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VAPOR PRESSURE DATA ANALYSIS AND STATISTICS 

 

 

 

1. INTRODUCTION 

 

Knowledge of the vapor pressure of materials as a function of temperature is 

important for a number of reasons, including prediction of their behavior when released into the 

environment or laboratory, design of test apparatus for developmental test equipment, and 

determination of route(s) of entry for toxicological assessments. Vapor pressure-versus-

temperature relationships can also be used to calculate the normal boiling point, temperature-

dependent enthalpy of volatilization (vaporization for liquids and sublimation for solids), 

volatility, and entropy of volatilization. Vapor pressure can be reported several different ways, 

including tables of experimental temperature and pressure pairs, smoothed pressure values 

calculated at selected temperatures, or correlated equations expressing vapor pressure as a 

function of temperature. Vapor pressure data are plotted by convention on a scale of logarithm of 

pressure versus reciprocal temperature to give a straight or nearly straight line plot. When data 

are plotted over wide ranges, the nonlinearity of the data becomes obvious, requiring a more 

complicated mathematical relationship (also commonly referred to as correlation in the 

literature) to accurately describe the data and enable interpolation and extrapolation.  

 

 The purposes of this report are to compare several different methods for 

correlating vapor pressure data using the Antoine equation and to discuss statistical analyses of 

the resulting correlations.  

 

 

2.  VAPOR PRESSURE CORRELATIONS 

 

 Many different equations can be used to express vapor pressure as a function of 

temperature. This report addresses the two most prevalent in the literature, the Clausius–

Clapeyron and Antoine equations.1 
 

 The Clausius–Clapeyron equation has the following form: 

 

ln(𝑃) = 𝐚 −
𝐛

𝑇
   

 

where P is vapor pressure (Pa), T is absolute temperature (K), and a and b are correlation 

constants. The derivation of this equation has a sound thermodynamic basis, but it is based on 

several assumptions that are not exact. These are, primarily, that heat of vaporization (the slope 

of the vapor pressure curve) does not vary with temperature, and also that the molar volume of 

the liquid is negligible compared to that of the vapor. Although the integrated form of the 

Clausius–Clapeyron equation is linear on a standard plot (lnP vs 1/T), the assumption of constant 

enthalpy of vaporization is not valid over wide temperature ranges. As a result, this equation 

only accurately represents data over narrow temperature ranges. 

(1) 
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 The modified integrated Clausius–Clapeyron and other empirical relations have 

been developed to better describe vapor pressure data. One of these modifications is the Antoine 

equation (eq 2, for Kelvin and Pascal units; eq 3 for Celsius and Torr units), which is easy to 

solve, less cumbersome than higher-term equations, takes into account the variation in heat of 

vaporization with temperature, and accurately describes data over broad experimental ranges, 

thereby enabling interpolation and limited extrapolation of the data. 

  

ln(𝑃) = 𝐚 −
𝐛

(𝐜 + 𝑇)
   

 

where P is vapor pressure (Pa); T is absolute temperature (K); a, b, and c are correlation 

constants; and ln denotes the natural logarithm. The c value is usually negative, reflecting the 

negative curvature of the vapor pressure plot and decreasing enthalpy of vaporization as 

temperature increases. 
  

log(𝑝) = 𝐀 −
𝐁

(𝐂 + 𝑡)
      

 

where p is vapor pressure (Torr); t is Celsius temperature; A, B, and C are correlation constants; 

and log denotes logarithm in base 10. For these units, a C value less than 273.15 reflects the 

slight negative curvature typically observed for vapor pressure data over a large temperature 

range.  

 

 Although other combinations of units are found in the literature for the Antoine 

equation, the current discussion is limited to the two listed above, which can be interconverted to 

express pressure and temperature as Pascal and Kelvin (eq 2) or Torr and Celsius (eq 3) using 

eqs 4–6. The units used here conform with those used in the original reports. 

 

a = A  ln(10) + ln(101325/760)    (4) 

 

b = B  ln(10)       (5) 

 

c = C – 273.15       (6) 

 

 The advantages and disadvantages of the Antoine equation have been summarized 

by Penski.2 An additional disadvantage of the Antoine equation is that the predicted pressure is 

incorrect at temperatures far below the experimental temperature limit; the calculated vapor 

pressure becomes undefined when the denominator approaches zero, such as when the absolute 

value of the (negative) c constant is equal to the experimental temperature. This anomaly makes 

it inappropriate to extrapolate significantly below the low-temperature limit of the data. An 

example of this effect is illustrated by the Antoine equation for thiodiglycol (TDG)3 in the figure. 

That said, since absolute values of c are usually less than 100, this deficiency of the Antoine 

model is often of academic interest only. A quantitative assessment of the extrapolation accuracy 

to lower temperatures has not been fully investigated. 

  

(2) 

(3) 
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Figure. TDG data3 with Antoine curve, showing its discontinuity. 

 

 

 After the a, b, and c constants are fit to the vapor pressure data, it may be asked 

whether a, b, and c are meaningful fit parameters. Judging the quality of the fit by observing the 

residual (data model) provides only a partial answer. However, using a, b, and c to estimate other 

physical parameters will provide the user with a feel for the quality of a, b, and c. We consider 

four ways to address this aim. 

 

  1. Assessment of the expected order of magnitude of a, b, and c. Equation 2  

(K and Pa) usually results in a, b, and c constants of approximately 24, 5000, 

and –70, respectively. Equation 3 (°C and Torr) normally has A, B, and C 

constants near 8, 2000, and 200, respectively. The A (or a) value is directly 

related to vapor pressure and will be greater for high vapor pressure materials. 

 

  2. Prediction of the normal boiling temperature and comparison to the 

experimentally determined normal boiling point temperature. 

 

  3. Estimation of the enthalpy of vaporization as a function of T from the Antoine 

equation coefficients as follows. Although the basis of the Antoine equation is 

partially empirical, the temperature-dependent enthalpy of vaporization may 

be calculated by first taking the derivative of eq 2 with respect to temperature 

(eq 7) and then multiplying by RT2, as shown in eq 8,  
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d ln (𝑃)

d𝑇
=  

𝐛

(𝐜 + 𝑇)2
    

 

∆𝐻vap =
d ln (𝑃)

d𝑇
  R𝑇2 = 𝐛R

𝑇2

(𝐜 + 𝑇)2
     

 

where Hvap is enthalpy of vaporization (or enthalpy of sublimation for 

solids). Over narrow temperature ranges, c is often neglected, eq 8 reduces to 

eq 9, and the calculated enthalpy of vaporization does not depend on 

temperature. 

 

 Hvap = bR  (9) 

 

  4. Calculation of the entropy of vaporization, which is defined as the enthalpy of 

vaporization at the normal boiling point divided by the normal boiling point 

temperature. Trouton’s rule states that this value should be approximately 

89 J/mol-K, although deviations to higher values due to hydrogen bonding 

may be expected.  
 

