

Cross-Layer Resilience Exploration

Eric Cheng,
Hyungmin Cho,
Subhasish Mitra

Department of EE and
Department of CS
Stanford University

Stanford, CA, USA, 94305

Lukasz G. Szafaryn,
Kevin Skadron,

Mircea Stan
Department of ECE and

Department of CS
University of Virginia

Charlottesville, VA, USA,
22904

Chen-Yong Cher

Computer Architecture
Department

IBM T.J. Watson Research
Center

Yorktown Heights, NY,
USA, 10598

Shahrzad Mirkhani,
Jacob A. Abraham

Department of ECE

University of Texas at
Austin

Austin, TX, USA, 78712

Abstract: Low-cost fault tolerance requires careful

combination of fault tolerance techniques across all levels

of the system stack. We describe a systematic framework,

applicable to simple and complex cores as well as

specialized accelerators, to explore this cross-layer design

space in terms of area, power, and performance costs, and

present illustrative results.

Keywords: cross-layer resilience; fault-tolerance;

reliability; soft errors

Introduction
It is clear that at recent technology nodes, and moving

forward, even commodity systems are increasingly

susceptible to hardware failures. We show the benefits of

combining techniques across layers, from circuit-level to

application-level, which allows the designer to select a

desired fault tolerance with much lower overhead. We

present a systematic methodology and a new framework

that allows for quick exploration and analysis of cross-layer

resilience. We demonstrate the effectiveness of our

framework using a wide range of resilience techniques:

from circuit-, logic-, and architecture-level techniques to

software-implemented and application-specific resilience.

Related Work
There has been significant research into various protection

schemes across all system layers that help improve overall

system reliability. The challenge is determining how to

combine and integrate these techniques. Prior work on fault

tolerance has typically proposed techniques that target a

single layer of the system stack. Even prior work showing

how to combine prior techniques to reduce overhead (e.g.,

[14]) still operates within a single layer of the system stack.

Unfortunately, very little literature exists on such cross-

layer tradeoffs. Some prior work (e.g., [2, 4]) has suggested

the need for cross-layer integration of resilience techniques,

but ours is the first truly cross-layer framework to

systematically evaluate area, power, and performance

overheads under various reliability constraints.

Methodology and Framework
A fundamental difference of our methodology to past

practices is that we apply a systematic approach to cross-

layer resilience based on in-depth analysis rather than

designer intuition to guide cross-layer combinations.

Furthermore, our new framework (Fig. 1) allows us to

quickly explore, evaluate, and optimize cross-layer

resilience. The main components of the framework are a

very rich resilience library that incorporates resilience

techniques from across the system stack, a carefully crafted

cross-layer fault injector that is highly accurate and fast, a

system-aware design-space exploration that allows for

quick exploration of the hundreds of possible design points,

and a layout-aware exploration that accounts for all wire

and routing considerations, which impact overheads

significantly, for key designs. Physical design overheads

are evaluated using a 28nm TSMC library and Synopsys

design tools (Design Compiler, IC compiler, and

PrimeTime) to perform synthesis, place-and-route, and

power and timing analysis. The framework automatically

and intelligently inserts resilience into baseline designs to

provide optimized cross-layer solutions and generates

reports detailing the achieved reliability as well as the area,

power, and performance overheads of the resilient design.

Reliability
Perf.
Power
Area

Resilience

Library

Circuit

Logic

Architecture

SIHFT

Application

Fault Injection

(cross-layer)

Guides

cross-layer

Hybrid

Simics

RTL

Emulation

FPGA

System-Aware

Exploration

Quick

gem5Simics

Layout-Aware Exploration

Accurate

Synopsys
Design Compiler

IC Compiler

PrimeTime

28nm

Library cells

SRAM compiler

Figure 1. Our cross-layer framework

Case Study
We present, as a case study, the application of our cross-

layer methodology and framework on the Leon3. For the

purposes of this study, we focus on the particular case of

single event upsets (SEU) caused by soft errors (radiation-

induced transient errors) since the transient nature of these

types of errors lead to interesting challenges such as

architectural masking factors in the design.

Although we only present results for Leon3 (a simple, in-

order core), we have also applied our framework to IVM (a

complex, out-of-order core) to reinforce the fact that our

methodology and framework is applicable to any system

(ranging from simple embedded systems to complex

563

server-class systems) and any arbitrary fault model

(permanent, transient, multi-bit, etc.)

