing the achieved reliability as well as the area, 

power, and performance overheads of the resilient design. 
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Figure 1. Our cross-layer framework 

Case Study 
We present, as a case study, the application of our cross-

layer methodology and framework on the Leon3. For the 

purposes of this study, we focus on the particular case of 

single event upsets (SEU) caused by soft errors (radiation-

induced transient errors) since the transient nature of these 

types of errors lead to interesting challenges such as 

architectural masking factors in the design. 

Although we only present results for Leon3 (a simple, in-

order core), we have also applied our framework to IVM (a 

complex, out-of-order core) to reinforce the fact that our 

methodology and framework is applicable to any system 

(ranging from simple embedded systems to complex 
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server-class systems) and any arbitrary fault model 

(permanent, transient, multi-bit, etc.) 

System Design Analysis 
Using flip-flop-level fault injection, we rank the 

vulnerability of each flip-flop in the processor in terms of 

its likelihood to propagate faults [3].  This allows the 

designer to target a desired level of fault tolerance, which 

guides cross-layer exploration. Analysis is conducted on a 

diverse set of benchmarks including the SPECINT 2000 

and DARPA PERFECT benchmarks. We evaluate fully 

routed designs in order to accurately account for crucial 

physical design aspects like wire routing. 

Resilience Technique Characterization 
Here, we briefly summarize some of the resilience 

techniques we have explored and illustrate how our 

characterization affects their application in our study. 

Circuit-level Techniques: At the circuit-level, we look at 

radiation hardened flip-flops, which are flip-flops designed 

to uphold the bit representation of their output circuit even 

under particle strikes [1, 6, 10, 13]. We look at a range of 

flip-flops that offer tradeoffs in area and power versus the 

amount of resilience provided (Table 1). 

Table 1. Hardened flip-flop comparison 

Type Soft Error Rate Area Power Delay 

Baseline 1.0 1.0 1.0 1.0 

Light 2.5 x 10-1 1.2 1.1 1.2 

Moderate 5.0 x 10-2 1.3 1.5 1.7 

Heavy 2.0 x 10-4 2.0 1.8 1.0 

Logic-level Techniques: At the logic-level, we explore 

logic parity, a technique which detects soft-errors affecting 

groups of sequential cell elements [9]. Naïve 

implementations will result in significant impact on clock 

frequency. In contrast, by implementing pipelined parity 

(accomplished by adding extra pipeline flip-flops), we 

maintain the original design frequency (Fig. 2). 

However, one must still exercise extreme care since there 

are many different parameters to use for optimization, such 

as parity group size, flip-flop vulnerability, cell locality, 

and timing slack.  Choosing the wrong optimization 

parameter can lead to 40% area and 80% power overhead 

as compared to the best heuristic. Our framework searches 

the design space to find the best overall solution. 
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Figure 2. Pipelined logic parity 

Architecture-level Techniques: Most micro-architectural 

techniques have high cost in area (e.g., redundancy) or 

performance (e.g., redundant multi-threading).  One 

promising technique that we evaluate is Dataflow Checking 

(DFC) [8], which detects errors in control flow as well as 

changes in operations and operands.  Hardware overhead 

for detection is negligible, but recovery requires buffering 

results from an entire basic block, making the overhead 

prohibitive in a simple processor such as Leon3. In IVM, 

however, the reorder buffer allows for low-cost recovery; 

but DFC covers a smaller fraction of the design.  

Quantification of these tradeoffs is work in progress. 

 

Figure 3. Transitions between basic blocks in DFC 

Software-level Techniques: We analyze two Software-

Implemented Hardware Fault Tolerance (SIHFT) resilience 

techniques: Control-Flow Checking by Software Signatures 

(CFCSS) [11] and Error Detection by Duplicated 

Instructions (EDDI) [12]. Although these techniques do not 

incur area and power overhead from additional hardware, 

we see an application slowdown of on average 1.5× for 

CFCSS and 2.2× for EDDI. Furthermore, these software 

techniques tend to cover only a limited range of flip-flops 

(around 20%). 

Application-specific Techniques: We look at Algorithm 

Based Fault Tolerance (ABFT) applied to select PERFECT 

benchmarks [5]. We have found that these techniques 

generally lie in the ideal region of high error-detection rate 

at low runtime overhead.  They only provide protection 

when running the corresponding algorithm, so in general-

purpose processors, hardware protection is still needed. 

However, in accelerators, ABFT can eliminate the need for 

other fault-tolerance mechanisms in dedicated hardware, or 

in more general-purpose processors, allow hardware 

protection to be turned off for potential power savings 

when the protected algorithms are running. We note that, 

some ABFT techniques, such as for FFT, only detect but 

cannot correct errors.  

Recovery Considerations: We round out our analysis by 

examining recovery options for Leon3. The simplest cross-

layer recovery method takes advantage of the built-in 

pipeline-flush mechanism (Fig. 4). Errors that occur and are 

detected before reaching the memory write stage of the 
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pipeline can be flushed and re-executed. Implementing this 

recovery mechanism costs 0.6% area and 0.9% power. 