 

 Using the model fit parameters to identify potentially flawed experimental data 

can be instructive. An example is provided by TDG; its vapor pressure was first reported by 

Bauer and Burschkies4 in 1935 without a correlation equation. The a and b correlation constants 

for the Clausius–Clapeyron equation based on their data are unusually low, the extrapolated 

normal boiling point of greater than 1300 K is unreasonably high, and the calculated enthalpy of 

vaporization of less than 20 kJ/mole is extraordinarily low, suggesting problems with the data. 

New data published in 2014 by Brozena et al.3 suggested a more realistic normal boiling point 

(553 K) and standard enthalpy of vaporization (86.8 kJ/mole) and are in good agreement with 

recent manufacturers’ data. In addition, values for the constants and derived thermodynamic 

properties are in the expected ranges. Numerical analysis would have suggested that there were 

flaws in the original data prior to its publication. 

 

 

3.  FITTING METHODS 
 

 Our process for correlating experimental vapor pressure data to either the Antoine 

or Clausius–Clapeyron equation has evolved over time with updates, as required, based on the 

computer technology available and our understanding of the options for fit optimization. Several 

different but related methods are addressed in this report. All of these methods are based on 

least-squares solutions; the Clausius–Clapeyron equation is linear when plotted on a standard 

vapor pressure plot of ln(P) versus T–1, whereas the Antoine equation is nonlinear with negative 

curvature on such a plot.  

 

 Unless otherwise stated, the metric used to optimize the fits described in this 

report is least-squares error applied to the logarithm of pressure, which is the sum of the squares 

(7) 

(8) 
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of the differences between the logarithms of experimental and calculated values, referred to by 

Penski2 and in this report as S: 
 

𝑆 = ∑ (𝑌𝑖 − 𝐚 − 𝐛𝑋𝑖)
2

𝑖=1,𝑛      (10) 
 

where n is the number of data points, Yi is the natural logarithm of the ith experimental vapor 

pressure value, and Xi is the negative reciprocal of the sum of the c constant and the ith 

experimental temperature value. For O-ethyl S-(2-diisopropylaminoethyl) methyl 

phosphonothiolate and O-isobutyl-S-[2(diethylamino)ethyl] methylphosphonothiolate (VX and 

RVX, respectively), the sum of the absolute values of the percent differences between the 

experimental and calculated values was used as the metric.  

 

 In 1971, Penski and Latour developed and described in detail5 a Fortran program 

to find values for A, B, and C that minimize S, which is a nonlinear regression problem and 

therefore requires an iterative solution procedure. The problem is nonlinear because of the C 

coefficient; A and B appear linear if the value of C is known. Penski and Latour’s method takes 

advantage of this conditional linearity by performing a one-dimensional golden section search to 

find the optimal value of C given a reasonable starting value. At each iteration, the optimal A 

and B values given the current value of C are easily found as a solution to a linear least-squares 

problem. This method was updated in 1989 by Dr. Kenneth Collins (U.S. Army Edgewood 

Chemical Biological Center [ECBC]) to a Basic program, enabling the fit to be performed using 

a desktop computer.2  
 

 In 1992, Penski updated his method2 to address a number of deficiencies, 

including the lack of statistical analysis of the least-squares fitting. This update included 

equations to estimate the standard errors of the A and B Antoine coefficients; however, Penski 

treated the solution value of C as if it were exact. In reality, because C is determined from the 

data, it is also subject to error; and the error in C also must be propagated to A and B. As a result 

of this oversight, the standard errors of A and B as estimated by Penski’s equations are too small. 

For example, Penski’s A and B values for diethyl malonate (DEM) in Appendix I of reference 2 

are 0.020955 and 3.200, respectively, compared to our values, 0.0573171 and 33.9768. In the 

following discussion, we correct the statistical analysis of the Antoine equation and provide more 

accurate equations for estimating the scatter in the data used to determine the Antoine fit, using 

standard nonlinear regression theory.6 Penski also pointed out that the correlations presented in 

1971 were determined using low-precision calculations, and that higher-precision calculations 

produced better fits to the experimental data, as determined by the S values.  
 

 In the late 1990s, we recognized the need to update our vapor pressure correlation 

capabilities to something more flexible with wider availability than Penski’s Fortran program. A 

Microsoft Excel spreadsheet using the Solver program was developed in-house and appeared to 

have the desired capability. This approach, which was also based on a least-squares optimization 

scheme, relies on minimizing S (eq 10). One drawback of this method was the requirement to 

provide reasonable starting estimates of the correlation constants in order for the Solver program 

to find the optimum solution.   

 

 Several modifications of the Excel spreadsheet have been explored. In an attempt 

to optimize the correlation of data sets including outliers, an alternate metric was employed, 
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minimizing the sum of the absolute values of the percent differences between the experimental 

and calculated values, D, a metric that appears to minimize the influence of experimental outliers 

on the overall fit.7  

 

 Another modification of the basic Excel Solver procedure, identified herein as the 

“b optimization method”, is performed by varying the b constant and allowing Solver to 

determine values of a and c that minimize S. This method of deriving Antoine equation 

coefficients from experimental data by optimization of the b constant is tedious in that it requires 

manual variation of b for each iteration. In some instances, the coefficients produced by this 

method were found to depend on the starting values selected for the a and c constants, thereby 

yielding unoptimized “solutions”. These unreliable solutions can be identified most easily by 

graphing S versus b in real time to determine which points do not lie on a smooth curve and, 

therefore, should be disregarded. This unpredictable reliability, especially the dependence of the 

solution on the initial values of the a and c constants, caused us to search for an alternative 

method that combined the robustness of Penski’s original and updated methods with the 

availability and flexibility of Excel software.  

 

 Recently we adapted Penski’s method to make it compatible with Excel software 

using Solver and the S metric. This method has the advantage of not requiring operator 

intervention to arrive at the optimum solution. Although we found a few examples in which 

Penski’s method could not optimize the correlation due to the selection of the c constant starting 

value, those cases appear to be rare and easily identifiable.  

 

 The Penski method (using Excel software) is described as follows: 

 

 Enter the total number of data points (n) representing the experimental data 

pairs (vapor pressure and temperature) into separate columns in the Excel (or 

similar) worksheet. 

 Using eqs 8 and 9 in Penski and Latour’s report,5 calculate Xi, Yi, Xi
2, Yi

2, XiYi, 

and their sums.  

 Calculate the Antoine b constant using eq 11 in reference 5 with the total 

number of data points and sums of Xi, Yi, Xi
2, and XiYi values; where Xi equals 

–1/(c + T), Yi equals ln(Pi), and S equals the sum of the squares of the 

differences of the natural logarithms of experimental and correlated vapor 

pressure values, as described in Penski and Latour’s report.5 

 Calculate the Antoine a constant using eq 10 in reference 5 with the Antoine 

b constant from the previous step, the total number of data points, and the 

sums of the Xi and Yi values.  

 Compute S according to eq 10 in this report using the total number of data 

points; the sums of Xi, Yi, Xi
2, Yi

2, and XiYi values; and the Antoine a and b 

constants from above. 