System Design Analysis
Using flip-flop-level fault injection, we rank the

vulnerability of each flip-flop in the processor in terms of

its likelihood to propagate faults [3]. This allows the

designer to target a desired level of fault tolerance, which

guides cross-layer exploration. Analysis is conducted on a

diverse set of benchmarks including the SPECINT 2000

and DARPA PERFECT benchmarks. We evaluate fully

routed designs in order to accurately account for crucial

physical design aspects like wire routing.

Resilience Technique Characterization
Here, we briefly summarize some of the resilience

techniques we have explored and illustrate how our

characterization affects their application in our study.

Circuit-level Techniques: At the circuit-level, we look at

radiation hardened flip-flops, which are flip-flops designed

to uphold the bit representation of their output circuit even

under particle strikes [1, 6, 10, 13]. We look at a range of

flip-flops that offer tradeoffs in area and power versus the

amount of resilience provided (Table 1).

Table 1. Hardened flip-flop comparison

Type Soft Error Rate Area Power Delay

Baseline 1.0 1.0 1.0 1.0

Light 2.5 x 10-1 1.2 1.1 1.2

Moderate 5.0 x 10-2 1.3 1.5 1.7

Heavy 2.0 x 10-4 2.0 1.8 1.0

Logic-level Techniques: At the logic-level, we explore

logic parity, a technique which detects soft-errors affecting

groups of sequential cell elements [9]. Naïve

implementations will result in significant impact on clock

frequency. In contrast, by implementing pipelined parity

(accomplished by adding extra pipeline flip-flops), we

maintain the original design frequency (Fig. 2).

However, one must still exercise extreme care since there

are many different parameters to use for optimization, such

as parity group size, flip-flop vulnerability, cell locality,

and timing slack. Choosing the wrong optimization

parameter can lead to 40% area and 80% power overhead

as compared to the best heuristic. Our framework searches

the design space to find the best overall solution.

predictor

checker
comb.

logic

maintain clock period
parity group (4-32 FF size)

Original Components

Parity Components

Pipeline Flip-Flops

Figure 2. Pipelined logic parity

Architecture-level Techniques: Most micro-architectural

techniques have high cost in area (e.g., redundancy) or

performance (e.g., redundant multi-threading). One

promising technique that we evaluate is Dataflow Checking

(DFC) [8], which detects errors in control flow as well as

changes in operations and operands. Hardware overhead

for detection is negligible, but recovery requires buffering

results from an entire basic block, making the overhead

prohibitive in a simple processor such as Leon3. In IVM,

however, the reorder buffer allows for low-cost recovery;

but DFC covers a smaller fraction of the design.

Quantification of these tradeoffs is work in progress.

Figure 3. Transitions between basic blocks in DFC

Software-level Techniques: We analyze two Software-

Implemented Hardware Fault Tolerance (SIHFT) resilience

techniques: Control-Flow Checking by Software Signatures

(CFCSS) [11] and Error Detection by Duplicated

Instructions (EDDI) [12]. Although these techniques do not

incur area and power overhead from additional hardware,

we see an application slowdown of on average 1.5× for

CFCSS and 2.2× for EDDI. Furthermore, these software

techniques tend to cover only a limited range of flip-flops

(around 20%).

Application-specific Techniques: We look at Algorithm

Based Fault Tolerance (ABFT) applied to select PERFECT

benchmarks [5]. We have found that these techniques

generally lie in the ideal region of high error-detection rate

at low runtime overhead. They only provide protection

when running the corresponding algorithm, so in general-

purpose processors, hardware protection is still needed.

However, in accelerators, ABFT can eliminate the need for

other fault-tolerance mechanisms in dedicated hardware, or

in more general-purpose processors, allow hardware

protection to be turned off for potential power savings

when the protected algorithms are running. We note that,

some ABFT techniques, such as for FFT, only detect but

cannot correct errors.

Recovery Considerations: We round out our analysis by

examining recovery options for Leon3. The simplest cross-

layer recovery method takes advantage of the built-in

pipeline-flush mechanism (Fig. 4). Errors that occur and are

detected before reaching the memory write stage of the

564

pipeline can be flushed and re-executed. Implementing this

recovery mechanism costs 0.6% area and 0.9% power.

However, it does require that the last stages in the pipeline

be protected using techniques that both detect and correct

(e.g., hardened flip-flops). The second method of recovery

we evaluate is a hardware recovery unit (R-Unit), which

utilizes instruction checkpointing [7] (Fig. 5). Although

more general, this unit is relatively expensive on the Leon3,

requiring 16% area and 21% power overhead.