However, it does require that the last stages in the pipeline 

be protected using techniques that both detect and correct 

(e.g., hardened flip-flops). The second method of recovery 

we evaluate is a hardware recovery unit (R-Unit), which 

utilizes instruction checkpointing [7] (Fig. 5). Although 

more general, this unit is relatively expensive on the Leon3, 

requiring 16% area and 21% power overhead. 
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Figure 4. Cross-layer (flush) recovery 
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Figure 5. R-unit recovery 

Cross-Layer Combinations 
We examine case studies on the Leon3 core to demonstrate 

systematic cross-layer exploration using our framework. 

Circuit- and Logic-level Combinations: We show that 

careful combination of hardening and parity protection for 

flip-flops, allows designs that achieve significant savings as 

compared to a single-layer (hardening-only or parity-only) 

approach. For instance, in Leon3, even after considering 

recovery, our cross-layer solution yields a savings of 

anywhere from 1.1-1.9× in area and 1.1-1.5× in power 

(after place and route) as compared to the best single-layer 

resilience approach. In fact, for all soft-error rate (SER) 

improvement targets (from 5-5,000× improvement), our 

framework automatically generates a lower cost solution 

than the best single-layer solution available (Fig. 6). 

Circuit-, Logic-, and Architecture-level Combinations: 

Using our two-layer solution as a baseline, we investigate 

whether incorporating additional layers into our cross-layer 

exploration yields further savings. We look at Data Flow 

Checking (DFC), an architecture-level technique. For 

Leon3, DFC detects errors in flip-flops carrying program 

counter and instruction content throughout the pipeline 

until the last stage (write-back) where the check is 

performed. However, these flip-flops lack protection during 

basic blocks following branches that are indirect or outside 

of the binary address range (~20% of duration). Moreover, 

some flip-flops only have errors that are occasionally 

detected by DFC, resulting in partial detection. Overall, 

35% of flip-flops are fully or partially protected with a 50% 

average detection rate. 

As a result, the low per-flip-flop detection requires 

significant low-level (hardening and parity) protection, 

which negates the benefits of using DFC. Moreover, 

coupled with the high design cost due to compiler 

modifications and the corresponding hardware checker, 

high area cost of the checker hardware, and the high 

(~20%) performance overheads, we find that cross-layer 

solutions incorporating this specific architecture-level 

technique are not viable solutions. 
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a) Post-layout area overhead 
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b) Post-layout power overhead 

Figure 6. Post-layout overhead comparison (circuit- and 
logic-level resilience) 

Circuit-, Logic-, and Application-specific Combinations: 

Let us consider the classical case of adding Algorithm 

Based Fault Tolerance (ABFT) correction for a processor 

dedicated to inner product. We find that a cross-layer 

combination actually yields anywhere from a 1.8-3.5× area 

improvement (for a dedicated processor) and 1.4-3.7× 

power improvement (post-layout) for resilience 

improvements in the range of 5-100× as compared to our 

previous best two-layer approach (Fig. 7). Keep in mind 

that these improvements are even higher when we compare 

to the best single-layer approach instead. 

These significant benefits are achievable because ABFT is 

actually allowing us to reduce the amount of low-level 

hardware protection required (by 20-50%) to meet our 

resilience targets However, for highly resilient design 

targets (e.g., 500-5,000×), the addition of ABFT into our 

cross-layer analysis yields negligible benefits. Although 

ABFT has high coverage for a small number of highly 

vulnerable flip-flops, residual errors of non-fully protected 
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flip-flops will still require low-level hardware 

augmentation in order to achieve a highly-resilient design. 
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a) Post-layout area overhead 

Cross-layer harden + parity + cross-layer recovery
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b) Post-layout power overhead 

Figure 7. Post-layout overhead comparison (circuit-, logic-, 
and application-specific resilience) 

Circuit-, Logic-, Architecture-, and Application-specific 

Combinations: Although we know that cross-layer 

combinations of DFC (an architecture-level technique) and 

low-level hardware resilience (hardening and parity) do not 

yield any meaningful benefits, we want to discover if this 

still holds when we incorporate application-specific 

techniques due to the fact that these two higher-level 

techniques could potentially complement one another. 

Unfortunately, although DFC provides some minimal 

benefits (i.e., the number of flip-flops requiring low-level 

hardware augmentation drops by an additional 10-20%), 

the area and power costs of the DFC checker itself negate 

any benefits afforded. In actuality, this cross-layer 

combination could be significantly worse, because DFC (in 

the case of an embedded, real-time system) will incur 

tremendous recovery costs. 

Conclusions 
We present a new methodology and framework for 

exploring, evaluating, and optimizing cross-layer resilience. 

Our methodology and framework is applicable to any 

arbitrary design and for any arbitrary use case. By taking a 

system-level view of resilience, we can systematically find 

effective cross-layer combinations to achieve desired 

resilience at much lower cost than the best possible single-

layer solutions. 
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