 Using the Excel Solver program, find the value of c that minimizes S. This 

step also generates solution values for a and b.  
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 This method may be used to analyze data generated using other units; however, 

the fit determined using one unit system will only correspond to that using the same data in 

another unit system if unrounded values are used for the converted experimental values. 

 

4. STATISTICAL ANALYSIS 

 

 The fitting of Antoine coefficients to measured (temperature–pressure) data is a 

problem of nonlinear least squares, which requires an iterative solver. As mentioned above, 

Penski and Latour noticed that the problem was linearly separable in the sense that the a and b 

coefficients associated with a given value of c can be found through linear least squares. They 

replaced a three-dimensional nonlinear least-squares problem (for a, b, and c) with a simpler 

one-dimensional nonlinear problem (for c). In Penski and Latour’s method, given an initial value 

for c, the corresponding (a, b) parameters that minimize S conditional to the assumed c value are 

found through linear least squares, and a golden section search on c improves the solution until 

convergence to a c value that minimizes S. Despite the fact that a one-dimensional search is used 

to identify c, fitting the Antoine equation is fundamentally a three-dimensional problem, and the 

estimated a, b, and c coefficients are each subject to error. Penski2 treated the solution for c as if 

it were the true value and instead used ordinary linear least-squares error analysis to provide 

standard deviations of a and b conditional to c. This procedure fails to account for the fact that 

all three Antoine coefficients are estimated from the data; it underestimates the errors in a and b, 

and since no error estimate of c is provided (it is implicitly assumed to be zero), the error in c is 

underestimated as well. Here, we provide more accurate error expressions for the Antoine 

coefficients by applying the results of Seber’s6 Theorem 2.1 to the Antoine equation. 

 

 We write the Antoine equation as ln(Pi) = a – b/(Ti + c) + εi, for i = 1, 2, …, n, 

where εi captures experimental error in ln(Pi). We assume that Ti, the temperature at the ith 

experimental data point, is error-free. The pressures Pi are measured quantities obtained using 

the experimental methods described elsewhere;8–10 it is reasonable to assume that their errors are 

normally distributed. However, in a typical experiment, the measured pressures span multiple 

orders of magnitude of the pressure with relative errors that tend to be nearly constant. Least-

squares minimization with respect to pressure would improperly weight higher pressure (higher 

temperature) values. Minimizing the sum-of-square residuals of the logarithm of Pi (S) removes 

the effect of magnitude, and the logarithm converts constant relative error in Pi to constant 

absolute error in ln(Pi) (d ln(P)/dP = dP/P). Thus, minimization of S is an ordinary (unweighted) 

least-squares problem. The error analysis of least-squares problems is facilitated by an 

assumption that the errors are normally distributed. As mentioned above, we assumed normally 

distributed errors for P; thus, ln(P) is not technically normally distributed. However, a Taylor 

expansion of ln(P) can be used to establish that if P is normally distributed, then ln(P) is also 

very closely normally distributed, as long as the relative error in P is less than approximately 

10%. Typical relative errors in our experiments are generally less than 3%. 

 

 For notational convenience in the following discussion, we let θ (bold type 

indicates a vector or matrix quantity) be the three-dimensional column vector of Antoine 

coefficients, θ = (a, b, c)T, where superscript T denotes the transpose operator. We also use P 

and T to denote the n-element column vectors whose ith elements are Pi and Ti, respectively.  
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 The error analysis of a nonlinear regression problem hinges on a first-order Taylor 

expansion of the model equation around the solution value. As long as the model equation is 

sufficiently linear in a region around the true solution, asymptotic results from standard linear 

least squares apply. For our purpose, it is most important that the least-squares solution value θ is 

normally distributed, unbiased, and has a covariance matrix given by σ2Σ−1, where superscript −1 

denotes the matrix inverse, and 2 is the variance of ln(P) around the model fit. The matrix Σ is 

given by  

 

)()( lnln
TT θ

PT

θ

P








 

 

where T
θ

P



 ln
 is the n-by-3 matrix of first derivatives of the model equation with respect to the 

coefficients. The ith row of the first derivative matrix is given by  

 

 









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























2)(

1
1

lnlnlnln

c

b

ccbaθ ii

iii

T

i

TT

PPPP
 

 

The first derivative matrix may also be written as 

 

 




















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where 1 is the n-element vector whose elements all equal 1, and all mathematical operations are 

understood to be element-by-element (for instance, 1/T would indicate the vector consisting of 

reciprocals of the elements of the n-element vector T). The elements of the matrix Σ are given 

here explicitly: 
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Note that the matrix  is symmetric and involves only six unique quantities (corresponding to 

either the upper or lower triangular portion of the matrix).  

 

 Although σ2 may not be known a priori, an estimate is given by )3(ˆ 2  nS ,  

where n – 3 is the number of degrees of freedom for n data points minus the three variables, a, b, 

and c; therefore, the standard errors of the Antoine coefficients may be estimated by the square 

roots of the diagonal elements of 
12ˆ 

Σ . It should be noted that the covariance matrix 
12ˆ 

Σ  is in 
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general not a diagonal matrix, and that the a, b, and c parameters can be highly correlated. This 

is reflective of the fact that if one of the parameter values is changed from the optimum value, 

the other two can compensate, reducing the increase in the S value.  

 

 We caution the reader that the high correlation of the error in a, b, and c must be 

kept in mind because it impacts the calculation of confidence intervals. One common simple 

technique that might be tempting to visualize approximate confidence intervals would be to plot 

the model curve corresponding to (a ± kσa, b, c), (a, b ± kσb, c), and (a, b, c ± kσc), where k is 

some factor intended to achieve a certain quantile of a normal distribution. This corresponds to 

visualizing the model when each of the parameters is perturbed in turn (with the two other 

parameters remaining at their solution values). This technique should be strongly discouraged 

because it ignores the correlation between the parameters (it does not allow for the other 

parameters to be modified to compensate for a change in the parameter being perturbed), and 

therefore, it will be misleading, showing errors that will be too large. Methods for estimating 

approximate confidence intervals for nonlinear regression problems are discussed in detail 

elsewhere.6 In general, if the problem is sufficiently linear around the solution value, then 

confidence intervals from linear regression theory are appropriate.  

 

 The calculations for the standard deviations are summarized as follows: 

 Calculate 



n

i

iT
1

2)( c , 



n

i

iT
1

3)( c , and 



n

i

iT
1

4)( c ; 

 Calculate  ̂2 = S/(n – 3); 

 Construct the matrix  and its inverse and 

 Calculate standard deviations of a, b, and c Antoine equation constants using 

̂2 and diagonals of inverted matrix, a = (̂2 –1[1,1])1/2;  

b = ( ̂2 –1[2,2])1/2; and c = ( ̂2 –1[3,3])1/2, where the notation –1[i,i] 

refers to the ith diagonal element of the matrix –1. 

 

5. RESULTS AND DISCUSSION 

 

 Two data sets analyzed by Penski and Latour5 and one set by Penski2 were used in 

this work to demonstrate how the more recent correlation approaches (the Excel version of 

Penski’s method and b optimization) compare to the results obtained using the earlier methods. 