Radiation-hardening protected

Recovery hardware

Cross-layer protected

fe
tc

h

d
e
c
o
d
e

re
g
is

te
r

e
x
e
c
u
te

m
e
m

o
ry

e
x
c
e
p
ti
o
n

w
ri
te

ctrl

Figure 4. Cross-layer (flush) recovery

fe
tc

h

d
e
c
o

d
e

re
g
is

te
r

e
x
e

c
u
te

m
e
m

o
ry

e
x
c
e
p
ti
o

n

w
ri
te

ctrl

re
g
is

te
r

fi
le

shadow file

Radiation-hardening protected

Recovery hardware

Cross-layer protected

Figure 5. R-unit recovery

Cross-Layer Combinations
We examine case studies on the Leon3 core to demonstrate

systematic cross-layer exploration using our framework.

Circuit- and Logic-level Combinations: We show that

careful combination of hardening and parity protection for

flip-flops, allows designs that achieve significant savings as

compared to a single-layer (hardening-only or parity-only)

approach. For instance, in Leon3, even after considering

recovery, our cross-layer solution yields a savings of

anywhere from 1.1-1.9× in area and 1.1-1.5× in power

(after place and route) as compared to the best single-layer

resilience approach. In fact, for all soft-error rate (SER)

improvement targets (from 5-5,000× improvement), our

framework automatically generates a lower cost solution

than the best single-layer solution available (Fig. 6).

Circuit-, Logic-, and Architecture-level Combinations:

Using our two-layer solution as a baseline, we investigate

whether incorporating additional layers into our cross-layer

exploration yields further savings. We look at Data Flow

Checking (DFC), an architecture-level technique. For

Leon3, DFC detects errors in flip-flops carrying program

counter and instruction content throughout the pipeline

until the last stage (write-back) where the check is

performed. However, these flip-flops lack protection during

basic blocks following branches that are indirect or outside

of the binary address range (~20% of duration). Moreover,

some flip-flops only have errors that are occasionally

detected by DFC, resulting in partial detection. Overall,

35% of flip-flops are fully or partially protected with a 50%

average detection rate.

As a result, the low per-flip-flop detection requires

significant low-level (hardening and parity) protection,

which negates the benefits of using DFC. Moreover,

coupled with the high design cost due to compiler

modifications and the corresponding hardware checker,

high area cost of the checker hardware, and the high

(~20%) performance overheads, we find that cross-layer

solutions incorporating this specific architecture-level

technique are not viable solutions.

0

8

16

24

5 10 30 50 100 500 1,000 5,000

R
e

la
ti
v
e

O
v
e

rh
e

a
d

 (
%

)

SER Improvement

Harden-only Parity-only + R-unit

Cross-layer harden + parity + cross-layer recovery

a) Post-layout area overhead

0

12

24

36

5 10 30 50 100 500 1,000 5,000

R
e

la
ti
v
e

O
v
e

rh
e

a
d

 (
%

)

SER Improvement

Harden-only Parity-only + R-unit

Cross-layer harden + parity + cross-layer recovery

b) Post-layout power overhead

Figure 6. Post-layout overhead comparison (circuit- and
logic-level resilience)

Circuit-, Logic-, and Application-specific Combinations:

Let us consider the classical case of adding Algorithm

Based Fault Tolerance (ABFT) correction for a processor

dedicated to inner product. We find that a cross-layer

combination actually yields anywhere from a 1.8-3.5× area

improvement (for a dedicated processor) and 1.4-3.7×

power improvement (post-layout) for resilience

improvements in the range of 5-100× as compared to our

previous best two-layer approach (Fig. 7). Keep in mind

that these improvements are even higher when we compare

to the best single-layer approach instead.

These significant benefits are achievable because ABFT is

actually allowing us to reduce the amount of low-level

hardware protection required (by 20-50%) to meet our

resilience targets However, for highly resilient design

targets (e.g., 500-5,000×), the addition of ABFT into our

cross-layer analysis yields negligible benefits. Although

ABFT has high coverage for a small number of highly

vulnerable flip-flops, residual errors of non-fully protected

565

flip-flops will still require low-level hardware

augmentation in order to achieve a highly-resilient design.