Those are discussed here in detail. Four other examples contained in recent publications from our 

laboratory were examined using Penski’s method (Excel software) and are compared to the 

published results, which were determined using the b optimization method. The published 

Antoine constants for VX and RVX were derived using a different metric, as described in 

Sections 5.4 and 5.5, respectively.
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5.1 1-Hexadecanol 
 

 The data listed in Penski and Latour’s 1971 technical report5 for 1-hexadecanol 

(Chemical Abstracts Service [CAS] no. 36653-82-4), which were originally published by 

Kemme and Kreps,11 are listed in Table 1.  
 

 

Table 1. 1-Hexadecanol Vapor Pressure Data from Kemme and Kreps11 

Temperature  

(°C) 

Vapor Pressure  

(Torr) 

172.1 5.9 

185.3 10.3 

193.4 15.1 

201.0 19.8 

211.0 30.1 

218.6 40.4 

227.3 55.3 

238.7 80.3 

251.6 120.3 

269.3 200.5 

285.0 302.1 

305.9 502.4 

325.1 759.2 
 

 

 Repeating these calculations using the Penski method (Excel software) produced a 

similar, but not identical, result. The b optimization method also produced similar results that 

were more like the Penski method (Excel software) than the original correlation reported by 

Penski and Latour.5 Results obtained using these methods and Penski and Latour’s earlier results 

are listed in Table 2. The Penski method (Excel software) gave the smallest S value, but that 

value was only marginally lower than the value derived using the b optimization method. The 

original fit reported by Penski and Latour returned a higher S value than the other two methods, 

presumably due to those authors’ use of single-precision calculations in the original work.2 

Standard deviations of the fit constants calculated using the procedures from above are also listed 

in Table 2. Differences in solution values for the different methods are small fractions of the 

standard deviations, indicating that all methods found essentially the same solution. These results 

illustrate that the b optimization method is capable of finding high-quality fits, as in this case, 

although more generally its reliability can be unpredictable.  
 

 

Table 2. Antoine Constants (Equation 3), Standard Deviations, and S for 1-Hexadecanol 

Method A B C S 

Penski and Latour5 7.06077 1893.76 128.406 0.0006029515572 

b Optimization 7.0605568 1893.60 128.39063 0.0006029512786 

Penski method (Excel 

software) 
7.0605418 1893.5891 128.38958 0.0006029512781 

Standard deviation ()* 0.1510558 110.7127 10.59318 NA 
*From Penski method (Excel software). 
  NA, not applicable. 
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 These constants produced very similar calculated values, several of which are 

listed in Table 3 with five significant digits to illustrate the minor differences at the lower 

temperatures.  
 

 

Table 3. Vapor Pressures (Torr, Equation 3) Calculated at Selected Temperatures 

for 1-Hexadecanol Using Constants Listed in Table 2 

Temperature 

(ºC) 

Penski and 

Latour5 

b Optimization 

Method 

Penski Method 

(Excel Software) 

–40 4.3611 × 10–15 4.3398 × 10–15 4.3384 × 10–15 

0 2.0538 × 10–8 2.0503 × 10–8 2.0501 × 10–8 

25 5.2001 × 10–6 5.1952 × 10–6 5.1949 × 10–6 

50 0.00027918 0.00027903 0.00027902 

100 0.058826 0.058816 0.058816 

150 1.8139 1.8139 1.8139 

200 19.690 19.690 19.690 
 

 

5.2 1-Tetradecanol 

 

 The data listed in Penski and Latour’s report5 for 1-tetradecanol (CAS no. 112- 

72-1), which were originally published by Kemme and Kreps,11 are reproduced in Table 4. 
 

 

Table 4. 1-Tetradecanol Vapor Pressure Data from Kemme and Kreps11 

Temperature  

(°C) 

Vapor Pressure 

(Torr) 

151.6 5.2 

163.0 10.5 

171.0 15.3 

177.0 19.9 

188.4 32.1 

199.1 48.4 

213.3 80.1 

225.7 120.0 

243.1 202.8 

257.8 302.6 

277.9 501.2 

295.9 755.2 
 

 

 Penski and Latour’s correlation published in 19715 is provided in Table 5 along 

with recalculations using the Penski method (Excel software) and b optimization methods. More 

significant figures were employed in the calculation, as suggested by Penski in his 1992 follow-

on report.2 Table 5 also lists the standard deviations of the Antoine equation constants 

determined from the Penski method (Excel software) analysis. As with 1-hexadecanol, the 

original Penski and Latour fit for 1-tetradecanol returned a higher S value, presumably due to the 

limited number of significant digits used in the calculation. 
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 Although there were small differences in the constants, the Penski method (Excel 

software) yielded the same S value as b optimization to 10 significant figures as shown in 

Table 5 and nearly the same calculated vapor pressure values, listed in Table 6. It should be 

noted that the differences in the values calculated using the constants of Penski and Latour’s 

method compared to those calculated using b optimization are well within our current 

experimental error limits. 

 

 

Table 5. Antoine Constants (Equation 3), Standard Deviations, and S for 1-Tetradecanol 

Method A B C S 

Penski and Latour 6.21961 1244.90 75.5994 0.001484169359 

b Optimization 6.2194464 1244.80 75.588371 0.001484166674 

Penski method (Excel 

software) 
6.2194449 1244.7991 75.588274 0.001484166674 

Standard deviation ()* 0.1822121 104.8499 11.900099 NA 
*From Penski method (Excel software). 

 

 

 Table 6 provides a list of vapor pressures calculated to five significant digits at 

selected temperatures for 1-tetradecanol using the constants from Table 5. The extremely low 

calculated values in the first row of Table 6 resulted from the low value of the denominator of 

the Antoine correlation as the absolute value of the temperature approached the C constant value, 

as illustrated in the Figure. These anomalously low values are well beyond the limits of confident 

extrapolation. This result is not surprising, given that the lowest experimental data point was 

about 190 ºC higher than the –40 ºC extrapolated value and was likely the direct result of the 

denominator in the B term of the Antoine equation approaching zero. This result clearly 

demonstrates the danger associated with extrapolating below the experimental range using the 

Antoine equation. The quantitative aspects of this anomaly have not been explored. 