0

2

4

6

5 10 30 50 100 500 1,000 5,000

R
e
la

ti
v
e

O
v
e
rh

e
a
d
 (

%
)

SER Improvement

Cross-layer harden + parity + cross-layer recovery

Cross-layer ABFT + harden + parity + cross-layer recovery

a) Post-layout area overhead

Cross-layer harden + parity + cross-layer recovery

Cross-layer ABFT + harden + parity + cross-layer recovery

0

5

10

5 10 30 50 100 500 1,000 5,000

R
e

la
ti
v
e

O
v
e

rh
e

a
d

 (
%

)

SER Improvement

b) Post-layout power overhead

Figure 7. Post-layout overhead comparison (circuit-, logic-,
and application-specific resilience)

Circuit-, Logic-, Architecture-, and Application-specific

Combinations: Although we know that cross-layer

combinations of DFC (an architecture-level technique) and

low-level hardware resilience (hardening and parity) do not

yield any meaningful benefits, we want to discover if this

still holds when we incorporate application-specific

techniques due to the fact that these two higher-level

techniques could potentially complement one another.

Unfortunately, although DFC provides some minimal

benefits (i.e., the number of flip-flops requiring low-level

hardware augmentation drops by an additional 10-20%),

the area and power costs of the DFC checker itself negate

any benefits afforded. In actuality, this cross-layer

combination could be significantly worse, because DFC (in

the case of an embedded, real-time system) will incur

tremendous recovery costs.

Conclusions
We present a new methodology and framework for

exploring, evaluating, and optimizing cross-layer resilience.

Our methodology and framework is applicable to any

arbitrary design and for any arbitrary use case. By taking a

system-level view of resilience, we can systematically find

effective cross-layer combinations to achieve desired

resilience at much lower cost than the best possible single-

layer solutions.

Acknowledgements

This work is sponsored in part by Defense Advanced

Research Projects Agency, Microsystems Technology

Office (MTO), under contract no. HR0011-13-C-0022. The

views expressed are those of the authors and do not reflect

the official policy or position of the Department of Defense

or the U.S. Government. This document is: Approved for

Public Release, Distribution Unlimited.

References

1. Calin, T., et al., "Upset Hardened Memory Design for

Submicron CMOS Technology," IEEE Trans. on

Nuclear Science, vol. 43, no. 6, pp. 2874-2878, 1996.

2. Carter, N., H. Naeimi, and D. Gardner, “Design

Techniques for Cross-layer Resilience,” Proc. Design

and Test Europe, pp. 1023-1028, 2010.

3. Cho, H., et al., "Quantitative Evaluation of Soft Error

Injection Techniques for Robust System Design,"

Proc. Design Automation Conference, pp. 1-10, 2013.

4. DeHon, A., H. Quinn, and N. Carter, “Vision for

Cross-layer Optimization to Address the Dual

Challenges of Energy and Reliability,” Proc. Design

and Test in Europe, pp. 1017-1022, 2010.

5. Huang, K, and J. Abraham, “Algorithm-Based Fault

Tolerance for Matrix Operations,” IEEE Trans.

Computers, vol. C-33, no. 6, pp. 518-528, 1984.

6. Lee, H., et al., "LEAP: Layout Design through Error-

Aware Transistor Positioning for Soft-Error Resilient

Sequential Cell Design," Proc. International Reliability

Physics Symposium, pp. 203-212, 2010.

7. Meaney, P., et al., "IBM z990 Soft Error Detection and

Recovery," IEEE Trans. on Device and Materials

Reliability, pp. 419-427, 2005.

8. Meixner, A., et al., "Argus: Low-Cost, Comprehensive

Error Detection in Simple Cores," 40th Annual

IEEE/ACM International Symposium on

Microarchitecture, pp.210-222, 2007.

9. Mitra, S. and E.J. McCluskey, "Which Concurrent

Error Detection Scheme to Choose?" Proc.

International Test Conference, pp. 985-994, 2000.

10. Mitra, S., et al., “Robust System Design with Built-In

Soft Error Resilience,” IEEE Computer, vol. 38, no. 2,

pp. 43-52, 2005.

11. Oh, N., P. Shirvani, and E.J. McCluskey, “Control-

Flow Checking by Software Signatures,” IEEE Trans.

Reliability, vol. 51, no. 1, pp. 111-122, 2002.

12. Oh, N., P. Shirvani, and E.J. McCluskey, “Error

Detection by Duplicated Instructions in Super-scalar

Processors,” IEEE Trans. Reliability, vol. 51, no. 1, pp.

63-75, 2002.

13. Rodbell, K., et al., "32 and 45 nm Radiation-

Hardened-by-Design (RHBD) SOI Latches," IEEE

Trans. on Nuclear Science, vol. 58, no. 6, pp. 2702-

2710, 2011.

14. Szafaryn, L. et al., "Evaluating Overheads of Multibit

Soft-Error Protection in the Processor Core," IEEE

Micro, vol. 33, no. 4, pp. 56-65, 2013.

566