 

 Interestingly, the values calculated for 1-hexadecanol at –40, 0, 25, and 50 ºC are 

higher than those for 1-tetradecanol. In fact, the vapor pressures calculated for 1-hexadecanol are 

higher than those for 1-tetradecanol at temperatures between –75 and +60 ºC. We believe that 

these values are artifacts of the 1-tetradecanol Antoine equation, given that the lighter alcohol is 

unlikely to have lower vapor pressure than the heavier alcohol at any temperature. It appears to 

us that there is a transcription error in the lowest point of the 1-tetradecanol data reported by 

Kemme and Kreps,11 which probably should have been 5.7 instead of 5.2 Torr. The lower value 

caused Penski and Latour’s 1971 fit5 to have greater curvature, characterized by a smaller C 

value, than would have been found using the correct data value. The strongest evidence for a 

transcription error is that changing the lowest value to 5.7 Torr produces the same average and 

maximum errors listed in the original report.11 The only relevance to the current discussion is 

that the low C value calculated by Penski and Latour brings into question the accuracy of the 

original data. Changing the lowest value in the original report to 5.7 Torr increases the C value 

to a more reasonable value, near 100, but still leaves doubt about the accuracy of the data set 

because the C value is still lower than what is usually found.  
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Table 6. Vapor Pressures (Torr, Equation 3) Calculated at Selected Temperatures for  

1-Tetradecanol Using Constants Listed in Table 5 

Temperature 

(ºC) 

Penski and  

Latour5 

b Optimization 

Method 

Penski Method 

(Excel Software) 

–40 1.7779 × 10–29 1.7447 × 10–29 1.7444 × 10–29 

0 5.6565 × 10–11 5.6403 × 10–11 5.6402 × 10–11 

25 6.9950 × 10–7 6.9865 × 10–7 6.9864 × 10–7 

50 0.00020321 0.00020310 0.00020309 

100 0.13495 0.13494 0.13494 

150 5.0283 5.0284 5.0284 

200 50.414 50.416 50.416 

 

 

5.3 DEM 

 

 The data listed in Penski’s 1992 technical report for DEM (CAS no. 105-53-3) 

were measured by Brozena et al. and reported in a recent journal article.12 The constants 

calculated by Penski in 1992 match those calculated using the Penski method (Excel software) to 

within 1 part per million, as shown in Table 7. It should be noted that all three methods yielded 

the same S values to nearly 10 significant digits. It is possible that small differences were due to 

rounding of the constants in Penski’s report to eight digits, and those differences could be 

indicative of tighter stopping tolerances in the Excel Solver software. In either case, the 

differences are of little practical importance. Table 7 also lists the standard deviations of the 

Antoine equation constants determined from the Penski method (Excel software) analysis. 

 

 The differences observed for the constants in reference 12 are due to selection of 

different data points for that analysis. Differential thermal analysis (DTA) data points at 

pressures below 650 Pa were not used for the b optimization calculation in the more recent report 

due to the large uncertainties in those data.  

 

 

Table 7. Antoine Constants (Equation 3), Standard Deviations, and S for DEM 

Method A B C S 

Penski2 8.0005804 2146.40052 223.081 0.02112108143 

b Optimization (this work) 8.0005812 2146.401 223.08101 0.02112108141 

b Optimization12* 7.9505248 2117.3376 221.19221 0.021386 

Penski method 

(Excel software) 
8.0005813 2146.4011 223.08102 0.02112108141 

Standard deviation ()† 0.0573171 33.9768 2.26229 NA 
*After conversion from Pa-K to Torr-ºC units using eqs 4–6. 
† From Penski method (Excel software). 
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 Despite the small differences in the constants calculated from different methods 

for DEM, the vapor pressure values calculated from those constants are the same to five 

significant figures, as shown in Table 8. This should be expected because the differences in the 

solution values (excluding the constants from reference 12) are a small fraction of the estimated 

standard deviations; thus, all solutions are identical with respect to the error in the data.  

 

 It is worth noting that in his later report, Penski 2 calculated standard deviations 

for the A and B constants, assuming that the C constant was exact (as discussed in Section 4). 

Penski’s calculations yielded values for A and B of 0.020955 and 3.200, respectively. These 

values severely underestimate the uncertainty, by a factor of almost 3 for A and by an order of 

magnitude for B, and show that there is dramatic impact if the error in C is ignored. In the 

remainder of this report, we present only the improved estimates of standard deviation, which 

were calculated using the methodology introduced in Section 4. 

 

 

Table 8. Vapor Pressures (Torr, Equation 3) Calculated at Selected Temperatures 

for DEM Using Constants Listed in Table 7 

Temperature 

(ºC) 
Penski2 

b Optimization 

Method 

Penski Method 

(Excel Software) 

–40 0.00018915 0.00018915 0.00018915 

0 0.023931 0.023931 0.023931 

25 0.22313 0.22313 0.22313 

50 1.3824 1.3824 1.3824 

100 22.753 22.753 22.753 

150 176.77 176.77 176.77 

200 845.90 845.90 845.90 

 

 

5.4 VX 

 

 We recently recalculated the fit that we originally reported for VX (published in a 

1999 ECBC technical report8 and in the open literature9 in 2012) using the Penski method (Excel 

software) and b optimization methods. In the published correlation, the nonstandard metric, D, 

which is the sum of the absolute values of the percent differences between the experimental and 

calculated values, was used in an effort to minimize the effect of experimental outliers. The S 

metric was used in both new calculations. The resulting fit constants are compared to the 

published values in Table 9. Both new fits produced essentially the same constants, with S values 

about 15% lower than the S values that were calculated using the published constants. 

Comparing the S metric found for the published fit to the other fits shown in Table 9 is not 

appropriate, however, because different metrics were used. The S value for the b optimization 

with the D metric is included here for information only. Table 9 also lists the standard deviations 

of the Antoine equation constants determined from the Penski method (Excel software) analysis.  
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Table 9. Antoine Constants (Equation 2), Standard Deviations, and S for VX 

Method a b c S 

b Optimization  

(D metric)8,9 
23.725 6154.9 –60.165 0.748414 

b Optimization  

(S metric)  
23.274719 5839.6 –68.146215 0.6315428836 

Penski method (Excel 

software) 
23.274812 5839.6420 –68.145558 0.6315428780 

Standard deviation ()* 0.365064 213.7409 5.124115 NA 
*From Penski method (Excel software). 

 

 

 Both new fits, which used the S metric, produced calculated values that are 

identical, as shown in Table 10. Differences compared to the original fit, also shown in Table 10, 

are within experimental error with the exception of the lowest value, which is well below the 

experimental temperature limit. The observed differences suggest a steeper dependence on 

temperature for the fits determined using the S metric and a more curved dependence, which is 

reflected in the greater absolute value of the c constants for the new fits.  
 

 

Table 10. Vapor Pressures (Pascal, Equation 2) Calculated at Selected Temperatures for VX  

Using Constants Listed in Table 9 and Differences from Values Calculated Using  

the Penski Method (Excel Software) 

Temperature 

(ºC) 

Penski Method 

(Excel Software) 

b Optimization 

(S Metric) 

b Optimization 

(D Metric)8,9 

Percent 

Difference* 

–40† 0.0000054712 0.0000054714 0.0000070991 29.75 

0 0.0054582 0.0054583 0.0056660 3.81 

25 0.12070 0.12070 0.11794 –2.28 

50 1.4545 1.4545 1.3785 –5.22 

100 62.099 62.099 57.965 –6.66 

150 920.87 920.87 870.14 –5.51 

200 7017.1 7017.0 6778.8 –3.40 
*100·[b optimization (D metric) – Penski method (Excel value)]/Penski method (Excel value).  
†Extrapolated; lower limit of experimental data was –13 °C. 

 

 

5.5 RVX 

 

 We also recently recalculated our original correlation for RVX (published in a 

2006 technical report10 and in the open literature in 20129) using the Penski method (Excel 

software) and b optimization methods. As with VX, in the published correlation, the nonstandard 

metric, D, was used, but the S metric was used in both new calculations in this work. In Table 11, 

the resulting fit constants are compared to the published values, and the standard deviations of 

the Antoine equation constants determined from the Penski method (Excel software) analysis are 

listed. Comparing the S metric found for the published fit to the other fits shown in Table 11 is 

not appropriate because the D metric was used. The S value for the b optimization with the D 

metric is included here for information only. 
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Table 11. Antoine Constants (Equation 2), Standard Deviations, and S for RVX 

Method a b c S 

Excel software 

(D metric)9,10 
24.136 6464.0 –55.271 0.08878 

b Optimization 

(S metric) 
23.806112 6269.8 –59.493359 0.08515025789 

Penski method (Excel 

software) 
23.806171 6269.8357 –59.492558 0.08515025782 

Standard deviation ()* 0.485769 297.1876 6.684891 NA 
*From Penski method (Excel software). 

 

 

 Values calculated at selected temperatures using the constants in Table 11 are 

listed in Table 12, which also shows the agreement between the new b optimization results and 

those generated using the Penski method (Excel software). All differences in calculated values 

are within the current experimental error limits, except for the lowest value, which was 

extrapolated well below the experimental temperature range. 

 

 

Table 12. Vapor Pressures (Pascal, Equation 2) Calculated at Selected 

Temperatures for RVX Using Constants Listed in Table 11 

Temperature 

(ºC) 

Penski Method 

(Excel Software) 

b Optimization  

(S Metric) 

b Optimization  

(D Metric) 

Percent 

Difference* 

–40† 0.0000045588 0.0000045587 0.0000050138 9.98 

0 0.0039301 0.0039301 0.0039587 0.73 

25 0.085000 0.085000 0.083905 –1.29 

50 1.0263 1.0263 1.0057 –2.00 

100 45.456 45.456 44.756 –1.54 

150 709.90 709.90 709.82 –0.01 

200 5705.0 5705.0 5810.4 1.85 
*100·(b optimization (D metric) – Penski method (Excel value))/Penski method (Excel value). 
†Extrapolated; lower limit of experimental data was –10 °C. 

 

 

5.6 TDG 

 

 We recalculated our recently published TDG (CAS no. 111-48-8) correlation 

using the Penski method (Excel software) and the data as they appear in that report.3 The 

resulting fit constants are close to the published values, obtained using the b optimization 

method with the S metric, as shown in Table 13. The differences between the published and new 

b optimization results are attributed to the difficulty associated with finding the best solution 

using the b optimization method. Table 13 also lists the standard deviations of the Antoine 

equation constants that were determined from the Penski method (Excel software) analysis.  
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Table 13. Antoine Constants (Equation 2), Standard Deviations, and S for TDG 

Method a b c S 

b Optimization  

(S metric)3 
24.3482 6224.0 –67.9546 0.01235505437 

b Optimization  

(S metric, this work) 
24.348076 6223.9 –67.956992 0.01235504204 

Penski method  

(Excel software) 
24.348102 6223.9147 –67.956676 0.01235504202 

Standard deviation ()* 0.411409 262.6135 6.323227 NA 
*From Penski method (Excel software). 

 

 

 These constants produced similar calculated values, several of which are listed in 

Table 14 with five significant digits to illustrate small differences. In each case, there are no 

differences between the new b optimization and the Penski method (Excel software) results, and 

the differences between those and the published correlation values are all less than 0.01%. The 

standard deviation estimates also indicate that all solutions are identical to within the error limits 

of the experimental data.  

 

 

Table 14. Vapor Pressures (Pascal, Equation 2) Calculated at Selected Temperatures  

for TDG Using Constants Listed in Table 13 

Temperature 

(ºC) 

Penski Method 

(Excel Software) 

b Optimization  

(S Metric, This Work) 

b Optimization  

(S Metric3) 

–40 0.0000016275 0.0000016275 0.0000016276 

0 0.0025191 0.0025191 0.0025191 

25 0.067903 0.067903 0.067901 

50 0.95991 0.95991 0.95987 

100 52.183 52.183 52.180 

150 921.03 921.03 920.99 

200 8004.4 8004.4 8004.1 

 

 

 

5.7 N,N′-Diisopropylcarbodiimide (DICDI) 

 

 Our most recent report13 details the vapor pressure of DICDI (CAS no. 693-13-0), 

which was determined using constants calculated via the b optimization method with the S 

metric. Recalculation of the correlation using the Penski method (Excel software) produced 

results (shown in Table 15) that reveal the fit described in reference 13 is nearly identical to the 

one obtained using the Penski method (Excel software). Table 15 also lists the standard 

deviations of the Antoine equation constants that were determined from the Penski method 

(Excel software) analysis.  
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Table 15. Antoine Constants (Equation 2), Standard Deviations, and S for DICDI 

Method a b c S 

b Optimization13 20.78393 3214.75 –73.96220 0.001117473101 

Penski method  

(Excel software) 
20.783935 3214.7534 –73.962050 0.001117473100 

Standard deviation ()* 0.267660 142.8454 5.846359 NA 
*From Penski method (Excel software). 

 

 

 The vapor pressure values calculated using these constants are the same, to five 

digits, as those shown in Table 16. This result demonstrates again that the b optimization method 

can produce results comparable to those produced using the Penski method (Excel software), as 

long as the same metric is used and the b optimization method is reliable for the particular data 

set.  
 

 

Table 16. Vapor Pressures (Pascal, Equation 2) Calculated at Selected  

Temperatures for DICDI Using Constants Listed in Table 15 

Temperature 

(ºC) 

Penski Method 

(Excel Software) 

b Optimization 

(S Metric)13 

–40 1.8026 1.8026 

0 104.03 104.03 

25 629.16 629.16 

50 2651.9 2651.9 

100 22903 22903 

150 106680 106680 

200 337970 337970 
 

 

 Although the b optimization method and the Penski method (Excel software) can 

yield nearly identical results when the S metric is used, the former is more tedious and can give 

lower-quality fits in unfavorable cases. It is not clear to us whether those lower-quality fits are a 

result of the amount and quality of the data, the experience of the user, a combination of factors, 

or some other cause. It appears that the Penski method (Excel software) is consistently superior 

to the b optimization method because all data analyzed to date have yielded a smaller S when the 

Penski method was used. 

 

 We intend to use the Penski method (Excel software) with the S metric for future 

vapor pressure data correlations. Because viscosity data may also be correlated using the Antoine 

equation and similar procedures, it is likely that those correlations will also be improved by use 

of this method. 

 

 Table 17 lists the standard deviations of the Antoine constants from the tables in 

this report. The standard deviations for the three compounds studied by Penski and Latour were 

converted to enable direct comparisons. The table also includes the number of data points used 

for each analysis. It is clear from Table 17 that the compound with the greatest number of data 

points (DEM) had the smallest standard deviation for all three constants. When more data points 
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are available, the error is reduced due to the averaging inherent in the least-squares process. The 

mathematical dependence is easily seen: the standard deviations of a, b, and c depend on σ2, 

which in turn is inversely proportional to the degrees of freedom. The number of data points is 

not the only consideration; their placement (where along the x axis they were measured), the 

validity of the assumption that the errors are identically and independently distributed, and of 

course, the validity of the underlying physical model (the Antoine equation) all have an impact. 

Therefore, it is not necessarily the case that a larger data set will result in lower standard 

deviations. VX is an example. Although VX has the second-largest number of data points of the 

data considered herein, its standard deviations were greater than those for several of the 

compounds with fewer data points. We attribute this observation to the fact that the very low 

vapor pressure of VX makes low-temperature data measurement very challenging, and the data is 

subject to more uncertainty than some of the other higher-volatility materials. Even though 

DICDI has the fewest data points, it has the second lowest σa and σb constants of the compounds 

discussed in this report, and the σc constant for DICDI is lower than that for all of the other 

compounds except DEM and VX. We attribute this observation to the unusually high precision 

of the DICDI experimental data.  

 

 

Table 17. Standard Deviations of Antoine Constants for Compounds and Data in This Report 

Compound σa σb σc 
Number of 

Data Points 

1-Hexadecanol* 0.347819 254.9254 10.593177 13 

1-Tetradecanol* 0.419529 241.4086 11.899260 12 

DEM* 0.131978 78.2344 2.262292 66 

VX 0.365064 213.7409 5.124115 41 

RVX 0.485769 297.1876 6.684891 20 

TDG 0.411396 262.6049 6.323022 11 

DICDI 0.267660 142.8454 5.846359   7 
*Original analysis was done using eq 3 (log(p)); the original σa and σb values were multiplied by  

ln(10) for comparison to the other entries in this table. The σc value is not affected by units change. 

 

 

6. CONCLUSIONS 

 

 Several methods for correlating experimental vapor pressure data are explored in 

this report. 

 

 The method adopted by Penski and Latour5 has been adapted for use with the 

commercial spreadsheet application Microsoft Excel with the Solver routine add-in, and it 

appears to produce high-quality solutions. The method is robust and efficient. We recommend it 

over the b optimization method.   

 

 As shown in this report, the b optimization method can find high-quality solutions 

under favorable conditions. However, this method is susceptible to finding unoptimized 

“solutions” unless the user is careful to avoid those that appear to be optimized but are not, due 

to poor choice of starting values for the a and c constants. As a result, the user must be able to 

determine when inappropriate starting values for the a and c constants are affecting the 
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optimization process. This can be done most easily by plotting the c versus S results in real time 

to ensure that a smooth curve is obtained. The b optimization method is tedious, requiring 

manual variation of the b constant while a and c are allowed to vary until a minimum S is 

determined.  

 

 The Antoine constants published previously for VX and RVX8–10 are numerically 

different than those obtained using the Penski method (Excel software). The published fits were 

both based on the D optimization metric, and a direct comparison of Antoine constants to those 

determined using the S metric is not appropriate. 

 

 In this report, we also present a statistical analysis of the least-squares fitting of 

the Antoine equation. Penski had presented estimates for the standard deviations of the a and b 

parameters, but these were based on the erroneous assumption that the c coefficient was known 

exactly. We present updated equations derived from least-squares theory to more properly 

estimate the standard deviations of all three solution parameters. For DEM, we show that 

Penski’s standard deviations underestimated the error by a factor of 3 in the case of the a 

parameter and by a factor of 10 in the case of the b parameter. Although we endorse Penski and 

Latour’s method, we emphasize that their equations for the standard error5 should be replaced by 

those discussed in this report. 

 

 Analysis of Antoine constants determined for the compounds and data in this 

report shows that the various methods generally succeed at finding the same effective solution. 

Differences in the solution values tend to be very small fractions of the standard deviations of the 

solution coefficients, and thus are effectively identical. The standard deviations of the solution 

parameters are also useful to compare the quality of different data sets. 
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ACRONYMS AND ABBREVIATIONS 

 

 

CAS Chemical Abstracts Service 

Csat  saturation concentration 

ΔHvap  enthalpy of vaporization 

DEM diethyl malonate 

DICDI N,N′-diisopropylcarbodiimide 

DTA differential thermal analysis 

ECBC U.S. Army Edgewood Chemical Biological Center 

P  vapor pressure (Pa) 

p vapor pressure (Torr) 

R ideal gas constant 

RVX O-isobutyl-S-[2(diethylamino)ethyl] methylphosphonothiolate 

T  absolute temperature (K) 

t temperature (°C) 

TDG thiodiglycol  

VX O-ethyl S-(2-diisopropylaminoethyl) methylphosphonothiolate 
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APPENDIX 
 

SCREENSHOTS OF MICROSOFT EXCEL TEMPLATE 
 

This appendix contains screenshots of the Microsoft Excel template used to 

calculate the Antoine (or Clausius–Clapeyron) fit for vapor pressure data using Penski’s method 

as described in this report. This template file, which performs all calculations discussed in this 

report, is available from the authors. The following narrative describes salient features of each 

slide. Data for N,N′-diisopropylcarbodiimide (DICDI) in Pascal-Kelvin unit format was used for 

demonstration purposes. The template can also perform the same analysis for data entered using 

Torr and degrees Celsius units. 
 

Slides 1 and 2 show the compound identification and experimental data sections. 

The user enters the data as pressure and temperature pairs. The sums of the five highlighted 

parameters, identified as S1–S5 as in Penski and Latour’s report, are used to calculate Antoine 

constants and S, the metric that is used to assess fit quality. S is the sum of the squares of the 

differences of the logarithms of the experimental and calculated vapor pressure values. The 

Antoine constants are calculated by selecting an initial value for the c constant and allowing the 

Excel Solver program to minimize S by varying c. If an inappropriate initial c value is selected, it 

will be immediately obvious because the calculated values will not match the experimental data, 

demonstrating the robust quality of the updated Penski method. The four parameters,  

(c + Ti)
–1, (c + Ti)

–2, (c + Ti)
–3, and (c + Ti)

–4, and their sums shown to the right of S1–S5, are 

used to calculate standard deviations of the Antoine constants, as described in this report.  
 

Slide 3 shows a list of calculated properties, including vapor pressure, volatility 

(or saturation concentration, Csat), and enthalpy of volatilization at selected temperature for the 

data entered into Slide 1. The last row contains the normal boiling point (i.e., at 1 atm), which 

was calculated using the derived Antoine constants and properties at the normal boiling point. 

Standard enthalpy of volatilization (enthalpy of vaporization for liquids and enthalpy of 

sublimation for solids) is the Hvap value at 25 °C. The entropy of vaporization is the ratio of 

enthalpy of vaporization at the normal boiling point to the temperature at the normal boiling 

point. These latter values are calculated and shown on Slide 1 when the template is used.  
 

Slide 4 shows the statistical analysis that is described in detail in this report and 

performed automatically when the Excel template is used. The number of data points, n, is 

entered on Slide 1. The formulas used to calculate the values of the symmetric  matrix are 

shown at the upper right-hand side of the slide. The  ̂2 value, also identified as (-hat),2 is 

defined as S/(n–3). Standard deviations of the constants are determined by taking the square 

roots of the products of the diagonal elements of the inverse matrix and  ̂2. 
 

Slide 5 shows a standard plot of vapor pressure versus 10000/TK and the Antoine 

equation that is calculated when the template is used. 
 

Slide 6 shows an optional feature incorporated into the template. Formula weight 

of the subject molecule is calculated by the Excel template when the user enters the number of 

each atom in that molecule. The formula weight is used to calculate volatility (Csat), shown on 

Slide 3. 



 

 

  

 
 

Figure A-1. Slide 1.

DICDI

7

Molecular Weight: 126.2

148.06 °C

421.21 K

at 25 C Hvap: 47.28 kJ/mol

at nBPt Svap: 93.4 J/mol-K

t/°C T/K 10000/K Pa

15.00 288.15 34.7041 2.42 323

55.46 328.61 30.4312 26.2 3490

65.45 338.60 29.5334 41.3 5500

77.06 350.21 28.5543 71.1 9480

87.9 361.05 27.6970 111.4 14860

111.15 384.30 26.0213 251.7 33560

148.27 421.42 23.7293 761.6 101530

Experimental Data

Temperature Pressure

Torr

Number of Data Points:

Normal Boiling Point:

Compound:
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Figure A-2. Slide 2.

log P/torr = A - B/(C+t)

Rnd, 7 Ratio

a 0.11384 A= 6.900169944 6.900170 a 20.7809985 0.9998569

b 60.73921 B= 1395.460678 1395.461 b 3218.05973 1.00102224

c 5.725408 C= 199.1242983 199.1243 c -74.0257000 1.00087173

S= 0.00020232397

%Difference Pcalc S4/Yi S5/Yi
2

S1/Xi S2/Xi
2 S3/XiYi (c + Ti)

-1
(c + Ti)

-2
(c + Ti)

-3
(c + Ti)

-4

log(Pi) -1/(C+t)

0.27 2.416 0.38430 0.147686 -0.004670 0.00002181 -0.001795 0.004670 2.1811E-05 1.0186E-07 4.757E-10

-0.23 26.23 1.41782 2.010211 -0.003928 0.00001543 -0.005569 0.003928 1.5429E-05 6.0605E-08 2.3805E-10

-2.27 42.25 1.61582 2.610878 -0.003780 0.00001429 -0.006107 0.003780 1.4286E-05 5.3995E-08 2.0408E-10

1.03 70.39 1.85198 3.429835 -0.003621 0.00001311 -0.006706 0.003621 1.311E-05 4.7468E-08 1.7187E-10

2.01 109.2 2.04700 4.190216 -0.003484 0.00001214 -0.007132 0.003484 1.2138E-05 4.2291E-08 1.4734E-10

-0.40 252.7 2.40091 5.764357 -0.003223 0.00001039 -0.007738 0.003223 1.0387E-05 3.3478E-08 1.079E-10

-0.35 764.2 2.88170 8.304201 -0.002879 0.00000829 -0.008295 0.002879 8.2862E-06 2.3852E-08 6.8661E-11

 12.59953 26.45738 -0.025584 0.00009545 -0.043342 0.025584 9.545E-05 3.635E-07 1.414E-09

Calculations
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Figure A-3. Slide 3.

t T 10000/T Csat

C K K
-1 Pa Torr mg/m

3 kJ/mol kcal/mol

-40 233.15 42.891 1.801 0.01351 117.2 57.35 13.71

-30 243.15 41.127 5.943 0.04457 371.0 55.22 13.20

-20 253.15 39.502 17.16 0.1287 1029 53.36 12.75

-10 263.15 38.001 44.31 0.3324 2556 51.72 12.36

0 273.15 36.610 104.0 0.7802 5.780E+03 50.27 12.02

10 283.15 35.317 225.0 1.688 1.206E+04 48.98 11.71

20 293.15 34.112 453.6 3.403 2.349E+04 47.82 11.43

25 298.15 33.540 629.2 4.719 3.203E+04 47.28 11.30

30 303.15 32.987 860.3 6.453 4.308E+04 46.77 11.18

35 308.15 32.452 1161 8.706 5.717E+04 46.28 11.06

40 313.15 31.934 1547 11.60 7.496E+04 45.82 10.95

45 318.15 31.432 2036 15.27 9.716E+04 45.37 10.84

50 323.15 30.945 2652 19.89 1.246E+05 44.95 10.74

55 328.15 30.474 3418 25.64 1.581E+05 44.55 10.65

60 333.15 30.017 4363 32.72 1.988E+05 44.16 10.55

70 343.15 29.142 6916 51.88 3.059E+05 43.43 10.38

80 353.15 28.317 10608 79.57 4.559E+05 42.77 10.22

90 363.15 27.537 15797 118.5 6.602E+05 42.15 10.07
100 373.15 26.799 22904 171.8 9.317E+05 41.57 9.94
120 393.15 25.436 44905 336.8 1.734E+06 40.55 9.69

140 413.15 24.204 81316 609.9 2.987E+06 39.65 9.48

148.06 421.21 23.741 101325 760.0 3.651E+06 39.32 9.40

VPcalc Hvap
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Figure A-4. Slide 4.

N = 7

N-3 = 4

(-hat)
2 5.058E-05

Matrix 7 -0.02558 1.332E-01

 -0.02558 9.545E-05 -5.073E-04

1.332E-01 -5.073E-04 2.753E-03

Inverse 256.21311 136221.2037 12707.939


 136221.2 72937512.12 6850915.61

12707.939 6850915.614 648075.412

%

A 0.1138399 #DIV/0!

B 60.73921 #DIV/0!

C 5.725408 #DIV/0!

A 6.9001699

B 1395.4607

C 199.1243

= S/(N-3)

Calculate standard deviation of Antoine constants

1. Select 3x3 target; touch = sign

2. Select matrix inverse function

3. Choose 3x3 sigma matrix to be inverted

4. Shift-ctrl-enter

Matrix inverse calculation requires shift-

ctrl-enter command after setting up 3x3 

target matrix.
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Figure A-5. Slide 5.
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Figure A-6. Slide 6.

At No Element Std At Wt Atoms Subtotal

1 H 1.0079 14 14.1112

2 He 4.0026

3 Li 6.9410

4 Be 9.0120

5 B 10.8110

6 C 12.0107 7 84.0749

7 N 14.0067 2 28.0134

8 O 15.9994

9 F 18.9984

10 Ne 20.1797

11 Na 22.9898

12 Mg 24.3050

13 Al 26.9815

14 Si 28.0855

15 P 30.9730

16 S 32.0650

17 Cl 35.4530

MW 126.1995

C7H14N2

Diisopropylcarbodiimide

Calculation of Molecular Weight
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